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AN OPTIMAL CONTROL PROBLEM FOR MAXWELL’S

EQUATIONS

FRANCESCA BUCCI AND MATTHIAS ELLER

Abstract. This article is concerned with the optimal boundary control of the
Maxwell system. We consider a Bolza problem, where the quadratic functional to
be minimized penalizes the electromagnetic field at a given final time. Since the
state is weighted in the energy space topology – a physically realistic choice –,
the property that the optimal cost operator does satisfy the Riccati equation (RE)
corresponding to the optimization problem is missed, just like in the case of other
significant hyperbolic partial differential equations; however, we prove that this
Riccati operator as well as the optimal solution can be recovered by means of ap-
proximating problems for which the optimal synthesis holds via proper differential
Riccati equations. In the case of zero conductivity, an explicit representation of the
optimal pair is valid which does not demand the well-posedness of the RE, instead.

1. Introduction and main result

In this note we consider the evolution of the electromagnetic field y = (e, h) in a
bounded, open, and connected set Ω with a C1,1 boundary Γ = ∂Ω. This evolution
is governed by Maxwell’s equations

εet −∇× h+ σe = 0

µht +∇× e = 0
in Q = (0, T )× Ω , (1.1)

and augmented by initial conditions

(e, h)(0) = (e0, h0) = y0 in Ω , (1.2)

and the boundary condition

ν × h = g in Σ := (0, T ) × Γ . (1.3)

Throughout the electric permittivity ε and the magnetic permeability µ are 3 × 3
real-symmetric, uniformly positive definite matrix functions with elements in the
Sobolev space W 1,∞(Ω) and the conductivity σ is a real-symmetric, non-negative
definite matrix function with entries in L∞(Ω). Note that all coefficients are time-
independent. The exterior unit normal vector along Γ is denoted by ν. Note that the
vector ν × h is a tangential vector field, that is the inner product 〈ν, ν × h〉 = 0 for
continuous h. Hence, g is usually assumed to be a tangential vector field, for example

g ∈ L2
tan(Σ) =

{
g ∈ L2(Σ,C3) : 〈ν, g〉 = 0 a.e. on Γ

}
.

This boundary datum is acting as a control function and the goal is to minimize the
state of the electromagnetic field at final time T . On the state space

Y = L2(Ω,C6) (1.4)
1
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2 FRANCESCA BUCCI AND MATTHIAS ELLER

we introduce the inner product

(y, z)Y = (y1, εz1)L2(Ω) + (y2, µz2)L2(Ω) . (1.5)

In order to guarantee a unique solution to the initial-boundary value problem (IBVP)
(1.1)-(1.2)-(1.3) in C([0, T ], Y ), we need g ∈ L2(0, T ;U), where

U = H
1/2
tan (Γ), (1.6)

see Proposition 2.2. Hence, we will consider the cost functional

J(g) = JT (g) = α

∫ T

0
‖g(t, ·)‖2U dt+ ‖y(T, ·)‖2Y (1.7)

with Y and U as specified in (1.4) and (1.6), respectively, and where α > 0 is a
parameter.

While there is an established literature regarding the optimal control of linear evo-
lution equations with quadratic cost functionals, there are only few results concerning
the dynamic Maxwell equations [19, 13, 12]. The optimal boundary control of hyper-
bolic problems has been discussed in the classical literature (see [4], [15]) and it is
an accepted fact that the synthesis of the optimal solution is a much more delicate
problem in the case of systems governed by hyperbolic partial differential equations
(PDE) than in the case of parabolic PDE.

Parabolic (and parabolic-like) evolutions have better regularity properties, which
is helpful at many steps of the analysis. These play a particularly critical role in
relation to the well-posedness of the Riccati equations corresponding to the optimiza-
tion problem. A rough theoretical explication in the realm of functional analysis and
operator theory is the following one: the very same definition (then, the regularity)
of the gain operator B∗P (t) that occurs in the quadratic term of the Riccati equation
(see (1.14)) is strongly influenced by the regularity of the operator B∗etA

∗

, where
B∗ is intrinsically unbounded in the case of boundary or point control, while etA

∗

is a C0-semigroup in a Hilbert space Y . Analytic semigroups provide the valuable
feature of somehow ‘compensating’ the unboundedness of B because of its structure.
It is important to recall that this may be true as well in the case of certain problems
associated with systems of coupled hyperbolic-parabolic PDE, even in the absence of
analyticity of the overall semigroup; see [14], [1, 2], [3] and the references therein.

The linear-quadratic problem for hyperbolic PDE is discussed at length in the
monograph [15, Vol. II, Ch. 8-10], under a distinctive assumption on the linear oper-
ators A and B that describe the controlled dynamics y′ = Ay + Bg. This inequality
– recorded explicitly and discussed in Remark 2.5, see (2.11) –, corresponds to a
(boundary) regularity estimate, specific to either PDE problem; this explains why
it is termed in the literature “abstract trace regularity” condition (or “admissibility
condition”). Hyperbolic systems of first-order are discussed in some generality. How-
ever, in the chosen illustration the boundary condition satisfies the Kreiss-Sakamoto
condition and the (lateral) boundary is non-characteristic. Also, a recurring feature
is that the observation/weighting operators C and G that occur in the quadratic
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functional to be minimized, that is (in its general abstract form)

J(g) =

∫ T

0

(
‖Cy(t)‖2Z + ‖g(t, ·)‖2U dt

)
+ ‖Gy(T )‖2Y , (1.8)

are assumed to be suitably smoothing; see [15, Vol. II, Ch. 8-10]. This allows to
establish the well-posedness of the differential Riccati equation thereby achieving a
full synthesis1 of the optimal control. (To understand this point, one needs once again
to take into account how the optimal cost operator P (t) depends on etA

∗

C∗C and
etA

∗

G∗G; see e.g. the formula (4.1) (wherein C = 0). The gain operator B∗P (t) will
depend on B∗etA

∗

C∗C and B∗etA
∗

G∗G accordingly.)

The Maxwell system under consideration does not fit into the general framework
for two reasons. The boundary condition is conservative in the sense of [7, Definition
1.1] and does not satisfy the Kreiss-Sakamoto condition. Furthermore, our weighting
operator in (1.7) is not smoothing: we aim at allowing, e.g., G = I. Indeed, the
consideration of a functional where the state is observed in the energy space topology
is a physically realistic choice.

The Kreiss-Sakamoto condition is necessary and sufficient for the well-posedness
of the initial-boundary value problem in C([0, T ], L2(Ω)) with initial data in L2(Ω)
and boundary data in L2(Σ), and for the L2-regularity of the traces of the solution
on the lateral boundary [11, 16, 6]. Furthermore, under these conditions there is a
regularity theory: more regular initial data and boundary data result in more regular
solutions and traces [17]. The two works by Lagnese [12] and Lagnese and Leugering
[13] discuss the optimal control of Maxwell’s equation by means of the so-called
impedance boundary condition which satisfies the Kreiss-Sakamoto condition. The
work by Yousept [19] uses an internal control; in this case no regularity issues arise.

