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Abstract
We consider large-scale nonlinear least squares problems with sparse residuals, each 
of them depending on a small number of variables. A decoupling procedure which 
results in a splitting of the original problems into a sequence of independent prob-
lems of smaller sizes is proposed and analysed. The smaller size problems are modi-
fied in a way that offsets the error made by disregarding dependencies that allow 
us to split the original problem. The resulting method is a modification of the Lev-
enberg-Marquardt method with smaller computational costs. Global convergence is 
proved as well as local linear convergence under suitable assumptions on sparsity. 
The method is tested on the network localization simulated problems with up to one 
million variables and its efficiency is demonstrated.

Keywords  Least squares problems · Levenberg Marquardt method · Splitting · Local 
linear convergence · Global convergence

1  Introduction

The problem we consider is a nonlinear least squares problem
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where for every j = 1,… ,m , rj ∶ ℝ
N
→ ℝ is a C1 function, 

R(x) =
(
r1(x),… , rm(x)

)⊤
∈ ℝ

m is the vector of residuals, and F is the aggregated 
residual function. We are assuming a special structure of the residuals that is rel-
evant in many applications. That is, we assume that the residuals are very sparse 
functions, each depending only on a small number of variables while the whole 
problem is large-scale, i.e. with N very large. We are not assuming any particular 
sparsity pattern allowing many practical problems to fit the framework we consider.

Typical problems of this kind are Least Squares Network Adjustment [17], 
Bundle Adjustment [13], Wireless Sensor Network Localization [15], where the 
variables correspond to the coordinates of physical points in a region of the 2 or 3 
dimensional space and residuals correspond to observations of geometrical quanti-
ties involving these points. In these cases each observation typically involves a small 
(often fixed) number of points, and thus each residual function involves a small 
number of variables. Moreover, when considering problems of large dimension with 
points deployed in a large region of the space, the number of observations involving 
each point is small with respect to the total amount of observations. That is, each 
variable is involved in a relatively small number of residual functions. This leads to 
problems that are very sparse. Given that the measurements are prone to errors or to 
different kinds of noise, the residuals are in general weighted with the weights being 
reciprocal of the measurement precision. Furthermore, a typical property of such 
problems is that they are nearly separable, meaning that it is possible to partition 
the points into subsets that are connected by a small number of observations. The 
dominant properties of all these problems, a very large dimension N and sparsity, 
motivated the modification of classical Levenberg-Marquardt method presented in 
this paper.

The Levenberg-Marquardt (LM) method is generally used to solve the least 
squares problems of large dimension. The method is based on a regularization strat-
egy for improvement of Gauss-Newton method. In each iteration of Gauss-Newton 
method one has to solve a linear least squares problem. The LM method further adds 
a regularization (damping) parameter that facilitate the direction computation. Thus 
in each iteration of the LM method one has to solve a system of linear equations to 
compute the step or step direction. The regularization parameter plays a fundamen-
tal role and its derivation is subject of many studies.

Many modifications of the classical Levenberg-Marquardt scheme have been 
proposed in literature to retain convergence while relaxing the assumptions on the 
objective function and to improve the performance of the method. In [6, 7, 18] the 
damping parameter is defined as a multiple of the objective function. With this 
choice of the parameter local superlinear or quadratic convergence is proved under a 
local error bound assumption for zero residual problems, while global convergence 
is achieved by employing a line search strategy. In [11] the authors propose an updat-
ing strategy for the parameter that, in combination with Armijo line search, ensures 
global convergence and q-quadratic local convergence under the same assumption of 
the previous papers. In [2] the non-zero residual case is considered and a Levenberg-
Marquardt scheme is proposed that achieves local convergence with order depend-
ing on the rank of the Jacobian matrix and of a combined measure of nonlinearity 
and residual size around stationary points. In [4] an inexact Levenberg-Marquardt is 
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considered and local convergence is proved under a local error bound condition. In 
[3] the authors propose an approximated Levenberg-Marquardt method, suitable for 
large-scale problems, that relies on inaccurate function values and derivatives.

The problems we are interested in are of very large dimension and sparse. Spar-
sity very often induces the property we call near-separability, i.e. it is possible to 
partition the variables into subsets such that a subset of residual functions depends 
only on a subset of variables while only a limited number of residual functions 
depends on variables in different subsets. This property is mainly a natural con-
sequence of the problem origin. For example in the Network Adjustment problem 
physical distance of the points determines the set of points that are connected by 
observations. Although the complete separability of the residuals is not common, the 
number of residuals that depend on points from different subsets is in general rather 
small compared to the problem size N. On the other hand, for a very large N solving 
the LM linear system in each iteration, even for very sparse problems can be costly. 
The particular example is the refinement of cadastral maps and in this case N is 
prohibitively large for direct application of the LM method. For example, the Dutch 
Kadaster is pursuing making the cadastral map more accurate by making the map 
consistent with accurate field surveyor measurements [8, 10]. This application yields 
a non-linear least squares problem which is known as ‘least squares adjustment’ in 
the field of geography. If the entire Netherlands were to be considered for one big 
adjustment problem, the number of variables would be twice the number of feature 
points in the Netherlands, which is on the order of 1 billion variables and even con-
sidering separate parts of Netherlands still yields a very large-scale problem.

The method we propose here is designed to exploit the sparsity and near-sep-
arability in the following way. Assuming that we can split the variables in such a 
way that a large number of residual function depends only on a particular subset of 
variables, while a relatively small number of residual functions depends on variables 
from different subsets, the system of linear equations in LM iteration has a particu-
lar block structure. The variable subsets and corresponding residuals imply strong 
dominance of relatively dense diagonal blocks while the non-diagonal blocks are 
very sparse. This structure motivated the idea of splitting: we decompose the LM 
system matrix into K independent systems of linear equations, determined by the 
diagonal blocks of the LM system. This way we get K linear systems of significantly 
smaller dimensions and we can solve them faster, either sequentially or in parallel. 
Thus, one can consider this approach as a kind of inexact LM method. However, 
this kind of splitting might be too inaccurate given that we completely disregarded 
the off-diagonal blocks of the LM matrix. Therefore, we modify the K independ-
ent linear systems in such a way that off-diagonal blocks are included in the right-
hand sides of these independent systems. The modification of the right-hand sides 
of independent linear systems is based on a correction parameter proposed for the 
Newton method in [14] and for the distributed Newton method in [1] and attempts to 
minimize the difference between the full LM linear system residual and the residual 
of the modified method. Having an affordable search direction computed by solving 
the K independent linear systems we can proceed in the usual way - applying a line 
search to get a globally convergent method. Furthermore, under a set of standard 
assumptions we can prove local linear convergence.
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A proper splitting of the variables into suitable subsets is a key assumption for the 
efficiency of this method but the problems we are interested in very often offer a natu-
ral way of meaningful splitting. For example in the localization problems or network 
adjustment problems the geometry of points dictates meaningful subsets. In the experi-
ments we present here one can see that a graph partitioning algorithm provides a good 
subset division in a cost-efficient way.

The numerical experiments presented in the paper demonstrate clearly the advantage 
of the proposed method with respect to the full-size LM method. We show that the 
splitting method successfully copes with very large dimensions, testing the problems 
of up to 1 million variables. Furthermore, we demonstrate that even in the case of large 
dimensions that can be solved by classical LM method, say around a couple of tens of 
thousands, the splitting method works faster. Additionally, we investigate the robust-
ness of the splitting in the sense that we demonstrate empirically that the number of 
subsets plays an important role in the efficiency of the method but that there is a rea-
sonable degree of freedom in choosing that number without affecting the performance 
of the method. The experiments presented here are done in a sequential way, i.e. we 
did not solve the independent systems of linear equations in parallel which would fur-
ther enhance the proposed method. Parallel implementation will be a subject of further 
research.

The paper is organized as follows. In Sect. 2 we present the framework that we are 
considering. The proposed method is described in Sect. 3 while the theoretical analysis 
of the proposed method is carried out in Sect. 4. In Sect. 5 we discuss some implemen-
tation details and present numerical results.

The notation we use is the following. Mappings defined on ℝN , vectors from ℝN 
and matrices with at least one dimension being N are denoted by boldfaced letters 
F,R, x,B,… while their block-elements are denoted by the same letters in italics and 
indices so x = (x1,… , xs), x ∈ ℝ

N , xs ∈ ℝ
ns . The dimensions are clearly stated to 

avoid confusion. We use �min(⋅) and �max(⋅) to denote the smallest and largest eigen-
value of a matrix, respectively. The Euclidean norm is denoted by ‖ ⋅ ‖ for both matri-
ces and vectors.

