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1 | INTRODUCTION

Given a connected smooth manifold M, a solution to Hamilton’s Ricci flow is a smooth path of
Riemannian metrics g(t) satisfying the geometric non-linear PDE

%g([) = =2 RICM(!]([))

Up to a time-dependent family of diffeomorphisms, it is equivalent to a parabolic PDE and so,
similar to the heat equation, the Ricci flow has regularizing properties for Riemannian metrics
making it a fundamental tool in the study of classification-type problems in geometry and topol-
ogy. Solutions that are defined on a time interval (—oo, 0] have a special significance and are called
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ancient solutions. Since the Ricci flow is equivalent to a parabolic PDE, the backwards equation is
generally ill-posed and hence ancient solutions are rare.

Now let G be a compact Lie group acting transitively and almost effectively on M, so that M is
compact as well. Then, by diffeomorphism invariance, the Ricci flow induces a dynamical system
on the space of G-invariant Riemannian metrics //46} on M. We recall that an ancient solution to
the G-homogeneous Ricci flow g(t) is said to be non-collapsed if the curvature-normalized met-
rics |[Rmy(g(t))| ;¢ 9(¢) have a uniform lower injectivity radius bound, otherwise it is said to be
collapsed. In [10], the authors proved that non-collapsed ancient solutions on a compact homo-
geneous space must emanate from a homogeneous Einstein metric on the same space. Moreover,
the normalized Ricci flow

25(t) = —2Ric}, (5(1)

on the subspace of G-invariant, unit volume, Riemannian metrics ///1\(/31,1 - ///13 which is equiv-
alent to the Ricci flow up to rescaling and time reparametrization, is the gradient flow of the
scalar curvature functional, whose critical points are G-invariant, unit volume, Einstein metrics
on M. Therefore, non-collapsed ancient solutions to the G-homogeneous Ricci flow always exist
whenever M admits a G-invariant, G-unstable Einstein metric (see [10, Lemma 5.4]).

On the other hand, it is known that a compact homogeneous space admits collapsed ancient
solutions to the homogeneous Ricci flow only if it is the total space of a homogeneous torus
bundle (see, for example, Proposition 2.4). Examples of such solutions have been found, for exam-
ple, in [5, 10, 13, 19, 27], on a case by case basis, and up to now there have been few general
existence theorems.

The main result of our paper is the following.

Theorem A. Let H C TH C G be compact, connected Lie groups, where T is a maximal torus of a
compact complement of H in the normalizer Ng(H) with d = dim(T) > 1. For any G-invariant, unit
volume Einstein metric gon N = G/TH of coindex q, there exists a (@ + g — 1)-parameter family
of collapsed ancient solutions to the homogeneous Ricci flow on M = G/H that, under a suitable
rescaling, shrink the fibers of T - M — N and converge to (N, g) in the Gromov-Hausdorff topology

ast - —oo.

Here, the coindex of the Einstein metric g is defined as its coindex as a critical point of the
scalar curvature functional on the space ///18,1 of unit volume G-invariant metrics on N (see Sec-
tion 2.2). We mention that all the ancient solutions obtained by means of Theorem A are of
submersion type with respect to the homogeneous torus fibration T - M — N, and we expect
this property to be true in general (see, for example, [27]). Here, maximality of T and Schur’s
Lemma guarantee that submersion metrics are preserved by the Ricci flow, which is crucial to the
proof. Furthermore we stress that, along the solutions obtained by our theorem, the metric on the
fibers T and the base N will in general change. Note also that Theorem A holds true even when
g has coindex q = 0, that is, it is a local maximum of scalar curvature on ///18,1 (compare with
[10, Lemma 5.4]). We mention that Theorem A holds without the connectedness assumption on
H and G, but in such case the dimension of the space of ancient solutions on M depends on the
adjoint representation of H on the Lie algebra t := Lie(T) (see Section 4.2). Lastly, we do not know,
expect in some special cases, whether the solutions found by means of Theorem A are isometric
or not.
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We illustrate our result with the following series of examples:

Corollary B.

(a) OnSU(3), SU(3)/SY, SU(4), SU(4)/S!, SU(4)/T?, G, and G, /S! there exists a 3, respectively, 1, 7,
4, 2, 3 and 1-parameter family of ancient solutions to the Ricci flow collapsing, under a suitable
rescaling, to a Kdhler-Einstein metric on a full flag manifold.

(b) On SU(n)/T" 17k, with n >3 and 1 <k < n—1, there exists a (@ + n — 2)-parameter
family of ancient solutions to the Ricci flow collapsing to the normal Einstein metric on
SU(n)/ T 1.

(c) OnSO(4) and SO(4)/S! there exists a 3, respectively, 1-parameter family of ancient solutions to
the Ricci flow collapsing to the normal Einstein metric on SO(4)/T2.

Note that the circles S! € SO(4) in Corollary B can be chosen with arbitrary slope and that the
manifolds SO(4)/S! are diffeomorphic to S3 x S? (see, for example, [29]). In particular, we obtain
infinitely many families of ancient solutions on S* x S? that are homogeneous under inequivalent
group actions. Moreover, let us also observe that in [8] it was shown that under the assumptions
of Theorem A most homogeneous spaces G/TH admit homogeneous Einstein metrics with large
coindex plus nullity (see also [9, 11, 28]), to which Theorem A can be applied.

We remark that Theorem A allows us to reconstruct all known examples of collapsed homo-
geneous ancient solutions to the Ricci flow, such as those in [5, 10, 13, 19, 27]. In [5] and [19],
the authors construct ancient solutions which consist of submersion metrics F — M — B where
one assumes either that F, M, B admit Einstein metrics, F is a torus, or B is a product of Kihler-
Einstein metrics. In these constructions, the metric on the base remains fixed, or in the latter case
stays within the set of products of Kédhler-Einstein metrics. On the contrary, along the ancient
solutions provided by Theorem A, the induced metric on the base N varies and does not neces-
sarily remain Einstein, as opposed to the solutions constructed in [5] and those constructed in
[19]. Furthermore, in our situation M need not admit an invariant Einstein metric and g need not
be Kdhler-Einstein.