In order to obtain well-posedness for the initial-boundary value problem (1.1)-(1.3)
in C([0, T ], L2(Ω)), one needs extra space regularity of the boundary data and does
not obtain good trace regularity [7]. The regularity theory in this case is also not a
simple matter and has been completed only rather recently [18]. We summarize these
results below in Proposition 2.1. With this result in hand we discuss the optimal
control problem following largely the established path in the literature. Starting with
the existence and the uniqueness of the open-loop optimal solution, we move to the
feedback control in closed-loop form and discuss the Riccati theory. The outcomes
are detailed in Theorem 1.2 below: a feedback representation of the unique optimal
control is valid, with a gain operator that is well-defined on the optimal state; however,
in the absence of well-posedness of the Riccati equation – which would bring about
its unique solution P (t), entering into the said formula – the optimal control (as well
as P (t)) is attained only via an approximation procedure.

Lastly, we confine ourselves to a Maxwell system with zero conductivity2. As
we will see later, in this case the work of Flandoli [10] allows to obtain P (t) as a
result of the well-posedeness of the dual Riccati equation. This is true for quadratic

1It will be made clear during the analysis that the fact that B∗

P (t) is well-defined on the optimal
evolution and thus giving sense to the feedback formula is one thing; the property that B

∗

P (t) is
bounded on the state space Y (or at least on a dense subset of it) is another.

2This means that the region Ω is filled with material which is not a conductor.
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functionals to be minimized in the general form (1.8), while in particular in the case of
our functional (1.7) the optimal solution is determined even more straightforwardly.

While our focus is on Maxwell equations, our approach can serve as an example of
other optimal control problems for hyperbolic systems subject to a boundary control
action exerted through a conservative boundary condition. We expect that the opti-
mal control of the linear elastic wave equations with a control of the traction on the
boundary can be analyzed in a similar fashion.

1.1. Main results. For expository purposes, the principal outcomes of this work
are gathered (in this introduction) in a unique result, that is Theorem 1.2 below,
pertaining to the Maxwell system (1.1) with non-trivial matrix σ.

We introduce the family of functionals

Js(g) = α

∫ T

s
‖g(t, ·)‖2U dt+ ‖y(T, ·)‖2Y (1.9)

with s varying in [0, T ); the relative optimal control problem is formulated accord-
ingly.

Problem 1.1 (Parametric optimal control problem). Given y0(·) ∈ Y , min-
imize the functional (1.9) overall g ∈ L2(s, T ;U), with y(t, x) subject to (1.1)-(1.3)
corresponding to a boundary control function g(t, x) and to a datum y0(·) at the initial
time s ∈ [0, T ).

Theorem 1.2 (Main result). With reference to Problem 1.1, the following statements
hold true for any s ∈ [0, T ).

S1. For each y0 ∈ Y there exists a unique optimal pair (ĝ(·, s, y0), ŷ(·, s; y0)) which
satisfies

ĝ(·, s, y0) ∈ L2(s, T ;U) , ŷ(·, s; y0) ∈ C([s, T ], Y ) . (1.10)

S2. Given t ∈ [s, T ], the linear bounded operator Φ(t, s) : Y −→ Y defined by

Φ(t, s)y0 := ŷ(·, s, y0) (1.11)

is an evolution operator, namely, it satisfies the transition property

Φ(t, t) = I , Φ(t, s) = Φ(t, τ)Φ(τ, s) for s ≤ τ ≤ t ≤ T .

S3. There exists a linear bounded operator P (s) on Y defined in terms of the
optimal evolution and of the data of the problem (see (4.1), which reduces to
(3.17) when G = I), such that the optimal cost is given by

Js(ĝ) =
(
P (s)y0, y0

)

Y
. (1.12)

P (t) is a non-negative self-adjoint operator in Y , for any t ∈ [0, T ]; it belongs
to Cs([0, T ], Y ), to wit, the map z −→ P (t)z is continuous for each z ∈ Y .

S4. The optimal control admits the following feedback representation

ĝ(t, s, y0) = −B∗P (t)ŷ(t, s, y0) , (1.13)

with ŷ(·) given by (1.11).
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S5. The operator P (t) in S3. is a solution to the Cauchy problem associated with
the differential Riccati equation






d
dt

(
P (t)x, y

)

Y
+

(
P (t)x,Ay

)

Y
+

(
Ax,P (t)y

)

Y

−
(
B∗P (t)x,B∗P (t)y

)

U
= 0 , x, y ∈ D(A) , t ∈ [0, T )

P (T ) = I

(1.14)
in a generalized sense (only): to wit, there exists a sequence of operators
{Pn(·)}n ∈ L(Y ) such that

• Pn(t) solves (1.14), with the gain operator B∗Pn(t) which is bounded (for
all n),

• the asymptotic result

‖Pn(·)z − P (·)z‖Y −→ 0 in C([0, T ], Y ), for all z ∈ Y

holds.

If σ = 0 in the Maxwell’s system (1.1), while all of the statements in Theorem 1.2
are still valid, we may actually make use of the work [10] where the optimal cost (or
Riccati) operator P (t) is shown to be the inverse of the unique solution Q(t) to the
Cauchy problem associated with the dual Riccati equation, which reads (in its full
form) as






d
dt

(
Q(t)x, y

)

Y
=

(
Q(t)x,A∗y

)

Y
+

(
A∗x,Q(t)y

)

Y
−

(
B∗x,B∗y

)

U

+
(
CQ(t)x,CQ(t)y

)

Y
= 0 , x, y ∈ D(A∗) , t ∈ [0, T )

Q(T ) = (G∗G)−1 .

(1.15)

Furthermore, as we will see later, the work [10] provides a distinct open-loop repre-
sentation formula for the optimal solution.

Remark 1.3. We note here that the well-posedeness of (1.15) can be established more
readily owing to the fact that the operator C which occurs in the quadratic term is
bounded; see e.g. [10, Theorem 2.1.1] or [15, Theorem 9.6.2.4]. We emphasize at the
outset that in the case where C = 0, the equation in (1.15) is not even quadratic.

The special case σ = 0 will be discussed in greater detail in Section 5; the corre-
sponding findings are collected in Proposition 5.2. For the reader’s convenience and
the sake of completeness we will provide a statement which covers cost functionals
that display non-trivial (and non-smoothing) weighting operators C and G (see (1.8)),
while the weighting operator G is further assumed to be invertible. Of course the
above encompasses the specific case of interest C = 0, G = I; however, the respective
result will be explicitly specified.

1.2. An outline of the paper. In the next section we begin by setting up the well-
posedness of the IBVP (1.1)-(1.2)-(1.3) from the natural PDE perspective first (see
Proposition 2.1), and next from a functional-analytic (operator-theoretic) one; see
the sections 2.1.1 and 2.2.2). Both viewpoints are key to our analysis.
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The optimal control problem is considered in Section 3, where we show that the
sought outcomes stated as S1.-S4. of Theorem 1.2 hold. Although the line of argument
is classical, there is some step where the low regularity of the weighting operator G
demands a careful analysis. What is left unachieved is the property that the gain
operator B∗P (t) (P (t) being the optimal cost operator) – which is well-defined on
the optimal evolution, thus giving sense to the feedback formula in S4. – is bounded
on the state space Y (or at least on a dense subset of it).

Thus, in Section 4 we introduce a sequence of optimization problems for which
the optimal synthesis holds true via proper differential Riccati equations, with the
Riccati operator as well as the optimal solution (of the original problem) recovered in
the limit. This is accomplished in Proposition 4.2, thereby establishing the statement
S5. of Theorem 1.2.