2 � Nearly separable problems

The problem we consider is stated in (1). Denote with I = {1,… ,N} and with 
J = {1,… ,m} . Given a partition I1,… , IK of I  we define the corresponding partition 
of J  into E1,… ,EK as follows:

That is, given a partition of the set of variables, each of the subsets Es contains the 
indices corresponding to residual functions that only involve variables in Is , while 
Ê contains the indices of residuals that involve variables belonging to different 

(2)

Es = {j ∈ J|rj only depends on variables in Is}, s = 1,… ,K

Ê = J ⧵

K⋃
i=1

Ei.
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subsets Is . We say that problem (1) is separable if there exist K ≥ 2 and a partition 
{Is}s=1,…,K of I  such that Ê = � , while we say that it is nearly-separable if there 
exist K ≥ 2 and a partition {Is}s=1,…,K of I  such that the cardinality of Ê is small 
with respect to the cardinality of 

⋃K

s=1
Es. The term “nearly-separable” is not defined 

precisely and should be understood in the same fashion as sparsity, i.e. assuming 
that we can identify the corresponding partitions.

The above described splitting can be interpreted as follows. Given the least 
squares problem in (1) we define the corresponding underlying network as the 
undirected graph G = (I, E) where I  and E denote the set of nodes and set of 
edges respectively. The graph G that has a node for each variable xi , and an edge 
between node i and node k if there is a residual function rj that involves xi and 
xk . With this definition in mind the partition of I  and J  that we described above 
corresponds to a partition of the sets of nodes and edges of the network, where 
Es contains the indices of edges that are between nodes in the same subset Is and 
Ê contains the edges that connect different subsets. The problem is separable 
if the underlying network G is not connected (and the number K is equal to the 
number of connected components of G ). The problem is nearly-separable if we 
can partition the set of nodes of the network in such a way that the number of 
edges that connect different subsets is small with respect to the number of edges 
that are internal to the subsets.

Given the partition {Is}s=1,…,K of the variables and the corresponding partition 
{Es}s=1,…,K , Ê of the residuals, for s = 1,… ,K  we define xs ∈ ℝ

ns as the vector 
of the variables in Is where ns denotes the cardinality of Is , and we introduce the 
following functions

so that for every s = 1,… ,K , Rs ∶ ℝ
ns → ℝ is the vector of residuals involving only 

variables in Is , while � ∶ ℝ
N
→ R is the vector of residuals in Ê and Fs , Φ are the 

corresponding local aggregated residual functions. Notice that 
∑K

s=1
ns = N. With 

this notation problem (1) can be rewritten as

In particular, if the problem is separable (and therefore Ê is empty) Φ ≡ 0 and solv-
ing problem (4) is equivalent to solving K independent least squares problems given 
by

If the problem is not separable then in general Φ is not equal to zero and that is the 
case we are interested in.

(3)
Rs(xs) ∶= (rj(x))j∈Es

, �(x) ∶= (rj(x))j∈Ê

Fs(xs) ∶= ‖Rs(xs)‖22 Φ(x) ∶= ‖�(x)‖2
2

(4)min
x∈ℝN

�
Φ(x) +

K�
s=1

Fs(xs)

�
= min

x∈ℝN

�
1

2
‖�(x)‖2

2
+

K�
s=1

1

2
‖Rs(xs)‖22

�

(5)min
xs∈ℝ

ns
Fs(xs) = min

xs∈ℝ
ns

1

2
‖Rs(xs)‖22 for s = 1,… ,K.
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3 � LMS: the Levenberg‑Marquardt method with splitting

Let {Is}s=1,…,K be a partition of I  and {Es}s=1,…,K be the corresponding partition of J  
as defined in (2). To ease the notation we assume that we reordered the variables and 
the residuals functions according to the given partitions, such that for x ∈ ℝ

N

With this reordering, denoting with JsRj
 the Jacobian of the partial residual vector Rj 

defined in (3) with respect to the variables in Is , and with Js� the Jacobian of the par-
tial residual � with respect to xs, we have

From this structure of R and J we get the corresponding block structure of the gradi-
ent g(x) = J(x)⊤R(x) and the matrix J(x)⊤J(x):

with

In the following, we denote with gk = J⊤
k
Rk the vector with s-th block component 

equal to gs(xk) , with Hk = H(xk) the block diagonal matrix with diagonal blocks 
given by Hs(x

k) for s = 1,… ,K , and with Bk = B(xk) the block partitioned matrix 
with diagonal blocks equal to zero and off-diagonal blocks equal to Bij(x

k) . That is,

x =

⎛⎜⎜⎝

x1
⋮

xK

⎞
⎟⎟⎠
, R(x) =

⎛
⎜⎜⎜⎝

R1(x1)

⋮

RK(xK)

�(x)

⎞
⎟⎟⎟⎠

J(x) =

⎛
⎜⎜⎜⎜⎜⎝

J1R1
(x1) 0

J2R2
(x2)

⋱

0 JKRK
(xK)

J1�(x) J2�(x) … JK�(x)

⎞
⎟⎟⎟⎟⎟⎠

.

(6)g(x)⊤ =
(
g⊤
1
(x), g⊤

2
(x),… , g⊤

K
(x)

)
,

(7)J(x)⊤J(x) =

⎛⎜⎜⎜⎝

H1(x) B12(x) … B1K(x)

B21(x) H2(x) ⋱ ⋮

⋮ ⋱ ⋱ BK−1K(x)

BK1(x) … BKK−1(x) HK(x)

⎞⎟⎟⎟⎠
,

(8)

gs(x) = JsRs
(xs)

⊤Rs(xs) + Js𝜌s(x)
⊤𝜌(x) for s = 1,… ,K,

Hs(x) = JsRs
(xs)

⊤JsRs
(xs) + Js𝜌(x)

⊤Js𝜌(x) for s = 1,… ,K,

Bij(x) = Ji𝜌(x)
⊤Jj𝜌(x) for i, j = 1,… ,K.
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The algorithm we introduce here is motivated by near-separability property and 
hence we state the formal assumption below.

Assumption 1  There exists a constant M > 0 such that for all x ∈ ℝ
N

The assumption above is not restrictive as B(x) is a submatrix of J(x)⊤J(x). Fur-
thermore, the global convergence of the algorithm we propose does not depend on 
it in the sense that we do not use the assumption for the convergence proof. In fact 
the proposed algorithm works even for problems that are not nearly-separable as it 
can be seen as a kind of quasi-Newton method, however the efficiency of the algo-
rithm depends on the near-separability of the problem and the value of M. Moreover 
the value of M plays an important role in the analysis of local convergence and in 
achieving linear rate.

Consider a standard iteration of LM method for a given iteration xk

where dk ∈ ℝ
N is the solution of

where Jk = J(xk) ∈ ℝ
m×N denotes the Jacobian matrix of Rk = R(xk) and �k is a pos-

itive scalar. When N is very large solving (11) at each iteration of the method may 
be prohibitively expensive. In the following we propose a modification of the Lev-
enberg-Marquardt method that exploits near-separability of the problem to approxi-
mate the linear system (11) with a set of independent linear systems of smaller size.

The linear system (11) at iteration k can therefore be rewritten as

The matrix Bk depends only on the derivatives of the residual vector � = (rj(x))j∈Ê. 
If the problem is separable then Ê = � and Bk = 0 so the coefficient matrix of (12) 
is block diagonal, the system can be decomposed into K independent linear systems, 
and the solution dk is a vector with the s-th block component equal to the solution dk

s
 

of

(9)

Hk =

⎛
⎜⎜⎜⎝

H1(x)

H2(x)

⋱

HK(x)

⎞
⎟⎟⎟⎠
,

Bk =

⎛
⎜⎜⎜⎝

0 B12(x
k) … B1K(x

k)

B21(x
k) 0 ⋱ ⋮

⋮ ⋱ ⋱ BK−1K(x
k)

BK1(x
k) … BKK−1(x

k) 0

⎞⎟⎟⎟⎠
.

(10)‖B(x)‖ ≤ M‖J(x)⊤J(x)‖.

xk+1 = xk + dk,

(11)
(
J⊤
k
Jk + 𝜇kI

)
dk = −J⊤

k
Rk,

(12)(Hk + �kI + Bk)d
k = −gk.

(13)(Hk
s
+ �kI)d

k
s
= −gk

s
.
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If the problem is nearly-separable, the number of nonzero elements in Bk is small 
compared to the size N of the matrix and to the number of nonzero elements in Hk . 
Thus the solution of (13) may provide an approximation of the solution of the Lev-
enberg-Marquardt direction (11), with the quality of the approximation depending 
on the number and magnitude of the nonzero elements in Bk.

Given that information contained in Bk might be relevant and that solving K systems 
of smaller dimension is much cheaper than solving the system of dimension N,  we pro-
pose the following modification of the right hand side of (13), which attempts to exploit 
the information contained in the off-diagonal blocks, while retaining separability of the 
approximated linear system. The idea underlying the right-hand side correction is anal-
ogous to the one proposed in [1, 14] for systems of nonlinear equations and distributed 
optimization problems.

