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ABSTRACT Looking for available parking slots has become a serious issue in urban mobility, since it 

influences traffic and emissions. This paper presents a set of metrics and techniques to predict the number of 

available parking slots in off-street parking facilities. This study deals with deep learning model solutions 

according with a mid-term prediction of 24 hours, every 15 minutes. Such a mid-term prediction can be useful 

for citizens who need to plan a car transfer well in advance and to reduce as much as possible any 

computational effort. Since most solutions in literature are focused on 1-hour ahead prediction, the proposed 

solution has been also tested in these conditions. The proposed solution is based on Convolutional 

Bidirectional LSTM models. Results have been compared in terms of precision metrics based both on 

occupancy and free slots. The paper also provides a framework to pass from an assessment model based on 

occupancy to models based on free slots and vice-versa. The obtained results have improved those already 

available in literature. A formal study has been conducted to perform feature relevance analysis by using 

explainable AI technique based on gradient and integrated gradient and proposing new heatmaps which 

highlighted the difference from LSTM and Bidirectional LSTM, feature relevance (base line, weather, traffic, 

etc.) and the impact of seasonality on predictions, namely the temporal relevance of features. The comparison 

has been performed on the basis of data collected in garages in the area of Florence, Tuscany, Italy by using 

Snap4city platform and infrastructure. 

INDEX TERMS smart city, available parking lots, prediction model, machine learning, deep learning, 

explainable AI. 

I. INTRODUCTION 

Traffic management and sustainable mobility are central 

topics for intelligent transportation systems (ITS) so as to 

monitor and reduce vehicular traffic congestion [1], [2] and 

emissions [3], [4], [5]. Services providing available parking 

slots (in real time or as predictions) are becoming relevant for 

urban mobility management due to the increment of vehicles 

which need to park in cities. Drivers do waste a considerable 

amount of time while trying to find a vacant parking lot, 

especially during peak hours and in specific urban areas (e.g., 

hospitals, stations, parks, sport stadium). Searching for 

available parking spots can be a time-consuming task that 

simultaneously increases traffic congestion, thus leading to a 

peak of 25-40% of the traffic flow [6], [7] and greenhouse 

gas pollution.  

Parking slots can be located on the street (they are called on-

street parking) or in parking garages with gates (named as 

off-street parking). Searching for an available parking space 

has a harmful impact on both transportation system efficiency 

within the urban tissue and sustainability. Actually, any car 

parking searching activity generates unnecessary traffic 

workload and may affect the environment negatively due to 

increased vehicle emissions. These issues are surely valid 

when it comes to searching on-street parking, and they can 

be also considered in the context of off-street parking. More 

precisely, off-street parking with gates can be full in certain 

area and time slots; while in other areas, they may become 

full unexpectedly or due to conditions unknown to drivers. 

Recently, it is possible to collect real-time parking 

information - i.e., capacity, garage prices, number of empty 

parking slots in the silos or in the area - in order to realize 

predictive models. In terms of prediction models, there is a 

substantial difference between parking garages (i.e., off-

street) and on-street parking. In fact, in parking garages, the 

total number of available slots can be estimated by 

considering the total tickets produced at the entrance gate, 
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and the number of outputs from exits. On the other hand, as 

to on-street parking, it could be necessary to detect the 

occupancy by means of some distributed sensor systems. 

Thus, two distinct research lines can be found in the literature 

[8], [9], focusing on either on-street parking prediction or 

predicting free/available parking slots inside garages (off-

street),.   

    The car park selection performed by a driver is influenced 

by multiple factors, for instance: walking distance to 

destination, driving and waiting time, parking fees, service 

level, parking size, safety [10], [11], availability and 

accessibility [12]. In particular, two important attributes in a 

parking decision-making process of any driver are: the 

number of available parking spaces (if known), and past 

experience in finding available slots.  

 

      In this paper, a solution to predict the number of 

available/free parking slots (not occupied) in the parking 

garages with gates (e.g., silos, or on flat, or under railway 

station) is proposed. Predictions can be usually short-term 

(from 15 to 60 minutes in advance), and mid-term as 24 hours 

(1 day in advance). Most of the studies in literature have 

considered 1-hour time horizon, as short-term predictions to 

reduce local traffic and redirect drivers towards available 

services at short distance. Nevertheless, literature is quite 

poor with respect to mid-term predictions which can be more 

useful for citizens to program a dedicated car trip. For 

example, to know the number of available hospital parking 

slots 1-day in advance could be of significant value for 

patients who have scheduled medical examinations (or need 

to visit an admitted family member) at the hospital, so as to 

program within a day in advance any related transfer by car. 

Moreover, the predictive capability may be influenced by 

different characteristics of parking place locations. More 

precisely, different behaviors are registered in terms of free 

spaces for different kinds of parking places serving different 

areas: suburb hospital, shopping places area as well as down-

town entertainment areas within historical and pedestrian city 

area; plus any possible combination of those aspects. As a 

result, it is expected that the produced predictions should be 

more accurate for cases presenting regular free slots trends 

and seasonality (daily, weekly, monthly, etc.), thus resulting 

in more predictable services, with respect to cases having 

strongly randomized behavior and trends. A partial solution 

to improve precision could be to consider additional 

information and real time data variables such as: the 

description of the parking area neighborhoods, the real time 

or predictions about traffic flow, and the information related 

to weather conditions and/or forecasts [13], [14], [15].  

      This paper is focused on presenting an approach for 

short- and mid-term prediction of the number of free slots on 

off-street parking area which overcome the solutions from 

literature in terms of precision in critical conditions. The 

solution proposed in this paper is based on convolutional 

bidirectional deep learning. In addition, the paper is 

presenting a new approach for reasoning on feature relevance 

of deep learning which addressed the aspects of feature and 

prediction seasonality, thus, contributing to improve 

techniques for explainable artificial intelligence, XAI, with 

feature relevance magnitude and time.  

     The next subsection is devoted to recall the related work 

to allow readers to better contextualize this research topic. 

After that, a more detailed description of the research with its 

aim and goalsis reported. Finally, the paper structure is 

presented and commented.  

A. RELATED WORKS 

In literature, the problem of parking predictions has been 

addressed through different approaches, most of the recent 

proposals are using deep learning techniques [16], [17], [18], 

[13]. Most of them are grounded on time-series predictions, 

and in particular with deep recurrent neural networks, 

because of their capability of exploiting previous data 

observations. Data are typically collected from parking slots 

in constrained areas (off-street parking), for example, parking 

garages/facilities with gates where the number of offered 

slots is typically high, and the whole status is clearly reported 

in real time at the garage entrance gate. Therefore, they offer 

a strong appeal to drivers that may arrive all together, 

especially when parking facilities are located closer to 

attraction centers such as commercial centers, hospitals, 

railway stations, theatres, and multiservice areas. Differently, 

the turnover is faster for on-street parking, which may be 

reserved to specific categories (e.g., resident, shops, 

wheelchairs). The availability of the remaining free slots on-

street is more unpredictable than the availability on off-street 

parking areas no matter if public or private. The parking 

occupancy is defined as the fraction of slots that are occupied 

by vehicles as part of the total number of potentially available 

parking slots for the parking area/facility. A number of 

representative papers dealing with various aspects of on-

street and off-street parking are reviewed and discussed in 

details in [9].  

In Table I, a comparative summary of the state-of-the-art 

solutions is reported for slots predictions in off-street parking 

facilities, since this is the focus of the paper. Such a 

comparison highlights the predictive goals, the adopted 

features, the used techniques, and the obtained results in 

terms of metrics: 𝑅𝑀𝑆𝐸 (Root Mean Square Error), 𝑀𝐴𝑃𝐸 

(Mean Absolute Percentage Error), 𝑀𝑆𝐸 (Mean Squared 

Error) and 𝑀𝐴𝐸 (Mean Absolute Error). The definition of 

some of these metrics is reported later in this paper, others 

are discussed here as follows.  

     Please note that, in some cases reported in the literature, 

assessment metrics have been provided in terms of 

occupancy (defined as (parking capacity - number of free 

slots) / parking capacity * 100), in others in terms of free 

number of slots. The two mentioned assessment approaches 

are not equivalent. For example, in terms of 𝑀𝐴𝐸: 

 

𝑀𝐴𝐸 =
∑ |𝑜𝑏𝑠𝑖

𝑛
𝑖=1 − 𝑝𝑟𝑒𝑑𝑖|

𝑛
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According to the definition of occupancy, the estimation of 

𝑀𝐴𝐸 occupancy, 𝑀𝐴𝐸𝑜, depends on the parking size, that is, 

the 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦:  

 

𝑀𝐴𝐸𝑜 =
∑ |𝑜𝑏𝑠𝑖

𝑛
𝑖=1 − 𝑝𝑟𝑒𝑑𝑖|

𝑛   𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 
 100  

 

Thus, the relationship between 𝑀𝐴𝐸 assessed on free slots, 

𝑀𝐴𝐸𝑓, and 𝑀𝐴𝐸𝑜 results to be:  

 

𝑀𝐴𝐸𝑓 =
𝑀𝐴𝐸𝑜  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

100
 . 

