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INTERIOR A PRIORI ESTIMATES FOR SUPERSOLUTIONS OF FULLY

NONLINEAR SUBELLIPTIC EQUATIONS UNDER GEOMETRIC

CONDITIONS

ALESSANDRO GOFFI

Abstract. In this note, we prove interior a priori first- and second-order estimates for
solutions of fully nonlinear degenerate elliptic inequalities structured over the vector fields
of Carnot groups, under the main assumption that u is semiconvex along the fields. These
estimates for supersolutions are new even for linear subelliptic inequalities in nondivergence
form, whereas in the nonlinear setting they do not require neither convexity nor concavity on
the second derivatives. We complement the analysis exhibiting an explicit example showing
that horizontal W 2,q regularity of Calderón-Zygmund type for fully nonlinear subelliptic
equations posed on the Heisenberg group cannot be in general expected in the range q < Q,
Q being the homogeneous dimension of the group.

1. Introduction

Recently, E. Braga and D. Moreira obtained an optimal C1,α regularity result for semicon-
vex supersolutions to fully nonlinear uniformly elliptic equations with an unbounded source
term f ∈ Lq, q > n, n being the dimension of the ambient space, see Theorem 3.6 in [9].
This extended a previous a priori estimate on the modulus of continuity of the gradient for
semiconvex supersolutions to linear uniformly elliptic equations proved by L. Caffarelli, R.
Kohn, L. Nirenberg and J. Spruck [12], cf. Corollary of Lemma 2.2. An improvement of such
a result up to q = n, along with the optimal interior regularity of the convex envelope of
Ln-viscosity supersolutions to Pucci’s extremal equations with unbounded coefficients, were
investigated by E. Braga, A. Figalli and D. Moreira in [8].
Given a family X = {X1, ..., Xm} of C2 vector fields of Carnot-type, the purpose of this
note, inspired by the aforementioned works, is to establish a priori high-order estimates in
second order Sobolev spaces (and in first-order Hölder spaces via Morrey-type embeddings as
a byproduct) for solutions to degenerate fully nonlinear subelliptic inequalities of the form

(1) G(x, (D2
Xu)∗) ≤ f(x) in Ω,

where (D2
Xu)∗ stands for the symmetrized horizontal Hessian along the vector fields (D2

Xu)∗ =
XiXju+XjXiu

2 . Here, G : Ω×Sm → R, Ω ⊆ Rn, n ≥ m, Sm being the space of m×m symmetric
matrices, is continuous and uniformly subelliptic in the sense that

(2) M−λ,Λ(X − Y ) ≤ G(x,X)−G(x, Y ) ≤M+
λ,Λ(X − Y ), X, Y ∈ Sm,
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2 ALESSANDRO GOFFI

M−λ,Λ,M
+
λ,Λ being the Pucci’s extremal operators, see (4)-(5) below. A longstanding open

problem in the regularity theory of such equations or, more generally, subelliptic equations
in nondivergence form with bounded measurable coefficients, is the validity of an analogue
of the Krylov-Safonov Harnack inequality. This is mainly due to the lack of Aleksandrov-
Bakel’man-Pucci (briefly ABP) maximum principles, see the introduction of [17] for a thor-
ough discussion. In this framework, it was only shown that ABP type estimates cannot be
produced, at least in Heisenberg-type groups, when the right-hand side of the equation lies in
Lq, q < Q, Q being the homogeneous dimension [17], in accordance with the classical results
of A. D. Aleksandrov and C. Pucci [3, 30]. Nonetheless, some invariant Harnack inequalities
have been obtained under smallness conditions on the ratio among the ellipticity constants
(this can be referred to Landis/Cordes-type conditions) for nondivergence structure elliptic
problems posed on Carnot groups of Heisenberg-type, see [23, 31, 1], and also for parabolic
Kolmogorov and kinetic operators with diffusion in nondivergence form, cf. [2]. For weighted
ABP estimates and Harnack inequalities on Grushin geometries see [29]. We also mention
that a global Krylov-Safonov Harnack inequality was proved in [10] for equations in nondi-
vergence form on Riemannian manifolds under curvature lower-bounds. Note that the results
in [31, 1] immediately lead to an extension to the fully nonlinear setting, and also provide
low-regularity in Hölder spaces using classical arguments, under suitable restrictions on the
ellipticity constants. Still, a subelliptic version of the C1,α estimate of Cordes-Nirenberg type
seems not available, and to our knowledge no results appeared in the context of degenerate
fully nonlinear subelliptic equations of second order in horizontal C2,α