Our goal is to split the LM linear system into separable systems of smaller dimen-
sion. Starting from the LM linear system (12) and aiming at a separable system of lin-
ear equations, i.e. a system with the matrix Hk + �kI as in (13), we need to take into 
account the fact that Bk is not zero. Clearly putting Bk�� to the right hand side would 
be ideal but dk is unknown. Therefore we add Bk�� at the right hand side of (13) as this 
way we maintain separability and information contained in Bk. Intuitively, Bk�� is the 
best approximation for Bk�� that we have available, so we use it to get a separable sys-
tem of linear equations. To compensate (at least partially) for the substitution of Bk�� 
with Bk�� we also add a correction factor �k as explained in (14) and further on.

Consider the system

where �k ∈ ℝ is a correction coefficient that we can choose. Once the right-hand 
side has been computed, since Hk + �kI is a block diagonal matrix, (14) can still 
be decomposed into K independent linear system. That is, the solution dk of (14) is 
given by

The correction coefficient �k can be chosen freely at each iteration so far. However 
we will see that it is of fundamental importance for both the convergence analysis 
of the method and practical performance. This parameter is further specified in the 
algorithm we propose and discussed in detail in Subsection  4.3. Let us now give 
only a rough reasoning behind its introduction. With �k we are trying to preserve 
some information contained in Bk in a cheap way and without destroying separabil-
ity. One possibility is the following choice of �k , which ensures that the residual 
given by the solution of (14) with respect to the exact linear system (12) is mini-
mized. That is,

with

(14)(Hk + �kI)d
k = (�kBk − I)gk

(15)dk =

⎛⎜⎜⎝

dk
1

⋮

dk
K

⎞⎟⎟⎠
with Hk

s
dk
s
= �k

K�
j=1, j≠s

Bk
sj
gk
j
− gk

s
.

�k = argmin �∈ℝ‖�k(�)‖22
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Further details on this choice are presented later on. One can ask why we use a sin-
gle coefficient �k in each iteration, i.e. if it would perhaps be more efficient to try 
to "correct" the right hand side with more than one parameter, maybe allowing a 
diagonal matrix �k in the right hand side instead of a single scalar. In fact, if we take 
a diagonal matrix �k ∈ ℝ

N×N and plug it in the above minimization problem, then 
solving this problem we could recover the LM iteration exactly. However such pro-
cedure would imply the same cost for one iteration as the full LM iteration. Clearly, 
there are other alternatives between these two extremes - a single number and N 
numbers, but our experience show that the choice with a single coefficient �k brings 
the best results in terms of cost benefit function. The convergence analysis presented 
in the next Section will further restrict the values of parameter �k.

Consider the block diagonal matrix Hk defined in (7). Since the s-th diagonal block 
Hk

s
= (Jk

sRs
)⊤Jk

sRs
+ (Jk

s𝜌s
)⊤Jk

s𝜌s
 we have that Hk is symmetric and positive semi-definite, 

and therefore there exists a matrix Sk ∈ ℝ
m×N such that S⊤

k
Sk = Hk . We denote with Ck 

the matrix Ck = Jk − Sk.

Let us now state the algorithm. We will assume that the splitting into suitable sets is 
done before the iterative procedure and it is kept fixed through the process. Thus, the 
diagonal matrix Hk and off-diagonal Bk are already defined in each iteration.

The regularization parameter �k plays an important role in (14) and consequently 
in the resolution of our independent problem stated in (15). In the algorithm below we 
adopt a choice based on the same principles proposed in [11] although other options 
are possible. The parameter is thus computed using the values defined as

for each iteration with �k specified in the algorithm below.

(16)�(�) = (Hk + �kI + Bk)(Hk + �kI)
−1(�Bk − I)gk + gk.

(17)

âk
0
=

�2
k

4
‖Hk‖‖Jk‖‖Rk‖

âk
1
=

�2
k

4
‖Jk‖‖Rk‖ + �k‖Hk‖‖Jk‖2‖Rk‖

âk
2
= ‖Hk‖‖Jk‖2 + �k‖Hk‖‖Rk‖ + �k‖Jk‖2‖Rk‖

âk
3
= ‖Jk‖2 + �k‖Rk‖
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The key novelty is in (19) where we compute the search direction. The damp-
ing parameter �k is defined through steps 1 while the values of �k updated at lines 
12–16 resemble trust-region approach. Roughly speaking, if the decrease is suf-
ficient the damping parameter in the next iteration is decreased, otherwise we 
keep �k+1 = �k. In fact the choice of �k will be crucial for the convergence proof, 
see Lemma 8. The correction parameter �k is specified in line 2. Assuming the 
standard properties of the objective function, see ahead Assumption 2 and 3, one 
can always choose �k such that (18) holds. However, the value of �k depend on 
the norm of off-diagonal blocks. Thus the method essentially exploits the sparse 
structure we assume in this paper, see Assumption 1. The search direction dk is 
computed in line 4. Clearly, the system (19) is in fact completely separable and 
solving it requires solving K independent linear systems of the form (15).
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The right-hand side correction vector in each system is also stated in (15). Thus, 
for the parameter �k chosen in line 2, to compute dk we need to solve K systems of 
linear equations

each one of dimension ns, and 
∑K

s=1
ns = N. These systems can be solved indepen-

dently, either in parallel or sequentially, and the cost of their solving is in general 
significantly smaller than the cost of solving N dimensional LM system of linear 
equations. These savings are meaningful since the direction dk obtained this way 
is a descent direction as we will show in the convergence analysis. After that we 
invoke backtracking to fulfill the modified Armijo condition given in (20) and define 
a new iteration. Modification of the Armijo condition again depends on the norm of 
off-diagonal blocks as the step size is bounded above by 1∕�k. In the case of Bk = 0, 
i.e. if the system is completely separable we get �k = 1 and the classical Armijo 
condition is recovered. In this case the system (19) is the classical LM system and 
the algorithm reduces to the classical LM with line search. On the other hand, for 
Bk

≠ 0 the value of ‖Bk‖ fundamentally influences the values of �k and �k and the 
algorithm allows non-negligible values of �k, �k only if ‖Bk‖ is not loo large, i.e. if 
the problem has a certain level of separability

4 � Convergence analysis

The convergence analysis is divided in 2 parts, in Sect. 4.1. we prove that the algo-
rithm is well defined and globally convergent under a set of standard assumptions, 
while the local convergence analysis is presented in Sect. 4.2. The choice of �k and 
its influence are discussed in Sect. 4.3.

4.1 � Global convergence

The following assumptions are regularity assumptions commonly used in LM 
methods

Assumption 2  The vector of residuals R ∶ ℝ
N
→ ℝ

m is continuously 
differentiable.

Assumption 3  The Jacobian matrix J ∈ ℝ
m×N of R is L-Lipschitz continuous. 

That is, for every x, y ∈ ℝ
N

For the rest of this subsection we assume that {xk} is the sequence generated by 
Algorithm 1 with an arbitrary initial guess x0 ∈ ℝ

N.
The following Lemma, proved in [5], is needed for the convergence analysis.

Lemma 1  [5] If Assumptions A2 and A3 hold, for every x and y in ℝN we have

(Hk
s
+ �kI)d

k
s
= �k

K∑
j=1, j≠s

Bk
sj
gk
j
− gk

s
,

‖J(x) − J(y)‖ ≤ L‖x − y‖.
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Lemma 2  Assume that dk is computed as in (19) with �k satisfying (18), and that 
Assumption A2 holds. Then dk is a descent direction for F at xk. Moreover the fol-
lowing inequalities hold 

	 (i)	 (gk)⊤dk ≤ −
(1 − b)‖gk‖2
‖Hk‖ + 𝜇k

.

	 (ii)	 F(xk+1) ≤ F(xk) − ctk
(1 − b)‖gk‖2
‖Hk‖ + �k

.

Proof  We want to prove that (gk)⊤dk ≤ 0 for every index k. By definition of dk and 
using the fact that ‖A−1‖ ≥ ‖A‖−1 for every invertible matrix A, we have

Since 𝜇k > 0 and Hk is symmetric and positive semidefinite, we have

and

Using this two facts and the bound (18) on ‖�kBk‖ in inequality (22), we get

which is part i) of the Lemma. Since b < 1 this also implies that dk is a descent 
direction at iteration k. By (20) we have that for every iteration index k

Replacing (gk)⊤dk with part (i) of the statement we get ii).
	�  ◻

Remark 4.1  Lemma 2 states that if the right-hand side correction coefficient �k is 
chosen to satisfy the condition (18), then dk is a descent direction and therefore the 

(21)‖R(x + y) − R(x) − J(x)y‖ ≤
L

2
‖y‖2.

