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UNIQUENESS FOR RICCATI EQUATIONS WITH APPLICATION

TO THE OPTIMAL BOUNDARY CONTROL OF COMPOSITE

SYSTEMS OF EVOLUTIONARY PARTIAL DIFFERENTIAL

EQUATIONS

PAOLO ACQUISTAPACE AND FRANCESCA BUCCI

Abstract. In this article we address the issue of uniqueness for differential

and algebraic operator Riccati equations, under a distinctive set of assump-

tions on their unbounded coefficients. The class of boundary control systems
characterized by these assumptions encompasses diverse significant physical in-

teractions, all modeled by systems of coupled hyperbolic-parabolic partial dif-

ferential equations. The proofs of uniqueness provided tackle and overcome the
obstacles raised by the peculiar regularity properties of the composite dynam-

ics. These results supplement the theories of the finite and infinite time hori-

zon linear-quadratic problem devised by the authors jointly with I. Lasiecka,
as the unique solution to the Riccati equation enters the closed-loop form of

the optimal control.

1. Introduction

Well-posedness of Riccati equations is a fundamental question within control
theory of Partial Differential Equations (PDE). While the issues of existence and
uniqueness for the corresponding solutions are both natural to be addressed and sig-
nificant in themselves, when seen in the context of linear-quadratic optimal control
uniqueness proves particularly relevant, not exclusively from a theoretical perspec-
tive. This is because it brings about in a univocal manner the (optimal cost, or
Riccati) operator which occurs in the feedback representation of the optimal con-
trol, thereby allowing its synthesis.

In the present work focus is on the differential and algebraic Riccati equations
arising from optimal control problems with quadratic functionals for the class of
infinite dimensional abstract control systems dealt with in our earlier works [2] and
[4], joint with Lasiecka. The basic characteristics of these linear systems – which
read as y′(t) = Ay(t) + Bu(t), t ∈ [0, T ), according to a standard notation – are
the following: the free dynamics operator A is the infinitesimal generator of a C0-
semigroup {eAt}t≥0 on the state space Y , while the control operator B is unbounded,
meaning that B maps continuously the control space U into a larger functional space
than Y , that is the extrapolation space [D(A∗)]′; see the Assumptions 2.1. It is
well known that the latter is an intrinsic feature of differential systems describing
evolutionary PDE with boundary (and also point) control; see, e.g., [8] and [21].

We require more specifically that several assumptions on the dynamics operator
coefficients (A and B) are fulfilled, recorded as Assumptions 2.3 in Section 2. These
are regularity properties that pertain to the adjoint of the kernel eAtB, with respec-
tive PDE counterparts. It is worth emphasizing here that not only the aforesaid
control-theoretic properties do not prescribe analyticity of the semigroup eAt, in
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2 PAOLO ACQUISTAPACE AND FRANCESCA BUCCI

accordance with the fact that the class of systems under consideration – introduced
by these authors with Lasiecka in [2] – is inspired by and tailored on systems of
coupled hyperbolic-parabolic PDE, subjected to boundary/interface control. They
are also more general than the full singular estimates (SE)1 for eAtB which are
known to be equally effective – even in the absence of analiticity of eAt – for the
study of the quadratic optimal control problem on both a finite and infinite time
horizon, as proved in [16], [17], [19, 20].

Another distinguishing feature of the coefficients of the Riccati equations under
study, whose algebraic form is

(Px,Az)Y + (Ax, Pz)Y − (B∗Px,B∗Pz)U + (Rx,Rz)Z = 0 , x, z ∈ D(A) ,

is that the requirement on the observation operator R – that is iiib) of the Assump-
tions 2.3 – may allow R to be the identity, thereby including the integral of the full
quadratic energy of the physical system among the viable cost functionals; see the
Remarks 2.4.

Working within the functional-analytic framework described above, a theory for
both the finite and infinite time horizon LQ-problem has been devised in [2] and [4],
the latter under the Assumptions 2.8 (replacing Assumptions 2.3). The strenght of
these theories is confirmed by the boundary regularity results – of independent value
– that have been established for the solutions to significant PDE systems comprising
hyperbolic and parabolic components. Indeed, the novel class introduced in [2] has
proven successful in attaining solvability of the quadratic optimal control problems
associated with a diverse range of physical interactions such as mechanical-thermal,
acoustic-structure, fluid-elasticity ones; see [3], [10], [13], [14] (time interval of finite
lenght), [4], [11] and the recent [1] (infinite time horizon).

We recall that since in [2] and [4] we followed an established variational ap-
proach, by using the optimality conditions a bounded operator – to wit, P (t) or P ,
depending on T < +∞ or T = +∞ – is constructed in terms of the optimal state
and only subsequently shown to satisfy the corresponding Riccati equations. For
this reason the works [2] and [4] provide existence for Riccati equations, but not
uniqueness.

The goal of this work is to prove uniqueness results for both the differential
and algebraic Riccati equations (in short, DRE and ARE, from now on), thereby
completing the complex of findings of [2] and [4], respectively. These results –
our main results – are stated as Theorems 2.6 and 2.10. Uniqueness holds in
appropriate (respective) classes of linear bounded operators, which are consistent
with the distinctive property of the gain operator (B∗P (t) or B∗P in the quadratic
term of the DRE or ARE) emerged in [2] and [4]; see the statements S4. and A4.
in Theorem 2.5 and Theorem 2.9, respectively.

We feel it is important to emphasize that even when following avenues previ-
ously pursued in the past literature, our proofs of uniqueness need to face novel
challenges. This is due in the first place to the specific assumptions on the dy-
namics operator coefficients (A,B). These are notably weaker than the ones which
characterize the parabolic class (as well as its generalization), more elaborate than

1We recall that in the present context with SE we mean that eAtB ∈ L(U, Y ) in a right

neighbourhood I of t = 0, and in particular that ‖eAtB‖L(U,Y ) = O(t−γ) holds true for some

γ ∈ (0, 1) and any t ∈ I. This explains the adjective “singular”. In the PDE realm the membership

alone eAtB ∈ L(U, Y ) amounts to an enhanced interior regularity of the solutions to the IBVP
with homogeneous boundary data and ‘rough’ initial data.
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the admissibility condition (also termed “abstract trace regularity”) which is sat-
isfied in the case of significant hyperbolic PDE with boundary control, while the
hypothesis on R essentially demands that the operator R∗R preserves regularity.
And yet, a careful use of the hypotheses allows us to provide a clean and direct
(first) proof of Theorem 2.5; see Section 3.

However, since the finite lenght of the interval [0, T ] is central to the aforemen-
tioned proof, in order to attain uniqueness for the ARE as stated in Theorem 2.9 we
pursue an alternative line of argument which is borrowed from classical control the-
ory, but it is used in a nonstandard fashion in the present work; see Section 4. This
path turns out to be effective for both the DRE and ARE, thereby bringing about
a second proof of Theorem 2.5. An outline of the paper is found in Section 1.2.

1.1. A glimpse of composite systems of PDE relevant to the context.
Before introducing the optimal control problem formulation under the Assump-
tions 2.3 (or Assumptions 2.8, for the infinite time horizon case), we revisit two
PDE illustrations of initial-boundary value problems (IBVP) which fall within the
functional-analytic framework. Our objective here is to give a flavour of the bound-
ary control problems that the Assumptions 2.3 may mirror, as well as of the con-
siderable task that checking their validity entails. We keep the focus on the main
facts – from a PDE perspective – and refer the reader to earlier work for all details.
(The reading of this section can be postponed, if one aims at focusing on the core
topic of the present study.)

1.1.1. A PDE model of acoustic-structure interaction. We consider a PDE system
which describes the interaction between the acoustic waves in a three-dimensional
domain Ω (the acoustic chamber) and the vibrations of a flexible flat portion of
the chamber’s boundary, say Γ0; Γ1 is the so called hard wall. Thus, let Ω ⊂ R3

be a bounded domain, with smooth boundary ∂Ω =: Γ = Γ0 ∪ Γ1, where Γi ⊂ R2,
i = 0, 1, are open, simply connected and disjoint. As thermal effects are also taken
into consideration, the PDE system comprises a wave equation for the acoustic
velocity potential z = z(t, x), x ∈ Ω, and a thermoelastic system for the pair of
the plate’s vertical displacement and the temperature (w(t, x), θ(t, x)), t ∈ (0, T ),
x ∈ Γ0.

The wave equation is supplemented with Neumann boundary condition (BC),
while the thermoelastic system (is supplemented) with clamped BC and is subject
to Dirichlet boundary control. Thus, the IBVP is as follows:

ztt = ∆z in (0, T )× Ω

∂z
∂ν̃ + d1z = 0 on (0, T )× Γ1 =: Σ1

∂z
∂ν̃ = wt on (0, T )× Γ0 =: Σ0

wtt − ρ∆wtt + ∆2w + ∆θ + zt = 0 in Σ0

θt −∆θ −∆wt = 0 in Σ0

w = ∂w
∂ν = 0 , θ = g on (0, T )× ∂Γ0

z(0, ·) = z0, zt(0, ·) = z1 in Ω

w(0, ·) = w0, wt(0, ·) = w1; θ(0, ·) = θ0 in Γ0;

(1.1)
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T may be finite or infinite. The symbols ν̃ and ν above denote the outward unit
normals to Γ and to the curve ∂Γ0, respectively; d1 and ρ are positive constants
(ρ is proportional to the thickness of the plate). We note that since ρ > 0, the
(uncoupled) fourth order plate equation is a Khirchhoff equation, which is known
to be of hyperbolic type. Therefore, the overall system comprises three evolutionary
PDE, two hyperbolic equations and a parabolic one.

The natural (finite energy) state space for the PDE problem (1.1) is

Y = H1(Ω)× L2(Ω)×H2
0 (Γ0)×H1

0 (Γ0)× L2(Γ0) .

Take U = L2(∂Γ0) as the control space, U := L2(0,∞;U) as the space of admissible
controls.

That the IBVP (1.1) can be reformulated as the Cauchy problem (2.1) (having set
y(t) := y(t, ·) ≡ (z(t, ·), w(t, ·), wt(t, ·), θ(t, ·)), u(t) = u(t, ·), y0 := (z0, z1, w0, w1, θ0),
and with the operators A and B explicitly identified, is the outcome of the anal-
ysis carried out formerly in [25, Theorem 1.1] and later in [9, 10]. In particular,
[25] contains two fundamental results regarding the uncontrolled problem, namely,
the semigroup generation and exponential stability, whereas the works [9] and [10]
tackle the IBVP with nonhomogeneous boundary data (i.e. control actions, in that
context as well as here).

Optimal control problems arise naturally, motivated by the goal of reducing the
noise within the chamber and /or the vibrations of the elastic wall. Unlike

• the archetypical PDE model of acoustic-structure interactions studied in
[5] – where the flexible wall is modeled via a (damped) Euler-Bernoulli
equation, in the absence of thermal effects, and the control action affects
the mechanical component –, as well as
• the same PDE system in (1.1) under hinged – rather than clamped – me-

chanical BC, or subject to Neumann (thermal) boundary control,

the operator eAtB does not yield a singular estimate. Indeed, the analysis car-
ried out in the two works [9, 10] revealed that this coupled dynamics inherits the
very same control-theoretic properties possessed by the thermoelastic system alone,
proved earlier in the works [12, 3].

