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Abstract
We prove a general existence theorem for collapsed
ancient solutions to the Ricci flow on compact homo-
geneous spaces and we show that they converge in the
Gromov–Hausdorff topology, under a suitable rescaling,
to anEinsteinmetric on the base of a torus fibration. This
construction generalizes all previous known examples
in the literature.
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1 INTRODUCTION

Given a connected smooth manifold 𝑀, a solution to Hamilton’s Ricci flow is a smooth path of
Riemannian metrics g(𝑡) satisfying the geometric non-linear PDE

𝜕

𝜕𝑡
g(𝑡) = −2Ric𝑀(g(𝑡)).

Up to a time-dependent family of diffeomorphisms, it is equivalent to a parabolic PDE and so,
similar to the heat equation, the Ricci flow has regularizing properties for Riemannian metrics
making it a fundamental tool in the study of classification-type problems in geometry and topol-
ogy. Solutions that are defined on a time interval (−∞, 0] have a special significance and are called
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ancient solutions. Since the Ricci flow is equivalent to a parabolic PDE, the backwards equation is
generally ill-posed and hence ancient solutions are rare.
Now let 𝖦 be a compact Lie group acting transitively and almost effectively on𝑀, so that𝑀 is

compact as well. Then, by diffeomorphism invariance, the Ricci flow induces a dynamical system
on the space of 𝖦-invariant Riemannian metrics M 𝖦

𝑀
on𝑀. We recall that an ancient solution to

the 𝖦-homogeneous Ricci flow g(𝑡) is said to be non-collapsed if the curvature-normalized met-
rics |Rm𝑀(g(𝑡))|g(𝑡)g(𝑡) have a uniform lower injectivity radius bound, otherwise it is said to be
collapsed. In [10], the authors proved that non-collapsed ancient solutions on a compact homo-
geneous space must emanate from a homogeneous Einstein metric on the same space. Moreover,
the normalized Ricci flow

𝜕

𝜕𝑡
g̃(𝑡) = −2Ric0𝑀(g̃(𝑡))

on the subspace of 𝖦-invariant, unit volume, Riemannian metrics M 𝖦
𝑀,1
⊂M 𝖦

𝑀
, which is equiv-

alent to the Ricci flow up to rescaling and time reparametrization, is the gradient flow of the
scalar curvature functional, whose critical points are 𝖦-invariant, unit volume, Einstein metrics
on𝑀. Therefore, non-collapsed ancient solutions to the 𝖦-homogeneous Ricci flow always exist
whenever𝑀 admits a 𝖦-invariant, 𝖦-unstable Einstein metric (see [10, Lemma 5.4]).
On the other hand, it is known that a compact homogeneous space admits collapsed ancient

solutions to the homogeneous Ricci flow only if it is the total space of a homogeneous torus
bundle (see, for example, Proposition 2.4). Examples of such solutions have been found, for exam-
ple, in [5, 10, 13, 19, 27], on a case by case basis, and up to now there have been few general
existence theorems.
The main result of our paper is the following.

Theorem A. Let 𝖧 ⊊ 𝖳𝖧 ⊊ 𝖦 be compact, connected Lie groups, where 𝖳 is a maximal torus of a
compact complement of 𝖧 in the normalizer 𝖭𝖦(𝖧) with 𝑑 = dim(𝖳) ⩾ 1. For any 𝖦-invariant, unit
volumeEinsteinmetric ḡ on𝑁 = 𝖦∕𝖳𝖧 of coindex 𝑞, there exists a ( 𝑑(𝑑+1)

2
+ 𝑞 − 1)-parameter family

of collapsed ancient solutions to the homogeneous Ricci flow on 𝑀 = 𝖦∕𝖧 that, under a suitable
rescaling, shrink the fibers of 𝖳 → 𝑀 → 𝑁 and converge to (𝑁, ḡ) in theGromov–Hausdorff topology
as 𝑡 → −∞.

Here, the coindex of the Einstein metric ḡ is defined as its coindex as a critical point of the
scalar curvature functional on the space M 𝖦

𝑁,1
of unit volume 𝖦-invariant metrics on 𝑁 (see Sec-

tion 2.2). We mention that all the ancient solutions obtained by means of Theorem A are of
submersion type with respect to the homogeneous torus fibration 𝖳 → 𝑀 → 𝑁, and we expect
this property to be true in general (see, for example, [27]). Here, maximality of 𝖳 and Schur’s
Lemma guarantee that submersionmetrics are preserved by the Ricci flow, which is crucial to the
proof. Furthermore we stress that, along the solutions obtained by our theorem, the metric on the
fibers 𝖳 and the base 𝑁 will in general change. Note also that Theorem A holds true even when
ḡ has coindex 𝑞 = 0, that is, it is a local maximum of scalar curvature on M 𝖦

𝑁,1
(compare with

[10, Lemma 5.4]). We mention that Theorem A holds without the connectedness assumption on
𝖧 and 𝖦, but in such case the dimension of the space of ancient solutions on 𝑀 depends on the
adjoint representation of𝖧 on the Lie algebra 𝔱 ∶= Lie(𝖳) (see Section 4.2). Lastly, we do not know,
expect in some special cases, whether the solutions found by means of Theorem A are isometric
or not.
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We illustrate our result with the following series of examples:

Corollary B.

(a) On 𝖲𝖴(3), 𝖲𝖴(3)∕𝖲1, 𝖲𝖴(4), 𝖲𝖴(4)∕𝖲1, 𝖲𝖴(4)∕𝖳2, 𝖦2 and 𝖦2∕𝖲1 there exists a 3, respectively, 1, 7,
4, 2, 3 and 1-parameter family of ancient solutions to the Ricci flow collapsing, under a suitable
rescaling, to a Kähler–Einstein metric on a full flag manifold.

(b) On 𝖲𝖴(𝑛)∕𝖳𝑛−1−𝑘 , with 𝑛 ⩾ 3 and 1 ⩽ 𝑘 ⩽ 𝑛 − 1, there exists a ( 𝑘(𝑘+1)
2
+ 𝑛 − 2)-parameter

family of ancient solutions to the Ricci flow collapsing to the normal Einstein metric on
𝖲𝖴(𝑛)∕𝖳𝑛−1.

(c) On 𝖲𝖮(4) and 𝖲𝖮(4)∕𝖲1 there exists a 3, respectively, 1-parameter family of ancient solutions to
the Ricci flow collapsing to the normal Einstein metric on 𝖲𝖮(4)∕𝖳2.

Note that the circles 𝖲1 ⊂ 𝖲𝖮(4) in Corollary B can be chosen with arbitrary slope and that the
manifolds 𝖲𝖮(4)∕𝖲1 are diffeomorphic to 𝑆3 × 𝑆2 (see, for example, [29]). In particular, we obtain
infinitelymany families of ancient solutions on 𝑆3 × 𝑆2 that are homogeneous under inequivalent
group actions. Moreover, let us also observe that in [8] it was shown that under the assumptions
of Theorem A most homogeneous spaces 𝖦∕𝖳𝖧 admit homogeneous Einstein metrics with large
coindex plus nullity (see also [9, 11, 28]), to which Theorem A can be applied.
We remark that Theorem A allows us to reconstruct all known examples of collapsed homo-

geneous ancient solutions to the Ricci flow, such as those in [5, 10, 13, 19, 27]. In [5] and [19],
the authors construct ancient solutions which consist of submersion metrics 𝐹 → 𝑀 → 𝐵 where
one assumes either that 𝐹,𝑀, 𝐵 admit Einstein metrics, 𝐹 is a torus, or 𝐵 is a product of Kähler–
Einstein metrics. In these constructions, the metric on the base remains fixed, or in the latter case
stays within the set of products of Kähler–Einstein metrics. On the contrary, along the ancient
solutions provided by Theorem A, the induced metric on the base 𝑁 varies and does not neces-
sarily remain Einstein, as opposed to the solutions constructed in [5] and those constructed in
[19]. Furthermore, in our situation𝑀 need not admit an invariant Einstein metric and ḡ need not
be Kähler–Einstein.
The strategy of the proof of Theorem A is as follows. First we observe that, since the torus

𝖳 is assumed to be maximal, the subspace of 𝖦-invariant submersion metrics with respect to
𝖳 → 𝑀 → 𝑁 is preserved by the Ricci flow, and that it can be analytically extended to the
bigger space of generalized submersion metrics, which contains a neighborhood of the col-
lapsed metric 0 ⊕ ḡ . We also compactify the problem by projecting the Ricci flow to the unit
sphere of generalized submersion metrics, with respect to some carefully chosen background
inner product depending on ḡ , obtaining what we call the ḡ-projected Ricci flow. Then, we use
an enhanced version of the Stable Manifold Theorem to produce ancient solutions to the ḡ-
projected Ricci flow which collapse to 0 ⊕ ḡ as 𝑡 → −∞. Finally, we prove that some of these
solutions of generalized submersion metrics are actually positive definite, and that the corre-
sponding solutions to the Ricci flow, obtained by rescaling and time reparametrization, are still
ancient.
The paper is organized as follows. In Section 2, we recall some facts about compact homo-

geneous spaces, toral 𝖧-subalgebras and ancient solutions to the Ricci flow. In Section 3, we
introduce the fundamental tools for proving our main result, namely the space of generalized
submersion metrics and the projected Ricci flow. In Section 4, we prove Theorem A. In Section 5,
we construct examples of collapsed ancient solutions and prove Corollary B.
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2 PRELIMINARIES ON COMPACT HOMOGENEOUS SPACES

2.1 The space of invariant metrics

Let𝑀 = 𝖦∕𝖧 be a compact, connected and almost-effective𝑚-dimensional homogeneous space,
where 𝖦 is a compact Lie group and 𝖧 a closed subgroup. Furthermore assume that 𝑀 is not a
torus. Note that neither 𝖦 nor 𝖧 are assumed to be connected.
Fix an Ad(𝖦)-invariant Euclidean inner product 𝑄 on the Lie algebra 𝔤 ∶= Lie(𝖦) and denote

by𝔪 the 𝑄-orthogonal complement of 𝔥 ∶= Lie(𝖧) in 𝔤. By means of the canonical identification
𝔪 ≃ 𝑇𝑒𝖧𝑀 given by the evaluation map

𝑉 ↦ 𝑉∗𝑒𝖧 ∶=
d

d 𝑠
exp(𝑠𝑉)𝖧||𝑠=0,

we identify any 𝖦-invariant tensor field on 𝑀 with the corresponding Ad(𝖧)-invariant ten-
sor on 𝔪. The restriction 𝑄𝔪 ∶= 𝑄|𝔪⊗𝔪 defines a normal 𝖦-invariant Riemannian metric
on𝑀.
We denote by M 𝖦

𝑀
the set of 𝖦-invariant Riemannian metrics on 𝑀, which is identified with

the linear space of 𝑄𝔪-symmetric, Ad(𝖧)-invariant, positive-definite endomorphisms of𝔪, that
is,

M 𝖦
𝑀 = Sym+(𝔪,𝑄𝔪)

Ad(𝖧), (2.1)

by means of the correspondence

g ↦ 𝑃g , 𝑄𝔪(𝑃g .𝑉1, 𝑉2) ∶= g(𝑉1, 𝑉2) for any 𝑉1, 𝑉2 ∈ 𝔪. (2.2)

From now on, we will always identify a metric with the associated endomorphism via (2.2).
We recall that (2.1) provides the setM 𝖦

𝑀
with a structure of finite-dimensional smoothmanifold.