 

For 𝑀𝑆𝐸:  

𝑀𝑆𝐸 =
∑ (𝑜𝑏𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)

2𝑛
𝑖=1

𝑛
 

 

We have the following relationship between 𝑀𝑆𝐸 assessed 

on free slots, 𝑀𝑆𝐸𝑓, and that based on occupancy, 𝑀𝑆𝐸𝑜:  

 

𝑀𝑆𝐸𝑓 =
𝑀𝑆𝐸𝑜  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 2

1002
 

 

Similarly, for 𝑅𝑀𝑆𝐸 which is calculated as: 𝑅𝑀𝑆𝐸 =

√𝑀𝑆𝐸,   thus: 

  

𝑅𝑀𝑆𝐸𝑓 =  
𝑅𝑀𝑆𝐸𝑜  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

100
 

 

Unfortunately, similar relationships cannot be derived for 

other metrics (𝑀𝐴𝑃𝐸𝑜, 𝑀𝐴𝑃𝐸𝑓), since they are un-linearly 

dependent on the parking Capacity. Therefore, the 

comparison of results by using a set of standard metrics 

should be carefully performed. Reasons are: (i) the usage of 

non-comparable metrics depending on capacity and  lack of 

details, (ii) the usage of different parking data sets, (iii) the 

adoption of additional variables such as weather, traffic, etc., 

(iv) the computation of assessment metrics as average in the 

day or week period, instead of providing precision metrics in 

critical conditions, which typically occur when the parking 

facility risks to become empty (the observation becomes 

close to zero). Thus, when performing the analysis of the state 

of the art, the identification of the best model has to take into 

account the results obtained in the same paper, using the same 

metrics and data. Moreover, an additional analysis should be 

derived from the explainability of machine learning and deep 

learning techniques, in relation to additional variables and 

seasonality, as discussed hereafter.  

      In [14], classic machine learning and predictive models 

have been used for off-street parking, such as Bayesian 

Regularized Artificial Neural Network (BRANN) [19], 

Support Vector Regression (SVR) [20], Recurrent Neural 

Network (RNN) [21], and Autoregressive Integrated Moving 

Average (ARIMA) [22]. The adopted feature space has 

included historical data, seasonal information (day, day of the 

week, etc.), weather aspects, and traffic flow data. Both 

model and comparison assessment has been performed to 

provide short- and mid-term predictions, every 15 minutes for 

the next 24 hours, in different parking context (e.g., parking 

lots serving markets, hospital, railway stations). The metric 

to assess such a performance was mainly 𝑀𝐴𝑆𝐸𝑓 (Mean 

Average Scaled Error) on free slots which can produce 

reliable assessment without falling in singularity when the 

number of free slots is close to zero. Experiments have 

demonstrated a better performance for BRANN with respect 

to other models. More recently, in [23], models based on 

Neural Network (NN) [24], Convolutional NN (CNN) [24], 

and Random Forest (RF) [25], have been compared with the 

aim of predicting off-street occupancy in the range of 15’-60’ 

minutes in advance. The exploited features are similar to the 

ones presented in [14]. 

The results in [23] could demonstrate the validity of NN for 

any occupancy prediction (from 15 to 60 minutes in advance) 

in terms of 𝑀𝑆𝐸𝑜, 𝑀𝐴𝐸𝑜 and 𝑅𝑀𝑆𝐸𝑜 (which are dependent 

on the size of the parking areas), with respect to CNN, RF. In 

[23], the model performance has been evaluated in the 

parking areas of Arnhem (NL) having capacity of 1050 

spaces, not reported in the paper. 

In [26], a comparison of RF and CatBoost [63] has been 

proposed as to parking predictions. CatBoost is based on the 

ensemble learning method called gradient boosting and it 

combines different learners to get a stronger learner. The 

assessment has been conducted in the city of Split where 

parking areas are equipped with sensors and the prediction is 

related to the concerned area. The city of Split has 50 parking 

areas equipped with ground parking sensors, or a total 1516 

parking areas. The study has been conducted on 44 areas and 

the CatBoost resulted to be the best model for predicting park 

utilization/occupancy. Moreover, a feature relevance analysis 

has identified the most important features: the historical data 

of parking capacity, weather conditions. In [26], the model 

performance has been evaluated in parking areas having an 

average capacity of 25 slots. 

In [27], a set of statistical models, machine learning and deep 

learning approaches have been tested: vector regressive 

(VAR) [28], Gated Recurrent Units (GRU) [29] which is a 

class of RNN, Graph Convolutional Neural Network 

(GCNN) [30]. The assessment performed on a number of data 

sets has identified the GCNN as the best results in terms of 

RMSEo for predicting short-term occupancy of parking areas. 

Models have been tested on three different datasets: 76 on-

street parking areas in Italy with an average capacity of 32.69 

lots; 420 on-street parking area in San Francisco with an 

average capacity of 9.29 stalls; 17 off-street parking area in 

Birmingham with an average size/capacity of 676.88 stalls. 

In this case, the model has considered temporal features and 

a distance among stalls for on-street parking and an 

interesting feature relevance analysis on distance for on-

street parking has been provided.  

     Most recent studies are focused on the application of 

hybrid deep learning techniques, in particular Long Short-
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Term Memory (LSTM) models [31], [32], by using the 

(baselines) features related to parking data time-series only. 

In [31], SVR, Multiple Linear Regression (MLR) [33], 

SARIMAX (which is seasonal ARIMA with exogenous 

variables) [34], and RNN-LSTM [35] have been compared. 

The experiments performed on several off-parking structure 

have demonstrated that RNN-LSTM outperformed the other 

models. The used dataset contained data regarding occupancy 

of 27 parking lots, representing a total of 18180 parking 

areas. The performance assessment has been conducted in 

Parking Euralille (center commercial) and Parking Gare Lille 

Europe (railway station) in the North of France, with a 

capacity close to 2500 and 500 stalls, respectively.  

     In [16], several models have been tested: LSTM, CONV-

LSTM (convolutional LSTM), BI-LSTM (Bidirectional 

LSTM), CONV-BI-LSTM, and DWT-BI-LSTM which 

integrated a wavelet transform with BI-LSTM, as proposed 

in [36]. Such a transform divides the entire time domain into 

equally spaced local regions, each of which is approximated 

as smooth, and then the Fourier series is computed. It 

decomposes the signal into multiple wavelet functions 

according to two parameters, displacement and scale factor, 

in order to carry out a better extraction of time-frequency 

components and reduce any noise effect in the data for short-

terms prediction. The described techniques are used to predict 

free slots of off-street parking in the next 10 minutes using 

the parking historical data. The used dataset includes data 

about the occupancy of 2 off-street parking in Chongqing. In 

[16], the model performance is evaluated in one of them, 

having its capacity close to 250 spaces. 

      In [17], few models have been compared: LSTM, GRU, 

SVR, KNN, etc., and the proposed dConvLSTM-DCN (dual 

Convolutional Long Short-Term Memory with Dense 

Convolutional Network, DCN). The latter turned out to be 

better to predict time slots from 5’ to 60’ minutes. It consists 

of two parallel ConvLSTM components and a DCN [37] to 

fully exploit the spatial-temporal correlations in the historical 

data related to free parking spaces considering 9 parking lots. 

In such a study the target is the availability of prediction 

related to free off-street parking spaces, up to one hour in 

advance. In [17], the used dataset contains the free parking 

spaces of 9 off-street parking lots in California. The model 

performance comparison is evaluated on parking (St7) with 

capacity close to 800 slots. 

     In [18] a hybrid CNN-LSTM model is proposed with 

multilevel parking occupancy percentage prediction via 

different time steps (up to 100) where no additional 

information in terms of external data is considered. However, 

TABLE I Related work solutions for off-street parking predictions. 