The decomposition of the operator B∗eA
∗· demanded by the Assumptions 2.3,

along with the complex of regularity (in time and space) estimates for either
component, together with the key hypothesis iiib) on B∗eA

∗·A∗ε, amount to re-
spective properties of the boundary traces ∂θ

∂ν and ∂θt
∂ν on ∂Γ0, for the solutions

(z, zt, w, wt, θ) of the uncontrolled problem (i.e. the IBVP with homogeneous
boundary data). The full statement of the obtained results is found in [10, The-
orem 2.3] (for the finite time horizon problem); the infinite time horizon problem
has been discussed briefly (and resolved) in the recent [1, Section 3.2].

Remark 1.1. We remark that a key finding for the proof of Theorem 2.3 in [10] is
the exceptional regularity of certain boundary traces of the mechanical component:
to wit, the estimate

∃CT > 0:

∫ T

0

‖∆w‖L2(∂Γ0) dt ≤ CT ‖y0‖2Y , y0 ∈ Y , (1.2)

holds true; see [10, Proposition 3.2]. We note that



5

• the regularity result (1.2), i.e. ∆w|∂Γ0
∈ L2(0, T ;L2(∂Γ0)), plainly does not

follow from the interior regularity w ∈ H2(Γ0) of finite energy solutions,
via well-known trace theory;
• its proof, carried out by using energy /multiplier methods, owes much to [6]

while it additionally exploits the regularity theory of hyperbolic equations
with nonhomogeneous Neumann boundary data; see the estimate (3.9) in
[10], and the proper bibliographical references therein (with [29] providing
the most general result).
• Lastly, the theory of interpolation spaces is the tool which eventually en-

ables to attain iiib) of the Assumptions 2.3.

1.1.2. A PDE model of fluid-ealsticity interaction. For fluid-structure interaction
(FSI) it is meant the coupling of physical phenomena /evolutions that appear in the
distinct fields of fluidodynamics and structural mechanics. Thus the mathematical
modeling of FSI gives rise to composite systems of PDE which exhibit dynamics of
different type – with respective typical characteristics –, most often parabolic and
hyperbolic (indeed, relative to fluid and structure, respectively).

As a second illustration we introduce the linearization of a recognized PDE model
for the interaction of an elastic body fully immersed in a fluid. For context, we men-
tion that the PDE problem we consider here goes at least as far back as J.-L. Lions’
work; the reader is referred to the study [7] of 2007 for some background, literature
review (till then), and an insight into the mathematical challenges overcome therein
to prove the well-posedness for the true nonlinear problem (in a natural functional
setting).

The open, bounded and smooth domain representing the fluid-solid region is
denoted by Ω ⊂ Rd, d = 2, 3, with Ωf and Ωs the (open and smooth) domains

occupied by the fluid and the solid, respectively; then Ω is the interior of Ωf ∪Ωs.
The interaction occurrs at the solid boundary ∂Ωs =: Γs – the interface –, which
is assumed fixed. (This feature finds a physical justification in the fact that the
motion of the solid is considered as entirely due to infinitesimal displacements –
fast, though.) Finally, Γf is the outer boundary of Ωf , namely, Γf = ∂Ωf \ Γs.

The dynamics of the fluid and the solid are described by the equations of Stokes
flow in the vector-valued variable u (the fluid velocity field) and scalar variable
p (the pressure), plus the Lamé system of dynamic elasticity in the variable w,
respectively. The mathematical formulation of the boundary control problem is as
follows:



ut − div ε(u) +∇p = 0 in Qf := (0, T )× Ωf

div u = 0 in Qf

wtt − div σ(w) = 0 in Qs := (0, T )× Ωs

u = 0 on Σf := (0, T )× Γf

ε(u) · ν = σ(w) · ν + pν + g on Σs := (0, T )× Γs

wt = u on Σs

u(0, ·) = u0 in Ωf

w(0, ·) = w0 , wt(0, ·) = w1 in Ωs ,

(1.3)
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where σ and ε denote the elastic stress tensor and the strain tensor, respectively,
that are

εij(w) =
1

2

(∂wi
∂xj

+
∂wj
∂xi

)
, σij(w) = λ

3∑
k=1

εkk(w)δij + 2µεij(w) ,

λ, µ are the Lamé constants and δij is the Kronecker symbol. We note that ν = ν(x)
is the outward unit normal for the fluid region Ωf ; accordingly, it is pointing towards
the interior of the solid region Ωs. The control function acting on the interface is
denoted by the letter g in place of u (in order to avoid abuse of notation); the class
of admissible controls U = L2(0, T ;L2(Γs)).

As the study of the IBVP (1.3) – geared towards attaining the complex of reg-
ularity results for the solutions to the uncontrolled problem that allow to infer
solvability of the associated quadratic optimal control problems – is long and tech-
nical (and presented in full elsewhere), we refer the reader to the analysis in [13],
[14] and [11]. We point out that once the IBVP is shown to correspond to the
Cauchy problem (2.1) (with u replaced by g) in a natural energy space Y , with
the operator A and B explicitly identified, then the decomposition of the operator
B∗eA

∗· demanded by the Assumptions 2.3, along with the complex of regularity (in
time and space) estimates for either component, as well as the key hypothesis iiib)
for B∗eA

∗·A∗ε, amount to respective properties of the normal traces ∂u
∂ν and ∂ut

∂ν of
the thermal variable on ∂Γ0, for solutions (u,w,wt) of the IBVP with homogeneous
boundary data.

Then, we remark that

• the sought boundary regularity results for the fluid velocity field are es-
tablished combining carefully the parabolic regularity of the fluid variable
with the enhanced regularity of the normal component σ(w) ·ν of the stress
tensor on the interface, valid for semigroup solutions;
• however, unlike the case of the previous acoustic-structure interaction, the

proof of the (exceptional) boundary regularity of the hyperbolic component
– which owes much to the analysis performed in the works [7] and [23], yet
it requires the development of two novel lemmas (cf. [14, Lemmas 2.3 and
2.4]) that are problem-specific – cannot dispense with the tools of microlocal
analysis;
• once again, interpolation is utilized to eventually conclude that iiib) of the

Assumptions 2.3 holds true, with the interpolation spaces between frac-
tional Sobolev spaces and dual spaces (of fractional Sobolev spaces) com-
puted thanks to [26, Theorem 12.5].

The study of the infinite time horizon quadratic optimal control problem has been
carried out in [11], on a recognized variant of (1.3) whose free dynamics is expo-
nentially stable. In that case, multiplier /energy methods (plus semigroup theory
and interpolation) suffice, instead.

1.2. An outline of the paper. In the next Section 2 we state our uniqueness re-
sults, that are Theorem 2.6 and Theorem 2.10, after having recalled the underlying
framework (shaped by the Assumptions 2.3 and 2.8) along with the core findings of
the theories of the finite and infinite time horizon LQ-problem devised in [2] and [4],
respectively. The subsection 2.3 contains a mini-guide to the mathematical proofs.
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In Section 3 we present a first proof of Theorem 2.6. This proof follows a line
of argument more akin to those used in the past to establish uniqueness for the
DRE in the parabolic and hyperbolic cases. It is preceded by Lemma 3.1, which
establishes two integral forms of the differential Riccati equation. An integral form
of the algebraic Riccati equation is derived as well in Lemma 3.2, for subsequent
use.

In Section 4 we develop a different line of argument culminating with the proof
of Theorem 2.10 on uniqueness for the ARE. As the very same approach can be
pursued for the DRE as well, we provide a second distinct proof of Theorem 2.6.
A preliminary major step that is carried out is the derivation of two independent
results, one of which establishes a fundamental identity while the other one discusses
a built closed loop equation, for any solution to the ARE (or DRE) within the proper
class Q (QT , respectively). These are Lemma 4.1 and Lemma 4.2 for the DRE,
Lemma 4.3 and Lemma 4.4 for the ARE.

In Appendix A we gather several regularity results (some old, some new) which
are used throughout the paper.

2. Abstract framework, main results

2.1. The LQ problem: abstract dynamics and setting. Let Y and U be two
separable Hilbert spaces, the state and control space, respectively. We consider
the abstract (linear) control system y′ = Ay + Bu and the corresponding Cauchy
problems y

′(t) = Ay(t) +Bu(t) , 0 ≤ t < T

y(0) = y0 ∈ Y ,
(2.1)

under the following basic Assumptions.

Assumptions 2.1 (Basic Assumptions). Let Y , U be separable complex Hilbert
spaces.

• The closed linear operator A : D(A) ⊂ Y → Y is the infinitesimal generator
of a strongly continuous semigroup {eAt}t≥0 on Y ;
• B ∈ L(U, [D(A∗)]′).

The basic assumptions on the operators A and B which characterize the abstract
dynamics in (2.1) reflect two intrinsic features stemming from coupled systems of
hyperbolic-parabolic PDEs with nonhomogeneous boundary data, to wit,

i. the control operator B will not be bounded from the control space U into
the state space Y , and

ii. the semigroup eAt typically will be neither analytic nor a group.

We recall that the first property is shared by PDE systems subject to point control
in the interior of the domain; a wealth of illustrations are found in [18], [8] and [21].

Thus, given y0 ∈ Y , the Cauchy problem (2.1) possesses a unique mild solution
given by

y(t) = eAty0 +

∫ t

0

eA(t−s)Bu(s) ds , t ∈ [0, T ) , (2.2)

where

L : u(·) −→ (Lu)(t) :=

∫ t

0

eA(t−s)Bu(s) ds
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is the input-to-state mapping, that is the operator which associates to any control
function u(·) the solution to the Cauchy problem (2.1) with y0 = 0, and (2.2)
makes sense at least in the extrapolation space [D(A∗)]′; see [21, § 0.3, p. 6, and
Remark 7.1.2, p. 646].
We will use the notation L throughout the paper. We point out here the definition
(A.1) of the operator Ls, which will occur later; the symbol L0, in place of L, is
avoided for the sake of simplicity.

To the state equation (2.1) we associate the quadratic functional

J(u) =

∫ T

0

(
‖Ry(t)‖2Z + ‖u(t)‖2U

)
dt , (2.3)

where Z is a third separable Hilbert space – the so called observation space (possibly,
Z ≡ Y ) – and at the outset the observation operator R simply satisfies

R ∈ L(Y,Z) . (2.4)

The formulation of the optimal control problem under study is classical. The adjec-
tives finite or infinite time horizon problem refer to the cases T < +∞ or T = +∞,
respectively.

Problem 2.2 (The optimal control problem). Given y0 ∈ Y , seek a control
function u ∈ L2(0, T ;U) which minimizes the cost functional (2.3), where y(·) =
y(· ; y0, u) is the solution to (2.1) corresponding to the control function u(·) (and
with initial state y0) given by (2.2).

It is well known that aiming at solving Problem 2.2, certain principal facts need
to be ascertained, beside the existence of a unique optimal pair (û(·, s; y0), ŷ(·, s; y0))
(which can be easily inferred via convex optimization arguments). Namely,

- that the optimal control û(t) admits a (pointwise in time) feedback repre-
sentation, in terms of the optimal state ŷ(t);

- that the optimal cost operator P (t) (P , when T = +∞) solves the corre-
sponding Differential (Algebraic) Riccati equation; thus, the issue of well-
posedness of the DRE (ARE) arises, requiring

- that a meaning is given to the gain operator B∗P (t) (B∗P ) on the state
space Y (by means of extensions, or – and this will be the case here –, as
a bounded operator on a dense subset of Y ).

2.2. Theoretical results: finite and infinite time horizon problems. We
begin by recalling the theory of the LQ-problem on a finite time interval developed
in [2]. This theory pertains to the class of control systems – introduced in the very
same [2] – whose dynamics, control and observation operators are subject to the
following assumptions.