Finally, Section 5 focuses on the same problem under the assumption that the
conductivity is zero. In this case, while all the statements of Theorem 1.2 remain
true, a distinct sharper result is valid, that is Proposition 5.2.

An additional proof of the valuable fact that P (t) is an isomorphism is provided a
priori in Proposition 5.1, independently of the results in [10].

2. On well-posedness of Maxwell’s equations

In this section we discuss and assess the well-posedness of the IBVP (1.1)-(1.2)-
(1.3) (with non-trivial initial and boundary data) in a chosen functional setting, as
this is a key prerequisite to the study of the associated optimal control problems.
We first recall a critical well-posedness result, whose proof was carried out within the
realm of hyperbolic systems theory and entailed para-differential calculus. This result
is then interpreted within a functional-analytic framework via operator semigroup
theory. Since both perspectives are useful in our investigation, the (respective) needed
elements are introduced and detailed below.

2.1. A major well-posedness result. Weak solutions. The boundary condition
(1.3) is conservative in the sense of [7, Definition 1.1]. Hence, we have the follow-
ing well-posedness result for the IBVP (1.1)-(1.2)-(1.3) which is an application of
Theorem 1.4 in [7] and Theorem 1.1 in [18].

Proposition 2.1. For g ∈ L2(0, T ;H
1/2
tan (Γ)) and y0 ∈ Y there exists a unique weak

solution y ∈ C([0, T ], Y ) such that

ν × e
∣
∣
Σ
∈ L2(0, T ;H

−1/2
tan (Γ)) .

For g ∈ L2(0, T ;H
3/2
tan (Γ)) ∩ H1(0, T ;H

1/2
tan (Γ)) and y0 ∈ H1(Ω,C6) satisfying the

compatibility condition g(0) = ν×y0 on Γ there exists a unique differentiable solution
y ∈ C([0, T ],H1(Ω,C6)).
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The weak solution satisfies the identity

(e, ε∂tz1 −∇× z2 − σz1)L2(Q) + (h, µ∂tz2 +∇× z1)L2(Q)

= (e(T ), εz1(T ))L2(Ω)−(e0, εz1(0))L2(Ω)+(h(T ), µz2(T ))L2(Ω)−(h0, µz2(0))L2(Ω)

− (g, z1)L2(Σ) − (e, ν × z2)L2(Σ)

for all z = (z1, z2) ∈ H1(Q,C6). With y = (e, h), recalling the inner product (1.5) in
Y , the above identity for the weak solution is rewritten as

(e, ε∂tz1 −∇× z2 − σz1)L2(Q) + (h, µ∂tz2 +∇× z1)L2(Q)

= (y(T ), z(T ))Y − (y0, z(0))Y − (g, z1)L2(Σ) − (e, ν × z2)L2(Σ) . (2.1)

2.1.1. The operator underlying the free dynamics. Mild and strict solutions. We also
discuss briefly the IBVP with homogeneous boundary data, i.e. with g ≡ 0. Then it
is convenient to use semigroup theory in order to obtain solutions of higher regularity.
In the state space Y (recall (1.4)) we define the following unbounded operator A:







D(A) = H(curl,Ω)×H0(curl,Ω)

Ay =

[

ε−1∇× y2 − ε−1σy1

−µ−1∇× y1

]

,
(2.2)

where

H(curl,Ω) =
{
u ∈ L2(Ω,C3) : ∇× u ∈ L2(Ω,C3)

}

with the norm ‖u‖2H(curl,Ω) = ‖u‖2Ω + ‖∇ × u‖2Ω. An important fact is that the trace

mappings

u 7−→ ν × u
∣
∣
Γ

and u 7−→ utan
∣
∣
Γ

which are defined for continuous functions extend to continuous linear operators from
H(curl,Ω) onto

H−1/2(divΓ) =
{
w ∈ H

−1/2
tan (Γ): divΓw ∈ H−1/2(Γ)} ,

and from H(curl,Ω) onto

H−1/2(curlΓ) = {w ∈ H
−1/2
tan (Γ): curlΓw ∈ H−1/2(Γ)} ,

respectively. The space H0(curl,Ω) is a closed subspace of H(curl,Ω) defined by

H0(curl,Ω) = {u ∈ H(curl,Ω): ν × u = 0 on Γ} .
For a good introduction into these function spaces we refer to the book by Cessenat
[5]. Given z ∈ D(A) we denote the tangential trace on Γ of the first component
function z1 by z1,tan.

The adjoint operator A∗ is computed readily: we have

A∗z =

[−ε−1∇× z2 − ε−1σz1

µ−1∇× z1

]

, (2.3)

with D(A∗) ≡ D(A) = H(curl,Ω)×H0(curl,Ω).
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Semigroup theory allows to establish the well-posedness of the Cauchy problem
{

y′ = Ay t > 0

y(0) = y0
(2.4)

via the Lumer-Phillips Theorem.
Although the result is probably well known, for the readers’ convenience we collect

the pertinent statements in the following proposition, referring e.g. to [8, Proposi-
tion 1] for the proof. Recall that the solutions corresponding to initial data y0 in the
state space Y are intended in a mild sense. When y0 ∈ D(A), then the correspond-
ing solution y(t) = etAy0 is strict; to wit, it indeed belongs to C([0,∞),D(A)) ∩
C1([0,∞), Y ).

Proposition 2.2. The operator A defined by (2.2) is the generator of a strongly
continuous contraction semigroup St = etA in Y , t ≥ 0. Then, for any y0 ∈ Y there
exists a unique mild solution y(t) = etAy0 to the Cauchy problem (2.4) (and hence to
the IBVP problem (1.1)-(1.2)-(1.3) with g ≡ 0); then, y ∈ C([0,∞), Y ).

If y0 ∈ D(A) the unique solution is strict, namely,

y ∈ C([0,∞),D(A)) ∩C1([0,∞), Y ) .

2.2. The input-to-state map, the control operator. Direct inequality. Con-
sider the bounded operator L which maps the boundary data g to the solution of the
IBVP (1.1)-(1.2)-(1.3) with initial data zero. We denote by

LT : L
2(0, T ;U) −→ Y

the bounded operator which maps the boundary data g to (Lg)(T ), that is the solution
of the IBVP (1.1)-(1.2)-(1.3) with initial data zero at time T ; then LT g := (Lg)(T ).

In order to describe its adjoint L∗
T we fix a scalar product in U = H

1/2
tan (Γ). In the

following we will set

(f, g)U = (
√

−∆Γf, g)L2(Γ) , (2.5)

where −∆Γ denotes the Laplace-Beltrami operator on Γ. The Laplace-Beltrami op-
erator is known to be positive and self-adjoint, hence its square root

√
−∆Γ is given

by the functional calculus for these operators.