X and W 2,q
X spaces, even

for smooth solutions and smooth functionals. Indeed, the structure of the problem over hori-
zontal Hessians prevents from the use of classical linearization arguments, based for example
on the Bernstein method, see e.g. [14, 12, 32, 19]. Typically, when X are the Euclidean vector
fields, see [19], if u smooth solves the model problem F (D2u) = 0, with F ∈ C1 and uniformly
elliptic in the sense of [14], then v = ∂eu, e ∈ Rn with |e| = 1, solves a linear nondivergence
structure equation of the form

aij(x)∂ijv = 0 , aij(x) = Fij(D
2u).

Then, the Krylov-Safonov Hölder regularity applies to v (since no regularity properties on aij
are required) leading thus to C1,α estimates under no assumptions on the nonlinearity other
than the uniform ellipticity.
However, the non-commutative structure of sub-Riemannian geometries and the absence of
the Krylov-Safonov theory do not allow to reproduce the previous approach. Similarly, the
Bernstein method, based on a linearization argument, cannot be performed: this is easily
seen by the recent Bochner-type formulas obtained in [21] for step-2 Carnot groups, which
give rise to additional commutator terms.
In the classical regularity theory for fully nonlinear equations, though C1,α, α < 1, estimates
are obtained under essentially no assumptions on F = F (D2u), C1,1 estimates (and higher-
order C2,α estimates through the Evans-Krylov theorem) usually require concavity/convexity
type assumptions on F . However, C1,1 estimates were proved in [24] for strictly elliptic
inequalities under the geometric assumption that the unknown function is convex: this was
obtained through the properties of the convex envelope found in [4], without requiring neither
convexity nor concavity on the fully nonlinear operator. The aforementioned works [9, 8] lead
to a further development, proving indeed a generalization of the results in [12, 24] for more
general semiconvex semisolutions with unbounded coefficients in Lebesgue spaces.
In the subelliptic context, a generalized notion of convexity (and, thus, semiconvexity) along
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the vector fields, called X -convexity, was discussed in [5], see also [16] for Carnot groups. The
results in [5] say that u ∈ USC is convex along the fields of X if and only if (D2

Xϕ(x))∗ ≥ 0
for all smooth ϕ and x ∈ argmax(u− ϕ).
Therefore, having such a notion at our disposal and following [9], we prove the following
model result for horizontal Hessian inequalities structured over the fields of a Carnot group:
if u is X -semiconvex according to [5] and a smooth solution to

G((D2
Xu)∗) ≤ f in B1

with f ∈ L∞(B1), G satisfying (2) with G(0) = 0 (with no other assumptions on G = G(X)),
where Br is a metric ball of radius r, then the following interior a priori estimate holds:

‖(D2
Xu)∗‖Lq(B 1

2
) . C(‖u‖Lq(B1), ‖f‖Lq(B1)), q ∈ (1,∞).

When q is larger than a certain threshold involving the homogeneous dimension associated to
the fields we get C1,α estimates with respect to the corresponding sub-Riemannian distance.
As stated in the previous results, throughout the paper we work with classical solutions,
though all the estimates are independent of the smoothness and depend only on the structural
constants and the integrability of the data. We briefly discuss some one-side second order
estimates, that can be thus regarded as regularity estimates, in the viscosity sense, see Remark
3.2.
The prototype example to which our results apply is the (degenerate) Isaacs equation, i.e. a
PDE of the form

G((D2
Xu)∗) = sup

β
inf
α

Tr(Aαβ(x) (D2
Xu)∗) = sup

β
inf
α

Tr(Aαβ(x)σT (x)D2uσ(x)),

where σ ∈ Rn×m is a (degenerate) matrix having the fields Xi as columns, α, β belong to
some control sets A,B respectively, while D2u ∈ Sn is the standard Hessian of the unknown
function u. It is well-known that every nonlinear operator G = G((D2

Xu)∗) satisfying (2) can
be written in Isaacs form as follows, cf. [11]: by (2) one has for X,Y ∈ Sm and Aλ,Λ = {A ∈
Sm, λIm ≤ A ≤ ΛIm},

G(X)−G(Y ) ≤M+
λ,Λ(X − Y ) = sup

A∈Aλ,Λ
Tr(A(X − Y )).