Assumptions 2.3 (Finite time horizon case). Let Y , U and Z be separable
complex Hilbert spaces, and let T > 0 be given. The pair (A,B) (which describes
the state equation (2.1)) fulfils Assumptions 2.1, with the additional property A−1 ∈
L(Y ), while the observation operator R (which occurs in the cost functional (2.3))
satisfies the basic condition (2.4).

The operator B∗eA
∗t can be decomposed as

B∗eA
∗tx = F (t)x+G(t)x , 0 ≤ t ≤ T , x ∈ D(A∗) , (2.5)
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where F (t) : Y −→ U and G(t) : D(A∗) −→ U , t > 0, are bounded linear operators
satisfying the following assumptions:

i) there exist constants γ ∈ (0, 1) and N > 0 such that

‖F (t)‖L(Y,U) ≤ N t−γ , 0 < t ≤ T ; (2.6)

ii) the operator G(·) belongs to L(Y,Lp(0, T ;U)) for all p ∈ [1,∞);
iii) there exists ε > 0 such that:

a) the operator G(·)A∗−ε belongs to L(Y,C([0, T ];U)), with

sup
t∈[0,T ]

‖G(t)A∗−ε‖L(Y,U) <∞ ;

b) the operator R∗R belongs to L(D(Aε),D(A∗ε)), i.e.

‖A∗εR∗RA−ε‖L(Y ) ≤ c <∞ ;

c) there exists q ∈ (1, 2) (depending, in general, on ε) such that the map
x 7−→ B∗eA

∗tA∗εx has an extension which belongs to L(Y, Lq(0, T ;U)).

Remarks 2.4. 1. We note that it is assumed at the very outset that 0 ∈ ρ(A),
i.e. the dynamics operator A is boundedly invertible on Y . This property happens
to hold true for an ample variety of coupled systems of hyperbolic-parabolic PDE,
such as thermoelastic systems as well as models of acoustic- and fluid-structure
interaction. This allows in particular to define the fractional powers (−A)α, α ∈
(0, 1); see [30, § 1.15.1-2], [28], [27]. (We note that in order to make the notation
lighter, we wrote – and shall write throughout – Aα in place of (−A)α.)

2. We remark that the class of control systems shaped by the Assumptions 2.3 is
more general than the one characterized by singular estimates (SE, recalled in the
Introduction) for the operator eAtB. This unless G(t) ≡ 0 in the decomposition
(2.5) of B∗etA

∗
, in which case B∗etA

∗
reduces to the component F (t) that indeed

yields the estimate (2.6).

3. We may assert that the term G(t)x embodies both the parabolic and the hyper-
bolic components, via the coupling. Its enhanced regularity mirrors the combination
of parabolic regularity with the peculiar (exceptional) regularity of the hyperbolic
boundary traces. An enlightening comparison with earlier classes studied in the
literature is found in [2, Section 2.1]; see also [4, pp. 1827-1828].

4. The requirement iiib) essentially demands that the operator R∗R somewhat
maintains regularity. We note, in particular, that when the fractional powers D(Aε)
can be computed as interpolation spaces [D(A), Y ]1−ε – which happens e.g. if etA

is a s.c. contraction semigroup, precisely the case of the PDE problems discussed in
Section 1.1 –, then D(A) ≡ D(A∗) implies D(Aε) ≡ D(A∗ε), at least for sufficiently
small ε. In this circumstance, R = I is a viable observation operator.

Under the listed Assumptions 2.3, a full solution to the optimal control Prob-
lem 2.2, as detailed by the complex of statements S1.–S6. collected in Theorem 2.5
below, was obtained in [2]. Despite the lack of continuity (in time) of the optimal
control û(·) (see S1. below) – a novelty over the parabolic or hyperbolic theories
–, and the fact that the gain operator B∗P (t) is bounded only on a suitable dense
subset of Y (contained in D(A), though; cf. S4.), all the sought properties (the
aforementioned “principal facts”) are achieved.
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Theorem 2.5 (Finite time horizon theory; cf. [2], Theorem 2.3). With reference
to the control problem (2.1)–(2.3), under the Assumptions 2.3, the following state-
ments are valid for each s ∈ [0, T ).

S1. For each x ∈ Y the optimal pair (û(·, s;x), ŷ(·, s;x)) satisfies

ŷ(·, s;x) ∈ C([s, T ];Y ), û(·, s;x) ∈
⋂

1≤p<∞

Lp(s, T ;U).

S2. The linear bounded (on Y ) operator Φ(t, s), defined by

Φ(t, s)x = ŷ(t, s;x) = eA(t−s)x+ [Lsû(·, s;x)](t) , s ≤ t ≤ T , x ∈ Y , (2.7)

is an evolution operator, i.e.

Φ(t, t) = IY , Φ(t, s) = Φ(t, σ)Φ(σ, s) for s ≤ σ ≤ t ≤ T .

S3. For each t ∈ [0, T ] the operator P (t) ∈ L(Y ), defined by

P (t)x =

∫ T

t

eA
∗(τ−t)R∗RΦ(τ, t)x dτ , x ∈ Y, (2.8)

is self-adjoint and positive; it belongs to L(Y,C([0, T ];Y )) and is such that

(P (s)x, x)Y = Js(û(·, s;x), ŷ(·, s;x)) ∀s ∈ [0, T ] .

S4. The gain operator B∗P (·) belongs to L(D(Aε), C([0, T ];U)) and the optimal
pair satisfies for s ≤ t ≤ T

û(t, s;x) = −B∗P (t)ŷ(t, s;x) ∀x ∈ Y. (2.9)

S5. The operator Φ(t, s) defined in (2.7) satisfies for s < t ≤ T :

∂Φ

∂s
(t, s)x = −Φ(t, s)(A−BB∗P (s))x ∈ L1/γ(s, T ; [D(A∗ε)]′)

for all x ∈ D(A), and

∂Φ

∂t
(t, s)x = (A−BB∗P (t))Φ(t, s)x ∈ C([s, T ], [D(A∗)]′)

for all x ∈ D(Aε).
S6. The operator P (t) defined by (2.8) satisfies the following (differential) Ric-

cati equation in [0, T ):
d
dt (P (t)x, y)Y + (P (t)x,Ay)Y + (Ax, P (t)y)Y + (Rx,Ry)Z

−(B∗P (t)x,B∗P (t)y)U = 0 ∀x, y ∈ D(A)

P (T ) = 0 .

(2.10)

The assertion S6. in Theorem 2.5 shows the existence of at least one solution to
the DRE (2.10) corresponding to problem (2.1)-(2.3). The question as to whether
the optimal cost operator P (·) (defined in (2.8)) is actually the unique solution to
the DRE – at least within an appropriate class of operators –, is an issue which
was not dealt with in the paper [2]. Thus, in order to render the finite time horizon
theory devised in [2] complete, we complement assertion S6. of Theorem 2.5 with the
(novel) achievement of uniqueness, thereby concluding the proof of well-posedness
of the DRE.
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As we will see, uniqueness is meant within a suitable class – that is class QT in
(2.11) below – of linear, bounded, self-adjoint operators also meeting an additional
requirement, which is consistent with the regularity property displayed by the gain
operator in assertion S4. above.

Theorem 2.6 (Uniqueness for the DRE). With reference to the control problem
(2.1)–(2.3), let the Assumptions 2.3 hold. Then, the differential Riccati equation
(2.10) has a unique solution within the class

QT =
{
Q ∈ C([0, T ];L(Y )) : Q(t) = Q(t)∗ ≥ 0 , Q(T ) = 0 ,

B∗Q(·) ∈ L(D(Aε), C([0, T ];U))
}
.

(2.11)

The optimal cost operator P (·) defined by (2.8) is consequently that solution.

Remark 2.7 (A technical point). The findings of the work [2], summarized as The-
orem 2.5 above, were actually established under the weaker regularity assumption

iiic)’ there exists q ∈ (1, 2) such that the map x 7−→ B∗eA
∗tR∗RAεx has an

extension which belongs to L(Y,Lq(0, T ;U)),

rather than iiic). Indeed, iiic)’ of the Assumptions 2.3, combined with iiib), implies
iiic), as already pointed out in [2, p. 1401] (with a reversed notation, though).

However, on one side the present iiic) – more precisely, the boundary regularity
result that (case by case) the control-theoretic condition iiic) translates to – has
been shown over the years to hold true in the case of distinct PDE systems studied in
the aforementioned references [3], [10], [13, 14], [11]. On the other side, uniqueness
of solutions to the Riccati equations appears to be in need of it: both within the first
proof of Theorem 2.5 given in the next section (specifically to perform the estimates
which bring about (3.7)), and also to show Lemma 4.2, instrumental to the distinct
proof of the same result proposed in Section 4. Furthermore, the stronger (A.3)
– which is central to the proof of Lemma 4.4 relevant to the infinite time horizon
case – is based upon iiic) of Assumptions 2.3.

In the infinite time horizon case, i.e. when T = +∞ in (2.3), the hypotheses
on both the semigroup eAt and the component F (t) (in the decomposition of the
operator B∗eA

∗t) are strenghtened, assuming their exponential decay as t → +∞;
see (2.12) and (2.13) below, respectively. For the sake of completeness and the
reader’s convenience, the hypotheses pertaining to the infinite time horizon are
wholly recorded below.

Assumptions 2.8 (Infinite time horizon case). Let Y , U and Z be separable
complex Hilbert spaces, and let the basic Assumptions 2.1 be valid, with the ad-
ditional property that the C0-semigroup eAt is exponentially stable on Y , t ≥ 0;
namely, there exist constants M ≥ 1 and ω > 0 such that

‖eAt‖L(Y ) ≤M e−ωt ∀t ≥ 0 . (2.12)

Then in particular, A−1 ∈ L(Y ).
The operator B∗eA

∗t admits the decomposition (2.5), where F (t) : Y −→ U ,
t ≥ 0, is a bounded linear operator such that

i)’ there exist constants γ ∈ (0, 1) and N, η > 0 such that

‖F (t)‖L(Y,U) ≤ N t−γ e−ηt ∀t > 0 , (2.13)
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while ii)-iiia)-iiib)-iiic) of the Assumptions 2.3 on the (linear, bounded) component
G(t) : D(A∗) −→ U , t ≥ 0, hold true for some T > 0.

We note that the functional (2.3) with T = +∞ makes sense at least for u ≡ 0.
This again in view of the exponential stability of the semigroup eAt ((2.12) of As-
sumptions 2.8), which combined with (2.4) ensures Ry(·, y0; 0) ∈ L2(0,∞;Y ).
(The analysis carried out in the present paper easily extends to more general qua-
dratic functionals, like

J(u) =

∫ ∞
0

(
‖Ry(t)‖2Z + ‖R̃u(t)‖2U

)
dt ,

provided R̃ is a coercive operator in U . We take R̃ = I just for the sake of simplicity
and yet without loss of generality.)

Theorem 2.9 (Infinite time horizon theory; cf. [4], Theorem 1.5). Under the As-
sumptions 2.8, the following statements are valid.

A1. For any y0 ∈ Y there exists a unique optimal pair (û(·), ŷ(·)) for Prob-
lem (2.1)-(2.3), which satisfies the following regularity properties

û ∈
⋂

2≤p<∞

Lp(0,∞;U) ,

ŷ ∈ Cb([0,∞);Y ) ∩
[ ⋂

2≤p<∞

Lp(0,∞;Y )
]
.

