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Abstract
In this paper we analyze the metastable behavior for the Ising model that evolves under
Kawasaki dynamics on the hexagonal lattice H2 in the limit of vanishing temperature. Let
Λ ⊂ H

2 a finite set which we assume to be arbitrarily large. Particles perform simple
exclusion on Λ, but when they occupy neighboring sites they feel a binding energy−U < 0.
Along each bond touching the boundary of Λ from the outside to the inside, particles are
created with rate ρ = e−Δβ , while along each bond from the inside to the outside, particles
are annihilated with rate 1, where β is the inverse temperature and Δ > 0 is an activity
parameter. For the choice Δ ∈ (U , 3

2U ) we prove that the empty (resp. full) hexagon is
the unique metastable (resp. stable) state. We determine the asymptotic properties of the
transition time from the metastable to the stable state and we give a description of the critical
configurations. We show how not only their size but also their shape varies depending on the
thermodynamical parameters. Moreover, we emphasize the role that the specific lattice plays
in the analysis of the metastable Kawasaki dynamics by comparing the different behavior of
this system with the corresponding system on the square lattice.

Keywords Lattice gas · Kawasaki dynamics · Metastability · Critical droplet · Large
deviations · Hexagonal lattice
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1 Introduction

Metastability is a dynamical phenomenon that occurs when a physical, chemical or biological
system moves, under a stochastic dynamics, between different regions of its state space on
different time scales. On short time scales the system is in quasi-equilibrium within a single
region, while on long time scales it undergoes a sudden transition between quasi-equilibria
within different regions. This transition is called metastability or metastable behavior. For
very low temperature dynamics this phenomenon is characterized by the tendency of the
system to remain trapped for extremely long time in a state (the metastable state) different
from the stable states, until it performs a sudden transition to the stable state at some random
time. The main issues that are typically investigated for a system that exhibits a metastable
behavior are the following. The first is the analysis of the transition time from a metastable
to a stable state. The second issue is the study of the so-called critical configurations, namely
those configurations that are visited by the systemwith high probability during the transition.
The last issue is the characterization of the tube of typical trajectories followed by the
system with high probability during the crossover from the metastable to the stable states.
This investigation has been carried over, in the literature, by using mainly two different
approaches: the pathwise (see [21, 46–48]) and the potential theoretic (see [16, 17]). Our
results are obtained by leveraging on a modern version of the pathwise approach, which can
be found in [26, 27, 40, 44, 50, 51]. The pathwise approach was applied in finite volume
at low temperature in [3, 9–12, 21, 23, 43, 45] for single-spin-flip Glauber dynamics and
in [25, 28, 29] for parallel dynamics, and we refer to [24] for a review of the results for
serial and parallel dynamics. The potential theoretic approach was applied to models at finite
volume and at low temperature in [13, 18, 20, 36, 37, 42]. The more involved infinite volume
limit at low temperature or vanishing magnetic field was studied in [19, 22, 31–33, 38, 49]
for Ising-like models under single-spin-flip Glauber and Kawasaki dynamics. More recent
approaches are developed in [7, 8, 14, 15].

In this paper we consider the metastable behavior of the two-dimensional isotropic Ising
lattice gas at very low temperature and low density that evolves according to Kawasaki
dynamics on the hexagonal lattice. Kawasaki dynamics is a discrete time Markov chain
defined by the Metropolis algorithm with transition probabilities given in (2.10). Let β > 0
be the inverse temperature and let Λ ⊂ H

2 be a finite set such that its interior Λ− is an
hexagon (see Sect. 2.1 for more details) with open boundary conditions. Particles live and
evolve in a conservative way inside Λ, but when they occupy neighboring sites they feel a
binding energy −U . Along each bond touching the boundary of Λ from the outside to the
inside, particles are created with rate ρ = e−Δβ , while along each bond from the inside
to the outside, particles are annihilated with rate 1, where Δ > 0 is an activity parameter.
Thus, the boundary of Λ plays the role of an infinite gas reservoir with density ρ. We fix the
parameters U and Δ such that Δ ∈ (U , 3

2U ), that corresponds to the metastable regime. We
will prove in Theorem 2.2 that the empty (resp. full) configuration is the unique metastable
(resp. stable) state. We consider the asymptotic regime corresponding to finite volume Λ in
the limit of large inverse temperature β. We investigate how the system nucleates, i.e., how
it reaches (hexagon Λ− full of particles) starting from (empty hexagon Λ−).

The main motivation of this paper is the following. From a physical point of view, the
last two issues of metastability, namely the characterization of the critical configurations and

123



Metastability for Kawasaki Dynamics on the Hexagonal Lattice Page 3 of 44    46 

the tube of typical trajectories, are the most relevant, because they provide a geometrical
description of the evolution of the system. To this end, in this paper we investigate how the
underlying lattice strongly affects the dynamical properties of the system. The choice of the
hexagonal lattice comes from a recent study done for this model evolving under Glauber
dynamics in [3, 39], because it has been shown how a certain class of parallel dynamics
(shaken dynamics in [1, 2]) on the square lattice induces a collection of parallel dynamics
on a family of Ising models on the hexagonal lattice with non-isotropic interaction where the
spins in each of the two partitions are alternatively updated.

The goal of the paper is to investigate the critical configurations and the tunnelling time
between and for this model. To this end, in Sect. 2.6 we will give our main results:
in Theorem 2.2 we identify the metastable and stable states. In Theorem 2.3 we prove a
convergence in probability, expectation and law for the transition time, answering the first
issue introduced above. InTheorem2.4weprove that the system reacheswith high probability
either the state or in a time shorter than eβ(V ∗+ε), uniformly in the starting configuration for
any ε > 0, where V ∗ = Δ+U . In other words, the dynamics speeded up by a factor of order
eβV ∗

reaches with high probability { , }. In Theorem 2.5 we provide a characterization of a
gate for the transition, namely a set of configurations which will be crossed with probability
tending to one in the limitβ → ∞, answering the second issue ofmetastability.Weemphasize
that this result reflects how the underlying lattice is decisive for the dynamics of the system.
One could be tempted to simply adapt the critical configurations for the same model on the
square lattice to the hexagonal lattice, for example by replacing the rectangular shape with
an hexagonal one, but this conjecture is false. Indeed, we will prove that for this model there
exist two different sizes for the critical droplets depending on the value of the fractional part
of the ratio (Δ − U )/(3U − 2Δ). This situation occurs also for the model evolving under
Glauber dynamics considered in [3], but we want to stress that its characterization is very
different. Indeed, the main difference between Kawasaki and Glauber dynamics is that the
former conserves the number of particles and therefore the structure of the gates is much
richer. In particular, for Glauber dynamics there is a uniqueminimal gate, i.e., a gate minimal
by inclusion, but for Kawasaki dynamics their characterization is not trivial and therefore
much more interesting to derive. The geometrical description of the minimal gates is out of
the scope of the present paper, but we encourage the reader to inspect the differences between
Theorem 2.5 and [3, Theorem 2.13] for having in mind the different nature of the gate for the
transition for these two different dynamics. We refer to Sect. 1.1 for a detailed comparison
between this model and the ones evolving under Kawasaki dynamics on the square lattice,
in which we also emphasize that there are many shapes for the critical droplets according to
the several kind of motions that can take place. Finally, in Theorem 2.7 we prove that, with
probability tending to one, configurations with some hexagonal shape are subcritical, in the
sense that they shrink to before reaching , or are supercritical, in the sense that they grow
to before reaching . This result is a first step for the geometrical description of the tube
of typical trajectories, namely the third issue of metastability.