Proposition 2.3. The operator L∗
T : Y → L2(0, T ;U) is given by the formula

L∗
T p = (−∆Γ)

−1/2[eA
∗(T−·)p]1,tan , p ∈ Y . (2.6)

Proof. Recall that y0 = (e0, h0) = 0. From the definition of the weak solution we see
that

(LT g, p)Y = (y(T ), p)Y = (g, z1)L2(Σ)

whenever z ∈ H1(Q,C6) satisfies the system

ε∂tz1 −∇× z2 − σz1 = µ∂tz2 +∇× z1 = 0 in Q,
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with final data z(T ) = p and the boundary condition ν × z2 = 0 on Σ. Using the

adjoint semigroup of etA we can write z(t) = e(T−t)A∗

p. Of course, Propositions 2.1
and 2.2 apply to this system. Hence, we have shown that

(LT g, p)Y = (y(T ), p)Y = (g, [eA
∗(T−·)p]1,tan)L2(Σ) ∀p ∈ H1(Ω,C6) ∩ D(A) .

By density this formula is also valid for all p ∈ Y and the formula (2.6) for the adjoint
operator is proved in view of (2.5). �

2.2.1. The Green map. We define a linear operator G : H
1/2
tan (Γ) → H(curl,Ω)2 by

setting Gg = y where y = (y1, y2) is the solution to the boundary value problem

εy1 −∇× y2 + σy1 = 0

µy2 +∇× y1 = 0
in Ω

with

ν × y2 = g in Γ .

Proposition 2.4. The operator G : H
1/2
tan (Γ) → H(curl,Ω)2 is continuous.

Proof. On H(curl,Ω) we introduce the continuous bilinear form

a(y1, z1) =

∫

Ω
〈µ−1∇× y1,∇× z1〉+ 〈(ε+ σ)y1, z1〉 dx

and the continuous linear functional

l(z1) =

∫

Γ
〈g, z1,tan〉 dΣ .

Since the bilinear form is coercive, that is a(y, y) & ‖y1‖2H(curl,Ω), by the Lax-Milgram

lemma the exists a unique solution y1 ∈ H(curl,Ω) such that

a(y1, z) = l(z) for all z ∈ H(curl,Ω);

with this very same y1, define

y2 = −µ−1∇× y1 .

Then y2 ∈ Y and choosing z1 ∈ C1
0(Ω,R

3) we see that y1 is a weak solution to

εy1 −∇× y2 + σy1 = 0 ,

whence y2 ∈ H(curl,Ω).
The only thing remaining is to verify the boundary conditions. Suppose z1 ∈

H1(Ω,C3). Then

−
∫

Ω
〈y2,∇× z1〉 − 〈(ε+ σ)y1, z1〉 dx =

∫

Γ
〈g, z1,tan〉 dσ

and after performing integration by parts in the first integral and using (ε + σ)y1 −
∇× y2 = 0, we see that

∫

Γ
〈ν × y2, z1,tan〉 dσ =

∫

Γ
〈g, z1,tan〉 dσ ,

which verifies the boundary condition. �
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2.2.2. The control operator B. Exploiting the density of D(A) in Y , we can extend
the operator A as a continuous operator from Y into [D(A∗)]′ ≡ [D(A)]′ by defining
Aexty ∈ [D(A)]′ for y ∈ Y by setting

(Aexty, z)Y = (y,A∗z)Y z ∈ D(A∗) .

The extended operator is an unbounded operator on the Hilbert space [D(A)]′, with
D(Aext) = Y ; it is the generator of a strongly continuous contraction semigroup etAext

on [D(A)]′, which is an extension of the semigroup etA (and will be often denoted by
the same symbol).

The control operator B is defined by

B = (I −A)G (2.7)

and maps continuously from U = H
1/2
tan (Γ) into [D(A)]′. Accordingly, its adjoint B∗

is a continuous operator from D(A) into H
1/2
tan (Γ).

Since (I − A(x, ∂))Gg = 0, where A(x, ∂) denotes the operator which acts like A
but on the maximal domain H(curl,Ω)2, the IBVP (1.1)-(1.2)-(1.3) can be rewritten
as







yt = (A− I)(y − Gg) + y in Q

y(0, ·) = y0(·) in Ω

ν × (y − Gg) = 0 on Σ.

Using the extension of A discussed above, we find that the original IBVP (1.1)-(1.2)-
(1.3) can be recasted as the Cauchy problem

{

y′ = Ay +Bg 0 < t < T

y(0) = y0 ∈ Y ,
(2.8)

the control system y′ = Ay +Bg initially is meant in the space [D(A)]′.
As g ∈ L2(0, T ;U), we have Bg ∈ L2((0, T ), [D(A)]′) and hence the mild solution

of problem (2.8), that is

y(t) = etAy0 +

∫ t

0
e(t−s)ABg(s) ds

︸ ︷︷ ︸

(Lg)(t)

, (2.9)

satisfies (a priori) y ∈ C([0, T ], [D(A)]′). However, in view of Proposition 2.1 we know
that the convolution term (Lg)(·) possesses an actually better (spatial) regularity –
which is then inherited by y(·). This property is central to the study of the associated
optimal control problems. For clarity, we render explicit this issue and expand briefly
on it in the following

Remark 2.5. With the dynamics and control operators A and B defined by (2.2)
and (2.7), respectively, let L be the input-to-state map defined by

L : L2(0, T ;U) ∋ g −→ (Lg)(·) :=
∫ ·

0
e(·−s)ABg(s) ds .
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Thanks to Proposition 2.1, we know that

L ∈ L(L2(0, T ;U), C([0, T ], Y )) . (2.10)

Consequently, the estimate

∃ cT > 0:

∫ T

0
‖B∗etA

∗

x‖2U dt ≤ cT ‖x‖2Y ∀x ∈ D(A) (2.11)

(known in the literature as “abstract trace regularity” or “admissibility condition”)
holds true; it corresponds to the property

the operator B∗e·A
∗

admits a continuous extension from Y to L2(0, T ;U)

For further details and references we direct the reader to [15, Section 7.1]; the equiv-
alence between the conditions (2.11) and (2.10), in particular, is proved in Theo-
rem 7.2.1 (set p = q = 2 and identify Y ∗ with Y as well as U∗ with U).

The action of B∗ as a trace operator is made precise in the following result.

Proposition 2.6. For z ∈ D(A) we have B∗z = (−∆Γ)
−1/2z1,tan.

Proof. We start with

(B∗z, g)Γ = ((I −A∗)z, y)Y ,

where y = Gg. Then using the definition (2.3) of A∗ and integration by parts we
compute

((I −A∗)z, y)Y =

∫

Ω
〈εαz1 +∇× z2 + σz1, y1〉+ 〈µαz2 −∇× z1, y2〉 dx

=

∫

Ω
〈z1, εαy1 −∇× y2 + σy1〉+ 〈z2, µαy2 +∇× y1〉 dx

+

∫

Γ
〈ν × z2, y1〉 − 〈ν × z1, y2〉 dS

=(z1,tan, g)Γ = (
√

−∆Γz1,tan, g)U

where we made use of y = Gg. �

3. The optimal control problem: The case U = H
1/2
tan (Γ)

For expository purposes, the main results of this paper have been collected in
aggregate form in the introduction, as statements of Theorem 1.2. This Section is
devoted to the proofs of the statements S1, S2, S3. and S4. of Theorem 1.2. Starting
from the existence of a unique open-loop optimal solution to the optimization problem,
in this section we provide the details of the steps bringing about the closed-loop
representation of the optimal control. Although our line of argument retraces a well-
established one carried out in literature, we provide in particular an accurate version
of a proof that is specific to the Bolza problem for hyperbolic (or hyperbolic-like)
equations, in the absence of smoothing observations. This pertains to the regularity
of the evolution map Φ(t, s) (defined below in (3.7)) with respect to the parameter s,
which is key to the regularity of the optimal cost operator P (s).
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3.1. The open-loop optimal solution. The unique mild solution to the abstract
Cauchy problem (2.8) at final time T can be written in the form

y(T ) = eTAy0 + LT g

for y0 ∈ Y and g ∈ L2(0, T ;U). For y0 ∈ Y we have

J(g) = α

∫ T

0
‖g(t)‖2U dt+ ‖y(T )‖2Y .