A2. The family of operators Φ(t), t ≥ 0, defined by

Φ(t)y0 := ŷ(t) = y(t, y0; û) (2.14)

is a C0-semigroup on Y , t ≥ 0, which is exponentially stable.
A3. The operator P ∈ L(Y ) defined by

Px :=

∫ ∞
0

eA
∗tR∗RΦ(t)x dt, x ∈ Y, (2.15)

is the optimal cost operator; P is (self-adjoint and) non-negative.
A4. The following (pointwise in time) feedback representation of the optimal

control is valid for any initial state y0 ∈ Y :

û(t) = −B∗P ŷ(t) for a.e. t ∈ (0,∞),

where the gain operator satisfies B∗P ∈ L(D(Aε), U) (that is, it is just
densely defined on Y and yet it is bounded on D(Aε)).

A5. The infinitesimal generator AP of the (optimal state) semigroup Φ(t) de-
fined in (2.14) coincides with the operator A(I−A−1BB∗P ); more precisely,

AP ≡ A(I −A−1BB∗P ) ,

D(AP ) ⊂
{
x ∈ Y : x−A−1BB∗Px ∈ D(A)

}
.

A6. The operator eAtB, defined in U and a priori with values in [D(A∗)]′, is
such that

eδ·eA·B ∈ L(U,Lp(0,∞; [D(A∗ε)]′) ∀p ∈ [1, 1/γ) (2.16)

for all δ ∈ [0, ω ∧ η); almost the very same regularity is inherited by the
operator Φ(t)B:

eδ·Φ(·)B ∈ L(U,Lp(0,∞; [D(A∗ε)]′) ∀p ∈ [1, 1/γ) ,
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with δ > 0 sufficiently small.
A7. The optimal cost operator P defined in (2.15) is a solution to the algebraic

Riccati equation (ARE) corresponding to Problem (2.1)-(2.3), that is

(Px,Az)Y + (Ax, Pz)Y − (B∗Px,B∗Pz)U

+ (Rx,Rz)Z = 0 , x, z ∈ D(A) .
(2.17)

The ARE can be rewritten as

(A∗Px, z)Y + (x,A∗Pz)Y − (B∗Px,B∗Pz)U + (Rx,Rz)Z = 0 ,

when x, z ∈ D(AP ).

In order to render the infinite time horizon theory devised in [4] complete, we
complement assertion A7. of Theorem 2.9 about existence of solutions to the ARE
(2.17) corresponding to Problem (2.1)-(2.3), with the achievement of uniqueness,
thereby concluding the proof of well-posedness of the ARE. Just as in the finite
time horizon case, the (linear, bounded, self-adjoint) operators that belong to the
class Q in (2.18) are characterized by a requirement that is consistent with the
regularity property displayed by the gain operator in assertion A4. of Theorem 2.9.

Theorem 2.10 (Uniqueness for the ARE). Consider the optimal control prob-
lem (2.1)-(2.3), with T = +∞, under the Assumptions 2.8. Then, the algebraic
Riccati equation (2.17) has a unique solution P within the class Q defined as fol-
lows:

Q :=
{
Q ∈ L(Y ) : Q = Q∗ ≥ 0 , B∗Q ∈ L(D(Aε), U)

}
. (2.18)

The optimal cost operator P defined by (2.15) is consequently that solution.

2.3. An insight into the mathematical proofs. We provide two proofs of The-
orem 2.6, that establishes uniqueness for the DRE (2.10). This result is relevant
for the optimal control problem on a finite time horizon (i.e. Problem 2.2 with
T < +∞), under the Assumptions 2.3.

The first proof, given in Section 3, follows the method employed in [21, Vol. I,
Theorem 1.5.3.3; Vol. II, Theorems 8.3.7.1], up to a certain point. The basic ra-
tionale is standard: one proceeds by contradiction, assuming there exists another
solution P1(t) to the DRE, besides the optimal cost operator P (t) which is known
to solve the DRE, as from S6. of Theorem 2.5. On the basis of the integral form of
the DRE – in the present case two forms, derived in Lemma 3.1 –, one finds that
the difference Q(t) = P1(t) − P (t) solves a suitable integral equation. It is in the
estimates performed afterwards, that the paths diverge, with iiic) of the Assump-
tions 2.3 playing a major role here, together with the class of operators P (t) and
P1(t) belong to. The proofs carried out in the aforementioned results instead take
advantage of either the enhanced regularity of the analytic semigroup eAt that de-
scribes the free dynamics, or the additional regularity assumed e.g. on the operator
R∗ReAtB (or on other combinations of R with eAt and/or B).

It is unlikely that the method of proof described above could be adjusted in order
to establish uniqueness for the ARE, relevant for Problem 2.2 with T = +∞. This
owing to the argument employed when T < +∞: Q(t) is shown to be zero on some
subinterval of [0, T ], with the soughtafter goal attained in a finite number of steps.

Other methods of proof are certainly worth to be explored. One might attempt
to proceed along the lines of the proof of [21, Vol. I, Theorem 2.4.5], despite the
absence of analyticity of the semigroup eAt, as well as of the optimal state semigroup



14 PAOLO ACQUISTAPACE AND FRANCESCA BUCCI

Φ(t). If this were the case, a preliminary analysis which appears unavoidable would
pertain to issues connected to a given solution P1 to the ARE (a priori, distinct
from the optimal cost operator P ): in particular, the possible generation of a C0-
semigroup on Y by the operator A − BB∗P1, in turn to be suitably defined. We
choose a different path, instead.

In order to prove Theorem 2.10, we borrow from the dynamic programming
approach to the LQ-problem a key element in attaining that the optimal control
admits a (pointwise in time) feedback representation. This element is fulfilled by
the so called fundamental identity. In a direct approach, the fundamental identity
builds a bridge between the nonlinear Riccati equation – whose well-posedness is
studied in a first step, independently from the minimization problem, as recalled
above – and the actual closed loop form of the optimal control. The latter goal (i.e.
the feedback representation of the optimal control) was already attained in [2] and
[4]; see the statements S4. of in Theorem 2.5 and A4. of Theorem 2.9, respectively.
And yet, the identities we establish in Lemma 4.1 and Lemma 4.3 constitute a major
(and technically nontrivial) step in our analysis, allowing to achieve uniqueness for
both differential and algebraic Riccati equations, respectively. Theorem 2.6 and
Theorem 2.10 are thus established, via methods of proof which are akin to each
other.

3. A first proof of uniqueness for the DRE

In this Section we derive integral forms of both the differential and algebraic
Riccati equations, and present a first proof of Theorem 2.6.

3.1. Finite time interval, differential Riccati equations. In this subsection
we make reference to the optimal control problem (2.1)–(2.3), with T < +∞. We
address the issue of uniqueness of solutions to the Cauchy problem (2.10) for the
Riccati equation corresponding to problem (2.1)–(2.3), under the Assumptions 2.3.

We begin by relating the differential form (2.10) of the Riccati equation to an
integral form of it, which in turn can be further interpreted.

Lemma 3.1 (Integral forms of the Riccati equation). Let QT be the class defined
in (2.11), and let Q(·) ∈ QT be a solution to the DRE (2.10). Then the following
assertions hold true.

1. Q(·) solves the integral Riccati equation (in short, IRE), that is

(
Q(t)eA(t−s)x, eA(t−s)y

)
Y

= (Q(s)x, y)Y −
∫ t

s

(
ReA(r−s)x,ReA(r−s)y

)
Z
dr

+

∫ t

s

(
B∗Q(r)eA(r−s)x,B∗Q(r)eA(r−s)y

)
U
dr ,

(3.1)

with 0 ≤ s ≤ t ≤ T and x, y ∈ D(Aε).

2. B∗Q(·)eA(·−s) ∈ L(Y,L2(s, T ;U)).
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3. The IRE (3.1) can be rewritten in the form(
eA
∗(t−s)Q(t)eA(t−s)x, y

)
Y

= (Q(s)x, y)Y −
∫ t

s

(
eA
∗(r−s)R∗ReA(r−s)x, y

)
Y
dr

+

∫ t

s

(
eA
∗(r−s)Q(r)BB∗Q(r)eA(r−s)x, y

)
Y
dr ,

(3.2)

valid for any x, y ∈ Y and with 0 ≤ s ≤ t ≤ T .

Proof. 1. Let x, y ∈ D(A): then eA·x, eA·y are differentiable, and therefore, using
(2.10), there exists

d

dr

(
Q(r)eA(r−s)x, eA(r−s)y

)
Y

= −
(
Q(r)eA(r−s)x,AeA(r−s)y

)
Y
−
(
AeA(r−s)x,Q(r)eA(r−s)y

)
Y

−
(
ReA(r−s)x,ReA(r−s)y

)
Z

+
(
B∗Q(r)eA(r−s)x,B∗Q(r)eA(r−s)y

)
U

+
(
Q(r)AeA(r−s)x, eA(r−s)y

)
Y

+
(
Q(r)eA(r−s)x,AeA(r−s)y

)
Y

= −
(
ReA(r−s)x,ReA(r−s)y

)
Z

+
(
B∗Q(r)eA(r−s)x,B∗Q(r)eA(r−s)y

)
U
.

Integrating the above identity in r ∈ [s, t], one readily obtains the IRE (3.1), valid
for x, y ∈ D(A). In view of Lemma A.5, the validity of the IRE is extended to all
x, y ∈ D(Aε) by density.

2. By taking now in (3.1) t = T , x = y ∈ D(Aε), since P (T ) = 0 we establish∫ T

s

∥∥B∗P (r)eA(r−s)x
∥∥2

U
dr ≤

∫ T

s

∥∥ReA(r−s)x
∥∥2

Z
dr ≤ C‖x‖2Y

by density.

3. The equivalent form (3.2) of the IRE follows in view of 2. and by density.
�

A first proof of Theorem 2.6. We follow the proof of Theorem 1.5.3.3 in [21], up
to a point. The subsequent arguments and estimates are driven by the distinctive
assumptions on the adjoint of the kernel eAtB, as well as by the different class of
regularity the solutions to the DRE are sought.

We know already that the optimal cost operator P (·) defined by (2.8) solves
(the Cauchy problem (2.10) for) the differential Riccati equation, as well as that
P ∈ QT . Assume there exists another operator in QT , say P1(·), which solves
(2.10), and set Q(t) := P1(t)− P (t), t ∈ [0, T ]; we aim to prove that Q(t) ≡ 0. By
construction Q(·) ∈ QT . By Lemma 3.1, both P1(·) and P (·) satisfy the IRE (3.1).
Then, taking in particular t = T , we find that Q(s) satisfies

(Q(s)x, y)Y = −
∫ T

s

(B∗Q(r)eA(r−s)x,B∗P1(r)eA(r−s)y)U dr

−
∫ T

s

(B∗P (r)eA(r−s)x,B∗Q(r)eA(r−s)y)U dr ,

(3.3)
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for any x, y ∈ D(Aε). To render the computations cleaner, set V (r) := B∗Q(r)
(that r belongs to [s, T ] is omitted here and below, as clear from the context).
Because Q(·) ∈ QT , it holds V (r)∗ ∈ L(U, [D(Aε)]′), along with

‖V (r)∗‖L(U,[D(Aε)]′) = ‖V (r)‖L(D(Aε),U) ≤ ‖V (·)‖L(D(Aε),C([s,T ];U) =: c .

We see that ∣∣〈V (r)∗w, y〉[D(Aε)]′,D(Aε)

∣∣ ≤ c ‖w‖U‖y‖D(Aε)

consequently, as well as that A∗−εV (r)∗ ∈ L(U, Y ), with∣∣(A∗−εV (r)∗w, x
)
Y

∣∣ =
∣∣〈V (r)∗w,A−εx〉[D(Aε)]′,D(Aε)

∣∣ ≤ c ‖w‖U‖x‖Y .
The same observations apply to [B∗P1(r)]∗ and [B∗P (r)]∗, bringing about analo-
gous estimates.

