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An Isogeometric Boundary Element Method (IgA-BEM) is considered for the numerical solution of Helmholtz 
problems on 3D bounded or unbounded domains, admitting a smooth multi-patch representation of their 
finite boundary surface. The discretization spaces are formed by 𝐶0 inter-patch continuous functional spaces 
whose restriction to a patch simplifies to the span of tensor product B-splines composed with the given patch 
NURBS parameterization. Both conforming and non-conforming spaces are allowed, so that local refinement 
is possible at the patch level. For regular and singular integration, the proposed model utilizes a numerical 
procedure defined on the support of each trial B-spline function, which makes possible a function-by-function 
implementation of the matrix assembly phase. Spline quasi-interpolation is the common ingredient of all the 
considered quadrature rules; in the singular case it is combined with a B-spline recursion over the spline degree 
and with a singularity extraction technique, extended to the multi-patch setting for the first time. A threshold 
selection strategy is proposed to automatically distinguish between nearly singular and regular integrals. The 
non-conforming 𝐶0 joints between spline spaces on different patches are implemented as linear constraints 
based on knot removal conditions, and do not require a hierarchical master-slave relation between neighbouring 
patches. Numerical examples on relevant benchmarks show that the expected convergence orders are achieved 
with uniform discretization and a small number of uniformly spaced quadrature nodes.
1. Introduction

Isogeometric Analysis (IgA) [1] is a powerful tool to obtain a nu-

merical solution of problems governed by partial differential equations, 
introduced in the literature at the beginning of the new millennium. 
This new paradigm was motivated by the observation that in engi-

neering applications a domain is described by its boundary parametric 
representation generated by Computer Aided Design (CAD) software. 
For this aim CAD relies on flexible forms, often based on multi-patch 
tensor product B-spline or rational B-spline (NURBS) spaces, suited also 
for applications [2]. The IgA idea consists in adopting the CAD func-

tional spaces also for approximating the solution of the differential 
problem, taking into account the well-known optimal approximation 
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power of spline spaces [3,4]. The increasing success of the IgA paradigm 
in the context of both domain and boundary element methods is easily 
explained considering that, besides being capable to keep an exact rep-

resentation of complex domains described in a multi-patch CAD form, 
IgA formulations guarantee a certain level of accuracy with consider-

ably less degrees of freedom than traditional Finite Element Analysis 
(FEA), which relies on larger piecewise polynomial spaces with lower 
inter-element smoothness within each patch [5]. The attractiveness of 
IgA is even higher for Boundary Element Methods (BEMs), see for ex-

ample [6–11] and references therein, because, in contrast to domain 
methods like Finite Element Methods (FEM), they do not require any 
preliminary volumetric parameterization, which can be a remarkably 
time consuming task. BEMs rely on a boundary integral formulation of 
https://doi.org/10.1016/j.camwa.2023.07.012
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the problem, which can be derived whenever the fundamental solution 
of the associated differential operator is known. Hence, they require 
only the definition of a mesh on the boundary of the domain, which is 
a much easier task especially in the IgA context, where the CAD repre-

sentation of the boundary is available.

The precursor of this work, dealing with 3D IgA-BEM, is presented 
in [12], where exterior Laplace problems with Dirichlet boundary con-

ditions on single patch domains are considered and, in order to deal 
also with screen problems, an indirect boundary integral formulation is 
adopted. In this paper the IgA multi-patch formulation of BEMs (multi-

patch IgA-BEMs) is considered by the authors for the first time. The 
discretization splines spaces are generalized to non-conforming 𝐶0 set-

ting, which allow adaptivity at the patch level. Such approach is based 
on a direct boundary integral formulation of problems governed by the 
Helmholtz equation in 3D bounded or unbounded domains, equipped 
with either Dirichlet or Neumann boundary conditions. Such problems 
are of interest in acoustics to model radiation and rigid scattering in 
the frequency domain [13], where radiation refers to the pressure field 
produced by an object vibrating within a fluid (usually air or water), 
while rigid scattering relates to the disturbance caused by an obsta-

cle immersed within an existing acoustic field. The adopted Boundary 
Integral Equation (BIE) discretized with a collocation approach is the 
so-called conventional BIE (CBIE), which involves only weakly singular 
integrals and is augmented with the Sommerfield radiation condition at 
infinity for exterior problems. The Helmholtz operator can thus be sim-

ply written as a sum of the Laplacian Δ with an identity operator scaled 
with a positive parameter 𝜅2. However, even when dealing with exterior 
Helmholtz problems admitting a unique solution, such BIE generates 
spurious solutions when 𝜅2 is an eigenvalue of −Δ for the considered 
boundary conditions. This is the reason why other papers also rely-

ing on IgA-BEMs for the numerical solution of the Helmholtz equation 
introduce its alternative Burton-Miller (BM) boundary integral formula-

tion, which does not suffer from such a drawback. Obtained as a linear 
combination of the mentioned CBIE with the hypersingular BIE (HBIE) 
also paired with the Helmholtz operator, the BM integral formulation is 
clearly more difficult, see for example [14], where it is combined with a 
regularization technique to avoid to deal with hypersingular integrals in 
the assembly phase. However, successive researches have given numer-

ical evidence that, when 𝜅2 is not an eigenvalue of −Δ, better numerical 
results are achieved by using the simpler CBIE, see for example [15,16]. 
Since clearly only a finite number of different values of the parameter 
𝜅2 can be considered and this can be anyway sufficient for a reason-

able reconstruction of an associated time-dependent acoustic field, in 
this work the IgA-BEM approach was applied just to the CBIE associ-

ated with Helmholtz, with the implicit assumption to avoid values of 𝜅2
equal to eigenvalues of −Δ.

The IgA-BEM implementation in this study relies on the B-spline 
tailored cubature formulas for regular and weakly singular integrals, 
introduced in [17] in the setting of weakly singular surface integrals. 
The theoretical convergence order of such rules is analyzed in this 
work for the first time. Since the proposed quadrature schemes are 
constructed on the support of every bivariate B-spline, a function-by-

function implementation of the matrix assembly phase can be adopted, 
similarly to work for 2D Laplace problems in [18]. This attractive fea-

ture markedly reduces the amount of data access during the assembly 
phase, compared to a more common element-by-element strategy. An-

other remarkable feature of the proposed quadratures is the freedom of 
choice for the quadrature nodes – no reparameterization of nodes near 
the singularities is needed and, by choosing uniformly spaced nodes in 
the parametric space for all the required regular and singular numerical 
integrations, it ensures the possibility of using a small overall number 
of unique nodes. By applying a singularity subtraction technique on 
singular integrals, the singular and regular part of the integrand are ef-

fectively separated. Thanks to the thorough study developed in [19] for 
the weakly singular kernel expansions, the continuity of the regular-

ized integrands can be controlled and the developed integration rules 
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have consequently better approximation properties for general smooth 
geometry parameterizations. A novelty in this work is a careful decou-

pling of integrals appearing in the Helmholtz BIE into simpler, real and 
imaginary, regular and singular integrals. An original strategy for the 
automatic detection of near singularity is also introduced. Another new 
key feature lies in coupling the integration routines with multi-patch 
geometry representations; when the source point and the integration 
domain are separated by a patch interface, the unmatching parameteri-

zation across it poses an additional challenge. To overcome difficulties 
of this type, a novel approximate singularity subtraction technique is 
introduced and analyzed for nearly singular inter-patch integrals. It re-

places the source point with its projection on an extrapolation of the 
patch surface, where the integration has to be performed.

The paper is organized as follows. The next section introduces the 
Helmholtz problem and its conventional boundary integral formulation 
for both Dirichlet and Neumann boundary conditions. Then, in Sec-

tion 3 the multi-patch IgA setting for the standard CAD representation 
of a bounded or unbounded domain is described, as well as the finite 
dimensional functional spaces adopted for the analysis. Section 4 de-

scribes the developed quadrature formulas, based on the tensor-product 
formulation of a discrete spline quasi-interpolation approach. The for-

mulas are combined with a subtraction regularization technique and 
applied to the single and double layer Helmholtz kernels. In Section 5

the results obtained for several benchmark problems are reported and 
commented, relying on both the conforming and non-conforming dis-

cretization approaches and including a preliminary experiment on a 
non-smooth geometry. Finally some conclusive remarks are given in 
Section 6. Appendix A reports a theoretical analysis on the nature of the 
considered singular kernels on smooth geometries. Appendix B reports 
a proof for non-conforming discretization spaces that the system ma-

trix is a square matrix. The matrix is nonsingular if all of its collocation 
conditions are replaced by corresponding point-wise interpolation con-

ditions (the importance of these properties is explained in Section 3.3, 
see Remark 1).

2. The Helmholtz problem and its boundary integral formulation

3D potential problems described by the Helmholtz equation with 
Dirichlet or Neumann boundary conditions are studied on domains Ω ⊂
IR3 admitting a connected and compact boundary surface Γ = 𝜕Ω,{

Δ𝑢+ 𝜅2𝑢 = 0 in Ω,
𝑢 = 𝑢D or 𝜕𝑢

𝜕𝐧 = 𝑢N on Γ, (1)

where 𝑢 ∶ Ω → ℂ denotes the unknown potential, 𝐧 the unit normal on 
Γ pointing outward from Ω and 𝜅 > 0. When the domain is a finite 
volume, the problem is interior and the notation Ω[𝑖] is used to underline 
the type of this domain, when it is useful. In the opposite case, the set 
Ω[𝑒] is used for an exterior problem. Concerning the regularity of the 
boundary surface Γ, it is assumed to be smooth, at least without self-

intersections and with a tangent plane well defined at each point and 
varying continuously. Note that for exterior problems, equation (1) has 
to be augmented with an additional condition, the so-called Sommerfeld 
radiation condition,

𝜕𝑢

𝜕𝑟
− 𝑖𝜅𝑢 = 𝑜

(1
𝑟

)
, (2)

where 𝑟 denotes the point distance from the origin of the reference 
system and 𝑖 is the imaginary unit; see for example [13]. This condi-

tion at infinity is necessary to ensure for any positive 𝜅 the existence 
and uniqueness of the solution 𝑢 for exterior Helmholtz problems for 
both Dirichlet and Neumann boundary conditions. Uniqueness of 𝑢 for 
interior problems is ensured when 𝜅2 is not an eigenvalue of the re-

versed Laplacian operator −Δ in Ω.1 Regarding the regularity of the 

1 The scalar 𝜆 is an eigenvalue for −Δ if there exists a non-vanishing function 
𝑢𝜆 such that −Δ𝑢𝜆 = 𝜆𝑢𝜆, also fulfilling homogeneous boundary condition of the 
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weak solution 𝑢 of (1), observe that 𝑢 belongs to the Sobolev space 
𝐻1(Ω), provided that, for Dirichlet (Neumann) boundary conditions, 
𝑢D ∈𝐻1∕2(Γ) , 

(
𝑢N ∈𝐻−1∕2(Γ)

)
.

The Helmholtz equation is of particular interest in acoustic because 
the solution 𝑢 = 𝑢(𝐱, 𝜅), 𝐱 ∈ Ω of (1) can be interpreted as the inverse 
Fourier transform [21] of the time-dependent scattered pressure field 
𝑝 = 𝑝(𝐱 , 𝑡) generated by the scatterer in a given fluid domain, which 
fulfills the wave equation,

1
𝑐2
𝑓

𝜕2𝑝

𝜕𝑡2
= Δ𝑝. (3)

Indeed, by defining 𝑝̆ as the inverse Fourier transform of 𝑝 with respect 
to 𝑡

𝑝̆ = 𝑝̆(𝐱 , 𝜈) ∶= 1
2𝜋

+∞

∫
−∞

𝑝(𝐱 , 𝑡)𝑒𝑖𝜈𝑡 𝑑𝑡

it follows that 𝑝̆ satisfies the Helmholtz equation with 𝜅 = 𝜈∕𝑐𝑓 and that 
the solution 𝑝 to the wave equation can be recovered as the Fourier 
transform of 𝑝̆ with respect to 𝜈:

𝑝 =

+∞

∫
−∞

𝑝̆(𝐱 , 𝜈)𝑒−𝑖𝜈𝑡 𝑑𝜈 .

This is of interest because focusing on a single angular frequency 𝜈 at 
a time lets us effectively remove the time dependence from the wave 
equation and hence deal with a differential problem formulated exclu-

sively in terms of spatial variables.

In order to approximate the solution of (1) with IgA-BEMs, the 
Conventional Boundary Integral Equation (CBIE) associated to the 
Helmholtz equation is considered and derived by the direct approach,

∫
Γ

𝜅 (𝐱,𝐲) 𝜕𝑢
𝜕𝐧

(𝐲)𝑑Γ𝐲 = 𝑐(𝐱)𝑢(𝐱) + ∫
Γ

𝜕𝜅
𝜕𝐧𝐲

(𝐱,𝐲) 𝑢(𝐲) 𝑑Γ𝐲, 𝐱 ∈ Γ, (4)

where 𝑟 ∶= ‖𝐫‖2 with 𝐫 ∶= 𝐱 − 𝐲. The kernel 𝜅 and its derivative with 
respect to the exterior unit normal 𝐧 to Γ computed in the point 𝐲 ∈ Γ
are defined as

𝜅 (𝐱,𝐲) ∶= 1
4𝜋𝑟

𝑒i𝜅𝑟,
𝜕𝜅
𝜕𝐧𝐲

(𝐱,𝐲) = 1
4𝜋𝑟

𝑒i𝜅𝑟(−1
𝑟
+ i𝜅) 𝜕𝑟

𝜕𝐧𝐲
,

with

𝜕𝑟

𝜕𝐧𝐲
= −

𝐫 ⋅ 𝐧𝐲
𝑟

, 𝑐(𝐱) ∶= −∫
Γ

𝜕0
𝜕𝐧𝐲

(𝐱,𝐲)𝑑Γ𝐲 , (5)

being 𝑐(𝐱) ≡ 1∕2 for the assumed smooth surface Γ. The restrictions of 
𝑢 and (𝜕𝑢∕𝜕𝐧)(𝐲) to Γ (in the sense of traces) are usually called Cauchy 
data. One of them corresponds to the available boundary datum, and 
the other to the unknown. By separating the real and imaginary parts 
of 𝜅 , the kernel is rewritten as

𝜅 = 1
4𝜋

(
cos(𝜅𝑟)

𝑟
+ i sin(𝜅𝑟)

𝑟

)
. (6)

Note that the real part of 𝜅 goes to infinity as 1∕𝑟 when 𝑟 → 0+, while 
its imaginary part tends to 𝜅∕(4𝜋). The other kernel involved in (4) is 
𝜕𝜅∕𝜕𝐧𝐲 , which can be rewritten as follows, again separating its real 
and imaginary parts,

𝜕𝜅
𝜕𝐧𝐲

(𝐱,𝐲) = 1
4𝜋

[( 𝐫 ⋅ 𝐧𝐲
𝑟3

(cos(𝜅𝑟) + 𝜅𝑟 sin(𝜅𝑟))
)

+ i
𝐫 ⋅ 𝐧𝐲
𝑟2

(
sin(𝜅𝑟)

𝑟
− 𝜅 cos(𝜅𝑟)

)]
. (7)

assigned type. It is possible to prove that the operator −Δ admits only positive 
eigenvalues, which define an unbounded infinite sequence of positive numbers 
depending on the considered kind of boundary conditions and on the shape of 
the finite domain Ω, see for example [20].
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For a regular surface Γ described by a regular smooth parameterization, 
the quantity 𝐫 ⋅ 𝐧𝐲∕𝑟2 is bounded for 𝑟 → 0+, but in general it is not 
continuous at 𝑟 = 0; see Appendix A for a proof. The bounded behaviour

at 𝑟 = 0 of such quantity implies that, analogously to 𝜅 , the kernel 
𝜕𝜅∕𝜕𝐧𝐲 is just weakly singular, see Section 9.1 in [22] and also the 
analytical related insights explicitly reported in Appendix A. Indeed, its 
real part goes to infinity as 1∕𝑟 when 𝑟 → 0+ while its imaginary part 
tends to zero because 𝐫 ⋅ 𝐧𝐲∕𝑟2 remains bounded and it is multiplied by 
a factor going to zero.

Clearly, when the boundary conditions in (1) are of Dirichlet type, 
the unknown in (4) is the flux 𝜙 ∶= (𝜕𝑢∕𝜕𝐧)|Γ, belonging to 𝐻−1∕2(Γ), 
and the CBIE becomes

∫
Γ

𝜅 (𝐱,𝐲)𝜙(𝐲)𝑑Γ𝐲 = 𝑐(𝐱)𝑢D(𝐱) + ∫
Γ

𝜕𝜅
𝜕𝐧𝐲

(𝐱,𝐲)𝑢D(𝐲)𝑑Γ𝐲 , 𝐱 ∈ Γ. (8)

Note that this is an integral equation of the general type

𝑉𝜅𝜙(𝐱) = 𝑓 (𝐱), 𝐱 ∈ Γ, (9)

where 𝑓 denotes a known function and the single layer operator 𝑉𝜅 ∶
𝐻−1∕2(Γ) →𝐻1∕2(Γ) is an elliptic isomorphism defined as

𝑉𝜅𝜙(𝐱) ∶= ∫
Γ

𝜅 (𝐱,𝐲)𝜙(𝐲)𝑑Γ𝐲 .

Conversely, when Neumann conditions are dealt with, the unknown in 
(4) is the acoustic potential 𝜙 ∶= 𝑢|Γ, with 𝜙 ∈𝐻1∕2(Γ), and the CBIE 
becomes

∫
Γ

𝜕𝜅
𝜕𝐧𝐲

(𝐱,𝐲)𝜙(𝐲)𝑑Γ𝐲 + 𝑐(𝐱)𝜙(𝐱) = ∫
Γ

𝜅 (𝐱,𝐲)𝑢N(𝐲)𝑑Γ𝐲 𝐱 ∈ Γ. (10)

This is an integral equation of the general type

(𝑐(𝑥)𝐼 +𝐾𝜅 )𝜙(𝐱) = 𝑓 (𝐱), 𝐱 ∈ Γ, (11)

associated to the operator 𝑐𝐼 +𝐾𝜅 , where 𝐼 denotes the identity opera-

tor and 𝐾𝜅 ∶𝐻1∕2(Γ) →𝐻1∕2(Γ) is the following double layer operator,

𝐾𝜅𝜙(𝐱) ∶= ∫
Γ

𝜕𝜅
𝜕𝐧𝐲

(𝐱,𝐲) 𝜙(𝐲)𝑑Γ𝐲 .

Note that the right-hand side 𝑓 in both (9) and (11) is equal to the 
right-hand side of (8) and (10), respectively.

