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ABSTRACT The detection of foreign object debris (FOD) is a critical safety issue in airport operations. 

Nowadays, the most advanced detection systems are high frequency radars installed along the runway. In this 

article, the authors propose a synthetic aperture radar (SAR) aboard a small unmanned aerial system (UAS), 

a quadcopter, flying sideways over the runway as FOD detection system. This solution can operate during 

the daily airport operations and does not require permanent installations near the runways. To focus SAR 

images, an accurate knowledge of the platform position is needed. So, the hardest challenge in SAR imaging 

with UAS is an effective mitigation and compensation of uncontrolled movements. For this reason, a specific 

back propagation algorithm was developed. The FOD detection technique was tested in a general aviation 

airfield (Serristori, Arezzo, Italy) and in two Italian commercial airports: Milan Linate Airport (LIN), Olbia 

Costa Smeralda Airport (OLB). 

INDEX TERMS Airport runway, foreign object debris (FOD), synthetic aperture radar (SAR), unmanned 

aerial system (UAS), UAS-borne SAR 

I. INTRODUCTION 

In recent years, many attempts have been made to increase 

safety in airport areas. The detection of foreign object 

debris (FOD) of various sizes, which might interfere with 

aircraft take-off and landing, has received special attention, 

especially since the well-known Concorde catastrophe that 

occurred at Charles de Gaulle airport in Paris on July 25, 

2000. All 109 people on board, as well as four people on 

the ground, perished in the catastrophe, which occurred 

shortly after take-off. A metal strip that was on the runway 

during take-off caused a tire to shatter, which led to the 

deadly tragedy. 

Flight safety agencies have established standards for the 

risk assessment in relation to FOD detection and FOD 

events. For example, the European Union Aviation Safety 

Agency (EASA) has provided an airport risk assessment 

tool [1]. This tool requires periodic inspection of the air 

operations area (AOA), especially for runways and 

taxiways. The Federal Aviation Administration (FAA) of 

the United States, additionally, has defined a standard 

procedure for testing the FOD detection and identification 

routines [2], [3]. These standards require airport operators 

to choose the appropriate method for FOD inspection. 

Currently, the most used method is a visual human 

inspection, a slow method that requires a large deployment 

of trained workforce. 

In the last years, the development of specific technical 

solutions has received great attention from the scientific 

community, business organizations, and aviation 

authorities [4], [5], [6]. Automatic FOD detection, 

conducted using cutting-edge technologies, promises to be 

more effective, fast, and economic than visual human AOA 

screening. 

High resolution vision systems have been used to detect 

FOD [7], [8], [9], also aboard unmanned aerial systems 

(UAS) [10], [11]. Unfortunately, optical systems present 

limited detection capabilities in severe light conditions 

(dawn, dusk, night, fog, rain). 

Alternatively, the radar-based solutions enable all-day, 

all-weather detection capabilities. Fixed radar installations 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3437653

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 1 

near the runway have been proposed and evaluated in [12], 

[13], [14], [15], [16]. The most advanced systems use 

multiple sensors installed close to the runway to achieve 

wider coverage [17], [18], [19], [20]. Since the radar cross-

section of the targets strongly depends on the radar line of 

sight, Yonemoto et al. [18], [21] proposed a multi-

monostatic and a bistatic system for increasing the 

detection probability. 

Another technology proposed is a millimetre-wave radar 

system mounted on the roof of a vehicle [22]. This system 

scans the pavement below, while the vehicle is moving 

forward. The system turns out in a large structure which is 

mounted on a pickup. 

Recently, ground-based synthetic aperture radars 

(GBSARs) have also been proposed for FOD detection: 

both in linear configuration [23], and in the Arc-SAR 

configuration [24] to cover a wider field of view. 

In this article a W-band SAR aboard a small UAS (a 

quadcopter) for FOD detection is proposed. The UAS flies 

sideways over the runway while the radar operates in strip-

map modality as shown in Fig. 1. This procedure does not 

occupy the runway. Therefore, it can be used when the 

airport is operational, but for safety reason it could not be 

used during take-off or landing of an airplane. Moreover, it 

allows to obtain almost constant spatial resolution along the 

runway. 