Moreover, the natural 𝐿2-metric defined by

⟨𝐵1, 𝐵2⟩𝑃 ∶= det(𝑃) 12 Tr(𝑃−1.𝐵1.𝑃−1.𝐵2) for any 𝐵1, 𝐵2 ∈ 𝑇𝑃M 𝖦
𝑀 = Sym(𝔪,𝑄𝔪)

Ad(𝖧)

turnsM 𝖦
𝑀
into a Riemannian symmetric space of non-compact type and the subset

M 𝖦
𝑀,1 ∶= {𝑃 ∈ Sym+(𝔪,𝑄𝔪)

Ad(𝖧) ∶ det(𝑃) = 1}

of unit volume 𝖦-invariant Riemannian metrics into a totally geodesic submanifold.
For any Riemannian metric 𝑃 ∈M 𝖦

𝑀
, we consider the Ad(𝖧)-invariant map

𝑆𝑀(𝑃) ∶ 𝔪 → End(𝔪)

defined by (see [15, Theorem 3.3, Chapter X])

−2𝑄𝔪(𝑆𝑀(𝑃)(𝑉1).𝑉2, 𝑉3) ∶= 𝑄𝔪([𝑉1, 𝑉2]𝔪, 𝑉3)

+𝑄𝔪([𝑃
−1.𝑉3, 𝑉1]𝔪, 𝑃.𝑉2) + 𝑄𝔪([𝑃

−1.𝑉3, 𝑉2]𝔪, 𝑃.𝑉1). (2.3)
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Here, the symbol [𝑉1, 𝑉2]𝔪 denotes the𝑄-orthogonal projection of [𝑉1, 𝑉2] on𝔪. Themap 𝑆𝑀(𝑃),
which is denoted by −Λ𝔪 in [15], corresponds to the 𝖦-invariant (1,2)-tensor field on𝑀 given by
the difference between the Ambrose–Singer connection associated to the reductive decomposi-
tion 𝔤 = 𝔥 +𝔪 and the Levi–Civita connection (see, for example, [23]). It is worth mentioning
that this tensor encodes all the geometric information about the metric 𝑃. Indeed, following [15,
Proposition 2.3, Chapter X], the Riemannian curvature tensor Rm𝑀(𝑃) of 𝑃 is explicitly expressed
in terms of 𝑆𝑀(𝑃) by

Rm𝑀(𝑃)(𝑉1, 𝑉2) = ad([𝑉1, 𝑉2]𝔥) − [𝑆𝑀(𝑃)(𝑉1), 𝑆𝑀(𝑃)(𝑉2)] − 𝑆𝑀(𝑃)([𝑉1, 𝑉2]𝔪), (2.4)

where again the [𝑉1, 𝑉2]𝔥 denotes the𝑄-orthogonal projection of [𝑉1, 𝑉2] on 𝔥. Consequently, the
Ricci curvature Ric𝑀(𝑃) of 𝑃 is

𝑄𝔪(Ric𝑀(𝑃).𝑉1, 𝑉2) ∶= Tr(Rm𝑀(𝑃)(𝑉1, ⋅ ).𝑉2 ) (2.5)

and the scalar curvature scal𝑀(𝑃) of 𝑃

scal𝑀(𝑃) ∶= Tr(𝑃
−1. Ric𝑀(𝑃)). (2.6)

Note that, according to (2.5), we denote by Ric𝑀 the endomorphism obtained by raising an index
of the Ricci bilinear form by means of the background metric 𝑄. Therefore, the standard ‘Ricci
endomorphism’ corresponds in our notation to 𝑃−1. Ric𝑀(𝑃).
We also denote by

Ric0𝑀(𝑃) ∶= Ric𝑀(𝑃) −
scal𝑀(𝑃)

𝑚
𝑃 (2.7)

the traceless Ricci curvature of 𝑃 and we recall that 𝑃 is said to be Einstein if Ric0𝑀(𝑃) = 0.
We finally mention that Einstein metrics are the critical points of the normalized scalar

curvature functional

s̃cal𝑀 ∶M 𝖦
𝑀 → ℝ, s̃cal𝑀(𝑃) ∶= det(𝑃)

1
𝑚 scal𝑀(𝑃).

Indeed, following [6, Chapter 4] the differential of s̃cal𝑀 at𝑃 ∈M 𝖦
𝑀
in the direction of𝐵 ∈ 𝑇𝑃M 𝖦

𝑀
is

d s̃cal𝑀|𝑃(𝐵) = −det(𝑃) 2−𝑚2𝑚 ⟨Ric0𝑀(𝑃), 𝐵⟩𝑃 (2.8)

and so d s̃cal𝑀|𝑃 = 0 if and only if 𝑃 is Einstein.
2.2 Homogeneous torus bundles and the coindex of Einstein metrics

Let us consider a toral 𝖧-subalgebra 𝔨 of 𝔤, that is, an Ad(𝖧)-invariant Lie subalgebra of 𝔤 which
lies properly between 𝔥 and 𝔤 such that [𝔨, 𝔨] ⊂ 𝔥. Then, if we denote by 𝖪o the connected Lie
subgroup of 𝖦 with Lie algebra equal to 𝔨, it turns out that the subgroup 𝖪 generated by 𝖧 and
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𝖪o is a (not necessarily closed) Lie subgroup of 𝖦 and 𝖳 ∶= 𝖪∕𝖧 is a (immersed) torus in𝑀. This
gives rise to a (locally defined) homogeneous torus fibration

𝖳 = 𝖪∕𝖧 → 𝑀 = 𝖦∕𝖧 → 𝑁 ∶= 𝖦∕𝖪. (2.9)

For more details on this construction, see, for example, [8, Section 4], [21, Section 3] and [22,
Proposition 6.1].
At the Lie algebra level, we get the 𝑄-orthogonal decomposition

𝔤 = 𝔥 + 𝔱
⏟⏟⏟
𝔨

+

𝔪
⏞⏞⏞
𝔫, with 𝔱 ∶= Lie(𝖳), 𝔫 ≃ 𝑇𝑒𝖪𝑁. (2.10)

We recall that a metric 𝑃 ∈M 𝖦
𝑀
is called 𝔨-submersion metric if it preserves the decomposition

𝔪 = 𝔱 + 𝔫 and its restriction to the subspace𝔫 isAd(𝖪)-invariant.We denote byM 𝖦
𝑀
(𝔨) the subset

of all the 𝔨-submersion metrics and observe that it naturally splits as

M 𝖦
𝑀(𝔨) = Sym+(𝔱, 𝑄𝔱)

Ad(𝖧) ⊕ Sym+(𝔫,𝑄𝔫)
Ad(𝖪), 𝑃 = 𝑃𝔱 ⊕ 𝑃𝔫, (2.11)

where𝑄𝔱 ∶= 𝑄|𝔱⊗𝔱 and𝑄𝔫 ∶= 𝑄|𝔫⊗𝔫. Note that any 𝑃 ∈M 𝖦
𝑀
(𝔨) turns the (locally) homogeneous

torus fibration (2.9) into a Riemannian submersion with totally geodesic fibers (see for example,
[21, Section 3.2]). Note that all the metrics in M 𝖦

𝑀
(𝔨) are invariant under the action of the larger

group𝖦×𝖳, which acts on𝑀 = 𝖦∕𝖧 via (𝑎, 𝑛) ⋅ 𝑏𝖧 ∶= 𝑎𝑏𝑛−1𝖧with isotropy at the origin 𝖧Δ𝖳 ∶=
{(ℎ𝑛, 𝑛) ∶ ℎ ∈ 𝖧, 𝑛 ∈ 𝖳}.
Let us consider now amaximal toral 𝖧-subalgebra of 𝔤, that is, a toral 𝖧-subalgebra 𝔨 of 𝔤 such

that 𝖳 = 𝖪∕𝖧 is a maximal torus of a compact complement of 𝖧o in 𝖭𝖦(𝖧o)o. Here, we denote
by 𝖧o the identity component of 𝖧 and by 𝖭𝖦(𝖧o)o the identity component of the normalizer of
𝖧o in 𝖦. Note that this condition implies that 𝖪 is closed in 𝖦 and hence 𝑁 = 𝖦∕𝖪 is a compact
homogeneous space. Moreover, it also implies the following

Lemma2.1. The complement𝔫 in (2.10)does not contain anyAd(𝖪)-invariant submodule onwhich
Ad(𝖪o) acts trivially.