Since the equality is attained when X = Y , one obtains

G(X) = min
Y ∈Sm

max
A∈Aλ,Λ

{Tr(AX) +G(Y )− Tr(AY )}.

By taking then X = (D2
Xu)∗ we have

G((D2
Xu)∗) = min

Y ∈Sm
max
A∈Aλ,Λ

{Tr(A(D2
Xu)∗) +G(Y )− Tr(AY )}.

Note that the previous operator is degenerate elliptic if expressed in Euclidean coordinates.
However, the previous announced results turn out to be new even for general linear subelliptic
equations of the form G((D2

Xu)∗) = Tr(A(x)D2
Xu)∗), where A satisfies λIm ≤ A ≤ ΛIm and

has bounded measurable entries, and, finally, apply to any Carnot group.

Some comments on the results are now in order. Though the (geometric) a priori require-
ment on the solution could appear strong (and thus the consequent estimate conditional to the
geometric bound), the procedure we are going to implement allows to conclude the estimate
for semisolutions, and not only for solutions. Indeed, W 2,q estimates are typically obtained
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for solutions to uniformly elliptic PDEs (which indicates a two-side analytic control on the
problem, since, roughly speaking, G = f with |f | ≤ C means −C ≤ G ≤ C). Indeed, classical
results for the Poisson equation show that if u solves ∆u = f ∈ L∞, i.e. −Cf ≤ ∆u ≤ Cf for
some Cf > 0, then u ∈ C1,α ∩W 2,q and the following estimates hold

‖u‖W 2,q(B 1
2

) ≤ C(n)(‖u‖L∞(B1) + Cf ),

‖u‖C1,α(B 1
2

) ≤ C(n)(‖u‖L∞(B1) + Cf ).

Motivated by these results, one can ask whether it is possible to expect some (high) level of
regularity of u when one has only an analytic control from above, i.e. ∆u ≤ C, based on
the regularity properties of the right-hand side and a geometric control from below involving
second derivatives, such as a convexity-type assumption.
Besides, the analysis of the regularity properties of semisolutions to fully nonlinear degenerate
equations satisfying geometric conditions like convexity is motivated by the understanding
of a regularity theory for such degenerate PDEs. Indeed, a crucial step in the proof of the
ABP maximum principle for equations over Euclidean vector fields in [13] is to show that the

convex envelope of supersolutions to M−λ,Λ(D2u) ≤ f is C1,1
loc when f ∈ L∞, cf. Chapter 3 of

[14]. Thus, a tightly related question is the study of the regularity of supersolutions satisfying
convexity constraints and linear or nonlinear partial differential inequalities in nondivergence
form. In this direction, a study of the horizontal convex envelope in the Heisenberg group,
along with its application to the study of horizontal convexity properties of solutions to fully
nonlinear equations was performed in [28]. This analysis has its roots in the earlier work by
O. Alvarez, J.-M. Lasry and P.-L. Lions [4]. Based on this study, in the course of Section 3.2
we provide some sufficient conditions to obtain convexity estimates on solutions, providing an
instance of the full result unconditional to the geometric bound. Another paper dealing with
such convexity preserving properties for nondivergence structure uniformly parabolic PDEs
is [26].
Other than the previous motivations, this seems the first (a priori) regularity result concerning
fully nonlinear subelliptic equations in higher-order spaces. Few results are available in the
literature of nondivergence subelliptic equations: the works [31, 1] allow to deduce a priori
estimates at the level of Cα spaces for subelliptic Hessian equations with bounded right-hand
side. Indeed, in the smooth setting one can write

G((D2
Xu)∗) =

∫ 1

0
Gij(t(D

2
Xu)∗)) dt (D2

Xu)∗ij +G(0) = Tr(A(x)(D2
Xu)∗) +G(0),

so

G((D2
Xu)∗) = 0 ⇐⇒ Tr(A(x)(D2

Xu)∗) = −G(0),

and apply e.g. the results from [31, 1] valid when the ellipticity constants are sufficiently close
to each other.
We also prove, as a further step towards a possible development of a regularity theory for fully
nonlinear subelliptic equations, that W 2,q

X estimates for the uniformly subelliptic equation

G((D2
Xu)∗) = f ∈ Lq

fail when q < Q, at least in the Heisenberg group, Q being its homogeneous dimension.
This shows that the best possible integrability order to get such estimates is q = Q. This
is done adapting a counterexample proposed by L. Caffarelli in [13]. We emphasize that in
this sub-Riemannian context there is a dimensional discrepancy between the dimension of
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the horizontal layer, say m, and the homogeneous dimension Q (and even the topological
dimension n), so it is unclear the right integrability order to deduce such an estimate. This
shares some similarities with a result obtained in [17] for linear subelliptic equations in nondi-
vergence form with bounded measurable coefficients in H-type groups, concerning the validity

of the uniqueness of solutions in the Sobolev space W 2,Q
X . The example in [17] also implies

that ABP-type estimates cannot hold when the right-hand of the equation does not belong
to Lq, q ≥ Q.