The strategy of the proof of Theorem A is as follows. First we observe that, since the torus
T is assumed to be maximal, the subspace of G-invariant submersion metrics with respect to
T — M — N is preserved by the Ricci flow, and that it can be analytically extended to the
bigger space of generalized submersion metrics, which contains a neighborhood of the col-
lapsed metric 0 @ g. We also compactify the problem by projecting the Ricci flow to the unit
sphere of generalized submersion metrics, with respect to some carefully chosen background
inner product depending on g, obtaining what we call the g-projected Ricci flow. Then, we use
an enhanced version of the Stable Manifold Theorem to produce ancient solutions to the g-
projected Ricci flow which collapse to 0 @ § as t - —oo. Finally, we prove that some of these
solutions of generalized submersion metrics are actually positive definite, and that the corre-
sponding solutions to the Ricci flow, obtained by rescaling and time reparametrization, are still
ancient.

The paper is organized as follows. In Section 2, we recall some facts about compact homo-
geneous spaces, toral H-subalgebras and ancient solutions to the Ricci flow. In Section 3, we
introduce the fundamental tools for proving our main result, namely the space of generalized
submersion metrics and the projected Ricci flow. In Section 4, we prove Theorem A. In Section 5,
we construct examples of collapsed ancient solutions and prove Corollary B.



4 | PEDICONI AND SBITI

2 | PRELIMINARIES ON COMPACT HOMOGENEOUS SPACES
2.1 | The space of invariant metrics

Let M = G/H be a compact, connected and almost-effective m-dimensional homogeneous space,
where G is a compact Lie group and H a closed subgroup. Furthermore assume that M is not a
torus. Note that neither G nor H are assumed to be connected.

Fix an Ad(G)-invariant Euclidean inner product Q on the Lie algebra g := Lie(G) and denote
by m the Q-orthogonal complement of §j := Lie(H) in g. By means of the canonical identification
m ~ T,,M given by the evaluation map

. d
VeV, = o exp(sV)H|

5s=0’

we identify any G-invariant tensor field on M with the corresponding Ad(H)-invariant ten-
sor on m. The restriction Q,, := Qg defines a normal G-invariant Riemannian metric
on M.

We denote by .7, 1\(/31 the set of G-invariant Riemannian metrics on M, which is identified with
the linear space of Q,,,-symmetric, Ad(H)-invariant, positive-definite endomorphisms of m, that
is,

Ay = Sym, (m, Q,,)AM), 1)
by means of the correspondence
g [ Pg, Qm(Pg'VD Vz) = g(Vl’ Vz) fOI‘ any Vl’ V2 e m. (2.2)

From now on, we will always identify a metric with the associated endomorphism via (2.2).
We recall that (2.1) provides the set //lﬁ with a structure of finite-dimensional smooth manifold.
Moreover, the natural L?-metric defined by

: 1 1 G Ad(H
(B1,B,)p :=det(P)2 Tr(P~".B;.P~".B,) foranyB,B, € Tp.#,; = Sym(m,Q,,) ()
turns ///ZSI into a Riemannian symmetric space of non-compact type and the subset
My =P € Sym, (m, Q)™ : det(P) = 1}

of unit volume G-invariant Riemannian metrics into a totally geodesic submanifold.
For any Riemannian metric P € .#C, we consider the Ad(H)-invariant map

Sy (P) : m — End(m)
defined by (see [15, Theorem 3.3, Chapter X])

_2Qm(SM(P)(V1)V2’ V3) = Qm([Vla VZ]ma V3)

+Q([P7LV3, V110, PV,) + Qu([P7LV5, Vo 1,0, V). (23)
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Here, the symbol [V, V,],, denotes the Q-orthogonal projection of [V, V,] on m. The map S,(P),
which is denoted by —A,, in [15], corresponds to the G-invariant (1,2)-tensor field on M given by
the difference between the Ambrose-Singer connection associated to the reductive decomposi-
tion ¢ = h + m and the Levi-Civita connection (see, for example, [23]). It is worth mentioning
that this tensor encodes all the geometric information about the metric P. Indeed, following [15,
Proposition 2.3, Chapter X], the Riemannian curvature tensor Rm,,(P) of P is explicitly expressed
in terms of Sy;(P) by

Rmy, (P)(V1, V) = ad([V1, V1) — [Sy(P)(V1), Sy (PYV)] = Sy (PX([V1, V), (24)

where again the [V, V, ]y denotes the Q-orthogonal projection of [V}, V,] on §). Consequently, the
Ricci curvature Ricy(P) of P is

Qun(Ricy (P).V1,V,) := Tr(Rmy, (P)(Vy, -).V,) (2.5)

and the scalar curvature scaly;(P) of P
scaly,(P) := Tr(P~L. Ricy,(P)). (2.6)
Note that, according to (2.5), we denote by Ric,, the endomorphism obtained by raising an index
of the Ricci bilinear form by means of the background metric Q. Therefore, the standard ‘Ricci

endomorphism’ corresponds in our notation to P~. Ric,,(P).
We also denote by

Ric),(P) := Ricy,(P) —

scalM(P)P @7
m

the traceless Ricci curvature of P and we recall that P is said to be Einstein if RicR/I(P) =0.
We finally mention that Einstein metrics are the critical points of the normalized scalar
curvature functional

scaly : MG >R, scaly(P) :=det(P)n scaly(P).

Indeed, following [6, Chapter 4] the differential of gc\JalM atP € A 1\(/} in the direction of B € TP///IS[
is

d scalyy|p(B) = — det(P) 3 (Ric?,(P), B, 2.8)

andsod gc\'alM| p = 0if and only if P is Einstein.