Proof. Let 𝔫̃ ⊂ 𝔫 be anAd(𝖪)-invariant submodule such thatAd(𝖪o).𝑋 = {𝑋} for any𝑋 ∈ 𝔫̃. Then,
this implies that 𝔨̃ ∶= 𝔨 + 𝔫̃ is a toral𝖧-subalgebra of 𝔤. Since 𝔨 is assumed to bemaximal, it follows
that 𝔨̃ = 𝔨 and so 𝔫̃ ⊂ 𝔨. Since 𝔨 and 𝔫 are 𝑄-orthogonal, we get 𝔫̃ = {0}. □

Let now 𝑃̄𝔫 ∈M 𝖦
𝑁,1

be a unit volume Einsteinmetric on𝑁. ThenRic0𝑁(𝑃̄𝔫) = 0 and so, by (2.8),
it follows that

Hess
(
scal𝑁|M𝖦

𝑁,1

)||𝑃̄𝔫 (𝐵1, 𝐵2) = −
⟨
d
(
Ric0𝑁 |M𝖦

𝑁,1

)|||𝑃̄𝔫 (𝐵1), 𝐵2
⟩
𝑃̄𝔫

(2.12)

for any 𝐵1, 𝐵2 ∈ 𝑇𝑃̄𝔫M
𝖦
𝑁,1

. Therefore, in virtue of (2.12) and [17, Definition 3.14], we recall the
following notion of coindex for invariant Einstein metrics on 𝑁.
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Definition 2.2. The coindex of a unit volume Einstein metric 𝑃̄𝔫 ∈M 𝖦
𝑁,1

is its coindex as a criti-
cal point of the restricted scalar curvature functional scal𝑁|M𝖦

𝑁,1
, that is, the number of negative

eigenvalue of the linear map d(Ric0𝑁 |M𝖦
𝑁,1
)|𝑃̄𝔫 .

We refer to [17, 18] for a detailed treatment on stability and non-degeneracy of invariant Einstein
metrics on homogeneous spaces.

2.3 Ancient solutions to the Ricci flow

We recall that a solution to the Ricci flow on 𝑀 is a smooth 1-parameter family of metrics that
evolve in the direction of their Ricci tensors. By diffeomorphism invariance of the Ricci tensor,
isometries are preserved by the Ricci flow, and hence one can restrict it to a dynamical system on
the space of 𝖦-invariant metricsM 𝖦

𝑀
, that is,

𝑃′(𝑡) = −2Ric𝑀(𝑃(𝑡)), 𝑃(0) = 𝑃o.

If 𝑃o ∈M 𝖦
𝑀,1

, then the normalized Ricci flow on𝑀 starting at 𝑃o takes the form

𝑃̃′(𝑡) = −2Ric0𝑀(𝑃̃(𝑡)), 𝑃̃(0) = 𝑃o,

where the traceless Ricci tensor has been defined in (2.7). It is well known that the normalized
Ricci flow preserves the submanifoldM 𝖦

𝑀,1
and that it is equivalent to the Ricci flow up to rescal-

ing and time reparametrization. Moreover, by (2.8), the normalized Ricci flow coincides, up to a
positive constant, with the 𝐿2-gradient flow of the restricted scalar curvature functional onM 𝖦

𝑀,1
.

In [11], the authors studied the global behavior of the restricted scalar curvature functional on
M 𝖦
𝑀,1

in order to prove the existence of Einstein metrics using variational techniques. In particu-
lar, the authors proved that for any 𝜀 > 0, the scalar curvature functional satisfies thePalais–Smale
compactness condition on the set

(M 𝖦
𝑀,1)𝜀 ∶= {𝑃 ∈M 𝖦

𝑀,1 ∶ scal𝑀(𝑃) > 𝜀},

that is, if (𝑃(𝑛)) ⊂M 𝖦
𝑀,1

is a sequence with

scal𝑀(𝑃
(𝑛)) → 𝜀 and

⟨
Ric0𝑀(𝑃

(𝑛)), Ric0𝑀(𝑃
(𝑛))

⟩
𝑃(𝑛)
→ 0 as 𝑛 → +∞,

then there exists a subsequence of (𝑃(𝑛)) converging in the 
∞-topology to an Einstein metric

𝑃(∞) ∈M 𝖦
𝑀,1

, as 𝑛 → +∞, with scal𝑀(𝑃(∞)) = 𝜀. In general, the Palais–Smale compactness con-
dition does not hold on the full space M 𝖦

𝑀,1
due to the existence of the so-called 0-Palais–Smale

sequences, which are (𝑃(𝑛)) ⊂M 𝖦
𝑀,1

such that scal𝑀(𝑃(𝑛)) → 0 and ⟨Ric0𝑀(𝑃(𝑛)), Ric0𝑀(𝑃(𝑛))⟩𝑃(𝑛) →
0 as 𝑛 → +∞. Note that such sequences cannot admit convergent subsequences since𝑀 is not a
torus. In fact, the limit of any convergent subsequence would be a Ricci-flat, and hence flat (see
[1]), 𝖦-invariant metric. By [11, Theorem 2.1], the existence of such a solution implies that 𝖦o∕𝖧o
is the total space of a homogeneous torus bundle, where 𝖦o (respectively, 𝖧o) denotes the identity
component of 𝖦 (respectively, 𝖧). More precisely, since 0-Palais–Smale sequences have bounded
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sectional curvature by the Gap theorem [10], by [21] we know that the sum of the eigenspaces
associated to the shrinking eigenvalues of any 0-Palais–Smale sequence converges to a reductive
complement of 𝔥 into a toral 𝖧-subalgebra 𝔨 of 𝔤 and that such sequences collapse along the fibers
of the induced (locally) homogeneous torus fibration (2.9) while asymptotically approaching, in
a precise sense, a 𝔨-submersion metric.
Now let 𝑃(𝑡) be the solution to the Ricci flow starting from 𝑃o ∈M 𝖦

𝑀,1
and 𝑃̃(𝑡) the correspond-

ing solution to the normalizedRicci flow.We recall that𝑃(𝑡) (respectively, 𝑃̃(𝑡)) is said to be ancient
if it exists on the time interval (−∞, 0]. It is a well-known consequence of the maximum principle
that if 𝑃(𝑡) is ancient, then it must have monotonic non-negative scalar curvature (see, for exam-
ple, [14, p. 102]). Since the two flows are equivalent up to rescaling and time reparametrization,
the same is true for the solution 𝑃̃(𝑡). Furthermore, by [27], 𝑃(𝑡) is ancient if and only if 𝑃̃(𝑡) is
ancient. In particular, there are exactly two possibilities for the behaviour of the normalized Ricci
flow as 𝑡 → −∞.
The first possibility is that there exists an 𝜀 > 0 such that scal𝑀(𝑃̃(𝑡)) > 𝜀 for any 𝑡 ⩽ 0, in

which case 𝑃̃(𝑡) (and hence 𝑃(𝑡)) is non-collapsed and, by [10, Theorem 5.2], 𝑃̃(𝑡) converges to an
Einsteinmetric as 𝑡 → −∞. Since the traceless Ricci tensor is the negative 𝐿2-gradient of the func-
tional scal𝑀 |M𝖦

𝑀,1
, such ancient solutions are known to exist whenever 𝑀 admits a 𝖦-unstable,

𝖦-invariant Einsteinmetric (see, for example, [2, 10]). The second possibility is that scal𝑀(𝑃̃(𝑡)) →
0 as 𝑡 → −∞. In this case, one can always find a sequence of times 𝑡(𝑛) → −∞ such that 𝑃(𝑡(𝑛))
is a 0-Palais–Smale sequence and so 𝑃̃(𝑡) (and hence 𝑃(𝑡)) is collapsed. Indeed, for the sake of the
reader, we recall the following

Remark 2.3. A 1-parameter family {𝑃(𝑡)}𝑡∈𝐼 of 𝖦-invariant metrics, 𝐼 ⊂ ℝ an interval, is said to be
non-collapsed if there exists 𝛿 > 0 such that

inj(𝑃(𝑡))
(|Rm𝑀(𝑃(𝑡))|𝑃(𝑡)) 12 ⩾ 𝛿 for any 𝑡 ∈ 𝐼,

where inj(𝑃) denotes the injectivity radius of the metric 𝑃 at the origin 𝑒𝖧 and | ⋅ |𝑃 denotes the
norm on𝔪, and hence on the tensor space over𝔪, induced by 𝑃. Accordingly, {𝑃(𝑡)}𝑡∈𝐼 is said to
be collapsed if it is not non-collapsed, that is, if there exists a sequence (𝑡(𝑛)) ⊂ 𝐼 such that

inj(𝑃(𝑡(𝑛)))
(|Rm𝑀(𝑃(𝑡(𝑛)))|𝑃(𝑡(𝑛))) 12 → 0 as 𝑛 → +∞.

These properties are invariant under time-depending rescaling and time reparametrization.

We also recall that, by [10], the following result holds true (see [10, Remark 5.3]).

Proposition 2.4. Let 𝑃(𝑡) be an ancient solution to the homogeneous Ricci flow on𝑀 = 𝖦∕𝖧 start-
ing from 𝑃o ∈M 𝖦

𝑀,1
and 𝑃̃(𝑡) the corresponding solution to the normalized Ricci flow. Then, 𝑃(𝑡) is

collapsed if and only if scal𝑀(𝑃̃(𝑡)) → 0 as 𝑡 → −∞.

Proof. By [10, Theorem 5.2], it follows that 𝑃(𝑡) is non-collapsed if and only if for any sequence
𝑡(𝑛) → −∞ there exists a subsequence (𝑡(𝑛𝑖)) ⊂ (𝑡(𝑛)) such that |𝑡(𝑛𝑖)|−1𝑃(𝑡(𝑛𝑖)) converges in the

∞-topology to a limit Einstein metric on 𝑀 as 𝑖 → +∞. Moreover, since 𝑃̃(𝑡) coincides, up to

time reparametrization, to the volume-normalized family det(𝑃(𝑡))−
1
𝑚 𝑃(𝑡), it follows that: 𝑃(𝑡) is

non-collapsed if and only if for any sequence 𝑡(𝑛) → −∞ there exists a subsequence (𝑡(𝑛𝑖)) ⊂ (𝑡(𝑛))
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such that 𝑃̃(𝑡(𝑛𝑖)) converges in the ∞-topology to a limit 𝖦-invariant metric inM 𝖦
𝑀,1

as 𝑖 → +∞.
This concludes the proof. □

Note that, as a byproduct of Proposition 2.4 and [21],𝑀 admits a collapsed ancient solution to
the Ricci flow only if it is the total space of a homogenous torus bundle (see also [10, Remark 5.3]).

3 THE PROJECTED RICCI FLOW

In this section, we introduce two important tools that will be fundamental for the proof of our
main results, namely the space of generalized submersion metrics and the projected Ricci tensor. In
the following,we consider a compact homogeneous space𝑀 = 𝖦∕𝖧 andwe use the samenotation
introduced in Section 2.