(22)

(gk)⊤dk = −(gk)⊤(Hk + 𝜇kI)
−1(I − 𝛽kBk)g

k

= −(gk)⊤(Hk + 𝜇kI)
−1gk + 𝛽k(g

k)⊤(Hk + 𝜇kI)
−1Bkg

k

≤ ‖gk‖2
�
‖𝛽kBk‖‖(Hk + 𝜇kI)

−1‖ − 1

‖Hk + 𝜇kI‖
�
.

‖(Hk + �kI)
−1‖ ≤

1

�min(Hk + �kI)
≤

1

�k

1

‖Hk + �kI‖ =
1

‖Hk‖ + �k

.

(gk)⊤dk ≤ ‖gk‖2
�
‖𝛽kBk‖‖(Hk + 𝜇kI)

−1‖ − 1

‖Hk + 𝜇kI‖
�

≤ ‖gk‖2
�

b𝜇k

‖Hk‖ + 𝜇k

1

𝜇k

−
1

‖Hk‖ + 𝜇k

�
=

b − 1

‖Hk‖ + 𝜇k

‖gk‖2,

F(xk + tkd
k) < F(xk) + ctk(d

k)⊤gk.
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backtracking procedure can always find a step size tk such that the Armijo condi-
tion (20) is satisfied. In particular this implies that Algorithm 1 is well defined. In 
Lemma 9 we will also prove that under the current assumptions the step size tk is 
bounded from below.

Lemma 3  If Assumption A2 holds and dk is the solution of (19), then for every itera-
tion k we have

Proof  By definition of dk and �k we have

which is the first inequality in the thesis. The second inequality follows directly from 
the fact that gk = J⊤

k
Rk . 	�  ◻

Lemma 4  If Assumption A2 holds, for every t ∈ [0, 1∕�k] we have

Proof  By Lemma 3 we have

Using this inequality in part i) of Lemma 2, we get

Using this inequality and the fact that gk = J⊤
k
Rk we then have

which is the thesis. 	�  ◻

Lemma 5  If Assumptions A2 and A3 hold, for every t ∈ [0, 1∕�k] we have

(23)‖dk‖ ≤
�k
�k

‖gk‖ ≤
�k
�k

‖Jk‖‖Rk‖.

(24)

‖dk‖ = ‖(Hk + �kI)
−1(I − �kBk)g

k‖
≤ ‖(Hk + �kI)

−1‖‖(I − �kBk)‖‖gk‖
≤

1

�min(Hk + �kI)
�k‖gk‖ ≤

�k
�k

‖gk‖,

(25)

‖Rk + tJkdk‖2 ≤ ‖Rk‖2 + t(gk)⊤dk + t2‖J‖2‖dk‖2

− t
(1 − b)

𝛾2
k

𝜇2

k

‖Hk‖ + 𝜇k

‖dk‖2

‖gk‖ ≥
�k

�k
‖dk‖.

(26)(gk)⊤dk ≤ −
1 − b

‖Hk‖ + 𝜇k

‖gk‖2 ≤ −
1 − b

𝛾2
k

𝜇2
k

‖Hk‖ + 𝜇k

‖dk‖2.

(27)

‖Rk + tJkdk‖2 = ‖Rk‖2 + 2t(gk)⊤dk + t2‖Jkdk‖2

≤ ‖Rk‖2 + t(gk)⊤dk + t2‖Jk‖2‖dk‖2 − t
(1 − b)

𝛾2
k

𝜇2
k

‖Hk‖ + 𝜇k

‖dk‖2
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Proof  Let us introduce the following function from ℝ to ℝm

and let us notice that by Lemma 1 we have that ‖Ψ(t)‖ ≤
L

2
t2‖dk‖2. Using this bound 

on Ψ and Lemma 4 we get

The thesis follows immediately. 	�  ◻

Lemma 6  Let us assume that Assumptions A2 and A3 hold, and let us denote with �∗
k
 

the largest root of the polynomial qk(�) =
∑4

j=0
ak
j
�j with

If 𝜇k > 𝜇∗
k
 , then tk = min{1, 1∕�k}.

Proof  Using the bound to ‖dk‖ given by Lemma 3, and the fact that 
tk ≤ min{1, 1∕�k} , we have

(28)

‖R(xk + tdk)‖2 ≤ ‖Rk‖2 + t(gk)⊤dk + t‖dk‖2
�
L2

4
t3‖dk‖2 + t‖Jk‖2

+ Lt‖Rk‖ + Lt2‖Jk‖‖dk‖ − 1 − b

𝛾2
k

𝜇2
k

‖Hk‖ + 𝜇k

�

(29)Ψ(t) = R(xk + tdk) − Rk − tJkd
k

(30)

‖R(xk + tkd
k)‖2 = ‖Ψ(t) + Rk + tJkd

k‖2
≤ ‖Ψ(t)‖2 + ‖Rk + tJkd

k‖2 + 2‖Ψ(t)‖‖Rk + tJkd
k‖

≤
1

4
L2t4‖dk‖4 + Lt2‖dk‖2(‖Rk‖ + t‖Jk‖‖dk‖) + ‖Rk‖2

+ t(gk)⊤dk + t2‖Jk‖2‖dk‖2 − t
(1 − b)

𝛾2
k

𝜇2
k

‖Hk‖ + 𝜇k

‖dk‖2.

(31)

ak
0
=

L2

4
‖Hk‖‖Jk‖‖Rk‖

ak
1
=

L2

4
‖Jk‖‖Rk‖ + L‖Hk‖‖Jk‖2‖Rk‖

ak
2
= ‖Hk‖‖Jk‖2 + L‖Hk‖‖Rk‖ + L‖Jk‖2‖Rk‖

ak
3
= ‖Jk‖2 + L‖Rk‖

ak
4
= −

1 − b

�2
k
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where qk is the polynomial with coefficients defined in (31). Together with Lemma 
5, this implies that for every t ≤ min{1, 1∕�k} we have

Since ak
4
< 0 we have that q(�) → −∞ as � → +∞ . This implies that if 𝜇k > 𝜇∗

k
 then 

q(𝜇k) < 0 and, by the inequality above, we have

for every t ≤ min{1, 1∕�k}. Since c ∈ (0, 1) , this implies in particular that 
min{1, 1∕�k} satisfies Armijo condition (20) and therefore tk = min{1, 1∕�k}. 	�  ◻

Lemma 7  If Assumptions A2 and A3 hold and at iteration k we have �k ≥ L , then 
tk = min{1, 1∕�k}.

Proof  By the previous Lemma, in order to prove the thesis it is enough to show that 
when �k ≥ L we have �k ≥ �∗

k
 with �∗

k
 largest root of the polynomial qk defined in 

(31). Using the Cauchy bound for the roots of polynomials [16], we have that

Since ak
4
= −

1−b

�2
k

 and �k ≤ 1 + b , we have that for every k

Using this inequality, the definition of �k , and the fact that âk
i
≥ 0 for every 

i = 0,… , 3 , we have

(32)

L2

4
t3‖dk‖2 + t‖Jk‖2 + Lt‖Rk‖ + Lt2‖Jk‖‖dk‖ − 1 − b

�2
k

�2

k

‖Hk‖ + �k

≤ t3
L2�2

k

4�2

k

‖Jk‖2‖Rk‖2 + t‖Jk‖2 + Lt‖Rk‖ + t2
L�k
�k

‖Jk‖2‖Rk‖

−
1 − b

�2
k

�2

k

‖Hk‖ + �k

≤
L2

4�2

k

‖Jk‖2‖Rk‖2 + ‖Jk‖2 + L‖Rk‖ + L

�k

‖Jk‖2‖Rk‖ − 1 − b

�2
k

�2

k

‖Hk‖ + �k

=
1

�2

k
(‖Hk‖ + �k)

qk(�k),

(33)‖R(xk + tdk)‖2 ≤ ‖Rk‖2 + t(gk)⊤dk + t
qk(𝜇k)

𝜇2
k
(‖Hk‖ + 𝜇k)

‖dk‖2

(34)‖R(xk + tdk)‖2 ≤ ‖Rk‖2 + t(gk)⊤dk

(35)|�∗
k
| ≤ 1 +max

i=0∶3

|ak
i
|

|ak
4
| .

(1 + b)2

1 − b
≥

1

|ak
4
| .



	 N. Krejić et al.

1 3

This, together with (35) implies that �k ≥ �∗
k
 which concludes the proof. 	�  ◻

Lemma 8  If Assumptions A2 and A3 hold then we have tk = min{1, 1∕�k} for infi-
nitely many values of k.

