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Abstract. A proper quantum statistical field theory framework for the decoupling

of the cosmological plasma in curved space-time implies the appearance of corrections

to the classical kinetic form of the stress-energy tensor of freely streaming particles.

Such quantum corrections can become relevant even at long times after the decoupling

and can significantly modify the relation between energy density and pressure, that is

the equation of state.

1. Introduction

In cosmology we are usually interested in studying the evolution in the expanding

universe of different distributions of matter. The key ingredient is the equation of

state, that is the relation between the energy density ε of the distribution and its

pressure p. Such relation is often determined using the classical expression of the stress-

energy tensor and its evolution is studied by means of the Boltzmann equation [2].

However there might be overlooked quantum effects whose responsible is the interplay

between quantum statistical mechanics and quantum field theory in curved space-time.

The cosmological space-time is usually described by the Robertson-Walker-Friedman-

Lemaitre (RWFL) metric which in comoving coordinates reads:

ds2 = dt2 − a2(t)

(
dr2

1−Kr2
+ r2dΩ2

)
, (1)

where a(t) is the scale factor and K is the space-curvature, K = 0,±1. The scale factor

a(t) is assumed to be a positive defined, increasing function of t, thus the metric (1)

describes an homogeneous, isotropic, expanding universe. The only allowed form for a

stress-energy tensor is then the perfect fluid form:

Tμν = (ε+ p) uμuν − pgμν , uμ = (1,0) . (2)

The equation of state of ordinary or dark matter is inferred imposing thermodynamic

equilibrium relations. An important case of study regards the evolution of a distribution

of matter after its decoupling with the cosmological plasma. Due to the interactions
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between the distribution and the plasma, thermodynamic equilibrium can be reached.

However the expansion of the universe ultimately will overcome the interactions and, at

a time t0, called decoupling time, the rate of expansion of the universe will be greater

than the rate of the interactions. After some time then the interactions will completely

cease and the distribution of matter freezes-out and starts to evolve freely. After the

freeze-out, the classical phase space distribution function f (x, k) is the so-called free-

streaming solution of the Boltzmann equation and the relation between stress-energy

tensor and distribution function reads [1]:

T μν =
∫
dk1dk2dk3

kμkν

k0
√−g

f (x, k) .

In the approximation of sudden freeze-out, that is of an instantaneous transition from

local thermodynamic equilibrium to a non interacting system, the energy density and

pressure of freely streaming neutral particles are given by:

ε(t) =
1

(2π)3 a4(t)

∫
dk3

√
k2 +m2a2(t)f (t0, k) , (3)

p(t) =
1

(2π)3 a4(t)

∫
dk3 k2

3
√
k2 +m2a2(t)

f (t0, k) (4)

where f (t0, k) is the local thermodynamic equilibrium distribution function calculated

at the decoupling time t0, and k2 = k2
x + k2

y + k2
z .

Figure 1. Schematic illustration of the evolution of a matter field as a function

of cosmological time in RWFL space-time. Until some time t0 and the corresponding

space-like hypersurface Σ(t0), the field is coupled to the cosmological plasma, thereafter

it decouples and evolves freely.

The equation of state can be readily find from the expressions (3) and (4) and it is
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usually expressed in terms of the parameter W defined by:

W
.
=

p(t)

ε(t)
=

∫
dk3 k2√

k2+m2a2(t)
f0 (t0, k)

3
∫
dk3

√
k2 +m2a2(t)f0 (t0, k)

.

The classical theory for freely streaming massive particles predicts a positive defined

W which vanishes in the the far future a(t) → ∞. This implies that, no matter how

energetic where the particles when they decoupled, they will ultimately become non

relativistic at late times. If the particles are massless instead the equation of state is

the one associated to the radiation: W = 1/3.

We will show that a proper quantum statistical handling will bring to the

appearance of corrections to the expressions of the energy density and the pressure

and thus to the relation between the two. Such corrections cannot be found without

using a quantum field description for the distribution of matter and thus their origin

stems from the interplay between the quantum statistical mechanics and the quantum

field theory in curved space-time.