1.1 Comparison with Kawasaki Dynamics on the Square Lattice

In this Section we make a comparison between the model we consider in this paper and
other models evolving under Kawasaki dynamics on the square lattice in order to emphasize
the different behavior of the system dependending on the geometry of the lattice. Indeed,
this is the main motivation of the paper. There are many papers regarding the Ising lattice
gas evolving under Kawasaki dynamics on the two and three-dimensional square lattice. For
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instance, in [38] (resp. [35]) the isotropic version of this model is investigated in two (resp.
three) dimensions by giving results concerning the asymptotics of the transition time and an
intrinsic description of a gate. For two dimensions, in [34] the complete description of the
tube of typical paths is given and we also refer to [36, 37] for the study of the model with
two types of particles. Concerning the anisotropic version of this model, the weakly (resp.
strongly) anisotropic casewasfirst studied in [41] (resp. [4]). In all these papers, an incomplete
geometrical description of a gate for the transition from the empty box (metastable state) to
the full box (stable state) is given. These results were sharpened in [18] (resp. [5, 6]) for the
isotropic (resp. anisotropic) model both via the use of the potential theory both for a detailed
geometrical characterization of the critical droplets. Indeed, a particular feature of Kawasaki
dynamics is that in the metastable regime particles move along the border of the droplet
more rapidly than they arrive from the boundary of the domain. The locally conservative
dynamics and this movement of particles give a regularization effect, but we want to stress
that the particular shape of the hexagonal lattice induces an increment of these regularizing
motions in such a way new mechanisms of entering the critical configurations set appear,
see Remarks 2.6 and 3.28 for more details. This is a first crucial difference between the two
isotropic models. Indeed, on the square lattice a new mechanism to enter the gate appears
only in the strongly anisotropic setting, see [4, 5]. For the weakly anisotropic and isotropic
models there is a unique way to enter the gate: a rectangular shape with a single protuberance
is reached and then a free particle enters from the boundary of the box, see [6, 41] for more
details. On the square lattice, before the entrance of the free particle it is possible that particles
move only along the border of the cluster, while on the hexagonal lattice this phenomenon
can also appear for particles in an internal region of the cluster, see Fig. 11a, b for an example
of the first and last configuration obtained in such a way. As a consequence, in this case
the complete geometrical characterization is hard to obtain, and is left as a future research
direction. The reason we observe this very different behavior rests on the specific structure of
the underlying lattice. Indeed, on the hexagonal lattice, when a particle that does not belong to
the border of a cluster moves, if it attaches to a protuberance then the energy increases byU (2
bonds are broken and one is created when the moving particle attaches to the protuberance),
while this is false on the square lattice. Indeed, in that case the energy increases by 2U (3
bonds are broken and one is created when the moving particle attaches to the protuberance).
This difference turns out to be crucial when the dynamics is close to critical configurations.
This phenomenon can be also found in the different metastable regime for this model with
respect to the one on the square lattice. This is peculiar of Kawasaki dynamics, indeed for
Glauber dynamics this does not happen, see [3, Condition 2.6]. We give an intuition of why
this happens. For the two dimensional isotropic model the metastable regime corresponds
to Δ ∈ (U , 2U ). Indeed, in this scenario single particles attached to one side of a droplet
typically detach before the arrival of the next particle (because eUβ � eΔβ ), while bars of
two or more particles typically do not detach (because eΔβ � e2Uβ ). A similar interpretation
can be derived for the analogous conditions which arise in the two-dimensional anisotropic
cases and the three-dimensional isotropic case. For the hexagonal lattice the situation is
different, indeed the metastable regime corresponds to Δ ∈ (U , 3

2U ). Clearly, the condition
Δ > U has the same interpretation given above. But the condition Δ < 2U is not enough
as in the square lattice. Indeed, for more than one particle attached to an hexagonal shape is
possible to detach a single particle alternatively at cost U and 2U and therefore the required
upper bound onΔ can be viewed as an average of these two costs. This particular behavior is
also responsible for the particular shape of the critical droplets, which present two different
protuberances and not only one as in the square lattice case. As it will be clear throughout
the paper, we come to the conclusion that the geometry of the lattice significantly influences
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i

Λ− Λ

Fig. 1 On the left-hand side we highlight in black the sites j such that d(i, j) �= 0 in our model. On the
right-hand side we depict the set Λ with a straight line, while we depict the hexagon Λ− with a dashed line

the behavior of the system subject to Kawasaki dynamics and this makes it very interesting
to study.

1.2 Outline of the Paper

The outline of the paper is as follows. In Sect. 2 we define our model and the Kawasaki
dynamics. Moreover, we give some model-independent and model-dependent definitions in
order to state our main results. In Sect. 3 we give the proof of the theorems concerning the
asymptotic behavior of the transition time and the characterization of the critical config-
urations after identifying the maximal stability level. This is done by providing an upper
and lower bound via a reference path and by using the isoperimetric inequality respectively.
Finally, in Sect. 4 we prove the recurrence property to the set { , } which allows use to
identify the metastable and stable states for the system.

2 Model and Results

2.1 Definition of the Model

Consider the discrete hexagonal lattice H
2 embedded in R

2 and let T2 be its dual, so that
T
2 is the triangular lattice. Two sites of the discrete hexagonal lattice are said to be nearest

neighborswhen they share an edge of the lattice (see Fig. 1 on the left-hand side).We consider
an hexagon in H

2 with radius L and we define Λ ⊂ H
2 as the union between this hexagon

and all the sites, that are not in the hexagon, with lattice distance one from the hexagon. Let

∂−Λ := {x ∈ Λ | ∃ y /∈ Λ : |y − x | = 1} (2.1)

the internal boundary of Λ, and we put

Λ− := Λ \ ∂−Λ. (2.2)

With this choice of Λ we deduce that Λ− is an hexagon with radius L (see Fig. 1 on
the right-hand side). Note that Λ− contains 6L2 sites. To each site x ∈ Λ we associate
an occupation variable η(x) ∈ {0, 1} and we denote by η ∈ X = {0, 1}Λ a lattice gas
configuration. If the variable at site x is zero, we say that the site is empty, otherwise we say
that it is occupied by a particle. On the configuration space X we consider the Hamiltonian
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function H : X −→ R defined as

H(η) := −U
∑

{x,y}∈Λ∗,−
η(x)η(y) + Δ

∑

x∈Λ

η(x), (2.3)

where

Λ∗,− = {{x, y} ∈ Λ− × Λ− : |x − y| = 1} (2.4)

is the set of non-oriented bonds in Λ−. The interaction consists of a binding energy −U < 0
for each nearest-neighbor pair of particles in Λ−. In addition, there is an activation energy
Δ > 0 for each particle in Λ. The grand-canonical Gibbs measure associated with the
Hamiltonian (2.3) is

μβ(η) := e−βH(η)

Zβ

, with η ∈ X , (2.5)

where Zβ := ∑
η∈X e−βH(η) is the partition function and β := 1

T > 0 is the inverse
temperature.

2.2 Local Kawasaki Dynamics

Next we define Kawasaki dynamics on Λ with boundary conditions that mimic the effect of
an infinite gas reservoir outside Λ with density ρ = e−Δβ. Let b = (x → y) be an oriented
bond, i.e., an ordered pair of nearest neighbour sites, and define

∂∗Λout := {b = (x → y) : x ∈ ∂−Λ, y /∈ Λ},
∂∗Λin := {b = (x → y) : x /∈ Λ, y ∈ ∂−Λ},

Λ∗,orie := {b = (x → y) : x, y ∈ Λ},
(2.6)

and put Λ̄∗,orie := ∂∗Λout ∪ ∂∗Λin ∪ Λ∗, orie. Two configurations σ, σ ′ ∈ X with σ �= σ ′
are said to be communicating configurations if there exists a bond b ∈ Λ̄∗,orie such that
σ ′ = Tbσ , where Tbσ is the configuration obtained from σ in any of these ways:

– For b = (x → y) ∈ Λ∗, orie, Tbσ denotes the configuration obtained from σ by inter-
changing particles along b:

Tbσ(z) =
⎧
⎨

⎩

σ(z) if z �= x, y,
σ (x) if z = y,
σ (y) if z = x .

(2.7)

– For b = (x → y) ∈ ∂∗Λout we set:

Tbσ(z) =
{

σ(z) if z �= x,
0 if z = x .

(2.8)

This describes the annihilation of a particle along the border.
– For b = (x → y) ∈ ∂∗Λin we set:

Tbσ(z) =
{

σ(z) if z �= y,
1 if z = y.

(2.9)

This describes the creation of a particle along the border.
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The Kawasaki dynamics is the discrete time Markov chain (ηt )t∈N on state space X given
by the following transition probabilities: for η �= η′:

P(η, η′) :=
{ |Λ̄∗, orie|−1

e−β[H(η′)−H(η)]+ if ∃ b ∈ Λ̄∗,orie : η′ = Tbη,

0 otherwise,
(2.10)

where [a]+ = max{a, 0} and P(η, η) := 1 − ∑
η′ �=η P(η, η′). This describes a standard

Metropolis dynamics with open boundary conditions: along each bond touching ∂−Λ from
the outside, particles are created with rate ρ = e−Δβ and are annihilated with rate 1, while
inside Λ− particles are conserved. Note that an exchange of occupation numbers η(x) for
any x inside Λ \ Λ− does not involve any change in energy.

Remark 2.1 The stochastic dynamics defined by (2.10) is reversible with respect to the Gibbs
measure in (2.5).