If 𝜙 is available, the solution 𝑢 = 𝑢(𝐱, 𝜅), 𝐱 ∈Ω, of the boundary value 
problem in (1) is given by the so-called representation formula,

𝑢(𝐱, 𝜅) = ±
⎛⎜⎜⎝∫Γ 𝜅 (𝐱,𝐲) 𝜕𝑢

𝜕𝐧
(𝐲) 𝑑Γ𝐲 − ∫

Γ

𝜕𝜅
𝜕𝐧𝐲

(𝐱,𝐲) 𝑢(𝐲) 𝑑Γ𝐲
⎞⎟⎟⎠ , 𝐱 ∈Ω,

(12)

where the sign is positive if Ω = Ω[𝑖] (interior problem) and negative 
otherwise. Note that the numerical implementation of this formula is 
not completely trivial because, when 𝐱 is very close to Γ, nearly sin-

gular integrals have to be approximated. However, one can be merely 
interested in 𝜙 or in evaluating 𝑢 just at points sufficiently far from Γ. 
For example, when an exterior problem is taken into account, often the 
interest is just in the far field pattern of 𝑢, that is into the recovery of 𝑢∞, 
where

𝑢∞(𝐰) ∶= lim
𝑟→∞

𝑟𝑒−𝑖𝜅𝑟𝑢(𝑟𝐰) , 𝐰 ∈ 𝑆2,

where 𝑆2 is a unit sphere in IR3 centred at the origin of the considered 
reference system. In such case the following formula that only requires 
rules for regular integrals is convenient [15],

𝑢∞(𝐰) = 1
4𝜋 ∫

(
𝑖𝜅𝑢(𝐲)(𝐰 ⋅ 𝐧(𝐲)) + 𝜕𝑢

𝜕𝐧
(𝐲)
)
𝑒−𝑖𝜅(𝐰⋅𝐲)𝑑Γ𝐲 .
Γ
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3. Multi-patch isogeometric model

In this section the IgA-BEM model is introduced with respect to the 
geometry representation and the discretization space to express the nu-

merical solution. The flexibility to model complex geometries in the 3D 
case is facilitated by adopting its multi-patch formulation. Let us assume 
that the boundary Γ is a union of 𝑀 patches Γ(𝓁), 𝓁 = 1, … , 𝑀 , and for 
𝑘 ≠ 𝓁 it holds Γ(𝑘) ∩ Γ(𝓁) = ∅ and 𝜕Γ(𝑘) ∩ 𝜕Γ(𝓁) is a boundary edge curve 
of each patch, a corner point of each patch or an empty set. To each 
patch Γ(𝓁) a geometry map 𝐅(𝓁) is assigned, such that Γ(𝓁) = Image(𝐅(𝓁)), 
𝐅(𝓁) ∶ [0, 1]2 → Γ(𝓁) ⊂ IR3 is regular and belongs to 𝐶2([0, 1]2). Each 𝐅(𝓁)

is written in the following standard NURBS form [2],

𝐅(𝓁)(𝐭) ∶=

∑
𝐢∈ 𝐓(𝓁)g

𝑤
(𝓁)
𝐢 𝐐(𝓁)

𝐢 𝐵̂
𝐓(𝓁)
g

𝐢,𝐝g
(𝐭)

∑
𝐢∈ 𝐓(𝓁)g

𝑤
(𝓁)
𝐢 𝐵̂

𝐓(𝓁)
g

𝐢,𝐝g
(𝐭)

, 𝐭 ∈ [0,1]2, (13)

The bidimensional knot array 𝐓(𝓁)
g associated with the 𝓁-th patch, 

𝐓(𝓁)
g ∶= 𝑇

(𝓁)
g,1 × 𝑇

(𝓁)
g,2 (𝑇

(𝓁)
g,1 and 𝑇 (𝓁)

g,2 are open knot vectors with en-

tries in the interval [0, 1]) together with multi-index set  𝐓(𝓁)
g define 

the bi-degree 𝐝g = (𝑑g,1, 𝑑g,2) tensor product B-spline basis 𝐵̂𝐓(𝓁)
g

𝐢,𝐝g
(𝐭) ∶=

𝐵̂
𝑇
(𝓁)
g,1

𝑖1 ,𝑑g,1
(𝑡1) 𝐵̂

𝑇
(𝓁)
g,2

𝑖2 ,𝑑g,2
(𝑡2) defined on [0, 1]2 in variable 𝐭 ∶= (𝑡1, 𝑡2) and 𝐢 ∶=

(𝑖1, 𝑖2) ∈  𝐓(𝓁)
g . A set {𝐐(𝓁)

𝐢 ∈ IR3 ∶ 𝐢 ∈  𝐓(𝓁)
g } defines a net of control 

points which, together with the associated set of positive weights 
{𝑤(𝓁)

𝐢 ∈ IR ∶ 𝐢 ∈  𝐓(𝓁)
g }, is the basic element typically used in the CAD 

environment to design free-form surfaces. For the sake of lighter nota-

tion, the superscript for knot arrays (e.g. 𝐓(𝓁)
g ) is omitted, whenever a 

distinction between different knot arrays is not necessary. When two 
patches share an edge 𝑘,𝓁 ∶= 𝜕Γ(𝑘) ∩ 𝜕Γ(𝓁) for 𝑘 ≠ 𝓁, the shared edge is 
a NURBS curve. In the following, this curve is assumed to be parame-

terized with the same geometry map for both patches, up to reversion 
in directions and direction swapping in the parametric space.

As commonly assumed in a more generalized IgA-BEM setting, the 
unknown Cauchy datum 𝜙 is approximated in a functional space, whose 
restriction to Γ(𝓁) is composed of a B-spline space defined in [0, 1]2 and 
the inverse of the geometric mapping 𝐅(𝓁) (the space shares the same 
approximation power with the related NURBS counterpart). All the B-

splines appearing in the geometry description of equation (13) can be 
exactly represented in the discretization space. Therefore, the bi-degree 
𝐝 for the discretization space is greater or equal to 𝐝g and all the knots 
of 𝑇 (𝓁)

g,𝑖 are included in the corresponding 𝓁-th discretization knot vector 
with multiplicity increased at least by 𝑑𝑖 − 𝑑g,i, 𝑖 = 1, 2.

The method presented in this paper can handle also a more de-

coupled relation between the geometric and the discretization knot 
arrays, and the corresponding spline degrees – this setting is addition-

ally motivated in order to compare the method with the results of some 
numerical experiments developed in other papers. Hence, in the rest of 
the article it is assumed that the discretization space has its own degree 
𝐝 = (𝑑1, 𝑑2) (common to all patches) and open knot vectors, 𝑇 (𝓁)

𝑗
, 𝑗 = 1, 2. 

By denoting with ℎ(𝓁)
𝑗

the maximal distance between successive knots in 
𝑇
(𝓁)
𝑗

, setting ℎ(𝓁) ∶= max{ℎ(𝓁)1 , ℎ(𝓁)2 }, introducing the bi-dimensional knot 
array 𝐓(𝓁) ∶= 𝑇

(𝓁)
1 × 𝑇

(𝓁)
2 and set of bivariate indices  𝐓(𝓁)

for the basis 
functions, let ̂ (𝓁)

ℎ(𝓁)
denote the spline space generated by the tensor prod-

uct B-spline basis {𝐵̂𝐓(𝓁)
𝐣,𝐝 ∶ 𝐣 = (𝑗1, 𝑗2) ∈  𝐓(𝓁) } of bi-degree 𝐝, defined on 

[0, 1]2.
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3.1. Inter-patch discontinuous spaces

When no continuity constraint is imposed across patches for the ba-

sis functions, the global space used to approximate the unknown Cauchy 
datum 𝜙 is

ℎ,𝐝 ∶= span{𝐵𝐓(𝓁)
𝐣,𝐝 ∶ 𝐣 ∈  𝐓(𝓁)

, 𝓁 = 1,… ,𝑀},

where ℎ ∶= max{ℎ(𝓁), 𝓁 = 1, … , 𝑀} and

𝐵𝐓(𝓁)
𝐣,𝐝 (𝐱) =

{
𝐵̂𝐓(𝓁)
𝐣,𝐝 ◦𝐅(𝓁)−1(𝐱), if 𝐱 ∈ Γ(𝓁),

0, otherwise.

Clearly with this setting the global number 𝑁DOF of degrees of freedom 
used to approximate 𝜙 is

𝑁DOF =
𝑀∑
𝓁=1
| 𝐓(𝓁) |,

where | 𝐓(𝓁) | is the cardinality of the set. In this setting it is convenient 
to select | 𝐓(𝓁) | distinct collocation points belonging to the interior of 
each patch Γ(𝓁), 𝓁 = 1, … , 𝑀 . In particular, let 𝐱𝐣(𝓁) = 𝐅(𝓁)(𝐬𝐣), 𝐣 ∈  𝐓(𝓁)

, 
where {𝐬𝐣(𝓁) ∶ 𝐣 ∈  𝐓(𝓁) } denotes a set of points in (0, 1)2, defined as the 
Cartesian product of two sets of abscissas, the so-called improved Gre-

ville abscissas associated to 𝑇 (𝓁)
1 and 𝑇 (𝓁)

2 [23]. Recall that the improved 
Greville abscissae related to a set of Greville abscissae 𝜉1, ̄𝜉2, … , ̄𝜉𝑛, are 
Greville abscissae whose first and last elements are modified as follows:

𝜉1 = 𝜉1 +𝜔(𝜉2 − 𝜉1), 𝜉𝑛 = 𝜉𝑛 −𝜔(𝜉𝑛 − 𝜉𝑛−1) , with 0 < 𝜔 < 1 . (14)

Thus, a discrete version of the integral formulation of the Dirichlet 
(8) or Neumann (10) problem is obtained by approximating 𝜙 in the fi-

nite dimensional composite space ℎ,𝐝. The applied collocation method 
leads to a linear system

𝐴𝜶 = 𝜷. (15)

The unknown entries in the vector 𝜶 are the coefficients which allow 
to define the approximation 𝜙ℎ of 𝜙 in the space ℎ,𝐝 patch-wisely as 
follows,

𝜙ℎ(𝐱) ∶=
𝑀∑
𝓁=1

∑
𝐣∈ (𝓁)

𝛼
(𝓁)
𝐣 𝐵𝐓(𝓁)

𝐣,𝐝 (𝐱), 𝐱 ∈ Γ.

The square system matrix 𝐴 ∈ ℂ𝑁DOF×𝑁DOF and the right-hand side vec-

tor 𝜷 ∈ ℂ𝑁DOF have a block representation, 𝐴 = (𝐴(𝑘,𝓁)), 𝜷 = (𝜷 (𝑘)), for 
𝑘, 𝓁 = 1, … , 𝑀 , where 𝐴(𝑘,𝓁) ∈ ℂ|𝑘|×|𝓁 | and 𝜷 (𝑘) ∈ ℂ|𝑘|. For each pair 
of patches Γ(𝑘), Γ(𝓁), the rows (columns) of the related submatrix are 
ordered by using a lexicographical ordering of the elements in  𝐓(𝑘)

( 𝐓(𝓁)
), namely identifying a single index 𝑖 with 𝐢 and 𝑗 with 𝐣. After 

this simplification, for the Dirichlet case such entries read as follows in 
both the physical and the parametric domain,

𝐴
(𝑘,𝓁)
𝑖,𝑗

∶= ∫
Γ(𝓁)

𝜅 (𝐱(𝑘)𝐢 ,𝐲)𝐵𝐓(𝓁)
𝐣,𝐝 (𝐲) 𝑑Γ = ∫

[0,1]2

𝜅 (𝐱(𝑘)𝐢 ,𝐅(𝓁)(𝐭))𝐵̂𝐓(𝓁)
𝐣,𝐝 (𝐭) 𝐽 (𝓁)(𝐭) 𝑑𝐭,

(16)

𝜷
(𝑘)
𝑖

∶=
𝑀∑
𝓁=1

∫
Γ(𝓁)

𝜕𝜅
𝜕𝐧𝐲

(𝐱(𝑘)𝐢 ,𝐲) 𝑢D(𝐲) 𝑑Γ + 1
2
𝑢D(𝐱

(𝑘)
𝐢 )

=
𝑀∑
𝓁=1

∫
[0,1]2

𝜕𝜅
𝜕𝐧𝐲

(𝐱(𝑘)𝐢 ,𝐅(𝓁)(𝐭)) 𝑢D(𝐅(𝓁)(𝐭)) 𝐽 (𝓁)(𝐭) 𝑑𝐭 + 1
2
𝑢D(𝐱

(𝑘)
𝐢 ),

(17)

where 𝑖 = 1, … , | (𝑘)|, 𝑗 = 1, … , | (𝓁)| and 𝐽 (𝓁) represents the infinites-

imal surface area element on the 𝓁-th patch,

𝐽 (𝓁)(⋅) ∶=
‖‖‖ 𝜕𝐅(𝓁)

𝜕𝑡
(⋅) × 𝜕𝐅(𝓁)

𝜕𝑡
(⋅)
‖‖‖ .
‖ 1 2 ‖2
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Conversely, for the Neumann case the matrix entries are

𝐴
(𝑘,𝓁)
𝑖,𝑗

∶= ∫
Γ(𝓁)

𝜕𝜅
𝜕𝐧𝐲

(𝐱(𝑘)𝐢 ,𝐲)𝐵𝐓(𝓁)
𝐣,𝐝 (𝐲) 𝑑Γ + 1

2
𝐵𝐓(𝓁)
𝐣,𝐝 (𝐱(𝑘)𝐢 )

= ∫
[0,1]2

𝜕𝜅
𝜕𝐧𝐲

(𝐱(𝑘)𝐢 ,𝐅(𝓁)(𝐭))𝐵̂𝐓(𝓁)
𝐣,𝐝 (𝐭)𝐽 (𝓁)(𝐭) 𝑑𝐭 + 1

2
𝐵̂𝐓(𝓁)
𝐣,𝐝 (𝐱(𝑘)𝐢 ), (18)

𝜷
(𝑘)
𝑖

∶=
𝑀∑
𝓁=1

∫
Γ(𝓁)

𝜅 (𝐱(𝑘)𝐢 ,𝐲) 𝑢N(𝐲) 𝑑Γ

=
𝑀∑
𝓁=1

∫
[0,1]2

𝜅 (𝐱(𝑘)𝐢 ,𝐅(𝓁)(𝐭)) 𝑢N(𝐅(𝓁)(𝐭)) 𝐽 (𝓁)(𝐭) 𝑑𝐭, (19)

Referring for brevity just to the Dirichlet case, an equivalent scaled 
expression of these entries is reported below, since it will be useful 
in Section 4 to develop a reasonably scaled procedure to detect nearly 
singular integrals to be computed during the assembly phase. Denoting 
with 𝜇𝓁 a reference length for the 𝓁-th patch (e.g., the square root of 
its area or its diameter), with 𝜑𝓁 the associated uniform scaling such 
that 𝐳̃ = 𝜑𝓁(𝐳) = 𝐳∕𝜇𝓁 and with Γ̃(𝓁) the conformally scaled version of 
the 𝓁-th patch, the matrix entries are equal to

𝐴
(𝑘,𝓁)
𝑖,𝑗

=𝜇𝓁 ∫
Γ̃(𝓁)

𝜅𝓁 (𝜑𝓁(𝐱
(𝑘)
𝐢 ), 𝐲̃)𝐵𝐓(𝓁)

𝐣,𝐝 (𝜇𝓁 𝐲̃) 𝑑Γ̃

=𝜇𝓁 ∫
[0,1]2

𝜅𝓁 (𝜑𝓁(𝐱
(𝑘)
𝐢 ), 𝐅̃(𝓁)(𝐭))𝐵̂𝐓(𝓁)

𝐣,𝐝 (𝐭) 𝐽 (𝓁)(𝐭) 𝑑𝐭, (20)

𝜷
(𝑘)
𝑖

=
𝑀∑
𝓁=1

∫
Γ̃(𝓁)

𝜕𝜅(𝓁)
𝜕𝐧𝑦̃

(𝜑𝓁(𝐱
(𝑘)
𝐢 ), 𝐲̃) 𝑢D(𝜇𝓁 𝐲̃) 𝑑Γ̃ + 1

2
𝑢D(𝐱

(𝑘)
𝐢 )

=
𝑀∑
𝓁=1

∫
[0,1]2

𝜕𝜅𝓁
𝜕𝐧𝐲̃

(𝜑𝓁(𝐱
(𝑘)
𝐢 ), 𝐅̃(𝓁)(𝐭)) 𝑢D(𝜇𝓁 𝐅̃(𝓁)(𝐭)) 𝐽 (𝓁)(𝐭) 𝑑𝐭

+ 1
2
𝑢D(𝐱

(𝑘)
𝐢 ), (21)

where 𝐅̃(𝓁) ∶= 𝐅(𝓁)∕𝜇𝓁 , 𝐽 (𝓁) is the related infinitesimal scaled area ele-

ment and 𝜅𝓁 ∶= 𝜅𝜇𝓁 .

3.2. Inter-patch conforming continuous spaces

Let us denote the space of B-spline functions that join with 𝐶0 reg-

ularity across patches by 0
ℎ,𝐝 ∶= ℎ,𝐝 ∩𝐶0(Γ). For the time being, let us 

assume that any two adjacent patches Γ(𝑘), Γ(𝓁) with a common bound-

ary curve 𝑘,𝓁 have the same knot vector on the edges of the patches. 
Namely, on the 𝑘-th patch the knot vector 𝑇 (𝑘)

1 is considered if 𝐅(𝑘)(𝑡1, 0)
or 𝐅(𝑘)(𝑡1, 1) define the curve 𝑘,𝓁 , and in the other case it is 𝑇 (𝑘)

2 that is 
considered. The same procedure is done for 𝓁-th patch. The assumption 
then states that the two vectors 𝑇 (𝑘)

𝑖
, 𝑇 (𝓁)

𝑗
need to coincide (up to a possi-

ble reversion of one knot sequence, e.g., when 𝐅(𝑘)(1, 𝑡2) = 𝐅(𝓁)(1, 1 − 𝑡2)). 
If this is the case, the two knot vectors are said to be conforming, and 
the same adjective will also be used to describe discretization spaces 
on neighbouring patches that coincide when restricted to the common 
edge.

The so-called interior basis functions for 0
ℎ,𝐝 include all basis func-

tions 𝐵𝐓(𝑘)
𝐣,𝐝 from ℎ,𝐝 whose corresponding B-splines 𝐵̂𝐓(𝑘)

𝐣,𝐝 vanish on 
𝜕([0, 1]2). The so-called edge or vertex basis functions are obtained by 
identifying and summing together the remaining basis functions from 
ℎ,𝐝 with shared knot vectors. More precisely, each edge basis function 
in 0

ℎ,𝐝 specifically associated to 𝑘,𝓁 is a sum of two remaining (not in-

terior) functions 𝐵𝐓(𝑘)
𝐢,𝐝 and 𝐵𝐓(𝓁)

𝐣,𝐝 from ℎ,𝐝, that vanish at the endpoints 

of 𝑘,𝓁 and satisfy 𝐵̂𝐓(𝑘)
◦𝐅(𝑘)−1(𝐱) = 𝐵̂𝐓(𝓁)

◦𝐅(𝓁)−1(𝐱) for every 𝐱 ∈ 𝑘,𝓁 . 
𝐢,𝐝 𝐣,𝐝
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Similarly, a vertex function associated to a patch corner vertex 𝐱𝑣 is de-

fined as a sum of all basis functions 𝐵𝐓(𝑘)
𝐢,𝐝 from ℎ,𝐝, 𝑘 = 1, … , 𝑀 and 

𝐢 ∈  𝐓(𝑘)
that satisfy 𝐵̂𝐓(𝑘)

𝐢,𝐝 ◦𝐅(𝑘)−1(𝐱𝑣) ≠ 0.

In all experiments with the 𝐶0 continuous basis the collocation 
points are fixed as a set of images of Cartesian products of standard Gre-

ville abscissas on [0, 1]2, mapped to Γ(𝑘) via map 𝐅(𝑘) for all 𝑘 = 1, … , 𝑀 , 
and by counting just once the repeated points which appear on the 
boundary curves of patches.

The approximate solution 𝜙ℎ is constructed similarly to the discon-

tinuous case, bearing in mind a variation in the collocation points and 
a sum of adequate entries in (16), (18) over all suitable 𝓁 to evaluate 
integrals that span over the patches Γ(𝓁) adjacent to Γ(𝑘).

3.3. Inter-patch non-conforming continuous spaces

The assumption of conformity greatly simplifies the implementation 
of globally continuous discretization spaces, but also severely limits 
the possibility of adapting ℎ(𝓁) on every patch to better approximate 
local features of the unknown Cauchy datum 𝜙. This is because the 
constraint 𝑇 (𝑘)

𝑖
= 𝑇

(𝓁)
𝑗

for all edges 𝑘,𝓁 (up to reversion of some knot 
vectors) propagates globally across patches, so that the refinement of 
the discretization space on a single patch usually ends up causing most 
other spaces to be unnecessarily refined. It is for this reason that non-

conforming spaces have been introduced in the literature; the first work 
in this sense is [24].