Authors Target Features Models Best Model / Results / performance 

J. C. Provoost et al. 

[23] (2020) 

Off-street occupancy 

prediction: 15’-60’ in 
advance (capacity 1050) 

Parking data, traffic 

flow data, weather 
data 

NN, CNN, RF 

(predictions at 60’) 

 NN CNN RF 

MSEo 7.18 8.27 7.98 

MAEo 1.91 2.20 1.92 

RMSEo 2.68 2.88 2.82 
 

G. Jelen et al. [26] 

(2021) 

occupancy of parking areas 

prediction: 60' in advance 
(average capacity: 25) 

Ground parking 

sensors data, 
weather data 

catBoost, RF 

(predictions at 60’) 

 CatBoost RF 

MAEo 6.71 6.85 

MSEo 78.62 90.57 
 

C. Lucchese et al. 

[27] (2022) 

Occupancy on/off-street 

parking prediction: 15’, 30’, 
45’ and 60’ 

(average capacity: 678) 

Spatio-temporal 

parking data  

VAR, GRU,  

GCNN  
(predictions at 60’) 

GCNN RMSEo 60’ 

Parking in Italy 0.073 

Parking San Francisco 0.131 

Parking Birmingham 0.042 
 

M. K. Mufida et al. 

[31] (2021) 

Occupancy off-street parking 

prediction: 10’ in advance (up 
to 120’) 

Parking data 

(Euralille capacity: 
2600, Gare Lille: 

520) 

SVR, MLR, 

SARIMAX,  
RNN-LSTM 

RNN-LSTM Euralille Gare Lille 

RMSEo 0.126 0.556 

MAPEo 0.66 0.03 

MAPEo > 6% at 60’ 

C. Zeng et al. [16] 

(2022) 

Availability of free slots off-

street parking prediction 

(underground car park): 10’ 

in advance 

Parking data 

(capacity: 250) 

LSTM, CONV-

LSTM, BI-LSTM,  

CONV-BI-LSTM, 

DWT-Bi-LSTM 

 CONV-BI-
LSTM, 10’ 

DWT-Bi-LSTM 
10’ 

RMSEf 10.27 7.42 

MSEf 105.65 55.16 

MAEf 7.53 4.64 
 

Y. Feng et al. [17] 
(2022) 

Availability of free slots off-
street parking prediction: 

5’,15’, 30’, 45’, 60’ in 

advance  

Spatio-temporal 
parking data 

(St7 capacity: 800) 

LSTM, GRU, SVR, 
KNN, etc., and 

dConvLSTM-DCN 

(predictions at 60’) 

(St7) dConvLSTM-DCN, 60’ 

RMSEf  24.60 

MAEf 17.69 

MAPEf 7.28 
 

R. K. Kasera, T. 
Acharjee [18] 

(2022) 

Off-street occupancy rate 
prediction: time window not 

formally defined 

Parking data 
(capacity from 300 

to 480) 

ARIMA, MLP, CNN, 
LSTM, GRU, 

CNN-LSTM 

 CNN-LSTM k-Avg. Percent 

RMSEo 28.65 

MAEo 8.54 
 

E. S. Fokker et al. 
[13] (2022) 

Occupancy off-street parking 
prediction: 60’ and 6 months 

ahead  

(capacity from 260 to 1000) 

Parking data, 
weather data, 

events, parking fee, 

public transport 
lines data 

SARIMAX, ETS (6 
months), LSTM 

(predictions at 60’) 

(5) is a parking which 
may go to 0 free slots 

in daily hours 

 

Diff. Parking LSTM SARIMAX 

RMSEo (1) 0.202 28.03 

RMSEo (2) 1.104 43.73 

RMSEo (3) 1.061 51.89 

RMSEo (4) 0.656 51.20 

RMSEo (5) 2.179 60.25 

RMSEo (6) 1.803 70.76 
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the adopted model has a best fit with respect to a set of 

compared models: ARIMA, MLP, CNN, LSTM and GRU for 

off-street occupancy rate prediction in terms of RMSEo and 

MAEo. The used dataset contains data about the occupancy 

rate of an off-street multilevel parking which is formed by 3 

floors having the following capacity: 300, 317 and 480 slots, 

and it is not clear which parking area results are referring to. 

The prediction is conducted via time steps (from 1 to 100 

time-steps) and a time window is not formally defined. As 

results, it is reported the average percentage of parking 

occupancy rate accuracy at k time steps (k-Average Percent). 

      In [13], the used dataset is enriched with weather data, 

events, parking fees and public transport lines data leading to 

both short-term prediction (60 minutes in advance) and long-

term prediction (6 months ahead) for 57 off-street parking 

occupancy. In such a work, the comparison of models is 

among: SARIMAX (seasonal ARIMA with exogenous 

variable) [38], ETS (exponential smoothing) [39], LSTM. As 

described in [13], external variables, which affected parking 

occupancy, are related to weather conditions and events. 

In [13], the used dataset contains data about the occupancy of 

57 off-street parking lots in Amsterdam. The model 

performances have been evaluated for 6 of them having the 

capacity respectively close to: (1) 260, (2) 360, (3) 450, (4) 

350, (5) 400, (6) 1000 (numbers corresponding to the 

assessment in Table I). 

B. PAPER’S AIM AND ORGANIZATION 

This work is focused on presenting research results related to 

a solution for predicting the number of available parking slots 

(free slot of off-street parking facilities) for garages in the city 

of Florence. Prediction of available parking spaces is a 

complex non-linear process whose dynamic changes involve 

multiple factors. Parking facilities provide several different 

working conditions. Some of them are dedicated to a specific 

facility (football stadium, hospital), others are meant for 

multipurpose (station, expo, downtown, etc.), and others are 

located on city outskirts. Variability and performance are one 

of the main problems to be addressed, together with the 

precision in critical time slots, which is when the parking is 

getting full, running out of available slots. 

The major focus of this paper is on: 

• Identification of the best prediction models among a 

number of machine and deep learning techniques 

covering what has been presented in the literature, for 

example: BRANN, RNN, CNN-GRU, CNN-LSTM, and 

CNN-BI-LSTM.  

• The production of predictions, not only few minutes in 

advance, but for the next 24 hours, with 15-minute 

sampling with satisfactory precision. This would 

drastically reduce the computing prediction costs, since 

prediction is performed only once per day and not every 

few minutes, as typically proposed in literature. In 

addition, it may be of help for drivers planning their 

travel the day before. Most of state-of-the-art solutions 

produce predictions 1-hour ahead.  

• Clarify how the different solutions can be compared one 

another and compare the results on the basis of 

assessment metrics. Compare the results in terms of 

Occupancy rate and Free slots according to their 

corresponding metrics, in the 1-hour slot prediction.  

• Provide prediction results with respect to critical 

conditions for parking occurring when the parking 

facility is almost empty or full. This factor has been 

neglected in most solutions of related literature. 

• Propose explainability techniques (XAI, explainable 

artificial intelligence) for assessing feature relevance 

(among the several ones identified in the literature) in 

terms of their magnitude and temporal impact, or 

seasonality. This approach has been adopted for the 

proposed deep learning solution and can be used for 

almost all ML and AI models in literature.   

 

The proposed prediction model has been created in the 

context of a national center on sustainable mobility (MOST, 

in Italy) within the spoke on urban mobility and funded by 

the Ministry of Research, and by exploiting data and facilities 

of Snap4City, https://www.snapcity.org, infrastructure in the 

Florence / Tuscany area, Italy for Smart City [40], [41]. 

 

The paper is organized as follows. Section II considers the 

data description and the features definition applied to our 

field of research. In Section III, the deep learning model 

definitions are presented with their hyper-parameters tuning. 

Section IV presents the obtained results with short and mid- 

terms prediction of 1-hour and 24-hours in advance, 

respectively. The feature relevance analysis for the best 

model is described in Section V by applying gradient-based 

techniques. Finally, conclusions are drawn in Section VI. 
 
II.  DATA DESCRIPTION AND FEATURE DEFINITION 

The main goal of current work is to find a solution to predict 

the number of available parking slots (free slots) in parking 

garages/facilities, for example controlled by a gate (off-street 

parking facilities). This study concerns off-street parking 

located in the municipality of Florence so as to identify a 

common predictive and flexible model for different parking 

areas. Such areas are of different capability and provide 

different behaviors in different days of the week, as well as 

moments of the day. Some of them may experience critical 

conditions when the available parking slots are close to zero. 

Figure 1 reports the typical daily trends of available slots for 

the considered parking garages, where workdays and 

weekends are examined. Trends are significantly different, 

and their related behaviors depend on the city areas and 

services. Therefore, there is clearly a daily and weekly 

seasonality.  More precisely, we have considered three 

different representative parking areas: a suburb hospital 

parking location (namely Careggi car park) the behavior of 

which is reported in Figure 1(a), with its corresponding 

confidential trend considering the related standard deviation, 

and a capacity of 514 slots; a central parking location (namely 
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Beccaria car park) which is very close to the historical and 

pedestrian city area, having its related behavior reported in 

Figure 1(b) and a capacity of 203 slots; a parking garage 

located in the historical center of Florence (namely S. 

Lorenzo car park) having its related behavior reported in 

Figure 1(c) and a capacity of 179 slots. Please note that 

trends (working days and weekends) have been reported with 

their standard deviations. This permits to stress their 

corresponding noise level. Among them the noisiest one is S. 

Lorenzo car park due to the daily hours of market activities 

and the evening hours of movida and restaurants. 

The used data refer to the period from March 1, 2022, to June 

5, 2022. For each parking facility, the number of available 

slots has been checked and registered every 15 minutes. 

 
(a) Careggi car park (hospital), capacity: 514 

 

 
(b). Beccaria car park (downtown access), capacity: 203 

 

 
 (c) S. Lorenzo car park (old town access), capacity: 179 

FIGURE 1. Typical daily trends (and std. dev) of available lots for different 
parking garages in Florence, where workdays and weekends are 
examined.  

 
According to the state-of-the-art analysis, three groups of 

features have been identified as possible predictive metrics 

and they are briefly discussed in the following (see Table II).  

 
TABLE II OVERVIEW OF THE EXPLOITED FEATURES THAT CAN BE OF 

HELP IN DESCRIBING THE CONTEXT OF PARKING USAGE  WITH THEIR: 

CATEGORY, FEATURES AND DESCRIPTION. 