Using the adjoint L∗
T : L

2(Ω) → L2(0, T ;U) we have for g ∈ L2(0, T ;U) and y0 ∈ Y

J(g) = α

∫ T

0
(g, g)U dt+ (eTAy0 + LT g, e

TAy0 + LT g)Y

=

∫ T

0
([αI + L∗

TLT ]g, g)U + 2ℜ
∫ T

0
(L∗

T e
TAy0, g)U dt+ ‖eTAy0‖2Y .

Hence, with the choice

ĝ(·) = −Λ−1
T L∗

T e
TAy0 ∈ L2(0, T ;U) , (3.1)

where ΛT = αI + L∗
TLT is positive self-adjoint, and continuously invertible with

‖Λ−1
T ‖ ≤ α−1, we have

J(g) =

∫ T

0
(ΛT g, g)U dt− 2ℜ

∫ T

0
(ΛT ĝ, g)U dt+ ‖eAT y0‖2Y

and we observe that J attains its unique minimum at ĝ since

J(g) − J(ĝ) =

∫ T

0
(ΛT g, g)U dt− 2ℜ

∫ T

0
(ΛT ĝ, g)U dt+

∫ T

0
(ΛT ĝ, ĝ)U dt

=

∫ T

0
(ΛT [g − ĝ], g − ĝ)U dt > 0

for all g 6= ĝ.

3.2. Closed-loop form of the optimal control. Let 0 ≤ s < T . We introduce the
parametrized family of optimal control problems, where the goal is now to minimize
the functional

Js(g) = JT,s(g) = α

∫ T

s
‖g(t)‖2U + ‖y(T, s, y0)‖2Y (3.2)

overall the control functions g ∈ L2(s, T ;U), where y(t, s, y0) is the mild solution to
the Cauchy problem

{

y′ = Ay +Bg s < t < T

y(s) = y0
(3.3)

(the initial time s ∈ [0, T ) is clearly the parameter). Explicitly, the state at time t is
given by the formula

y(t, s, y0) = e(t−s)Ay0 +

∫ t

s
eA(t−τ)Bg(τ) dτ =: e(t−s)Ax+ (Lsg)(t) . (3.4)

The notation
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• Ls for the linear operator that maps the boundary data g ∈ L2(s, T ;U) to
the solution (Lsg)(·) to the inital-value problem (3.3) with y0 = 0, whose
regularity is Ls ∈ L(L2(s, T ;U), C([s, T ], Y )), as well as

• LsT for the continuous linear operator which maps the boundary data in
L2(s, T ;U) to the solution (again, to the inital-value problem (3.3) with y0 =
0) at final time T , i.e. LsTg for (Lsg)(T ),

are consistent and standard in the literature.
The adjoint operator L∗

sT : Y → L2(s, T ;U) is given by

(L∗
sT z)(t) = B∗e(T−t)A∗

z 0 ≤ s ≤ t ≤ T . (3.5)

In perfect analogy to the argument which brought about the open-loop optimal con-
trol (3.1) we have a unique minimizer for Js given by

ĝ(·, s, x) = −Λ−1
sT L

∗
sT e

(T−s)Ax ∈ L2(s, T ;U) (3.6)

for x ∈ Y , where ΛsT = αI + L∗
sTLsT . By the continuity of the operators involved,

we infer the estimate
‖ĝ(·, s, x)‖L2(s,T ;U) .T ‖x‖Y ,

for all s ∈ [0, T ). The optimal state is then

ŷ(t, s, x) = e(t−s)Ax+ (Lsĝ(·, s, x)(t) := Φ(t, s)x , (3.7)

where we introduce the operator Φ(t, s). Note that Φ(t, s) is linear.
Inserting the expression (3.6) into the formula (3.7) gives

ŷ(t, s, x) = e(t−s)Ax− [LsΛ
−1
sT L

∗
sT e

(T−s)Ax](t) (3.8)

and evaluating at t = T yields

ŷ(T, s, x) = (I − LsTΛ
−1
sT L

∗
sT )e

(T−s)Ax . (3.9)

Using one more time the continuity of all the operators involved yields

sup
0≤t≤T

‖ŷ(t, s, x)‖Y .T ‖x‖Y ,

uniformly in s.
Applying ΛsT to both sides in (3.6) and using next (3.7) to express e(T−s)Ax gives

(α+ L∗
sTLsT )ĝ(·, s, x) = −L∗

sT e
(T−s)Ax = −L∗

sT ŷ(T, s, x) + L∗
sTLsT ĝ(·, s, x)

and thus

ĝ(·, s, x) = − 1

α
L∗
sT ŷ(T, s, x) = − 1

α
L∗
sTΦ(T, s)x = − 1

α
B∗eA

∗(T−·)Φ(T, s)x . (3.10)

From formula (3.9) we infer that

L∗
sT ŷ(T, s, x) = (L∗

sT − L∗
sTLsTΛ

−1
sT L

∗
sT )e

A(T−s)x = αΛ−1
sT L

∗
sT e

A(T−s)x

or
L∗
sT ŷ(T, s, x) = αΛ−1

sT L
∗
sT e

A(T−s)x .

Using this last formula in (3.7) we observe that

ŷ(t, s, x) = e(t−s)Ax− 1

α
LsL

∗
sT ŷ(T, s, x)(t) . (3.11)
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Proving that the optimal pair (ĝ(t, s, x),ŷ(t, s, x)) satisfies certain usual transi-
tion properties is a key step in attaining the sought feedback formula as well as in
poinpointing the regularity (in time) of the optimal cost operator P (·). The precise
statements are given in the following Lemma. The corresponding proof is carried out
starting from the representation (3.6) of the optimal control ĝ(t, s, x), and next mov-
ing on to the evolution map Φ(t, s) defined in (3.7); since this proof is substantially
the same as the one of of [15, Lemma 9.3.2.2, p. 779] in the case R ≡ 0, it is omitted.

Lemma 3.1 (Transition properties). For 0 ≤ s ≤ τ ≤ t ≤ T we have

ĝ(t, s, x) = ĝ(t, τ,Φ(τ, s)x) for a.e. t, (3.12)

and
Φ(t, s) = Φ(t, τ)Φ(τ, s) . (3.13)

The following result concerning the regularity of the evolution map Φ(t, s) with
respect to the variable s is instrumental in achieving the regularity (in time) of the
optimal cost operator P (·).