Proof  By Lemma 7 we have that tk = min{1, 1∕�k} whenever �k ≥ L. Assume by 
contradiction that there exists an iteration index k̄ such that for every k ≥ k̄ the step 
size tk is strictly smaller than min{1, 1∕�k}. Since in Algorithm 1 we have �k+1 = 2�k 
whenever tk < min{1, 1∕𝛾k} , this implies that for every k ≥ k̄ we have

Therefore there exists k′ ≥ k̄ such that �k′ ≥ L which implies tk = min{1, 1∕�k} , con-
tradicting the fact that tk < min{1, 1∕𝛾k} for every k ≥ k̄ . 	�  ◻

The above Lemma allows us to prove the first global statement below. Namely, 
we prove that any bounded iterative sequence has at least one accumulation point 
which is stationary.

Theorem 1  Assume that Assumptions A2, A3 hold and that {xk} is a sequence gener-
ated by Algorithm 1 with arbitrary x0 ∈ ℝ

N . If {xk} is bounded, then it has at least 
one accumulation point that is also a stationary point for F(x).

Proof  Since {xk} ⊂ ℝ
n is bounded and by Lemma 8 the sequence of step sizes {tk} 

takes value min{1, 1∕�k} infinitely many times, we can take a subsequence 
{xkj} ⊂ {xk} such that tkj = min{1, 1∕�kj} for every j and that xkj converges to x̄ as j 
tends to infinity. By Lemma 2 we have

which implies that

By definition of �k and (18) we have that min{1, 1∕�k} ≤ (1 + b) . Since {xkj} is a 
compact subset of ℝN , and R(x) is twice continuously differentiable, we have that 
the sequences ‖Hkj

‖ , ‖Rkj
‖ , and ‖Jkj‖ are bounded from above, which by definition of 

�k imply that ‖Hkj
‖ + �kj

 is also bounded from above. This, together with (36) 
implies that ‖gkj‖ vanishes as j tends to infinity and therefore x̄ is a stationary point 
of F(x). 	� ◻

𝜇k = 1 +
(1 + b)2

1 − b
max
i=0∶3

âk
i
= 1 +

(1 + b)2

1 − b
max
i=0∶3

|âk
i
| ≥ 1 +max

i=0∶3

|âk
i
|

|ak
4
| .

�k+1 = 2�k = 2k−k̄�k̄.

c(1 − b)

∞�
j=0

1

min{1, 1∕𝛾kj}

‖gkj‖2
‖Hkj

‖ + 𝜇kj

≤ F0 < ∞

(36)lim
j→+∞

1

min{1, 1∕�kj}

‖gkj‖2
‖Hkj

‖ + �kj

= 0.
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Lemma 9  If Assumptions A2 and A3 hold and �min > 0 then for every index k we 
have

Proof  From inequality (32), since t ≤ min{1, 1∕�k} , we have

where qk is defined in (31). Using the inequality above together with Lemma 7 we 
have

Let us define

We can easily see that if t ≤ t̄k then the term between parentheses of the previous 
inequality is non-positive and therefore

Since in Algorithm 1 we take c ∈ (0, 1) this implies that if tk ≤ t̄k Armijo condition 
(20) holds, and therefore the accepted stepsize tk satisfies tk ≥ 𝜈 t̄k.

By Lemma 8 we have that if �k ≥ L then tk = min{1, 1∕�k} ≥ 1∕(b + 1) . Let us 
consider the case when �k < L, which also implies 𝜇k ≤ 𝜇̄k with

Using the definition of 𝜇̄k and the fact that 𝜇̄k ≥ 1 and 𝜇k ≤ 𝜇̄k , we have

tk ≥ min

{
�
�8
min

4L8
,

1

1 + b

}
.

(37)

L2

4
t3‖dk‖2 + t‖Jk‖2 + Lt‖Rk‖ + Lt2‖Jk‖‖dk‖ − 1 − b

�2
k

�2
k

‖Hk‖ + �k

≤
1

�2
k
(‖Hk‖ + �k)

��
qk(�k) +

1 − b

�2
k

�4
k

�
t −

1 − b

�2
k

�4
k

�
,

(38)

‖R(xk + tdk)‖2 ≤ ‖Rk‖2 + t(gk)⊤dk

+ t‖dk‖2 1

𝜇2
k
(‖Hk‖ + 𝜇k)

��
qk(𝜇k) +

1 − b

𝛾2
k

𝜇4
k

�
t −

1 − b

𝛾2
k

𝜇4
k

�

t̄k ∶=
𝜇4
k

𝛾2
k

1−b
qk(𝜇k) + 𝜇4

k

.

(39)‖R(xk + tdk)‖2 ≤ ‖Rk‖2 + t(gk)⊤dk.

𝜇̄k = 1 +max
i=0∶3

|ak
i
|

|ak
4
| .
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Since we are considering the case �k < L , we have âk
i
≤

�2
k

L2
|ak

i
| for every i = 0,… , 3. 

Moreover, 1

|ak
4
| =

�2
k

1−b
≤

(1+b)2

1−b
. This implies

Using this inequality and (40) in the definition of t̄k we get

which gives us the thesis. 	�  ◻

Finally, we can state the global convergence results.

Theorem 2  If Assumptions A2 and A3 hold and �min > 0 then every accumulation 
point of the sequence {xk} is a stationary point of F(x).

Proof  Let x̄ be an accumulation point of {xk} and let {xkj} be a subsequence converg-
ing to x̄. By Lemma 2 we have

and therefore that

By Lemma 9 the sequence {tk} is bounded from below while by continuity of 
J(x),R(x),H(x) , and of the norm 2, we have that ‖Hkj

‖ + �kj
 is bounded from above. 

This implies

(40)

𝛾2
k

1 − b
qk(𝜇k) + 𝜇4

k
= −𝜇4

k
+

ak
3

|ak
4
|𝜇

3
k
+

ak
2

|ak
4
|𝜇

2
k
+

ak
1

|ak
4
|𝜇k +

ak
0

|ak
4
| + 𝜇4

k

≤
ak
3

|ak
4
| 𝜇̄

3
k
+

ak
2

|ak
4
| 𝜇̄

2
k
+

ak
1

|ak
4
| 𝜇̄k +

ak
0

|ak
4
|

≤ 4

(
1 +max

i=0∶3

|ak
i
|

|ak
4
|

)
𝜇̄3
k
= 4𝜇̄4

k
.

𝜇k =1 +
(1 + b)2

1 − b
max
i=0∶3

âk
i
≥ 1 +

(1 + b)2

1 − b

�2

k

L2
max
i=0∶3

|ak
i
|

≥1 +
�2

k

L2
max
i=0∶3

|ak
i
|

|ak
4
| ≥

�2

k

L2

(
1 +max

i=0∶3

|ak
i
|

|ak
4
|

)
=

�2

k

L2
𝜇̄k.

(41)t̄k =
𝜇4
k

𝛾2
k

1−b
qk(𝜇k) + 𝜇4

k

≥
𝜇4
k

4𝜇̄4
k

≥

(
�2
k

L2
𝜇̄k

)4

1

4𝜇̄4
k

≥
�8
min

4L8

c(1 − b)

∞�
j=0

tkj

‖gkj‖2
‖Hkj

‖ + 𝜇kj

≤ F0 < ∞

lim
j→=∞

tkj

‖gkj‖2
‖Hkj

‖ + �kj

= 0.
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and thus x̄ is a stationary point of F(x). 	�  ◻

4.2 � Local convergence

Let us now analyze the local convergence. We are going to show that the LMS 
method generates a linearly converging sequence under a set of suitable assump-
tions. Notice that the assumptions we use are standard, see [2] plus the sparsity 
assumption that we already stated. Let S denote the set of all stationary points of 
‖R(x)‖ , namely S = {x ∈ ℝ

N|J(x)⊤R(x) = 0}. Consider a stationary point x∗ ∈ S 
and a ball B(x∗, r) with radius r > 0 around it. In the rest of the section we make the 
following assumptions, see [2].

Assumption 4  There exists 𝜔 > 0 such that for every x ∈ B(x∗, r)

Assumption 5  There exists 𝜎 > 0 such that for every x ∈ B(x∗, r) and every 
z̄ ∈ B(x∗, r) ∩ S

From now on we denote with �k the relative residual of the linear system (11) by the 
approximate solution dk . That is

This residual is already considered in (16), where we briefly mentioned that we will 
determine �k such that this residual is minimized. Further details on this choice are 
presented in Sect. 4.3 and in this part we will keep �k without further specification, 
i.e., assuming only that it is small enough that local convergence requirements can 
be fulfilled. Clearly, for the completely separable problems, i.e. Bk = 0 we get �k = 0 
and hence the value of �k depends on M stated in Assumption  1 - if M is small 
enough, i.e., if the problem is nearly-separable to the sufficient degree it is reason-
able to expect that the values of �k will be small enough with a suitable choice of �k.