We may now rewrite (3.3) as

(Q(s)x, y)Y = −
∫ T

s

(eA
∗(r−s)A∗−ε[B∗P1(r)]∗V (r)eA(r−s)x,Aεy)Y dr

−
∫ T

s

(eA
∗(r−s)A∗−εV (r)∗B∗P (r)eA(r−s)x,Aεy)Y dr ,

which tells us that

A∗ε
∫ T

s

[
eA
∗(r−s)A∗−ε[B∗P1(r)]∗V (r)eA(r−s)

+ eA
∗(r−s)A∗−εV (r)∗B∗P (r)eA(r−s)

]
x dr ,

a priori an element of [D(Aε)]′, in fact coincides with −Q(s)x ∈ Y by the very
definition of adjoint operator. We deduce

Q(s)x = −A∗ε
∫ T

s

[
eA
∗(r−s)A∗−ε[B∗P1(r)]∗V (r)eA(r−s)

+ eA
∗(r−s)A∗−εV (r)∗B∗P (r)eA(r−s)

]
x dr ,

(3.4)

valid for every x ∈ D(Aε), where, as pointed out above, the right hand side is an
element of Y . As x ∈ D(Aε), B∗Q(s)x is meaningful, and we are allowed to apply
B∗ to both sides of (3.4), thus obtaining

V (s)x = −B∗A∗ε
∫ T

s

[
eA
∗(r−s)A∗−ε[B∗P1(r)]∗V (r)eA(r−s)

+ eA
∗(r−s)A∗−εV (r)∗B∗P (r)eA(r−s)

]
x dr .

(3.5)

It is here where iiic) of Assumptions 2.3, that is

∃ q ∈ (1, 2) , C = C(T ) > 0: ‖B∗eA
∗(·−s)A∗εx‖Lq(s,T ;U) ≤ C ‖x‖Y ∀x ∈ Y ,

becomes crucially important: indeed, it yields as well

‖[B∗eA
∗(·−s)A∗ε]∗g(·)‖Y ≤ C ‖g‖Lq′ (s,T ;U)

(q′ denotes the conjugate exponent of q), so that in particular

‖[B∗eA
∗(·−s)A∗ε]∗w‖Y ≤ C (T − s)1/q′‖w‖U ∀w ∈ U . (3.6)
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We return to (3.5), and highlight a few blocks within its right hand side, as follows:

V (s)x = −
∫ T

s

[
B∗eA

∗(r−s)A∗ε
]
A∗−ε[B∗P1(r)]∗V (r)eA(r−s)x dr

−
∫ T

s

[
B∗eA

∗(r−s)A∗ε
]
A∗−εV (r)∗B∗P (r)eA(r−s)x dr ;

multiply next both members by w ∈ U , to find

(V (s)x,w)U = −
∫ T

s

(
V (r)eA(r−s)x, [B∗P1(r)A−ε]

[
B∗eA

∗(r−s)A∗ε
]∗
w
)
U
dr

−
∫ T

s

(
B∗P (r)eA(r−s)x, [V (r)A−ε]

[
B∗eA

∗(r−s)A∗ε
]∗
w
)
U
dr .

We now proceed to estimate either summand in the right hand side, making use of
(3.6); this leads to

|(V (s)x,w)U |

≤M ‖V (·)‖L(D(Aε),C([s,T ];U))‖x‖D(Aε)‖B∗P1(·)‖L(D(Aε),C([s,T ];U))‖w‖U (T − s)1/q′

+M ‖B∗P (·)‖L(D(Aε),C([s,T ];U))‖x‖D(Aε)‖V (·)‖L(D(Aε),C([s,T ];U))‖w‖U (T − s)1/q′ .

Therefore, there exists a positive constant C (depending on P and P1) such that∣∣(V (s)x,w)U
∣∣ ≤ C ‖V (·)‖L(D(Aε),C([s,T ];U))(T − s)1/q′‖w‖U‖x‖D(Aε) ,

which establishes

‖V (s)‖L(D(Aε),U) ≤ C ‖V (·)‖L(D(Aε),C([s,T ];U))(T − s)1/q′ , (3.7)

for any s ∈ [0, T ).

The argument is now pretty standard: set s0 such that (T −s0)1/q′ < 1/C; since
the estimate (3.7) holds true in particular for any s ∈ [s0, T ), we have

‖V (·)‖L(D(Aε),C([s0,T ];U)) ≤ C (T − s0)1/q′ ‖V (·)‖L(D(Aε),C([s0,T ];U))

which is impossible unless V (·) ≡ 0 on [s0, T ]. Iterating the same argument, in a
finite number of steps we obtain V (s) ≡ 0 on [0, T ]. This in turn implies, by (3.3),

(Q(s)x, y)Y = 0 ∀s ∈ [0, T ] , ∀x, y ∈ D(Aε) ;

by density we obtain (Q(s)x = 0 for any x ∈ Y first, and then) Q(·) ≡ 0, that is
P1(·) ≡ P (·), as desired.

�

3.2. Infinite time interval. Preparatory material. We turn now our atten-
tion to the optimal control problem (2.1)–(2.3), with T = +∞, and to the ARE.
The following Lemma contributes to the preparatory material for the forthcoming
analysis in Section 4, that follows a different line of argument than the one utilized
to prove uniqueness for the DRE. Since an integral form of the ARE will prove
more effective (than its algebraic form) to accomplish our goal – just like the inte-
gral forms of the DRE in Lemma 3.1 provide fundamental tools for both proofs of
Theorem 2.6 –, we derive the said integral form of the ARE here. Its proof is not
difficult, yet it is explicitly given for the reader’s convenience.
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Lemma 3.2 (Integral form of the ARE). Let Q be the class defined in (2.18), and
let P1 ∈ Q be a solution to the algebraic Riccati equation (2.17). Then, P1 solves
the following integral form of the ARE valid for all x, y ∈ D(Aε):

(
P1e

A(t−s)x, eA(t−s)y
)
Y

= (P1x, y)Y +

∫ t

s

(
B∗P1e

A(r−s)x,B∗P1e
A(r−s)y

)
U
dr

−
∫ t

s

(
ReA(r−s)x,ReA(r−s)y

)
Z
dr ,

(3.8)

with 0 ≤ s ≤ t.

Proof. Let P1 ∈ Q be a solution to the ARE (2.17), that we record for the reader’s
convenience:

(P1x,Ay)Y + (Ax, P1y)Y − (B∗P1x,B
∗P1y)U + (Rx,Ry)Z = 0 , x, y ∈ D(A) .

With eA(t−s)x, eA(t−s)y ∈ D(A) in place of x, y, and with 0 ≤ s ≤ t, the equation
becomes

(P1e
A(t−s)x,AeA(t−s)y)Y + (AeA(t−s)x, P1e

A(t−s)y)Y

− (B∗P1e
A(t−s)x,B∗P1e

A(t−s)y)U + (ReA(t−s)x,ReA(t−s)y)Z = 0 ,

that is nothing but

d

dt

(
P1e

A(t−s)x, eA(t−s)y
)
Y

=
(
B∗P1e

A(t−s)x,B∗P1e
A(t−s)y

)
U

−
(
ReA(t−s)x,ReA(t−s)y

)
Z
, x, y ∈ D(A) .

(3.9)

Integrating both sides of (3.9) between s and t we attain (3.8), initially for any
x, y ∈ D(A). Its validity is then extended to all x, y ∈ D(Aε) by density, since
P1 ∈ Q. �

While the integral form (3.8) of the ARE will constitute the starting point for
the proof of Theorem 2.10, it is important to emphasize the central role of the
distinguishing (and improved) regularity properties of the operator B∗eA

∗·A∗ε. We
refer the reader to Appendix A, where we collected and highlighted several instru-
mental results, with the aim of displaying their statements in a clear sequence and
framework. See, more specifically, Proposition A.6 therein.

4. A unified method of proof of uniqueness for both DRE and ARE

In this Section we provide a second proof of Theorem 2.6 and then show Theo-
rem 2.10, thereby settling the question of uniqueness for the differential and alge-
braic Riccati equations corresponding to the optimal control problem (2.2)–(2.3).
We recall from Section 2.3 that a crucial intermediate step to achieve either goal is
an identity which is classical in control theory.
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4.1. Finite time interval, differential Riccati equations. In this subsection
we focus on the optimal control problem (2.1)–(2.3), with T < +∞, along with
the corresponding Riccati equation. In approaching the second proof of Theo-
rem 2.6, we start by showing the above-mentioned fundamental identity. Despite
being a standard element in classical optimal control theory, the identity should
not be taken for granted in the absence of evident beneficial regularity properties
of the kernel eAtB – such as analiticity of the semigroup or more generally singu-
lar estimates. Achieving the said equality requires that the Assumptions 2.3 are
fully exploited. The delicate, careful computations are carried out in the following
Lemma.

Lemma 4.1 (Fundamental identity). Let Q ∈ QT be a solution to the integral Ric-
cati equation (3.1). With u ∈ L2(s, T ;U) and x ∈ D(Aε), let y(·) be the semigroup
solution to the state equation in (2.1) corresponding to u(·), with y(s) = x, that is

y(t) = eA(t−s)x+

∫ t

s

eA(t−r)Bu(r) dr = eA(t−s)x+ Lsu(t) , t ∈ [s, T ] .

Then, the following identity is valid: for t ∈ [s, T ]

(Q(t)y(t), y(t))Y − (Q(s)x, x)Y = −
∫ t

s

[
‖Ry(r)‖2Z + ‖u(r)‖2U

]
dr

+

∫ t

s

‖u(r) +B∗Q(r)y(r)‖2U dr .
(4.1)

Proof. Assume initially that u ∈ L∞(s, T ;U). We examine the right hand side of
the identity (4.1). For the first term we have

−
∫ t

s

‖Ry(r)‖2Z dr = −
∫ t

s

∥∥ReA(r−s)x
∥∥2

Z
dr −

∫ t

s

∥∥RLsu(r)
∥∥2

Z
dr

− 2Re

∫ t

s

(
ReA(r−s)x,RLsu(r)

)
Z
dr =:

3∑
j=1

Rj .

We note that each summand Rj makes sense, just considering the space regularity
originally singled out in [2] and here recalled in Proposition A.1; more specifically,
u ∈ L∞(s, T ;U) implies Lsu ∈ C([s, T ];Y ) by its fourth assertion. We consider
next the remainder

−
∫ t

s

‖u(r)‖2U dr +

∫ t

s

‖u(r) +B∗Q(r)y(r)‖2U dr .
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Computing the square in the second integral, discarding additive inverses and re-
placing again the expression of y(r), we get

−
∫ t

s

‖u(r)‖2U dr +

∫ t

s

‖u(r) +B∗Q(r)y(r)‖2U dr

= 2Re

∫ t

s

(
B∗Q(r)eA(r−s)x, u(r)

)
U
dr + 2Re

∫ t

s

(
B∗Q(r)Lsu(r), u(r)

)
U
dr

+

∫ t

s

∥∥B∗Q(r)eA(r−s)x
∥∥2

U
dr + 2Re

∫ t

s

(B∗Q(r)eA(r−s)x,B∗Q(r)Lsu(r)
)
U
dr

+

∫ t

s

∥∥B∗Q(r)Lsu(r)
∥∥2

U
dr =:

5∑
j=1

Cj .