2.3 Metastability: Static Heuristics

In this Section we present a heuristic discussion from a static point of view. We will consider
the regime

Δ ∈
(
U ,

3

2
U

)
, β → ∞, (2.11)

which corresponds to the metastable behavior. Let us make a rough computation of the
probability to see a regular hexagon of radius r of occupied sites centered at the origin. We
denote by μ∗ the restricted ensemble, namely the Grand-canonical Gibbs measure defined
in (2.5) restricted to a suitable subset of configurations, where all sufficiently large clusters
are suppressed. Under this restricted ensemble we have

μ∗(regular hexagon of radius r) ≈ ρ6r2e3U (3r2−r)β , (2.12)

since ρ is close to the probability to find a particle at a given site and −U is the binding
energy between two particles at the neighboring sites, with 3(3r2 − r) the number of bonds
for an hexagon with radius r . Writing ρ = e−Δβ we obtain

μ∗(regular hexagon of radius r) ≈ e−β[6r2Δ+3(r−3r2)U ], (2.13)

where the exponent has a saddle point at

r̄ = U

2(3U − 2Δ)
. (2.14)

This means that droplets with radius r < r̄ have a tendency to shrink and droplets with radius
r ≥ r̄ a tendency to grow. This would leave to the conclusion that r̄ is the radius of the
critical droplet. We will see in the sequel that the situation is more delicate (see (2.31) for the
precise definition of the critical radius r∗), indeed the dynamical mechanism for the transition
between hexagonal droplets, which is not considered here, has an influence in establishing
the tendency to grow or shrink. The choice Δ ∈ (U , 3

2U ) corresponds to r∗ ∈ (1,∞),
i.e., to a non-trivial critical droplet. The most interesting part of the metastable regime is
0 < 3U − 2Δ � U , which corresponds to r∗ very large.
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2.4 Model-Independent Definitions and Notations

We will denote by Pη0 the probability law of the Markov process (ηt )t≥0 starting at η0 and
by Eη0 the corresponding expectation.

1. Paths and hitting times.

– A path ω is a sequence ω = (ω1, . . . , ωk), with k ∈ N, ωi ∈ X and P(ωi , ωi+1) > 0
for i = 1, . . . , k − 1. We write ω : η → η′ to denote a path from η to η′, namely
with ω1 = η, ωk = η′. Moreover, we denote by Θ(η, η′) the set of all the paths
connecting η and η′. A set A ⊂ X with |A| > 1 is connected if and only if for all
η, η′ ∈ A there exists a path ω : η → η′ such that ωi ∈ A for all i .

– Given a non-empty set A ⊂ X , define the first-hitting time of A as

τA := min{t ≥ 0 : ηt ∈ A}. (2.15)

2. Min-max and communication height

– Given a function f : X → R and a subset A ⊆ X , we denote by

argmaxA f := {σ ∈ A : f (σ ) = max
ζ∈A f (ζ )} (2.16)

the set of points where the maximum of f in A is reached. If ω = (ω1, . . . , ωk)

is a path, in the sequel we will write argmaxω H to indicate argmaxA H , with
A = {ω1, . . . , ωk} and H the Hamiltonian.

– The bottom F(A) of a non-empty set A ⊂ X is the set of global minima of the
Hamiltonian H in A:

F(A) := argminAH = {σ ∈ A : H(σ ) = min
ζ∈A H(ζ )}. (2.17)

For a setA ⊂ X such that all the configurations have the same energy, with an abuse
of notation we denote this energy by H(A).

– The communication height between a pair σ , η ∈ X is

Φ(σ, η) := min
ω:σ→η

max
ζ∈ω

H(ζ ). (2.18)
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Given A ⊂ X , we define the restricted communication height between σ, η ∈ A as

Φ|A(σ, η) := min
ω:σ→η
ω⊆A

max
ζ∈ω

H(ζ ), (2.19)

where (ω1, . . . , ωk) = ω ⊆ A means ωi ∈ A for every i .

3. Stability level, stable and metastable states

– We call stability level of a state σ ∈ X the energy barrier

Vσ := Φ(σ, Iσ ) − H(σ ), (2.20)

where Iσ is the set of states with energy below H(σ ):

Iσ := {η ∈ X | H(η) < H(σ )}. (2.21)

We set Vσ := ∞ if Iσ is empty.
– We call V -irreducible states the set of all states with stability level larger than V :

XV := {η ∈ X | Vη > V }. (2.22)

– The set of stable states is the set of the global minima of the Hamiltonian:

X s := F(X ). (2.23)

– The set of metastable states is given by

Xm := {σ ∈ X | Vσ = max
η∈X\X s

Vη}. (2.24)

We denote by Γm the stability level of the states in Xm .

4. Optimal paths, saddles and gates

– We denote by (σ → η)opt the set of optimal paths as the set of all paths from σ to η

realizing the min-max in X , i.e.,

(σ → η)opt := {ω : σ → η such that max
ξ∈ω

H(ξ) = Φ(σ, η)}. (2.25)

– The set of minimal saddles between σ, η ∈ X is defined as

S(σ, η) := {ζ ∈ X : ∃ω ∈ (σ → η)opt , ω � ζ such that max
ξ∈ω

H(ξ) = H(ζ )}.
(2.26)

– Given a pair σ, η ∈ X , we say that W ≡ W(σ, η) is a gate for the transition σ → η

if W(σ, η) ⊆ S(σ, η) and ω ∩ W �= ∅ for all ω ∈ (σ → η)opt . In words, a gate is a
subset of S(σ, η) that is visited by all optimal paths.

2.5 Model-Dependent Definitions

We briefly give some model-dependent definitions and notations in order to state our main
theorems. For the geometrical definitions see Sect. 3.1. Recall that T2 is the dual of H2, i.e.,
T
2 is the discrete triangular lattice embedded in R

2.

• For x ∈ Λ−, let nn(x) := {y ∈ Λ− : |y − x | = 1} be the set of nearest-neighbor sites
of x in Λ− according to the lattice distance.
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• A free particle in η ∈ X is a site x , with η(x) = 1, such that either x ∈ ∂−Λ, or x ∈ Λ−
and

∑
y∈nn(x)∩Λ− η(y) = 0. We denote by η f ree the union of free particles in ∂−Λ and

free particles in Λ−. We denote by n(η) the number of free particles in η.
• We denote by ηcl the clusterized part of the occupied sites of η:

ηcl := {x ∈ Λ− : η(x) = 1} \ η f ree. (2.27)

• We denote by η f p the collection of configurations obtained by η via the addition of a
free particle anywhere in Λ.

• We call triangular unit or triangular face an equilateral triangle of area one, whose center
belongs to the discrete hexagonal lattice and whose vertices belong to its dual (see Fig. 1
on the left-hand side). Moreover, a set of two triangular units that share an edge is called
elementary rhombus.

• Given a configuration η ∈ X we denote by C(ηcl) its Peierls contour, that lives on the
dual lattice and is the union of piecewise linear curves separating the empty triangular
faces from the triangular faces with particles inside.

• Given a set A ⊂ T
2, we define its area as the number of particles in A. We denote the

area by ||A||.
• The configuration space X can be partitioned as

X =
⋃

n

Vn, (2.28)

where Vn := {η ∈ X : ∑
x∈Λ η(x) = n} is the set of configurations with n particles,

called the n-manifold.

2.6 Main Results

In this section we present our main results for this model. Let

:= {η ∈ X : η(x) = 0 ∀ x ∈ Λ} (2.29)

be the empty configuration. By (2.3) and (2.29) we have that H( ) = 0. Let

:= {η ∈ X : η(x) = 1 ∀x ∈ Λ−, η(x) = 0 ∀x ∈ Λ \ Λ−} (2.30)

be the configuration that is full in Λ− and empty in Λ \ Λ−. Define the critical radius r∗ as

r∗ :=
⌊ U

2(3U − 2Δ)
− 1

2

⌋
= U

2(3U − 2Δ)
− 1

2
− δ = Δ −U

3U − 2Δ
− δ, (2.31)

with δ ∈ (0, 1) the fractional part of U
2(3U−2Δ)

− 1
2 fixed. We assume that U

2(3U−2Δ)
− 1

2
not integer is made so to avoid strong degeneracy of the critical configurations. Similar
assumptions are common in literature (see e.g., [20, 26, 28]). We recall the assumption
3U − 2Δ � U , in particular 3U − 2Δ ≤ U

100 is enough. In the following theorem, we
will identify the stable and metastable states and we will show that for our model the energy
barrier Γm is equal to

Γ K-Hex :=
{

Γ ∗
1 if δ ∈ (

0, 1
2

)
,

Γ ∗
2 if δ ∈ ( 1

2 , 1
)
.

(2.32)

where

Γ ∗
1 = −3(3(r∗)2 − r∗)U + 6(r∗)2Δ + 5(2r∗ + 1)Δ − (15r∗ + 4)U + Δ
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and

Γ ∗
2 = −3(3(r∗ + 1)2 − (r∗ + 1))U + 6(r∗ + 1)2Δ + (2r∗ + 3)Δ − 3(r∗ + 1)U + Δ.