 

FIGURE 1. Working principle of FOD detection through a radar aboard a 
UAS. 

Today, multicopters are becoming a popular platform for 

SAR systems [25], [26], [27], [28]. This kind of UAS allows 

for highly flexible synthetic aperture (SA), and it can be easily 

deployed without the need fixed installation such as GB-SAR. 

Unlike satellite and ground-based SAR, multicopter-borne 

systems are usually subject to uncontrolled movements, 

caused by external forces, such as wind gusts, which make the 

image processing more challenging. To properly focus radar 

data, accurate knowledge of the antenna position and drone 

attitude is needed. Back-propagation algorithms enable to 

cope with these problems, provided the knowledge of the UAS 

position. 

Imaging techniques have been studied to perform motion 

compensation specifically for UAS-based systems [29], [30]. 

Several works propose autofocusing algorithms to perform 

high resolution imaging [26], [31]. However, the autofocusing 

algorithms require a long computational time, since they are 

usually recursive, and could produce false alarms due to 

possible focusing artifacts. In most works using UAS-based 

SAR, back-propagation algorithms are preferred [27], [32], 

[33], [34]. 

For the present application, an airborne image processing 

that considers the platform attitude and position [35] was 

generalized for UAS applications. The proposed technique 

was tested in a general aviation airfield (Serristori, Arezzo, 

Italy) and in two Italian commercial airports: Olbia Costa 

Smeralda Airport (OLB) and Milan Linate Airport (LIN).  

II. FOCUSING ALGORITHM 

The SAR images were focused using a back-propagation 

algorithm based on [35], originally developed for airborne 

SAR. 

The geometry of the UAS-borne SAR acquisition is 

shown in Fig. 2. In the following we assume that the radar is 

in 𝐴𝑛 at the (slow) time 𝑡𝑛. The target to be focused is in 𝑇⃗⃗. 

The vector 𝑅⃗⃗𝑛(𝑇⃗⃗) represents the position of the target with 

respect to the radar at the slow time 𝑡𝑛. 

𝑅⃗⃗𝑛(𝑇⃗⃗) = 𝑇⃗⃗ − 𝐴𝑛. (1) 

The module 𝑅𝑛(𝑇⃗⃗) = |𝑅𝑛(𝑇⃗⃗)| = |𝑇⃗⃗ − 𝐴𝑛| represents the 

range distance between antennas and the target. 

Let us consider a continuous wave frequency modulated 

(FMCW) transceiver with sawtooth modulation. The 

acquired echo is a complex matrix 𝐸𝑛𝑚 whose indexes 𝑛 ∈
{1,2, … 𝑁𝑠𝑤𝑒𝑒𝑝} and 𝑚 ∈ {1,2, … 𝑁𝑠𝑎𝑚𝑝𝑙𝑒} are related to slow 

(n) and fast time (m), respectively. 𝑁𝑠𝑤𝑒𝑒𝑝 is the number of 

recorded azimuth samples (along slow time) and 𝑁𝑠𝑎𝑚𝑝𝑙𝑒  is 

the number of the samples recorded in range direction (along 

fast time). 
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FIGURE 2. Focusing geometry. 

The radar image 𝐼(𝑇⃗⃗) of target 𝑇⃗⃗ can be retrieved with the 

back propagation algorithm based on [35], as 

𝐼(𝑇⃗⃗) =  ∑ ∑ 𝐸𝑛𝑚

𝑛=𝑘+
𝐾

2

𝑛=𝑘−
𝐾

2

exp [−𝑗
4𝜋

𝑐
𝑓𝑚𝑅𝑛(𝑇⃗⃗)] ⋅

𝑚=𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑚=1

𝑤 𝑚 ⋅ 𝑤𝑛 (𝑅𝑛(𝑇⃗⃗)). 
(2) 

Here, 𝑘, 𝐾 are the centre and the length (in samples) of the 

synthetic aperture (SA), 𝑗 is the complex unit, 𝑤𝑚 is the 

weight of the range-window, 𝑤𝑛 (Rn (𝑇⃗⃗)) is the weight of 

cross-range window, and 𝑓𝑚 is the m-frequency given by 

𝑓𝑚 = 𝑓0 + 𝑚𝛼𝛥𝑡, (3) 

with 𝛼 the frequency slope of the FM sweep, and 𝛥𝑡 the 

time stamp of analog-to-digital converter (ADC) [36].  