2.2 | Homogeneous torus bundles and the coindex of Einstein metrics

Let us consider a toral H-subalgebra £ of g, that is, an Ad(H)-invariant Lie subalgebra of g which
lies properly between ) and g such that [£, ] C §. Then, if we denote by K° the connected Lie
subgroup of G with Lie algebra equal to £, it turns out that the subgroup K generated by H and
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K° is a (not necessarily closed) Lie subgroup of G and T := K/H is a (immersed) torus in M. This
gives rise to a (locally defined) homogeneous torus fibration

T=K/H->M=G/H—- N :=G/K. (2.9)

For more details on this construction, see, for example, [8, Section 4], [21, Section 3] and [22,
Proposition 6.1].
At the Lie algebra level, we get the Q-orthogonal decomposition

m
—
g=bh+t+n, with t:=Lie(T), n~T,N. (2.10)
N——
t

We recall that a metric P € ///1\3 is called f-submersion metric if it preserves the decomposition
m =t + n and its restriction to the subspace n is Ad(K)-invariant. We denote by ///ﬁ(f) the subset
of all the f-submersion metrics and observe that it naturally splits as

AG(E) = Sym,, (£, Q™ @ Sym, (n,Q, )M, P=P, @®P,, (2.11)

where Q; := Ql;g¢ and Q,; := Ql,gy- Note thatany P € J/ﬁ(f) turns the (locally) homogeneous
torus fibration (2.9) into a Riemannian submersion with totally geodesic fibers (see for example,
[21, Section 3.2]). Note that all the metrics in Q///A(f[(f) are invariant under the action of the larger
group GXT, which actson M = G/Hvia (a, n) - bH := abn~'H with isotropy at the origin HAT :=
{(hn,n) : heH,n €T}

Let us consider now a maximal toral H-subalgebra of g, that is, a toral H-subalgebra f of g such
that T = K/H is a maximal torus of a compact complement of H° in Ng(H°)°. Here, we denote
by H° the identity component of H and by N;(H®)° the identity component of the normalizer of
H° in G. Note that this condition implies that K is closed in G and hence N = G/K is a compact
homogeneous space. Moreover, it also implies the following

Lemma2.1. The complement n in (2.10) does not contain any Ad(K)-invariant submodule on which
Ad(K®) acts trivially.

Proof. Let it C nbe an Ad(K)-invariant submodule such that Ad(K®).X = {X}forany X € fi.Then,
this implies that £ := ¥ + i is a toral H-subalgebra of g. Since ¥ is assumed to be maximal, it follows
that f = £ and so fi C £. Since f and n are Q-orthogonal, we get it = {0} O

Letnow P, € ./, ]S , be aunit volume Einstein metric on N. Then Ric?V(Pn) = 0 and so, by (2.8),
it follows that

Hess(scalNI%Iel)|pﬂ(B1,B2) = _<d (Ric?V Vl&)’p (Bl),B2> (2.12)
, s, ,

n

for any B;,B, €T P, ///]S 1 Therefore, in virtue of (2.12) and [17, Definition 3.14], we recall the
following notion of coindex for invariant Einstein metrics on N.



COLLAPSED ANCIENT SOLUTIONS OF THE RICCI FLOW ON COMPACT HOMOGENEOUS SPACES | 7

Definition 2.2. The coindex of a unit volume Einstein metric P, € //ZIS | Is its coindex as a criti-
cal point of the restricted scalar curvature functional scaly | 46 that is, the number of negative
““N,1

eigenvalue of the linear map d(Ric?V | S 1)| P,

We refer to [17, 18] for a detailed treatment on stability and non-degeneracy of invariant Einstein
metrics on homogeneous spaces.

2.3 | Ancient solutions to the Ricci flow

We recall that a solution to the Ricci flow on M is a smooth 1-parameter family of metrics that
evolve in the direction of their Ricci tensors. By diffeomorphism invariance of the Ricci tensor,
isometries are preserved by the Ricci flow, and hence one can restrict it to a dynamical system on
the space of G-invariant metrics ///1\(/31 that is,

P'(t) = —2Ricy(P(t)), P(0)=P,.

IfP, € .45

\1.1» then the normalized Ricci flow on M starting at P, takes the form

P'(t) = —2Ric),(P(1)), P(0)=P,,

where the traceless Ricci tensor has been defined in (2.7). It is well known that the normalized
Ricci flow preserves the submanifold ///A(;;,1 and that it is equivalent to the Ricci flow up to rescal-
ing and time reparametrization. Moreover, by (2.8), the normalized Ricci flow coincides, up to a
positive constant, with the L2-gradient flow of the restricted scalar curvature functional on %1\(/31,1'

In [11], the authors studied the global behavior of the restricted scalar curvature functional on
M, 1\(/31,1 in order to prove the existence of Einstein metrics using variational techniques. In particu-
lar, the authors proved that for any € > 0, the scalar curvature functional satisfies the Palais—Smale
compactness condition on the set

(My; ). 1= 1{P € My, = scaly(P) > e},

that is, if (P™) c .S | is a sequence with

scalM(P(”)) —¢ and <Ric?w(P(”)), RicOM(P(”))>P(m -0 asn— +oo,

then there exists a subsequence of (P") converging in the C®-topology to an Einstein metric
P € ./ |, as n — +oo, with scaly,(P*)) = ¢. In general, the Palais-Smale compactness con-
dition does not hold on the full space ///1\(/31,1 due to the existence of the so-called 0-Palais-Smale
sequences, which are (P™) C .#; | such that scaly (P™) — 0and (Ricj, (P™), Ricy, (P™)) piw) —
0 as n — +o0. Note that such sequences cannot admit convergent subsequences since M is not a
torus. In fact, the limit of any convergent subsequence would be a Ricci-flat, and hence flat (see
[1]), G-invariant metric. By [11, Theorem 2.1], the existence of such a solution implies that G°/H°
is the total space of a homogeneous torus bundle, where G° (respectively, H°) denotes the identity
component of G (respectively, H). More precisely, since 0-Palais—Smale sequences have bounded
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sectional curvature by the Gap theorem [10], by [21] we know that the sum of the eigenspaces
associated to the shrinking eigenvalues of any 0-Palais-Smale sequence converges to a reductive
complement of ) into a toral H-subalgebra ¥ of g and that such sequences collapse along the fibers
of the induced (locally) homogeneous torus fibration (2.9) while asymptotically approaching, in
a precise sense, a f-submersion metric.