The value of Γ K-Hex is obtained by computing the energy of the critical configurations.
We will see that these configurations consist of a cluster having a shape that is close to a
hexagon with radius r∗ and, in particular, we will compute the critical area to be

A∗
1 = 6(r∗)2 + 10r∗ + 6 if δ ∈ (

0, 1
2

)
,

A∗
2 = 6(r∗ + 1)2 + 2(r∗ + 1) + 2 if δ ∈ ( 1

2 , 1
)
.

(2.33)

Theorem 2.2 (Identification of the metastable state) Let L > 2r∗ + 3, then Xm = { } and
X s = { }. Moreover, Γm = Φ( , ) = Γ K-Hex.

The idea is to find an upper bound for Γm by building a reference path and a lower bound
using an isoperimetric inequality. Another of our goals is finding the asymptotic behavior as
β → ∞ of the transition time for the system started at the metastable state .

Theorem 2.3 (Asymptotic behavior of τ ) For any ε > 0, we have

lim
β→∞P

(
eβ(Γ K-Hex−ε) < τ < eβ(Γ K-Hex+ε)

)
= 1, (2.34)

lim
β→∞

1

β
logE τ = Γ K-Hex. (2.35)

Moreover, letting Tβ := inf{n ≥ 1 : P (τ ≤ n) ≥ 1 − e−1}, we have
lim

β→∞P (τ > tTβ) = e−t (2.36)

and

lim
β→∞

E τ

Tβ

= 1. (2.37)

We refer to Sect. 4.5 for the proof of Theorem 2.3. We say that a function β �→ f (β) is
super exponentially small (SES) if

lim
β→∞

log f (β)

β
= −∞.

With this notation we can state our first theorem concerning the recurrence of the system to
either the state or .

Theorem 2.4 (Recurrence property) Let V ∗ = Δ + U, we have XV ∗ ⊆ { , } and for any
ε > 0 and sufficiently large β, we have

β �→ sup
σ∈X

Pσ (τXV∗ > eβ(V ∗+ε)) is SES. (2.38)

Equation (2.38) implies that the system reaches with high probability either the state
(which is a local minimizer of the Hamiltonian) or the ground state in a time shorter than
eβ(V ∗+ε), uniformly in the starting configuration σ for any ε > 0. The proof of Theorem 2.4
follows from Proposition 4.1 and [40, Theorem 3.1] (see Sect. 4 for more details).

In order to characterize the gate for the transition, we give an intuitive definition of the
configurations denoted by S̃(A∗

i − 1) and D̃(A∗
i − 1) that play the role of protocritical

configurations. In particular, configurations in S̃(A∗
i − 1) (resp. D̃(A∗

i − 1)) have a unique
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(a) (b) (c) (d)

Fig. 2 On the left there are two examples of configurations in S̃(A∗
1 − 1), D̃(A∗

1 − 1) for δ ∈ (0, 1/2), while

on the right there are two examples of configurations in S̃(A∗
2 − 1), D̃(A∗

2 − 1) for δ ∈ (1/2, 1)

(a) (b) (c) (d)

Fig. 3 In this figure we depict an example of motions of particles that belong to the internal part of a cluster
at cost U . We represent the cluster in grey. Starting from the configuration represented in (a), by moving a
particle towards the empty site, the energy increases by U and the configuration that is obtained is the one
represented in (b). From now on, the empty site moves at cost 0 until the path reaches the configuration
depicted in (c). Finally, the path reaches the configuration in (d) by lowering the energy byU , thus the starting
and final configuration have the same energy

cluster with area A∗
i − 1 and shape as in Fig. 2a, c (resp. Fig. 2b, d). We refer the reader to

Definitions 3.12 and 3.13 for a precise definition of these sets. Let

K(A∗
i − 1) := {η′ ∈ VA∗

i −1| ∃ ω = (η, ω1, . . . , ωn, η
′) such that

η ∈ S̃(A∗
i − 1) ∪ D̃(A∗

i − 1), H(η) = H(η′),
n(ω j ) = 0 ∀ j = 1, . . . , n and ΦVA∗

i −1
(η, η′) ≤ H(η) +U }

(2.39)

be the set of configurations obtained by a path starting from S̃(A∗
i − 1) ∪ D̃(A∗

i − 1) that
conserves the number of particles and contains only configurations without free particles.
Moreover, the energy along this path increases by U at most and the starting and final
configurations have the same energy. Note that the last condition in (2.39) is the same as
requiring that ΦVA∗

i −1
(η, η′) < Γ K−Hex . The following theorem characterizes the gate for

the transition from to .

Theorem 2.5 (Gate for the transition) Given δ ∈ (0, 1) and A∗
i ∈ {A∗

1, A
∗
2} as in (2.33), the

set C(A∗
i ) := K(A∗

i − 1) f p is a gate for the transition from to .

Remark 2.6 Unlike what happens on the square lattice, on the hexagonal lattice much more
ways to move particles at cost U can take place. We want to stress this crucial property
of the hexagonal lattice since it has a robust impact on the geometrical description of the
gate. Indeed, for instance, concerning a configuration as in Fig. 3a, note that it is possible
to move a protuberance belonging to the elementary rhombus at cost U . The key fact is that
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these are not the unique possibilities, as occurs on the square lattice, indeed in this case it
is possible to move also particles that belong to the internal part of a cluster. For example,
it is possible to move towards the elementary rhombus an entire row of particles giving rise
to a configuration with the same energy (see Fig. 3 for the entire path). For this reason the
geometrical characterization of the gate is much richer and more interesting than the one
derived in [18] for the square lattice. Moreover, these additional regularizing motions of
particles lead to several mechanisms to enter the gate. We encourage the reader to inspect
Remark 3.28 for more details.

We refer to Sect. 4.5 for the proof of Theorem 2.5.
In order to state the last result of this section, we need to introduce the set EBi (r) that con-

tains the configurations which have a unique cluster with a shape of quasi-regular hexagon,
that is a regular hexagon with i bars attached clockwise. See Figs. 7 and 5 on the left-hand
side and in the middle together with Definitions 3.7, 3.8, 3.9 for more details.

Theorem 2.7 (Subcritical and supercritical quasi-regular hexagons) Let E−
Bi

(r) (resp. E+
Bi

(r))
be the set of configurations composed by a single quasi-regular hexagon contained in (resp.
containing) EBi (r). For L > 2r∗ + 3, the following statements hold:

(i) If δ ∈ (0, 1
2 ), we have

if η ∈ E−
B5

(r∗) �⇒ lim
β→∞Pη(τ < τ ) = 1,

if η ∈ E+
B0

(r∗ + 1) �⇒ lim
β→∞Pη(τ < τ ) = 1.

(2.40)

(ii) If δ ∈ ( 12 , 1), we have

if η ∈ E−
B1

(r∗ + 1) �⇒ lim
β→∞Pη(τ < τ ) = 1,

if η ∈ E+
B2

(r∗ + 1) �⇒ lim
β→∞Pη(τ < τ ) = 1.

(2.41)

In words, we characterize subcritical and supercritical quasi-regular hexagons, i.e., sub-
critical quasi-regular hexagons shrink to , while supercritical quasi-regular hexagons grow
to . We refer to Sect. 4.6 for the proof of Theorem 2.7.

3 Identification of Maximal Stability Level

3.1 Geometrical Definitions

Now we recall some geometrical definitions and properties about clusters and polyiamonds
present in [3].

Definition 3.1 A polyiamond P ⊂ R
2 is a finite maximally connected union of three or more

triangular units that share at least a side.

Note that if two triangular units share only a point these are considered, by definition, two
different polyiamonds.

We define a new bijection that associates to each cluster a polyiamond with the same
shape. This implies that to each cell without a particle, we associate an empty triangular unit.
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Fig. 4 An example of
polyiamond with the external
boundary oriented
counter-clockwise and the
internal boundary oriented
clockwise

regular hexagon quasi regular hexagon standard polyiamond

Fig. 5 Starting from the left: a regular hexagon with radius length 3, a quasi-regular hexagon with three
bars attached clockwise from the top, a standard polyiamond with a complete bar attached on the top and an
incomplete bar with cardinality 4 attached close to the top

Definition 3.2 The boundary of a polyiamond P is the collection of unit edges of the lattice
T
2 such that each edge separates a triangular unit belonging to P from an empty triangular

unit. The edge-perimeter p(P) of a polyamond P is the cardinality of its boundary.

In other words the perimeter is given by the number of interfaces on the discrete triangular
lattice (T2) between the sites inside the polyiamond and those outside. If not specified
differently, we will refer to the edge-perimeter simply as perimeter.

Definition 3.3 The external boundary of a polyiamond consists of the connected components
of the boundary such that for each edge there exists a hexagonal-path in H2 which connects
this edgewith the boundary ofΛwithout intersecting the polyiamond. The internal boundary
of a polyiamond consists of the connected components of the boundary that are not external.

Definition 3.4 Let us orient counter-clockwise the external boundary and clockwise the inter-
nal boundary. For each pair of oriented edges, the angle defined rotating counter-clockwise
the second edge on the first edge is called internal angle (see Fig. 4).