3.1 The space of generalized submersion metrics

Consider a maximal toral 𝖧-subalgebra 𝔨 of 𝔤 and the associated homogeneous torus fibration
(2.9). We introduce the space of generalized 𝔨-submersion metrics on𝑀 as

M̂ 𝖦
𝑀
(𝔨) ∶= Sym(𝔱, 𝑄𝔱)

Ad(𝖧) ⊕ Sym+(𝔫,𝑄𝔫)
Ad(𝖪), (3.1)

that is, we allow the metric on 𝔱 to be degenerate, and we prove the following crucial result.

Proposition 3.1. The Ricci curvature Ric𝑀 can be extended analytically to the space M̂ 𝖦
𝑀
(𝔨) of

generalized 𝔨-submersion metrics on𝑀.

Proof. We write 𝑃 = 𝑃𝔱 ⊕ 𝑃𝔫 for any 𝑃 ∈M 𝖦
𝑀
(𝔨) and we observe that [ad(𝑇), 𝑃𝔫](𝑋) = 0 for any

𝑇 ∈ 𝔱, 𝑋 ∈ 𝔫. Hence, since 𝑄 is Ad(𝖦)-invariant, a straightforward computation shows that the
tensor 𝑆𝑀(𝑃) defined by (2.3) is explicitly given by

𝑆𝑀(𝑃)(𝑇).𝑇̃ = 0,

𝑆𝑀(𝑃)(𝑇).𝑌 = −ad(𝑇).𝑌 +
1

2
𝑃−1𝔫 . ad(𝑃𝔱.𝑇).𝑌,

𝑆𝑀(𝑃)(𝑋).𝑇̃ = −
1

2
𝑃−1𝔫 . ad(𝑋).𝑃𝔱.𝑇̃,

𝑆𝑀(𝑃)(𝑋).𝑌 = −
1

2
𝜋𝔪. ad(𝑋).𝑌 −

1

2
𝑃−1𝔫 .𝜋𝔫.(ad(𝑋).𝑃𝔫 − ad(𝑃𝔫.𝑋)).𝑌,

(3.2)

where 𝑋,𝑌 ∈ 𝔫 and 𝑇, 𝑇̃ ∈ 𝔱. Here, we denote by 𝜋𝔪 ∶ 𝔤 → 𝔪 and 𝜋𝔫 ∶ 𝔤 → 𝔫 the 𝑄-orthogonal
projections onto𝔪 and 𝔫, respectively. In particular, (3.2) implies that 𝑆𝑀(𝑃) can be defined for
any generalizedmetric𝑃 ∈ M̂ 𝖦

𝑀
(𝔨) and that it depends analytically on𝑃. Therefore, formulas (2.4)

and (2.5) can be used to define Rm𝑀(𝑃) and Ric𝑀(𝑃) for any 𝑃 ∈ M̂ 𝖦
𝑀
(𝔨). □
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Moreover, by using Schur’s Lemma, we get

Lemma 3.2. For any 𝑃 ∈ M̂ 𝖦
𝑀
(𝔨), it holds that

Ric𝑀(𝑃) ∈ Sym(𝔱, 𝑄𝔱)
Ad(𝖧) ⊕ Sym(𝔫,𝑄𝔫)

Ad(𝖪). (3.3)

Proof. Note that, by hypothesis, the submodule 𝔱 is Ad(𝖪)-invariant and the representation
Ad(𝖪o)|𝔱 is trivial. Moreover, by Lemma 2.1, 𝔫 does not contain any Ad(𝖪)-invariant submodule
on which Ad(𝖪o) acts trivially. Fix now 𝑃 ∈ M̂ 𝖦

𝑀
(𝔨) and note that, since 𝖪 = 𝖧𝖪o, both 𝑃 and the

decomposition (2.10) areAd(𝖪)-invariant. By (2.3), it follows that 𝑆𝑀(𝑃) isAd(𝖪)-invariant and so
Ric𝑀(𝑃) is Ad(𝖪)-invariant as well. Therefore, the claim follows from Schur’s Lemma. □

We are going to use (3.2) to compute the differential of the tensor 𝑆𝑀 defined in (2.3). In order
to do this, fix a generalized metric 𝑃 ∈ M̂ 𝖦

𝑀
(𝔨) and a tangent direction 𝐵 ∈ 𝑇𝑃M̂ 𝖦

𝑀
(𝔨). Since

d

d 𝑠
(𝑃𝔫 + 𝑠𝐵𝔫)

−1||𝑠=0 = −𝑃−1𝔫 .𝐵𝔫.𝑃−1𝔫 , (3.4)

it follows that the differential d𝑆𝑀|𝑃(𝐵) at 𝑃 in the direction of 𝐵 is given by
d𝑆𝑀|𝑃(𝐵)(𝑇).𝑇̃ = 0,
d𝑆𝑀|𝑃(𝐵)(𝑇).𝑌 = −12𝑃−1𝔫 .𝐵𝔫.𝑃−1𝔫 . ad(𝑃𝔱.𝑇).𝑌 + 1

2
𝑃−1𝔫 . ad(𝐵𝔱.𝑇).𝑌,

d𝑆𝑀|𝑃(𝐵)(𝑋).𝑇̃ = 12𝑃−1𝔫 .𝐵𝔫.𝑃−1𝔫 . ad(𝑋).𝑃𝔱.𝑇̃ − 1

2
𝑃−1𝔫 . ad(𝑋).𝐵𝔱.𝑇̃,

d𝑆𝑀|𝑃(𝐵)(𝑋).𝑌 = 1

2
𝑃−1𝔫 .𝐵𝔫.𝑃

−1
𝔫 .𝜋𝔫.(ad(𝑋).𝑃𝔫 − ad(𝑃𝔫.𝑋)).𝑌

− 1

2
𝑃−1𝔫 .𝜋𝔫.(ad(𝑋).𝐵𝔫 − ad(𝐵𝔫.𝑋)).𝑌,

(3.5)

where 𝑋,𝑌 ∈ 𝔫 and 𝑇, 𝑇̃ ∈ 𝔱. Moreover, by differentiating (2.4) and (2.5) at 𝑃 in the direction of
𝐵, we get

dRm𝑀|𝑃(𝐵)(𝑉1, 𝑉2) = −[d𝑆𝑀|𝑃(𝐵)(𝑉1), 𝑆𝑀(𝑃)(𝑉2)] − [𝑆𝑀(𝑃)(𝑉1), d𝑆𝑀|𝑃(𝐵)(𝑉2)]
− d𝑆𝑀|𝑃(𝐵)([𝑉1, 𝑉2]𝔪),

𝑄(dRic𝑀|𝑃(𝐵).𝑉1, 𝑉2) = Tr(𝔪 ∋ 𝑍 ↦ dRm𝑀|𝑃(𝐵)(𝑉1, 𝑍).𝑉2).
(3.6)

Therefore, we obtain the following.

Proposition 3.3. Fix a metric on the base space 𝑃𝔫 ∈M 𝖦
𝑁
. Then, the extended Ricci curvature

satisfies

Ric𝑀(0 ⊕ 𝑃𝔫) = 0 ⊕ Ric𝑁(𝑃𝔫),

d Ric𝑀|0⊕𝑃𝔫(0 ⊕ 𝐵𝔫) = 0 ⊕ dRic𝑁|𝑃𝔫(𝐵𝔫) (3.7)
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for any horizontal direction 𝐵𝔫 ∈ Sym(𝔫,𝑄𝔫)Ad(𝖪), and

dRic𝑀|0⊕𝑃𝔫(𝐵𝔱 ⊕ 0).𝑇 = 0 (3.8)

for any vertical direction 𝐵𝔱 ∈ Sym(𝔱, 𝑄𝔱)Ad(𝖧) and for any 𝑇 ∈ 𝔱.

Proof. Fix𝐵𝔫 ∈ Sym(𝔫,𝑄𝔫)Ad(𝖪) and let𝑋,𝑌, 𝑍 ∈ 𝔫,𝑇, 𝑇̃ ∈ 𝔱. Then, from (3.2) and (3.5), it follows
that the operators 𝑆𝑀(0 ⊕ 𝑃𝔫) and d𝑆𝑀|0⊕𝑃𝔫(0 ⊕ 𝐵𝔫) satisfy

𝑆𝑀(0 ⊕ 𝑃𝔫)(𝑇).𝑇̃ = 0, 𝑆𝑀(0 ⊕ 𝑃𝔫)(𝑇).𝑌 = −ad(𝑇).𝑌, 𝑆𝑀(0 ⊕ 𝑃𝔫)(𝑋).𝑇̃ = 0,

𝑆𝑀(0 ⊕ 𝑃𝔫)(𝑋).𝑌 = −
1

2
𝜋𝔪. ad(𝑋).𝑌 −

1

2
𝑃−1𝔫 .𝜋𝔫.(ad(𝑋).𝑃𝔫 − ad(𝑃𝔫.𝑋)).𝑌

(3.9)

and

d𝑆𝑀|0⊕𝑃𝔫(0 ⊕ 𝐵𝔫)(𝑇).𝑇̃ = 0, d𝑆𝑀|0⊕𝑃𝔫(0 ⊕ 𝐵𝔫)(𝑇).𝑌 = 0, d𝑆𝑀|0⊕𝑃𝔫(0 ⊕ 𝐵𝔫)(𝑋).𝑇̃ = 0,
d𝑆𝑀|0⊕𝑃𝔫(0 ⊕ 𝐵𝔫)(𝑋).𝑌 = 1

2
𝑃−1𝔫 .𝐵𝔫.𝑃

−1
𝔫 .𝜋𝔫.(ad(𝑋).𝑃𝔫 − ad(𝑃𝔫.𝑋)).𝑌

− 1

2
𝑃−1𝔫 .𝜋𝔫.(ad(𝑋).𝐵𝔫 − ad(𝐵𝔫.𝑋)).𝑌.

(3.10)

On the other hand, by using (2.3) and (3.4), it follows that the operators 𝑆𝑁(𝑃𝔫) and d𝑆𝑁|𝑃𝔫(𝐵𝔫)
satisfy

𝑆𝑁(𝑃𝔫)(𝑋).𝑌 = −
1

2
𝜋𝔫. ad(𝑋).𝑌 −

1

2
𝑃−1𝔫 .𝜋𝔫.(ad(𝑋).𝑃𝔫 − ad(𝑃𝔫.𝑋)).𝑌,

d𝑆𝑁|𝑃𝔫(𝐵𝔫)(𝑋).𝑌 = 1

2
𝑃−1𝔫 .𝐵𝔫.𝑃

−1
𝔫 .𝜋𝔫.(ad(𝑋).𝑃𝔫 − ad(𝑃𝔫.𝑋)).𝑌

− 1

2
𝑃−1𝔫 .𝜋𝔫.(ad(𝑋).𝐵𝔫 − ad(𝐵𝔫.𝑋)).𝑌.