That each summand Cj makes sense as well is justified by the following observa-

tions: B∗Q(·)eA(·−s)x ∈ L2(s, T ;U) because of item 2. of Lemma 3.1; in addi-

tion, since L∞(s, T ;U) ⊂ Lq
′
(s, T ;U), Lemma A.2 yields the improved regularity

Lsu ∈ C([s, T ];D(Aε)), which in turn implies B∗Q(·)Lsu(·) ∈ C([s, T ];U), as shown
in Lemma A.5.

By using the original form (3.1) of the integral Riccati equation (IRE), with
x = y, we find that

R1 + C3 = −
∫ t

s

‖ReA(r−s)x‖2Z dr +

∫ t

s

∥∥B∗Q(r)eA(r−s)x
∥∥2

U
dr

=
(
Q(t)eA(t−s)x, eA(t−s)x

)
Y
− (Q(s)x, x)Y .

(4.2)

Next,

R3 + C4 + C1 = −2Re

∫ t

s

(
ReA(r−s)x,RLsu(r)

)
Z
dr

+ 2Re

∫ t

s

(
B∗Q(r)eA(r−s)x,B∗Q(r)Lsu(r)

)
U
dr

+ 2Re

∫ t

s

(
B∗Q(r)eA(r−s)x, u(r)

)
U
dr

= −2Re

∫ t

s

(
R∗ReA(r−s)x,

∫ r

s

eA(r−σ)Bu(σ) dσ
)
Y
dr

+ 2Re

∫ t

s

〈
Q(r)BB∗Q(r)eA(r−s)x,

∫ r

s

eA(r−σ)Bu(σ) dσ
〉

[D(Aε)]′,D(Aε)
dr

+ 2Re

∫ t

s

(
B∗Q(r)eA(r−s)x, u(r)

)
U
dr ,

where the duality in the penultimate term is based on the membership Q(·) ∈ QT
(along with the estimate (A.2)) which yields Q(r)B ∈ L(U, [D(Aε)]′), combined as
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before with Lsu ∈ C([s, T ];D(Aε)). The above leads to

R3 + C4 + C1 = −2Re

∫ t

s

∫ r

s

(
B∗eA

∗(r−σ)R∗ReA(r−s)x, u(σ)
)
U
dσ dr

+ 2Re

∫ t

s

∫ r

s

(
B∗eA

∗(r−σ)Q(r)BB∗Q(r)eA(r−s)x, u(σ)
)
U
dσdr

+ 2Re

∫ t

s

(B∗Q(σ)eA(σ−s)x, u(σ)
)
U
dσ ,

which can be rewritten, exchanging the order of integration, as follows:

R3 + C4 + C1 =− 2Re

∫ t

s

(
B∗
{∫ t

σ

eA
∗(r−σ)R∗R

[
eA(r−s)x

]
dr

−
∫ t

σ

eA
∗(r−σ)Q(r)BB∗Q(r)eA(r−σ)

[
eA(σ−s)x

]
dr

−Q(σ)
[
eA(σ−s)x

]}
, u(σ)

)
U
dσ .

(4.3)

Let us focus on the expression inside the curly bracket. Because Q(·) solves the
IRE (3.1), as well as its second form (3.2) valid for any pair x, y ∈ Y , then the
following identity – a strong form of the IRE, when Q(·) is unknown – holds true:

eA
∗(t−σ)Q(t)eA(t−σ)z = Q(σ)z −

∫ t

σ

eA
∗(r−σ)R∗Rz dr

+

∫ t

σ

eA
∗(r−σ)Q(r)BB∗Q(r)eA(r−σ)z dr , 0 ≤ σ ≤ t ≤ T , z ∈ Y .

Thus, returning to (4.3) with this information and setting in particular z = eA(σ−s)x,
we find that R3 + C4 + C1 simply reads as follows:

R3 + C4 + C1 = −2Re

∫ t

s

(
B∗eA

∗(t−σ)Q(t)eA(t−s)x, u(σ)
)
U
dσ

= −2Re
(
Q(t)eA(t−s)x, Lsu(t)

)
Y
.

(4.4)

We examine next the sum

R2 + C5 = −
∫ t

s

‖RLsu(r)‖2Z dr +

∫ t

s

∥∥B∗Q(r)Lsu(r)
∥∥2

U
dr ,

where, again, since u ∈ L∞(s, T ;U) ⊂ Lq′(s, T ;U), we know from Lemma A.2 that
Lsu ∈ C([s, T ];D(Aε)). Consequently, one gets

R2 + C5 = −
∫ t

s

〈[
R∗R−Q(r)BB∗Q(r)

]
Lsu(r), Lsu(r)

〉
[D(Aε)]′,D(Aε)

dr

= −Re

∫ t

s

(
A∗−ε

[
R∗R−Q(r)BB∗Q(r)

]
A−ε

∫ r

s

AεeA(r−λ)Bu(λ) dλ,∫ r

s

AεeA(r−µ)Bu(µ) dµ
)
Y
dr .

(4.5)

It is important to emphasize that in going from the duality to the inner product
in (4.5), two facts have been crucially used, besides Q(·) ∈ QT : the hypothesis
(2.3) on the observation operator R (that is iiib) of the Assumptions 2.3), and once
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again, Lemma A.2. Further handling of the right hand side of (4.5) leads to the
triple integral

R2 + C5 = −Re

∫ t

s

I(r, s) dr ,

having set

I(r, s) =

∫ r

s

∫ r

s

(
B∗eA

∗(r−µ)
[
R∗R−Q(r)BB∗Q(r)

]
eA(r−λ)Bu(λ), u(µ)

)
U
dλ dµ .

Let us focus on the inner double integral I(r, s). We note that this integral
pertains to a symmetric function of (λ, µ), and hence the integral over the square
[s, r]× [s, r] can be replaced by twice the integral over the triangle

{(λ, µ) : s ≤ µ ≤ λ ≤ r} .

It follows that

I(r, s) = 2

∫ r

s

dλ

∫ λ

s

dµ
(
B∗eA

∗(r−µ)
[
R∗R−Q(r)BB∗Q(r)

]
eA(r−λ)Bu(λ), u(µ)

)
U

= 2

∫ r

s

[ ∫ λ

s

(
B∗eA

∗(λ−µ) eA
∗(r−λ)

[
R∗R−Q(r)BB∗Q(r)

]
eA(r−λ)Bu(λ), u(µ)

)
U
dµ
]
dλ

= 2

∫ r

s

(
eA
∗(r−λ)

[
R∗R−Q(r)BB∗Q(r)

]
eA(r−λ)Bu(λ),

∫ λ

s

eA(λ−µ)Bu(µ) dµ
)
Y
dλ

= 2

∫ r

s

(
eA
∗(r−λ)

[
R∗R−Q(r)BB∗Q(r)

]
eA(r−λ)Bu(λ), Lsu(λ)

)
Y
dλ .

Inserting the expression of I(r, s) obtained above in the outer integral yields

R2 + C5

= −2Re

∫ t

s

∫ r

s

(
eA
∗(r−λ)

[
R∗R−Q(r)BB∗Q(r)

]
eA(r−λ)Bu(λ), Lsu(λ)

)
Y
dλ dr ;

next we exchange the order of integration and also move the first argument of the
inner product, to achieve

R2 + C5

= −2Re

∫ t

s

∫ t

λ

(
eA
∗(r−λ)

[
R∗R−Q(r)BB∗Q(r)

]
eA(r−λ)Bu(λ), Lsu(λ)

)
Y
dr dλ

= −2Re

∫ t

s

∫ t

λ

(
u(λ), B∗eA

∗(r−λ)
[
R∗R−Q(r)BB∗Q(r)

]
eA(r−λ)Lsu(λ)

)
Y
dr dλ

= −2Re

∫ t

s

(
u(λ), B∗

∫ t

λ

eA
∗(r−λ)

[
R∗R−Q(r)BB∗Q(r)

]
eA(r−λ) Lsu(λ) dr

)
U
dλ .

(4.6)

It is apparent that the second form (3.2) of the IRE (with λ in place of s) – in
fact, a strong form of it – provides once more the tool, just like in deriving (4.4)
from (4.3). With z = Lsu(λ), replace the integral∫ t

λ

eA
∗(r−λ)

[
R∗R−Q(r)BB∗Q(r)

]
eA(r−λ)z dr
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by [Q(λ)− eA∗(t−λ)Q(t)eA(t−λ)]z, to find

R2 + C5 = −2Re

∫ t

s

(
u(λ), B∗

[
Q(λ)− eA

∗(t−λ)Q(t)eA(t−λ)
]
Lsu(λ)

)
U
dλ

= −2Re

∫ t

s

(
B∗
[
Q(λ)− eA

∗(t−λ)Q(t)eA(t−λ)
]
Lsu(λ), u(λ)

)
U
dλ .

(4.7)

Thus, adding C2 to (4.7), we see that a useful simplification occurs, as detailed
below:

R2 + C5 + C2 = −2Re

∫ t

s

(
B∗Q(λ)Lsu(λ), u(λ)

)
U
dλ

+ 2Re

∫ t

s

(
B∗eA

∗(t−λ)Q(t)eA(t−λ)Lsu(λ), u(λ)
)
U
dλ

+ 2Re

∫ t

s

(
B∗Q(r)Lsu(r), u(r)

)
U
dr

= 2Re

∫ t

s

∫ λ

s

(
Q(t)eA(t−σ)Bu(σ), eA(t−λ)Bu(λ)

)
Y
dσ dλ .

Owing to the simmetry of the latter integrand in (σ, λ), we may replace twice the
integral over the triangle {(λ, σ) : s ≤ λ ≤ σ ≤ t} by the integral over the square
[s, t]× [s, t], and finally get

R2 + C5 + C2 = Re

∫ t

s

∫ t

s

(
Q(t)eA(t−σ)Bu(σ), eA(t−λ)Bu(λ)

)
Y
dλ dσ

= Re
(
Q(t)Lsu(t), Lsu(t)

)
Y

=
(
Q(t)Lsu(t), Lsu(t)

)
Y
.

(4.8)

Combining (4.8) with (4.2) and (4.4), we finally obtain

3∑
i=1

Ri +

5∑
j=1

Cj =
(
Q(t)eA(t−s)x, eA(t−s)x

)
Y
− (Q(s)x, x)Y

+ 2Re(Q(t)eA(t−s)x, Lsu(t))Y + (Q(t)Lsu(t), Lsu(t))Y

= (Q(t)y(t), y(t))Y − (Q(s)x, x)Y ,

which establishes the fundamental identity (4.1) in the case u ∈ L∞(s, T ;U). Fi-
nally, the identity extends to u ∈ L2(s, T ;U) by density, which concludes the proof
of Lemma 4.1.

�

We next introduce an integral equation that involves a given operator solution
Q(t) to the Riccati equation corresponding to optimal control problem (2.1)–(2.3).
Once uniqueness for the DRE (2.10) is established, so that Q(t) must coincide with
the Riccati operator P (t), then it will be clear that the said integral equation ((4.9)
below) is nothing but the well known closed-loop equation, of central importance for
the synthesis of the optimal control. (This justifies the use of the term “closed-loop
equation” for (4.9)).

As we shall see, the following Lemma 4.2 and (the independent) Lemma 4.1
constitute the core elements for the proof of Theorem 2.6.
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Lemma 4.2. Let ε be as in iii) of Assumptions 2.3. Let Q ∈ QT , where QT is the
class defined by (2.11). Then, for every x ∈ D(Aε), the closed loop equation

y(t) = eAtx−
∫ t

0

eA(t−s)BB∗Q(σ)y(σ) dσ , t ∈ [0, T ] , (4.9)

has a unique solution in the space

X =
{
y ∈ C([0, T ];D(Aε)) : sup

t∈[0,T ]

(
e−rt‖y(t)‖D(Aε)) <∞

}
(4.10)

endowed with the norm

‖y‖X,r = sup
t∈[0,T ]

e−rt‖y(t)‖D(Aε) , y ∈ X ,

provided r > 0 is chosen sufficiently large.