The inequalities in the Lemma below are direct consequences of Assumption 3, 
their proofs can be found in [2].

Lemma 10  Let Assumption 2 hold. There exist positive constants L2, L3 and L4 such 
that for every x, y ∈ Dr, z̄ ∈ B(x∗, r) ∩ S the inequalities below hold:

0 = lim
j→+∞

‖gkj‖ = ‖g(x̄)‖

𝜔 dist (x, S) ≤ ‖J(x)⊤R(x)‖

‖(J(x) − J(z̄))⊤R(z̄)‖ ≤ 𝜎‖x − z̄‖.

(42)‖gk + (J⊤
k
Jk + 𝜇kI)d

k‖ ≤ 𝜌k‖gk‖.

(43)‖R(x) − R(y) − J(y)(x − y)‖ ≤
L

2
‖x − y‖2

(44)‖R(x) − R(y)‖ ≤ L2‖x − y‖
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From now on, given any point x ∈ ℝ
N , we denote with x̄ the point in S that 

realizes ‖x − x̄‖ = dist (x, S).

Lemma 11  There exists r > 0 and c1 > 0 such that if xk ∈ B(x∗, r) then 
‖dk‖ ≤ c1 dist (x

k, S).

Proof  Let us define H∗ = H(x∗) . Consider the eigendecomposition of 
H∗ = S⊤

∗
S∗ = Q∗�∗Q

⊤
∗
 where �∗ is a diagonal matrix containing the ordered eigen-

values of S⊤
∗
S∗ and Q∗ is the matrix containing the orthogonal eigenvectors corre-

sponding to the eigenvalues in �∗. Denoting with p the rank of S⊤
∗
S∗ we have that

with Λ∗1 = diag (�∗
1
,… , �∗

p
) with 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆p > 0. Consider the eigendecom-

position of Hk = Qk�kQ
⊤
k
 and consider the partition of Qk and �k corresponding to 

the partition of �∗ ∶

with Λk1 = diag (�k
1
,… , �k

p
) ∈ ℝ

p×p , Λk2 = diag (�k
p+1

,… , �k
N
) ∈ ℝ

(N−p)×(N−p) , 
Qk1 ∈ ℝ

n×p , Qk2 ∈ ℝ
n×(N−p) and �k

1
≥ ⋯ ≥ �k

p
 . Since R is continuously differentiable 

on B(x∗, r) the entries of S(x)⊤S(x) are continuous functions of x and thus the eigen-
values of S(x)⊤S(x) are continuous function of x . Therefore, for r small enough we 
have �k

i
≥

1

2
�∗
p
 for every i = 1,… , p. Moreover, since Qk is an orthogonal matrix, we 

have that ‖dk‖2 = ‖Q⊤
k1
dk‖2 + ‖Q⊤

k2
dk‖2. For i = 1, 2 , by definition of dk , we have

so that

By definition of �k , inequality (45), and the fact that �k
p
≥

1

2
�∗
p
 we have

(45)‖J(x)⊤R(x) − J(y)⊤R(y) � ≤ L3‖x − y‖

(46)
‖J(x)⊤R(x) − J(y)⊤R(y) − J(x)⊤J(x)(x − y)‖
≤ L4‖x − y‖2 + ‖(J(x) − J(y))⊤R(y)‖

(47)
‖(J(x) − J(y))⊤R(y)‖ ≤ LL2‖x − z̄‖‖y − x̄‖ + LL2‖y − z̄‖2

+ ‖J(x)⊤R(z̄)‖‖J(y)⊤R(z̄)‖

�∗ =

(
Λ∗1 0

0 0

)

Qk =
(
Qk1,Qk2

)
, �k =

(
Λk1 0

0 Λk2

)

(48)Qki(𝛽kBk − I)gk = Qki(Hk + 𝜇I)dk = (�ki + 𝜇I)Q⊤
ki
dk

(49)‖Q⊤
ki
dk‖ = ‖(�ki + 𝜇I)−1(𝛽kBk − I)gk‖.



1 3

A split Levenberg‑Marquardt method for large‑scale sparse…

and analogously,

Therefore the thesis holds with

for � = 1 + b ≥ �k, and �min = infk �k ≥ 1.	�  ◻

Lemma 12  If xk, xk+1 ∈ B(x∗, r∕2) then

where �max = maxk �k with �k defined in (42) and x̄k is a point in S such that 
dist (xk, S) = ‖xk − x̄k‖.

Proof  Since

we have

By definition of �k there holds

Replacing these two inequalities in (52) and using Lemma 11 we get the thesis. 	�  ◻

(50)

‖Q⊤
k1
dk‖ ≤ ‖(�k1 + 𝜇I)−1‖‖(𝛽kBk − I)‖gk‖ ≤

𝛾k

𝜆k
p
+ 𝜇k

‖gk‖

≤
2𝛾kL3
𝜆∗
p

‖xk − x̄k‖ ≤
2𝛾kL3
𝜆∗
p

dist (xk, S)

‖Q⊤
k2
dk‖ ≤

𝛾k
𝜇k

‖gk‖ ≤
𝛾kL3
𝜇k

dist (xk, S).

c1 = �L3

(
4

(�∗
p
)2

+
1

�2
min

)1∕2

(51)
𝜔 dist (xk+1, S) ≤ (L4c

2
1
+ LL2(2 + c1)(1 + c1))‖xk − x̄k‖2

+(𝜇kc1 + 𝜌maxL3)‖xk − x̄k‖ + ‖J⊤
k
R(x̄k)‖ + ‖(Jk+1)⊤R(x̄k)‖

(52)

𝜔 dist (xk+1, S) ≤ ‖gk+1‖ ≤ ‖gk + J⊤
k
Jkd

k‖ + ‖gk+1 − gk − (Jk)
⊤Jk(x

k+1 − xk)‖
≤ L4‖dk‖2 + ‖(Jk − Jk+1)

⊤Rk+1‖ + 𝜇k‖dk‖
+ ‖gk + (J⊤

k
Jk + 𝜇kI)d

k‖.

(53)

‖(Jk − Jk+1)
⊤Rk+1‖ ≤ LL2(‖xk − x̄k‖ + ‖xk+1 − x̄k‖)‖xk+1 − x̄k‖

+ ‖J⊤
k
R(x̄k)‖ + ‖(Jk+1)⊤R(x̄k)‖

≤ LL2(1 + c1)(2 + c1)‖xk+1 − x̄k‖2
+ ‖J⊤

k
R(x̄k)‖ + ‖(Jk+1)⊤R(x̄k)‖.

(54)‖gk + (J⊤
k
Jk + 𝜇kI)d

k‖ ≤ 𝜌max‖gk‖ ≤ 𝜌maxL3‖xk − x̄k‖



	 N. Krejić et al.

1 3

Lemma 13  Assume that there exists � ∈ (0, 1) such that 
𝜂𝜔 > c1𝜇max + 𝜌maxL3 + (2 + c1)𝜎,

If xk, xk+1 ∈ B(x∗, r∕2) and dist (xk, S) ≤ � then

Proof  By Assumption 5 and Lemma 11

and

Therefore, from Lemma 12, since we are assuming dist (xk, S) ≤ �, there follows

and we get the thesis by definition of �. 	�  ◻

The above Lemmas allow us to prove the local linear convergence.

Theorem 3  Assume that Assumptions 2-5 hold and that there exists � ∈ (0, 1) such 
that 𝜂𝜔 > 𝜇maxc1 + L3𝜌max + (2 + c1)𝜎 and let us define

If x0 ∈ B(x∗, �) then dist (xk, S) → 0 linearly and xk → x̄ ∈ S ∩ B(x∗, r∕2).

Proof  We prove by induction on k that xk ∈ B(x∗, r∕2) for every k.
For k = 1 , by Lemma 11 and the definition of � , we have

Given k ≥ 1 , assume that for every j = 1,… , k − 1 there holds dist (xj, S) ≤ � and 
xj ∈ B(x∗, r∕2) . Then we have

� =
�� − (c1�max + �maxL3 + (2 + c1)�)

L4c
2
1
+ LL2(1 + c1)(2 + c2)

.

dist (xk+1, S) ≤ � dist (xk, S).