So far, only the hierarchically non-conforming case has been con-

sidered, see for example [1,25]. Two knot vectors are said to be hi-

erarchically non-conforming if either 𝑇 (𝑘)
𝑖

⊆ 𝑇
(𝓁)
𝑗

or 𝑇 (𝑘)
𝑖

⊇ 𝑇
(𝓁)
𝑗

holds 
for all edges 𝑘,𝓁 . This assumption is in general a good compromise 
between ease of implementation and computational efficiency. Never-

theless, the inclusion constraint still propagates globally across patches, 
and in practice this means that, without a dyadic uniform subdivision 
of knot vectors (or similar nesting strategies), unrelated and non-local 
knots may be forcibly included into knot vectors of a patch. However, 
limiting knot vectors to dyadic uniform subdivisions clearly hinders the 
flexibility of the non-conforming approach, and potentially introduces 
inefficiencies due to excessive refinement.

In this work, the implementation of non-conforming 𝐶0 joints be-

tween B-spline spaces on neighbouring patches is done in full general-

ity, that is, without assuming any relation between 𝑇𝑖(𝑘) and 𝑇𝑗 (𝓁), i.e., 
no hierarchical master-slave relation between neighbouring patches is 
required. This means that, in theory, knot vectors 𝑇1(𝑘) and 𝑇2(𝑘) can 
be chosen independently on each patch Γ(𝑘), based only on information 
local to Γ(𝑘). In practice, however, some kind of compatibility assump-

tion is still needed on the knot vectors 𝑇𝑖(𝑘) and 𝑇𝑗 (𝓁) on the two sides 
of each edge for the global spline space 0

ℎ,𝐝 to have full approximation 
power as ℎ → 0. To see why, let (𝑇 , 𝑑) be the univariate spline space 
defined by the open knot vector 𝑇 and the polynomial degree 𝑑. Then, 
for every pair of knot vectors 𝑇 , 𝑇 ′ with a common parametric domain 
[0, 1], it holds that

(𝑇 ∩ 𝑇 ′, 𝑑) = (𝑇 ,𝑑) ∩ (𝑇 ′, 𝑑), (22)

assuming that the intersection operation between knot vectors takes 
knot multiplicities into account (i.e., the minimum multiplicity of each 
node is kept in the intersection). On the one hand, identity (22) en-

sures that a 𝐶0 connection between neighbouring patches is always 
possible, because the space Π𝑑 of polynomials on [0, 1] of degree at 
most 𝑑 is included in the intersection (𝑇𝑖(𝑘), 𝑑) ∩ (𝑇𝑗 (𝓁), 𝑑). On the 
other hand, if 𝑇𝑖(𝑘) and 𝑇𝑗 (𝓁) share no internal knots, then the intersec-

tion (𝑇𝑖(𝑘), 𝑑) ∩ (𝑇𝑗 (𝓁), 𝑑) is merely equal to Π𝑑 , whose dimension as 
a vector space is independent of ℎ. This implies that the approxima-

tion power of 0
ℎ,𝐝 in a neighbourhood of size ℎ of edge 𝑘,𝓁 is severely 

limited and, as a consequence, its global order of approximation is at 
most ℎ1∕2 in the 𝐿2(Γ) norm, which is far from the optimal order ℎ𝑑+1. 
A necessary condition to avoid this issue is to satisfy



B. Degli Esposti, A. Falini, T. Kanduč et al. Computers and Mathematics with Applications 147 (2023) 164–184
lim inf
ℎ→0

|||𝑇 (𝑘)
𝑖

(ℎ) ∩ 𝑇
(𝓁)
𝑗

(ℎ)||||||𝑇 (𝑘)
𝑖

(ℎ)||| > 0 and lim inf
ℎ→0

|||𝑇 (𝑘)
𝑖

(ℎ) ∩ 𝑇
(𝓁)
𝑗

(ℎ)||||||𝑇 (𝓁)
𝑗

(ℎ)||| > 0 (23)

for a given knot vector refinement strategy 𝑇𝑖(𝑘)(ℎ), 𝑇𝑗 (𝓁)(ℎ). This new 
constraint (23) is not hard to enforce in practice, and does not propagate 
globally across patches. Even in the special case of uniform subdivisions 
of knot vectors, it makes it possible to take intermediate refinement 
steps between consecutive powers of two by, e.g., allowing numbers of 
the form 3 ⋅ 2𝑛.

From an implementation point of view, elimination of redundant 
degrees of freedom as in the conforming 𝐶0 case is no longer an attrac-

tive option. The reason is that a basis for 0
ℎ,𝐝 would no longer have 

a tensor-product structure on each patch, so it is better in practice to 
work with the discontinuous basis of Section 3.1 and enforce the conti-

nuity constraints across each edge 𝑘,𝓁 by including suitable equations 
in the final linear system 𝐴𝜶 = 𝜷. Naturally, for 𝐴 to be a square matrix, 
the number of collocation conditions must be reduced accordingly.

Inspired by conditions coming from spline interpolation problems, 
let 𝐺̂(𝑇 , 𝑑) be the vector of standard Greville abscissas defined by the 
knot vector 𝑇 and the polynomial degree 𝑑, and let 𝐺𝑘,𝓁(𝑇 , 𝑑) be its 
pushforward to the edge 𝑘,𝓁 . Then the global list of collocation points 
is built as follows: start from all the vertices of every patch (with no du-

plicates), then for each edge 𝑘,𝓁 add the elements 𝐺𝑘,𝓁(𝑇𝑖(𝑘) ∩ 𝑇𝑗
(𝓁), 𝑑)

(except for the endpoints, because they are already included as patch 
vertices), and finally for each patch Γ(𝑘) include the standard bivariate 
Greville points that do not belong to 𝜕Γ(𝑘). Collocation of the conven-

tional boundary integral equations (8) or (10) at the points on this list 
leads to a linear system

𝐴coll 𝜶 = 𝜷coll, (24)

with dim(0
ℎ,𝐝) rows and dim(ℎ,𝐝) columns.

As for the continuity constraints, there are two conceptually distinct 
but algebraically equivalent ways to obtain them. The first is a general-

ization to the non-hierarchical non-conforming setting of the coupling 
equations based on virtual knot insertion introduced in [24]. For any 
given edge 𝑘,𝓁 , let 𝜶𝑘,𝓁 be the subvector of 𝜶 that contains all the ele-

ments of the form 𝛼(𝑘)𝐣 such that 𝐵𝐓(𝑘)
𝐣,𝐝 does not vanish on 𝑘,𝓁 . Moreover, 

let 𝐓𝑘,𝓁 be the knot insertion matrix from the basis of B-splines on the 
space (𝑇 (𝑘)

𝑖
, 𝑑) to the basis of B-splines on the space (𝑇𝑖(𝑘) ∪ 𝑇𝑗

(𝓁), 𝑑), 
where the union operation between knot vectors is defined so as to take 
knot multiplicities into account.

Then, assuming that the elements of 𝜶𝑘,𝓁 and 𝜶𝓁,𝑘 are suitably or-

dered along edge 𝑘,𝓁 , the non-conforming continuity constraint across 
the edge simply reads

𝐓𝑘,𝓁 𝜶𝑘,𝓁 −𝐓𝓁,𝑘 𝜶𝓁,𝑘 = 0. (25)

Unfortunately, it is not enough to iterate over all edges and grow the 
linear system (24) using equations (25). The reason is that the equality 
constraints associated to patch vertices can be redundant, and so one 
must first iterate over patch corner vertices 𝐱𝑐 , impose equality of all 
coefficients 𝛼(𝑘)𝐣 such that 𝐵(𝑘)

𝐣,𝐝 (𝐱𝑐 ) ≠ 0, and only then iterate over edges, 
discarding the first and last scalar equations in (25) (the ones related to 
vertices) when adjoining them to (24).

An alternative approach to non-conforming continuity constraints, 
based on knot removal instead of knot insertion, is the following. Let 
𝑇 ⧵𝑇 ′ be the set difference of two knot vectors, taking knot multiplicity 
into account. Then 𝑇 ∪ 𝑇 ′ can be decomposed as the disjoint union

𝑇 ∪ 𝑇 ′ = (𝑇 ⧵ 𝑇 ′) ∪ (𝑇 ∩ 𝑇 ′) ∪ (𝑇 ′ ⧵ 𝑇 ). (26)

For any edge 𝑘,𝓁 , let 𝐊𝑘,𝓁 be the matrix that transforms a spline 𝑠 in 
(𝑇 (𝑘)

𝑖
, 𝑑) as defined by its B-coefficients 𝜶𝑘,𝓁 to a vector 𝐊𝑘,𝓁 𝜶𝑘,𝓁 whose 

components are equal to the jumps in the derivatives of 𝑠 from order 
𝑑 − 𝜇 + 1 to 𝑑 − 𝜈 at each node of 𝑇𝑖(𝑘) ⧵ 𝑇𝑗 (𝓁), with 𝜇 being the node’s 
multiplicity in 𝑇 (𝑘)

𝑖
and 𝜈 being the node’s multiplicity in 𝑇 (𝓁)

𝑗
(possibly 
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zero). The constraints 𝐊𝑘,𝓁 𝜶𝑘,𝓁 = 0 are known as knot removal conditions, 
and are equivalent to the inclusion 𝑠 ∈ (𝑇𝑖(𝑘) ∩𝑇𝑗 (𝓁), 𝑑). It is appropriate 
to normalize each row of 𝐊𝑘,𝓁 , for example with respect to the infinity 
norm, to ensure that the system matrix 𝐴 is well-conditioned.

For any given edge 𝑘,𝓁 , let 𝐂𝑘,𝓁 be the collocation matrix that trans-

forms a spline 𝑠 in (𝑇𝑖(𝑘), 𝑑) as defined by its B-coefficients 𝜶𝑘,𝓁 to a 
vector 𝐂𝑘,𝓁 𝜶𝑘,𝓁 whose components are equal to the values of 𝑠 at the 
Greville abscissas 𝐺̂(𝑇 (𝑘)

𝑖
∩ 𝑇

(𝓁)
𝑗

, 𝑑), endpoints excluded. Since any two 
splines 𝑠, 𝑠′ ∈ (𝑇𝑖(𝑘) ∩ 𝑇𝑗

(𝓁), 𝑑) are equal if and only if they take the 
same values on the set of Greville abscissas (endpoints included), 𝐶0

non-conforming joints can be achieved by the following two-step proce-

dure. First, iterate over all patch corner vertices 𝐱𝑐 and impose equality 
of every 𝛼(𝑘)𝐣 such that 𝐵𝐓(𝑘)

𝐣,𝐝 (𝐱𝑐 ) ≠ 0. Second, iterate over all patch edges 
𝑘,𝓁 and for each impose the constraints

𝐊𝑘,𝓁 𝜶𝑘,𝓁 = 0, 𝐂𝑘,𝓁 𝜶𝑘,𝓁 −𝐂𝓁,𝑘 𝜶𝓁,𝑘 = 0, 𝐊𝓁,𝑘 𝜶𝓁,𝑘 = 0, (27)

which can overall be understood as a decoupled version of equation 
(25). In fact, the approach based on knot removal conditions leads to 
a sparser and more structured matrix 𝐴 in the final linear system to be 
solved. A comparison of the two approaches based on e.g. the condition 
number of 𝐴 is beyond the scope of this paper.

Proposition 1. Matrix 𝐴, formed by adjoining the non-conforming conti-

nuity constraints to the collocation conditions in 𝐴coll, is a square matrix. 
Moreover, if the collocation conditions in 𝐴coll are replaced by evaluation of 
the B-splines at the same list of points as in (24), i.e., to solve an interpola-

tion problem instead of the conventional boundary integral equations (8) or 
(10), the resulting matrix 𝐴 is nonsingular.

Proof. See Appendix B. □

Remark 1. The previous proposition is meant to explain the choice of 
collocation points in the non-conforming setting and to provide a moti-

vation for the proposed collocation conditions. However, nonsingularity 
of 𝐴 for the solution of conventional boundary integral equations (8) or 
(10) is a much harder statement to prove, as the current theoretical un-

derstanding of collocation methods in the literature lags behind that of 
other methods (like Galerkin schemes), and so one cannot obtain the 
proof as a straightforward extension of the existing theory.

In fact, invertibility of 𝐴 in the considered setting is still an 
open problem even in the simpler cases of inter-patch discontinuous 
spaces (Section 3.1) and inter-patch conforming continuous spaces (Sec-

tion 3.2). Nevertheless, invertibility of the interpolation matrix is a 
necessary condition for collocation schemes to be profitably seen as 
projection methods in the sense of [22] and [26]: this point of view 
could provide a path towards a convergence proof for the considered 
scheme, as was done for example in [27] in a similar setting. To pro-

vide at least empirical evidence of nonsingularity of 𝐴, a survey of its 
condition number is done in Section 5 for different values of ℎ, different 
kinds of inter-patch space continuity requirements, and different kinds 
of boundary conditions on a sphere.

4. Quadratures

4.1. Singularity extraction

Let us introduce a numerical integration method, which makes a 
function-by-function assembly phase possible. For the sake of simplic-

ity, only the one-patch setting is considered (𝑀 = 1) when the source 
point and the integration domain belong to the same patch, thus avoid-

ing any reference to the patch index. Some considerations about inte-

gration in the more general multi-patch setting are also given.

It is convenient to write the two singular kernels 𝜅 and 𝜕𝜅∕𝜕𝐧𝐲
as in (6) and (7) and analyze which terms are singular, hence a sin-

gular integration has to be considered, and which terms define regular 



B. Degli Esposti, A. Falini, T. Kanduč et al. Computers and Mathematics with Applications 147 (2023) 164–184
integrals. Referring to Appendix A for some explicit insights, as already 
noted in Section 2, the real part in (6) is weakly singular at 𝑟 = 0 with 
its non-singular part cos(𝜅𝑟) smooth under the assumption of a smooth 
geometry parameterization. For the same reason, its imaginary part is a 
smooth function. Similarly, the factor 𝐫 ⋅ 𝐧𝐲∕𝑟3 of the real part in (7) is 
weakly singular, while the other factor, (cos(𝜅𝑟) + 𝜅 sin(𝜅𝑟)𝑟), is smooth. 
Finally, the imaginary part in (7) is in general only 𝐶1 continuous at 
𝑟 = 0 because the factor 𝐫 ⋅ 𝐧𝐲∕𝑟2 is bounded and (sin(𝜅𝑟)∕𝑟 − 𝜅 cos(𝜅𝑟))
has a double zero at 𝑟 = 0. In these numerical experiments such smooth-

ness of the integrands was sufficient to numerically integrate the corre-

sponding integrals with the required accuracy.

Remark 2. To improve accuracy of the numerical integration for inte-

grals involving the imaginary part of (7), a more sophisticated approach 
could be considered. For example, the integrals could be handled simi-

larly as the singular ones, treating the part 𝐫 ⋅ 𝐧𝐲∕𝑟2 as the “less regular 
part” of the integrand, since the remaining part (sin(𝜅𝑟)∕𝑟− 𝜅 cos(𝜅𝑟)) is 
an analytic function.

Let 𝐬 ∈ [0, 1]2 denote the preimage in the parametric domain of a 
fixed generic collocation point 𝐱. Note that for brevity the patch index 
is referred to only when essential. Conversely, a superscript symbol ̃
is adopted to refer to the patch scaling introduced at the end of Sec-

tion 3.1. For example, 𝐱̃ = 𝐅̃(𝐬) denotes the scaled 𝐱 = 𝐅(𝐬), assuming 
that the considered scaling is that associated with the patch where the 
integration is developed. Then, let us introduce the following general 
form representing any integral to be dealt with,

∫
𝑅𝐣

𝑈 (𝐬, 𝐭)𝐵̂𝐣,𝐝(𝐭) 𝑔(𝐭)𝑑𝐭, (28)

where 𝑔 is a given smooth function, 𝐵̂𝐣,𝐝 is a B-spline basis function, 
𝑅𝐣 ∶= supp{𝐵̂𝐣,𝐝} and 𝑈 refers to any of the following two weakly sin-

gular kernels respectively associated with the single and double layer 
potential,

𝑈 (𝐬, 𝐭) =𝑈SL(𝐬, 𝐭) ∶=
1‖𝐅̃(𝐬) − 𝐅̃(𝐭)‖2 and

𝑈 (𝐬, 𝐭) =𝑈DL(𝐬, 𝐭) ∶=
(𝐅̃(𝐬) − 𝐅̃(𝐭)) ⋅ 𝝂̃(𝐭)‖𝐅̃(𝐬) − 𝐅̃(𝐭)‖32 , (29)

with 𝝂̃(𝐭) ∶= (𝜕𝐅̃∕𝜕𝑡1)(𝐭) × (𝜕𝐅̃∕𝜕𝑡2)(𝐭) and 𝐅̃ denoting the scaled normal 
and the scaled mapping associated to the conformally scaled surface 
patch.

Remark 3. Integrals defining the entries of 𝜷 do not include the ba-

sis functions 𝐵̂𝐣,𝐝 directly. To split the integration domain [0, 1]2 into 
smaller subdomains and arrive to the above general form, additional 
knot vectors 𝑇r,1, 𝑇r,2 are introduced, and inside (17) and (19) a sum of 
all B-spline basis functions 𝐵̂𝐣,𝟎 of degree zero, defined on 𝑇r,1 × 𝑇r,2, is 
added. Therefore, the approach to evaluate integrals in 𝜷 is analogous 
to the one for the system matrix 𝐴.

It is easy to determine when the integral in (28) is actually singular. 
Indeed, since smooth surfaces without self-intersections are considered, 
this occurs if and only if 𝐱̃ belongs to the scaled patch where the in-

tegration is developed, and the associated 𝐬 belongs to 𝑅𝐣. However, 
detection of nearly singular integrals that require analogous treatment 
is a more delicate task, in order to preserve the accuracy of the numer-

ical scheme without deteriorating its efficiency. In such setting let the 
integral in (28) be nearly singular, when

𝑟min,𝐣(𝐬) ∶= min
𝐭∈𝑅𝐣
‖𝐅̃(𝐬) − 𝐅̃(𝐭)‖2 ≤ 𝑐𝑢 𝛿, (30)

where 0 < 𝑐𝑢 < 1 is a user-defined constant and 𝛿 is a suitable patch-

depended threshold. For further details concerning the definition of 𝛿
see the discussion in Section 4.6.
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When the condition (30) is not satisfied, the kernel 𝑈 is considered 
regular and integration rules for regular integrals are applied. Con-

versely, when the kernel 𝑈 in (28) is weakly singular or nearly singular, 
a regularization technique based on the subtraction of singularity is pre-

liminarily adopted,

∫
𝑅𝐣

𝑈 (𝐬, 𝐭)𝐵̂𝐣,𝐝(𝐭)𝑔(𝐭)𝑑𝐭 = ∫
𝑅𝐣

(
𝑈 (𝐬, 𝐭) −𝑈𝑚

𝐬 (𝐬− 𝐭)
)
𝐵̂𝐣,𝐝(𝐭)𝑔(𝐭)𝑑𝐭

+ ∫
𝑅𝐣

𝑈𝑚
𝐬 (𝐬− 𝐭)𝐵̂𝐣,𝐝(𝐭)𝑔(𝐭)𝑑𝐭, (31)

where 𝑈𝑚
𝐬 is an approximation of 𝑈 (𝐬, ∙), obtained by truncating a par-

ticular series expansion of 𝑈 about the singular point 𝐭 = 𝐬 after the 𝑚-th 
term; see [17] for the first application of these expansions in the sim-

plest form and [19] for detailed construction and analysis. Note that the 
singularity subtraction technique that splits an integral into two ones is 
applied only to a small portion of integrals. In this case, the first term 
of the right hand side of (31) becomes a regularized integral while the 
second one is a singular integral with a simplified singular kernel. The 
continuity of the integrand in the regularized integral is controlled by 
the number 𝑚 of terms in 𝑈𝑚

𝐬 and is equal to 𝐶𝑚−2 at 𝐭 = 𝐬 for the chosen 
𝑚 ≥ 1 (𝐶−1 denotes functions that are integrable in the standard sense 
but have discontinuities of the first kind at 𝐭 = 𝐬), if the geometry map 
𝐅 is a smooth enough function [19].