Definition 3.5 A hole of a polyiamond P is a finite maximally connected component of
empty triangular units surrounded by the internal boundary of P .
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Fig. 6 The lightly shaded
triangular units form a bar with
larger base l and it is obtained as
difference between an equilateral
triangle with side length l and an
equilateral triangle with side
length l − 1

l

l −
1

We refer to holes consisting of a single empty triangle as elementary holes.

Definition 3.6 A polyiamond is regular if it has only internal angles of π and 2
3π and it has

no holes.

We note that a regular polyiamond has the shape of a hexagon.

Definition 3.7 A polyiamond is a regular hexagon if it is a regular polyiamond with all equal
sides.We denote by E(r) the regular hexagon, where r is its radius (see Fig. 5 on the left-hand
side).

Definition 3.8 A bar B(l) with larger base l is a set of ||B(l)|| = 2l − 1 triangular units
obtained as a difference between an equilateral triangle with side length l and another equi-
lateral triangle with side length l − 1 (see Fig. 6).

Definition 3.9 We denote by EB1(r) the polyiamond obtained attaching a bar B1 along its
larger base r to the regular hexagon (see Fig. 7). Analogously, we denote by EBi (r) for
i = 2, . . . , 5 the polyiamonds obtained attaching a bar Bi along its larger base r + 1 to
EBi−1(r). Finally, we denote by EB6(r) the polyiamond obtained attaching a bar B6 along its
larger base r + 2 to EB5(r). We call EBi (r) a quasi-regular hexagon, where r is the radius
of the regular hexagon E(r) and i ∈ {1, . . . , 6} is the number of bars attached to it.

Note that EBi (r) is always contained in E(r + 1) and it is defined up to a rotation of z π
3

for z ∈ Z. Moreover E(r) ≡ EB0(r) and E(r + 1) ≡ EB6(r).

Notation 3.10 We denote by E(r) the set of configurations η ∈ X such that η has a unique
cluster with shape E(r). We denote by EBi (r) the set of configurations η ∈ X such that η has
a unique cluster with shape EBi (r).

Definition 3.11 An incomplete bar of cardinality k < 2l − 1 is a subset of a bar with larger
base l (see Fig. 8).

Definition 3.12 A standard polyiamond of area A, denoted by S(A), is a quasi-regular
hexagon EBi (r) with possibly an additional incomplete bar of cardinality k attached clock-
wise, such that it is contained in EBi+1(r). If k = 2, we denote it by S̃(A).
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Fig. 7 On the left a quasi-regular hexagon EB1 (4). We observe that the cardinality of B1 of EB1 (3) is
||B1|| = 2r − 1 = 5. On the right a quasi-regular hexagon EB4 (3). We observe that the cardinality of B1 of
EB1 (3) is ||B1|| = 2r −1 = 5, while the cardinality of Bi of EB4 (3) is ||Bi || = 2r +1 = 7 with i = 2, . . . , 4

Fig. 8 On the left an incomplete bar with trapeze shape and cardinality k = 5 attached to the regular hexagon
E(4). We observe that the cardinality of the bar containing the incomplete bar is ||B1|| = 7 > k. On the
right an incomplete bar with parallelogram shape and cardinality k = 4, attached to the quasi-regular hexagon
EB5 (3). We observe that the cardinality of the bar containing the incomplete bar is ||B6|| = 9 > k

When we refer to a standard cluster with area A, our meaning is that the cluster has the
shape and the properties of a standard polyiamond S(A).

Note that a standard polyiamond S(A) is determined solely by its area A. We characterize
S(A) in terms of its radius r , the number i of bars attached to the regular hexagon E(r) to
obtain EBi (r) and the cardinality k of the possible incomplete bar. Starting from the area A,
these values can be computed by using [3, algorithm 3.18].

Definition 3.13 A polyiamond consisting of a quasi-regular hexagon with two triangular
units attached to one of its longest sides at triangular lattice distance 2 one from the other is
called defective and it is denoted by D̃(A), where A is the area.

Notation 3.14 We denote by S̃(A) (resp. D̃(A)) the set of configurations η ∈ X such that
η has a unique cluster with shape S̃(A) (resp. D̃(A)). See (a)(c) (resp. (b)(d)) in Fig. 2 for
examples of configurations in S̃(A) (resp. D̃(A)).

Definition 3.15 We call a corner of a standard polyiamond P the pair of triangular faces of
P contained in the internal angle of 2

3π .
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3.2 Reference Path

In this Section we construct our reference path ω∗, which is a sequence of configurations
connecting and such that the maximum of the energy along this path is Γ K-Hex. In
particular, this path is composed by increasing clusters as close as possible to quasi-regular
hexagonal shape. The idea of the construction of ω∗ is the following: we first construct a
skeleton path {ω̄r }Lr=0 given by a sequence of configurations that contain regular hexagon
with radius r . Obviously ω̄r is not a path in the sense that the transition from ω̄r to ω̄r+1 can
not be given in a single step of the dynamics, since ω̄r and ω̄r+1 contain regular hexagons.
Thus in order to obtain a path we have to interpolate each transition of the skeleton path. This
is done in two steps. First, we introduce between ω̄r and ω̄r+1 a sequence of configurations
ω̃1
r , . . . , ω̃

ir
r given by ω̄r plus a bar, i.e., a quasi-regular hexagon. Again, these configurations

are given by a single increasing droplet. Finally, we introduce a second interpolation to obtain
a path ω∗ from the sequence of configurations ω̃i

r . Its construction goes as follows. Between
every couple of consecutive configurations in ω̃, for which the cluster is increased by one
particle, a sequence of configurations with a new particle is inserted. In particular, the new
particle is initially created at the boundary of Λ and then brought to the correct site via
consecutive moves of this free particle.

Skeleton ω̄: Let us construct a sequence of configurations that contain regular hexagons
ω̄ = {ω̄r }, with r = 0, . . . , L , such that ω̄0 = , . . . , ω̄L = and ω̄r ⊂ ω̄r+1. Starting from
the origin, given r = 1, . . . , L let ω̄r the regular hexagon with radius r , i.e., ω̄r ∈ E(r).

First interpolation ω̃: From ω̄0 to ω̄1, we define the path ω̃i
0 such that ω̃

0
0 = ω̄0 and insert

between ω̄0 and ω̄1 a sequence of configurations {ω̃i
0}6i=0, which correspond to the creation of

a hexagon of radius one obtained by adding sequentially particles clockwise. Given a choice
for ω̄r , with r < L , we can construct the path ω̃i

r such that ω̃0
r = ω̄r and insert between ω̄r

and ω̄r+1 a sequence of configurations {ω̃i
r }iri=0 as follows. Starting from a configuration in

E(r), add consecutive triangular units to the regular hexagon until we obtain a configuration
in EB1(r). Next we fill the bar on the top right adding consecutive triangular units until we
obtain a configuration in EB2(r). We go on in the same way adding bars clockwise, until we
obtain configurations in EB3(r), . . . , EB6(r) ≡ E(r + 1).

Second interpolation ω∗: For any pair of configurations (ω̃i
r , ω̃

i+1
r ) such that ||ω̃i

r || <

||ω̃i+1
r ||, by construction of the path ω̃i

r the particles are created along the external boundary
of the clusters, except for the first particle that is at the origin. So there exist x1, . . . , x ji a
connected chain of nearest-neighbor empty sites of ω̃i

r such that x1 ∈ ∂−Λ and x ji is the site
where is located the additional particle in ω̃i+1

r . Define

ω̂i,0
r = ω̃i

r , ω̂
i, ji
r = ω̃i+1

r , r = 0, . . . , L. (3.1)

Insert between each pair (ω̃i
r , ω̃

i+1
r ) a sequence of configurations ω̂

i, j
r , with j = 1, . . . , ji−1,

where the free particle is moving from x1 ∈ ∂−Λ to the cluster until it reaches the position
x ji . Otherwise, for any pair of configurations (ω̃i

r , ω̃
i+1
r ) such that ||ω̃i

r || = ||ω̃i+1
r ||, we

define ω̂
i,0
r = ω̃i

r and ω̂
i+1,0
r = ω̃i+1

s . This concludes the definition of the reference path.
With an abuse of notation we denote a configuration in EBi (r) by EBi (r).

Proposition 3.16 The maximum of the energy in ω∗ between two consecutive quasi-regular
hexagons Φω∗(EBi (r), EBi+1(r)) for every i = 0, . . . , 5 is achieved in the standard polyia-
mond obtained adding to EBi (r) an elementary rhombus along the longest side and a free
particle.