Proof. With x ∈ D(Aε), we set E(t) = eAtx. By semigroup theory we know
that E(·) ∈ C([0, T ];D(Aε)); even more, since eAt is exponentially stable, it holds
E(·) ∈ X provided r is sufficiently large. As the integral equation (4.9) has the
clear form

y(t) +
[
LB∗Q(·)y(·)

]
(t) = E(t) , t ∈ [0, T ] ,

we appeal to a classical argument of functional analysis: we will prove that LB∗Q(·)
is a contraction mapping in X, having chosen r sufficiently large. This will in turn
imply that I+LB∗Q(·) is invertible in X, thus providing the sought unique solution
to (4.9).

For each y ∈ X, z ∈ D(A∗ε), t ∈ [0, T ], we have by Lemma A.5∣∣(e−rtLB∗Q(·)y(·), A∗εz)Y
∣∣

=
∣∣∣ ∫ t

0

e−r(t−s)
(
B∗Q(s)e−rsy(s), B∗eA

∗(t−s)A∗εz
)
U
ds
∣∣∣

≤
∫ t

0

e−r(t−s)‖B∗Q(·)e−r·y(·)‖C([0,T ];U)

∥∥B∗e(t−s)A∗A∗εz
∥∥
U
ds

≤ ‖B∗Q(·)‖L(C([0,T ];D(Aε)),C([0,T ];U)) ‖y‖X,r
∫ t

0

e−rσ‖B∗eA
∗σA∗εz‖U dσ

≤ ‖B∗Q(·)‖L(C([0,T ];D(Aε)),C([0,T ];U)) ‖y‖X,r
[ ∫ t

0

e−rσq
′
dσ
]1/q′
‖B∗e·A

∗
A∗εz‖Lq(0,T ;U)

≤ ‖B∗Q(·)‖L(C([0,T ];D(Aε)),C([0,T ];U))
1

(rq′)1/q′
‖B∗eA

∗·A∗ε‖L(Y,Lq(0,T ;U)) ‖z‖Y ‖y‖X,r .

We note that in going from the antepenultimate to the penultimate estimate we
used iiic) of the Assumptions 2.3. Therefore, there exist positive constants c, c′ such
that ∥∥e−rt[LB∗Q(·)y(·)

]
(t)
∥∥
D(Aε)

≤ c

(rq′)1/q′
‖y‖X,r ≤

c′

r1/q′
‖y‖X,r ,

so that by taking a sufficiently large r we see that LB∗Q(·) is a contraction mapping
in X. The conclusion of the Lemma follows. �

Uniqueness for the DRE is now a consequence of Lemmas 4.1 and 4.2, its proof
following a somewhat familiar path.
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Proof of Theorem 2.6. For the optimal pair (ŷ, û) corresponding to the initial state
x ∈ Y it holds

(P (s)x, x)Y = J(û) =

∫ T

s

(
‖Rŷ(r)‖2Z + ‖û(r)‖2U

)
dr , 0 ≤ s ≤ T ,

where P (·) is the Riccati operator defined in (2.8), i.e.

P (t)x =

∫ T

t

eA
∗(r−t)R∗RΦ(r, t)x dr , x ∈ Y ,

while Φ(r, t) denotes the evolution operator

Φ(r, t)x = eA(r−t)x+ Ltû(r) , r ∈ [t, T ] .

Let Q(·) ∈ QT be another solution to the DRE (2.10): by Lemma 3.1 Q(·) solves
the IRE (3.1) as well; then, with u ∈ L2(s, T ;U) and x ∈ D(Aε), the identity (4.1)
holds true by Lemma 4.1. With t = T , since Q(T ) = 0, from (4.1) we see that

(Q(s)x, x)Y =

∫ T

s

[
‖Ry(r)‖2Z + ‖u(r)‖2U

]
dr −

∫ T

s

‖u(r) +B∗Q(r)y(r)‖2U dr

≤
∫ T

s

[
‖Ry(r)‖2Z + ‖u(r)‖2U

]
dr = J(u) .

In particular, when u = û, we establish

(Q(s)x, x)Y ≤ J(û) = (P (s)x, x)Y ∀s ∈ [0, T ] , ∀x ∈ D(Aε) . (4.11)

Conversely, let y(·) be the solution to the closed-loop equation (4.9) correspond-
ing to x ∈ D(Aε), guaranteed by Lemma 4.2, and let u(·) = −B∗Q(·)y(·). By
construction u ∈ L2(s, T ;U), and the fundamental identity becomes

(Q(s)x, x)Y =

∫ t

s

(
‖Ry(r)‖2Z + ‖u(r)‖2U

)
dr + (Q(t)y(t), y(t))Y ,

which in turn gives, for t = T ,

(Q(s)x, x)Y = J(u) ≥ J(û) = (P (s)x, x)Y ∀s ∈ [0, T ] , ∀x ∈ D(Aε) . (4.12)

The inequality (4.12), combined with (4.11), establishes – via the usual polarization
(first) and density (next) arguments – Q(s) ≡ P (s) on [0, T ], as desired.

�

4.2. Infinite time interval, algebraic Riccati equations. In this Section we
prove our second main result, that is Theorem 2.10, which pertains to uniqueness for
the algebraic Riccati equation (2.17), under the standing Assumptions 2.8. Instru-
mental results are the counterparts of Lemmas 4.1 and 4.2, along with the integral
form (3.8) of the ARE, already obtained in Section 3; see Lemma 3.2 therein.

The first Lemma is the infinite time horizon version of the fundamental identity
established in Lemma 4.1.

Lemma 4.3 (Fundamental identity (T = +∞)). Recall the class Q defined in
(2.18). Let Q ∈ Q be a solution to the integral Riccati equation (3.8). With u ∈
L2
loc(0,∞;U) and x ∈ D(Aε), let y(·) be the semigroup solution to the state equation
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(2.1) corresponding to u(·), with initial state x, given by (2.2). Then, the following
identity holds true, for any t ≥ 0:

(Qy(t), y(t))Y − (Qx, x)Y

= −
∫ t

0

(
‖Ry(s)‖2Z + ‖u(s)‖2U

)
ds+

∫ t

0

∥∥u(s) +B∗Qy(s)
∥∥2

U
ds .

(4.13)

Proof. It suffices to proceed along the lines of the proof of Lemma 4.1, replacing the
interval [s, t] by [0, t] and assuming initially u ∈ L∞loc(0,∞;U); the proof is actually
slightly simpler, since here Q is independent of t. The details are omitted for the
sake of conciseness. �

The next Lemma is the infinite time horizon version of Lemma 4.2, dealing with
an integral equation which – once uniquenss for the ARE is ascertained – will turn
out to be the closed-loop equation.

Lemma 4.4. Let ε be as in the Assumptions 2.8. Recall the class Q defined by
(2.18), and let Q ∈ Q. For every x ∈ D(Aε) and a suitably large r > 0 there exists
a unique solution y(·) to the closed loop equation

y(t) = eAtx−
∫ t

0

eA(t−s)BB∗Qy(s) ds , t > 0 , (4.14)

in the space

X =
{
y ∈ C([0,∞);D(Aε)) : sup

t≥0
e−rt‖y(t)‖D(Aε) <∞

}
(4.15)

endowed with the norm

‖y‖X,r = sup
t>0

e−rt‖y(t)‖D(Aε) ∀y ∈ X , r > 0 .

Proof. The argument is pretty much the same employed in the proof of Lemma 4.2.
A technically decisive (distinct) element here comes from the extended (and en-
hanced) regularity in time of the operator B∗eA

∗·A∗ε over the half line [0,∞),
which is guaranteed by [4, Proposition 3.2], recalled here as Proposition A.6. The
computation is included for the reader’s convenience.

Let x ∈ D(Aε) be given. By setting E(t) = eAtx, and recalling the input-to-state
map L, the integral equation (4.14) reads as

(
[I + LB∗Q]y(·)

)
(t) = E(t), in short.

For any function y(·) ∈ X and any z ∈ D(A∗ε), we have

|(e−rtLB∗Qy(t), A∗εz)Y =

∣∣∣∣∫ t

0

e−r(t−s)(B∗Qy(s)e−rs, B∗eA
∗(t−s)A∗εz)Y ds

∣∣∣∣
≤
∫ t

0

e−r(t−s)‖B∗Q‖L(D(Aε),U)‖y‖X,r e−δ(t−s) ‖eδ(t−s)B∗eA
∗(t−s)A∗εz‖U ds

≤ ‖B∗Q‖L(D(Aε),U)‖y‖X,r
(∫ t

0

e−(r+δ)(t−s)q′ ds
)1/q′

·

·
(∫ t

0

‖eδ(t−s)B∗eA
∗(t−s)A∗εz‖qU ds

)1/q

≤ 1

[(r + δ)q′]1/q′
‖B∗Q‖L(D(Aε),U) ‖eδ·B∗eA

∗·A∗ε‖L(Y,Lq(0,∞;U)) ‖y‖X,r ‖z‖Y ,
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where δ belongs to the interval (0, ω∧η) (ω and η being like in the Assumptions 2.8).
The above estimate implies readily that there exists a constant C > 0 such that

‖LB∗Qy‖X,r ≤
C

(r + δ)1/q′
‖y‖X,r‖eδ·B∗eA

∗·A∗ε‖L(Y,Lq(0,∞;U))

so that

‖LB∗Qy‖X,r ≤
1

2
‖y‖X,r ,

provided r is sufficiently large. The conclusive argument is standard. �

Proof of Theorem 2.10. Let y0 ∈ Y , and let (ŷ, û) the optimal pair of the optimal
control problem (2.1)-(2.3) (with T = +∞), corresponding to the initial state y0.
Recall that

(Py0, y0)Y = J(û) =

∫ ∞
0

‖Rŷ(s)‖2Z ds+

∫ ∞
0

‖û(s)‖2U ds ,

where the (optimal cost) operator P is defined in terms of the optimal state semi-
group Φ(t) via (2.15). In addition, P belongs to the class Q and solves the ARE
(2.17); consequently, by Lemma 3.2 P solves the integral form (3.8) of the ARE.

Let now Q ∈ Q be another solution to the ARE. By Lemma 4.3, we know
that for any given y0 ∈ D(Aε), and any admissible control u(·), the identity (4.13)
holds true (with x replaced by y0), where y(·) is the solution to the state equation
corresponding to the control u and the initial state y0. Consequently,

(Qy0, y0)Y ≤ (Qy(t), y(t))Y + J(u) ∀u ∈ L2
loc(0,∞;U) , ∀t > 0 ;

by choosing in particular the admissible pair (yT , uT ) defined as follows,

uT = û · χ[0,T ] , yT (t) =

ŷ(t) if t ≤ T

eAty0 + eA(t−T )Lû(T ) if t > T ,

we find (Qy0, y0)Y ≤ (QyT (t), yT (t))Y + J(uT ), valid for arbitrary t ≥ T > 0. By
letting t→ +∞ in the previous inequality, one obtains readily

(Qy0, y0)Y ≤ J(uT ) ∀y0 ∈ D(Aε) ∀T > 0 , (4.16)

in view of the fact that the semigroup eAt decays exponentially; so ‖yT (t)‖Y −→ 0,
as t→ +∞.