Now let P(¢) be the solution to the Ricci flow starting from P, € .#}; G ,and P(t) the correspond-
ing solution to the normalized Ricci flow. We recall that P(t) (respectlvely, P(t))is said to be ancient
if it exists on the time interval (—o0, 0]. It is a well-known consequence of the maximum principle
that if P(¢) is ancient, then it must have monotonic non-negative scalar curvature (see, for exam-
ple, [14, p. 102]). Since the two flows are equivalent up to rescaling and time reparametrization,
the same is true for the solution P(t). Furthermore, by [27], P(¢) is ancient if and only if P(t) is
ancient. In particular, there are exactly two possibilities for the behaviour of the normalized Ricci
flow ast —» —oo.

The first possibility is that there exists an € > 0 such that scal,,;(P(t)) > ¢ for any ¢ <0, in
which case P(t) (and hence P(t)) is non-collapsed and, by [10, Theorem 5.2], P(t) converges to an
Einstein metric as t — —oo. Since the traceless Ricci tensor is the negative L2-gradient of the func-
tional scaly | a8 such ancient solutions are known to exist whenever M admits a G-unstable,

G-invariant Einstein metric (see, for example, [2, 10]). The second possibility is that scal,, (P(t)) —
0 as t — —oo. In this case, one can always find a sequence of times t'” — —oo such that P(¢t(")
is a 0-Palais-Smale sequence and so P(t) (and hence P(t)) is collapsed. Indeed, for the sake of the
reader, we recall the following

Remark 2.3. A 1-parameter family {P(t)},c; of G-invariant metrics, I C R an interval, is said to be
non-collapsed if there exists § > 0 such that

inj(P())(| RmM(P(t))|P([))% § foranyt €,

where inj(P) denotes the injectivity radius of the metric P at the origin eH and | - |, denotes the
norm on m, and hence on the tensor space over m, induced by P. Accordingly, {P(t)},c; is said to
be collapsed if it is not non-collapsed, that is, if there exists a sequence (t™V) c I such that

1

inj(P( ™)) IRmyy (Pl ey )* =0 asn = +oo.
These properties are invariant under time-depending rescaling and time reparametrization.
We also recall that, by [10], the following result holds true (see [10, Remark 5.3]).

Proposition 2.4. Let P(t) be an ancient solution to the homogeneous Ricci flow on M = G/H start-
ing from P, € .4y, c | and P(t) the corresponding solution to the normalized Ricci flow. Then, P(t) is
collapsed if and only if scaly;(P(t)) » 0ast - —co.

Proof. By [10, Theorem 5.2], it follows that P(¢) is non-collapsed if and only if for any sequence

" - —oo there exists a subsequence (t"%)) c (t™) such that [t(%)|~1P(¢t()) converges in the

C®-topology to a limit Einstein metric on M as i — +o0. Moreover, since P(¢) coincides, up to
1

time reparametrization, to the volume-normalized family det(P(t))” = P(t), it follows that: P(t) is

non-collapsed if and only if for any sequence ¢t — —oo there exists a subsequence (7)) c (t™)
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such that P(t()) converges in the C*®-topology to a limit G-invariant metric in ///A(f[ L 881 — +oo.
This concludes the proof. [

Note that, as a byproduct of Proposition 2.4 and [21], M admits a collapsed ancient solution to
the Ricci flow only if it is the total space of a homogenous torus bundle (see also [10, Remark 5.3]).

3 | THE PROJECTED RICCI FLOW

In this section, we introduce two important tools that will be fundamental for the proof of our
main results, namely the space of generalized submersion metrics and the projected Ricci tensor. In
the following, we consider a compact homogeneous space M = G/H and we use the same notation
introduced in Section 2.

3.1 | The space of generalized submersion metrics

Consider a maximal toral H-subalgebra f of g and the associated homogeneous torus fibration
(2.9). We introduce the space of generalized f-submersion metrics on M as

() = Sym(t, Q) ™ @ Sym,, (n, Q)X (3.1
that is, we allow the metric on t to be degenerate, and we prove the following crucial result.

Proposition 3.1. The Ricci curvature Ric,; can be extended analytically to the space ///]S[(f) of
generalized ¥-submersion metrics on M.

Proof. We write P =P, @ P, forany P € ///A(fl(f) and we observe that [ad(T), P, ](X) = 0 for any
T € t, X € n. Hence, since Q is Ad(G)-invariant, a straightforward computation shows that the
tensor S,,(P) defined by (2.3) is explicitly given by

Su(P)XT).T = 0,

Sy (P)T).Y = —ad(T).Y + %P;l. ad(P,.T).Y,
(3.2)
Sy (P)X).T = —%P;l. ad(X).P,.T,

Su(PYX).Y = =37 ad(X).Y — 2P 7, .(ad(X).P,, — ad(P,, X)).Y,

where X,Y € nand T, T € t. Here, we denote by 7, : ¢ > mand 7, : ¢ — n the Q-orthogonal
projections onto m and n, respectively. In particular, (3.2) implies that S,,(P) can be defined for

any generalized metric P € //7]816) and that it depends analytically on P. Therefore, formulas (2.4)
and (2.5) can be used to define Rm,,(P) and Ricy,(P) for any P € ///A(;;(f). O
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Moreover, by using Schur’s Lemma, we get
Lemma 3.2. Forany P € /Z&R), it holds that
Ricy,(P) € Sym(t, Q)™ @ Sym(n, Q,)A4™. (33)

Proof. Note that, by hypothesis, the submodule t is Ad(K)-invariant and the representation
Ad(K®)|; is trivial. Moreover, by Lemma 2.1, n does not contain any Ad(K)-invariant submodule

on which Ad(K®) acts trivially. Fix now P € //Z%F) and note that, since K = HK®, both P and the
decomposition (2.10) are Ad(K)-invariant. By (2.3), it follows that S,;(P) is Ad(K)-invariant and so
Ric,,(P) is Ad(K)-invariant as well. Therefore, the claim follows from Schur’s Lemma. O

We are going to use (3.2) to compute the differential of the tensor S, defined in (2.3). In order
to do this, fix a generalized metric P € ///ﬁ(f) and a tangent direction B € T P///A‘fl(f). Since

4P, +3B,) |,y = —P;LB,P,, (3.4)
it follows that the differential dS,,|p(B) at P in the direction of B is given by
dSy|p(B)T).T =0,
dSy|p(B)(T).Y = =P, "B, P, .ad(P.T).Y + 3P, ad(B.T).Y,
dSy[p(B)YX).T = %P;l.Bn.Pgl. ad(X).p,.T — %P;l. ad(X).B,.T, (3.5)
dSylp(BYX).Y = 3P 1B, P! 1, .(ad(X).P, — ad(P,.X)).Y

— 3P .7,.(ad(X).B, — ad(B, X)).Y,

where X,Y € nand T, T € t. Moreover, by differentiating (2.4) and (2.5) at P in the direction of
B, we get

dRmy,|p(B)(V1, V) = =[dSy | p(B)(V1), Sp (PY(V)] = [Sp (P)(V1), dSp | p(B)(V)]
—dSy [pBY[V1, V3 ]m), (3.6)

Therefore, we obtain the following.