The range and cross-range windows are applied to reduce 

the side lobe level of the image in the two directions. In the 

following, we use a Kaiser window with β=5. Given the high 

computational cost of (2), we used the solution described in 

[37], which uses the fast Fourier transform in the range 

direction and an interpolation method to reduce the 

computational cost.  

The computation of (2) requires accurate knowledge of the 

radar-to-target distance 𝑅𝑛 (𝑇⃗⃗), and the definition of the SA 

length K. The radar-to-target distance 𝑅𝑛 (𝑇⃗⃗) depends on the 

radar position 𝐴𝑛, which can be retrieved by the navigation 

data. UAS are usually equipped with inertial measurement 

units (IMUs) and a real time kinematic global positioning 

satellite system (GNSS-RTK). In general, data recorded by 

these sensors are affected by uncertainty and bias. To recover 

the correct position of the UAS, an estimation method is 

required, i.e. a filter fusion algorithm [38], or a Kalman filter 

[39]. In this article, we used a modified version of the 

complementary double stage filter [40], which uses the 

acceleration, velocity, and position of several sensors to 

provide a position estimate. Each data was filtered in the 

proper operative band, e.g. the acceleration was filtered with 

high pass filter, while the velocity and the position with a low 

pass filter. 

The SA, 𝐾, is limited by the uncertainty and residual bias 

of the recovered position. Indeed, increasing the SA implies 

adding noise in the complex term of the exponential in (2). 

This noise produces a defocusing effect in the final image 

when the SA is too wide. On the other hand, increasing the 

SA improves the signal-to-noise ratio (SNR). Therefore, the 

value of SA is a trade-off between image quality and SNR, 

and it depends on the measurement conditions. 

Equation (2) is implemented considering a focusing grid on 

the ground, based on the flight trajectory. The geometry is 

shown in Fig. 3. The 𝑥 axis is parallel to the average UAS 

flight direction. For each 𝑦 position on the grid, the centre of 

the scan 𝑘 is identified by the projection of the 𝑦 coordinate of 

the trajectory. To reduce the computational cost, we used the 

same aperture 𝐾 for the targets with the same 𝑥 coordinate. 

 

 

FIGURE 3. Focusing grid. 

III. THE EQUIPMENT 

The payload of the FOD detection system is composed by an 

onboard computer and a W-band radar. A block scheme of 

the system is shown in Fig. 4. The onboard computer hosts 

the Robot Operating System (ROS) [41] which enables the 

communication with the UAS and the radar. ROS is a 

software framework which allows to implement and 

schedule different tasks, e.g. the communication with the 

UAS or the sensor data acquisition. The use of ROS 

guarantees independence from the specific hardware used: it 

allows you to change hardware without changing the 

structure of the software, but only specific tasks. ROS has 

been used for recording the telemetry information of the 

UAS and to trigger the radar measurements. The internal 

timestamp of ROS was used to synchronize the radar and the 

UAS telemetry. The radar image was processed in post-

processing on a ground computational unit after each flight. 
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FIGURE 4. Block scheme of the UAS borne SAR for FOD detection. 

The radar used for FOD detection is an AWR1843BOOST 

by Texas Instruments [42]. It is a single chip radar designed 

for automotive purposes. Due to its low weight and low 

power consumption, it can be employed for UAS 

applications [36], [43]. During the experiment, the radar 

provided an FMCW sawtooth signal from 77.124 𝐺𝐻𝑧, with 

frequency slope [36] 𝛼 = 6.2 𝑀𝐻𝑧/𝜇𝑠, ADC time stamp 

Δ𝑡 = 0.105 𝜇𝑠, and number of frequency samples 

𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 1024. The bandwidth is 𝐵 = 664.1 𝑀𝐻𝑧, which 

results in a range resolution (Δ𝑅 = 𝑐/(2𝐵) [44]) of about 

0.23 𝑚. 