The paper is organized as follows. Section 2 gives some preliminaries on sub-Riemannian
geometries and convexity along vector fields. Section 3 is devoted to the proof of the a priori
estimate for elliptic inequalities. Section 4 ends the paper with the failure of second order
estimates in Lq spaces when q < Q.

2. Preliminaries on subelliptic structures

We denote by X = {X1(x), ..., Xm(x)} a family of C2-vector fields in Rn and Ω ⊂ Rn
an open and connected set. We recall that the Carnot-Carathéodory (briefly CC), or sub-
Riemannian distance d on Rn associated to the vector fields of the family X , is the length of
the shortest horizontal curves connecting two-points, and is denoted by d. The pair (Rn, d)
is a sub-Riemannian geometry if d(x, y) < +∞ for all x, y ∈ Rn and the vector fields X are
the generators. Important examples of such spaces are Carnot groups.

A stratified group (or Carnot group) [7, Definition 2.2.3] is a connected and simply con-
nected Lie group whose Lie algebra G admits a stratification G = ⊕ri=1Vi, where the layers Vi
satisfy the relations [Vi, Vi−1] = Vi for 2 ≤ i ≤ r and [V1, Vr] = 0, with [V,W ] := span{[v, w] :
v ∈ V,w ∈ W}. Here, r is called the step of the group, and we set m = n1 = dim(V1),
which stands for the dimension of the horizontal layer, ni = dim(Vi), 2 ≤ i ≤ r. A stratified
group can be identified with a homogeneous Carnot group up to an isomorphism by means
of [7, Section 2.2.3]. A homogeneous Carnot group G (see e.g. [7, Definition 1.4.1]) can be
identified with Rn = Rn1 × ... × Rnr (n =

∑r
i=1 ni) endowed with a group law ? if for any

λ > 0 the dilation δλ : Rn → Rn of the form δλ(x) = (λx(1), ..., λrx(r)) is an automorphism of

the group, where x = (x(1), ...., x(r)), x(i) ∈ Rni . Then the vector fields in Rn of the family
X = {X1, ..., Xm} generate the homogeneous Carnot group (Rn, ?, δλ) if they are left-invariant
on G and such that Xj(0) = ∂xj |0 for j = 1, ..., n1 span Rn at every point x ∈ Rn. In this

case we say that G has step r and m = n1 generators. We also denote by ∆X =
∑m

i=1X
2
i

the operator sum of squares of vector fields, usually known as sub-Laplacian on the Carnot
group G. We also denote with

Q :=

r∑
i=1

ini=

r∑
i=1

idim(Vi)

the homogeneous dimension of the group, with

DXu := (X1u, ...,Xmu)

the horizontal gradient along the vector fields, and with D2
Xu = XiXju, i, j = 1, ...,m, the

horizontal Hessian built over the frame X . Finally, (D2
Xu)∗ =

XiXju+XjXiu
2 ∈ Sm is the

symmetrized horizontal Hessian.
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We point out that it was proved in [7] that the fields of a Carnot group can be written as

Xj = ∂xj +
n∑

i=m+1

bij(x)∂xi , j = 1, ....,m.

where bij(x) = σij(x1, ..., xi−1) are homogeneous polynomials of degree less than or equal
to n − m. A model example that we will analyze in Section 4 is the Heisenberg group in
Hd ' R2d+1, n = 2d+ 1, m = 2d, Q = 2d+ 2, where the fields of the horizontal layer are

Xi = ∂xi + 2xi+d∂2d+1 , Xi+d = ∂xi − 2xi∂2d+1, i = 1, ..., d.

We denote by Br(x) = {y ∈ G : d(x, y) < r} the metric ball of radius r.
We recall that for u smooth, the convexity of u along the fields of the family X is equivalent
to the positive semidefiniteness of the symmetrized horizontal Hessian (D2

Xu)∗. This has been
extended to the viscosity setting in [5] to which we refer for further details.