‖J⊤
k
R(x̄k)‖ ≤ ‖(Jk − J(x̄k))⊤R(x̄k)‖ ≤ 𝜎‖xk − x̄k‖

‖(Jk+1)⊤R(x̄k)‖ ≤ ‖(Jk+1 − J(x̄k))⊤R(x̄k)‖ ≤ 𝜎(1 + c1)‖xk − x̄k‖

(55)

𝜔 dist (xk+1, S) ≤ (L4c
2
1
+ LL2(2 + c1)(1 + c1))‖xk − x̄k‖2

+ (𝜇kc1 + 𝜌maxL3 + (2 + c1)𝜎)‖xk − x̄k‖
≤
�
(L4c

2
1
+ LL2(2 + c1)(1 + c1))𝜀 + (𝜇kc1 + 𝜌maxL3 + (2 + c1)𝜎)

�‖xk − x̄k‖

� = min

{
�� − (c1�max + �maxL3 + (2 + c1)�)

L4c
2
1
+ LL2(1 + c1)(2 + c2)

,
1

2

r(1 − �)

1 + c1 − �

}
.

‖x1 − x∗‖ ≤ ‖x1 − x0‖ + ‖x0 − x∗‖ ≤ ‖do‖ + � ≤ �(1 + c1) ≤
r

2
.

‖xk+1 − x∗‖ ≤ ‖x1 − x∗‖ +
k�

j=1

‖dj‖
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and the fact that the right-hand side is smaller than r/2 follows again from Lemma 
11 and the definition of � . So, xk ∈ B(x∗, r∕2) for every k and to prove the first part 
of the thesis it is enough to apply Lemma 13.

Therefore, if there exists x̄ = lim xk , then the limit has to belong to S ∩ B(x∗, r∕2) , 
and to prove the second part of the thesis we only need to prove that such a limit 
exists. For every index k we have that ‖dk‖ ≤ c1��

k , so given any two indices l, q, 
we have

and {xk} is a Cauchy sequence in ℝN . So, it is convergent. 	�  ◻

Remark 4.2  We notice that the condition

in Theorem 3 is analogous to the condition used to prove local linear convergence in 
[2], namely 𝜂𝜔 > (2 + c1)𝜎 . The two additional terms in the condition in Theorem 3 
are a consequence of the main differences between Algorithm  1 and the method 
considered in [2]. In particular �maxc1 depends on the different choice of �k , while 
L3�max arise from the fact that at each iteration the Levenberg Marquardt system is 
solved inexactly. We also notice that, recalling the definition of c1 in Lemma 11, the 
condition above implies

which in turn is analogous to the condition 𝜎 < 𝜆∗
n
 used for the convergence analysis 

of classical Levenberg-Marquardt method in the case of problems with nonsingular 
Jacobian and nonzero residual at the solution [5].

4.3 � Choice of ˇ
k

The choice of � is mentioned several times as a crucial ingredient of the algorithm we 
consider. Recall that the role of �k is to compensate, if possible, information that we 
disregarded by splitting the original LM system into k separable systems in a compu-
tationally efficient way. Furthermore, due to condition (18) �k can have non-negligi-
ble value only if ‖Bk‖ is not too large, i.e., if the problem is sparse enough and that is 
enough for global convergence. To obtain local linear convergence we need to make the 
residual small enough, recall (42). An intuitive approach is to determine �k such that 
the residual given by the solution of (14) with respect to the exact linear system (12) is 
minimized. That is, we have

‖xl − xq‖ ≤

l�
j=q

‖dj‖ ≤

∞�
j=q

‖dj‖ ≤ c1�

∞�
j=q

�j

𝜂𝜔 > 𝜇maxc1 + L3𝜌max + (2 + c1)𝜎

𝜎 ≤
1

2 + c1
(𝜂𝜔 − c1𝜇max − L3𝜌max) ≤

𝜂𝜔

c1
<

𝜂𝜔

2𝛾L3
𝜆∗
p
< 𝜆∗

p
,

(56)�k = argmin �∈ℝ‖�k(�)‖22
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with

Defining u = Bkg
k, v = Bk(Hk + �kI)

−1Bkg
k, w = Bk(Hk + �kI)

−1gk, we have

and the solution of (56) is given by

Let us now consider the actual computation of �k. To compute the vectors u, v, w 
we first compute u = Bkg

k directly, then we find v̂, ŵ such that (Hk + �kI)v̂ = u and 
(Hk + �kI)ŵ = gk , and finally we take v = Bkv̂ , w = Bkŵ. Since (Hk + �kI) is block-
diagonal, (Hk + �kI)v̂ = u can be decomposed into independent linear systems with 
coefficient matrices Hk

s
+ �kI for s = 1,… ,K and we can proceed analogously for 

(Hk + �kI)ŵ = gk . Moreover, if we solve (Hk + �kI)v̂ = u by computing a factori-
zation of Hk

s
+ �kI, then the same factorization can be used to also solve the linear 

system for ŵ and later to solve (15), so the computation of �k is not expensive.
Having �k computed as above, for the residual �k(�k) we have

If the vector (Hk + �kI)
−1gk is in the null space of Bk , we have that �k = 0 and 

��k(�k)‖ = 0 , so in this case the direction dk is equal to the Levenberg-Mar-
quardt direction. If gk is in the kernel of Bk , then the residual ‖�(�k)‖ is equal to 
‖Bk(Hk + �kI)

−1gk‖2 for any choice of the parameter �. If neither (Hk + �kI)
−1gk nor 

gk are in the null space of Bk , then the optimal �k (58) is nonzero and so the right-
hand side correction is effective in reducing the residual in the linear system. In gen-
eral we have that

so �k in (42) is bounded from above by ‖Bk‖‖(Hk + �kI)
−1‖. Taking into account 

Assumption  1, the definition of �k and the fact that this implies in particular 
�k ≥

(b+1)2

1−b
‖Jk‖2 , we have

From the inequalities above, we have the dependence of the relative residual �k on 
the norm of the matrix ‖Bk‖ , i.e., on the constant M which measures the importance 
of the part that we disregard when approximating the Levenberg-Marquardt system 
with a block diagonal one. We can also notice that the residual is smaller for larger 
values of the damping parameter �k.

(57)�k(�) = (Hk + Bk + �kI)(Hk + �kI)
−1(�Bk − I)gk + gk.

‖𝜑k(𝛽)‖2 = 𝛽2‖u + w‖2 − 2𝛽(u + v)⊤w + ‖w‖2

(58)𝛽k =
(u + v)⊤w

‖u + v‖2 .

(59)
‖𝜑k(𝛽k)‖2 = ‖Bk(Hk + 𝜇kI)

−1gk‖2 + 𝛽2
k
‖Bk(I + (Hk + 𝜇kI)

−1Bk)g
k‖2

− 2𝛽k(g
k)⊤(Hk + 𝜇kI)

−⊤B⊤
k
Bk(I + (Hk + 𝜇kI)

−1Bk)g
k.

(60)‖�k(�k)‖ ≤ ‖Bk(Hk + �kI)
−1gk‖ ≤ ‖Bk‖‖(Hk + �kI)

−1‖‖gk‖

(61)𝜌k ≤ ‖Bk‖‖(Hk + 𝜇kI)
−1‖ ≤

M‖Jk‖2
𝜇k

≤
M(1 − b)

(1 + b)2
< M.
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5 � Implementation and numerical results

In this section we present the results of a set of numerical experiments carried 
out to investigate the performance of the proposed method, compare it with clas-
sical Levenberg-Marquardt method and analyze the effectiveness of the right-
hand side correction. For all the tests presented here we consider the case of 
Network Adjustment problems [17], briefly described in the Subsection 5.1. The 
LMS method is defined assuming that we can take advantage of the sparsity by 
suitable partition of variables and residuals and that we are able to apply the 
efficient right-hand-side correction as described in the Subsection 4.3, i.e., com-
puting �k as in (58).

5.1 � Least squares network adjustment problem

Consider a set of points {P1,… ,Pn} in ℝ2 with unknown coordinates, and 
assume that a set of observations of geometrical quantities involving the points 
are available. Least Squares adjustments consists into using the available meas-
urements to find accurate coordinates of the points, by minimizing the residual 
with respect to the given observations in the least squares sense.

We consider here network adjustment problems with three kinds of observa-
tions: point-point distance, angle formed by three points and point-line distance.

In order to be able to consider suitable increasing sizes, the problems are 
generated artificially, taking into account the information about average connec-
tivity and structure of the network obtained from the analysis of real cadastral 
networks. The problems are generated as follows. Given the number of points 
n we take {P1,… ,Pn} by uniformly sampling 25% of the points on a regular 
2
√
n × 2

√
n grid and we generate observations of the three kinds mentioned 

above until the average degree of the points is equal to 6. Each observation is 
generated by randomly selecting the points involved and generating a random 
number with Gaussian distribution with mean equal to the true measurement and 
given standard deviation. We use a standard deviation equal to 0.01 and 1 degree 
for distance and angle observations respectively. For all points we also add coor-
dinates observations: for 1% of the points we use standard deviation 0.01, while 
for the remaining 99% we use standard deviation 1.