 

Category Features 
Description of features 

variable  

B
as

el
in

e 
fe

at
u

re
s 

o
f 

fr
ee

 s
lo

t 

d
at

a 
 

Free parking 
slots 

Real number of available slots 
recorded every 15 minutes 

dateTime 
Date and time (day, hour and 

minutes) 

dayWeek 0 for working days, 1 else 

Previous 
observation's 

difference 

(POD) 

Difference between the number of 

free spaces at time 𝑖 and number of 

free spaces at time (𝑖 − 15 minutes) 

recorded in the previous week  

Subsequent 
observation's 

difference 

(SOD) 

Difference between the number of 

free spaces at time 𝑖, and the number 

of free spaces at time (𝑖 +
15 minutes) recorded in the previous 

week  

W
ea

th
er

 

fe
at

u
re

s 
 Temperature 

City temperature measured one hour 
earlier than Time (°C) 

Humidity 
City humidity measured one hour 

earlier than Time (%) 

T
ra

ff
ic

 S
en

so
rs

 

fe
at

u
re

s 
 

Average 

Vehicle 
Speed 

Average speed of vehicles on the 

road nearest to the parking, over 
one-hour period (km/h) 

Vehicle Flow 
Number of vehicles passing nearest 

to the parking, over one-hour period 

Average 
Vehicle Time 

Average of distance between 
vehicles, over one-hour period 

Vehicle 

Concentration 

Number of vehicles per kilometer, 

over one-hour period 

 
The features related to the Baseline category consider 

measures related to direct observation of parking data and 

derived information over time. This category is ordered on 

the basis of date and time when measures are taken. The latter 

include number of available slots, working day or not, etc. 

Values are recorded every 15 minutes. These variables are 

used to consider the data seasonality, which may have 

different trends -- i.e., the workdays with respect to the 

weekends, etc. Two other features have been included in the 

model:  

• POD: difference between the actual and previous 

number of available spaces at the same time, recorded 

one week before; 

• SOD: difference between the actual number of parking 

spaces and the next one at the same time, recorded one 

week before.  

 

Features belonging to Weather are also collected every 15 

minutes, that is, temperature and humidity. According to our 

analysis, the most significant values are those related to the 

hour before the parking time in the context of 1-hour 

prevision time horizon. Therefore, in order to predict the 

number of free slots in a garage at 3 pm, weather features at 

2 pm are relevant. In fact, weather conditions typically affect 

decisions, when it comes to taking the car or the public 

transportation. For example, the expected behavior held by 

citizens when it rains (according to an appropriated value of 

humidity and temperature), is to drive a car, instead of the 
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motorcycle. By doing so, more parking lots will be occupied. 

On this line, one would supposed to exploit long term weather 

forecasts (6 hours or days in advance), since they could also 

impact on decisions (they are accessible on the Snap4City 

smart city platform). 

Features related to Traffic Sensors refer to values of traffic 

recorded by sensors which are in the neighborhood of the 

parking area, and mainly on the streets that can be used to 

reach the area [42]. Not unlike from weather data, traffic 

sensors values seem to be relevant if available for the 

previous hour with respect to the time of prediction. Typical 

values are the ones related to vehicle flow, concentration, 

average time and average speed [43]. They are estimated 

every 15 minutes. These metrics adopted for traffic flow 

estimation are those that typically are accessible from city 

traffic flow sensors. In this context, the value of traffic flow 

is used for assessing traffic conditions, and thus average 

values are satisfactory. Traffic sensors which are relevant for 

each garage may be one or more and they should be chosen 

considering the direction of travel and the most likely route 

to reach the garage.  On the other hand, for other applications, 

such as routing path finding or what-if analysis in traffic 

reconstruction, more precise data and predictions should be 

used [44], [45], [46], [47]. 

 
III. DEFINITION OF THE PREDITING MODELS 

This study can be divided into different steps: data collection, 

pre-processing, model training, evaluation, and deployment. 

In this process a large amount of data about parking 

occupancy must be collected, cleaned, normalized and 

imputed. Data missing is an unavoidable problem when 

dealing with real-world sensors. Parking data sensors may 

suffer of problems such as detector malfunction and 

communication failure, while there could be also some 

problems during every data acquisition process. All these 

problems can affect the monitoring of the parking state and 

may limit the predictive capability of the predictive models 

at runtime. In general, approaches of data imputation for 

producing surrogate data may help in creating dense data in 

training and execution [48].  

The settings used the temporal data explicitly as the input for 

models, therefore it was necessary to have observations 

consistent and complete. Temporal data has been so 

rearranged to have 96 timestamps per day (24 hours and 

samples every 15 minutes). Missing observations of parking 

data have been imputed as follows: at a timestamp 𝑡 of the 

day 𝑑 a missing observation has been imputed using the 

average of the timestamp 𝑡 of the most similar 3 days to the 

same day 𝑑. The model used for the imputation is K-

NearestNeighbours [49] with 𝑘 equal to 3, where the 

similarity is computed as the Euclidean distance with the 

nearest neighbors. More precisely, in training, we consider 

the imputation of missing free car parking data which 

corresponds to 1.1% of the measured (original) dataset. 

In our general framework, different approaches are tested: 

BRANN, RNN, CNN-LSTM, CNN-BI-LSTM and CNN-

GRU models applied well to the features presented above. 

More precisely, BRANN is the model producing the most 

reliable results according to the previous study carried out in 

[14] by considering data in the same car parks in Florence as 

it occurs in this study. Then, we have considered the most 

recent deep learning techniques by applying CNN-LSTM, 

CNN-BI-LSTM and CNN-GRU models to the datasets to 

improve the prevision performance. 

A. ARTIFICIAL NEURAL NETWORKS WITH BAYESIAN 
REGULARIZATION 

The Artificial Neural Network (ANN) is a supervised 

learning technique and it inspired by theories about how the 

human brain works [50], [51], [52]. Usually, ANNs tends to 

overfit, which in substance means to have trained the NN 

(Neural Network) to fit the noise trend without producing a 

good generalization, as expected by the ANN. However, 

Bayesian Regularized ANNs (BRANNs) attempts to 

overcome the overfitting problem by incorporating Bayes’ 

modeling into the regularization scheme [19]. In general, the 

risk of overfitting increases when a neural network grows 

through additional hidden layer neurons. BRANN approach 

avoids the overfitting because regularization pushes 

unnecessary weights towards zero. On such grounds BRANN 

method is more robust and efficient than classical ANNs and 

network weights are typically more significant in modeling 

the phenomena [19]. BRANN model fits a three-layer neural 

network as described in [53] and [64]. The layer weights the 

network, which is initialized by the Nguyen-

Widrow initialization method [54], and thus, the model is 

given by:  

𝑦𝑖 = 𝑔(𝑥𝑖) + 𝑒𝑖  

𝑦𝑖 =  ∑ 𝑤𝑘𝑔𝑘

𝑠

𝑘=1
(𝑏𝑘 + ∑ 𝑥𝑖𝑗𝛽𝑗

[𝑘]
𝑝

𝑗=1
) + 𝑒𝑖  ,    𝑖 = 1, … , 𝑛 

where: 

• 𝑒𝑖~ 𝑁(0,  𝜎𝑒
2);  

• 𝑠 is the number of neurons;  

• 𝑤𝑘 is the weight of the 𝑘-th neuron, 𝑘 = 1, … , 𝑠;  

• 𝑏𝑘is a bias for the 𝑘-th neuron, 𝑘 = 1, … , 𝑠; 

• 𝛽𝑗
[𝑘]

is the weight of the 𝑗-th input to the net, 𝑗 =

1, … , 𝑝;  

• 𝑔𝑘(∙) is the activation function: in this case:  

 

𝑔𝑘(𝑥) =
e2𝑥 − 1

e2𝑥 + 1
 

 

The objective function consists in minimizing 𝐹 = 𝛼𝐸𝑊 +
𝛽𝐸𝐷, where 𝐸𝑊 is the sum of squares of network parameters 

(weight and bias), and 𝐸𝐷 is the error (sum of squares), 𝛼 and 

𝛽 are the objective function parameters. 

B. RECURRENT NEURAL NETWORK 

Neural Networks have been the focus of great interest for 

many decades, due to the desire to understand the human 

brain and to build learning machines. Recurrent Neural 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3314660

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 9 

Networks (RNNs) are basically a Feedforward Neural 

Network with a recurrent loop [21]. RNNs are considered a 

powerful model for sequential data and they are applied to a 

wide variety of problems involving time sequences of events 

and ordered data. RNN are neural networks that consists in a 

hidden state h and an output y that operates on a sequence of 

variables 𝒙 = (𝑥1, … , 𝑥𝑇). At each time step 𝑡, the hidden 

state of the RNN is updated by ℎ(𝒕) = 𝑓(ℎ(𝒕−𝟏), 𝑥𝑡), where 𝑓 

is a non-linear activation function. Note that, while in 

principle the recurrent network is a simple and powerful 

model, in practice, it is hard to train properly [55]. 