2. Quantum statistical operator of local equilibrium

The renormalized expectation value of the stress-energy tensor in curved space-time is

a key ingredient for the solution of the semi-classical Einstein equation:

Gμν = Rμν − 1

2
gμνR = 8πG

〈
T̂μν

〉
ren

. (5)

We aim to calculate the renormalized expectation value originated from matter at local

thermodynamic equilibrium which thereafter decouples at some time t0. In a quantum

statistical framework the state of local thermodynamic equilibrium is described by the

proper density operator ρ̂LE obtained maximizing the entropy S = −Tr [ρ̂LE ln ρ̂LE]

with the constraints of given energy and momentum densities [3], [5]:

ρ̂LE =
1

ZLE

exp
[
−
∫
Σ
dΣμT̂

μνβν

]
, (6)

where Σ is a space-like hypersurface and βν = uν/T is the four-temperature which for

a fluid at rest is βν = (1/T,0). Confining to the case of flat RWFL space-time, K = 0,

then dΣ = a3(t)dx3 and the local operator turns out to be

ρ̂LE(t) =
1

ZLE

exp
[
−Ĥ(t)/T (t)

]
, Ĥ(t)

.
= a3(t)

∫
dx3T̂ 00 (t,x) . (7)

The operator Ĥ(t) plays the role of an effective hamiltonian and it is not conserved i.e it

depends on time t while the finite temperature T quantifies the degrees of excitation of

the system respect to the vacuum. From this point of view a natural procedure for the

definition of the renormalized expectation value implies the subtraction of the vacuum

contribution [8], [9] obtained in the limit T → 0:〈
T̂ μν

〉
ren

.
= Tr

[
ρ̂LE (t0) T̂

μν
]
− 〈0t0 | T̂ μν |0t0〉 , (8)
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where the state |0t0〉 is the vacuum of the hamiltonian at a fixed time t0. This formula

implies that we take the density operator defining the state of the Universe as the fixed

(as it should be in the Heisenberg representation) local thermodynamic equilibrium

state at the decoupling/freeze-out time t0. In the limit T (t0) → 0 the RHS of the above

expression goes to zero as expected. Morevore being the operator ρ̂ = ρ̂LE (t0) and the

state |0t0〉 fixed in time the renormalized expectation value is covariantly conserved as

the corresponding quantum operator thus being a proper RHS for the Einstein equations:

∇μT̂
μν = 0 ⇒ ∇μ

〈
T̂ μν

〉
ren

= 0. (9)

From the (2) we can obtain the expressions for the energy density ε and the pressure p

for a distribution of matter in local thermodynamic equilibrium at the time t0:

ε(t)ren = Tr
[
ρ̂LE (t0) T̂

00
]
− 〈0t0 | T̂ 00 |0t0〉 (10)

p(t)ren = a−2(t) Tr
[
ρ̂LE (t0) T̂

jj
]
− a−2(t) 〈0t0 | T̂ jj |0t0〉 , (11)

where we have taken advantage of the isotropy defining:

Tr
[
ρ̂LE (t0) T̂

jj
] .
= Tr

[
ρ̂LE (t0)

1

3

3∑
i=1

T̂ ii

]
To explicit the above expressions we must calculate the expectation values of the

components of the quantum stress-energy operator built in terms of the fundamental

fields operators of the underlying theory.

Figure 2. The subtraction of the istantaneous vacuum implies that the LHS of the

(8) vanishes in the limit T (0) → 0 thus all the vacuum terms are neglected respect to

the excitations induced by the thermal bath.

It is important to stress that, being the hamiltonian Ĥ(t) time dependent, the state

|0t0〉 chosen as the vacuum at the time t0 is no longer the vacuum at a later time t > t0.

However, as we will show in the next section, this is an expected result for a quantum

field theory in curved space-time where the choice of the vacuum is, at large extent,

arbitrary.
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3. Quantum scalar field in cosmological space-time

The stress-energy tensor form is fixed by the request that it must be the RHS of the

classical Einstein equations:

T̂ μν =
2√−g

δS
[
φ̂, g

]
δgμν

,

where S
[
φ̂, g

]
is the action of the system and φ̂ are the fundamentals fields of the theory.