3. Interior a priori estimates for elliptic inequalities under X -semiconvexity
conditions

3.1. High-order local estimates under geometric conditions. Let X be a family of
vector fields of Carnot-type, and let X1, ..., Xm be the generators of the group, where m is
the dimension of the horizontal layer. We assume that G : Ω× R× Rm × Sm → R, Ω ⊆ Rn,
n ≥ m, is continuous and uniformly subelliptic, i.e.

(3) M−λ,Λ(X − Y ) ≤ G(x, r, p,X)−G(x, r, p, Y ) ≤M+
λ,Λ(X − Y )

for X,Y ∈ Sm and (x, r, p) ∈ Ω× R× Rm, where

(4) M+
λ,Λ(M) = Λ

∑
ek>0

ek + λ
∑
ek<0

ek = sup{Tr(AM), λIm ≤ A ≤ AIm}

(5) M−λ,Λ(M) = λ
∑
ek>0

ek + Λ
∑
ek<0

ek = inf{Tr(AM), λIm ≤ A ≤ AIm}

and ek denotes the k-th eigenvalue of M ∈ Sm.
We prove the following interior a priori estimate in the horizontal spaces W 2,q

X (Ω) = {u ∈
Lq(Ω) : XIu ∈ Lq(Ω) for any |I| ≤ 2} and C1,α

X , the classical first-order Hölder space with
respect to the sub-Riemannian distance. Note that even if u ∈ C2 and f is bounded, bounds
will depend only on the summability of the data, so this can be regarded as an a priori
estimate under the one-side geometric condition that u is semiconvex along the fields of the
family X .

Theorem 3.1. Let u ∈ C2(B1)∩Lq(B1), q ∈ (1,∞), be a classical and X -semiconvex solution
(with constant 4C) to the inequality

(6) G(x, u,DXu, (D
2
Xu)∗) ≤ f in B1

with f ∈ L∞(B1), G satisfying (3) with G(x, u,DXu, 0) bounded (independently of u), i.e.

|G(x, u,DXu, 0)| ≤M,

with M independent of u. Then, there exist a constant C̃ depending on C,m, λ,Λ,M, q and
a universal constant K1 = K1(m, q, λ,Λ) such that

‖u‖
W 2,q
X (B 1

2
)
≤ K1(C̃ + ‖u‖Lq(B1) + ‖f‖Lq(B1)).
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If, in addition, q > Q and u ∈ L∞(B1), we have the estimate

‖u‖
C

1,1−Qq
X (B 1

2
)
≤ K2(C̃ + ‖u‖L∞(B1) + ‖f‖Lq(B1)).

Here, K1 and K2 are universal constants depending on m, q, λ,Λ, while K2 depends also on
the constant of the corresponding Sobolev embedding.

Proof. We follow [9, Remark 1.2]. Since u is smooth and X -semiconvex with constant 4C,
then v = u+ 2C

∑m
i=1 x

2
i = u+ z is X -convex. Therefore, recalling that, cf. [14],

(7) M−λ,Λ(X + Y ) ≥M−λ,Λ(X) +M−λ,Λ(Y )

and

(8) M−λ,Λ(−X) = −M+
λ,Λ(X)

we have, using first (3) with r = v − z, p = DX (v − z), X = (D2
X (v − z))∗ and Y = 0, then

(7)-(8) and also that v is X -convex

f ≥ G(x, v − z,DX (v − z), (D2
X (v − z))∗) ≥M−λ,Λ((D2

X (v − z))∗) +G(x, v − z,DX (v − z), 0)

≥M−λ,Λ((D2
X v)∗) +M−λ,Λ((D2

X (−z))∗) +G(x, u,DXu, 0)

=M−λ,Λ((D2
X v)∗)−M+

λ,Λ((D2
X z)

∗) +G(x, u,DXu, 0)

≥ λTr((D2
X v)∗)− 4mCΛ +G(x, u,DXu, 0)

= λ

(
m∑
i=1

X2
i u+ 4mC

)
− 4mCΛ +G(x, u,DXu, 0)

≥ λ
m∑
i=1

X2
i u− 4mC(Λ− λ)−M.

Therefore, the last estimate together with the X -semiconvexity give the pointwise bound

(9) − 4Cm ≤
m∑
i=1

X2
i u(x) ≤ λ−1(f(x) + 4mC(Λ− λ) +M), x ∈ B1.