(3.11)

A straightforward computation based on (2.4), (3.6), (3.9) and (3.10) shows that

Rm𝑀(0 ⊕ 𝑃𝔫)(𝑇, ⋅).𝑇̃ = dRm𝑀|0⊕𝑃𝔫(0 ⊕ 𝐵𝔫)(𝑇, ⋅).𝑇̃ = 0
and so, by using (2.5) and (3.6), we get

Ric𝑀(0 ⊕ 𝑃𝔫)(𝑇) ∈ 𝔫 and dRic𝑀|0⊕𝑃𝔫(0 ⊕ 𝐵𝔫)(𝑇) ∈ 𝔫.
Therefore, (3.3) implies

Ric𝑀(0 ⊕ 𝑃𝔫)(𝑇) = dRic𝑀|0⊕𝑃𝔫(0 ⊕ 𝐵𝔫)(𝑇) = 0. (3.12)

Again, using (2.4), (3.6), (3.9) and (3.10), one can directly check that

Rm𝑀(0 ⊕ 𝑃𝔫)(𝑋, ⋅).𝑇̃ = dRm𝑀|0⊕𝑃𝔫(0 ⊕ 𝐵𝔫)(𝑋, ⋅).𝑇̃ = 0
and so (2.5) and (3.6) imply

Ric𝑀(0 ⊕ 𝑃𝔫)(𝑋) ∈ 𝔫 and dRic𝑀|0⊕𝑃𝔫(0 ⊕ 𝐵𝔫)(𝑋) ∈ 𝔫. (3.13)
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Finally, another direct computation based on (2.4), (3.6), (3.9), (3.10) and (3.11) shows that

𝜋𝔫(Rm𝑀(0 ⊕ 𝑃𝔫)(𝑋, 𝑌).𝑍) = Rm𝑁(𝑃𝔫)(𝑋, 𝑌).𝑍,

𝜋𝔫(dRm𝑀|0⊕𝑃𝔫(0 ⊕ 𝐵𝔫)(𝑋, 𝑌).𝑍) = dRm𝑁|𝑃𝔫(𝐵𝔫)(𝑋, 𝑌).𝑍. (3.14)

Note now that (3.7) follows from (3.12), (3.13) and (3.14). In order to prove (3.8), fix 𝐵𝔱 ∈
Sym(𝔱, 𝑄𝔱)

Ad(𝖧) and observe that, from (3.5), it follows that the operator d𝑆𝑀|0⊕𝑃𝔫(𝐵𝔱 ⊕ 0)
satisfies

d𝑆𝑀|0⊕𝑃𝔫(𝐵𝔱 ⊕ 0)(𝑇).𝑇̃ = 0,
d𝑆𝑀|0⊕𝑃𝔫(𝐵𝔱 ⊕ 0)(𝑇).𝑌 = +12𝑃−1𝔫 . ad(𝐵𝔱.𝑇).𝑌,
d𝑆𝑀|0⊕𝑃𝔫(𝐵𝔱 ⊕ 0)(𝑋).𝑇̃ = −12𝑃−1𝔫 . ad(𝑋).𝐵𝔱.𝑇̃,
d𝑆𝑀|0⊕𝑃𝔫(𝐵𝔱 ⊕ 0)(𝑋).𝑌 = 0.

(3.15)

Again, by using (2.4), (2.5), (3.6), (3.9) and (3.15), one can show that

dRic𝑀|0⊕𝑃𝔫(𝐵𝔱 ⊕ 0)(𝑇) ∈ 𝔫
and so, using (3.3), we get (3.8). □

3.2 The 𝑷̄𝖓-projected Ricci tensor

Fix a unit volume Einstein metric 𝑃̄𝔫 ∈M 𝖦
𝑁,1

on 𝑁, that is, Ric𝑁(𝑃̄𝔫) = 𝜆 𝑃̄𝔫 for some 𝜆 ∈ ℝ.
Since 𝑁 is compact, Bochner’s Theorem implies that 𝜆 is non-negative (see [7]). Moreover, since
𝑀 = 𝖦∕𝖧 is not a torus, then also 𝑁 is not a torus and so 𝜆 > 0.
We introduce the Euclidean inner product ⟨⟨⋅, ⋅⟩⟩(𝑃̄𝔫) on the linear space Sym(𝔪,𝑄𝔪)Ad(𝖧)

defined by

⟨⟨𝐵1, 𝐵2⟩⟩(𝑃̄𝔫) ∶= dim(𝑁)−1 Tr((Id𝔱 ⊕(𝑃̄𝔫)−1).𝐵1.(Id𝔱 ⊕(𝑃̄𝔫)−1).𝐵2) (3.16)

and the 𝑃̄𝔫-projected Ricci curvature


(𝑃̄𝔫)

𝑀
∶ M̂ 𝖦

𝑀
(𝔨) → Sym(𝔱, 𝑄𝔱)

Ad(𝖧) ⊕ Sym(𝔫,𝑄𝔫)
Ad(𝖪),


(𝑃̄𝔫)

𝑀
(𝑃) ∶= Ric𝑀(𝑃) −

⟨⟨Ric𝑀(𝑃),𝑃⟩⟩(𝑃̄𝔫)⟨⟨𝑃,𝑃⟩⟩(𝑃̄𝔫) 𝑃.
(3.17)

We remark that, for any 𝑃 ∈ M̂ 𝖦
𝑀
(𝔨), the image(𝑃̄𝔫)

𝑀
(𝑃) lies in Sym(𝔱, 𝑄𝔱)Ad(𝖧) ⊕ Sym(𝔫,𝑄𝔫)Ad(𝖪)

by means of (3.3). As a consequence of Proposition 3.3, we get the following

Corollary 3.4. The 𝑃̄𝔫-projected Ricci curvature
(𝑃̄𝔫)

𝑀
satisfies


(𝑃̄𝔫)

𝑀
(0 ⊕ 𝑃̄𝔫) = 0 ⊕ Ric

0
𝑁(𝑃̄𝔫),

d
(𝑃̄𝔫)

𝑀
||0⊕𝑃̄𝔫(0 ⊕ 𝐵𝔫) = 0 ⊕ dRic0𝑁|𝑃̄𝔫 (𝐵𝔫) (3.18)
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for any 𝐵𝔫 ∈ Sym(𝔫,𝑄𝔫)Ad(𝖪), and

d
(𝑃̄𝔫)

𝑀
||0⊕𝑃̄𝔫(𝐵𝔱 ⊕ 0).𝑇 = −𝜆𝐵𝔱.𝑇 (3.19)

for any 𝐵𝔱 ∈ Sym(𝔱, 𝑄𝔱)Ad(𝖧), 𝑇 ∈ 𝔱.

Proof. Note that (3.18) follows from a direct computation based on (2.3), (2.4), (2.5) and (3.7).
Moreover, from (3.7) and (3.8), we get

d
(𝑃̄𝔫)

𝑀
|
0⊕𝑃̄𝔫

(𝐵𝔱 ⊕ 0).𝑇 = −d

(⟨⟨Ric𝑀(𝑃), 𝑃⟩⟩(𝑃̄𝔫)⟨⟨𝑃, 𝑃⟩⟩(𝑃̄𝔫) 𝑃

)|||||0⊕𝑃̄𝔫(𝐵𝔱 ⊕ 0).𝑇
= −d

(⟨⟨Ric𝑀(𝑃), 𝑃⟩⟩(𝑃̄𝔫)⟨⟨𝑃, 𝑃⟩⟩(𝑃̄𝔫)
)|||||0⊕𝑃̄𝔫(𝐵𝔱 ⊕ 0) ⋅ (0 ⊕ 𝑃̄𝔫).𝑇

−

(⟨⟨Ric𝑀(0 ⊕ 𝑃̄𝔫), 0 ⊕ 𝑃̄𝔫⟩⟩(𝑃̄𝔫)⟨⟨0 ⊕ 𝑃̄𝔫, 0 ⊕ 𝑃̄𝔫⟩⟩(𝑃̄𝔫)
)

⋅ (𝐵𝔱 ⊕ 0).𝑇

= 0 −
scal𝑁(𝑃̄𝔫)

dim(𝑁)
𝐵𝔱.𝑇

= −𝜆𝐵𝔱.𝑇

for any 𝐵𝔱 ∈ Sym(𝔱, 𝑄𝔱)Ad(𝖧) and 𝑇 ∈ 𝔱, which proves (3.19). □

In virtue of Proposition 3.1 and (3.3), the Ricci flow preserves the subspace M 𝖦
𝑀
(𝔨) of 𝔨-

submersion metrics and can be extended to the larger space M̂ 𝖦
𝑀
(𝔨) of generalized 𝔨-submersion

metrics. Moreover, since the Ricci curvatureRic𝑀 is scale invariant, wemay project the Ricci flow
onto the unit sphere

Σ(𝑃̄𝔫) ∶=
{
𝑃 ∈ M̂ 𝖦

𝑀
(𝔨) ∶ ⟨⟨𝑃, 𝑃 ⟩⟩(𝑃̄𝔫) = 1}

of M̂ 𝖦
𝑀
(𝔨) with respect to the inner product ⟨⟨⋅, ⋅⟩⟩(𝑃̄𝔫). Hence up to rescaling, the Ricci flow is

equivalent to the flow on Σ(𝑃̄𝔫) defined by

𝑃′(𝑡) = −2
(𝑃̄𝔫)

𝑀
(𝑃(𝑡)), (3.20)

which we call the 𝑃̄𝔫-projected Ricci flow.

4 PROOF OF THEOREMA

This section is devoted to the proof of our main result. In the following, we consider a compact
homogeneous space 𝑀 = 𝖦∕𝖧, a fixed maximal toral 𝖧-subalgebra 𝔨 of 𝔤 and we use the same
notation as in Sections 2 and 3.
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4.1 Two preparatory results

Take a sequence (𝑃(𝑛)) ⊂M 𝖦
𝑀
(𝔨) of 𝔨-submersion metrics 𝑃(𝑛) = 𝑃(𝑛)

𝔱
⊕ 𝑃(𝑛)𝔫 such that 𝑃(𝑛)

𝔱
→ 0

and 𝑃(𝑛)𝔫 → 𝑃(∞)𝔫 ∈M 𝖦
𝑁
as 𝑛 → +∞. The first result that we need for proving Theorem A is the

following.