Proposition 3.3. Fix a metric on the base space P, € //ZIS Then, the extended Ricci curvature
satisfies

Ricy, (0 ® P,) = 0@ Ricy(P,,),
(3.7
dRicylogp, (0@ B,) = 0@ dRicy|p, (By)
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for any horizontal direction B,, € Sym(n, Q,)*4®), and
for any vertical direction B, € Sym(t, Q)™ and forany T € t.

Proof. FixB,, € Sym(n,Q,)*® andletX,Y,Z € n,T,T € t. Then, from (3.2) and (3.5), it follows
that the operators Sy,(0 @ P,,) and dSy|ogp, (0 @ B,,) satisty

Sy P )T).T =0, S0P, )T).Y =-ad(T).Y, Sy(0&P,)X)T=0,
S0 ® P )(X).Y = —37,,.ad(X).Y — 3P 7, (ad(X).P,, — ad(P,.X)).Y ()
and
dSylogp, (0@ B )(T).T =0, dSylogp, (0@ B, )T).Y =0, dSylogp, (0@ B )X).T =0,
dSyrlogp, (0@ B,)X).Y = 2P 1B, P, ' .7,.(ad(X).P, —ad(P,.X)).Y

— 3P, .7,.(ad(X).B, — ad(B, X)).Y.
(3.10)

On the other hand, by using (2.3) and (3.4), it follows that the operators Sy (P,,) and dSy| P, (By)
satisfy

SN(P)X).Y = =37, ad(X).Y — 3P, .7,.(ad(X).P, — ad(P,.X)).Y,
dSylp, (B)(X).Y = 3P, 1B, P, 7,.(ad(X).P, — ad(P, X)).Y (3.11)
— 3P, 7, (ad(X).B, — ad(B, X)).Y.
A straightforward computation based on (2.4), (3.6), (3.9) and (3.10) shows that
Rm,,(0® P, )(T,-).T =dRm,, lowp, (0 ® B, )(T, )T =0
and so, by using (2.5) and (3.6), we get
Ricy,(0® P, )T)en and dRichoe;P"(O @B, )(T) € n.
Therefore, (3.3) implies
Ricy (0 @ P, )(T) = d Ricy|ogp, (0@ B, )(T) = 0. (3.12)
Again, using (2.4), (3.6), (3.9) and (3.10), one can directly check that
Rm,, (0 ® P,)(X,-).T = dRmy|ogp (0@ B,)X,).T =0
and so (2.5) and (3.6) imply

Ricj,,(0® P )X)€En and dRicM|0®Pﬂ(O ®B,)X) € n. (3.13)
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Finally, another direct computation based on (2.4), (3.6), (3.9), (3.10) and (3.11) shows that

7, (Rmy, (0 ® P, )(X,Y).Z) = Rmy(P,)(X, Y).Z,
(3.14)
nn(dRlio@P“ (0 @ Bn)(X, Y)Z) = d RmN |Pn(Bn)(X’ Y)Z

Note now that (3.7) follows from (3.12), (3.13) and (3.14). In order to prove (3.8), fix B; €
Sym(t, Q)" and observe that, from (3.5), it follows that the operator dSylogp, (B © 0)
satisfies

dSylogp, (By ® OXT).T =0,

dSyslogp, By @ OXT).Y = +%P;1. ad(B,.T).Y,

(3.15)
dSylogp, (By @ 0)(X).T = —%P;l. ad(X).B,.T,
dSyslogp, (B ® 0)(X).Y = 0.
Again, by using (2.4), (2.5), (3.6), (3.9) and (3.15), one can show that
dRicy|ogp, (B @ 0)T) € n
and so, using (3.3), we get (3.8). O

3.2 | The P -projected Ricci tensor

Fix a unit volume Einstein metric P, € ///AGM on N, that is, Ricy(P,) = 1P, for some 1 € R.
Since N is compact, Bochner’s Theorem implies that 1 is non-negative (see [7]). Moreover, since
M = G/His not a torus, then also N is not a torus and so 4 > 0.

We introduce the Euclidean inner product (-,-)»®» on the linear space Sym(m,Q,,)*4™)
defined by

(B, B)®W := dim(N)~! Tr((1d; &(P,)™").B,.(1d; ®(P,)™).B,) (3.16)
and the P, -projected Ricci curvature

R](CI") : /7]36) — Sym(t, Qt)Ad(H) o) Sym(n,Qn)Ad(K),

Ricy, (P),P)®w

A 3.17)
() e R «
R, (P) := Ricy(P) — PPy

We remark that, for any P € //7&6), the image Rfl“)(P) lies in Sym(t, Q;)*4M @ Sym(n, Q,)A4®
by means of (3.3). As a consequence of Proposition 3.3, we get the following
Corollary 3.4. The P -projected Ricci curvature R](Z") satisfies
R0 @ P,) = 0@ Ric)(P,),
- (3.18)
d RM0|O®Pn(o @ B,) = 0@ dRic} |5 (B,)
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for any B,, € Sym(n, Q,))*4®, and
() —
dR)"|ogp, (B © 0).T = —AB,.T (3.19)
forany B; € Sym(t, Q)*™, T e t.