The optimization problem is defined as a weighted least squares problem

with rj(x) = w−1
j
r̂j(x) , where r̂j is the residual function of the j-th observation and wj 

is the corresponding standard deviation.
In Fig.  1 we present the spyplot of the matrix J⊤J for a problem of size 

35,000.

(62)min
x∈ℝN

1

2

m�
j=1

rj(x)
2 = min

x∈ℝN

1

2
‖R(x)‖2

2
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5.2 � Comparison with Levenberg‑Marquardt method

In all the tests that follow we use a Python implementation of Algorithm LMS and 
classical LM method, and PyPardiso [9] to solve the sparse linear systems that arises 
at each iteration. All the tests were performed on a computer with Intel(R) Core(TM) 
i7-1165G7 processor @ 2.80GHz and 16.0 GB of RAM running Windows 10. All 
the methods that we consider have the same iteration structure. The main differ-
ence is the fact that while in LM method the linear system is solved directly using 
PyPardiso, in LMS we first perform the splitting and then use the same PyPardiso 
function to solve the resulting linear systems, therefore the comparisons in terms of 
time that we present are meaningful.

The partition of variables and residuals into sets Es, s = 1,… ,K is assumed to be 
given before application of LMS algorithm. To compute the partitioning of the vari-
ables, we use METIS [12] which, given a network and an integer K > 1 finds a parti-
tion of the vertices of the network into K subsets of similar sizes, that approximately 
minimizes the number of edges between nodes in different subsets. The partition is 
computed by METIS in a multilevel fashion. Starting from a coarse representation 
of the graph, an initial partition is computed, projected onto a denser representation 
of the network and then refined. This process is repeated on a sequence of progres-
sively more dense networks, up until the original graph.

Fig. 1   Sparsity plot of the coefficient matrix for N= 35,000
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In all the tests that we considered, the time needed to compute the partitioning is 
negligible with respect to the overall computation time. This is in part due to the fact 
that the partitioning is computed only once at the beginning of the procedure and not 
repeated at each iteration.

We now consider a set of problems of increasing size and we solve each prob-
lem with the LMS method and correction coefficient �k computed as in (58). The 
problems are also solved with LM method. We consider problems with size between 
20,000 and 120,000 and we plot the time taken by the two methods to reach termina-
tion. Both methods use as initial guess the coordinate observations available in the 
problem description and they stop when at least 68%, 95%, 99.5% of the residuals 
is smaller than 1, 2 and 3 times the standard deviation respectively. The obtained 
results are in the first plot of Fig. 2. To give a better comparison, in the second plot 
we extend the size of the problems solved with the proposed method up to 1 million 
variables. Clearly, LM method could not cope with such large problems (in our test-
ing environment) while LMS successfully solved problems of increasing dimensions 
up to final value of 1 million variables. In Fig. 3 we have the log-log plot of the time 

Fig. 2   Time comparison between classical Levenberg-Marquardt ( K = 1 ) and the proposed method 
( K > 1 ) with optimal �

k
 for problems of increasing size

Fig. 3   Dependence of time on the size of the problem - loglog plot, N ≤ 106.
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necessary to solve each problem, compared with different rates of growth. For the 
method with K > 1 , a small number of values of the parameter K was tested and the 
best one was selected to perform the comparison. The value K used at each dimen-
sion is reported in Fig. 8.

From Fig. 2 one can see that the LMS method with K > 1 results in a significant 
reduction of the time necessary to reach the desired accuracy, compared to Leven-
berg-Marquardt method. Moreover, from the second plot of Fig. 2 and from Fig. 3 
we can notice that, on the problems that we considered, the time taken by the pro-
posed method grows approximately as n1.3 , which suggests the fact that the method 
discussed in this paper would be suitable for problems of very large dimensions.

To better understand the behaviour of the method, in Fig.  4 we plot the men-
tioned percentages and the value of the relative residual Fk∕F0 at each iteration, for 
a problem of size N = 105 and K = 15. For the same problem, in Fig. 5 we plot the 

Fig. 4   The percentage of points within standard deviation measure (left) and the relative residual (right) 
per iteration for N = 105 and K = 15.

Fig. 5   Distribution plot of the coordinate error for all points, at the initial guess (left) and at the final iter-
ate (right)
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distribution plot of the coordinate error with respect to the true solution, for the ini-
tial guess and the estimated solution (left and right-hand plot, respectively).

5.3 � Influence of the parameters K and ˇ
k

Let us now study how the number of subproblems K influences the performance of 
the method. We consider two problems with 100,000 and 200,000 variables respec-
tively and we solve them with the proposed algorithm for a set of increasing values 
of K. For each considered K we plot in Fig. 6 the time taken by the method to arrive 
at the desired accuracy. The initial guess and the stopping criterion are defined as in 
the previous test.

One can notice that the time decreases as K increases up to an optimal value 
( K = 15 for the first problem and K = 30 for the second one) after which the time 
starts to increase again. The reason behind this behavior is that larger values of K 
yield smaller linear system and therefore cheaper iterations, but also less accurate 
search direction dk resulting in a larger number of iterations necessary to achieve the 
desired accuracy. For large values of K the increase in the number of iterations out-
weights the saving in the solution of the linear system and the overall computation 
cost increases. Finally we can notice that, despite the existence of an optimal value 
of the parameter K, it appears from this test that there exists an interval of values for 
which the cost of the method is comparable. This suggests that fine-tuning of the 
parameter K is not necessary and that, given a problem, choosing K according to the 
number of variables should be enough to achieve good performance.

To see that the proposed right-hand side correction improves the performance of 
the method, we repeat the test presented in Subsection 5.2 for N = 106 , but the com-
parison is here carried out with the case �k = 0 that is, when the linear system is 
approximated as in (13) but no right-hand side correction is applied.

For both methods, a few different values of the parameter K were tested. In Fig. 7 
we report the time needed by the two methods to satisfy the convergence criterion, 
for the best K among the considered values. In figure 8 we plot for each method and 
each size the value of the parameter K corresponding to the timings in Fig. 7.

We can see that applying the proposed right-hand side correction effectively 
reduce the time necessary to satisfy the stopping condition. From Fig.  7 one 
can notice that the optimal K for the method with right-hand side correction is 

Fig. 6   Time to compute a solution for optimal �
k
 and different values of K, N = 105 and N = 2 ⋅ 105
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generally higher than the method without correction. These two results together 
suggests that the method with right-hand side correction is able to achieve a 
better performance because it allows the set of variables to be partitioned into 
smaller subsets, which implies a faster computation of the direction at each iter-
ation, before incurring into a decrease in the performance due to the additional 
number of iterations necessary to reach the desired accuracy.

Fig. 7   Time to compute the solution with �
k
= 0 and optimal �

k

Fig. 8   Selected values of the number of subproblems K 
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6 � Conclusions

We presented a method of inexact Levenberg-Marquardt type for sparse problems 
of very large dimension. Assuming that the problem is nearly separable, i.e., suf-
ficiently sparse such that each component of the residual depends only on few 
variables, the proposed methods is defined through splitting into a set of K inde-
pendent systems of equations of smaller dimension. The decoupling is done tak-
ing into account dense diagonal blocks of LM system and disregarding hopefully 
very sparse off-diagonal blocks. To compensate for disregarded off-diagonal block 
we introduced a correction on the right-hand side of the system in such way that 
decoupling is maintained but information contained in the off-diagonal matrix is 
preserved in a computationally affordable way, using a single parameter that can 
be computed in the same fashion - solving a sequence of small dimensional sys-
tems of linear equations. The key idea is that solving K systems of smaller dimen-
sions, that can be done sequentially or in parallel, is significantly cheaper than 
solving a large system of linear equations even if the system is sparse.

The presented algorithm is globally convergent under the set of standard 
assumptions for a suitable choice of regularization parameter in LM system. In 
fact the global convergence does not rely on separability assumption at all as one 
can show that the direction computed by decoupled sequence of LM systems is 
descent direction. To achieve global convergence we rely on line-search and regu-
larization parameter update by a trust-region like scheme, similarly to [11]. Local 
linear convergence is proved under the standard conditions and assuming that the 
residual of linear system is small enough in each iteration. Hence, the near-sepa-
rability assumption plays a role in local convergence. To achieve small residuals 
for the decoupled problem we rely heavily on the right-hand side correction and 
discuss the optimal choice of parameter that is employed in the correction. Theo-
retical considerations are supported by numerical examples. We consider the net-
work adjustment problem on simulated data, inspired by a real-world problem of 
cadaster maps, of growing size and with the proposed method solve problems of 
up to one million of variables. Comparison with the classical LM is presented and 
it is shown that the proposed method is significantly faster and able to cope with 
large dimensions. The experiments reported in this paper are done in sequential 
way while the parallel implementation will be a subject of further research.
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