C. CNN-LSTM 

Long short-term memory (LSTM) network is an improved 

recurrent neural network (RNN). Many studies have shown 

that CNN-LSTM, which is based on a combination of a CNN 

layer followed by an LSTM layer, shows better prediction 

performance than single CNN or LSTM models [56], [57], 

[58]. A CNN layer normally computes input data via a 

convolution layer and a pooling layer and then computes the 

characteristic descent. The result value is obtained based on 

the characteristic descent. As soon as the CNN layer 

computation is completed, the outcome is calculated via the 

LSTM layer, and result values are determined. The addition 

of a convolutive layer is grounded on the advantage of 

combining powerful feature extraction of CNN with LSTM 

capability in capturing temporal dependencies. Two main 

customization techniques can be considered to optimize the 

model performance. They concern both architecture of the 

CNN-LSTM network and tuning of the hyper-parameters 

used during the training phase. Generally, to determine the 

LSTM network structure, the following variables are 

considered: number of layers, number of neurons and dropout 

function. 

Moreover, as to hyper-parameters tuning of the mentioned 

network, several items also are considered, namely: type of 

optimizer, learning rate, momentum, etc. Regarding CNN 

network, hyper-parameters tuning is primarily related to the 

following items: number of filters and kernel size. In the case 

of study, CNN-LSTM has a 6-layers architecture structured 

such as:  

• the first two layers are made of CNN unit layer and 

average pooling layer;  

• the other four layers are made of LSTM network 

having 2 hidden layers, a dropout layer and a last 

layer which is a Dense layer with 96 units.  

The implementation of recurrent neural networks is stateful 

with a number of timesteps considered equal to 96, which 

corresponds to the data of one day prior (24 hours) to the 

observation/prediction time in the case of mid-term prevision 

of 24 hours in advance.   

The training process has been made with early stopping with 

patience set to 60 and weights restored to the best model. 

Hyperparameters, that have been optimized through a 

Random Search, are reported in Table III. 

 
TABLE III HYPERPARAMETER OPTIMIZED. 

hyperparameters value  
LSTM units number 256, 512, 1024, 2048 

LSTM-1 units number 16, 32, 64, 128 

Filters number 4, 8, 16, 32, 64 

Kernel size  2, 3, 4, 5 

Dropout rate 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 0.6 

Learning rate 0.1, 0.01, 0.001, 0.0001 

Momentum 0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.99 

Optimizer SGD, RMSprop, Adam 

 

The structure of the defined CNN-LSTM network is made up 

of the following 2 components: 

• The first component is made up of a Convolutional 

1dimensional layer with 16 filters and a kernel size 

of 3, and a AveragePooling 1dimensional layer. 

• The second component consists in LSTM layers, in 

particular: 2 hidden layers with 1024 and 32 units, 

respectively, a dropout layer of 0.3 and a dense layer 

with 96 units. 

The considered activation function is ReLu. The used 

optimizer is Adam Optimizer with learning rate equals to 

0.001 and momentum equals to 0.9. 𝑀𝐴𝐸 was selected as the 

loss function to be monitored during optimization. The batch 

size has been set to 16 and the number of epochs was set to a 

maximum value of 600, because the training strategy used the 

Early Stopping method with patience parameter set to 60 to 

determine the optimum epoch number, restoring the weights 

of the best model at the end of the learning process. 

D. CNN-BI-LSTM 

The LSTM layers in the above model are improved by means 

of a Bidirectional approach. The idea of Bidirectional LSTMs 

(BI-LSTM) is to aggregate input information in the past and 

future of a specific time step in LSTM models. In BI-LSTM, 

at any point in time, it is possible to preserve information 

from both past and future. In particular, the structure of the 

defined CNN-BI-LSTM network is made up of the following 

2 components: 

• The first component is made up of a Convolutional 

1dimensional layer with 16 filters and a kernel size of 3, 

and a AveragePooling 1dimensional layer. 

• The second component is the BI-LSTM layers, in 

particular: 2 hidden layers with 2048 (1024 +1024) and 

64 (32 + 32) units, respectively, a dropout layer of 0.3 

and a dense layer of 96 units. 

All model settings in CNN-LSTM are preserved in the CNN-

BI-LSTM one. 

E. CNN-GRU 

For the sake of completeness, we also consider the described 

model for Gated Recurrent Units (GRUs) application. GRUs 

are a gating mechanism in recurrent neural networks 

introduced in [59] and they are considered as a variation on 

the LSTM because both are designed similarly. In particular, 

GRU can be seen as a long short-term memory (LSTM) with 
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a forget gate, then GRU has fewer parameters than LSTM, as 

it lacks an output gate. 

F. CONSIDERATIONS 

Actually, LSTM, BI-LSTM and GRU are improved recurrent 

neural network (RNN) and we are going to compare them in 

our case of study preserving the same model setting 

(described above). In summary, the structure of the advanced 

RNN network has a CNN component, 2 (LSTM/BI-

LSTM/GRU) layers, a dropout layer of 0.3 and a dense layer 

of 96 units, respectively. The architecture of the adopted 

CNN-BI-LSTM model and the related graphical 

representation is reported in Figure 2. 

 
 

 
FIGURE 2. The adopted CNN-BI-LSTM model architecture.  
 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

According to the data and considerations reported, the 

identified challenge was to create a model and tools for 

predicting the number of free slots in off-street parking 

facilities with a resolution of 15 minutes for the next 24 

hours, primarily. Each predictive model produces the 96 

predictions for the next day, and it can be executed for 

updating them every 24 hours. So that, the update every 15’ 

nor every hour would not be strictly needed.  

As usual, the dataset is split in several parts used for training 

the model in the learning phase and testing it, that is 

comparing the forecasts obtained with the trained model with 

the actual data contained in the testing set. As a training 

dataset we have elected a sample of three months, from 

March 1st, 2022, to June 1st, 2022. The test set has been 

composed by 96 daily observations (every 15 minutes) 

recorded during the weeks from May 23th (Monday) to June 

5th (Sunday). 

A. ERROR MEASUREMENT DEFINITION 

As discussed in the Introduction, to calculate the prediction 

error, in the literature, most of the researchers have adopted 

the occupancy approach using 𝑀𝐴𝐸𝑜, 𝑀𝑆𝐸𝑜 and 𝑅𝑀𝑆𝐸𝑜. In 

this paper, we prefer to use metrics based on free slots to 

produce measures which are independent on the parking area 

capacity.  

    The identification of the model for measuring the error is 

very relevant, since it has to work well close to zero. This is 

due to the fact that on the particular issue of street-parking 

predictions, critical cases occur when the available parking 

slots are close to zero. For this reason, we have chosen the 

Mean Absolute Scaled Error (𝑀𝐴𝑆𝐸) by Hyndman and 

Koehler, 2006 in [60]. The Mean Absolute Scaled Error is 

calculated as follows: 

𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛(|𝑞𝑡|),   𝑡 = 1, … , 𝑛 
 and 

𝑞𝑡 =  
𝑜𝑏𝑠𝑡 − 𝑝𝑟𝑒𝑑𝑡

1
𝑛 − 1

∑ |𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠𝑖−1|𝑛
𝑖=2

 

where: 

• 𝑜𝑏𝑠𝑡= observation at time t 

• 𝑝𝑟𝑒𝑑𝑡 = prediction at time t 

• 𝑛 is the number of the values predicted over all test 

sets (96 daily observations per 7 days). 

Note that, as it can be easily verified, 𝑀𝐴𝑆𝐸𝑓 is identical to 

𝑀𝐴𝑆𝐸𝑜 and is clearly independent on the scale of the data, 

and on capacity. When 𝑀𝐴𝑆𝐸 is used for comparing 

predictive models, the best model is the one presenting the 

smaller 𝑀𝐴𝑆𝐸. Therefore, the 𝑀𝐴𝑆𝐸 should be the best 

solution to compare solutions assessed on the basis of the 

occupancy or free slots. 

     Additional metric, with respect those presented above and, 

in the introduction, can include Mean Absolute Percentage 

Error (𝑀𝐴𝑃𝐸), which is calculated as follows: 

 

𝑀𝐴𝑃𝐸 =
∑ |

𝑜𝑏𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖

𝑜𝑏𝑠𝑖
|𝑛

𝑖=1

𝑛
∗ 100. 

 

Relationship among metrics 𝑀𝐴𝑃𝐸𝑜, 𝑀𝐴𝑃𝐸𝑓 cannot be 

easily computed a posteriori, since they are un-linearly 

dependent on the parking Capacity. Also, R-squared (R2) is 

not linear and for this reason has not been taken into account 

in the comparison. 

B. PREDICTION MODEL RESULTS 

The comparison has been focused by considering BRANN, 

RNN, CNN-GRU, CNN-LSTM and CNN-BI-LSTM on the 

set of car parks in Florence which is composed by (a) Careggi 

car park (Hospital) having its capacity closed to 514 spaces; 

(b) Beccaria car park (market and downtown access) having 

its capacity closed to 203 spaces; (c) S. Lorenzo car park 

(historical center) having its capacity closed to 179 spaces. 