123



   46 Page 18 of 44 S. Baldassarri, V. Jacquier

Proof Let A(n) be the area obtained after adding n triangular units to the area of the quasi-
regular hexagon inEBi (r),wheren = 0, . . . , ||Bi+1||.Note that A(n) is the area of the standard
polyiamondS(A(n)).We observe that S(A(0)) = EBi (r) and S(A(||Bi+1||)) = EBi+1(r). Since
the maximum of the energy is obtained after adding a free particle, we obtain

H(S(A(n)) f p) − H(S(A(n−1)) f p) =

⎧
⎪⎨

⎪⎩

Δ −U if n = 1,

Δ −U if n is even,

Δ − 2U if n �= 1 is odd.

(3.2)

Therefore we deduce that

H(S(A(n)) f p) − H(EBi (r) f p) =
⎧
⎨

⎩
U − n

(
3
2U − Δ

)
if n is even,

U

2
− n

(
3
2U − Δ

)
if n is odd.

(3.3)

Since the r.h.s. of the last equation decreases with n, due to the fact that Δ < 3
2U , in both the

odd and even case, it is immediate to check that the maximum is attained for n = 2, namely
in S(A(2)) f p .

Proposition 3.17 The maximum of the energy in ω∗ between two consecutive quasi-regular
hexagons Φω∗(EBi (r), EBi−1(r)) for every i = 1, . . . , 6 is achieved in the standard polyi-
amond obtained removing counter-clockwise from EBi (r) a number of particles equals to
||Bi || − 3 and detaching the (||Bi || − 2)-th particle from Bi .

Proof Let A(n) be the area obtained after adding n triangular units to the area of the quasi-
regular hexagon EBi−1(r), where n = 0, . . . , ||Bi ||. Note that S(A(n)) can be obtained either
by removing ||Bi || − n triangular units from EBi (r) or by adding and attaching n triangular
units to the quasi-regular hexagon in EBi−1(r).We recall that removing a triangular unit means
detaching it from the cluster and moving the free particle outside Λ. Since the maximum of
the energy is obtained after adding a free particle, we obtain

H(S(A(n−1)) f p) − H(S(A(n)) f p) =

⎧
⎪⎨

⎪⎩

2U − Δ if n �= 1 is odd,

U − Δ if n is even,

U − Δ if n = 1.

(3.4)

Therefore we deduce that

H(S(A(n)) f p) − H(EBi (r) f p) =

⎧
⎪⎨

⎪⎩

n
(3
2
U − Δ

)
−U if n is even,

n
(3
2
U − Δ

)
− U

2
if n is odd.

(3.5)

Since the r. h. s. of the last equation increases with n, due to the fact that Δ < 3
2U , in both

the odd and even case, it is immediate to check that the maximum is attained by removing
||Bi ||−3 triangular units fromEBi (r) and detaching another triangular unit from Bi . Therefore
we obtain a configuration in S(A(2)) f p .

Recalling (2.31), from now on the strategy is to divide the reference path ω∗ into three
regions depending on r :

– the region r ≤ r∗ will be considered in Proposition 3.18;
– the region r = r∗ + 1 will be considered in Proposition 3.19;
– the region r ≥ r∗ + 2 will be considered in Proposition 3.20
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Proposition 3.18 If r ≤ r∗, then the communication height between two consecutive regular
hexagons Φω∗(E(r), E(r + 1)) along the path ω∗ is achieved in a configuration with a
free particle and a standard cluster such that the number of its triangular units is Ã =
6r2 + 10r + 5, that is Φω∗(E(r), E(r + 1)) = Φω∗(EB5(r), E(r + 1)) = H(S( Ã)) + Δ.
Moreover, Φω∗( , E(r∗ + 1)) = Φω∗(E(r∗), E(r∗ + 1)) = H(S(A∗

1 − 1)) + Δ is achieved
in a configuration with a free particle and a standard cluster S(A∗

1 − 1), where A∗
1 =

6(r∗)2 + 10r∗ + 6.

Proof Let S(A) be a standard polyiamond with an incomplete bar of cardinality two. We
obtain:

H(S(A)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3(3r2 − r)U + 6r2Δ + 2(Δ −U ) if A = 6r2 + 2,

−3(3r2 − r)U + 6r2Δ + (2r + 1)Δ − 3rU if A = 6r2 + 2r + 1,

−3(3r2 − r)U + 6r2Δ + 2(2r + 1)Δ − (6r + 1)U if A = 6r2 + 4r + 2,

−3(3r2 − r)U + 6r2Δ + 3(2r + 1)Δ − (9r + 2)U if A = 6r2 + 6r + 3,

−3(3r2 − r)U + 6r2Δ + 4(2r + 1)Δ − (12r + 3)U if A = 6r2 + 8r + 4,

−3(3r2 − r)U + 6r2Δ + 5(2r + 1)Δ − (15r + 4)U if A = 6r2 + 10r + 5.

(3.6)

WecompareΦω∗(E(r), EB1(r)) = Φω∗(S(6r2),S(6r2+2r−1))withΦω∗(EB1(r), EB2(r)) =
Φω∗(S(6r2 + 2r − 1),S(6r2 + 4r)). By Proposition 3.16 we have:

Φω∗(E(r), EB1(r)) = H(S(6r2 + 2)) + Δ,

Φω∗(EB1(r), EB2(r)) = H(S(6r2 + 2r + 1)) + Δ.
(3.7)

By using (3.6), we obtain that Φω∗(E(r), EB1(r)) ≤ Φω∗(EB1(r), EB2(r)) if and only if
r ≤ 2U−Δ

3U−2Δ = U
2(3U−2Δ)

+ 1
2 , which is true since we are assuming r ≤ r∗ and r∗ ≤ 2U−Δ

3U−2Δ
due to the condition 2Δ < 3U .

We compare Φω∗(EB1(r), EB2(r)) = Φω∗(S(6r2 + 2r − 1),S(6r2 + 4r)) with
Φω∗(EB2(r), EB3(r)) = Φω∗(S(6r2 + 4r),S(6r2 + 6r + 1)). By Proposition 3.16 we have:

Φω∗(EB1(r), EB2(r)) = H(S(6r2 + 2r + 1)) + Δ,

Φω∗(EB2(r), EB3(r)) = H(S(6r2 + 4r + 2)) + Δ.
(3.8)

By using (3.6), we obtain that Φω∗(EB1(r), EB2(r)) ≤ Φω∗(EB2(r), EB3(r)) if and only if
r ≤ Δ−U

3U−2Δ , which is true since we are assuming r ≤ r∗.
We compare Φω∗(EB2(r), EB3(r)) = Φω∗(S(6r2 + 4r),S(6r2 + 6r + 1)) with

Φω∗(EB3(r), EB4(r)) = Φω∗(S(6r2 + 6r + 1),S(6r2 + 8r + 2)). By Proposition 3.16 we
have:

Φω∗(EB2(r), EB3(r)) = H(S(6r2 + 4r + 2)) + Δ,

Φω∗(EB3(r), EB4(r)) = H(S(6r2 + 6r + 3)) + Δ.
(3.9)

By using (3.6), we obtain that Φω∗(EB2(r), EB3(r)) ≤ Φω∗(EB3(r), EB4(r)) if and only if
r ≤ Δ−U

3U−2Δ , which is true since we are assuming r ≤ r∗.
By performing similar computations, we obtain the following inequalities:

Φω∗(EB3(r), EB4(r)) ≤ Φω∗(EB4(r), EB5(r)),
Φω∗(EB4(r), EB5(r)) ≤ Φω∗(EB5(r), E(r + 1)).

(3.10)
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Thus the communication height between two consecutive regular hexagons along the pathω∗
is achieved in S(6r2 + 10r + 5) f p , that is Φω∗(E(r), E(r + 1)) = Φω∗(EB5(r), E(r + 1)) =
H(S( Ã)) + Δ, where Ã = 6r2 + 10r + 5. The maximum of the function H(S( Ã)) + Δ =
−3(3r2 − r)U + 6r2Δ + 5(2r + 1)Δ − (15r + 4)U + Δ is obtained in r = U

2(3U−2Δ)
− 5

6 .
However r ∈ N and r ≤ r∗, therefore the maximum is attained in r∗ andΦω∗( , E(r +1)) =
Φω∗(E(r∗), E(r∗ + 1)) = H(S(A∗

1 − 1)) + Δ, where A∗
1 = 6(r∗)2 + 10r∗ + 6.

Proposition 3.19 If r = r∗ + 1, then the communication height Φω∗(E(r∗ + 1), E(r∗ + 2))
along the path ω∗ is achieved in a configuration with a free particle and a standard cluster
S(A∗

2 − 1), where A∗
2 = 6(r∗ + 1)2 + 2(r∗ + 1) + 2.