By defining local coordinates 𝐳 ∶= 𝐬 − 𝐭, the kernel reads

𝑈𝑚
𝐬 (𝐳) =

𝑚∑
𝑘=1

𝑅𝐬(𝐳)−2(𝑘+𝛾)+1 𝑃
[𝑘]
𝐬,3𝑘+2𝛾−3(𝐳), (32)

where 𝑅𝐬(𝐳) ∶=
√
𝐳⊤𝑀𝐬𝐳 is a square root of a bivariate quadratic ho-

mogeneous polynomial and 𝑀𝐬 is the 2 × 2 symmetric positive definite 
matrix associated with the first fundamental form of a smooth surface 
(e.g., see formulas (61) and (62) in Appendix A), 𝑃 [𝑘]

𝐬,3𝑘+2𝛾−3 are suitable 
homogeneous polynomials of degrees 3𝑘 + 2𝛾 − 3, and 𝛾 = 0 and 𝛾 = 1
for 𝜅 and 𝜕𝜅∕𝜕𝐧𝐲 , respectively. Note that coefficients inside 𝑅𝐬 and 
𝑃
[𝑘]
𝐬,3𝑘+2𝛾−3 depend on a chosen 𝐬 and on derivatives of the map 𝐅̃. For 

example, for 𝑚 = 1 the kernels of the single and double layer potentials 
are approximated as follows,

𝑈1
𝐬 (𝐳) =

{ 1
4𝜋

[
𝑅𝐬(𝐳)−1

]
if 𝑈 =𝑈SL ,

1
4𝜋

[
𝑅𝐬(𝐳)−3𝑃

[1]
𝐬,2 (𝐳)

]
if 𝑈 =𝑈DL ,

where 𝑃 [1]
𝐬,2 (𝐳) =

1
2

(
𝐿 𝑧21 + 2𝑀 𝑧1𝑧2 +𝑁𝑧22

)
, and 𝐿, 𝑀, 𝑁 are the coeffi-

cients of the second fundamental form of the geometry, evaluated at 𝐬, 
see (61) in Appendix A.

Relating to the more general multi-patch setting, when source point 
𝐱 = 𝐅(𝑘)(𝐬) and integration variable 𝐲 = 𝐅(𝓁)(𝐭) belong to different ad-

jacent patches, Γ(𝑘) and Γ(𝓁), the integral in (28) is nearly singular if 
condition (30) is satisfied for involved points 𝐅̃(𝑘)(𝐬), ̃𝐅(𝓁)(𝐭), and regu-

lar otherwise. In the latter case, the procedure for regular integrals on 
one patch is adopted, while the former case clearly poses an additional 
challenge. In order to explain the procedure in such setting, a more pre-

cise notation is need to distinguish between the two involved patches 
𝑘 ≠ 𝓁; the kernel 𝑈 and its variations are equipped with superscript 
(𝑘, 𝓁), 𝑈 →𝑈 (𝑘,𝓁),

𝑈
(𝑘,𝓁)
SL (𝐬, 𝐭) ∶= 1‖𝐅̃(𝑘)(𝐬) − 𝐅̃(𝓁)(𝐭)‖2 ,

𝑈
(𝑘,𝓁)
DL (𝐬, 𝐭) ∶= (𝐅̃(𝑘)(𝐬) − 𝐅̃(𝓁)(𝐭)) ⋅ 𝝂̃(𝓁)(𝐭)‖𝐅̃(𝑘)(𝐬) − 𝐅̃(𝓁)(𝐭)‖32 , (33)

indicating that the source point 𝐱̃ is connected with 𝐬 in the paramet-

ric domain via the geometry map 𝐅̃(𝑘) but integration is performed 
on the 𝓁-th patch. Since the parameterization of the geometry is pre-

scribed patch-wisely, the proposed series expansion 𝑈 (𝑘,𝓁),𝑚
𝐬 is limited 
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Fig. 1. An example of a spherical patch Γ(𝓁) extension in the parametric and the physical domain. White lines indicate boundaries of the original patch. Red curves 
correspond to points, where det(𝑀𝐬) = 0 and the parametrization is no longer regular. On the right isolines of the patch are depicted in grey.
to the 𝑘-th patch. To overcome this limitation, the function 𝐅(𝓁) is lo-

cally smoothly extended to a slightly larger domain, where a suitable 
approximation of the collocation point is found and used to develop 
the mentioned expansion. It is adequate to extend just the restriction of 
𝐅(𝓁) sufficiently smoothly to a cell nearest to 𝐱. Such a restriction can 
be easily converted in rational Bézier form (it can be easily obtained by 
performing a standard Bézier extraction algorithm), which is well de-

fined and regular also slightly outside its original parametric domain 
[0, 1]2. The proposed extension is natural and reasonable for smooth 
inter-patch contacts, hence it is opted over other common more sophis-

ticated but more expensive alternatives for surface extrapolations. With 
the proposed approach, function evaluations can be readily performed 
by standard algorithms, such as de Casteljau algorithm.

For simplicity of notation, let us denote with 𝐷𝓁 the locally extended 
parametric domain and let us use the same notation for the extended 
function, 𝐅(𝓁) ∶ [0, 1]2 ⊂𝐷𝓁 → IR3, where clearly on the enlarged part of 
the domain the map 𝐅(𝓁) describes just an approximation of the actual 
geometry, which is exactly described by 𝐅(𝑘). By replacing 𝐱̃ = 𝐅̃(𝑘)(𝐬) in 
(33) by 𝐅̃(𝓁)(𝐬𝑒) with

𝐬𝑒 ∶= arg min
𝐬′∈𝐷𝓁

‖𝐅̃(𝑘)(𝐬) − 𝐅̃(𝓁)(𝐬′)‖2 , (34)

the obtained kernel 𝑈 (𝓁,𝓁),𝑚
𝐬𝑒 approximates 𝑈 (𝑘,𝓁),𝑚

𝐬 and naturally gen-

eralizes the case 𝑘 = 𝓁. Since 𝐅̃(𝑘) is assumed to be regular on [0, 1]2, 
the regularity is maintained also on 𝐷𝓁 for a sufficiently small exten-

sion, thus 𝑀𝐬𝑒 in 𝑅𝐬𝑒 is positive definite and 𝑈 (𝓁,𝓁),𝑚
𝐬𝑒 is well defined for 

all 𝐬𝑒 ∈ 𝐷𝓁 . Since the actual source point 𝐱̃ is replaced by its nearby 
surrogate point 𝐅̃(𝓁)(𝐬𝑒), the cancellation of the singularity is not ex-

act. This does not present any real problem because the source point 
lies outside the integration domain and the accuracy of singularity can-

cellation improves with smaller values of 𝑟min,𝐣; see Section 4.5 for the 
nearly singular numerical integration error analysis.

As an example, let Γ(𝑘) and Γ(𝓁) be two adjacent NURBS patches of 
a unit sphere, sharing a common edge, 𝐅(𝑘)(1, 0) = 𝐅(𝓁)(1, 0), 𝐅(𝑘)(1, 1) =
𝐅(𝓁)(0, 0) (see the beginning of Section 5 for more details on the ge-

ometry parametrization and Fig. 3(a) for visualization of the sphere 
representation). Note that in this setting each patch comprises only one 
mesh cell and can thus be extended in all directions in the parametric 
domain with just one Bézier form, e.g., on [−𝜀, 1 + 𝜀]2 for 𝜀 > 0.

Let 𝐱 = 𝐅(𝑘)(𝐬) ∈ Γ(𝑘), 𝐬 = (1 − 𝜀, 1 − 𝜀), (1 − 𝜀, 0.5), 𝜀 = 10−6, be a col-

location point near the vertex and near the centre of the interface 
of Γ(𝓁), respectively (for simplicity let us assume 𝜇𝓁 = 1). In Fig. 1

an extension of one spherical patch Γ(𝓁) is depicted on extended do-

main 𝐷𝓁 = [−0.5, 1.5]2 – a much bigger domain extension than what 
is needed in practice. Function det(𝑀𝐬) = 𝐸𝐺 − 𝐹 2 (𝐸, 𝐹 , 𝐺 are coeffi-
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cients of the first fundamental form of a smooth surface), a measure of 
regularity of the parametrization, is depicted in Fig. 1(a). Patch exten-

sion in the physical domain is shown in Fig. 1(b). In Fig. 2 the function 
𝐭 ↦ |𝑈 (𝑘,𝓁)(𝐬, 𝐭) − 𝑈

(𝓁,𝓁),2
𝐬𝑒 (𝐬𝑒 − 𝐭)| is depicted. Such function is the abso-

lute value of the regularized part of the integrand in (31) for the kernels 
of the single and double layer potential. The figure shows its value in 
the parametric domain [0, 1]2 of Γ(𝓁), together with the position of 𝐬𝑒 in 
𝐷𝓁 . The distance between the computed nearby surrogate point 𝐅(𝓁)(𝐬𝑒)
and the actual source point 𝐱 = 𝐅(𝑘)(𝐬) is approximately 1.2 ⋅ 10−6 and 
1.4 ⋅ 10−6, when the source point is close to the vertex (left figures) and 
to the centre of the common interface (right figures), respectively. The 
figure shows that the regularized function 𝑈 (𝑘,𝓁)(𝐬, 𝐭) − 𝑈

(𝓁,𝓁),2
𝐬𝑒 (𝐬𝑒 − 𝐭)

has small oscillations and is bounded – in contrast, the maximum value 
of the function 𝐭 ↦ |𝑈 (𝑘,𝓁)(𝐬, 𝐭)| in [0, 1]2 is approximately 5.0 ⋅ 105 and 
6.3 ⋅ 105 for the two cases with the single layer potential (top figures) 
and 8.7 ⋅ 105, 7.1 ⋅ 105 for the cases with the double layer potential (bot-

tom figures). The presented example demonstrates that the regularized 
integrals can effectively be incorporated in routines for regular integrals 
presented in Section 4.3.

4.2. B-spline quasi-interpolation scheme

To approximate integrals in 3D collocation BEM, the 2D Quasi In-

terpolation (QI) scheme is utilized, firstly introduced in [28] for the 
tensor-product extension of the univariate Hermite QI scheme intro-

duced in [29]. With such approach a bivariate function 𝑓 is approxi-

mated on a rectangle 𝑅 by using a QI spline tensor product operator 
𝑓 → 𝜎𝑓 ∶=

∑
𝐢∈ 𝚯 𝜆𝐢𝐵̂

𝚯
𝐢,𝐩, where {𝐵̂𝚯

𝐢,𝐩, 𝐢 ∈  𝚯} is the tensor-product B-

spline basis generating the chosen finite dimensional space of splines 
defined on 𝑅 and knot array 𝚯, with  𝚯 denoting a local set of multi-

indices used to identify the basis elements. In the considered QI scheme 
each coefficient 𝜆𝐢, 𝐢 ∈  𝚯, is computed as a linear combination of the 
values assumed in a suitable local subset of breakpoints by 𝑓 , by both 
its first partial derivatives and also by its second mixed derivative, see 
[28] for details. However, in the present work a derivative-free variant 
of such QI scheme is considered, which is more suitable for numeri-

cal integration. Such variant is obtained by approximating the required 
derivative values with suitable finite difference formulas. Then, collect-

ing all the coefficients 𝜆𝐢, 𝐢 ∈ 𝑅, in a vector 𝚲 in lexicographical order, 
a compact matrix notation reads

𝚲 =
(
𝐶̂ (𝑝))⊤ 𝐟 , (35)

where 𝐟 is a vector collecting with the same ordering all the values of 𝑓
at the breakpoints and
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Fig. 2. An example of the absolute value of the regularized function of the nearly singular kernel with the source point and integration domain belonging to two 
different adjacent patches of a sphere. The points 𝐬𝑒 are represented as a black dots.
𝐶̂ (𝑝) ∶=
(
(𝐴̂⊤

2 ⊗ 𝐴̂⊤
1 ) − (𝐴̂⊤

2 ⊗ (𝐵̂⊤
1 𝐷𝑡1

)) − ((𝐵̂⊤
2 𝐷𝑡2

)⊗ 𝐴̂⊤
1 )

+ ((𝐵̂⊤
2 𝐷𝑡2

)⊗ (𝐵̂⊤
1 𝐷𝑡1

))
)⊤
. (36)

In the above formula 𝐴̂𝑖, 𝐵̂𝑖 denote the two banded matrices, explicitly 
reported for example in [30], which are associated to the univariate 
original Hermite scheme formulated in the 𝑖-th direction, 𝑖 = 1, 2; 𝐷𝑡𝑖

are 
the matrices associated with the two analogous directional finite differ-

ence formulas used by the considered QI variant of the original scheme 
for approximating the first partial derivatives. Clearly, by incorporat-

ing a sufficiently accurate finite differences formula to approximate 
the required derivatives, the resulting derivative-free QI scheme shares 
the approximation power with the original scheme. On this concern, 
referring to the considered case with uniform breakpoints on 𝑅, for 
sufficiently smooth functions the following error bound can be easily 
derived from Theorem 1 reported in [28],2

‖𝑓 − 𝜎𝑓‖∞,𝑅 ≤𝑣1‖𝜕𝑝1+1,0𝑓‖∞,𝑅

(
𝐻1

𝜈1 − 1

)𝑝1+1
+ 𝑣2‖𝜕0,𝑝2+1𝑓‖∞,𝑅

(
𝐻2

𝜈2 − 1

)𝑝2+1
+ 𝑣3‖𝜕𝑝1+1,𝑝2+1𝑓‖∞,𝑅

(
𝐻1

𝜈1 − 1

)𝑝1+1( 𝐻2
𝜈2 − 1

)𝑝2+1
, (37)

2 In the reference the theorem is formulated for hierarchical spline spaces, 
hence the case of the tensor product spline spaces is included with admissible 
class 𝑚 = 1.
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where 𝐻𝑖 and 𝜈𝑖 respectively denote the size of 𝑅 and the number of uni-

form breakpoints in the 𝑖-th coordinate direction, 𝑖 = 1, 2, 𝜕𝑖1 ,𝑖2𝑓 stands 
for 𝜕𝑖1+𝑖2𝑓∕(𝜕𝑡𝑖11 𝜕𝑡

𝑖2
2 ) and in our setting the constants 𝑣1 , 𝑣2 and 𝑣3 just 

depend on 𝐩. Thus the convergence order of the scheme with respect 
to max{𝐻1, 𝐻2} → 0 but also to max{(𝜈1 − 1)−1, (𝜈2 − 1)−1} is equal to 
min{𝑝1, 𝑝2} + 1.

4.3. B-spline quadrature rules for regular integrals

Since in the assayed BIEs the regular integrands consist of the prod-

uct between a bivariate regular function 𝑓 with a tensor product B-

spline 𝐵̂𝐣,𝐝, a quadrature rule for the following integral is needed:

∫
𝑅𝐣

𝑓 (𝐭)𝐵̂𝐣,𝐝(𝐭)𝑑𝐭. (38)

Function 𝑓 is approximated with the previously described QI 
scheme,

𝑓 ≈ 𝜎𝑓 =
∑

𝐢∈ 𝚯𝐣

𝜆𝐢𝐵̂
𝚯𝐣
𝐢,𝐩 ,

where 𝐵̂𝚯𝐣
𝐢,𝐩 denotes a tensor product B-splines of bi-degree 𝐩 = (𝑝1, 𝑝2), 

ranging over a suitable multi-index set  𝚯𝐣 , forming a local spline space 
on 𝑅𝐣. Hence

∫
𝑅𝐣

𝑓 (𝐭)𝐵̂𝐣,𝐝(𝐭)𝑑𝐭 ≈ ∫
𝑅𝐣

𝜎𝑓 (𝐭)𝐵̂𝐣,𝐝(𝐭)𝑑𝐭. (39)



B. Degli Esposti, A. Falini, T. Kanduč et al. Computers and Mathematics with Applications 147 (2023) 164–184
The product 𝜎𝑓 𝐵̂𝐣,𝐝 is a new spline that can be expressed in terms 
of another B-spline basis 𝐵̂𝚷𝐣

𝐤,𝐩+𝐝, 𝐤 ∈  𝚷𝐣 , defined in a suitable local 
“product” spline space of bi-degree 𝐩 + 𝐝. The set  𝚷𝐣 of 𝑁𝚷𝐣 distinct 
multi-indices naturally identify elements in a tensor-product B-spline 
basis on knot array 𝚷𝐣.

Generalizing the idea developed in [31,32] for the one-dimensional 
case, the coefficients of 𝜎𝑓 𝐵̂𝐣,𝐝 in the B-spline basis of the product space 
can be written as 𝐺⊤

𝐣 𝚲, with 𝚲 defined by QI as specified in (35). In 
the current bivariate setting the matrix 𝐺𝐣 is defined as 𝐺𝐣 ∶=𝐺

(𝑝1 ,𝑑1)
𝑗1

⊗

𝐺
(𝑝2 ,𝑑2)
𝑗2

, where 𝐺(𝑝1 ,𝑑1)
𝑗1

and 𝐺(𝑝2 ,𝑑2)
𝑗2

are suitable direction-wise coefficient 
matrices and 𝐣 = (𝑗1, 𝑗2); its dimension is equal to | 𝚯𝐣 | ×𝑁𝚷𝐣 . Thus, the 
integral in (39) can finally be evaluated as,

∫
𝑅𝐣

𝑓 (𝐭)𝐵̂𝐣,𝐝(𝐭)𝑑𝐭 ≈ 𝐯⊤𝐺⊤
𝐣 𝚲 = 𝐯⊤𝐺⊤

𝐣 (𝐶̂
(𝑝))⊤𝐟 ,

where the matrix 𝐶̂ (𝑝) is defined in (36) and 𝐯 denotes a vector of suit-

able length collecting in lexicographical order the following integrals of 
each B-spline 𝐵̂𝚷𝐣

𝐤,𝐩+𝐝 of the basis of the local product spline space,

∫
𝑅𝐣

𝐵̂
𝚷𝐣
𝐤,𝐩+𝐝(𝐭)𝑑𝐭 =

|supp(𝐵̂𝚷𝐣
𝐤,𝐩+𝐝)|

(𝑝1 + 𝑑1 + 1)(𝑝2 + 𝑑2 + 1)
, 𝐤 ∈  𝚷𝐣 .

As already mentioned, the derived integration rule is the tensor 
product extension of a variant specific for integrals including a B-spline 
weight of the 1D quadrature formula introduced in [33]. Therefore, the 
error analysis developed in [33] can be easily extended to such variant 
and lifted to the tensor product setting. To be more concise, let us as-

sume that a uniform distribution of quadrature nodes is used in each 
𝑅𝐣 (i.e., uniform breakpoints in the associated local spline space are 
used by the QI scheme), since this is the common setting in the numer-

ical experiments. Assuming 𝑓 to be a sufficiently smooth function, the 
quadrature error of the rule to approximate the integral in (38) is upper 
bounded by a positive constant times the following quantity,

𝐻1,𝐣𝐻2,𝐣

(𝑑1 + 1)(𝑑2 + 1)

{‖𝜕𝑝1+𝑟1+1,0𝑓‖∞,𝑅𝐣

(
𝐻1,𝐣

𝜈1 − 1

)𝑝1+𝑟1+1

+ ‖𝜕0,𝑝2+𝑟2+1𝑓‖∞,𝑅𝐣

(
𝐻2,𝐣

𝜈2 − 1

)𝑝2+𝑟2+1
+ ‖𝜕𝑝1+𝑟1+1,𝑝2+𝑟2+1𝑓‖∞,𝑅𝐣

(
𝐻1,𝐣

𝜈1 − 1

)𝑝1+𝑟1+1
×
(

𝐻2,𝐣

𝜈2 − 1

)𝑝2+𝑟2+1}
, (40)

where 𝐻𝑖,𝐣 and 𝜈𝑖 respectively denote the size of 𝑅𝐣 and the number of 
uniform quadrature nodes in the 𝑖-th coordinate direction, 𝑖 = 1, 2 and 
𝑟𝑖 = 1(0) for 𝑝𝑖 even (odd). For fixed numbers 𝜈𝑖 of nodes, the conver-

gence order of the quadrature scheme with respect to max{𝐻1,𝐣, 𝐻2,𝐣} →
0 is

𝐶1 min{𝐻𝑝1+𝑟1+3
1,𝐣 ,𝐻

𝑝2+𝑟2+3
1,𝐣 },

if the quotient 𝐻1,𝐣∕𝐻2,𝐣 is bounded from below and from above by pos-

itive constants for all nested integration subdomains 𝑅𝐣. The constant 
𝐶1 depends on norms of all the involved derivatives of 𝑓 in (40) for 
the largest considered 𝑅𝐣. For a fixed 𝑅𝐣, the convergence order with 
respect to min{𝜈1, 𝜈2} is equal to

𝐶̃1 min{(𝜈1 − 1)−𝑝1−𝑟1−1, (𝜈2 − 1)−𝑝2−𝑟2−1},

where the positive constant 𝐶̃1 depends also on constants 𝐻𝑖,𝐣 but not 
on 𝜈𝑖.
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4.3.1. Numerical test 1
The results of some numerical experiments confirming the devel-

oped analysis are presented in Table 1, where both absolute (Δ𝑅) and 
relative errors (𝜖𝑅) are reported together with the corresponding con-

vergence orders (respectively 𝑜Δ𝑅
and 𝑜𝜖𝑅 ). For completeness both these 

errors are given, since the experimental convergence order of one can-

not be deduced from the other. Indeed, different integrals are consid-

ered on different rows of the table because the convergence behaviour 
of the rules is considered with respect to max{𝐻1, 𝐻2}, as it is of inter-

est in the IgA-BEM setting, where conversely 𝜈1 and 𝜈2 are fixed. The 
reference “exact” integrals are computed with integral2 function in 
Matlab, which uses an adaptive approach with bisection and the tensor 
product formulation of Kronrod rules [34]. To obtain sufficiently accu-

rate values, a more expensive element-wise computation of the integral 
(i.e., as many calls to integral2 as the number of elements in 𝑅𝐣) is 
necessary. This indirectly confirms that the reduced regularity of the B-

spline factor poses a problem for Gaussian rules and their variants like 
Kronrod rules, when they are not applied element-wisely.