Fig. 5 and Fig. 6 show the equipment aboard a 

Matrice300RTK by DJI [45] and a PLL418 by Nimbus SRL, 

property of Techno Sky. The first UAS (Fig. 5) was used 

during the tests in the controlled environment. The second 

UAS [46] was used during the tests in real scenarios, because 

it ensures the safety level required for flying inside AOA. It is 

also equipped with a remote battery switch and a parachute. 

 

FIGURE 5. Radar payload aboard a Matrice300RTK by DJI. 

 

FIGURE 6. Radar payload aboard a PLL418 by Nimbus SRL. 

IV. EXPERIMENTAL TESTS 

A. GENERAL AVIATION AIRFIELD OF SERRISTORI, 
AREZZO, ITALY 

The UAS-borne system was initially tested in a small 

general aviation airfield (Serristori, Arezzo, Italy). The first 

test was carried out with a single corner reflector to validate 

and characterize the focusing process. The corner reflector, 

25 𝑚𝑚 large, was located on the runway of the airfield as 

shown in Fig. 7. The runway was 20 𝑚 wide. The radar flew 

at 2 𝑚 altitude and 17 𝑚 from the corner reflector. The UAS 

scanned about 15 𝑚 of runway at 3 𝑚/𝑠 of speed. Radar raw 

data were processed using (2) with different SA, between 

0.5 𝑚 and 5 𝑚. The quality of the SAR images in terms of 

point spread function (PSF) at −10 𝑑𝐵, and the SNR, were 

evaluated. 

 

 

FIGURE 7. Measurement setup in the general aviation airfield. 

Fig. 8 shows the effect of the SA length on the PSF. The 

PSF appears of good quality for SA between 0.5 𝑚 and 

1.5 𝑚. Conversely, for SA =  5 𝑚 the target is completely 

defocused: the peak divides into others of almost the same 

amplitude. The defocusing effect is related to a not perfect 

compensation of the antenna position that produces a 

cumulative effect in the back-propagation algorithm.  

 

FIGURE 8. Point spread function (PSF) in terms of SA. 
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To better highlight how the SA length affects the image 

quality, the width of PSF at −10 𝑑𝐵 and the SNR were 

calculated as functions of SA (Fig. 9 and Fig. 10). Fig. 9 

shows the width of PSF calculated at -10 dB respect to the 

maximum. The PSF width decreases from 0.12 𝑚 (for SA =
0.5 𝑚) to about 0.08 𝑚  (for SA = 2.5 𝑚). Then, for SA 

wider than 2.5 𝑚, the width dramatically increases since the 

main lobe splits in several peaks.  

Fig. 10 shows the SNR as a function of SA. The SNR grows 

up to SA ≈ 3 𝑚; then it remains approximately constant. It 

can be argued that the optimal value of SA is a trade-off 

between image quality and SNR. In this specific case, SA = 1 

m could be a good choice. 

 

FIGURE 9. PSF width versus SA. 

 

FIGURE 10. SNR versus SA. 

The capability of the sensor to detect different FODs was 

tested in the controlled scenario of runway. The asphalt 

runway was 500 𝑚 long and 20 𝑚 wide. Eight FODs were 

positioned along 30 𝑚 of the runway, as shown in Fig. 11. 

The UAS performed a flight scan 50 𝑚 long, at 2 𝑚 altitude 

and 17 𝑚 away from the centre of the runway. 

For this test, FODs with different shape and size have been 

used. An image and physical size of each FOD are shown in 

Fig. 12. 

 

 

FIGURE 11. Measurement setup of general aviation airfield 
scenario. 

 

FIGURE 12. Images of the FODs used during the test at 
Serristori airfield. 