We consider the simplest case of a free real scalar field for which

S
[
φ̂, g

]
=

1

2

∫
dx4√−g

(
∇μφ̂∇μφ̂−m2φ̂2 + ξRφ̂2

)
, (12)

where m2 is the square-mass, R = Rμ
μ is the Ricci scalar, ξ is a real number and ∇μ

is the covariant derivative. The non-minimal coupling with the curvature ξR must be

included being renormalizble in four-dimensions with ξ free parameter of the theory.

However two values of ξ are of particular physical interest, ξ = 0 which corresponds to

the minimal coupling and ξ = 1/6 which corresponds to the conformal coupling. In the

latter case the scalar field turns out to be conformally coupled with the metric in the

massless limit and the stress-energy tensor results to be trace-less

m → 0 : T̂ μ
μ = 0, (ξ = 1/6) .

Given the action (12) the stress-energy tensor is:

T̂μν = ∇μφ̂∇νφ̂− gμν
2

(
∇σφ̂∇σφ̂−m2φ̂2

)
+ ξ (Gμν + gμν∇σ∇σ −∇μ∇ν) φ̂

2, (13)

while the equation of motions are:(
∇σ∇σ +m2 − ξR

)
φ̂ = 0. (14)

The main goal is to calculate the explicit expressions for the energy density (10) and the

pressure (11) for a scalar field which is coupled with the cosmological plasma, and thus

in local thermodynamic equilibrium, until the time t0 after which evolves freely in the

expanding universe. Being free, from t0 onward, the field φ̂ satisfies the equations (14)

with initial conditions fixed by the request that the state of the field is the described

by the operator ρ̂LE (t0). To obtain ε and p then we must solve (14), express the stress-

energy tensor in terms of its solutions and finally calculate the expectation values.

The solution of the Klein-Gordon equation in the FRWLmetric has been extensively

studied in literature [4]. This is easier to obtain in conformal coordinates, where the t

coordinate is replaced by:

η(t) =
∫ t

t0

dt′

a (t′)
, η (t0) = 0, (15)

and the flat RWFL metric became

ds2 = a2 (η)
(
dη2 − dx2

)
.
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Like for the Minkowski space-time the field can be expandend in plane waves:

χ̂ = a(η)φ̂ =
1

(2π)
3
2

∫
d3k

(
vk (η) e

ik·xâk + c.c
)
, (16)

where âk are the annihilation operators and vk(η) are the so-called mode functions.

Plugging the field expansion (16) in the equation of motion (14) gives us the following

equation for the mode functions:

v′′k(η) + Ω2
k(η)vk(η) = 0, Ω2

k(η)
.
= k2 +m2a2(η)− (1− 6ξ)

a′′(η)
a(η)

, (17)

where the prime denotes a derivative respect to η. The orthonormality condition for

different solutions of the (14) respect to the Klein-Gordon inner product implies a

conditions for the modes vk which in turn implies that the commuation relation for

the operators âk are the usual ones:

W [vk]
.
= vkv

′∗
k − v∗kv

′
k = i ⇐⇒

[
âk, â

†
k′
]
= δ3 (k− k′) . (18)

The mode expansion (16) and the initial conditions for the equation (17) are fixed by

the definition of the vacuum of the theory which is the state such that:

âk |0〉 = 0, ∀k.
From this state any multiparticle state can be created by the repeated action of the

creation operator â†k.

3.1. The choice of the vacuum

The quantization procedure in curved space-time follows the one usually implemented

in flat space-time. The main difference respect to the flat case is that the choice of the

vacuum, and thus the choice of the field expansion (16), is ambiguous. In Minkwoski only

one vacuum state invariant under the isometries of the metric, the Poincaré group, exists.

Such state is the only state which is the same vacuum for every inertial observer and

its defined as the state associated with positive frequency plane-waves mode functions:

vk(t) =
1

2
√
ωk

e−iωkt, ωk
.
=

√
k2 +m2. (19)

This modes are the eigenfunctions of the global time-like Killing vector ∂/∂t and they

define the state which is the vacuum at every time t. In a curved space-time we cannot

invoke the Poincaré symmetry to fix the vacuum, moreover, in general, no global time-

like Killing vector exists. Thus, given a set of modes vk associated with the operaotrs

âk, another set of modes wk associated to the operators ĉk can be defined by means of

a Bogolubov transformation:

wk = Akvk + Bkv
∗
k, ĉk = A∗

kâk − B∗
k â

†
−k. (20)