Proof. Note that (3.18) follows from a direct computation based on (2.3), (2.4), (2.5) and (3.7).
Moreover, from (3.7) and (3.8), we get

(B; ®0).T

Py _
ARy (B ®O).T = —d(
0aP,

- _d ((Ricy, (P), P)) )
(P, P))w

(Ricy (P), P |
(P, P

B ®0)- (0 P,).T
0P,

_ <<<RicM<o ®P,).0® P,))"
(0@ P, 00P,)"

scaly(P,,)
dim(N) "

> (B ®0).T

for any B, € Sym(t, Q;)*4™ and T € t, which proves (3.19). O

In virtue of Proposition 3.1 and (3.3), the Ricci flow preserves the subspace ///A(fl(f) of £-

submersion metrics and can be extended to the larger space ./#, A(fl(f) of generalized -submersion
metrics. Moreover, since the Ricci curvature Ric,, is scale invariant, we may project the Ricci flow
onto the unit sphere

=P .= {P € AE(E) 1 (PP )P = 1}

o —

of ///1\3({) with respect to the inner product (-,-)®. Hence up to rescaling, the Ricci flow is
equivalent to the flow on =@ defined by

P'(6) = —2RUV(P(1)), (3.20)

which we call the P, -projected Ricci flow.

4 | PROOF OF THEOREM A

This section is devoted to the proof of our main result. In the following, we consider a compact
homogeneous space M = G/H, a fixed maximal toral H-subalgebra f of g and we use the same
notation as in Sections 2 and 3.
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4.1 | Two preparatory results

Take a sequence (P™) C . (£) of £-submersion metrics P = PE”) @ P\ such that PE”) -0

and Pfln) - Pg‘m) € .S as n — +oo. The first result that we need for proving Theorem A is the
following.

Proposition 4.1. The scalar curvature of P converges to the scalar curvature of Pflm), that is
scal,,(P™) — scalN(PEf")) asn - +oo. (4.1)

Proof. Since the fibers of (2.9) are totally geodesic and flat along the sequence, by O’Neill’s Formula
(see [6, Equation (9.37)]), we get

2
scaly (P) = scaly(PY) = (|4 )

where A® : m ® m — m is the O’Neill’s integrability tensor for the Riemannian submersion
induced by (2.9) and the metric P,

Since the scalar curvature functional is continuous, it follows that scalN(Pgln)) - scalN(P;m)).
Therefore, in order to prove (4.1), it is sufficient to show that |A")| pm = 0asn — +oo.

For any n € N, we consider a Q,,,-orthogonal, Ad(H)-invariant decomposition into irreducible
modules

W+ m® (4.2)

m=m
with respect to which P g diagonal, that is,
n — ,m (n) (n)
P = x| Idmg") .. ®x, Idm;n), x, >0 foranyl<k<?.
By hypothesis, we can assume that:

- the dimension m; := dim(ml@) is constant along the sequence forany 1 <i < ¢
- the decomposition (4.2) converges to a well-defined Ad(H)-invariant, irreducible, limit decom-

position m = m(°° + .t m(m),
- there exists 1 < r < Z such that
t= m(”) + .+ mﬁ"), n= 5’1)1 + .+ m( " foranyn € N;

( (00)

) i diagonal with respect to n = +..+ m(°°) that is,

Pgloo) 5:_01) 1d (oo) D... D x(;o) Idm(;o), XEOO) >0 for anyr+1<j</?.

Note that, by hypothesis, it follows that xg " 0asn— +oo forany 1 <i <rand x™ — x

asn — +oo forany r + 1 < j < £. We consider now a sequence of adapted bases, that is, for any
n € N we consider a Q,,-orthonormal basis (e((xn) )1<a<m for m such that

(n) e(n) (n) (n) (n)

€ e lmy €M € e Cnim,

(n) (n) (Vl)

Em, s m1+ Amy_+10 €m

(n)
Emf ,
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and we define the coefficients

ke =y Y Y Q([e;">,e;n>],e;">)2. (4.3)

egt")emgn) el(gn)em(.") eg,")emgl)

J

Note that [ijk]"™ is symmetric in all its entries and does not depend on the choice of (efx")).

Moreover, we can assume that (eg’)) converges to a limit adapted basis (e‘(z°°)) for m and, as a conse-
quence, [ijk]™ converges to the coefficient [ijk](* related to the limit decomposition. For more
information about the diagonalization of invariant metrics on compact homogeneous spaces, we
refer to [8, 28].

For the sake of shortness, we set

2
e T E ().

eg(memg") eé")emj,")

Note that by [20, Lemma 2] and (4.3), it follows that

A(”)

W =1 3 i J2l™x™ 0 foranyr+1< ji,j, <7 (4.4)

1<igr
Moreover, since O’Neill’s tensor is horizontal (see [20, p. 460]), it follows that
AE;{'):O foranyl<i<r,1<k<?. (4.5)
Finally, by [20, Corollary 1] and [21, Equations (4.5) and (4.7)], we obtain
an-ly [ijk](”)% = [ijk]<"><§;:j - 1)(4% +1 +3%>% (4.6)
1<k<? Tk 1<kt k J J X;

foranyl <i<r,r+1<j</?.Sinceeach P i a f-submersion metric and t is abelian, it follows
that

[ilizk](”) =0 forany 1<iy,i,<r, 1<k<?¢, foranyneN,

ol ) o (4.7)
[ij1]5] x(.")_l =0 foranyl<i<r,r+1<j,j,<r, foranyneN.
J1
Therefore, by (4.6) and (4.7), we get
1 . X . .
AE.?:Z Z [l]]’](”) (";x(”)_)o foranylgigr,r+1<j<g? (4.8)
r+1<j'<? 7oy

and so the claim follows from (4.4), (4.5) and (4.8). O

(n)
M

tively, d§V°°)) the Riemannian distance induced by PEI") (respectively, PEI°°)) on N. We recall that,

Let us denote now by d"’ the Riemannian distance induced by P®Y on M and by d](\';) (respec-
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since N is compact and PEI") - PEI°°) in the C*-topology, it follows that the metric spaces (N, d(”))

converge to (N, dg\‘;")) in the Gromov-Hausdorfftopology asn — +oo (see, for example, [25, p. 415]).
For a detailed treatment on Gromov-Hausdorff convergence, we refer to [12, 26].

(n)

A ) converges to (N, dg\,‘x’)) in the

Proposition 4.2. The sequence of compact metric spaces (M,d
Gromov-Hausdorff topology as n — +co.