Therefore, using that u is X -semiconvex, we get for a constant K = K(m) > 0 and i, j =
1, ...,m

(10) |XiXju| ≤
m∑

i,j=1

|XiXju| ≤ K(∆Xu+ 4Cm).

Indeed, denoting by ‖X‖spec = max{ei(X)} the spectral norm of X ∈ Sm and by ‖X‖1 =∑m
i,j=1 |xij |, since X ∈ Sm, we know that for a constant L(m) > 0 it holds

‖X‖1 ≤ L(m)‖X‖spec.

This implies, since v is X -convex, the following inequality

|XiXjv| ≤ L(m)‖(D2
X v)∗‖spec ≤ L(m)Tr(XiXjv) = L(m)∆X v = L(m)(∆Xu+ 4Cm).

We conclude by noting that

|XiXjv| = |XiXju+ 4Cδij | ≥ |XiXju|.
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By interpolation estimates, see e.g. the proof of Proposition 2.9 in [6], for every δ > 0 there
exists a constant cq > 0 such that

(11) ‖DXu‖Lq(B 1
2

) ≤ δ‖∆Xu‖Lq(B1) +
cq
δ
‖u‖Lq(B1).

Recalling the definition of the W 2,q
X norm and combining (9)-(10)-(11), we obtain for a uni-

versal constant K1 = K1(m, q, λ,Λ) and a constant C̃ = C̃(λ,Λ,m,C, q), both independent
of u,

‖u‖
W 2,q
X (B 1

2
)
≤ K1(C̃ + ‖u‖Lq(B1) + ‖f‖Lq(B1) +M).

If q > Q and u is bounded, by the horizontal Morrey embedding, see e.g. [20], we have

‖u‖
C

1,1−Qq
X (B 1

2
)
≤ K2(C̃ + ‖u‖L∞(B1) + ‖f‖Lq(B1))

for a different universal constant K2 depending on K1 and Cs, the latter being the constant
of the embedding W 2,q

X ↪→ C1,α
X . �

Some remarks are in order:

Remark 3.2. The estimate in the right-hand side of (9) can be made rigorous in the weak
setting of viscosity solutions by means of the transitivity of the viscosity inequalities. More
precisely, adapting Lemma 2.12 in [14] in the degenerate setting of Hörmander vector fields,
one can prove that if u ∈ LSC(B1) is a viscosity solution to (6) with f ∈ C(B1), then there
exists a constant K depending on supB1

f , λ,Λ, |G(x, u,DXu, 0)|,m,C such that

m∑
i=1

XiXjϕ(x) ≤ K

provided ϕ ∈ C2 and u− ϕ has a local minimum at x.

Remark 3.3. The estimates in Theorem 3.1 can be obtained for the smaller class of X -convex
supersolutions, but under the weaker condition of strict (sub)ellipticity

λTr(X − Y ) +G(x, r, p, Y ) ≤ G(x, r, p,X)

or the one-side condition

G(x, r, p,X) ≥ G(x, r, p, 0) +M−λ,Λ(X).

For instance, the linear operator G(x,X) = Tr(A(x)X) satisfies the first condition when

A ≥ λIm. In this case one can get C1,1
X estimates along vector fields, as it is done in Theorems

3 and 4 of [24]. It is enough to prove that u is a solution to the inequality

λ∆Xu+G(x, u,DXu, 0) ≤ 0 in Rn.
To see the validity of C1,1 estimates when u is smooth, it is sufficient to exploit the strict
ellipticity, together with the fact that (D2

Xu)∗ ≥ 0 holds in the classical sense and that, for
A ≥ 0, A ∈ Sm, we have the inequality A ≤ C(m)Tr(A)Im. The following estimate then
follows for X -Lipschitz solutions by exploiting the equation

‖(D2
Xu)∗‖ ≤ C(m)

λ
|G(x, u,DXu, 0)|.

A similar estimate holds when u is X -semiconvex.
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Remark 3.4. It is worth noting that one cannot expect the validity of the above a priori
estimates when q < Q. An example is the following, cf. Example 3.4 in [8]: consider in the

Heisenberg group Hd ' R2d+1 the function u(x) = ρ(x) − 1 in B1, ρ(x) = (|xH |4 + x2
V )

1
4 ,

xH = (x1, ..., x2d) and xV = x2d+1. Then, u is X -convex for |xH | 6= 0 by Theorem 6.6 of [16]

and solves ∆Xu = Q−1
ρ |DXρ|

2 =: f(x). Then, f ∈ Lq(B1) if and only if q < Q, but u is not

differentiable at points where (xH , xV ) = (0, 0) since for i = 1, ..., d we have

Xiρ = xi
|DXρ|2

ρ
+
xi+dx2d+1

ρ3
, Xi+dρ = xi+d

|DXρ|2

ρ
− xix2d+1

ρ3
.