Proposition 4.1. The scalar curvature of 𝑃(𝑛) converges to the scalar curvature of 𝑃(∞)𝔫 , that is

scal𝑀(𝑃
(𝑛)) → scal𝑁(𝑃

(∞)
𝔫 ) as 𝑛 → +∞. (4.1)

Proof. Since the fibers of (2.9) are totally geodesic and flat along the sequence, byO’Neill’s Formula
(see [6, Equation (9.37)]), we get

scal𝑀(𝑃
(𝑛)) = scal𝑁(𝑃

(𝑛)
𝔫 ) −

(||𝐴(𝑛)||𝑃(𝑛))2,
where 𝐴(𝑛) ∶ 𝔪⊗𝔪 → 𝔪 is the O’Neill’s integrability tensor for the Riemannian submersion
induced by (2.9) and the metric 𝑃(𝑛).
Since the scalar curvature functional is continuous, it follows that scal𝑁(𝑃

(𝑛)
𝔫 ) → scal𝑁(𝑃

(∞)
𝔫 ).

Therefore, in order to prove (4.1), it is sufficient to show that |𝐴(𝑛)|𝑃(𝑛) → 0 as 𝑛 → +∞.
For any 𝑛 ∈ ℕ, we consider a 𝑄𝔪-orthogonal, Ad(𝖧)-invariant decomposition into irreducible

modules

𝔪 = 𝔪(𝑛)
1
+ … +𝔪(𝑛)𝓁 (4.2)

with respect to which 𝑃(𝑛) is diagonal, that is,

𝑃(𝑛) = 𝑥(𝑛)
1
Id
𝔪
(𝑛)
1

⊕…⊕ 𝑥(𝑛)𝓁 Id
𝔪
(𝑛)
𝓁
, 𝑥(𝑛)

𝑘
> 0 for any 1 ⩽ 𝑘 ⩽ 𝓁.

By hypothesis, we can assume that:

⋅ the dimension𝑚𝑖 ∶= dim(𝔪
(𝑛)
𝑖
) is constant along the sequence for any 1 ⩽ 𝑖 ⩽ 𝓁;

⋅ the decomposition (4.2) converges to a well-defined Ad(𝖧)-invariant, irreducible, limit decom-
position𝔪 = 𝔪(∞)

1
+ … +𝔪(∞)𝓁 ;

⋅ there exists 1 ⩽ 𝑟 ⩽ 𝓁 such that

𝔱 = 𝔪(𝑛)
1
+ … +𝔪(𝑛)𝑟 , 𝔫 = 𝔪(𝑛)

𝑟+1
+ … +𝔪(𝑛)𝓁 for any 𝑛 ∈ ℕ ;

⋅ 𝑃(∞)𝔫 is diagonal with respect to 𝔫 = 𝔪(∞)
𝑟+1
+ … +𝔪(∞)𝓁 , that is,

𝑃(∞)𝔫 = 𝑥(∞)
𝑟+1
Id
𝔪
(∞)
𝑟+1

⊕…⊕ 𝑥(∞)𝓁 Id
𝔪
(∞)
𝓁
, 𝑥(∞)

𝑗
> 0 for any 𝑟 + 1 ⩽ 𝑗 ⩽ 𝓁.

Note that, by hypothesis, it follows that 𝑥(𝑛)
𝑖
→ 0 as 𝑛 → +∞ for any 1 ⩽ 𝑖 ⩽ 𝑟 and 𝑥(𝑛)

𝑗
→ 𝑥(∞)

𝑗
as 𝑛 → +∞ for any 𝑟 + 1 ⩽ 𝑗 ⩽ 𝓁. We consider now a sequence of adapted bases, that is, for any
𝑛 ∈ ℕ we consider a 𝑄𝔪-orthonormal basis (𝑒

(𝑛)
𝛼 )1⩽𝛼⩽𝑚 for𝔪 such that

𝑒(𝑛)
1
, …, 𝑒(𝑛)𝑚1 ∈ 𝔪

(𝑛)
1
, 𝑒(𝑛)

𝑚1+1
, …, 𝑒(𝑛)𝑚1+𝑚2

∈ 𝔪(𝑛)
2
, … , 𝑒(𝑛)

𝑚1+…+𝑚𝓁−1+1
, …, 𝑒(𝑛)𝑚 ∈ 𝔪(𝑛)𝓁 ,
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and we define the coefficients

[𝑖𝑗𝑘](𝑛) ∶=
∑

𝑒
(𝑛)
𝛼 ∈𝔪

(𝑛)
𝑖

∑
𝑒
(𝑛)
𝛽
∈𝔪

(𝑛)
𝑗

∑
𝑒
(𝑛)
𝛾 ∈𝔪

(𝑛)
𝑘

𝑄
(
[𝑒(𝑛)𝛼 , 𝑒

(𝑛)

𝛽
], 𝑒(𝑛)𝛾

)2
. (4.3)

Note that [𝑖𝑗𝑘](𝑛) is symmetric in all its entries and does not depend on the choice of (𝑒(𝑛)𝛼 ).
Moreover, we can assume that (𝑒(𝑛)𝛼 ) converges to a limit adapted basis (𝑒

(∞)
𝛼 ) for𝔪 and, as a conse-

quence, [𝑖𝑗𝑘](𝑛) converges to the coefficient [𝑖𝑗𝑘](∞) related to the limit decomposition. For more
information about the diagonalization of invariant metrics on compact homogeneous spaces, we
refer to [8, 28].
For the sake of shortness, we set

𝐴(𝑛)
𝑖𝑗
∶=

∑
𝑒
(𝑛)
𝛼 ∈𝔪

(𝑛)
𝑖

∑
𝑒
(𝑛)
𝛽
∈𝔪

(𝑛)
𝑗

(||𝐴(𝑛)(𝑒(𝑛)𝛼 , 𝑒(𝑛)𝛽 )||𝑃(𝑛))2.
Note that by [20, Lemma 2] and (4.3), it follows that

𝐴(𝑛)
𝑗1𝑗2
= 1

4

∑
1⩽𝑖⩽𝑟

[𝑖𝑗1𝑗2]
(𝑛)𝑥(𝑛)

𝑖
→ 0 for any 𝑟 + 1 ⩽ 𝑗1, 𝑗2 ⩽ 𝓁. (4.4)

Moreover, since O’Neill’s tensor is horizontal (see [20, p. 460]), it follows that

𝐴(𝑛)
𝑖𝑘
= 0 for any 1 ⩽ 𝑖 ⩽ 𝑟 , 1 ⩽ 𝑘 ⩽ 𝓁. (4.5)

Finally, by [20, Corollary 1] and [21, Equations (4.5) and (4.7)], we obtain

𝐴(𝑛)
𝑗𝑖
=
1

4

∑
1⩽𝑘⩽𝓁

[𝑖𝑗𝑘](𝑛)
𝑥
(𝑛)
𝑖

𝑥
(𝑛)
𝑗
𝑥
(𝑛)
𝑘

+
1

4

∑
1⩽𝑘⩽𝓁

[𝑖𝑗𝑘](𝑛)

(
𝑥
(𝑛)
𝑗

𝑥
(𝑛)
𝑘

− 1

)(
−2

𝑥
(𝑛)
𝑖

𝑥
(𝑛)
𝑗

+ 1 + 3
𝑥
(𝑛)
𝑘

𝑥
(𝑛)
𝑗

)
1

𝑥(𝑛)
𝑖

(4.6)

for any 1 ⩽ 𝑖 ⩽ 𝑟, 𝑟 + 1 ⩽ 𝑗 ⩽ 𝓁. Since each 𝑃(𝑛) is a 𝔨-submersionmetric and 𝔱 is abelian, it follows
that

[𝑖1𝑖2𝑘]
(𝑛) = 0 for any 1 ⩽ 𝑖1, 𝑖2 ⩽ 𝑟, 1 ⩽ 𝑘 ⩽ 𝓁, for any 𝑛 ∈ ℕ,

[𝑖𝑗1𝑗2]
(𝑛)

(
𝑥
(𝑛)
𝑗2

𝑥
(𝑛)
𝑗1

− 1

)
= 0 for any 1 ⩽ 𝑖 ⩽ 𝑟, 𝑟 + 1 ⩽ 𝑗1, 𝑗2 ⩽ 𝑟, for any 𝑛 ∈ ℕ.

(4.7)

Therefore, by (4.6) and (4.7), we get

𝐴(𝑛)
𝑗𝑖
=
1

4

∑
𝑟+1⩽𝑗′⩽𝓁

[𝑖𝑗𝑗′](𝑛)
𝑥
(𝑛)
𝑖

𝑥
(𝑛)
𝑗
𝑥
(𝑛)

𝑗′

→ 0 for any 1 ⩽ 𝑖 ⩽ 𝑟 , 𝑟 + 1 ⩽ 𝑗 ⩽ 𝓁 (4.8)

and so the claim follows from (4.4), (4.5) and (4.8). □

Let us denote now by 𝚍(𝑛)
𝑀

the Riemannian distance induced by 𝑃(𝑛) on𝑀 and by 𝚍(𝑛)
𝑁

(respec-
tively, 𝚍(∞)

𝑁
) the Riemannian distance induced by 𝑃(𝑛)𝔫 (respectively, 𝑃(∞)𝔫 ) on 𝑁. We recall that,
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since𝑁 is compact and 𝑃(𝑛)𝔫 → 𝑃(∞)𝔫 in the ∞-topology, it follows that the metric spaces (𝑁, 𝚍(𝑛)
𝑁
)

converge to (𝑁, 𝚍(∞)
𝑁
) in theGromov–Hausdorff topology as 𝑛 → +∞ (see, for example, [25, p. 415]).

For a detailed treatment on Gromov–Hausdorff convergence, we refer to [12, 26].

Proposition 4.2. The sequence of compact metric spaces (𝑀, 𝚍(𝑛)
𝑀
) converges to (𝑁, 𝚍(∞)

𝑁
) in the

Gromov–Hausdorff topology as 𝑛 → +∞.