Proof. In order to prove the statement, it is sufficient to show that
4" (agH, a;H) — (@K, a;K)| —=5 0 uniformly i G
|dy, (agH, a1 H) — d"(aeK, a; K)| —— uniformly in a4, a; € G.

Fix ay, a; € G and consider for any n € Na dg\?) -geodesic y™ : [0,1] — N such that y("(0) =
aoK, y(”)(l) = o, K, which realizes the dg\?)-distance between a,K and a;K. Consider now the hor-
izontal lift ™' : [0,1] — M of ™ to M starting from a,H and pick ¢ € T such that y™1(1) =
alc(")H. Since P™ is a f-submersion metric, it follows that d(Mn)(aoH, alc(”)H) = dg\';)(aOK, a; K).
Then, by the reverse triangle inequality, we get

|d(")(a H, a,H) — d®(a.K, a K)| < d™(a,H, a;c™MH) + |d(")(a K, a,K) — d®(a,K, a K|

M \H0TH M1 N \H0™ M1 X My \H1Th M N \H0™ ¥1 N \HO™ M1 |-
4.9

Note now that both the terms on the right-hand side of (4.9) converge uniformly to 0 asn — +oo,
and this concludes the proof. O

Let us finally remark that both (4.1) and Proposition 4.2 hold true for any (not necessarily
maximal) toral H-subalgebra .

4.2 | The existence theorem

Consider again a unit volume Einstein metric P, € ., on N with Ricy(P,) = A P,, for some
A > 0. We also set

V= dim(Sym(t, Qt)Ad(H)).

Note that, if H is connected, then Ad(H)|; is trivial and sov = ,whered := dim(T). However,

d(d+1)
-

d(d+1)
2

in the general case it may happen that1 < v <
The main result of this section is the following

Theorem 4.3. If P, has coindex g, then there exists a (v + q — 1)-parameter family of ancient solu-
tions to the P, -projected Ricci flow on ///ﬁ(f) which converge to 0 @ P,, ast — —oo and such that
the corresponding solutions to the Ricci flow are ancient and collapsed.

Proof. Let us observe that the P, -projected Ricci tensor (3.17) is defined on an open neighborhood
of 0 @ P,, inside =®v. Moreover, from (3.16) it holds that

Togp, 20 = Sym(t, Q)™ @ Tp .22y | (4.10)
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and, by (3.18) and (3.19), it follows that

(4.11)

5 5 —A1d 0
oo @ p) — el _ Sym(t,QAI
RIPO®P,) =0, dR|\0p = < e | .

: .0
* | d.Rlchpn

By (4.10), (4. 11) and the Center Manifold Theorem [24, p. 116] it follows that there exists a
stable manifold %@ for R@") at 0 @ P, of dimension dim % W) =+ g, whe where q is the coin-

dex of P, (see Definition 2.2). We remark that %' # @ is a submanifold of .7 M(f) and that, being
eventually interested in the positive-definite solutions to the Ricci flow, we need to compute the

dimension of the manifold # ®v := 77@\“) N4 A(j}(f). For this purpose, let us observe that, restrict-
ing to the sphere =¥, the eigenvectors of d RI(Z“) logp, consist of two families of endomorphisms
inside Tygp =P, namely:

« those coming from the upper left block of (4.11), spanned by a basis of the form
Py = (B ®(B,)), 1<i<y;
+ those coming from the lower right block of (4.11), spanned by a basis of the form
%, =(0®(Cy)j), 1<j<p-1,
where p := dim ./Z.

We claim that the endomorphisms (B;); must be linearly independent inside Sym(t, Q). 1f
not, then there is a non-trivial linear combination

2 i ((B); ® (B,);) =0@® B}  for some non-zero B} € Tpn.%ﬁ’l.
i

there is another linear combination

X A(Cy); =B},
J

Since (C,,) i forms a basis for T ///ﬁ "

but this contradicts the fact that %, U %, is a basis for Togp, »®v. This shows in particular that

# ) has dimension dim # ®v = dim 77(}’\") =v+q.

Let now P(t) = Py(t) @ P, (t) be an ancient solution to the P, -projected Ricci flow lying on
@ _ It remains to prove that the corresponding solution to the Ricci flow is still ancient. Note
that by (4.1) it holds that

scaly;(P(t)) » Adim(N) ast — —oo.

Thus for large times scal,,;(P(t)) > 0, and hence the same is true for the corresponding solution
to the Ricci flow. However, a solution to the Ricci flow whose scalar curvature stays positive
is necessarily ancient by [16, Theorem 1.1]. Furthermore, as in the proof of Proposition 4.2
in [29], P(t) has bounded curvature and is hence collapsed as the injectivity radius tends to
Zero. O
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Finally, Theorem A is a direct consequence of Theorem 4.3 and Proposition 4.2.

5 | PROOF OF COROLLARY B

In this section, we produce explicit examples of collapsed homogeneous ancient solutions. As a
byproduct, we prove Corollary B. For a detailed study of Einstein equations on generalized flag
manifolds, we refer, for example, to [3]. In the following examples, the group G will always be
semisimple and so we choose its negative Cartan-Killing form as background metric.

5.1 | A Kihler-Einstein metric on SU(3)/T?

Let G = SU(3), T2 = {diag(e'"1, e!’2, =i *22))} its maximal torus and consider the real root spaces
decomposition

3u(3) =t>+n, +n, + ns.