If the new modes wk satisfies the orthonormality condition:

W [wk] = wkw
′∗
k − w∗

kw
′
k = i ⇐⇒

[
ĉk, ĉ

†
k′
]
= δ3 (k− k′) ,
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then the set {wk; ĉk} is an equally valid set of modes and operators in which expand

the field. It’s a straightforward consequence of the (20) that the vacuum defined by the

operators âk is not the vacuum defined by the operators ĉk. That is the two states

âk |0a〉 = 0, ĉk |0c〉 = 0,

have a non vanishing expectation value for the operator ĉ†kĉk and â†kâk respectively. This
ambiguity in the vacuum leads to an ambiguity in the interpretation of the concept of

particles in curved space-time and its at the base of the gravitational particle production

mechanism [4], [7]. Following the arguments of the previous section our goal is to find

the set of modes vk and their associated annihilation operators having as vacuum the

instantaneous lowest lying state of the hamiltonian (7). The zero-zero component of the

stress-energy tensor is:

T̂00 =
1

2a4

[
χ̂

′2 +
#»∇χ̂ · #»∇χ̂+m2a2χ̂2 + (1− 6ξ)

(
a′2

a2
χ̂2 − 2

a′

a
χ̂′χ̂

)]
. (21)

Plugging the field expansion (16) inside the above expression gives us:

Ĥ(η) =
1

2a(η)

∫
dk3ωk(η)

[
Kk(η)

(
âkâ

†
k + â†kâk

)
+ Λk(η)âkâ−k

+Λ∗
k(η)â

†
kâ

†
−k

]
(22)

with:

ω2
k(η) = k2 +m2a2(η) + (1− 6ξ)

a′2(η)
a2(η)

, (23)

Kk(η) =
1

ωk

[
|v′k|2 + ω2

k |vk|2 − 2 (1− 6ξ)
a′

a
Re (v′kv

∗
k)

]
, (24)

Λk(η) =
1

ωk

[
(v′k)

2
+ ω2

k (vk)
2 − (1− 6ξ)

a′

a
v′kvk

]
(25)

The vacuum state |0t0〉 is thus defined as the state such that the energy at the decoupling

η(t0) = 0, 〈0t0 | Ĥ (0) |0t0〉 = E0, is minimum. Minimizing E0 corresponds to minimize

the functionKk(0) which in turn implies the following conditions for the mode functions:

vk(0) =
1√

2ωξ (k, 0)
, v′k (0) = − i

2vk(0)
+ a′(0) (1− 6ξ) vk(0), (26)

where ωξ (k, 0) =
(
ωk(0)− (1− 6ξ)2 a′2(0)

)1/2
is the effective hamiltonian eigenvalue

at the decoupling‡. The defined vacuum state is called istantaneous diagonalization

vacuum, being the state that, at fixed time, diagonalize the effective hamiltonian:

Ĥ(0) =
1

2

∫
dk3ωξ (k, 0)

(
â†kâk +

1

2

)
, (27)

where we imposed a (t0) = a (η = 0) = 1. In the flat space-time limit the vacuum defined

by the above prescription becomes time independent and results to be the eigenstate

‡ For a general coupling ξ the eigenvalue ωξ (k, 0) could become negative. In this case the hamiltonian

is unbounded from below and the theory is unstable. However for ξ = 0 and ξ = 1/6, which are the

most interesting cases, the resulting eigenvalue is always positive defined.
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of minimum eigenvalue of the stationary hamiltonian. Thus our renormalization

prescription reduces to the normal ordering prescription which is the one usually

implemented for a non-interactive quantum field theory at finite temperature in

Minkwoski space-time.

4. The expectation value of the stress-energy tensor

From the expression (27) the density operator ρ̂LE(0) is given and we are now able to

calculate the expectation value of the stress-energy operator:〈
T̂ μν

〉
ren

=
1

Z
Tr
[
ρ̂LE(0)T̂

μν
]
− 〈00| T̂ μν |00〉 .

For this purpose we shall need the expectation values of quadratic combinations of

creation and annihilation operators such as:〈
â†kâk′

〉
=

1

Z
Tr
[
ρ̂LE(0)â

†
kâk′

]
.