The notation 𝐅 ∶ [0, 1]2 → 𝑆2 refers to a quartic NURBS represen-

tation of a mapped quadrilateral patch covering one sixth of a unit 
sphere, see Section 5 for the details. Conformally, the corresponding 
infinitesimal area element is denoted as 𝐽 (𝐭). The considered factor 
𝑓 appearing in (38) is the product between 𝐽 and the real part of 
the kernel 4𝜋𝜕𝜅∕𝜕𝐧𝑦(𝐱𝑅, 𝐅(𝐭)), where 𝜅 = 2 and 𝐱𝑅 = 𝐅((0.9, 0.9)) is a 
source point on the patch close to one of its vertices. The B-spline fac-

tor 𝐵𝐣 in (38) has bi-degree (𝑑, 𝑑) with 𝑑 = 1, 2, 3 and it is the central 
function of the B-spline basis associated to a uniform 𝑛 × 𝑛 partition 
of [0, 1]2, where 𝑛 = 2𝑘 + 𝑑 + 1, 𝑘 = 1, … , 4. Indeed, for each 𝑘 it is set 
𝐣 = (𝑘 + 𝑑 + 1, 𝑘 + 𝑑 + 1). Note that with this selection of 𝑛 and of 𝐣
the considered integral is regular for each 𝑘 ≥ 1. The number of uni-

form quadrature points in 𝑅𝐣 along each coordinate direction is chosen 
so that, besides the vertices of the elements, there are always two in-

ner nodes in each element. This means that in 𝑅𝐣 the global number of 
quadrature nodes is 72, 102, 132 respectively for 𝑑 = 1, 2, 3. The bi-degree 
𝐩 of the QI spline operator is set to (4, 4), thus the expected conver-

gence order of the absolute error is 8 independently of 𝑑. Clearly, the 
expected convergence order of the relative error is 6, which is also con-

firmed from the table. Note also that the accuracy does not substantially 
depend on 𝑑.

4.4. B-spline quadrature rules for singular and nearly singular integrals

Let us focus on the rules developed for the numerical approxima-

tion of the second addend on the right of (31), which involves the 
simplified singular kernel 𝑈𝑚

𝐬 (𝐬 − 𝐭). The first step is analogous to that 
adopted for regular integrals, since 𝑔 is approximated by 𝜎𝑔 using quasi-

interpolation and then it is multiplied by 𝐵̂𝐣,𝐝. Thus

∫
𝑅𝐣

𝑈𝑚
𝐬 (𝐬− 𝐭)𝐵̂𝐣,𝐝(𝐭)𝑔(𝐭)𝑑𝐭 ≈ ∫

𝑅𝐣

𝑈𝑚
𝐬 (𝐬− 𝐭)𝐵̂𝐣,𝐝(𝐭)𝜎𝑔(𝐭)𝑑𝐭 = 𝐯⊤𝐺⊤

𝐣 (𝐶̂
(𝑝))⊤𝐠 ,

(41)

where 𝐠 is the vector whose entries are the values of 𝑔 used by the QI 
operator and 𝐯 collects in a suitable order all the following integrals

∫
𝑅𝐣

𝑈𝑚
𝐬 (𝐬− 𝐭)𝐵̂𝚷𝐣

𝐤,𝐩+𝐝(𝐭) 𝑑𝐭 , 𝐤 ∈  𝚷𝐣 . (42)

To complete the definition of the quadrature rule, the exact expressions 
of the above integrals (42) are needed. Let

𝐼
𝑞1 ,𝑞2
𝑟1 ,𝑟2

(𝑘1, 𝑘2) ∶=

𝜏
(1)
𝑘1+𝑟1+1

∫
𝜏
(1)
𝑘1

𝜏
(2)
𝑘2+𝑟2+1

∫
𝜏
(2)
𝑘2

𝑈𝑚
𝐬 (𝐬− 𝐭)(𝑡1 − 𝑠1)𝑞1 (𝑡2 − 𝑠2)𝑞2

× 𝐵̂𝑘 ,𝑟 (𝑡1)𝐵̂𝑘 ,𝑟 (𝑡2)𝑑𝑡1𝑑𝑡2 ,
1 1 2 2
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Table 1

Quadrature absolute error (Δ𝑅), relative error (𝜖𝑅) and corresponding convergence orders with 𝐩 = (4, 4) for the regular integral (38) in Numerical test 1.

𝑘 𝑑 = 1 𝑑 = 2 𝑑 = 3

Δ𝑅 𝑜Δ𝑅
𝜖𝑅 𝑜𝜖𝑅 Δ𝑅 𝑜Δ𝑅

𝜖𝑅 𝑜𝜖𝑅 Δ𝑅 𝑜Δ𝑅
𝜖𝑅 𝑜𝜖𝑅

1 1.63e-06 – 1.02e-05 – 4.71e-07 – 4.60e-06 – 3.02e-06 – 4.23e-05 –

2 5.99e-08 8.1 8.19e-07 6.2 2.84e-08 8.3 5.31e-07 6.4 1.47e-08 10.5 3.58e-07 16.5

3 5.98e-09 8.0 1.44e-07 6.0 3.54e-09 8.3 1.08e-07 6.3 2.08e-09 8.8 7.84e-08 6.8

4 1.01e-09 8.0 3.76e-08 6.0 6.82e-10 8.2 3.09e-08 6.2 4.35e-10 8.6 2.35e-08 6.6
where 𝐤 = (𝑘1, 𝑘2) and 𝜏(𝓁)
𝑘𝓁+𝑗

, 𝑗 = 0, … , 𝑟𝓁 , 𝓁 = 1, 2 define the two univari-

ate knot vectors active in the definition of 𝐵̂𝜋
𝐤,𝐩+𝐝, where for brevity 

let 𝑟𝓁 ∶= 𝑝𝓁 + 𝑑𝓁 , which is the univariate degree in the 𝓁-th direc-

tion of the product space. Then, using the tensor product extension of 
the Cox-de Boor recurrence relation for B-splines [3], the expression 
𝐼
𝑞1 ,𝑞2
𝑟1 ,𝑟2

(𝑘1, 𝑘2) is a linear combination of 𝐼𝑞1+𝑚1 ,𝑞2+𝑚2
𝑟1−1,𝑟2−1

(𝑘1 + 𝑤1, 𝑘2 + 𝑤2), 
where 𝑚1, 𝑚2, 𝑤1, 𝑤2 = 0, 1. Starting with 𝑞1 = 𝑞2 = 0 and iterating this 
recurrence up to B-splines of degree 0 in both coordinate directions, the 
procedure can be completed, provided that the following basic moments

have been preliminarily computed for 𝑞𝓁 and 𝑖𝓁 , respectively ranging in 
the set of indices 0, … , 𝑝𝓁 + 𝑟𝓁 and 𝑘𝓁 , … , 𝑘𝓁 + 𝑟𝓁 , 𝓁 = 1, 2,

𝐼
𝑞1 ,𝑞2
0,0 (𝑖1, 𝑖2) =

𝜏
(1)
𝑖1+1

∫
𝜏
(1)
𝑖1

𝜏
(2)
𝑖2+1

∫
𝜏
(2)
𝑖2

𝑈𝑚
𝐬 (𝐬− 𝐭)(𝑡1 − 𝑠1)𝑞1 (𝑡2 − 𝑠2)𝑞2𝑑𝑡1𝑑𝑡2

=

𝑠1−𝜏
(1)
𝑖1

∫
𝑠1−𝜏

(1)
𝑖1+1

𝑠2−𝜏
(2)
𝑖2

∫
𝑠2−𝜏

(2)
𝑖2+1

𝑈𝑚
𝐬 (𝐳)(−𝑧1)

𝑞1 (−𝑧2)𝑞2𝑑𝑧1𝑑𝑧2.

This can be done by relying on the analytical expressions derived in 
[19] and computed with the help of Wolfram Mathematica software.

The next step is to derive the asymptotic accuracy of these rules 
with respect to the max{𝐻1,𝐣 , 𝐻2,𝐣} → 0, where 𝐻𝑖,𝐣 denotes the size of 
the integration domain 𝑅𝐣 in the 𝑖-th coordinate direction. From (41) it 
is easy to show that the absolute value of the related quadrature error 
can be upper bounded by

‖𝑔 − 𝜎𝑔‖∞,𝑅𝐣 ∫
𝑅𝐣

|𝑈𝑚
𝐬 (𝐬− 𝐭)|𝐵̂𝐣,𝐝(𝐭)𝑑𝐭. (43)

Using the triangle inequality |𝑈𝑚
𝐬 (𝐬 − 𝐭)| ≤ |𝑈 (𝐬, 𝐭)| + |𝑈𝑚

𝐬 (𝐬 − 𝐭) −𝑈 (𝐬, 𝐭)|, 
the integral in (43) is bounded by a sum of two new integrals. Then, 
by applying Proposition 3 reported in Appendix A, the first integral is 
estimated as

∫
𝑅𝐣

|𝑈 (𝐬, 𝐭)|𝐵̂𝐣,𝐝(𝐭)𝑑𝐭 ≤ ∫
𝑅𝐣

|𝑈 (𝐬, 𝐭)|𝑑𝐭 ≤ 𝐶2 max{𝐻1,𝐻2}. (44)

The second integral involves a tail of the series expansion of 𝑈 (𝐬, ∙)
about the source point 𝐬. Referring to results in [19], there exists a 
positive constant 𝐶3 involving the infinity norm of derivatives of 𝐅̃ of 
degree ≤𝑚 on 𝑅𝐣, such that

‖𝑈𝑚
𝐬 (𝐬− 𝐭) −𝑈 (𝐬, 𝐭)‖∞,𝑅𝐣

≤ 𝐶3

(
max{𝐻1,𝐣 , 𝐻2,𝐣}

)𝑚−1
𝑚!

,

hence

∫
𝑅𝐣

|𝑈𝑚
𝐬 (𝐬− 𝐭) −𝑈 (𝐬, 𝐭)|𝐵̂𝐣,𝐝(𝐭)𝑑𝐭 ≤ 𝐶3

(
max{𝐻1,𝐣 , 𝐻2,𝐣}

)𝑚
𝑚!(𝑑1 + 1)(𝑑2 + 1)

. (45)

By combining these estimates with the bound in (37) for the QI error, 
the following error bound for the singular integral in (41) is derived 
with respect to size of 𝑅𝐣,

𝐶max{𝐻𝑝1+2,𝐻
𝑝2+2},
1,𝐣 2,𝐣
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where 𝐶 = 𝐶1 max{𝐶2, 𝐶3} and 𝐶1 contains norms of all the involved 
derivatives of 𝑓 = 𝑔 − 𝜎𝑔 in (40) for the largest considered 𝑅𝐣. Instead, 
by fixing domain 𝑅𝐣, the error bound with respect to min{𝜈1 − 1, 𝜈2 − 1}
is equal to

𝐶̃max{(𝜈1 − 1)−𝑝1−1, (𝜈2 − 1)−𝑝2−1},

where 𝐶̃ contains a corresponding constant 𝐶̃1 to the one at the end of 
Section 4.3, involving the function 𝑓 = 𝑔 − 𝜎𝑔 , multiplied by right-hand 
side estimates of (44) and (45).

4.4.1. Numerical test 2
To confirm the developed theoretical analysis, numerical results of 

selected singular integrals are presented in Table 2 for both absolute 
(Δ𝑆 ) and relative errors (𝜖𝑆 ), together with the corresponding conver-

gence orders (respectively 𝑜Δ𝑆
and 𝑜𝜖𝑆 ). The experiment is essentially 

a repetition of Test 1, the difference being that 𝐱𝑅 is replaced by 
𝐱𝑆 = 𝐅((0.5, 0.5)); hence all the integrals are singular, since (0.5, 0.5) lies 
inside the integration domain 𝑅𝐣. The “exact” integrals are evaluated 
element-wisely with the Matlab function integral2, with a possible 
preliminary rectangular splitting of the domain at (0.5, 0.5) (to place the 
singularity at a vertex of the integration domain) and by applying the 
standard Duffy transformation [35].

All integrals are split via the subtraction (31) with 𝑚 = 2; the regular 
part is computed with the rule for regular integrals, while the singular 
part that contains an approximate kernel is evaluated with the rule for 
singular integrals. The errors reported in the table are therefore accu-

mulative errors of both integrations. The bi-degree 𝐩 of the QI is set to 
(2, 2) and the number of uniformly spaced quadrature nodes is set to 5
and 2 in each coordinate direction inside each element (by not counting 
mesh knots) for the regular and singular integrals, respectively. Hence, 
the total number of quadrature nodes in 𝑅𝐣 is set to 132, 192, 252 for 
𝑑 = 1, 2, 3, respectively, for the regular rule and 72, 102, 132 for the sin-

gular one. A lower value for 𝐩 for the regular rule than that adopted 
in Test 1 (and conversely selecting an increased number of quadrature 
nodes) is motivated by reduced regularity of first term on the right-hand 
side of (31). The results reported in Table 2 are roughly one order higher 
than the worst expected theoretical order 4 (for the absolute error) and 
3 (for the relative error). Again, the results do not vary significantly 
with 𝑑.

4.5. Quadrature rules for inter-patch nearly singular integrals

Numerical integration of inter-patch nearly singular integrals is per-

formed essentially the same as for (nearly) singular integrals, presented 
in the previous Section 4.4. The main difference is that the surrogate 
point 𝐅̃(𝓁)(𝐬𝑒), defined in (34), of the source point 𝐅̃(𝑘)(𝐬) is used to de-

fine the approximate kernel 𝑈 (𝓁,𝓁),𝑚
𝐬𝑒 for the singularity subtraction. For 

𝑈 (𝑘,𝓁) ∈ {𝑈 (𝑘,𝓁)
SL , 𝑈 (𝑘,𝓁)

DL } the nearly singular integral

∫
𝑅𝑗

𝑈 (𝑘,𝓁)(𝐬, 𝐭)𝐵̂𝐣,𝐝(𝐭)𝑔(𝐭)𝑑𝐭

is split into a sum of two integrals by writing the kernel as

𝑈 (𝑘,𝓁)(𝐬, 𝐭) = (𝑈 (𝑘,𝓁)(𝐬, 𝐭) −𝑈
(𝓁,𝓁),𝑚
𝐬𝑒 (𝐬𝑒 − 𝐭)) +𝑈

(𝓁,𝓁),𝑚
𝐬𝑒 (𝐬𝑒 − 𝐭).
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Table 2

Quadrature absolute error (Δ𝑆 ), relative error (𝜖𝑆 ) and corresponding convergence orders with 𝐩 = (2, 2) for the singular integrals (41) in Numerical test 2.

𝑘 𝑑 = 1 𝑑 = 2 𝑑 = 3

Δ𝑆 𝑜Δ𝑆
𝜖𝑆 𝑜𝜖𝑆 Δ𝑆 𝑜Δ𝑆

𝜖𝑆 𝑜𝜖𝑆 Δ𝑆 𝑜Δ𝑆
𝜖𝑆 𝑜𝜖𝑆

1 5.60e-04 – 8.76e-04 – 1.36e-04 – 3.30e-04 – 5.07e-05 – 1.68e-04 –

2 7.83e-05 4.9 1.87e-04 3.8 2.67e-05 4.8 9.21e-05 3.8 1.26e-05 4.8 5.63e-05 3.8

3 1.87e-05 5.0 6.00e-05 4.0 7.63e-06 5.0 3.41e-05 3.9 4.13e-06 5.0 2.33e-05 4.0

4 6.03e-06 5.1 2.43e-05 4.1 2.75e-06 5.1 1.50e-05 4.1 1.63e-06 5.1 1.11e-05 4.1
The second integral is singular with a simplified kernel 𝑈 (𝓁,𝓁),𝑚
𝐬𝑒 , hence 

it is evaluated with the rule for singular integrals in Section 4.4. The 
first integral is regular and the rule in Section 4.3 is employed.

Since the singularity cancellation is not exact for the inter-patch 
case, the error analysis of the rule rests upon the third order accuracy 
of the surrogate source point to the actual source point with respect to 
the distance to the integration point. A sketch of the proof of the latter 
property can be demonstrated as follows. Let the source point 𝐅̃(𝑘)(𝐬) be 
fixed and let

𝐭⋆ ∶= argmin{‖𝐅̃(𝑘)(𝐬) − 𝐅̃(𝓁)(𝐭)‖2 ∶ 𝐭 ∈ 𝜕𝑅𝐣}

be the argument of the closest point integration point to the source 
point. Let

𝐅̃(𝓁)(𝐭) = 𝐅̃(𝓁)(𝐭⋆) + 𝐜1,0(𝑡1 − 𝑡⋆1 ) + 𝐜0,1(𝑡2 − 𝑡⋆2 )

+ 𝐜2,0(𝑡1 − 𝑡⋆1 )
2 + 𝐜1,1(𝑡1 − 𝑡⋆1 )(𝑡2 − 𝑡⋆2 ) + 𝐜0,2(𝑡2 − 𝑡⋆2 )

2 +𝑂(‖𝐭 − 𝐭⋆‖3)
be the Taylor expansions of 𝐅̃(𝓁) of the patch Γ(𝓁) parametrization about 
the point 𝐭⋆. Let 𝛾 be a suitable regular reparametrization function such 
that a Taylor expansion for 𝐅̃(𝑘)◦𝛾 about 𝐭⋆ is obtained, in the same 
parameter 𝐭 as for 𝐅̃(𝓁):

(𝐅̃(𝑘)◦𝛾)(𝐭) =𝐅̃(𝓁)(𝐭⋆) + 𝐝1,0(𝑡1 − 𝑡⋆1 ) + 𝐝0,1(𝑡2 − 𝑡⋆2 )

+ 𝐝2,0(𝑡1 − 𝑡⋆1 )
2 + 𝐝1,1(𝑡1 − 𝑡⋆1 )(𝑡2 − 𝑡⋆2 ) + 𝐝0,2(𝑡2 − 𝑡⋆2 )

2

+𝑂(‖𝐭 − 𝐭⋆‖3).
Since the geometry is assumed to be 𝐶2 continuous across patch inter-

faces, it follows 𝐜𝑖,𝑗 = 𝐝𝑖,𝑗 for 𝑖 + 𝑗 ≤ 2 and hence ‖(𝐅̃(𝑘)◦𝛾)(𝐭) − 𝐅̃(𝓁)(𝐭)‖2 =
𝑂(‖𝐭 − 𝐭⋆‖32). By setting suitable 𝐭 and 𝛾 such that 𝐅̃(𝑘)(𝐬) = (𝐅̃(𝑘)◦𝛾)(𝐭), 
the distance between the source point and its surrogate point 𝐅̃(𝓁)(𝐬𝑒) is 
bounded as

‖𝐅̃(𝑘)(𝐬) − 𝐅̃(𝓁)(𝐬𝑒)‖2 ≤ ‖(𝐅̃(𝑘)◦𝛾)(𝐭) − 𝐅̃(𝓁)(𝐭)‖2 =𝑂(‖𝐭 − 𝐭⋆‖32). (46)

To inherit convergence properties from the rule for regular integrals, 
it is sufficient to prove that |𝑈 (𝑘,𝓁)(𝐬, 𝐭) − 𝑈

(𝓁,𝓁),𝑚
𝐬𝑒 (𝐬𝑒 − 𝐭)| is bounded on 

𝑅𝐣 by a positive constant, no matter how close the source point 𝐅̃(𝑘)(𝐬)
is to the integration point 𝐅̃(𝓁)(𝐭⋆).