Fig. 13 shows the radar image obtained using an SA of 1 

m. All FODs were successfully detected and appear as well-

defined bright spots in the image. The runway edges are also 

clearly visible at y = 5 m and y = 25 m. They are highlighted 

by red dashed lines in Fig. 13. There are also two 

longitudinal reflections at y = 10 m and y = 13 m which 

correspond to junctions in the asphalt of the runway. 

It is important to note the strong clutter signal within 𝑦 ≈
10 𝑚. This clutter is given by the first reflection of the signal 

from the ground close to the radar. Therefore, when possible, 

it may be preferable to fly away (at least 10 m) from the 

runway to prevent the FOD detection capabilities from being 

affected by close-range clutter. 

 

FIGURE 13. Radar image of general aviation airfield. 
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B. MILANO-LINATE AIRPORT (LIN), MILAN, ITALY 

A second measurement campaign was performed at the 

Milano-Linate airport, Italy, to test the technique in a realistic 

scenario. The tests were performed on the Taxiway Tango of 

the airport. Fig. 14 shows the measurement setup: the sensor 

was mounted on board the Techno sky UAS (that is certified 

for flying in operative commercial airports) and was 

connected to a ground control laptop trough a Wi-Fi link. The 

ground control laptop enables and disables the measurement 

and controls the measurement status. The test was carried out 

during the night break of airport activities. 

 

 

FIGURE 14. Measurement setup for the inspection of Taxiway 
Tango of Milano-Linate Airport. 

The FODs were selected according to the FAA guideline 

[2], [3]. Table I lists the FODs with a brief description and 

physical dimensions. Pictures of the FODs used are shown 

in Fig. 15. The FODs were placed on the taxiway as shown 

in Fig. 16. The taxiway is 60 𝑚 wide, the inspected section 

was about 400 𝑚 long. The UAS flew at 3 𝑚 altitude and 

about 10 𝑚 from the edge of the investigated area. The 

taxiway was scanned in both directions to maximize the 

probability of detection. There was no wind during the flight. 

In Fig. 16, blue crosses indicate the detected FODs, while the 

red crosses indicate the undetected ones. 
TABLE I 

DESCRIPTION OF FOD USED AT LINATE. 

ID Description Size A [mm] Size B [mm] 

A Sphere 30 - 

B Cylinder 38 31 

C Wrench 200 - 

D Electric Socket 40 40 

E Distorted metal strip 280 - 

F Fuel cap 86 72 

G Hydraulic line 300 - 

H Cotter pin (safety) 100 - 

L “Chunk” of concrete 100 - 

M Piece of tire 270 180 

N Lug nut 120 - 

 

 

FIGURE 15. Images of the FODs used during the inspection in 
Linate selected from FAA document [2], [3]. 

 

FIGURE 16. Aerial view of the Taxiway Tango of Milano-Linate 
Airport. 

The image was focused with an SA = 4 𝑚 to increase the 

SNR. Fig. 17 shows the results for each detected FOD. 

During this inspection FOD B, C, D, E, F, G, H, L, N were 

detected. In particular, FOD C and FOD H were detected 

only during the forward flight, and FOD G was detected only 
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during the return flight. The other detected FODs were 

visible in both flights. FOD C is barely visible. FOD A and 

FOD M were not detected. Probably because the size of FOD 

A was at the limit of sensor resolution, and the material of 

FOD M (rubber) is notoriously transparent to the 

electromagnetic waves.  

 

FIGURE 17. Results of the Taxiway Tango of Milano-Linate 
Airport. 

C. OLBIA COSTA SMERALDA AIRPORT (OLB), OLBIA, 
ITALY 

The technique was finally tested on the Taxiway Golf of the 

Olbia Costa Smeralda Airport using realistic small FODs, 

found in the Air Operation Area (AOA) by the airport staff. 

Fig. 18 shows the measurement setup. A further element of 

difficulty that made the test a sort of worst-case study, was 

the strong wind. As it can be noticed in the photo, during the 

inspection at the OLB, there were wind gusts up to 37 km/h.  