3.2. Convexity and semiconvexity estimates for fully nonlinear equations. In the
theory of elliptic and parabolic equations, geometric one-side second order estimates play
a crucial role. To our knowledge there are three methods allowing to prove convexity and
semiconvexity properties of solutions for elliptic and parabolic equations in the Euclidean
setting. The first one dates back to [25], where it was developed the so-called concavity
maximum principle, later adapted to the weak setting of viscosity solutions [22]. Another
method, based again on the comparison principle, was introduced in [4] and it is based
on the fact that the convex envelope of a viscosity supersolution remains a supersolution
to the starting equation. The more recent one, recently introduced in [18] and based on
integral methods, allows to prove certain concavity-type preserving estimates for nonlinear
viscous problems under appropriate assumptions on the nonlinearity. This also applies to
fully nonlinear diffusions under appropriate regularity assumptions on the nonlinear terms.
The extensions of these properties to a degenerate setting such as those of Carnot groups is by
no means immediate. The work [27] shows by tripling the number of variables à la Ishii-Lions
a right-invariant convexity property for evolution equations in nondivergence form. The more
recent paper [28] studies the (left) horizontal convexity preserving property and proved the
following result for fully nonlinear subelliptic equations posed on the first Heisenberg group in
R3: if G(x, r, p,X) is proper, concave in all the variables and symmetric with respect to (x, p)
(see assumptions (A3) and (A4) in [28]), continuous solutions to fully nonlinear subelliptic
equations on the Heisenberg group are horizontally convex provided that the comparison
principle holds for coercive solutions, cf. [28, Theorem 5.7]. By Lemma 4.1 in [5] we would
conclude that u is X -convex along the fields of the Heisenberg group. Consequently, we have
the following result:

Theorem 3.5. Suppose that G is uniformly subelliptic, proper, concave in all the variables
and symmetric with respect to x, p. Then, coercive solutions to G(x, u,DXu, (D

2
Xu)∗) = 0

posed on the first Heisenberg group H satisfy the a priori estimates of Remark 3.3.

We remark that convexity and semiconvexity type properties hold for the more restrictive
class of solutions and typically require additional conditions on the nonlinearity (such as
concavity), as it happens when the equation is driven by the sole (sub-)Laplacian in the
Euclidean setting.

4. Impossibility of W 2,q
X estimates for solutions fully nonlinear subelliptic

equations when q < Q

In this section we turn to the smaller class of solutions to elliptic equations, without im-
posing geometric conditions on them. We prove the following
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Theorem 4.1. There exists a fully nonlinear subelliptic operator modeled on the horizontal
Hessian of the Heisenberg vector fields, i.e. G(X) : Sm → R, such that W 2,q

X a priori estimates
for the equation G((D2

Xu)∗) = f(x) fail when q < Q.

To prove the result we premise the following algebraic lemma, referring for its proof to [15].

Lemma 4.2. Let X be the Heisenberg vector fields in R2d+1 and ρ be the homogeneous norm
defined as

(12) ρ(x) =

( 2d∑
i=1

x2
i

)2

+ x2
2d+1

 1
4

.

Then, for |xH | 6= 0, being xH = (x1, ..., x2d),

DXρ =
η

ρ3
, |DXρ|2 =

|xH |2

ρ2
≤ 1 ,

where η ∈ R2d is defined by

ηi := xi|xH |2 + xi+dx2d+1 , ηi+d := xi+d|xH |2 − xix2d+1.

for i = 1, ..., d. In addition

(D2
Xρ)∗ = −3

ρ
DXρ⊗DXρ+

1

ρ
|DXρ|2I2d +

2

ρ3

(
B C
−C B

)
,

where the matrices B = (bij) ∈ Rd×d and C = (cij) ∈ Rd×d are defined as follows

bij := xixj + xd+ixd+j , cij := xixd+j − xjxd+i

for i, j = 1, ..., d and satisfy B = BT and CT = −C. Finally, for a radial function ψ = ψ(ρ)
we have

(D2
Xψ)∗(ρ) =

ψ′(ρ)|DXρ|2

ρ
I2d + 2

ψ′(ρ)

ρ3

(
B C
−C B

)
+

(
ψ′′(ρ)− 3

ψ′(ρ)

ρ

)
DXρ⊗DXρ ,

and its eigenvalues are ψ′′(ρ)|DXρ|2, 3ψ′(ρ) |DX ρ|
2

ρ , which are simple, and ψ′(ρ) |DX ρ|
2

ρ with

multiplicity 2d− 2.