Proof Note that in this case r =
⌊

U
2(3U−2Δ)

+ 1
2

⌋
. We analyze Φω∗(E(r∗ + 1), E(r∗ + 2))

by using Proposition 3.16. We compare the same communication height of Proposition 3.18,
obtaining the following inequalities since r = r∗ + 1:

Φω∗(S(6r2),S(6r2 + 2r − 1)) < Φω∗(S(6r2 + 2r − 1),S(6r2 + 4r)), (3.11)

and

Φω∗(S(6r2 + 2r − 1),S(6r2 + 4r)) > Φω∗(S(6r2 + 4r),S(6r2 + 6r + 1))

> Φω∗(S(6r2 + 6r + 1),S(6r2 + 8r + 2))

> Φω∗(S(6r2 + 8r + 2),S(6r2 + 10r + 3))

> Φω∗(S(6r2 + 10r + 3),S(6r2 + 12r + 6)).

(3.12)

Then the communication height along the pathω∗ between two consecutive regular hexagons
with radius r∗ + 1 is Φω∗(E(r∗ + 1), E(r∗ + 2)) = Φω∗(S(6(r∗ + 1)2 + 2(r∗ + 1) −
1),S(6(r∗ + 1)2 + 4(r∗ + 1))) and, by Proposition 3.16, it is attained in S(A∗

2 − 1) f p , with
A∗
2 = 6(r∗ + 1)2 + 2(r∗ + 1) + 2.

Proposition 3.20 If r ≥ r∗ + 2, then the communication height between two consecutive
regular hexagons Φω∗(E(r), E(r + 1)) along the path ω∗ is achieved in a configuration
with a free particle and a standard cluster such that the number of its triangular units is
Ã = 6r2 +2, that is Φω∗(E(r), E(r +1)) = Φω∗(E(r), EB1(r)) = H(S( Ã))+Δ. Moreover,
Φω∗(E(r∗ + 2), ) = Φ(E(r∗ + 2), E(r∗ + 3)) = H(S(A∗

3 − 1)) + Δ is achieved in a
configurationwith a free particle anda standard cluster S(A∗

3−1), where A∗
3 = 6(r∗+2)2+3.

Proof We analyze Φω∗(E(r), E(r + 1)) by using Proposition 3.16. We compare the same
communication height of Proposition 3.18, obtaining the following inequalities since r ≥
r∗ + 2:

Φω∗(S(6r2),S(6r2 + 2r − 1)) ≥ Φω∗(S(6r2 + 2r − 1),S(6r2 + 4r))

≥ Φω∗(S(6r2 + 4r),S(6r2 + 6r + 1))

≥ Φω∗(S(6r2 + 6r + 1),S(6r2 + 8r + 2))

≥ Φω∗(S(6r2 + 8r + 2),S(6r2 + 10r + 3))

≥ Φω∗(S(6r2 + 10r + 3),S(6r2 + 12r + 6)).

(3.13)

Thus the communication height between two consecutive regular hexagons along the pathω∗
is attained inS(6r2+2) f p , that isΦω∗(E(r), E(r+1)) = Φω∗(E(r), EB1(r)) = H(S( Ã))+Δ,
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Fig. 9 Two standard clusters with critical area A∗
1 − 1 and a free particle for 0 < δ < 1

2

where Ã = 6r2+2. Themaximum of the function H(S( Ã))+Δ = −3(3r2−r)U+6r2Δ+
2(Δ−U )+Δ is attained in r = U

2(3U−2Δ)
, but r ∈ N and r ≥ r∗+2, soΦω∗(E(r∗+2), ) =

Φω∗(E(r∗ + 2), E(r∗ + 3)) = H(S(A∗
3 − 1)) + Δ, where A∗

3 = 6(r∗ + 2)2 + 3.

Proposition 3.21 Let δ ∈ (0, 1) be such that U
2(3U−2Δ)

− 1
2 − δ is an integer number. The

maximum Φω∗( , ) along the path ω∗ is attained in a configuration with a free particle and
a standard cluster with area A∗

i − 1 for i ∈ {1, 2} (see Fig. 9) , where
(1) A∗

1 = 6(r∗)2 + 10r∗ + 6 if 0 < δ < 1
2 ;

(2) A∗
2 = 6(r∗ + 1)2 + 2(r∗ + 1) + 2 if 1

2 < δ < 1.

Proof We compare Φω∗( , E(r∗ + 1)), Φω∗(E(r∗ + 1), E(r∗ + 2)) and Φω∗(E(r∗ + 2), ).
By Proposition 3.18 we have

Φω∗( , E(r∗ + 1)) = H(S(6(r∗)2 + 10r∗ + 5)) + Δ

= −3(3(r∗)2 − r∗)U + 6(r∗)2Δ + 5(2r∗ + 1)Δ − (15r∗ + 4)U + Δ.
(3.14)

By Proposition 3.19 we have

Φω∗(E(r∗ + 1), E(r∗ + 2)) = H(S(6(r∗ + 1)2 + 2(r∗ + 1) + 1)) + Δ

= −3(3(r∗ + 1)2 − (r∗ + 1))U + 6(r∗ + 1)2Δ

+ (2(r∗ + 1) + 1)Δ − 3(r∗ + 1)U + Δ.

(3.15)

By Proposition 3.20 we have

Φω∗(E(r∗ + 2), ) = H(S(6(r∗ + 2)2 + 2)) + Δ

= −3(3(r∗ + 2)2 − (r∗ + 2))U + 6(r∗ + 2)2Δ + 2(Δ −U ) + Δ.
(3.16)

By comparing Eqs. (3.14),(3.15) and (3.16), we obtain

Φω∗( , E(r∗ + 1)) > Φω∗(E(r∗ + 2), ),

Φω∗(E(r∗ + 1), E(r∗ + 2)) > Φω∗(E(r∗ + 2), ).
(3.17)

Thus we deduce that Φω∗(E(r∗ + 2), ) cannot be the maximum. Moreover, we obtain

Φω∗( , E(r∗ + 1)) > Φω∗(E(r∗ + 1), E(r∗ + 2)) if 0 < δ <
1

2
,

Φω∗( , E(r∗ + 1)) < Φω∗(E(r∗ + 1), E(r∗ + 2)) if
1

2
< δ < 1.

(3.18)
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and therefore the maximum Φω∗( , ) = Φω∗( , E(r∗ + 1)) is achieved in a configura-
tion S(6(r∗)2 + 10r∗ + 5) f p if δ ∈ (0, 1

2 ). Otherwise, if δ ∈ ( 12 , 1), then the maximum
Φω∗( , ) = Φω∗(E(r∗ + 1), E(r∗ + 2)) is achieved in a configuration S(6(r∗ + 1)2 +
2(r∗ + 1) + 1) f p .

Corollary 3.22 Let Γ K-Hex as in (2.32). We have

Φ( , ) ≤ Γ K-Hex. (3.19)

Proof By definition of communication height and the fact that H( ) = 0, Proposition 3.21
implies that

Φ( , ) ≤ max
i

H(ω∗
i ) = Γ K-Hex (3.20)

in the two cases 0 < δ < 1
2 and 1

2 < δ < 1.

3.3 Lower Bound of Maximal Stability Level

In this Section we will find a lower bound for Γ K-Hex. In particular, we prove that Φ( , ) ≥
Γ K-Hex separately for the case δ ∈ (

0, 1
2

)
and δ ∈ ( 1

2 , 1
)
. The proof comes in three steps,

which are the contents of the three following lemmas. The last result of this section combines
the upper and lower bound on Φ( , ) which we have found.

Lemma 3.23 The following statements hold:

1. If δ ∈ (
0, 1

2

)
, any ω ∈ ( → )opt must pass through the set EB5(r∗).

2. If δ ∈ ( 1
2 , 1

)
, any ω ∈ ( → )opt must pass through the set EB1(r∗ + 1).

Proof We analyze separately the two cases.

1. Let δ ∈ (
0, 1

2

)
and Ã = 6(r∗)2 + 10r∗ + 3. Any path ω : → must cross the set V Ã.

By using [3, Theorem 3.22] and [3, Lemma 3.24] withm = 5, in V Ã the unique (modulo
translations and rotations) configuration of minimal perimeter and hence minimal energy
is the standard polyiamond S( Ã), which contains only the quasi-regular hexagon. Thus,
the configuration S( Ã) has energy

H(S( Ã)) = −3(3(r∗)2 − r∗)U + 6(r∗)2Δ + 5(2r∗ + 1)Δ − (15r∗ + 1)U

= Γ K-Hex − 3Δ + 2U .
(3.21)

All the other configurations in V Ã have energy at least Γ K-Hex − 3Δ + 3U . To increase
the particle number starting from any such a configuration, we must create a particle at
cost Δ. But the resulting configuration would have energy Γ K-Hex − 2Δ + 3U , which
exceeds Γ K-Hex due to the condition 2Δ < 3U . Thus this would lead to a path exceeding
the energy value Γ K-Hex and therefore the path would not be optimal.