Using the triangle inequality it follows that

|𝑈 (𝑘,𝓁)(𝐬, 𝐭) −𝑈
(𝓁,𝓁),𝑚
𝐬𝑒 (𝐬𝑒 − 𝐭)| ≤|𝑈 (𝑘,𝓁)(𝐬, 𝐭) −𝑈 (𝓁,𝓁)(𝐬𝑒, 𝐭)|

+ |𝑈 (𝓁,𝓁)(𝐬𝑒, 𝐭) −𝑈
(𝓁,𝓁),𝑚
𝐬𝑒 (𝐬𝑒 − 𝐭)|. (47)

The second term in (47) is bounded for 𝑚 ≥ 1 [19].

To prove that the first term in (47) can be bounded, let us define the 
following quantities

𝐫̃1(𝐬) ∶= 𝐅̃(𝑘)(𝐬) − 𝐅̃(𝓁)(𝐭⋆), 𝑟1(𝐬) ∶= ‖𝐫̃1(𝐬)‖2,
𝐫̃2(𝐬𝑒) ∶= 𝐅̃(𝓁)(𝐬𝑒) − 𝐅̃(𝓁)(𝐭⋆), 𝑟2(𝐬𝑒) ∶= ‖𝐫̃2(𝐬𝑒)‖2, (48)

𝐫̃(𝐬, 𝐬𝑒) ∶= 𝐅̃(𝑘)(𝐬) − 𝐅̃(𝓁)(𝐬𝑒), 𝑟(𝐬, 𝐬𝑒) ∶= ‖𝐫̃(𝐬, 𝐬𝑒)‖2,
with the following assumption 𝑟1(𝐬), ̃𝑟2(𝐬𝑒) = 𝑂(||𝐭 − 𝐭⋆||2). By consider-

ing inequality (46) regarding the accuracy of the surrogate point, for 
𝐅̃(𝑘)(𝐬) sufficiently close to 𝐅̃(𝓁)(𝐭⋆), there exists a positive constant 𝐶1
such that

𝑟(
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𝐬, 𝐬𝑒) ≤ 𝐶1 min{𝑟1(𝐬)3, 𝑟2(𝐬𝑒)3}.

erefore, using the reverse triangle inequality and distances in (48), 
e term for the single layer potential is bounded as

(𝑘,𝓁)
SL (𝐬, 𝐭⋆) −𝑈

(𝓁,𝓁)
SL (𝐬𝑒, 𝐭⋆)| = |||| 1

𝑟1(𝐬)
− 1
𝑟2(𝐬𝑒)

|||| = |𝑟2(𝐬𝑒) − 𝑟1(𝐬)|
𝑟1(𝐬)𝑟2(𝐬𝑒)

≤ 𝑟(𝐬, 𝐬𝑒)
𝑟1(𝐬)𝑟2(𝐬𝑒)

at tends to zero, when the source point approaches the integration 
int.

In the case of the double layer potential use a triangle inequality,

(𝑘,𝓁)
DL (𝐬, 𝐭⋆) −𝑈

(𝓁,𝓁)
DL (𝐬𝑒, 𝐭⋆)| = ||||| 𝐫̃1(𝐬) ⋅ 𝐧𝑟1(𝐬)3

−
𝐫̃2(𝐬𝑒) ⋅ 𝐧
𝑟2(𝐬𝑒)3

|||||
≤ ||||| 𝐫̃1(𝐬) ⋅ 𝐧𝑟1(𝐬)3

−
𝐫̃1(𝐬) ⋅ 𝐧
𝑟2(𝐬𝑒)3

|||||+
||||| (𝐫̃2(𝐬𝑒) − 𝐫̃1(𝐬)) ⋅ 𝐧

𝑟2(𝐬𝑒)3
||||| .

(49)

e bound for the first term in (49) is simplified to

1(𝐬) ⋅ 𝐧
𝑟1(𝐬)3

−
𝐫̃1(𝐬) ⋅ 𝐧
𝑟2(𝐬𝑒)3

||||| ≤ |𝐫̃1(𝐬) ⋅ 𝐧|
||||| 𝑟2(𝐬𝑒)

3 − 𝑟1(𝐬)3

𝑟1(𝐬)3𝑟2(𝐬𝑒)3
|||||

=
|𝐫̃1(𝐬) ⋅ 𝐧|
𝑟1(𝐬)2

|𝑟2(𝐬𝑒) − 𝑟1(𝐬)| 𝑟2(𝐬𝑒)2 + 𝑟1(𝐬)𝑟2(𝐬𝑒) + 𝑟1(𝐬)2

𝑟1(𝐬)𝑟2(𝐬𝑒)3
.

(50)

e first term in (50) is bounded by applying Corollary 1 in Appendix 

1(𝐬) ⋅ 𝐧|
𝑟1(𝐬)2

≤ 𝐶2

r some positive constant 𝐶2. By applying again the reverse triangle 
equality, the remaining part in (50) is bounded by a term

𝐬, 𝐬𝑒)
3max{𝑟1(𝐬)2, 𝑟2(𝐬𝑒)2}
min{𝑟1(𝐬)4, 𝑟2(𝐬𝑒)4}

≤ 3𝐶1
max{𝑟1(𝐬)2, 𝑟2(𝐬𝑒)2}
min{𝑟1(𝐬), 𝑟2(𝐬𝑒)}

. (51)

om assumption 𝑟1(𝐬), ̃𝑟2(𝐬𝑒) = 𝑂(||𝐭 − 𝐭⋆||2) it directly follows

ax{𝑟1(𝐬), ̃𝑟2(𝐬𝑒)} ≤ 𝐶3 min{𝑟1(𝐬), ̃𝑟2(𝐬𝑒)} for some 𝐶3 > 0. Hence, the up-

r bound in (51) tends to zero, when the source point approaches the 
tegration point.

The second term in (49) is bounded as

𝐫̃2(𝐬𝑒) − 𝐫̃1(𝐬)) ⋅ 𝐧
𝑟2(𝐬𝑒)3

||||| =
||||| 𝐫̃(𝐬, 𝐬𝑒) ⋅ 𝐧𝑟2(𝐬𝑒)3

||||| ≤
||||| 𝑟(𝐬, 𝐬𝑒)𝑟2(𝐬𝑒)3

||||| ≤ 𝐶1.

6. The threshold for near singularity detection

The efficient and accurate evaluation of different types of integrals 
8) appearing in the considered BIEs is crucial, see also [36] on such 
ncern. To this aim, the interest in this subsection is in determining 
reasonable threshold 𝛿 to be used in (30) to switch between nearly 
gular and regular integrals. The goal is to apply the error bound (40)

troduced in Section 4.3 to 𝑓 = 𝑔𝑈 , in order to derive on each patch a 
esh dependent definition of the threshold 𝛿 to be used in (30).

By analyzing the nearly singular nature of the considered integral in 
8), it is important to observe that the function 𝑓 ∶= 𝑔𝑈 (𝐬, ∙) for a fixed 
𝐅̃−1(𝐱̃) includes a factor proportional to 1∕𝑟, where 𝑟 = ‖𝐅̃(𝐬) − 𝐅̃(∙)‖2. 
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Fig. 3. Exact NURBS representations of the geometries for the numerical tests. Scenes are lit from the positive 𝑧 direction.
Hence, ‖𝜕𝑖1 ,𝑖2𝑓‖∞,𝑅𝐣
includes a term 𝑟min,𝐣(𝐬)−𝑖1−𝑖2−1, where 𝑟min,𝐣(𝐬) is 

the minimal distance between 𝐱̃ and the physical integration domain 
image of 𝑅𝐣 via the geometry map 𝐅̃, see its definition in formula (30). 
Thus, considering the expression of the error bound in (40) for a fixed 
number of uniformly spaced quadrature nodes, a remarkable reduction 
of the convergence order with respect to max{𝐻1,𝐣, 𝐻2,𝐣} → 0 would oc-

cur if 𝑟min,𝐣(𝐬) would reduce proportionally to it, due to increasing terms 
“‖𝜕𝑖1 ,𝑖2𝑓‖∞,𝑅𝐣

”. Instead, by setting

𝑟min,𝐣(𝐬) ≥ 𝜂𝐣 ∶= max

{
𝐻

1
2(𝑝1+𝑟1+2)
1,𝐣 , 𝐻

1
2(𝑝2+𝑟2+2)
2,𝐣

}
this guarantees that for all the scaled integrals treated with the regular 
rule in the governing BIEs, the quadrature convergence order is at least 
equal to 5∕2 +min{𝑝1 + 𝑟1, 𝑝2 + 𝑟2}. In order to have just one threshold 
𝛿 for all the integrals involving the same geometry map, for the 𝑘-th 
patch let

𝛿 = 𝛿𝑘 ∶= max
𝐣∈𝑘

𝜂𝐣.

5. Numerical examples

In this section, the numerical scheme is tested on both interior and 
exterior Helmholtz problems. The boundary conditions are of either 
Dirichlet or Neumann type.

Two well-known benchmarks for exterior problems are the pulsating 
sphere and the rigid scattering on a sphere; see for instance [14–16]. 
It covers a plane wave scattering problem and scattering of spherical 
waves emitted by an acoustic point source next to a sphere, for which 
the exact solution is also known in series form. The sphere has radius 
𝑅 = 1 and is parameterized by 6 quartic (𝐝g = (4, 4)) NURBS patches, see 
Fig. 3(a) and refer to [37] for details. As in [38], the considered quartic 
NURBS parameterization based on cube topology is preferred over the 
8-patch tiling in order to avoid singularities in the geometry description 
at the poles of the sphere. A preliminary manufactured example on unit 
cube is considered at the end of the section to test a simple adaptive 
numerical integration for nearly singular inter-patch integrals at the 
sharp interfaces of the geometry.

As for interior problems, a (possibly distorted) torus and a manufac-

tured solution in its interior that is commonly used in the IgA-BEM 
literature are considered; see for example [14,15]. The undistorted 
torus has inner radius 1, outer radius 3, and is exactly represented in 
a 16-patch quadratic (𝐝g = (2, 2)) NURBS form, see Fig. 3(b) and also 
[12] for details. The distorted torus is obtained by changing a single 
outer patch as in Fig. 3(c), see Section 5.5 for more details.

The quality of the achieved numerical results is evaluated by com-

paring the numerical solution 𝑢ℎ to the exact solution 𝑢𝑒𝑥, which is 
available for all tests, and measuring the on-surface relative error in the 
𝐿2(Γ) norm:

𝑒𝐿2 =
‖𝑢ℎ − 𝑢𝑒𝑥‖𝐿2(Γ)‖𝑢𝑒𝑥‖ 2

.

𝐿 (Γ)

176
Table 3

Condition numbers of the system matrix when discontinuous or non-conforming 
continuous discretization spaces are used on a sphere. All patches have 𝑛 × 𝑛

elements, except for one patch that has 3𝑛∕2 × 3𝑛∕2. In all cases, 𝐝 = (4, 4) and 
𝜅 = 2.

𝑛 Dirichlet boundary conditions Neumann boundary conditions

𝐶−1 space 𝐶0 space 𝐶−1 space 𝐶0 space

4 8.47e+01 1.40e+02 9.05e+01 1.52e+02

8 7.44e+01 1.39e+02 7.68e+01 1.50e+02

12 7.03e+01 1.39e+02 7.20e+01 1.50e+02

16 6.84e+01 1.38e+02 6.99e+01 1.50e+02

For the discretization space 𝑉 , on each patch standard tensor prod-

uct B-splines of bi-degrees 𝐝 = (𝑑, 𝑑) and of highest continuity are em-

ployed; in all experiments (except for the pulsating sphere) 𝐶0 continu-

ity of the basis functions across patch interfaces is enforced. Moreover, 
in the point source acoustic scattering problem and in the case of a dis-

torted torus, non-conforming spaces are used to better approximate the 
local features of the exact solution. The non-conforming spaces are im-

plemented as linear constraints based on knot removal, as explained in 
Section 3.3. The choice of knot removal over knot insertion does not 
affect the accuracy of any presented numerical solution, since the two 
approaches are algebraically equivalent and the condition number of 
the system matrix is not a limiting factor.

To illustrate this point with an example, consider the unit sphere of 
Fig. 3(a) and suppose that the CBIE (8) or (10) is discretized for 𝜅 = 2
using a multi-patch spline space of bi-degree 𝐝 = (4, 4) with 𝑛 ×𝑛 uniform 
elements on every patch, except for one patch with 3𝑛∕2 ×3𝑛∕2 uniform 
elements (the space is allowed to be discontinuous; 𝑛 is a positive even 
integer). Table 3 reports the condition number of the system matrix as 
a function of 𝑛 for both discontinuous and non-conforming continuous 
discretization spaces, and for both Dirichlet and Neumann boundary 
conditions (which determine the choice between (8) and (10)). As it 
can be seen from the results in the table, there is not much differ-

ence in the condition number between the two boundary conditions, 
and in all four cases the condition number remains bounded as 𝑛 is 
increased, levelling to a constant of the order of 102 . Moreover, the 
introduction of non-conforming continuity constraints only increases 
the constant by a factor of about 2 when compared to the discontin-

uous case. For completeness, a similar behaviour is also observed in 
the numerical experiments that make use of conforming continuous 
discretization spaces, like those of Section 5.2: in that case, the condi-

tion numbers converge to around 70 and 75 for Dirichlet and Neumann 
boundary conditions, respectively.

5.1. Pulsating sphere

The following problem serves as a benchmark test for the developed 
quadrature rules; it is also referred to as a patch test for IgA-BEM. The 
model can be used for example to numerically compute the sound pres-

sure at a distance 𝑟 from the centre of the sphere for a constant wave 
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Fig. 4. Pulsating sphere for 𝜅 = 1.
speed in the radial direction. For the Neumann boundary conditions 
𝑢N ≡ −𝑒𝑖𝜅 (𝑖𝜅 − 1)∕(4𝜋) for 𝐱 ∈ Γ, the analytic solution is 𝑢 = 𝑒𝑖𝜅𝑟∕(4𝜋𝑟), 
hence the missing Cauchy datum is 𝜙 ≡ 𝑒𝑖𝜅∕(4𝜋) for 𝐱 ∈ Γ.

Since the geometry representation of the sphere is exact and 𝜙 is 
constant over the entire boundary, the error can be attributed solely to 
numerical integration. On each patch the knot vectors describing the 
local part of the discretization space ̂ (𝓁)

ℎ(𝓁)
are

𝑇
(𝓁)
1 = 𝑇

(𝓁)
2 =

[
0 0.25 0.5 0.75 1

]
.

The collocation points are midpoints of the knots, mapped to the phys-

ical domain via the geometry map. Fixing 𝜅 = 1, 𝐝 = (0, 0) and setting 
𝑐𝑢 = 0.25 in the definition of the threshold used for near singularity 
detection, the 𝐿2 error of the approximate solution with respect to 
different number of quadrature nodes on the support of B-splines is 
measured. The number 𝑛𝑞 of quadrature nodes increases in each coordi-

nate direction with 𝑛𝑞 = 12𝛼 + 1, for 𝛼 = 1, 2, … , 6. The same quadrature 
nodes are used for singular, regularized and regular integrals.

In Fig. 4(a) observe the error distribution (modulus of the difference 
between the exact and approximate solution) for 𝛼 = 1, 𝑚 = 2 (number 
of terms in the singularity extraction), 𝑝 = 2 (spline bi-degree (𝑝, 𝑝) of 
the QI operator). The error is well evenly spread on the boundary with 
a slight increase around patch corners, where the kernel expansion is 
more critical. The error is also slightly higher in the interior of the 
patches than in the neighbourhood of the edges since the area of inte-

rior mapped cells is slightly larger than the boundary ones. In Fig. 4(b) 
observe that error convergence order is impacted by the choice of 𝑚
and 𝑝. For 𝑝 = 𝑚 = 2 the obtained order of convergence is 3. If both 𝑚
and 𝑝 are increased to 3, the order of convergence increases to 4.

The comparison can be done with Figure 6(a) of [15], where 𝑅𝜅 = 1
as in experiments in this work. In the referred picture the results ob-

tained with the new approach (termed as New) are compared to those 
produced by the method introduced in [14] (termed as Old). The rel-

ative 𝐿2 error, 𝑒𝐿2 , is shown against the total number of quadrature 
nodes 𝑛𝑞𝑝 (where the number of quadrature nodes in the elements with 
active singularity is not taken into account). In the current work the 
total number of quadrature nodes, for 𝛼 = 6, is 6 ⋅ 16 ⋅ 722 ≈ 5.0 ⋅ 105
achieving an error (with 𝑝 = 3) of order 10−11. This is a much better re-

sult than that produced by the Old approach but also better than that 
given by the New one.

5.2. Rigid scattering of a plane wave on a sphere

Suppose that in a rigid scattering problem the incident acoustic pres-

sure 𝑝inc is produced by the plane wave

𝑝inc(𝐱) ∶=𝐴𝑒𝑖𝜅(𝐯⋅𝐱)

characterized by amplitude 𝐴 and wave vector 𝜅𝐯, with 𝐯 being a unit 
vector prescribing the direction of the wave. This pressure wave is in-
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cident on a rigid body represented by a volume Ω(𝑖) with boundary Γ, 
where the rigidity assumption implies that it reacts producing in Ω(𝑒)

an additional scattered pressure field 𝑝 verifying the Helmholtz equa-

tion in Ω(𝑒), the Sommerfield radiation condition at infinity and having 
a variation in the normal direction on Γ opposite to that of 𝑝inc, see 
for example [15]. The scattered pressure 𝑝 is the unknown to be deter-

mined in Ω(𝑒) and it can be written as the difference between a total 
pressure field 𝑝tot and 𝑝inc, where 𝑝tot is such that{

𝑝tot (𝐱) = 𝑝inc(𝐱) + (𝑉𝜅𝜕𝑛𝑝tot ) − (𝐾𝜅𝑝tot )(𝐱) , 𝐱 ∈Ω(𝑒)

𝜕𝑛𝑝tot (𝐱) = 0 , ∀𝐱 ∈ Γ . (52)

Note that in this experiment Γ is assumed to be a sphere with radius 𝑅 =
1 (again parameterized as previously described) and so, by symmetry, it 
can be assumed that 𝐯 = (1, 0, 0) without loss of generality. The problem 
can be used as a benchmark because the analytic expression of 𝑝 is a 
priori known, see for example [16],

𝑝(𝐱) = −𝐴
∞∑
𝜈=0

𝑖𝜈(2𝜈 + 1)𝑗′
𝜈
(𝜅𝑅)

ℎ′
𝜈
(𝜅𝑅)

𝑃𝜈 (cos(𝜃)) ℎ𝜈 (𝜅𝑟) , (53)

where 𝐎 is the centre of the sphere, 𝑟 = ‖𝐱−𝐎‖2, 𝜃 is the angle between 
the vectors 𝐱 −𝐎 and 𝐯, 𝑗𝜈 is the spherical Bessel function of the first 
kind, ℎ𝜈 is the spherical Hankel function of the first kind, ℎ′

𝜈
and 𝑗′

𝜈

are the derivatives of 𝑗𝜈 and ℎ𝜈 , and 𝑃𝜈 is the Legendre polynomial of 
order 𝜈. In the current experiments 𝐴 is set to 1 and the infinite series 
is truncated after 𝜈 = 10, which provides sufficient accuracy to study 
the convergence of the developed numerical scheme for the considered 
frequencies.