Proof of Theorem 4.1. This is inspired from the work by L. Caffarelli [13]. Consider, for
q < Q, ε > 0, 0 < α < 1, the family of functions uε,α(x) = ψ(ρ(x)) defined as

uε,α(x) =

{
1− (ρ(x))α for ρ > ε

1− αεα−2(ρ(x))2 − (1− α)εα for ρ ≤ ε,

ρ being the homogeneous norm of the Heisenberg group defined in (12). Then, we have

ψρρ =

{
α(1− α)ρα−2 for ρ > ε

−2αεα−2 for ρ < ε.

and
1

ρ
ψρ =

{
−αρα−2 for ρ > ε

−2αεα−2 for ρ < ε.

Then, define, for α < 1 fixed, the constants Λ = 1
1−α and λ = 1

Q−1 (note that Λ > λ) and

consider the fully nonlinear operator M+
λ,Λ(X). Note also that it is a convex degenerate
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operator. We apply it to the symmetrized horizontal Hessian of the family uε,α, i.e. X =
(D2
Xuε,α)∗. Then, by Lemma 4.2, the eigenvalues of (D2

Xuε,α)∗ (where uε,α is seen as a radial

function of ρ) are |DXρ|2ψρρ, 3|DXρ|2 1
ρψρ which are simple, and |DXρ|2 1

ρψρ with multiplicity

2d− 2. Therefore, being Bε the homogeneous metric ball of radius ε, we have for ρ < ε and
|xH | 6= 0

M+
λ,Λ((D2

Xuε,α)∗) = λ|DXρ|2(−2αεα−2−2αεα−2(Q−1)) = −C1(α,Q)|DXρ|2εα−2χBε =: fε,α(x),

where C1(α,Q) = 2αQ
Q−1 and χBε is the indicator function of Bε. Instead, when ρ > ε we

conclude

M+
λ,Λ((D2

Xuε,α)∗) = Λ|DXρ|2α(1− α)ρα−2 − λ(Q− 1)α|DXρ|2ρα−2 = 0.

When |xH | = 0 we haveM+
λ,Λ((D2

Xuε,α)∗) = 0. Therefore, using that |DXρ| ≤ 1 and applying

Proposition 5.4.4 of [7] (denoting by ωq = |B1|), it follows that for α < 1 fixed

‖fε,α‖qLq =

∫
Bε

Cq1(α,Q)|DXρ|2qε(α−2)q dx

≤ Cq1(α,Q)ε(α−2)q

∫
Bε

dx = Cq1(α,Q)ε(α−2)qQωq

∫ ε

0
sQ−1 ds

= C2(α, q,Q)ε(α−2)q+Q → 0 as ε→ 0

for any

q <
Q

2− α
.

Therefore, for |xH | 6= 0, ‖fε,α‖q ≤ K remains bounded for all ε ∈ (0, 1], whereas for such
value of q the norm ‖uε,α‖W 2,q

X (Rn)
blows-up because of the definition of ψρρ for ρ > ε, showing

that second order estimates in Lq cannot be achieved in the range q < Q. �

Remark 4.3. The same counterexample can be built on H-type groups using the computations
of (D2

Xρ)∗ carried out in [31].
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sums of squares. J. Math. Anal. Appl., 498(1):Paper No. 124935, 19, 2021.

[7] A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni. Stratified Lie groups and potential theory for their sub-
Laplacians. Springer Monographs in Mathematics. Springer, Berlin, 2007.

[8] J. E. M. Braga, A. Figalli, and D. Moreira. Optimal regularity for the convex envelope and semiconvex
functions related to supersolutions of fully nonlinear elliptic equations. Comm. Math. Phys., 367(1):1–32,
2019.

[9] J. E. M. Braga and D. Moreira. Inhomogeneous Hopf-Olĕınik lemma and regularity of semiconvex super-
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