Then, any G-invariant Riemannian metric P,, on the flag manifold N = SU(3)/T? takes the form
P, =A41d, &4,1d,, ®1;1d,,
and its normalized scalar curvature is given by (see, for example, [3, Proposition 4])
scaly (P,) = (/11/12/13)%(% + % + i - %(}é—;} + /%3 + /%))
Take the unit volume Kéhler-Einstein metric PEE corresponding to the values
1

229 = H(Z) @12

and one can compute that
spectrum(Hess(gc?dalN) |P§E) = {—%, 0, % }

Here, the zero eigenvalue corresponds to scaling the metric by a constant and so PEE has coindex
q = 1. Now consider the homogeneous fibration

T2 - SU(3) — SU(3)/T2. (5.1)

By Theorem 4.3, there is a 3-parameter family of ancient solutions to the Ricci flow on SU(3)
which, under the rescaling introduced in Section 3, collapse the fibers of (5.1) and converge to
0@ PXEast — —oo. Similarly if S}) .= {(elPt, eld!, e~ i(P+D!)L e get the homogeneous fibration

st =T%/s,, — SUB)/S, , — SUB)/T?, (5.2)

where SU(3) /SllJ q is an Aloff-Wallach space. By Theorem 4.3, there is a 1-parameter family of
ancient solutions on SU(3)/ S; 4 converging to 0 @ PXE as above.
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Remark 5.1. In [19], Lu and Wang produce a two-parameter family of ancient solutions on SU(3)
and a single ancient solution on SU(3)/ Sllj q both collapsing to PEE ast — —oo. Our families are
slightly larger, which can be explained by the fact that the metric restricted to the base is allowed
to vary.

5.2 | AKihler-Einstein metric on SU(4)/T?

Let G = SU(4), T3 = {diag(e!s1, e'2, e!'3, e~{(i*2+13))} jts maximal torus and consider the real root
spaces decomposition

3u3) =t*+n, +ny, +ny+ny+ng + ng.
Then, any G-invariant Riemannian metric P,, on the flag manifold N = SU(4)/T? takes the form
Py=21d, &..011d,,
and its normalized scalar curvature is given by (see, for example, [3, Proposition 4])

—_— 1
scalN(Pn):(/11/12/13/14/15/16)5(%+ + Ly ly i—l(A—I R R R
1

1,1, 1,1
L T2 T A 3\ A T MaAs | MAr | Asdg

1 1 A A s 1s I »
ks Ihs Ay sk T My | Agdg | Mods ' Aads ) )

Take the unit volume Kihler-Einstein metric PXF corresponding to the values

1
(Ao Aos s as s Ag) = 3 (224)°(3,2,1,1,2,1).

One can compute that the matrix Hess(sEiN)l pke has two distinct positive eigenvalues, three
negative eigenvalues and one zero eigenvalue, cofresponding to the scaling direction. Therefore,
PEE hascoindex g = 2. By Theorem 4.3, on SU(4) there is a 7-parameter family of ancient solutions
to the Ricci flow collapsing, under rescaling, to 0 @ PXF as t — —co. Similarly on SU(4)/S* there
is a 4-parameter family of ancient solutions, and on SU(4)/T? there is a 2-parameter family of
ancient solutions.

Note that, as in the previous example, the construction of Lu and Wang again provides ancient
solutions on SU(4) but their family is two dimensions smaller, due to the fact that in their
construction the metric on the base remains fixed.

5.3 | AKihler-Einstein metric on G,/T>

Let G = G,, T? a maximal torus inside G, and consider the real root spaces decomposition
Then, any G-invariant Riemannian metric P,, on the flag manifold N = G,/T? takes the form

P, =41d, ®..011d,
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and its normalized scalar curvature is given by

et _ 11 1 1 1 1 1 1 A A3 A
SC&IN(PH) = (/11)'2/13/14/15&6)6 (/1—1 + /1—2 + /1—3 + /1—4 + /1—5 + /1—6 — g(m + m + m)

_1 <’1_1 B T S - BN S S i
8\ hs | Aads " LAz T Ak T A, T Made | Mids

Ao A A A o Ae
Tohe T A Tk ks T Tda )]

For more information about homogeneous Einstein metrics on N = G, /T2, see [4]. Take the unit
volume Kihler-Einstein metric PEE corresponding to the values

1
(/11, /12, /13, /14, /15, /16) = %(@)6 (13 3,4,5,6, 9)

and one can compute that the matrix Hess(@N)l pxe has one positive eigenvalue, four negative
n

eigenvalues and one zero eigenvalue, corresponding to the scaling direction. Therefore, PEE has
coindex q = 1. By Theorem 4.3, on G, there is a 3-parameter family of ancient solutions to the Ricci
flow collapsing, under rescaling, to PXE as t — —co. Similarly on G,/S! there is a 1-parameter
family of ancient solutions.

5.4 | The normal Einstein metric on SU(n)/T"!

Let G = SU(n), with n > 3, and T"~! C SU(n) the diagonally embedded maximal torus. Then for
any 1 < k < n — 1 and any subtorus T*~1=% ¢ T"~1, we have a homogeneous fibration

¢ = su(n) /T 1K > sum) /T,

where TX is a complement of T*~1=% in T"~1, By [17], the normal metric on SU(n)/T"~! induced by
the biinvariant metric on SU(n) is Einstein with coindex g = n — 1. Hence by Theorem 4.3, there

exists a (%ﬂ) + n — 2)-parameter family of ancient solutions on SU(n)/T"~1~* which collapse,

under rescaling, to the normal metric on the base as f - —oo.

5.5 | The normal Einstein metric on SO(4)/T? = §% x §?

Let G = SO(4), T? C SO(4) be a maximal torus and consider the Ad(T?)-irreducible decomposi-
tion

30(4) =t> 4+ ny + n,.

Then, any G-invariant Riemannian metric P,, on N = SO(4)/T? takes the form
P, =2,1d, &4,1d,,

and its normalized scalar curvature is given by

—_— 1
scaly(P,) = (1, 4,) (% + %)



COLLAPSED ANCIENT SOLUTIONS OF THE RICCI FLOW ON COMPACT HOMOGENEOUS SPACES | 21

The normal metric P¥ induced by the biinvariant metric on SO(4) is Einstein and given by
(/lla ﬂ'z) = (17 1)

One can compute that the matrix Hess(écTalMl pE has one positive eigenvalue and one zero

eigenvalue, corresponding to the scaling direction. Therefore, PE has coindex g = 1. Hence by
Theorem 4.3 on SO(4), there is a 3-parameter family of ancient solutions which collapse, under
rescaling, to P as t — —oo. Similarly, if S}) e T2 is a diagonally embedded circle with rational

slope g, then on SO(4)/ Sll) g = S3 x S? there is a 1-parameter family of ancient solutions which

collapse, under rescaling, to PE ast - —oo.
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