As a result, Table IV reports the comparison in terms of 

MASE, MAE and RMSE over the predicted week, considering 
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a target of 24 hours in advance, for the number of free parking 

spaces applied to the different locations. Moreover, a specific 

estimation for daily periods: morning (from 06:00:00 to 

11:59:59), afternoon (from 12:00:00 to 17:59:59), evening 

(from 18:00:00 to 23:59:59) and night (from 00:00:00 to 

05:59:59) is also considered in order to evaluate the daily 

moment having greater accuracy. The most critical day 

window is the afternoon to the access at the restaurant areas 

and for the visiting at the hospitals.  

    The comparison of the predictive models has been 

estimated on a training period of 3 months and the dataset is 

scaled with respect to the mean value. The error metrics have 

been estimated on a testing period of 1 week after the 23th of 

May 2022 by considering the next 24 hours. More precisely, 

each input (test) set gives a prevision according to the next 96 

timestamps (having 15 minutes of resolution) starting from 

the next hour related to the last time observation in the 

considered input set. Each input test set admits 1 week data 

observation sampled each hour (168 samples or timestamps) 

and two consecutive input tests are progressively defined. 

Given two consecutive input sets 𝐴, 𝐵 then 𝐴 is defined in the 

time interval [𝑡0, … , 𝑡167] and 𝐵 is defined in the time interval 

[𝑡0 + 15′, … , 𝑡167 + 15′]. Then, each input test admits a 

prevision in different moment of the day. In order to evaluate 

the error according to a specific day moment, we are going to 

collect together the previsions belonging to a specific time 

window according with morning, afternoon, evening and 

night. 

The comparison has put in evidence that CNN-BI-LSTM 

approach produced the most reliable results. Please note that 

the metrics are reported according to the daily time slots, in 

which the most critical is the afternoon since in that slot some 

of the parking facilities may reach zero free slots. 

  
TABLE IV COMPARISON AMONG PREDICTIVE MODELS FOR 24 HOURS IN 

ADVANCE, EVERY 15 MINUTES. DARKER CELLS ARE THOSE THAT 

PRESENT BETTER VALUES. THE METRICS ASSESSMENT HAS BEEN 

PERFORMED OVER 1 WEEK, WITH 15 MINUTES STEP. 

Comparison 
Error 

Forecasting Techniques 

BRANN RNN 
CNN-

GRU 

CNN-

LSTM 

CNN-BI-

LSTM 

 Careggi car park (hospital) 

MASE Night 34.2 27.0 24.0 20.4 20.7 

MASE Morning 8.6 7.2 5.3 6.0 4.7 

MASE Afterno. 10.9 7.6 5.6 6.8 5.2 

MASE Evening 10.1 6.4 7.4 6.2 6.0 

MASE (total) 10.6 8.7 7.1 7.5 6.2 

 Beccaria car park (downtown) 

MASE Night 8.6 12.1 14.0 8.5 11.9 

MASE Morning 7.0 5.7 4.2 3.8 3.2 

MASE Afterno. 10.2 8.2 7.7 7.8 6.8 

MASE Evening 6.2 6.2 6.1 6.2 5.9 

MASE (total) 8.2 7.6 6.9 6.3 6.0 

 S. Lorenzo car park 

MASE Night 13.7 23.8 21.1 23.4 16.0 

MASE Morning  9.2 6.1 5.7 5.8 6.0 

MASE Afterno. 5.0 4.4 5.6 4.6 5.3 

MASE Evening 3.8 4.0 3.1 3.7 2.9 

MASE (total) 6.9 6.4 6.2 6.3 5.8 

 

Comparison 

Error 

Forecasting Techniques 

BRANN RNN 
CNN-
GRU 

CNN-
LSTM 

CNN-BI-
LSTM 

 Careggi car park (hospital) 

MAEf Night 27.6 28.7 25.6 21.7 22.0 

MAEf Morning 116.4 97.1 71.5 80.5 63.6 

MAEf Afterno. 111.8 83.4 61.9 74.4 57.5 

MAEf Evening 58.7 31.0 35.8 30.2 29.3 

MAEf (total) 78.6 60.0 48.7 51.7 43.1 

 Beccaria car park (downtown) 

MAEf Night 12.3 12.5 14.4 8.7 12.2 

MAEf Morning 38.8 30.6 22.3 20.4 17.3 

MAEf Afterno. 38.7 33.5 31.4 31.8 27.7 

MAEf Evening 30.8 20.2 19.9 20.1 19.2 

MAEf (total) 30.2 24.2 22.0 20.2 19.1 

 S. Lorenzo car park 

MAEf Night 14.3 22.1 19.6 21.7 14.9 

MAEf Morning 39.1 27.6 25.9 26.5 27.2 

MAEf Afterno. 18.4 16.9 21.4 17.7 20.3 

MAEf Evening 17.6 15.1 11.8 14.1 11.2 

MAEf (total) 22.3 20.4 19.6 20.0 18.4 

 

Comparison 

Error 

Forecasting Techniques 

BRANN RNN 
CNN-

GRU 

CNN-

LSTM 

CNN-BI-

LSTM 

 Careggi car park (hospital) 

RMSEf Night 38.2 36.1 32.5 28.3 27.4 

RMSEf Morning 152.6 123.5 102.7 100.4 93.8 

RMSEf Afterno. 134.1 103.0 78.9 94.6 86.0 

RMSEf Evening 72.4 40.0 46.7 39.2 39.1 

RMSEf (total) 109.5 84.8 70.7 73.1 68.0 

 Beccaria car park (downtown) 

RMSEf Night 15.6 15.7 17.2 11.7 16.7 

RMSEf Morning 45.7 39.6 29.0 28.5 23.7 

RMSEf Afterno. 45.1 42.6 39.5 37.8 36.1 

RMSEf Evening 38.6 25.8 25.0 24.9 24.1 

RMSEf (total) 38.3 32.8 28.8 27.4 26.1 

 S. Lorenzo car park 

RMSEf Night 17.2 24.7 11.5 23.6 17.8 

RMSEf Morning 44.8 31.0 29.1 29.6 30.8 

RMSEf Afterno. 23.1 21.0 26.6 23.2 25.8 

RMSEf Evening 23.4 18.6 14.9 16.9 14.4 

RMSEf (total) 29.1 24.3 23.6 23.7 23.1 

 

The above-presented results are related to the mid-terms 

forecast for the next 24 hours in terms of MASE, MAEf, MSEf 

and RMSEf. The computing of predictions for each hour for 

the next 24 hours reduces the computational costs and energy. 

When the data are very noisy, the results obtained with CNN-

BI-LSTM are not the best but still comparable with the best 

results. In the critical day period, the afternoon, the best 

results are obtained in most cases in terms of MASE and 

MAEf by CNN-BI-LSTM. 

In Table V, according to the literature, we have assessed the 

results with respect to 1-hour horizon consisting of the first 

timestamp prevision of our output model, at 24 hours. Also 

in this case, the CNN-BI-LSTM resulted the best model for 

almost all parking cases. Good results have been also 

obtained by CNN-GRU. 
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TABLE V COMPARISON AMONG PREDICTIVE MODELS FOR 1 HOUR IN 

ADVANCE, ASSESSING PRECISION OF THE FIRST HOUR OF THE 24 HOURS 

PREVISION TARGET MODEL. 

Comparison 
Error 

Forecasting Techniques 

BRANN RNN 
CNN-

GRU 

CNN-

LSTM 

CNN-
BI-

LSTM 

 Careggi car park 

MASE (1H/24) 10.6 6.6 7.4 5.9 5.5 

MAEf (1H/24) 78.6 45.8 51.2 40.6 38.0 

RMSEf (1H/24) 109.5 71.7 75.1 56.0 44.4 

 Beccaria car park 

MASE (1H/24) 8.2 5.7 5.9 5.2 4.9 

MAEf (1H/24) 30.2 18.5 19.3 17.1 16.0 

RMSEf (1H/24) 38.3 25.2 24.3 23.0 20.6 

 S. Lorenzo car park 

MASE (1H/24) 6.9 6.9 5.8 6.5 5.7 

MAEf (1H/24) 22.3 22.3 18.7 21.1 18.3 

RMSEf (1H/24) 29.1 26.0 22.6 24.9 23.0 

 

Furthermore, the studied models have been also trained for 

producing 1-hour prevision, by modifying the number of 

units of the dense (last) layer, appropriately. So that, we 

specifically trained the models to produce 1-hour prediction 

only. The results are reported in Table VI. In this case, the 

CNN-BI-LSTM resulted unequivocally the best model. 

Moreover, as expected, the estimation of a specifically 

trained models produced better results of the model trained 

for 24hours predictions. On the other hand, the differences 

are limited. The CNN-BI-LSTM model obtained a MAEf 

equals to 14.8, 10.3 and 9.6 and RMSEf equals to 17.7, 12.3 

and 11.7 for Careggi, Beccaria and S. Lorenzo car parks 

respectively (in the context of 1-hour forecast target). 