Proof. In order to prove the statement, it is sufficient to show that

||𝚍(𝑛)𝑀 (𝑎0𝖧, 𝑎1𝖧) − 𝚍(∞)𝑁
(𝑎0𝖪, 𝑎1𝖪)|| 𝑛→+∞������→ 0 uniformly in 𝑎0, 𝑎1 ∈ 𝖦.

Fix 𝑎0, 𝑎1 ∈ 𝖦 and consider for any 𝑛 ∈ ℕ a 𝚍
(𝑛)
𝑁
-geodesic 𝛾(𝑛) ∶ [0, 1] → 𝑁 such that 𝛾(𝑛)(0) =

𝑎0𝖪, 𝛾(𝑛)(1) = 𝑎1𝖪, which realizes the 𝚍
(𝑛)
𝑁
-distance between 𝑎0𝖪 and 𝑎1𝖪. Consider now the hor-

izontal lift 𝛾(𝑛)↑ ∶ [0, 1] → 𝑀 of 𝛾(𝑛) to𝑀 starting from 𝑎0𝖧 and pick 𝑐(𝑛) ∈ 𝖳 such that 𝛾(𝑛)↑(1) =
𝑎1𝑐

(𝑛)𝖧. Since 𝑃(𝑛) is a 𝔨-submersion metric, it follows that 𝚍(𝑛)
𝑀
(𝑎0𝖧, 𝑎1𝑐

(𝑛)𝖧) = 𝚍(𝑛)
𝑁
(𝑎0𝖪, 𝑎1𝖪).

Then, by the reverse triangle inequality, we get

||𝚍(𝑛)𝑀 (𝑎0𝖧, 𝑎1𝖧) − 𝚍(∞)𝑁
(𝑎0𝖪, 𝑎1𝖪)|| ⩽ 𝚍(𝑛)𝑀 (𝑎1𝖧, 𝑎1𝑐(𝑛)𝖧) + ||𝚍(𝑛)𝑁 (𝑎0𝖪, 𝑎1𝖪) − 𝚍(∞)𝑁

(𝑎0𝖪, 𝑎1𝖪)||.
(4.9)

Note now that both the terms on the right-hand side of (4.9) converge uniformly to 0 as 𝑛 → +∞,
and this concludes the proof. □

Let us finally remark that both (4.1) and Proposition 4.2 hold true for any (not necessarily
maximal) toral 𝖧-subalgebra 𝔨.

4.2 The existence theorem

Consider again a unit volume Einstein metric 𝑃̄𝔫 ∈M 𝖦
𝑁,1

on 𝑁 with Ric𝑁(𝑃̄𝔫) = 𝜆 𝑃̄𝔫 for some
𝜆 > 0. We also set

𝜈 ∶= dim
(
Sym(𝔱, 𝑄𝔱)

Ad(𝖧)
)
.

Note that, if𝖧 is connected, thenAd(𝖧)|𝔱 is trivial and so 𝜈 = 𝑑(𝑑+1)

2
, where𝑑 ∶= dim(𝖳). However,

in the general case it may happen that 1 ⩽ 𝜈 < 𝑑(𝑑+1)

2
.

The main result of this section is the following

Theorem 4.3. If 𝑃̄𝔫 has coindex 𝑞, then there exists a (𝜈 + 𝑞 − 1)-parameter family of ancient solu-
tions to the 𝑃̄𝔫-projected Ricci flow on M 𝖦

𝑀
(𝔨) which converge to 0 ⊕ 𝑃̄𝔫 as 𝑡 → −∞ and such that

the corresponding solutions to the Ricci flow are ancient and collapsed.

Proof. Let us observe that the 𝑃̄𝔫-projected Ricci tensor (3.17) is defined on an open neighborhood
of 0 ⊕ 𝑃̄𝔫 inside Σ(𝑃̄𝔫). Moreover, from (3.16) it holds that

𝑇0⊕𝑃̄𝔫Σ
(𝑃̄𝔫) = Sym(𝔱, 𝑄𝔱)

Ad(𝖧) ⊕ 𝑇𝑃̄𝔫M
𝖦
𝑁,1 (4.10)
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and, by (3.18) and (3.19), it follows that


(𝑃̄𝔫)

𝑀
(0 ⊕ 𝑃̄𝔫) = 0, d

(𝑃̄𝔫)

𝑀
||0⊕𝑃̄𝔫 =

(
−𝜆 IdSym(𝔱,𝑄𝔱)Ad(𝖧) 0

∗ dRic0𝑁|𝑃̄𝔫
)
. (4.11)

By (4.10), (4.11) and the Center Manifold Theorem [24, p. 116], it follows that there exists a
stable manifold Ŵ (𝑃̄𝔫) for (𝑃̄𝔫)

𝑀
at 0 ⊕ 𝑃̄𝔫 of dimension dim Ŵ (𝑃̄𝔫) = 𝜈 + 𝑞, where 𝑞 is the coin-

dex of 𝑃̄𝔫 (see Definition 2.2). We remark that Ŵ (𝑃̄𝔫) is a submanifold of M̂ 𝖦
𝑀
(𝔨) and that, being

eventually interested in the positive-definite solutions to the Ricci flow, we need to compute the
dimension of themanifoldW (𝑃̄𝔫) ∶= Ŵ (𝑃̄𝔫) ∩M 𝖦

𝑀
(𝔨). For this purpose, let us observe that, restrict-

ing to the sphere Σ(𝑃̄𝔫), the eigenvectors of d(𝑃̄𝔫)
𝑀

|0⊕𝑃̄𝔫 consist of two families of endomorphisms
inside 𝑇0⊕𝑃̄𝔫Σ

(𝑃̄𝔫), namely:

• those coming from the upper left block of (4.11), spanned by a basis of the form

B1 =
(
(𝐵𝔱)𝑖 ⊕ (𝐵𝔫)𝑖

)
, 1 ⩽ 𝑖 ⩽ 𝜈;

• those coming from the lower right block of (4.11), spanned by a basis of the form

B2 =
(
0 ⊕ (𝐶𝔫)𝑗

)
, 1 ⩽ 𝑗 ⩽ 𝑝 − 1,

where 𝑝 ∶= dimM 𝖦
𝑁
.

We claim that the endomorphisms (𝐵𝔱)𝑖 must be linearly independent inside Sym(𝔱, 𝑄𝔱)Ad(𝖧). If
not, then there is a non-trivial linear combination∑

𝑖

𝜇𝑖
(
(𝐵𝔱)𝑖 ⊕ (𝐵𝔫)𝑖

)
= 0 ⊕ 𝐵⋆𝔫 for some non-zero 𝐵⋆𝔫 ∈ 𝑇𝑃̄𝔫M

𝖦
𝑁,1.

Since (𝐶𝔫)𝑗 forms a basis for 𝑇𝑃̄𝔫M
𝖦
𝑁,1

, there is another linear combination∑
𝑗

𝜇̃𝑗(𝐶𝔫)𝑗 = 𝐵
⋆
𝔫 ,

but this contradicts the fact that B1 ∪B2 is a basis for 𝑇0⊕𝑃̄𝔫Σ
(𝑃̄𝔫). This shows in particular that

W (𝑃̄𝔫) has dimension dimW (𝑃̄𝔫) = dim Ŵ (𝑃̄𝔫) = 𝜈 + 𝑞.
Let now 𝑃(𝑡) = 𝑃𝔱(𝑡) ⊕ 𝑃𝔫(𝑡) be an ancient solution to the 𝑃̄𝔫-projected Ricci flow lying on

W (𝑃̄𝔫). It remains to prove that the corresponding solution to the Ricci flow is still ancient. Note
that by (4.1) it holds that

scal𝑀(𝑃(𝑡)) → 𝜆 dim(𝑁) as 𝑡 → −∞.

Thus for large times scal𝑀(𝑃(𝑡)) > 0, and hence the same is true for the corresponding solution
to the Ricci flow. However, a solution to the Ricci flow whose scalar curvature stays positive
is necessarily ancient by [16, Theorem 1.1]. Furthermore, as in the proof of Proposition 4.2
in [29], 𝑃(𝑡) has bounded curvature and is hence collapsed as the injectivity radius tends to
zero. □
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Finally, Theorem A is a direct consequence of Theorem 4.3 and Proposition 4.2.

5 PROOF OF COROLLARY B

In this section, we produce explicit examples of collapsed homogeneous ancient solutions. As a
byproduct, we prove Corollary B. For a detailed study of Einstein equations on generalized flag
manifolds, we refer, for example, to [3]. In the following examples, the group 𝖦 will always be
semisimple and so we choose its negative Cartan–Killing form as background metric.

5.1 A Kähler–Einstein metric on 𝗦𝗨(𝟑)∕𝗧𝟐

Let 𝖦 = 𝖲𝖴(3), 𝖳2 = {diag(𝑒𝑖𝑡1 , 𝑒𝑖𝑡2 , 𝑒−𝑖(𝑡1+𝑡2))} its maximal torus and consider the real root spaces
decomposition

𝔰𝔲(3) = 𝔱2 + 𝔫1 + 𝔫2 + 𝔫3.

Then, any 𝖦-invariant Riemannian metric 𝑃𝔫 on the flag manifold𝑁 = 𝖲𝖴(3)∕𝖳2 takes the form

𝑃𝔫 = 𝜆1 Id𝔫1 ⊕𝜆2 Id𝔫2 ⊕𝜆3 Id𝔫3

and its normalized scalar curvature is given by (see, for example, [3, Proposition 4])

s̃cal𝑁(𝑃𝔫) = (𝜆1𝜆2𝜆3)
1
3

(
1

𝜆1
+ 1

𝜆2
+ 1

𝜆3
− 1

6

(
𝜆1
𝜆2𝜆3

+
𝜆2
𝜆1𝜆3

+
𝜆3
𝜆1𝜆2

))
.

Take the unit volume Kähler–Einstein metric 𝑃KE𝔫 corresponding to the values

(𝜆1, 𝜆2, 𝜆3) =
1

3

(
27

2

) 1
3
(1, 1, 2)

and one can compute that

spectrum
(
Hess

(
s̃cal𝑁

)||𝑃KE𝔫 )
=
{
−1
3
, 0, 4

3

}
.