Observe now that

J(uT ) =

∫ ∞
0

‖RyT (s)‖2Z ds+

∫ ∞
0

‖uT (s)‖2U ds

=

∫ T

0

‖Rŷ(s)‖2Z ds +

∫ ∞
T

∥∥R(esAy0 + e(s−T )ALû(T )
)∥∥2

ds+

∫ T

0

‖û(s)‖2U ds ,

so that J(uT ) −→ J(û), as T → +∞. Keeping this in mind, return to (4.16) and
let T → +∞ to find

(Qy0, y0)Y ≤ J(û) = (Py0, y0)Y ∀y0 ∈ D(Aε) . (4.17)

On the other hand, given y0 ∈ D(Aε) (and still with Q ∈ Q another solu-
tion to the ARE), let y(·) be the solution to the closed loop equation guaran-
teed by Lemma 4.4; by construction y ∈ L2

loc(0,∞;Y ). Take now the control
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u(·) = −B∗Qy(·), which belongs to L2
loc(0,∞;U). Then, the identity (4.13) holds

true for any positive t, that is

(Qy0, y0)Y = (Qy(t), y(t))Y +

∫ t

0

(
‖Ry(s)‖2Z + ‖u(s)‖2U

)
ds

−
������������∫ t

0

∥∥u(s) +B∗Qy(s)
∥∥2

U
ds ≥

∫ t

0

‖Ry(s)‖2Z ds+

∫ t

0

‖u(s)‖2U ds .

(4.18)

As t → +∞, this shows that Ry ∈ L2(0,∞;Z), u ∈ L2(0,∞;U), as well as
(Qy0, y0)Y ≥ J(u). By minimality we find

(Qy0, y0)Y ≥ J(u) ≥ J(û) = (Py0, y0)Y ∀y0 ∈ D(Aε) . (4.19)

On the basis of (4.17) and (4.19), a standard polarization (first) and density (next)
argument confirms that Q = P , thereby concluding the proof of Theorem 2.10. �

Appendix A. Instrumental results

In this appendix we gather several results (some old, some new) which single out
certain regularity properties – in time and space – of

• the input-to-state map L,
• the operator B∗Q(·), when Q(t) ∈ QT ,
• the operator B∗eA

∗tA∗ε and its adjoint.

All of them stem from the Assumptions 2.3 or 2.8 on the (dynamics and control)
operators A and B. The role played by the assertions of the novel Lemma A.2 and
Lemma A.5 in the proofs of our uniqueness results is absolutely critical.

Initially, it is useful to recall from [2] and [4] the basic regularity properties of the
input-to-state map L. The first result pertains to the finite time horizon problem.
The reader is referred to [2, Appendix B] for the details of the computations leading
to the various statements in the following Proposition.

Proposition A.1 ([2], Proposition B.3). Let Ls be the operator defined by

Ls : u(·) −→ (Lsu)(t) :=

∫ t

s

eA(t−rBu(r) dr , 0 ≤ s ≤ t ≤ T . (A.1)

Under the Assumptions 2.3, the following regularity results hold true.

(1) If p = 1, then Ls ∈ L(L1(s, T ;U), L1/γ(s, T ; [D(A∗ε)]′);
(2) if 1 < p < 1

1−γ , then Ls ∈ L(Lp(s, T ;U), Lr(s, T ;Y )), with r = p
1−(1−γ)p ;

(3) if p = 1
1−γ , then Ls ∈ L(Lp(s, T ;U), Lr(s, T ;Y )) for all r ∈ [1,∞);

(4) if p > 1
1−γ , then Ls ∈ L(Lp(s, T ;U), C([s, T ];Y )).

Moreover, in all cases the norm of Ls does not depend on s.

The space regularity in the last assertion can be actually enhanced. To be more
precise, Ls maps control functions u(·) which belong to Lq

′
(s, T ;U) into functions

which take values in D(Aε) (q′ being the conjugate exponent of q in the Assump-
tions 2.3). We highlight this property – appparently left out of the work [2] – as a
separate result, since it will be used throughout in the paper. The proof is omit-
ted, as it is akin to (and somewhat simpler than) the one carried out to establish
assertion (v) of the subsequent Proposition A.3.
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Lemma A.2. Let ε and q be as in (iii) of the Assumptions 2.3. Then, for the
operator Ls defined in (A.1) we have

Ls ∈ L(Lq
′
(s, T ;U), C([s, T ];D(Aε))) .

A counterpart of Proposition A.1 specific for the infinite time horizon problem
was proved in [4, Proposition 3.6]. The collection of findings on the regularity of
the input-to-state map L is recorded here for the reader’s convenience.

Proposition A.3 ([4], Proposition 3.6). Let L be the operator defined by

L : u(·) −→ (Lu)(t) :=

∫ t

0

eA(t−rBu(r) dr , t ≥ 0 .

Under the Assumptions 2.8, the following regularity results hold true.

(i) L ∈ L(L1(0,∞;U), Lr(0,∞; [D(A∗ε)]′), for any r ∈ [1, 1/γ);
(ii) L ∈ L(Lp(0,∞;U), Lr(0,∞;Y )), for any p ∈ (1, 1/(1 − γ)) and any r ∈

[p, p/(1− (1− γ)p)];

(iii) L ∈ L(L
1

1−γ (0,∞;U), Lr(0,∞;Y )), for any r ∈ [1/(1− γ),∞);
(iv) L ∈ L(Lp(0,∞;U), Lr(0,∞;Y )∩Cb([0,∞);Y )), for any p ∈ (1/(1−γ),∞)

and any r ∈ [p,∞);
(v) L ∈ L(Lr(0,∞;U), Cb([0,∞);D(Aε)), for any r ∈ [q′,∞].

Because they occur in the present work, besides being central to the analysis of
[4], we need to recall the Lp-spaces with weights. Set

Lpg(0,∞;X) :=
{
f : (0,∞) −→ X , g(·)f(·) ∈ Lp(0,∞;X)

}
,

where g : (0,∞) −→ R is a given (weight) function. We will use more specifically
the exponential weights g(t) = eδt, along with the following (simplified) notation:

Lpδ(0,∞;X) :=
{
f : (0,∞) −→ X , eδ·f(·) ∈ Lp(0,∞;X)

}
.

Remark A.4. As pointed out in [4, Remark 3.8], all the regularity results pro-
vided by the statements contained in the Propositions A.1 and A.3 extend readily
to natural analogues involving Lpδ spaces (rather than Lp ones), maintaining the
respective summability exponents p.

We now move on to a result which clarifies the regularity of the operator B∗Q(·),
Q(t) ∈ QT , when acting upon functions (with values in D(Aε)) rather than on
vectors – namely, on elements of the space D(Aε).

Lemma A.5. Let ε be as in (iii) of the Assumptions 2.3. If Q(·) ∈ QT and
f ∈ C([0, T ];D(Aε)), then

B∗Q(·)f(·) ∈ C([0, T ];U) .

Proof. We proceed along the lines of the proof of [2, Lemma A.3]. Let Q(·) ∈ QT
and let t0 ∈ [0, T ]. By the definition of QT , there exists c1 > 0 such that

‖B∗Q(t)z‖U ≤ c1‖z‖D(Aε) ∀t ∈ [0, T ] , ∀z ∈ D(Aε) . (A.2)

Since f(t0) ∈ D(Aε), then B∗Q(·)f(t0) ∈ C([0, T ];U). Then

‖B∗Q(t)f(t)−B∗Q(t0)f(t0)‖U
≤ ‖B∗Q(t)[f(t)− f(t0)]‖U + ‖B∗Q(t)f(t0)−B∗Q(t0)f(t0)‖U
≤ c1‖f(t)− f(t0)‖D(Aε) + ‖[B∗Q(t)−B∗Q(t0)]f(t0)‖U = o(1) , t −→ t0 .
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�

Essential as well in this work, and more specifically in the proof of Theorem 2.10,
is a stronger property of the operator B∗eA

∗·A∗ε, namely, (A.3) below, which holds
true for appropriate δ, under the Assumptions 2.8. Originally devised in [4], this
result reveals that once the validity of iiic) of Assumptions 2.3 is ascertained on
some bounded interval [0, T ], then the very same regularity estimate extends to the
half line, along with an enhanced summability of the function B∗eA

∗·A∗εx, x ∈ Y .
The key to this is the exponential stability of the semigroup, i.e. (2.12); see [4,
Proposition 3.2].

Proposition A.6 ([4], Proposition 3.2). Let ω, η and ε like in the Assumptions 2.8.
For each δ ∈ (0, ω ∧ η) the map

t −→ eδtB∗eA
∗tA∗ε

has an extension which belongs to L(Y,Lq(0,∞;U)). In short,

B∗eA
∗·A∗ε ∈ L(Y,Lqδ(0,∞;U)) . (A.3)

We conclude providing a result that takes a more in-depth glance at the regularity
of the operator B∗eA

∗tA∗ε and its adjoint.

Lemma A.7. Under the Assumptions 2.8, the following regularity results are valid,
for any δ ∈ (0, ω ∧ η):

a) eδ·AεeA·B ∈ L(Lq
′
(0,∞;U), Y ) ,

b) eδ·B∗eA
∗·A∗−ε ∈ L(Lr(0,∞;Y ), U) ∀r > 1

1− γ
.

(A.4)

The respective actions of the operators in (A.4) are made explicit by (A.5) and
(A.6).

Proof. The regularity results in (A.4) are, in essence, dual properties of the regu-
larity result in Proposition A.6 and of assertion A6. in Theorem 2.9, respectively.
To infer (a), we introduce the notation S for the mapping from Y into Lq(0,∞;U)
defined by

Y 3 z −→ [Sz](t) := eδtB∗eA
∗tA∗εz , t > 0 .

For any z ∈ Y and any h ∈ Lq′(0,∞;U), it must be S∗ ∈ L(Lq
′
(0,∞;U), Y ) and

more precisely,

〈S∗h, z〉Y = 〈h, Sz〉Lq′ (0,∞;U),Lq(0,∞;U) =

∫ ∞
0

〈
h(t), eδtB∗eA

∗tA∗εz
〉
U
dt

=
〈∫ ∞

0

eδtAεeAtBh(t) dt, z
〉
Y
.

Therefore,

S∗h =

∫ ∞
0

eδtAεeAtBh(t) dt , h ∈ Lq
′
(0,∞;Y ) . (A.5)

To achieve (b) of (A.4), we recall instead the assertion A6. in Theorem 2.9, which
further tells us that

eδ·A−εeA·B ∈ L(U,Lp(0,∞;Y )) , for any p such that 1 ≤ p < 1

γ
.
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Similarly as above, we introduce the notation T for the mapping from U into
Lp(0,∞;Y ) defined by

U 3 w −→ [Tw](t) := eδtA−εeAtBw , t > 0 ;

by construction, T ∗ ∈ L(Lp
′
(0,∞;Y ), U) for all p′ > 1/(1− γ). More precisely, for

any w ∈ U and any g ∈ Lp′(0,∞;Y ) we have

〈T ∗g, w〉U = 〈g, Tw〉Lp′ (0,∞;Y ),Lp(0,∞;Y ) =

∫ ∞
0

〈
g(t), eδtA−εeAtBw

〉
Y
dt

=
〈∫ ∞

0

eδtB∗eA
∗tA∗−εg(t) dt, w

〉
U
,

which establishes

T ∗g =

∫ ∞
0

eδtB∗eA
∗tA∗−εg(t) dt . ∀g ∈ Lp

′
(0,∞;Y ) . (A.6)

The integrals in (A.5) and (A.6) are the sought respective representations of the
adjoint operators in (A.4).

�
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