Before proceeding to its statement and proof, we remark that while the Lemma
below has essentially the same statement of [15, Vol. II, Lemma 9.3.2.3, p. 779], the
proof of that result actually utilizes the assumptions (A2) and (A3) therein, that
require a quantitatively precise smoothing effects of the operators C and G (here, 0
and the identity I, respectively); see the passage from the second to the third line
at p. 783, where the estimate 9.2.8 is employed. So while Lemma 9.3.2.3 in [15]
apparently holds under the only assumption (A1) – that is (2.11), just like in the
present case –, an enhanced regularity property of ĝ is invoked in its proof which is
actually unnecessary to attain the goal.

Lemma 3.2 (Regularity of the evolution map). Assume that the couple (A,B) sat-
isfies the regularity assumption (2.11). With reference to the evolution map defined
in (3.7), we have the following regularity

[0, t] ∋ s −→ Φ(t, s) is continuous (3.14)

(in the topology of L(Y ), for any given t ≤ T ).

Proof. Aiming to prove continuity of Φ(t, s) at time s, when s ≤ t, we evaluate
separately (for h > 0 sufficiently small)

‖Φ(t, s+ h)x− Φ(t, s)x‖ and ‖Φ(t, s− h)x− Φ(t, s)x‖ .
By using the evolution property (3.13) for Φ as well as the fact that its norm is
bounded, we (routinely) first find

‖Φ(t, s + h)x−Φ(t, s)x‖ = ‖Φ(t, s + h)[x− Φ(s+ h, s)x]‖

.T ‖x− Φ(s+ h, s)x‖ −→ 0 , as h → 0+,

with the limit following in view of the continuity property of the mapping Φ(·, s) (in
other words, since the optimal state ŷ(t, s, x) is continuous in t).

As for the left continuity of s −→ Φ(t, s), we compute (still with h > 0)

‖Φ(t, s − h)x− Φ(t, s)x‖ = ‖Φ(t, s)[Φ(s, s − h)x− x]‖ .T ‖Φ(s, s− h)x− x‖ ,
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where we recall

Φ(s, s− h)x = ehAx+
[
Ls−hĝ(·, s − h, x)

]
(s) ,

so that the estimate

‖Φ(s, s − h)x− x‖ ≤ ‖ehAx− x‖Y + ‖Ls−h[L
∗
s−hΦ(·, s− h)x](s)‖Y

.T ‖ehAx− x‖Y + ‖L∗
s−hΦ(·, s− h)x‖L2(s−h,s;U)

.T ‖ehAx− x‖Y + ‖Φ(·, s − h)x‖L2(s−h,s;Y )
︸ ︷︷ ︸

S2

. (3.15)

holds true. In the last passage we used that since

Ls−h ∈ L(L2(s − h, s;U), Lp(s− h, s;Y )) ∀p , 1 ≤ p ≤ +∞ ,

then in particular

L∗
s−h ∈ L(L1(s− h, s;Y ), L2(s− h, s;U)) .

Thus, for the latter summand in the right hand side of (3.15) we have

S2
2 :=

∫ s

s−h
‖Φ(σ, s − h)x‖2Y dσ .T ‖x‖2

∫ s

s−h
1 dσ = c2T ‖x‖2h (3.16)

for some cT > 0. Therefore, the estimate (3.16) combined with (3.15) allows to
establish

‖Φ(s, s− h)x− x‖ −→ 0 , as h → 0+ ,

that is nothing but the left-continuity of s −→ Φ(t, s). The proof is complete. �

3.2.1. The optimal cost operator, feedback formula. On the basis of the preliminary
analysis performed in the previous sections, we are now able to bring the former
representation formula (3.10) for the optimal control to the definitive closed-loop
form.

We compute the optimal cost by evaluating the functional (3.2) on the optimal
control via the obtained representation formula (3.10) (in terms of the optimal evo-
lution). For any given x ∈ Y , we have

Jt(ĝ) = α

∫ T

t
‖ĝ(s, t, x)‖2U ds+ ‖ŷ(T, t, x)‖2Y =

1

α

∫ T

t
‖L∗

tTΦ(T, t)x‖2U dt+ ‖Φ(T, t)x‖2Y

=
1

α
(Φ(T, t)x,LtTL

∗
tTΦ(T, t)x)Y + ‖Φ(T, t)x‖2Y

= (Φ(T, t)x,−LtT ĝ(·, t, x) + Φ(T, t)x)Y

= (Φ(T, t)x, eA(T−t)x)Y =: (P (t)x, x)Y ,

where we introduced the optimal cost operator

P (t)x = eA
∗(T−t)Φ(T, t)x , (3.17)
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which is more precisely a family of continuous linear operators on Y for t ∈ [0, T ].
Then we also have, for x, y ∈ Y ,

(P (t)x, y)Y = (Φ(T, t)x, eA(T−t)y)Y = (Φ(T, t)x,Φ(T, t)y − LtT ĝ(·, t, y))Y

= (Φ(T, t)x,Φ(T, t)y)Y +
1

α
(Φ(T, t)x,LtTL

∗
tTΦ(T, t)y)Y

= (Φ(T, t)x,Φ(T, t)y)Y +
1

α

∫ T

t
(L∗

tTΦ(T, t)x,L
∗
tTΦ(T, t)y)U dt = (x, P (t)y)Y .

which in turn indicates that P (t) is self-adjoint and non-negative.
At this point the evolution property (3.13) satisfied by the optimal state allows to

disclose the presence of the optimal cost operator in the representation formula (3.10),
so as to attain the sought feedback representation of the optimal control. Indeed,

ĝ(t, s, x) = − 1

α
B∗e(T−t)A∗

Φ(T, s)x− 1

α
B∗e(T−t)A∗

Φ(T, t)Φ(t, s)x

= − 1

α
B∗P (t)Φ(t, s)x = − 1

α
B∗P (t)ŷ(t, s, x) , for 0 ≤ s ≤ t ≤ T ,

(3.18)

and infer that the operator B∗P (t) is continuous from Y into L2(s, T ;U), 0 ≤ s ≤
t ≤ T .

Conclusions. Below we summarize the conclusions of the analysis carried out so
far:

i) the existence of a unique optimal pair (ĝ(·, s, y0), ŷ(·, s, y0)) for the family of
optimal control problems (depending on the parameter s ∈ [0, T )) follows by
pretty elementary computations, as the functional is coercive in the space of
admissible controls U = L2(0, T ;U);

ii) a (pointwise in time) representation of the optimal control ĝ(·, s, y0) in closed
loop form – namely, depending on the optimal state ŷ(·, s, y0) = Φ(t, s)y0
– holds true; see (3.18); the gain operator B∗P (t) that occurs in the said
formula is well-defined on the optimal evolution;

iii) however, in the presence of an the operator G which does not possess smooth-
ing properties (such as the identity I on Y ), as it is well-known, there is no clue
that the optimal cost operator P (t) solves the corresponding Riccati equation
on [0, T ). The possibility of giving a full meaning to the gain operator B∗P (t)
when acting on elements in the state space Y , or in a dense set of it – and it
would suffice in D(A) – is an unanswered question at this point in time.