The values considered for 𝜅 in the experiments are 𝜅 = 1, 2, 3, which 
for usual atmospheric air correspond to frequencies of approximately 
50, 100, 150 Hz. The aim of the numerical test is to approximate the un-

known Dirichlet Cauchy datum 𝜙 = 𝑝tot |Γ (alternatively also denoted 
below just with 𝑢 which denotes also its extension to Ω(𝑒)). Thus, con-

sidering that the corresponding given Neumann datum is homogeneous, 
the boundary integral equation to be considered simplifies to the follow-

ing one,

(𝐾𝜅 +
1
2
𝐼)𝜙(𝐱) = 𝑝inc(𝐱) , 𝐱 ∈ Γ . (54)

The discretization of this BIE has been done by using a conforming 
globally 𝐶0 multi-patch IgA space with uniform elements on each patch. 
For this experiment the following simplification is possible

𝐫 ⋅ 𝐧𝐲
𝑟2

= − 1
2𝑅

,

where 𝐧 points towards the centre of the sphere since the considered 
problems are exterior. Then, by taking into account (7), regular rules 
are used for the imaginary part of the double layer kernel 𝐾𝜅 , while, 
for its real part, singular rules are used for the kernel 1∕𝑟. The constant 
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Fig. 5. Rigid scattering of a plane wave on a sphere with 𝜅 = 2: on and off surface total pressure distributions.

Fig. 6. Rigid scattering of a plane wave on a sphere with 𝜅 = 2: on surface distribution of the modulus of the absolute error (𝑁DOF = 218).
𝑐𝑢 involved in the near singularity detection phase in this experiment is 
chosen to be equal to 0.1. In all the tests reported for this and also in 
the next experiments for all the three kinds of quadrature rules the QI 
degree is 2 for the singular and regularized rules and it is 4 for the regu-

lar ones. The use of a low degree is reasonable for regularized integrals, 
since higher degrees of the quasi interpolating spline are profitable only 
if the function it approximates is sufficiently regular. For singular inte-

grals a low degree has been preferred to reduce the cost of the related 
weight computation. For all the involved quadrature rules, in this ex-

periment the chosen number of QI nodes (uniformly distributed in the 
support of each trial B-spline function) is 7, 9, 11, respectively for de-

grees 𝑑 = 𝑑1 = 𝑑2 = 2, 3, 4, on both coordinate directions. Note that for 
any degree this corresponds to select the nodes at the knots of the trial 
B-spline and at their midpoints in each coordinate.

In order to underline the oscillating nature of the solution of (54)

and of the related domain solution, Fig. 5 shows the real and the imag-

inary part of the exact Cauchy datum 𝜙 = 𝑝tot |Γ for 𝜅 = 2, (frequency of 
about 100 Hz) together with the corresponding real and imaginary parts 
of the total pressure in an area of the equatorial plane exterior to the 
sphere. Fig. 6 shows the distribution on the sphere of the modulus of 
the absolute error obtained with both the choices 𝑑 = 2 and 𝑑 = 4. Note 
that the number of degrees of freedom (𝑁DOF = 218) is the same on the 
left and on the right of this figure, since the number 𝑛2 of elements in 
each patch is chosen in order to ensure the fulfillment of such goal, that 
is 𝑛 = 5 for 𝑑 = 2 and 𝑛 = 3 for 𝑑 = 4. This means that when 𝑑 = 4, the el-

ements are larger than in the other case and so an analogous maximal 
error on the surface is acceptable. Note also that the error distribution 
on the sphere implies a slightly lower 𝐿2(Γ) relative error on surface for 
𝑑 = 4 (it is 3.20e-03 for 𝑑 = 2 and 2.43e-03 for 𝑑 = 4). Results in the cur-

rent work can be compared with those, less accurate, shown in Figure 
13 of [16], which refers to 𝜅 = 2, 𝑅 = 1, 𝑑 = 4 as well, and are obtained 
with 𝑁DOF = 200.

The off surface quality of results is reported in Fig. 7, as it is done 
in [14]. Focusing on the approximation of the modulus of the solution, 
the figure shows the results obtained on the exterior equatorial circum-
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ference  with radius 10 and for 𝑑 = 2 (the other parameters are chosen 
as already described), where the reported error is the following one

𝑒𝑃 (𝐱) ∶=
| |𝑢ℎ(𝐱)|− |𝑢𝑒𝑥(𝐱)| ||𝑢𝑒𝑥(𝐱)| . (55)

The figure outlines a good conformability between the moduli of the 
exact and of the numerical solution obtained with very few degrees 
of freedom for both 𝜅 = 1 and 𝜅 = 3. The quality of exterior recon-

structions can be further checked by looking at the distribution on 
of the error 𝑒𝑃 . Figs. 7(c) and 7(d) can be compared respectively with 
Figure 17 (where 𝜅 = 2, but 𝑅 = 0.5) and Figure 20 (where 𝜅 = 6, but 
𝑅 = 0.5) of [14], confirming the better performance of approach in the 
current study. It should be remarked, however, that the accuracy of the 
obtained results in [14] is probably also influenced by the adopted sin-

gular parameterization of the sphere, as underlined in [15].

The analysis of the results for this experiment is completed by Fig. 8, 
which shows the 𝐿2(Γ) relative error 𝑒𝐿2 as a function of 𝑛 for 𝑑 rang-

ing between 2 and 4, confirming its nice convergence behaviour for 
all the considered values of 𝜅. The 6 patch parameterization of the 
sphere corresponds to Parameterization 2 of [15]; in particular for this 
example, the plot corresponding to 𝑑 = 4 in Fig. 8(a) in current work 
is compared to the plot related to Parameterization 2 IGABEM CC-

BIE (Conventional Collocation BIE), shown in Figure 12 of [15]. For 
a precise comparison note that 𝑛 = 1, 2, … , 7 in [15] in corresponds to 
𝑁DOF = 98, 152, 218, 296, 386, 488, 602 in current work. Hence, the results 
obtained in current work show better accuracy than the approach used 
in [15].

5.3. Rigid scattering of spherical waves on a sphere

Suppose that in a rigid scattering problem the incident acoustic 
pressure 𝑝inc is produced by a point source centred at 𝐱𝑠 ∈ IR3, with ‖‖𝐱𝑠‖‖2 > 1:
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Fig. 7. Rigid scattering of a plane wave on a sphere: results on the exterior equatorial circumference  (𝑑 = 2, 𝑝 = 2,2,4).

Fig. 8. Rigid scattering of a plane wave on a sphere: 𝐿2(Γ) error 𝑒𝐿2 as a function of 𝑛, number of elements in each coordinate direction for each patch (conforming 
discretization).
𝑝inc(𝐱) =𝐴𝜅 (𝐱,𝐱𝑠) =𝐴
𝑒𝑖𝜅
‖‖𝐱−𝐱𝑠‖‖2

4𝜋 ‖‖𝐱 − 𝐱𝑠‖‖2 .
The variable 𝐴 denotes the amplitude of the emitted wave. The singu-

larity of 𝑝inc at 𝐱𝑠 is not an issue, because it can be proven that the 
regularity assumptions 𝑝inc ∈ 𝐿1

loc(IR
3) and 𝑝inc ∈ 𝐶∞(𝑈 ) with 𝑈 neigh-

bourhood of Γ are sufficient to establish the well-posedness of the rigid 
scattering problem (52), see [39].

Like in the previous subsection, an exact analytic expression for the 
scattered pressure 𝑝 on the surface of a sphere with radius 𝑅 = 1 can be 
found by a series expansion in terms of Hankel’s functions of the first 
kind [40]:

𝑝(𝐱) = −𝐴
∞∑

𝑖𝜅 ℎ𝜈(𝜅 ‖‖𝐱𝑠‖‖2) (2𝜈 + 1)𝑗′
𝜈
(𝜅𝑅)

4𝜋ℎ′ (𝜅𝑅)
𝑃𝜈 (cos(𝜃))ℎ𝜈 (𝜅𝑟). (56)
𝜈=0 𝜈
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By the sphere’s symmetry, 𝐱𝑠 = (𝑥𝑠, 0, 0) without loss of generality. If 
the acoustic source is close to the surface of the sphere, that is, 𝑥𝑠 is 
only slightly larger than 1, then the modulus of the total pressure will 
decay very rapidly on the surface of the sphere away from the point 
(1, 0, 0) ∈ Γ.

Therefore, smaller numerical errors are expected if the discretiza-

tion space 𝑉 is finer on the patch containing that point, and so for this 
test the non-conforming spaces introduced in Section 3.3 is used. In 
these numerical experiments 𝐴 is set to 1, and the infinite series (56)

is truncated after 𝜈 = 50, because its convergence rate is slower than 
(53), especially for acoustic sources near the surface of the sphere. Once 
again, the simplified boundary integral equation (54) is considered, be-

cause the Neumann datum is homogeneous. All the details regarding 
quadrature rules and near singular detection are the same as for the 
plane wave tests.
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Fig. 9. Rigid scattering of spherical waves on a sphere. On the left: discretization elements in the 𝑛 = 4 non-conforming case. The acoustic source is marked with a red 
asterisk. On the right: 𝐿2(Γ) error 𝑒𝐿2 as a function of 𝑛 for 𝑑 = 4 and 𝜅 = 2, 3. In the conforming case, every patch has 𝑛 × 𝑛 uniform elements. In the non-conforming 
case, the patch in front of the acoustic source has 3𝑛∕2 × 3𝑛∕2 uniform elements.
The two plots in Fig. 9 show a comparison of the numerical errors 
between conforming and non-conforming discretization spaces for 𝑑 = 4
in the spline bi-degree 𝐝 = (𝑑, 𝑑), 𝑥𝑠 = 1.3 and 𝜅 = 2, 3. In the conforming 
case, the BIE is discretized using a globally 𝐶0 multi-patch IgA space 
with the same number 𝑛 × 𝑛 of uniform elements on every patch. In 
the non-conforming case, everything is the same except for the patch 
that contains the point (1, 0, 0), on which the number of uniform el-

ements is 3𝑛∕2 × 3𝑛∕2. This refinement increases the total number of 
degrees of freedom 𝑁DOF by a modest amount, approximately 25%, 
and this relative increase is asymptotically independent of 𝑛. The nu-

merical results show how the increase in 𝑁DOF is largely outweighed 
by the consequent reduction of global error in the 𝐿2(Γ) norm by an or-

der of magnitude. Hence, even when taking into account the additional 
calculations required for the assembly of the constraints (25) or (27) in 
the non-conforming case, the choice of non-conforming spaces provides 
an overall significant reduction of the numerical error for a given total 
computational budget.

5.4. Acoustic problem interior to a torus

This example is taken from [14]. The Helmholtz equation is consid-

ered with exact acoustic potential chosen to be

𝜙(𝐱) = sin(𝜅𝑥∕
√
3) sin(𝜅𝑦∕

√
3) sin(𝜅𝑧∕

√
3). (57)

The Neumann datum is prescribed by computing the acoustic velocity 
field as (𝜕𝜙∕𝜕𝐧)(𝐱) for 𝐱 ∈ Γ, where 𝐧 denotes the outward unit normal 
vector to the surface. In the numerical experiment, the wavenumber 
𝜅 is set to 2, and a conforming globally 𝐶0 discretization space with 
spline bi-degree (𝑑, 𝑑) for 𝑑 = 2, 3 is considered. The constant 𝑐𝑢 used in 
(30) for near singularity detection is set to 0.1. Regarding the adopted 
quadrature scheme, QI degree 4 is used for regular integrals, and degree 
2 is used for singular and regularized integrands. For 𝑑 = 2, the number 
𝑚 of terms in the singularity extraction is set to 2, and the number of 
uniformly spaced quadrature nodes in each parametric direction on the 
support of a B-spline is set to 7; hence nodes are just knots and knot 
midpoints of B-splines. When 𝑑 = 𝑚 = 3, 9 quadrature nodes are used 
for singular and regular integrals, and 13 nodes are used for regularized 
integrals.

The parametric coordinates on every patch are oriented so that the 
first coordinate runs along the toroidal direction (the one related to 
the outer radius) and the second coordinate runs along the poloidal 
direction (the one related to the inner radius). Since the ratio between 
outer radius and inner radius is 3, uniform knot vectors with ℎ(𝓁)1 =
ℎ
(𝓁)
2 ∕3 are used on every patch Γ(𝓁) for all tests, so that the supports 

of the B-splines 𝐵𝐓(𝓁)
𝐣,𝐝 in physical space are approximately squares. This 

choice maximizes the approximation power of the spline space for a 
given number of basis elements.
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Although the imaginary part of the acoustic potential 𝜙 is zero on 
the entire boundary Γ, the chosen wavenumber produces several oscil-

lations in the real part of 𝜙, see Fig. 10(a). The error 𝑒𝐿2 is plotted with 
respect to the refinement parameter ℎ1 in Fig. 10(b); a convergence rate 
equal to 𝑑 + 1 can be observed.

5.5. Acoustic problem interior to a distorted torus

This problem is also an interior problem with acoustic potential (57), 
but this time the boundary datum is of Dirichlet type and the toroidal 
geometry is distorted on one outer patch. To better approximate the 
solution 𝜕𝜙∕𝜕𝐧 on the distorted patch Γ(𝑘), non-conforming globally 𝐶0

spaces are used for the discretization, so that ℎ(𝑘)1 may be smaller than 
ℎ
(𝓁)
1 for 𝓁 = 1, … , 𝑀 with 𝑘 ≠ 𝓁. As before, ℎ(𝓁)2 = 3ℎ(𝓁)1 on every patch.

The distorted patch Γ(𝑘) is a quadratic NURBS surface defined as fol-

lows. First, the 3 × 3 control net of the undistorted patch is uniformly 
refined by knot insertion so that its size becomes 13 in the first para-

metric direction and 9 in the second. Then, only the innermost 7 × 3
subset of control points is changed, to ensure a 𝐶2 connection of patch 
Γ(𝑘) to neighbouring patches. The points in this subset are moved along 
the direction normal to the surface by

−1∕16 −1∕8 0 1∕8 0 −1∕8 −1∕16
−1∕8 −1∕4 0 1∕4 0 −1∕4 −1∕8
−1∕16 −1∕8 0 1∕8 0 −1∕8 −1∕16

respectively, so that three bumps are formed (two inward and one out-

ward), as shown in Fig. 3(c).

For the numerical tests, parameters 𝜅 = 2 and spline bi-degree 
(2, 2) were chosen. All the details regarding quadrature rules and near-

singular detection are the same as for the previous test with no dis-

tortion. Fig. 11(a) compares the global 𝐿2 error between conforming 
and non-conforming discretizations as ℎ(𝓁)1 → 0. Aiming for a total in-

crease in 𝑁DOF of around 15%, the value of ℎ1 on the distorted patch 
is halved compared to ℎ1 on the other patches (the relative increase 
in 𝑁DOF is asymptotically independent of ℎ1). In this test, the use of 
nonconforming spaces reduces 𝑒𝐿2 by a factor of around 2, a less dras-

tic reduction compared to the rigid scattering test, but still significant, 
given the modest increase in computational cost (proportional to 𝑁DOF). 
Figs. 11(b) and 11(c) show the on surface modulus of the numerical er-

ror for ℎ(𝓁)1 = 1∕9 on the undistorted patches and either ℎ(𝑘)1 = 1∕9 or 
ℎ
(𝑘)
1 = 1∕18 on the distorted patch (the conforming and hierarchically 

non-conforming cases, respectively). It is apparent how even a small lo-

cal increase in the total number of degrees of freedom (around 12%) is 
enough to more than halve the error in the 𝐿∞(Γ) norm.



B. Degli Esposti, A. Falini, T. Kanduč et al. Computers and Mathematics with Applications 147 (2023) 164–184

Fig. 10. Interior acoustic problem, undistorted torus, 𝜅 = 2.

Fig. 11. Interior acoustic problem, distorted torus, 𝜅 = 2 and 𝑑 = 2.
5.6. A manufactured example on a cuboidal geometry

The last example is a preliminary experiment on a non-smooth ge-

ometry – a manufactured exterior boundary problem on a geometry 
with sharp corners to test a simple adaptive quadrature procedure. For 
the Neumann boundary conditions set to 𝑢N(𝐱) = 𝑒𝑖𝜅𝑟(𝑖𝜅𝑟 −1)(𝐱 ⋅𝐧)∕(4𝜋𝑟3)
for 𝐱 ∈ Γ, 𝑟 = ‖𝐱‖2 and 𝐧 inward normal unit vector, the missing Cauchy 
datum is equal to 𝜙(𝐱) = 𝑒𝑖𝜅𝑟∕(4𝜋𝑟) for 𝐱 ∈ Γ.

Due to sharp corners in the geometry and proportionally larger 
solid angles inside Ω, the function 𝑐 in (5) is not everywhere equal 
to 1∕2; if the source point lies inside the cuboid edge or at the ver-

tex, then the value of 𝑐 is equal to 3∕4, 7∕8, respectively. Reduced 
smoothness of the geometry can greatly impact the accuracy of the 
procedure for inter-patch nearly singular integration, described in Sec-

tion 4.5. In such case it is preferable to replace the routine with a rule 
for regular integrals (explained in Section 4.3) with higher density of 
quadrature nodes nearer the source point. Such idea is pursuit in this 
test, where for simplicity by assuming the integration domain to be 
given by {𝐅̃(𝓁)(𝐭) ∶ 𝐭 ∈ [0, 1]2} and the source point 𝐅̃(𝑘)(𝐬) to lie close to 
𝐅̃(𝓁)((0, 0)) in 𝑡1 direction, the geometric distribution of 𝑛𝑞 quadrature 
nodes in direction 𝑡1 is then given as{

0
𝑛𝑞−1

𝜔𝑛𝑞−1, 1
𝑛𝑞−1

𝜔𝑛𝑞−2, 2
𝑛𝑞−1

𝜔𝑛𝑞−3, … ,
𝑛𝑞−2
𝑛𝑞−1

𝜔1,
𝑛𝑞−1
𝑛𝑞−1

𝜔0
}
. (58)

The common ratio 𝜔 < 1 is set so that the quotient between the left-

most and the rightmost cell sizes in (58) is equal to quotient ‖𝐅̃(𝑘)(𝐬) −
𝐅̃(𝓁)((0, 0))‖2∕‖𝐅̃(𝑘)(𝐬) − 𝐅̃(𝓁)((1, 0))‖2.

The boundary of the unit cube is represented as a 6-patch linear B-

spline geometry. For the numerical tests let 𝜅 = 1, 2, 5, 𝐝 = (2, 2), 𝑐𝑢 = 0.25
and the number 𝑛𝑞 of quadrature nodes is fixed to 7 in each coordinate 
direction on the support of B-spline trial functions for regular and sin-

gular integrals. The number of nodes needs to be increased to 13 for 
181
the adaptive integration for the inter-patch nearly singular integrals. As 
before, the bi-degree 𝐩 of the QI operator is set to (4, 4) for the regular 
integrals and to (2, 2) otherwise.

The numerical solutions are tested against the exact solution with re-

spect to mesh size ℎ = ℎ(𝓁) = 1∕4, 1∕5, … , 1∕12, 𝓁 = 1, 2, … , 6; the results 
are shown in Fig. 12(b). For all tested 𝜅 the optimal order of conver-

gence ℎ3 is achieved. The error distribution for 𝜅 = 1 and ℎ = 1∕7 is 
depicted Fig. 12(a), it is relatively well spread on the boundary across 
every patch.