 
TABLE VI COMPARISON AMONG PREDICTIVE MODELS FOR 1 HOUR IN 

ADVANCE, ADOPTING A SPECIFIC TRAINED MODEL. 

Comparison 

Error 

(1H) 

Forecasting Techniques 

BRANN RNN 
CNN-

GRU 

CNN-

LSTM 

CNN-
BI-

LSTM 

 Careggi car park 

MASEf (1H) 10.6 2.4 1.8 2.2 1.1 

MAEf (1H) 78.6 32.5 24.8 29.5 14.8 

RMSEf (1H) 109.5 43.7 31.5 36.5 17.7 

 Beccaria car park 

MASEf (1H) 8.2 3.3 2.7 3.3 2.0 

MAEf (1H) 30.2 16.4 13.6 16.7 10.3 

RMSEf (1H) 38.3 21.0 17.1 25.0 12.3 

 S. Lorenzo car park 

MASEf (1H) 6.9 3.4 2.8 2.2 2.0 

MAEf (1H) 22.3 16.6 13.7 10.8 9.6 

RMSEf (1H) 29.1 19.3 16.5 15.1 11.7 

 

According to the specific error estimation for daily periods 

(morning, afternoon, evening and night) we obtain Table VII 

for MAEf estimations and Table VIII for MAEo estimations. 

By means of the relation between MAEo and MAEf reported 

in Section I.A. 

 

 

 

TABLE VII DAILY 𝑀𝐴𝐸𝑓 FOR CNN-BI-LSTM MODELS FOR 1 HOUR IN 

ADVANCE, ADOPTING A SPECIFIC TRAINED MODEL. 

Comparison 

Error 

CNN-BI-LSTM (1 hour direct) 

Careggi car 

park 

Beccaria car 

park 

San Lorenzo 

car park 

MAEf Night 15.8 10.6 9.0 

MAEf Morning 14.2 8.4 9.9 

MAEf Afternoon 9.4 8.9 10.2 

MAEf Evening 18.7 14.1 9.7 

MAEf (daily) 14.8 10.3 9.6 

 
TABLE VIII DAILY 𝑀𝐴𝐸𝑜 FOR CNN-BI-LSTM MODELS FOR 1 HOUR IN 

ADVANCE, ADOPTING A SPECIFIC TRAINED MODEL. 

Comparison 

Error 

CNN-BI-LSTM (1 hour direct) 

Careggi car 

park 

Beccaria car 

park 

San Lorenzo 

car park 

MAEo Night 3.07 5.22 5.03 

MAEo Morning 2.76 4.14 5.53 

MAEo Afternoon 1.83 4.38 5.70 

MAEo Evening 3.64 6.95 5.42 

MAEo (daily) 2.88 5.07 5.36 

 

As it can be noticed, the best results have been registered for 

Careggi park during the morning and afternoon day periods, 

which are the most critical.  S. Lorenzo provided a very noisy 

trends resulting in less predictable values. 

C. LITERATURE COMPARISON DISCUSSION 

As mentioned in the Introduction, the comparison of results 

with respect to the literature has to be carefully performed. 

Since in most cases we registered: (i) the usage of un-linear 

metrics or the usage of metrics depending on capacity without 

providing details, (ii) the usage of different parking data sets 

(different noise level and seasonality, see explainability in the 

following), which in some case also adopt additional 

variables such as weather, traffic, etc., (iii) the computation 

of assessment metrics as average in the day or week period 

instead of providing them in the day hours and thus in critical 

conditions. 

Our target is related to the availability of free parking slots 

prediction in off-street parking which is formally different 

with respect to the occupancy prediction of free parking 

spaces in off-street parking. The most recent deep learning 

models have been applied to 1-hour short-term parking 

prediction or shorter which is very computationally 

expensive.  

For these reasons, the performance comparison in terms of 

precision can be performed only with respect to a limited 

number of state-of-the-art results. With the aim of comparing 

the results, it should be noticed that [31] and [Jelen] provide 

relevant values for error percentage at 60’ with respect those 

presented in Table VIII with our CNN-BI-LSTM, and in 

particular MAEo of 6.71 for [31], and a MAPEo > 6% for 

[26]. Moreover, according to Table VIII, the proposed CNN-

BI-LSTM model provides a MAEo of 1.83 for critical hours 

which overcomes the NN solution of [23] providing MAEo of 

1.91, and those of [17]. In [17], as reported in Table I, the 

dConvLSTM-DCN model for the availability of free parking 

spaces prediction at 1-hour in off-street context has been 
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proposed. Thus, on not very noisy car parks, it obtained a 

larger absolute error as MAEf, and comparable results 

normalizing their results computing MAEo with the 

information provided.  

On the other hand, for mid-term predictions of 24-hours, the 

literature does not provide specific results, except for the 

analysis of [31] which detected a strong increment of error in 

increasing the prediction time. As it can be easily obtained by 

Table 4 and the definition of MAEo, the results for H24 

prediction are: a MAEo of 8.39 for Careggi park for the whole 

day, which is good compromise to avoid computing 24 or 96 

estimations, over 24 hours. 

D. COMPUTATIONAL PERFORMANCE ANALYSIS 

In Table IX, the comparison of execution time performance 

needed for the used techniques in the case of 24 hours 

predictions models of Table IV. The case of study in 

Beccaria car park is considered in the mentioned Table. Deep 

learning solutions have been executed on GPU as NVIDIA 

Quadro GV100 with 32GByte Ram, which has 5120 CUDA 

Cores, FP64 perf as 7.4 TFLOPS.  

Note that, the CNN-BI-LSTM model provides a training 

execution time shorter than the CNN-LSTM model due to the 

used training strategy involving the Early Stopping method 

with patience parameter set to 60 to determine the optimum 

epoch number. In the case, the CNN-BI-LSTM model admits 

the optimum epoch number equal to 188 with a training 

execution time of 1162.32 s, while the CNN-LSTM model 

admits the optimum epoch number equal to 378 with a 

training execution time of 989.95 s. Then, for a single epoch 

the CNN-BI-LSTM model is time consuming with respect to 

CNN-LSTM as seen in the results related to the prediction 

execution.    

 
TABLE IX COMPARISON OF PERFORMANCE OF THE DEEP LEARNING 

TECHNIQUES IN THE CONTEXT OF PARKING PREDICTION.  
Model Training  

execution (s) 

Prediction execution (s), 24 

hours, 96 predictions 

BRANN 137.66 0.032 

RNN 327.41 0.836 

CNN-GRU 523.56 (130 epochs) 5.191 

CNN-LSTM 1162.32 (378 epochs) 3.926 

CNN-BI-LSTM 989.95 (188 epochs) 7.386 

 
V. PREDICTION MODEL EXPLAINABILITY 

The level of importance of features and time lags for the 

multi-step prediction can be analyzed by using the gradient 

and integrated gradient technique [61]. Gradient, denoted by 

𝐺, is a fundamental concept in machine learning to identify 

the direction and magnitude of the maximum growth of a 

function at a specific point. To calculate the Gradients and 

the Integrated Gradients, we created 𝑥𝑡𝑒𝑠𝑡   dataset consisting 

of 672 arrays of timeseries (from data of Table 2) starting 

from Sunday to Saturday. Each array includes a timeseries of 

1-week data observations sampled each hour (168 samples / 

timestamps). 

Two consecutive arrays 𝐴, 𝐵 in the 𝑥𝑡𝑒𝑠𝑡  set of arrays, are 

translated of 15 min. Then, 𝐴 is defined in the time interval 

[𝑡0, … , 𝑡167] and 𝐵 is defined in the time interval [𝑡0 +
15′, … , 𝑡167 + 15′]. Let 𝛤 be the set of features such that 𝛤 = 

{POD,  freeParkSlots, SOD,  averageVehicleSpeed,  

vehicleFlow,  averageVehicleTime,  vehicleConcentration,  

temperature,  humidity,  dayWeek} from Table II, then we 

are going to consider the 𝑗 −th feature 𝑋𝑗 in 𝛤 and 𝑋𝑗
𝑡,𝑖 is the 

related  𝑖 − th observation in the 𝑡 − th week of the 𝑗 −th 

feature, with 0 ≤ 𝑡 ≤ 671, 0 ≤ 𝑖 ≤ 167 and 0 ≤ 𝑗 ≤ 9. 

Thus, 𝑥𝑡𝑒𝑠𝑡  can be represented as follows: 

 

𝑥𝑡𝑒𝑠𝑡 = ⋃ [
𝑋𝑗

0,0 ⋯ 𝑋𝑗
0,167

⋮ ⋱ ⋮
𝑋𝑗

671,0 ⋯ 𝑋𝑗
671,167

]
𝑗=0,…,9

 

 

The visualization of the gradient helps us to understand how 

the steps of the input features 𝑋𝑗
𝑡,𝑖 affect the output of the 

model at each timestep i. In a nutshell, the gradient provides 

a representation of the input areas that are important for the 

model in predicting.  