Such forms are straightforward to work out, as the Hamiltonian is diagonal in the

creation and annihilation operators (27). By using the traditional methods of thermal

field theory, one readily finds:

〈âkâk′〉 =
〈
â†kâ

†
k′
〉
= 0,〈

âkâ
†
k′
〉
= nB

(
ωξ (k, 0)

T (0)

)
δ3 (k− k′) , (28)

〈
â†kâk′

〉
=

[
nB

(
ωξ (k, 0)

T (0)

)
+ 1

]
δ3 (k− k′) , ,

where nB(x) = 1/ (ex − 1) is the Bose-Einstein distribution and T (0) is the temperature

at the decoupling. To calculate the searched expectation value we plug the field

expansion (16) inside the (13) and then we calculate the resulting trace finding [6]:

Tr
[
ρ̂LE(0)T̂00

]
=

1

(2π)3 a4

∫
dk3ωk(η)Kk(η)

[
nB

(
ωξ (k, 0)

T (0)

)
+

1

2

]
, (29)

Tr
[
ρ̂LE(0)T̂jj

]
=

1

(2π)3 a4

∫
dk3ωk(η)Γk(η)

[
nB

(
ωξ (k, 0)

T (0)

)
+

1

2

]
, (30)

where the function Γk is defined as

Γk(η) =
1

ωk

[
(1− 4ξ) |v′k|2 + γk |vk|2 − 2 (1− 6ξ) Re (v′kv

∗
k)
]
, (31)

with γk given by:

γk(η) = (12ξ − 1) k2+3 (4ξ − 1)m2a2+3 (1− 6ξ)
a′2

a2
−12ξ (1− 6ξ)

a′′

a
(32)

The factor 1/2 stems from the commutation relation of the operators âk, â
†
k and its

presence implies a divergence in the expectation value. To remove it we subtract to the
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energy density and pressure their limit for T (0) → 0, leading to the elimination of the

factor 1/2. In conclusion the energy density and the pressure are given by:

a4(η)εren(η) =
1

(2π)3

∫
dk3ωk(η)Kk(η)nB

[
ωξ (k, 0)

T (0)

]
, (33)

a4(η)pren(η) =
1

(2π)3

∫
dk3ωk(η)Γk(η)nB

[
ωξ (k, 0)

T (0)

]
. (34)

The above expressions are the main result of this work and must be compared with the

one obtained using the classical Boltzmann equation (3), (4). Both the energy density

and the pressure are different respect to the classical expressions and depends on the

full solution of the Klein-Gordon field equation (17). In particular correction terms can

be extracted. For the energy density:

a4(η)Δε(η) =
1

(2π)3

∫
dk3ωk(η) [Kk(η)− 1]nB

[
ωξ (k, 0)

T (0)

]
, (35)

while for the pressure:

a4(η)Δp(η) =
1

(2π)3

∫
dk3ωk(η)

[
Γk(η)− k2

3ω2
k(η)

]
nB

[
ωξ (k, 0)

T (0)

]
. (36)

Such corrections are vanishing in the flat space-time limit and thus depends on the

coupling of the scalar field with the metric. Moreover, in the massless limit, for a

conformally coupled field (ξ = 1/6) they are exactly 0. To know the impact of these

correction and their weight respect to the classical term one must solve the equation of

motion (17) for a given scale factor and study the behaviour at late times.

5. Conclusions and outlook

Using a quantum field approach in calculating the energy density and the pressure of

a distribution of matter from its decoupling from the cosmological plasma we found

corrections respect to the classical expressions for the energy density and the pressure.

These corrections depends on the solution of the classical equation of motion and are

vanishing in the flat space-time limit. To estimate how important are and if they survive

even at late times, one must solve the (17) for different scale factors a(η), and then study

the behaviour of the functions Kk(η), Γk(η). For instance the sign of the function Γk(k)

is not positive defined thus corrections can bring to negative pressures which results in

W < 0. The next step then will regard the study of different solutions to the equation

of motion (17) for different scale factors. In particular the radiation dominated universe

a(t) ∼ t1/2 and the de Sitter universe a(t) ∼ exp(t) will be analyzed being the first

decelerated in its expansion while the latter is accelerated resulting in very different

behaviours for the solutions of the equation of motion.
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