6. Conclusion

In this paper 3D Helmholtz problems are addressed using isogeomet-

ric BEMs on smooth geometries with a general multi-patch parametric 
NURBS representation, relying for the discretization on conforming and 
also non-conforming multi-patch 𝐶0 spline spaces, since derivation and 
integration is easier for splines compared to NURBS without any loss 
in approximation power. The governing boundary integral equations 
are numerically approximated by a collocation scheme. The adopted 
quadrature rules for both regular and singular integrals are tailored for 
B-splines and they allow a profitable function-by-function matrix as-

sembly. A procedure is proposed for the automatic detection of nearly 
singular integrals. Besides studying the approximation power of the con-

sidered rules, an arrangement with a singularity extraction technique is 
proposed, extending it to the multi-patch setting for the first time. Nu-

merical results confirm the effectiveness of the method by achieving 
sufficient accuracy of the numerical solution with a small number of 
uniformly distributed quadrature nodes.

A possible future work could be devoted to tuning the proposed 
methodology in both conforming and non-conforming multi-patch 𝐶0

spline spaces for more general types of contacts between patches, a 
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Fig. 12. A manufactured example on a cuboidal geometry.
preliminary experiment being the presented Helmholtz manufactured 
test problem formulated on the cuboidal geometry.

Data availability

Data will be made available on request.
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Appendix A

To provide a self-contained analysis of the developed integration 
procedures, a more technical part related to the behaviour of the con-

sidered singular kernels is given in this appendix.

Let Γ be a regular surface admitting a 𝐶2 regular parameterization 
on 𝐷 ∶= [0 , 1]2 , 𝐅 ∶𝐷→ Γ, 𝐭 = (𝑡1, 𝑡2) ↦ 𝐅(𝐭). Furthermore, for any fixed 
𝐬 ∈𝐷, let us introduce the following notation,

𝐫𝐬(𝐭) ∶= 𝐅(𝐭) − 𝐅(𝐬) , 𝑟𝐬(𝐭) ∶= ‖𝐫𝐬(𝐭)‖2 , 𝝂(𝐭) ∶= 𝜕𝐅
𝜕𝑡1

(𝐭) × 𝜕𝐅
𝜕𝑡2

(𝐭) .

Proposition 2. For each fixed 𝐬 ∈ 𝐷 and for any unit vector 𝐮 =
(cos𝜃, sin𝜃) such that 𝐬 + 𝜌𝐮 is included in 𝐷 for 𝜌 positive and sufficiently 
small, it is

lim
𝜌→0+

𝜌

𝑟𝐬(𝐬+ 𝜌𝐮)
= 1√

𝐸 cos2 𝜃 + 2𝐹 sin𝜃 cos𝜃 +𝐺 sin2 𝜃
, (59)

lim
𝜌→0+

𝐫𝐬(𝐬+ 𝜌𝐮) ⋅ 𝝂(𝐬+ 𝜌𝐮)
𝑟2(𝐬+ 𝜌𝐮)

= −1
2
𝐿 cos2 𝜃 + 2𝑀 sin𝜃 cos𝜃 +𝑁 sin2 𝜃
𝐸 cos2 𝜃 + 2𝐹 sin𝜃 cos𝜃 +𝐺 sin2 𝜃

, (60)

which are both finite limits, with 𝐸, 𝐹 , 𝐺 and 𝐿, 𝑀, 𝑁 respectively denoting 
the coefficients of the first and second fundamental forms (with respect to 
the non-normalized normal 𝝂) of 𝐅 evaluated at 𝐬,
182
𝐸 ∶= 𝜕𝐅
𝜕𝑡1

(𝐬) ⋅ 𝜕𝐅
𝜕𝑡1

(𝐬), 𝐹 ∶= 𝜕𝐅
𝜕𝑡1

(𝐬) ⋅ 𝜕𝐅
𝜕𝑡2

(𝐬), 𝐺 ∶= 𝜕𝐅
𝜕𝑡2

(𝐬) ⋅ 𝜕𝐅
𝜕𝑡2

(𝐬),
(61)

𝐿 ∶= 𝝂(𝐬) ⋅ 𝜕
2𝐅
𝜕𝑡21

(𝐬), 𝑀 ∶= 𝝂(𝐬) ⋅ 𝜕2𝐅
𝜕𝑡1𝜕𝑡2

(𝐬), 𝑁 ∶= 𝝂(𝐬) ⋅ 𝜕
2𝐅
𝜕𝑡22

(𝐬).

Proof. Setting for brevity 𝐅𝑖 ∶=
𝜕𝐅
𝜕𝑡𝑖

(𝐬), 𝑖 = 1, 2 and 𝐅𝑖,𝑗 ∶=
𝜕2𝐅
𝜕𝑡𝑖𝜕𝑡𝑗

(𝐬), 𝑖, 𝑗 =
1, 2, and using the short notation 𝐫 = 𝐫(𝐬 + 𝜌𝐮), 𝑟 = 𝑟(𝐬 + 𝜌𝐮), 𝝂 = 𝝂(𝐬 + 𝜌𝐮), 
let

𝐫 =𝜌(𝐅1 cos𝜃 + 𝐅2 sin𝜃) + 𝜌2( 1
2
𝐅1,1 cos2 𝜃 + 𝐅1,2 cos𝜃 sin𝜃 +

1
2
𝐅2,2 sin2 𝜃)

+𝑂(𝜌3)

and

𝝂 = [𝐅1 + 𝜌
(
𝐅1,1 cos𝜃 + 𝐅1,2 sin𝜃

)
+𝑂(𝜌2)]

×[𝐅2 + 𝜌(𝐅1,2 cos𝜃 + 𝐅2,2 sin𝜃) +𝑂(𝜌2)]

= (𝐅1 × 𝐅2) + 𝜌[(𝐅1 × 𝐅1,2 − 𝐅2

× 𝐅1,1) cos𝜃 + (𝐅1 × 𝐅2,2 − 𝐅2 × 𝐅1,2) sin𝜃] +𝑂(𝜌2) .

Since 𝑟2 = 𝜌2(𝐸 cos2 𝜃 + 2𝐹 sin𝜃 cos𝜃 +𝐺 sin2 𝜃) +𝑂(𝜌3), it follows

𝜌

𝑟
= 1√

𝐸 cos2 𝜃 + 2𝐹 sin𝜃 cos𝜃 +𝐺 sin2 𝜃 +𝑂(𝜌)
,

𝐫 ⋅ 𝝂 = −1
2
𝜌2
(
𝐿 cos2 𝜃 + 2𝑀 sin𝜃 cos𝜃 +𝑁 sin2 𝜃

)
+𝑂(𝜌3) .

In order to confirm that the two limits in (59) and (60) are always finite, 
observe that their denominator can be respectively written as 

√
𝐮𝑇𝑀𝐬𝐮

and 𝐮𝑇𝑀𝐬𝐮, with 𝑀𝐬 denoting the following symmetric 2 × 2 positive 
definite matrix associated to the first fundamental form of 𝐅 evaluated 
in 𝐬,

𝑀𝐬 ∶=
(
𝐸 𝐹

𝐹 𝐺

)
. (62)

The proof is complete. □

Note that the previous result implies that both the functions 𝐭 →‖𝐭 − 𝐬‖2∕𝑟𝐬(𝐭) and 𝐭 → (𝐫𝐬(𝐭) ⋅ 𝜈(𝐭))∕𝑟𝐬(𝐭)2 are discontinuous at 𝐭 = 𝐬. De-

spite this, the following corollary allows one to verify their uniform 
boundedness in 𝐷.

Corollary 1. Under the assumptions of the previous proposition, both 
the functions 𝑔1,𝐬(𝐭) ∶= ‖𝐭 − 𝐬‖2∕𝑟𝐬(𝐭) and 𝑔2,𝐬(𝐭) ∶= (𝐫𝐬(𝐭) ⋅ 𝜈(𝐭))∕𝑟2𝐬 (𝐭) are 
bounded in their domain 𝐷 ⧵ {𝐬}, uniformly with respect to 𝐬 ∈𝐷.
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Proof. Since the proof is analogous for 𝑔1,𝐬 and 𝑔2,𝐬, let us refer only to 
𝑔1,𝐬.

Using proof by contradiction, let us assume that there exists a con-

vergent sequence {(𝐬𝑘1 , 𝐭𝑘1 )} in 𝐷2 such that 𝑔1,𝐬𝑘1 (𝐭𝑘1 ) → +∞. Then, con-

sidering that 𝐅 is continuous and injective, it holds 𝜌𝑘1 ∶= ‖𝐭𝑘1 − 𝐬𝑘1‖2 →
0 and the limit of the convergent sequence is equal to (𝐬, 𝐬) for some 
𝐬 ∈ 𝐷. Now, setting 𝐭𝑘1 = 𝐬𝑘1 + 𝜌𝑘1

(cos𝜃𝑘1 , sin𝜃𝑘1 ), and by considering 
that 𝜃𝑘1 varies in the periodic interval [0, 2𝜋], there exists a subsequence 
{(𝐬𝑘2 , 𝐭𝑘2 )} of {(𝐬𝑘1 , 𝐭𝑘1 )} such that {𝜃𝑘2 } tends to a certain angle 𝜃. Then, 
using arguments analogous to the ones used in the proof of the previous 
proposition, it can be proven that

lim
𝑘2→∞

𝑔1,𝐬𝑘2
(𝐭𝑘2 ) =

1√
𝐸 cos2 𝜃 + 2𝐹 sin𝜃 cos𝜃 +𝐺 sin2 𝜃

, (63)

where 𝐸, 𝐹 , 𝐺 are defined in (61).

Since the limit in (63) exists, a contradiction follows, since

𝑔1,𝐬𝑘3
(𝐭𝑘3 ) → +∞ for every subsequence {(𝐬𝑘3 , 𝐭𝑘3 )} of sequence {(𝐬𝑘1 , 𝐭𝑘1 )}. 

Since 𝐅 is regular, all 𝐸, 𝐹 , 𝐺 can be bounded for all 𝐬 ∈𝐷 to obtain a 
common upper bound for the limit (63) for all 𝐬 ∈𝐷. □

The following last proposition is useful to estimate an upper bound 
for the quadrature rules for singular integrals.

Proposition 3. Let 𝑅 ⊂ 𝐷 be a rectangular integration domain with edges 
of dimensions 𝐻1 and 𝐻2. Then there exists a constant 𝐶 such that for each 
𝐬 ∈𝑅 it is

∫
𝑅

|𝑈 (𝐬, 𝐭)|𝑑𝐭 ≤ 𝐶max{𝐻1,𝐻2} , (64)

where 𝑈 is one of the two kernels 𝑈SL and 𝑈DL defined in (29).

Proof. By setting 𝜌𝐬(𝐭) ∶= ‖𝐭 − 𝐬‖2, observe that 𝑈SL(𝐬, 𝐭) = 𝑔1,𝐬(𝐭)∕𝜌𝐬(𝐭)
and 𝑈DL(𝐬, 𝐭) = 𝑔1,𝐬(𝐭)𝑔2,𝐬(𝐭)∕𝜌𝐬(𝐭), where 𝑔1,𝐬 and 𝑔2,𝐬 are the two func-

tions defined in the previous corollary. Thus, from the corollary itself 
it follows that for both the considered definitions of 𝑈 , there exists a 
positive constant 𝑄 such that

|𝑈 (𝐬, 𝐭)| ≤𝑄∕𝜌𝐬(𝐭) , ∀(𝐬, 𝐭) ∈𝐷2, 𝐬 ≠ 𝐭 .

Then, denoting with 𝐬 the circle centred at 𝐬 with radius√
2max{𝐻1, 𝐻2}, it follows 𝑅 ⊂𝐷 ∩𝐴𝐬 and

∫
𝑅

|𝑈 (𝐬, 𝐭)|𝑑𝐭 ≤ ∫
𝐷∩𝐬

|𝑈 (𝐬, 𝐭)|𝑑𝐭 ≤𝑄∫
𝐬

1
𝜌𝐬(𝐭)

𝑑𝐭 .

Thus, switching to polar coordinates centred at 𝐬 completes the 
proof. □

The constant 𝐶 in (64) depends on 𝐅. By prescribing common 
bounds for coefficients in (61) for all “well-behaved” functions 𝐅 consid-

ered in practical applications, a common constant 𝐶 can be sufficiently 
well estimated.

Appendix B

Proof of Proposition 1. Let  be the set of vertices of the patches that 
cover Γ, and for any 𝑣 ∈  let deg(𝑣) be the degree of 𝑣, i.e., the number 
of incident edges or, equivalently, faces. By construction, the number of 
rows of matrix 𝐴coll is

||+∑
𝑘,𝓁

(|||𝐺𝑘,𝓁(𝑇
(𝑘)
𝑖

∩ 𝑇
(𝓁)
𝑗

, 𝑑)|||− 2
)
+

𝑀∑
𝑘=1

(|||𝐺̂(𝑇 (𝑘)
1 , 𝑑)|||− 2

)
×
(||𝐺̂(𝑇 (𝑘)

, 𝑑)||− 2
)
, (65)
| 2 |
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obtained by counting collocation points on vertices, then those internal 
to edges, and finally those internal to patches, respectively. As for the 
non-conforming continuity constraints, their number is∑
𝑣∈

(deg(𝑣) − 1) +
∑
𝑘,𝓁

#rows(𝐊𝑘,𝓁) +
∑
𝑘,𝓁

#rows(𝐂𝑘,𝓁) +
∑
𝑘,𝓁

#rows(𝐊𝓁,𝑘)

=
∑
𝑣∈

deg(𝑣) − ||+∑
𝑘,𝓁
|||𝑇 (𝑘)

𝑖
⧵ 𝑇 (𝓁)

𝑗

|||+∑𝑘,𝓁
(|||𝐺𝑘,𝓁(𝑇

(𝑘)
𝑖

∩ 𝑇
(𝓁)
𝑗

, 𝑑)|||− 2
)

+
∑
𝑘,𝓁
|||𝑇 (𝓁)

𝑗
⧵ 𝑇 (𝑘)

𝑖

||| . (66)

The same number can also be obtained by the approach based on virtual 
knot insertion, because of identity (26). Summing (65) and (66), the 
total number of rows of 𝐴 is

#rows(𝐴) =
∑
𝑣∈

deg(𝑣) + 2
∑
𝑘,𝓁

(|||𝐺𝑘,𝓁(𝑇
(𝑘)
𝑖

∩ 𝑇
(𝓁)
𝑗

, 𝑑)|||− 2
)

+
𝑀∑
𝑘=1

(|||𝐺̂(𝑇 (𝑘)
1 , 𝑑)|||− 2

)(|||𝐺̂(𝑇 (𝑘)
2 , 𝑑)|||− 2

)
+
∑
𝑘,𝓁
|||𝑇 (𝑘)

𝑖
⧵ 𝑇 (𝓁)

𝑗

|||+∑𝑘,𝓁 |||𝑇 (𝓁)
𝑗

⧵ 𝑇 (𝑘)
𝑖

|||
=
∑
𝑣∈

deg(𝑣) +
𝑀∑
𝑘=1

|||𝐺̂(𝑇 (𝑘)
1 , 𝑑)||| |||𝐺̂(𝑇 (𝑘)

2 , 𝑑)|||
− 2

𝑀∑
𝑘=1

|||𝐺̂(𝑇 (𝑘)
1 , 𝑑)|||− 2

𝑀∑
𝑘=1

|||𝐺̂(𝑇 (𝑘)
2 , 𝑑)|||+ 4𝑀

+ 2
∑
𝑘,𝓁

(|||𝐺𝑘,𝓁(𝑇
(𝑘)
𝑖

∩ 𝑇
(𝓁)
𝑗

, 𝑑)|||− 2
)
+
∑
𝑘,𝓁
|||𝑇 (𝑘)

𝑖
⧵ 𝑇 (𝓁)

𝑗

|||
+
∑
𝑘,𝓁
|||𝑇 (𝓁)

𝑗
⧵ 𝑇 (𝑘)

𝑖

|||
=
∑
𝑣∈

deg(𝑣) + #cols(𝐴) − 2
𝑀∑
𝑘=1

|||𝐺̂(𝑇 (𝑘)
1 , 𝑑)|||

− 2
𝑀∑
𝑘=1

|||𝐺̂(𝑇 (𝑘)
2 , 𝑑)|||+ 4𝑀 −

∑
𝑘,𝓁

4

+ 2
∑
𝑘,𝓁
|||𝐺𝑘,𝓁(𝑇

(𝑘)
𝑖

∩ 𝑇
(𝓁)
𝑗

, 𝑑)|||+∑𝑘,𝓁 |||𝑇 (𝑘)
𝑖

⧵ 𝑇 (𝓁)
𝑗

|||+∑𝑘,𝓁 |||𝑇 (𝓁)
𝑗

⧵ 𝑇 (𝑘)
𝑖

|||
=
∑
𝑣∈

deg(𝑣) + #cols(𝐴) − 2
𝑀∑
𝑘=1

(|||𝑇 (𝑘)
1
|||− 𝑑 − 1

)
− 2

𝑀∑
𝑘=1

(|||𝑇 (𝑘)
2
|||− 𝑑 − 1

)
+ 4𝑀 −

∑
𝑘,𝓁

4

+ 2
∑
𝑘,𝓁

(|||𝑇 (𝑘)
𝑖

∩ 𝑇
(𝓁)
𝑗

|||− 𝑑 − 1
)
+
∑
𝑘,𝓁
|||𝑇 (𝑘)

𝑖
⧵ 𝑇 (𝓁)

𝑗

|||
+
∑
𝑘,𝓁
|||𝑇 (𝓁)

𝑗
⧵ 𝑇 (𝑘)

𝑖

|||
=
∑
𝑣∈

deg(𝑣) + #cols(𝐴) − 2
𝑀∑
𝑘=1

(|||𝑇 (𝑘)
1
|||− 𝑑 − 1

)
− 2

𝑀∑
𝑘=1

(|||𝑇 (𝑘)
2
|||− 𝑑 − 1

)
+ 4𝑀 −

∑
𝑘,𝓁

4

+
∑
𝑘,𝓁

(|||𝑇 (𝑘)
𝑖

|||− 𝑑 − 1
)
+
∑
𝑘,𝓁

(|||𝑇 (𝓁)
𝑗

|||− 𝑑 − 1
)
. (67)

Since every patch has exactly 4 vertices, and every edge is shared by 
exactly 2 patches,∑
𝑣∈

deg(𝑣) = 4𝑀,
∑


1 = 2𝑀,
∑
𝑣∈

deg(𝑣) + 4𝑀 −
∑


4 = 0.

𝑘,𝓁 𝑘,𝓁
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Moreover, by considering two different ways to count the same knot 
vectors (iteration over edges or over faces),

∑
𝑘,𝓁

(|||𝑇 (𝑘)
𝑖

|||− 𝑑 − 1
)
+
∑
𝑘,𝓁

(|||𝑇 (𝓁)
𝑗

|||− 𝑑 − 1
)
= 2

𝑀∑
𝑘=1

(|||𝑇 (𝑘)
1
|||− 𝑑 − 1

)

+ 2
𝑀∑
𝑘=1

(|||𝑇 (𝑘)
2
|||− 𝑑 − 1

)
.

Hence, equation (67) simplifies to #rows(𝐴) = #cols(𝐴), which proves that 
𝐴 is a square matrix.

As for its nonsingularity in the setting of interpolation, suppose that 
𝐴𝜶 = 0 for some vector of B-coefficients 𝜶. Since all knot vectors are 
open, this immediately implies that all B-coefficients associated to patch 
vertices are equal to zero. Then, since 𝜶 satisfies the continuity condi-

tions (because they are homogeneous), the restriction to any edge 𝑘,𝓁
of the global spline associated to 𝜶 is well-defined and belongs to the 
pushforward of the univariate space (𝑇𝑖(𝑘) ∩ 𝑇𝑗

(𝓁), 𝑑). The set of Gre-

ville abscissas 𝐺𝑘,𝓁(𝑇𝑖(𝑘) ∩ 𝑇𝑗 (𝓁), 𝑑) with endpoints removed is unisolvent 
for the elements of this space vanishing on the boundary. Therefore, all 
B-coefficients associated to patch edges are equal to zero. Finally, on 
each patch Γ(𝓁) the set of bivariate Greville points that do not belong 
to the boundary of the patch is unisolvent for the elements of the space 
 (𝓁)
ℎ,𝐝 vanishing on the boundary of the patch. This proves that 𝜶 = 0, and 

so 𝐴 is nonsingular. □
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