This weak point of the Riccati theory pertaining to the optimal boundary control
of the Maxwell system – just like the case of boundary control systems governed
by other partial differential equations of hyperbolic type – is compensated, although
only partially, proving that P (t) is uniquely determined as the limit of a sequence
{Pn(t)}n of bounded operators which do solve a differential Riccati equation, with
bounded gain B∗Pn(t) (for each n ∈ Z

+). This approximation procedure may lead
to introduce a concept of generalized solution to Riccati equations with unbounded
gains, as suggested in [15, § 9.5.2]. We provide the details of this approximation in
the next section, for the sake of completenesss and clarity.
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4. Approximating P (t) via solutions to proper Riccati equations

Given the optimal control problem (3.3)-(3.2), let P (t), t ∈ [0, T ], be the relative
optimal cost (or, Riccati) operator: to wit, the operator that defines the quadratic
form (P (t)y0, y0)Y arising from the computation of the optimal value of the functional
Jt(g); P (t) is represented in terms of the optimal evolution via (3.17). More generally,
if the penalization of the state at the final time T in the cost functional (1.7) is
‖Gy(T )‖2Y in place of ‖y(T )‖2Y , with G ∈ L(Y ), then the formula for the optimal cost
operator is

P (t)x = eA
∗(T−t)G∗GΦ(T, t)x ; (4.1)

(3.17) is a special case of (4.1), consistent with our original choice G = I.
We introduce then the sequence {Gn}n = GnR(n,A), n ∈ Z

+, where R(λ,A)
indicates the resolvent operator (λI − A)−1 meaningful for λ ∈ ρ(A), and – as it is
well known – the bounded operators nR(n,A) are approximants of the identity I (the
standard notation Jn for these approximants is not adopted in this work, as the letter
J pertains to the integral functionals).

For this, we recall that n ∈ ρ(A) is valid here for all n ∈ Z
+: indeed, this is seen

e.g. going through the proof of maximal dissipativity of the operator A given in [8,
Proposition 1] and addressing the static PDE problem corresponding to

(λI −A)

[
u
v

]

=

[
f
g

]

∈ Y

for any real λ ≥ 1, rather than just when λ = 1.
With Jn(g) the functional which displays Gn in place of G, that is

Jn(g) = JT,n(g) = α

∫ T

0
‖g(t)‖2U dt+ ‖Gny(T )‖2Y , (4.2)

we consider the following family of optimal control problems.

Problem Pn. Given y0 ∈ Y , seek a control function ĝn(·) that minimizes the func-
tional JT,n(g) overall g ∈ L2(0, T ;U), where y(·) = y(·; y0, g) is the solution to (3.3)
corresponding to the control function g(·) and with initial datum y0 given by (3.4).

Owing to the enhanced regularity of the operator Gn, the optimal control problem
Pn possesses a full, Riccati-based, solution; see [15, vol. II, Theorems 9.2.1-9.2.2]. In
particular, there is a family of linear and bounded, non-negative, self-adjoint operators
{Pn(t)}n, n ∈ Z

+, whose terms solve uniquely the differential Riccati equation

d

dt
〈Pn(t)x, y〉Y +〈Pn(t)x,Ay〉Y +〈Ax,Pn(t)y〉Y −〈B∗Pn(t)x,B

∗Pn(t)y〉U = 0 in [0, T )

(4.3)
for x, y ∈ D(A), supplemented with the final condition Pn(T ) = Gn, with gain
operator B∗Pn(t) that belongs to L(Y,U) (for all t ∈ [0, T ]).

Remark 4.1. Given s ∈ [0, T ), the notation Js,n = JT,s,n(g) for the parametrized
quadratic functional is self-explanatory.

The outcome of the limit process, as n → +∞, in relation to the original optimal
control problem is detailed in the following result, which is akin to Theorem 9.5.2.2
in [15, vol. II].
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Proposition 4.2. Given the original and the approximating optimal control problems
P and Pn, let Js(g), ĝ(·, s, y0), ŷ(·, s, y0), P (s) and Jn(g), ĝn(·, s, y0), ŷn(·, s, y0),
Pn(s) be the functional to be minimized, the optimal control and state, the optimal
cost operator pertaining to either problem, respectively.

Then, the following convergence results hold true, as n → +∞:

‖ĝn(·, s, y0)− ĝ(·, s, y0)‖ −→ 0 in L2(s, T ;U), uniformly in s; (4.4a)

‖ŷn(·, s, y0)− ŷ(·, s, y0)‖ −→ 0 in C([s, T ], U), uniformly in s; (4.4b)

Js,n(ĝn)− Js(ĝ) −→ 0 in R, uniformly in s; (4.4c)

‖Pn(·)z − P (·)z‖ −→ 0 in C([0, T ], Y ), for all z ∈ Y . (4.4d)

Proof. a. Let us begin by recalling the expression of the optimal solution for problems
P and Pn, respectively, in terms of the initial state y0. We have

ĝ(·, s, y0) = −
[
Λ−1
sT L

∗
sTG

∗Ge(T−s)Ay0
]
(·) , ĝn(·, s, y0) = −

[
Λ−1
sT,nL

∗
sTG

∗
nGne

(T−s)Ay0
]
(·) ,

where

ΛsT = I + L∗
sTG

∗GLsT , ΛsT,n = I + L∗
sTG

∗
nGnLsT ,

so that

Λ−1
sT,n − Λ−1

sT = Λ−1
sT,n(ΛsT − ΛsT,n)Λ

−1
sT = Λ−1

sT,nL
∗
sT (G

∗G−G∗
nGn)LsTΛ

−1
sT .

We see that

‖Λ−1
sT,n − Λ−1

sT ‖L(Y ) −→ 0 , as n → +∞, (4.5)

as a consequence of the strong convergence of G∗
nGn to G∗G and since ‖Λ−1

sT,n‖L(Y ) ≤
1/α for all n ∈ Z

+.
We compute the difference ĝn(·, s, y0)− ĝ(·, s, y0), that we decompose as follows:

ĝn(·, s, y0)− ĝ(·, s, y0)

= −
[
Λ−1
sT,nL

∗
sTG

∗
nGne

(T−s)Ay0
]
(·) +

[
Λ−1
sT L

∗
sTG

∗Ge(T−s)Ay0
]
(·)

= −
[(
Λ−1
sT,n − Λ−1

sT

)
L∗
sTG

∗
nGn + Λ−1

sT L
∗
sT (G

∗
nGn −G∗G)

]

e(T−s)Ay0 .

Thus, the convergence in (4.4a) follows taking into account (4.5) and the regularity
L∗
sT ∈ L(Y,L2(s, T ;U)), besides – once again – the strong convergence of G∗

nGn to

G∗G and the uniform bound ‖Λ−1
sT,n‖L(Y ) ≤ 1/α.

b. The convergence of the sequence of optimal states follows from the one of the
corresponding optimal controls readily. Indeed, it suffices to write down (for s, t such
that 0 ≤ s ≤ t ≤ T )

ŷn(t, s, y0)− ŷ(t, s, y0) = e(t−s)Ay0 + [Lsĝn(·, s, y0)](t) −
(
e(t−s)Ay0 + [Lsĝ(·, s, y0)](t)

)

=
[
Ls

(
ĝn(·, s, y0)− ĝ(·, s, y0)

)]
(t)

and recall that Ls ∈ L(L2(s, T ;U), C([s, T ], Y )) (with convergence which is uniform
with respect to s), thus confirming the validity of (4.4b).
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c. Given (4.4a) and (4.4b), the limit (4.4c) – that is the convergence of the sequence
of optimal values Js,n(ĝn) to Js(ĝ), as n → +∞ – is straightforward, as

min
g∈L2(s,T ;U)

Js,n(g) = Js,n(ĝn) = α

∫ T

s
‖ĝn(t)‖2U dt+ ‖Gnŷn(T )‖2Y .