Formally, for each 𝑋𝑗 ∈ 𝛤, we have: 

 

𝐺𝑗  𝑡,𝑖 =
𝜕𝐹

𝜕 𝑋𝑗
 ( 𝑋0

𝑡,𝑖 , … , 𝑋9
𝑡,𝑖) 

 

where 𝐹 is the output function and 𝐺𝑗  𝑡,𝑖 is the related  𝑖 − th 

gradient in the 𝑡 − th week of the 𝑗 −th feature, with 0 ≤ 𝑡 ≤ 

671, 0 ≤ 𝑖 ≤ 167 and 0 ≤ 𝑗 ≤ 9.  

Figure 3 shows the gradient map for the features considering 

CNN-BI-LSTM and CNN-LSTM models, respectively. The 

point having coordinates (𝑡, 𝑖) in the 𝑗 −th feature represents 

the 𝑖 − th Gradient value according to 𝑡 − th week. The steps 

of data input which more positively influence the prediction 

are reported in green, while in red are those that negatively 

influence the prediction. In white, the steps of input that have 

a low influence the predictions output.  

(a) 
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(b) 

FIGURE 3. Gradient for features for the (a) CNN-BI-LSTM and (b) CNN-
LSTM models. In green, red and white the steps that influence positively, 
negatively and marginally the predictions, respectively. (Careggi Car 
Park). 
 

According to Figure 3(a) with bidirectional layer, the 

features having the greatest influence at a higher value of the 

prediction are freeParkSlots, averageVehicleSpeed, 

vehicleflow and dayWeek. While the features that affect lower 

values of prediction are: humidity, temperature and 

averageVehicleTime. Humidity and freeParkSlots are the 

features that a larger number of steps affect the prediction of 

the 𝑥𝑡𝑒𝑠𝑡  considered. The analysis of Figure 3(b) without the 

bidirectional layer, put the evidence that the predictions are 

obtained a quite different manner, taking into account 

positively POD and freeParkSlots, and negatively Humidity 

and DayWeek. Please note that also the scales are different in 

the two graphs of Figure 3. In Figure 3(a), the first 30 steps 

and the last 45 steps of the input have greater importance in 

the forecast than the middle steps. This is related on the 

bidirectional approach of taking data. In fact, Figure 3(b), 

presents relevant features only in the last hours. Thus, the 

white central area the Figure 3(a) graph could be interpreted 

that the data older than 45 hours could be less relevant for the 

models.   

     Figure 4 shows the normalized cumulated gradients for 

all features, as a function of hours slots for the CNN-BI-

LSTM and CNN-LSTM models, respectively. On the x-axis, 

the 𝑖 − th step of the input week hours is shown and on the y-

axis the value of the normalized cumulated gradient. 

(a) 

(b) 

FIGURE 4. Normalized cumulated gradient plot for the CNN-BI-LSTM and 
CNN-LSTM models, from 1 to 168 samples, Careggi car park. 
 

Again, a different behavior is shown for bidirectional and 

non-bidirectional models.  In fact, for the Figure 4(b), the 

input steps most influential to the prediction are those closest 

to the prediction, thus the last 75 steps of the input week. 

These steps are much more influential than in the 

bidirectional model because they generate larger gradients. 

Thus, the structure of the CNN-BI-LSTM model allows us to 

capture information on the weekly seasonality of the amount 

of parking predicted and may need a shorter time window 

data to provide predictions.  

D. ANALYSIS VIA INTEGRATED GRADIENTS 

By estimating the Integrated Gradients, 𝐼𝐺 [62], is possible 

to determine the importance of individual input features for 

each time step of the output/prediction. The IG estimates the 

gradient of the output/prediction with respect to the 

interpolated input/features. Thus, features that play a relevant 

role in certain prediction sequences are identified. The idea 

behind 𝐼𝐺 is to calculate the weighted average of the 

gradients of the output/prediction function with respect to the 

input/features using a reference baseline. 

 

𝐼𝐺𝑗  𝑡,𝑖

= (( 𝑋0
𝑡,𝑖, … , 𝑋9

𝑡,𝑖)

− ( 𝑏0
𝑡,𝑖 , … , 𝑏9

𝑡,𝑖)) ∫
𝜕𝐹

𝜕𝑋𝑗
(( 𝑏0

𝑡,𝑖 , … , 𝑏9
𝑡,𝑖)

+ 𝛼 (( 𝑋0
𝑡,𝑖 , … , 𝑋9

𝑡,𝑖) − ( 𝑏0
𝑡,𝑖 , … , 𝑏9

𝑡,𝑖))) 𝑑𝛼 

 

where: 𝑏 is the baseline, 𝐹 is the output function and 𝛼 is a 

scale value between 0 and 1 that allows interpolation between 

the baseline and the input. Figure 5 shows the 𝐼𝐺 maps for 

the features and the corresponding time trend, in a week from 

Sunday to Saturday (right). The prediction is for the next 

Sunday.  
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FIGURE 5. Integrated Gradient for predictions with respect to the features, 
for Careggi Car Park. In green, red and white the steps that influence 
positively, negatively and marginally the predictions, respectively. In blue 
the time trend of the feature.  
 

Figure 5 reports the typical 𝐼𝐺 heatmaps computed for the 

CNN-BI-LSMT model on Careggi car park. On the other 

hand, it can be applied as a generic XAI approach for almost 

all ML and AI models in the literature.   

For each 𝑗 −th map, on the x-axis are the observations 

considered in our test dataset, and on the y-axis are the 

predictions considering 1-day observation with time lags of 

15 minutes (96 timestamps, 24x4 time slots of 15’). In green 

are the steps of the output model that are most positively 

influenced in the prediction by means of the 𝑗 −th feature, in 

red are the steps that are negatively influenced and in white 

the steps that are low influenced. 

From the 𝐼𝐺 heatmaps, we can make several considerations. 

Please note that, the heatmaps of the features do not have all 

the same scale; Humidity and freeParkSlots are those with 

large magnitude. Humidity influences the prediction steps 

from step 25 up to step 50. 

From almost all heatmaps, it is evident the presence of a week 

seasonality and a difference in relevance with a daily 

seasonality (along y). A different week seasonality has been 

registered for freeParkSlots with respect to 

vehicleConcentration and vehicleFlow, which are data 

coming from traffic flow sensors. Moreover, it is also 

confirmed that the predictions on Sunday are based on the 

values of previous Saturday, Friday, and Sunday (see 

averageVehicleTime). The averageVehicleTime feature has a 

greater influence on the first part of the forecast series. 

Temperature always affects negatively the predictions, with 

more relevance in the central part of the day. Features such 

as vehicleFlow, average VehicleSpeed, averageVehicleTime, 

vehicleConcentration and temperature have a greater 

influence in the prediction from step 40 to step 65. 

This approach has been adopted for the proposed deep 

learning solution CNN-BI-LSMT and could be applied for 

almost all ML and AI models in the literature, with some 

differences in the interpretations as occurred in the gradient. 

 
VI. CONCLUSION 

The Availability off-street parking spaces prediction is a 

complex non-linear process involving multiple kinds of 

factors, as the variety of parking areas (downtown, on 

hospital and others on the periphery, close to theaters, 

airports, etc.).  

The present work has been focused to find a solution for 

predicting the number of available parking slots in off-street 

case in the city of Florence for the next 24 hours in advance, 

every 15 minutes. Such a mid-term prevision could be very 

useful for drivers to plan their travel and parking the day 

before. Moreover, the 24H predictions allow to drastically 

reduce the computational costs. To this aim, we have 

considered and compared a number of different techniques 

and metrics to assessment them. We discovered in the 

literature two main approaches for parching prediction 

assessment. One based on metrics for assessing occupancy 

rate as percentage of fullness, and the other of absolute 

measure of the error in free slot estimation. The assessment 

approaches have been analyzed and compared to produce a 

framework which allows to compare the results obtained and 

measured according to these different methods.  

According to the analysis a number of techniques have been 

compared: BRANN, RNN, CNN-GRU, CNN-LSTM, and 

CNN-BI-LSTM to identify the best solution in terms of 

precision, especially for the estimation of free slot in critical 

conditions (when the free slot risk to become zero). The 

solution identified results the better ranked in these 

conditions 1-hour in advance, and in producing prediction 
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24hours in advance (mid-terms). The comparison has been 

performed considering several metrics according to the two 

different approaches: occupancy rate and free slots.   

In addition, the paper has performed a feature relevance 

analysis to identify the most relevant features and their 

impact over time since some of them provide different 

seasonality, and also the predictions are affected by 

seasonality over the week and the 24 hours. To this end, 

features such as the historical data, the weather conditions 

and the traffic flow data have been exploited and analyzed. In 

almost all predictive models, the historical data, traffic flow 

sensors and weather have demonstrated high predictive 

capabilities in explaining the number of free parking slots. 

The research documented in this paper demonstrated by using 

the gradient the differences from CNN-LSTM and CNN-BI-

LSTM. And by using the integrated gradient and a new 

heatmap representations impact of seasonality in the parking 

predictions. This approach can be used for almost all ML and 

AI models in the literature.   

The prediction model proposed has been created by 

exploiting data in the Snap4city platform and infrastructure 

in Florence and Tuscany area, Italy. 
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