 

 

FIGURE 18. Measurement setup during the inspection with 
realistic FODs in Olbia Costa Smeralda Airport. 

Table II lists the selected FODs and provides a brief 

description and their size. The FODs were made of metal 

material except for FOD V, which was made of rubber. 

A picture of each FOD is reported in Fig. 19. They were 

placed on the taxiway as shown in Fig. 20. The taxiway 

is 40 𝑚 wide, the scan was about 180 𝑚 long. The UAS flew 

at 2 𝑚 altitude and about 5 𝑚 from the edge of the taxiway. 

The sensor scanned both sides of the taxiway. 
TABLE II 

DESCRIPTION OF FOD USED DURING TAXIWAY INSPECTION. 

ID Description Size A [mm] Size B [mm] 

I Cylinder 25 15 

II Bolt 25 - 

III Metallic pin 40 - 

IV Nut 30 - 

V Piece of tire 190 - 

VI Brake component 120 30 

 

 

FIGURE 19. Images of the FODs used during the inspection of 
the Taxiway Golf of Olbia Costa Smeralda Airport. 
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FIGURE 20. Aerial view of the Taxiway Golf of Olbia Costa 

Smeralda Airport. 

In this case, the image was focused with SA = 1 𝑚 

because the defocusing effect due to the wind was higher 

than in the previous cases. The UAS velocity was not 

constant, and the trajectory significantly deviated from the 

nominal straight one. Fig. 21 shows the radar image of each 

detected FOD. FOD II, FOD III, FOD IV, and FOD VI were 

detected. All these FODs were detected in the forward and 

return scan. 

FOD I and FOD V were not detected during this mission. 

Regarding FOD V, as already mentioned for the LIN 

experiment, the material (rubber) is transparent to radar 

radiation. For what concerns FOD I, it was located close to the 

edge of the taxiway and the vegetated area. Its signal was 

probably covered by the clutter given by the vegetated area. 

 

FIGURE 21. Results of the Taxiway Tango of Milano-Linate 
Airport. 

V. CONCLUSIONS 

In this article, a UAS-borne W-band SAR system for FOD 

detection was presented. The system was validated with 

experimental tests both in controlled and realistic scenarios 

with different kinds of FODs. The UAS-borne SAR was able 

to successfully detect FODs of size between 25 – 60 mm, 

except for rubber or plastic materials.  

In conclusion, we can state that the potential of FOD 

detection through SAR aboard UAS has been successfully 

demonstrated. Nevertheless, its effective application in 

operational conditions needs full compliance with the 

guidelines for FOD detection published by each single 

national aviation authority. As an example, U.S. Federal 

Aviation Administration (FAA) prescribes [3] that all FOD 

removal equipment must be able to demonstrate the ability to 

collect 90 % of items of a specific list, by a single pass of the 

equipment at a minimum speed of 25 km/h.  Most of the items 

prescribed by FAA were successfully detected, but the 

percentage of detection relative to tests presented in this 

article, was about 81 %. For improving the detection 

capability, i.e. the SNR, there are several ways: increasing the 

transmitted power, increasing the antenna gain, improving the 

flight stability and the motion compensation for increasing the 

effective SA. Another critical point is the scan speed 

requirement: 25 km/h. The speed of the UAS during the 

experimental tests presented in this article was 11 km/h (3 

m/s).  For a faster acquisition, it is necessary to increase the 

PRF (from 3.33 kHz to 7.59 kHz) or alternatively to increase 

the antenna directivity, by increasing its size by a factor of 2.3. 

A final word of caution for an operational application of this 

FOD detection technique is relative to the SA setting. As 

noticed above, the value of SA is a trade-off between image 

quality and SNR, and it depends on the measurement 

conditions, particularly the wind. In the radar images 

presented in this article, the SA has been set for each single 

image with a “trial and error” approach. In an operational 

application, the detection should be finalized in a few minutes 

after the flight, so a systematic study of correlation between 

meteorological conditions and optimal SA should be carried 

out. 
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