The convergence of Jn(ĝ) to J(ĝ) holds as a special case (s = 0).

d. Finally, resuming the definition of any optimal cost operator in terms of the
respective optimal evolution, we see that

Pn(t)y0 − P (t)y0 = e(T−t)A∗

G∗
nGnŷn(T, t, y0)− e(T−t)A∗

G∗Gŷ(T, t, y0)

= e(T−t)A∗
[
G∗

nGn −G∗G
]
ŷn(T, t, y0)

+ e(T−t)A∗

G∗G
[
ŷn(T, t, y0)− ŷ(T, t, y0)

]
;

then, (4.4d) follows considering

• (for the first summand) the bound for ‖ŷn(T, t, y0)‖ = ‖Φn(T, t)y0‖ ≤ CT ‖y0‖,
uniform with respect to n, along with the strong convergence of G∗

nGn to G∗G,
combined with

• (for the second summand) the convergence (4.4b).

�

5. The optimal solution in the case of zero conductivity

In this section we examine the special case where the conductivity σ in the Maxwell
system (1.1) is zero. It is readily seen from (2.2) and (2.3) that in this case the
dynamics operator A is skew-adjoint, i.e. A∗ = −A, so that A is the infinitesimal
generator of a C0-group {etA}t∈R by Stone’s Theorem; see e.g. [9]. Then, as we will
see below, the work [10] allows us not only to find P (t) by way of solving the dual
RE in (1.14), thus obtaining the synthesis of the optimal control via the closed-loop
equation, but also to infer an open-loop representation of the optimal solution (which
makes proving the well-posedness of the Riccati equation (1.14) dispensable).

A property that is ascertained and that plays a key role in the outcome for the
optimal solution of problem (2.8)-(1.8) is the fact that P (t) is an isomorphism for
any t ∈ [0, T ]. This property is deduced in [10] by establishing

• the well-posedness of a certain Cauchy problem associated with the dual Ric-
cati equation, that is (1.15);

• that the unique solution Q(t) of the aforesaid Cauchy problem is an isomor-
phism for all t ∈ [0, T ];

• that the inverse operator Q(t)−1, t ∈ [0, T ], coincides with the (Riccati) opti-
mal cost operator P (t) for the original optimal control problem.

Actually, that P (t) is an isomorphism for all t ∈ [0, T ] can be inferred a priori. We
include this result at the outset, pointing out that although the proof is similar to
the proof of Theorem 9.4.1 in [15], our setting is different since we work with G = I
and C = 0. A certain sought estimate from below can be attained just using that G
is invertible.
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Proposition 5.1 (P (t) is an isomorphism). Let P (t) be the optimal cost (or, Riccati)
operator of the optimal control problem over the interval [t, T ], namely, the operator
that defines the quadratic form (P (t)y0, y0)Y arising from the computation of the op-
timal value of the functional Jt(ĝ), see formula (1.12). Then, P (t) is an isomorphism
for t ∈ [0, T ].

Proof. We know that the optimal cost of the optimal control problem with t as initial
time and y0 as initial state is

〈P (t)y0, y0〉 = Jt(ĝ) = α‖ĝ(·, t, y0)‖2L2(t,T ;U) + ‖ŷ(T, t, y0)‖2Y ≥ ‖ŷ(T, t, y0)‖2Y . (5.1)

(We are in the case in which C = 0 and G = I: however, the proof would work –
mutatis mutandis – with nontrivial C as well, provided G is an isomorphism.) Recall
now the relation (3.10) linking the optimal control to the optimal state, which yields
(3.11), that is equivalent to

[

I +
1

α
LtTL

∗
tT

]

ŷ(T, t, y0) = e(T−t)Ay0 .

Thus, inserting

ŷ(T, t, y0) =
[

I +
1

α
LtTL

∗
tT

]−1
e(T−t)Ay0

in (5.1) we see that

〈P (t)y0, y0〉 ≥
∥
∥
∥

[

I +
1

α
LtTL

∗
tT

]−1
e(T−t)Ay0

∥
∥
∥

2

Y
.

The above implies

〈P (t)y0, y0〉 &T ‖e(T−t)Ay0‖2Y ≥ ‖y0‖2Y ∀t ∈ [0, T ] , (5.2)

where the last estimate is a consequence of A∗ = −A, along with

e(T−t)A∗

e(T−t)A = e−(T−t)Ae(T−t)A = I .

The conclusion follows combining (5.2) with

〈P (t)y0, y0〉 .T ‖y0‖2Y ∀t ∈ [0, T ] .

�

The following result adds a piece to the picture of solvability of the optimal control
problem (1.1)-(1.2)-(1.3)-(1.7) for the Maxwell’s system.

Proposition 5.2. Consider the Maxwell’s system (1.1) with σ = 0, the control system
(2.8) which is the abstract reformulation of the IBVP (1.1)-(1.2)-(1.3) in Y , along
with the quadratic funtional (1.8). Assume C,G ∈ L(Y ) and that in addition G is an
isomorphism.

Then, the following assertions are valid for the optimal control problem (2.8)-(1.8).

a) The Riccati operator P (t) that occurs in the feedback formula (1.13) coincides
with Q(t)−1, Q(t) being the unique solution to the Cauchy problem associated with
the dual Riccati equation (1.15).

b) The optimal pair (ĝ, ŷ) admits the following (more explicit, alternative) repre-
sentation:

ĝ(t) ≡ ĝ(t, 0, y0) = −B∗z(t) , ŷ(t) = Q(t)z(t) , (5.3)
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where Q(t) is as above, while z(·) solves the non-autonomus system
{

z′ = [A− C∗CQ(t)]z

z(0) = Q(0)−1y0 .
(5.4)

c) Therefore, in particular, if C = 0 and G = I – that is precisely the case of the

original functional (with α = 1) – we simply have

ĝ(t) = −B∗etAQ(0)−1y0 , ŷ(t) = Q(t)etAQ(0)−1y0 , (5.5)

where

Q(t)x =

∫ T

t
e(r−t)A∗

BB∗e(r−t)Ax dr + e(T−t)A∗

e(T−t)Ax , x ∈ Y , t ∈ [0, T ] . (5.6)

Proof. All the assertions are (pretty direct) consequences of the results contained in
[10]. The well-posedness of the Cauchy problem (1.15) for the dual RE is shown in
[10, Theorem 2.1.1]. The assertion in a) is contained in the proof of Theorem 2.3.1
in [10]. The assertion in b) is essentially part of the discussion in [10, Section 2.4].

The conclusions for the special case C = 0 and G = I – our main interest and
hence stated separately in c) – follow starting from the outcomes in b), taking into
account that in the case C = 0

• the evolution operator V (t, s) in [10, Theorem 2.1.1] reduces to e−(t−s)A∗ ≡
e(t−s)A;

• the (operator) quadratic integral equation (2.5) in [10, Theorem 2.3.1] in the
unknown Q(t) becomes an actual explicit formula for Q(t), that is (5.6).

This concludes the proof of the proposition. �
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