Here, the zero eigenvalue corresponds to scaling the metric by a constant and so 𝑃KE𝔫 has coindex
𝑞 = 1. Now consider the homogeneous fibration

𝖳2 → 𝖲𝖴(3) → 𝖲𝖴(3)∕𝖳2. (5.1)

By Theorem 4.3, there is a 3-parameter family of ancient solutions to the Ricci flow on 𝖲𝖴(3)
which, under the rescaling introduced in Section 3, collapse the fibers of (5.1) and converge to
0 ⊕ 𝑃KE𝔫 as 𝑡 → −∞. Similarly if 𝖲1𝑝,𝑞 = {( 𝑒

𝑖𝑝𝑡, 𝑒𝑖𝑞𝑡, 𝑒−𝑖(𝑝+𝑞)𝑡)}, we get the homogeneous fibration

𝖲1 = 𝖳2∕𝖲1𝑝,𝑞 → 𝖲𝖴(3)∕𝖲
1
𝑝,𝑞 → 𝖲𝖴(3)∕𝖳

2, (5.2)

where 𝖲𝖴(3)∕𝖲1𝑝,𝑞 is an Aloff–Wallach space. By Theorem 4.3, there is a 1-parameter family of
ancient solutions on 𝖲𝖴(3)∕𝖲1𝑝,𝑞 converging to 0 ⊕ 𝑃

KE
𝔫 as above.
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Remark 5.1. In [19], Lu and Wang produce a two-parameter family of ancient solutions on 𝖲𝖴(3)
and a single ancient solution on 𝖲𝖴(3)∕𝖲1𝑝,𝑞 both collapsing to 𝑃

KE
𝔫 as 𝑡 → −∞. Our families are

slightly larger, which can be explained by the fact that the metric restricted to the base is allowed
to vary.

5.2 A Kähler–Einstein metric on 𝗦𝗨(𝟒)∕𝗧𝟑

Let 𝖦 = 𝖲𝖴(4), 𝖳3 = {diag(𝑒𝑖𝑡1 , 𝑒𝑖𝑡2 , 𝑒𝑖𝑡3 , 𝑒−𝑖(𝑡1+𝑡2+𝑡3))} its maximal torus and consider the real root
spaces decomposition

𝔰𝔲(3) = 𝔱2 + 𝔫1 + 𝔫2 + 𝔫3 + 𝔫4 + 𝔫5 + 𝔫6.

Then, any 𝖦-invariant Riemannian metric 𝑃𝔫 on the flag manifold𝑁 = 𝖲𝖴(4)∕𝖳3 takes the form

𝑃𝔫 = 𝜆1 Id𝔫1 ⊕…⊕ 𝜆6 Id𝔫3

and its normalized scalar curvature is given by (see, for example, [3, Proposition 4])

s̃cal𝑁(𝑃𝔫) = (𝜆1𝜆2𝜆3𝜆4𝜆5𝜆6)
1
6

(
1

𝜆1
+ 1

𝜆2
+ 1

𝜆3
+ 1

𝜆4
+ 1

𝜆5
+ 1

𝜆6
− 1

8

(
𝜆1
𝜆2𝜆4

+
𝜆1
𝜆3𝜆5

+
𝜆2
𝜆1𝜆4

+
𝜆2
𝜆3𝜆6

+
𝜆3
𝜆1𝜆5

+
𝜆3
𝜆2𝜆6

+
𝜆4
𝜆1𝜆2

+
𝜆4
𝜆5𝜆6

+
𝜆5
𝜆1𝜆3

+
𝜆5
𝜆4𝜆6

+
𝜆6
𝜆2𝜆3

+
𝜆6
𝜆4𝜆5

))
.

Take the unit volume Kähler–Einstein metric 𝑃KE𝔫 corresponding to the values

(𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6) =
1

4

(
1024

3

) 1
6
(3, 2, 1, 1, 2, 1).

One can compute that the matrix Hess(s̃cal𝑁)|𝑃KE𝔫 has two distinct positive eigenvalues, three
negative eigenvalues and one zero eigenvalue, corresponding to the scaling direction. Therefore,
𝑃KE𝔫 has coindex 𝑞 = 2. By Theorem4.3, on 𝖲𝖴(4) there is a 7-parameter family of ancient solutions
to the Ricci flow collapsing, under rescaling, to 0 ⊕ 𝑃KE𝔫 as 𝑡 → −∞. Similarly on 𝖲𝖴(4)∕𝖲1 there
is a 4-parameter family of ancient solutions, and on 𝖲𝖴(4)∕𝖳2 there is a 2-parameter family of
ancient solutions.
Note that, as in the previous example, the construction of Lu andWang again provides ancient

solutions on 𝖲𝖴(4) but their family is two dimensions smaller, due to the fact that in their
construction the metric on the base remains fixed.

5.3 A Kähler–Einstein metric on 𝗚𝟐∕𝗧𝟐

Let 𝖦 = 𝖦2, 𝖳2 a maximal torus inside 𝖦2 and consider the real root spaces decomposition

𝔰𝔲(3) = 𝔱2 + 𝔫1 + 𝔫2 + 𝔫3 + 𝔫4 + 𝔫5 + 𝔫6.

Then, any 𝖦-invariant Riemannian metric 𝑃𝔫 on the flag manifold 𝑁 = 𝖦2∕𝖳2 takes the form

𝑃𝔫 = 𝜆1 Id𝔫1 ⊕…⊕ 𝜆6 Id𝔫6
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and its normalized scalar curvature is given by

s̃cal𝑁(𝑃𝔫) = (𝜆1𝜆2𝜆3𝜆4𝜆5𝜆6)
1
6

(
1

𝜆1
+ 1

𝜆2
+ 1

𝜆3
+ 1

𝜆4
+ 1

𝜆5
+ 1

𝜆6
− 1

6

(
𝜆1
𝜆3𝜆4

+
𝜆3
𝜆1𝜆4

+
𝜆4
𝜆1𝜆3

)
−1
8

(
𝜆1
𝜆2𝜆3

+
𝜆1
𝜆4𝜆5

+
𝜆2
𝜆1𝜆3

+
𝜆2
𝜆5𝜆6

+
𝜆3
𝜆1𝜆2

+
𝜆3
𝜆4𝜆6

+
𝜆4
𝜆1𝜆5

+
𝜆4
𝜆3𝜆6

+
𝜆5
𝜆1𝜆4

+
𝜆5
𝜆2𝜆6

+
𝜆6
𝜆2𝜆5

+
𝜆6
𝜆3𝜆4

))
.

For more information about homogeneous Einstein metrics on𝑁 = 𝖦2∕𝖳2, see [4]. Take the unit
volume Kähler–Einstein metric 𝑃KE𝔫 corresponding to the values

(𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6) =
1

12
( 4608
5
)
1
6 (1, 3, 4, 5, 6, 9)

and one can compute that the matrix Hess(s̃cal𝑁)|𝑃KE𝔫 has one positive eigenvalue, four negative
eigenvalues and one zero eigenvalue, corresponding to the scaling direction. Therefore, 𝑃KE𝔫 has
coindex 𝑞 = 1. By Theorem4.3, on𝖦2 there is a 3-parameter family of ancient solutions to theRicci
flow collapsing, under rescaling, to 𝑃KE𝔫 as 𝑡 → −∞. Similarly on 𝖦2∕𝖲1 there is a 1-parameter
family of ancient solutions.

5.4 The normal Einstein metric on 𝗦𝗨(𝒏)∕𝗧𝒏−𝟏

Let 𝖦 = 𝖲𝖴(𝑛), with 𝑛 ⩾ 3, and 𝖳𝑛−1 ⊂ 𝖲𝖴(𝑛) the diagonally embedded maximal torus. Then for
any 1 ⩽ 𝑘 ⩽ 𝑛 − 1 and any subtorus 𝖳𝑛−1−𝑘 ⊂ 𝖳𝑛−1, we have a homogeneous fibration

𝖳𝑘 → 𝖲𝖴(𝑛)∕𝖳𝑛−1−𝑘 → 𝖲𝖴(𝑛)∕𝖳𝑛−1,

where𝖳𝑘 is a complement of 𝖳𝑛−1−𝑘 in 𝖳𝑛−1. By [17], the normalmetric on 𝖲𝖴(𝑛)∕𝖳𝑛−1 induced by
the biinvariant metric on 𝖲𝖴(𝑛) is Einstein with coindex 𝑞 = 𝑛 − 1. Hence by Theorem 4.3, there
exists a ( 𝑘(𝑘+1)

2
+ 𝑛 − 2)-parameter family of ancient solutions on 𝖲𝖴(𝑛)∕𝖳𝑛−1−𝑘 which collapse,

under rescaling, to the normal metric on the base as 𝑡 → −∞.

5.5 The normal Einstein metric on 𝗦𝗢(𝟒)∕𝗧𝟐 = 𝑺𝟐 × 𝑺𝟐

Let 𝖦 = 𝖲𝖮(4), 𝖳2 ⊂ 𝖲𝖮(4) be a maximal torus and consider the Ad(𝖳2)-irreducible decomposi-
tion

𝔰𝔬(4) = 𝔱2 + 𝔫1 + 𝔫2.

Then, any 𝖦-invariant Riemannian metric 𝑃𝔫 on 𝑁 = 𝖲𝖮(4)∕𝖳2 takes the form

𝑃𝔫 = 𝜆1 Id𝔫1 ⊕𝜆2 Id𝔫2

and its normalized scalar curvature is given by

s̃cal𝑁(𝑃𝔫) = (𝜆1𝜆2)
1
2

(
1

𝜆1
+ 1

𝜆2

)
.
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The normal metric 𝑃E𝔫 induced by the biinvariant metric on 𝖲𝖮(4) is Einstein and given by

(𝜆1, 𝜆2) = (1, 1).

One can compute that the matrix Hess(s̃cal𝑁)|𝑃E𝔫 has one positive eigenvalue and one zero
eigenvalue, corresponding to the scaling direction. Therefore, 𝑃E𝔫 has coindex 𝑞 = 1. Hence by
Theorem 4.3 on 𝖲𝖮(4), there is a 3-parameter family of ancient solutions which collapse, under
rescaling, to 𝑃E𝔫 as 𝑡 → −∞. Similarly, if 𝖲

1
𝑝,𝑞 ⊂ 𝖳

2 is a diagonally embedded circle with rational
slope 𝑝

𝑞
, then on 𝖲𝖮(4)∕𝖲1𝑝,𝑞 ≃ 𝑆

3 × 𝑆2 there is a 1-parameter family of ancient solutions which
collapse, under rescaling, to 𝑃E𝔫 as 𝑡 → −∞.
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