2. Let δ ∈ ( 1
2 , 1

)
and Ã = 6(r∗ + 1)2 + 2(r∗ + 1) − 1. By observing that [3, Lemma 3.24]

holds with m = 1, we can argue as before.

Lemma 3.24 The following statements hold:

1. If δ ∈ (
0, 1

2

)
, any ω ∈ ( → )opt must pass through a configuration composed by a

cluster EB5(r
∗) with the addition of two triangular faces.

2. If δ ∈ ( 1
2 , 1

)
, any ω ∈ ( → )opt must pass through a configuration composed by a

cluster EB1(r
∗ + 1) with the addition of two triangular faces.
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Proof We analyze the two cases separately.

1. Follow the path until it hits VA∗
1−3. By Lemma 3.23, the configuration in this set must be a

quasi-regular hexagon with area 6(r∗)2+10r∗ +3. Since we need not consider any paths
that return to the set VA∗

1−3 afterwards and the path has to cross the set VA∗
1−1, the path

proceeds as follows. Starting fromaquasi-regular hexagonwith area A∗
1−3, a free particle

is created giving rise to a configurationwith energyΓ K-Hex−2Δ+2U < Γ K-Hex. Before
any new particle is created, the energy has to decrease by at leastU . The unique way to do
this is to move the particle towards the cluster and attach it to the quasi-regular hexagon,
which lowers the energy toΓ K-Hex−2Δ+U . Now it is possible to create another particle
at cost Δ giving rise to a configuration with energy Γ K-Hex − Δ +U < Γ K-Hex. Again,
before creating a new particle, the energy has to decrease by at least U . The unique way
to do this is to move the particle until it is attached to the cluster, which lowers the energy
to Γ K-Hex − Δ. Note that this gives us a configuration composed by a cluster EB5(r

∗)
with the addition of two triangular faces, as claimed.

2. We can argue as in the previous case.

Lemma 3.25 Any ω ∈ ( → )opt must reach the energy Γ K-Hex.

Proof By Lemma 3.24, we know that any ω ∈ ( → )opt must cross a configuration
composed by two triangular faces attached to a cluster EB5(r

∗) (resp. EB1(r
∗ + 1)) if δ ∈(

0, 1
2

)
(resp. δ ∈ ( 1

2 , 1
)
). Starting from such a configuration, it is impossible to reduce

the energy without lowering the particle number. Indeed, [3, Theorem 3.22] asserts that, for
δ ∈ (

0, 1
2

)
(resp. δ ∈ ( 1

2 , 1
)
), theminimal energy inVA∗

1−1 (resp.VA∗
2−1) is realized (although

not uniquely) in such a configuration. Since any further move to increase the particles number
involves the creation of a new particle, the energy must reach the value Γ K-Hex.

Corollary 3.26 We have

Φ( , ) = Γ K-Hex. (3.22)

Proof Combining Corollary 3.22 and Lemma 3.25 we obtain the claim.

3.4 Structure of the Communication Level Set

Recalling the two values of the critical area in (2.33), we have the following result.

Proposition 3.27 The following statements hold:

1. Let δ ∈ (
0, 1

2

)
and A∗

1 = 6(r∗)2 + 10r∗ + 6. Any ω ∈ ( → )opt must pass through the
set C(A∗

1) = K(A∗
1 − 1) f p.

2. Let δ ∈ ( 1
2 , 1

)
and A∗

2 = 6(r∗ + 1)2 + 2(r∗ + 1) + 2, any ω ∈ ( → )opt must pass
through the set C(A∗

2) = K(A∗
2 − 1) f p.

Proof We analyze the two cases separately.

1. By Lemmas 3.23 and 3.24, we can obtain a configuration η0 with a cluster according to
the following cases:

(1) the two triangular faces form an elementary rhombus which is attached to one of the
longest sides of the quasi-regular hexagonal cluster, namely the resulting configura-
tion is in S̃(A∗

1 − 1) (see Fig. 10);

123



   46 Page 24 of 44 S. Baldassarri, V. Jacquier

Fig. 10 From the left to the right we depict in light grey the clusters described in cases (1)–(2)–(3)–(4). In
dashed dark grey, we depict the future position of the free particle to cover the angle of 5

3π in the first two
cases

(2) the two triangular faces are attached to one of the longest sides of the quasi-regular
hexagonal cluster at triangular lattice distance 2, namely the resulting configuration
is in D̃(A∗

1 − 1) (see Fig. 10);
(3) the two triangular faces are attached to the same side of the quasi-regular hexagonal

cluster at triangular lattice distance greater than 2 (see Fig. 10);
(4) the two triangular faces are attached to two different sides of the quasi-regular hexag-

onal cluster (see Fig. 10);
(5) the two triangular faces form an elementary rhombus which is attached to one of the

sides, other than the longest, of the quasi-regular hexagonal cluster;
(6) the two triangular faces are attached at triangular lattice distance 2 to the same side,

other than the longest, of the quasi-regular hexagonal cluster;
(7) the two triangular faces form an elementary rhombus which is attached to one of the

sides, but the direction of the elementary rhombus is towards the outer direction of
the cluster.

Note that in all these cases the cluster has minimal perimeter, indeed it has the same
perimeter as a standard hexagon with the same area. Moreover, in all these cases the
configuration η0 has energy Γ K-Hex − Δ. We will prove that every ω ∈ ( → )opt
crosses a configuration in C(A∗

1). Since we need not consider any paths that return to
the set VA∗

1−2 afterwards and the energy can increase by at most Δ in order to have an
optimal path, there are only the following possibilities:

A. a free particle enters Λ;
B. a particle is detached from the cluster;
C. a particle moves at cost U without detaching from the cluster.

Case A. We may assume that the free particle does not exit from Λ, otherwise we can
iterate this argument for a finite number of steps since the path has to reach . Let
η1 = η

f p
0 . Since H(η1) = Γ K-Hex, in order to have an optimal path the energy cannot

increase. Thus the unique admissible moves are the movement of the free particle at zero
cost and the attachment of the particle to the cluster. We may assume that the particle
attaches to the cluster, otherwise we can iterate this argument.
In cases (1) and (2), note that η1 contains an internal angle of 5

3π , thus we consider the
configuration η2 obtained from η1 by attaching the free particle to cover the internal angle
of 5

3π of the cluster (see Fig. 10). Thus the energy decreases by 2U and therefore it is
possible to create a new particle without exceeding the energy value Γ K-Hex. Indeed, let
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η3 be the configuration obtained from η2 by creating a new particle, thus we obtain:

H(η3) = (H(η3) − H(η2)) + (H(η2) − H(η1)) + H(η1)

= Γ K-Hex + Δ − 2U < Γ K-Hex.
(3.23)

From now on the path proceeds as the reference path ω∗ without exceeding the energy
value Γ K-Hex. Note that the path crosses the set C(A∗

1) in the configuration η1.
In cases (5) and (6), since η1 contains an internal angle of 5

3π , it is possible that the free
particle attaches to the cluster at cost −2U . If this occurs, we can derive (3.23) as before,
but we show that now it is not possible to reach without exceeding Γ K-Hex unless the
path reaches a configuration η0 as in cases (1) or (2). Any side s of EB5(r

∗), other than
the longest, has length r∗ + 1, so the bar B with the larger base r∗ + 1 has cardinality
l = 2r∗ − 1. We can write

ω = ( , . . . , η̃, . . . , η0, η1, . . . , ηil , . . . , ηil+1 , . . . , ηil+2 , η̄, . . . , ), (3.24)

where η̃ = EB5(r∗), η0 and η1 are as above, ηil is the configuration obtained after filling
the new bar B and creating a free particle, ηil+1 is the configuration obtained from ηil by
attaching the free particle and afterwards creating another free particle, and ηil+2 is the
configuration obtained from ηil+1 by attaching the free particle to the cluster. Finally, let
η̄ the configuration obtained from ηil+2 by creating a free particle. Thus we obtain the
following contradiction:

H(η̄) = (H(η̄) − H(ηil+2)) + (H(ηil+2) − H(ηil+1)) + (H(ηil+1) − H(ηil ))

+ (H(ηil ) − H(η1)) + H(η1)

= Δ −U + (Δ −U ) + ((2r∗ − 3)Δ + (4 − 3r∗)U ) + Γ K-Hex > Γ K-Hex.

(3.25)

Therefore, starting from the configuration η1, after attaching the protuberance at cost
−2U the path cannot sequentially create and attach a particle to the cluster: this follows
from (3.25). Thus the path has to further lower the energy before reaching the configu-
ration ηil+2 . If the path reaches a configuration ξ such that n(ξ) = 0, i.e., ξ has no free
particle, a free particle has been attached and the energy lowered by 2U at most, but this
does not suffice due to (3.25). But there are no moves that further lower the energy. If
the path reaches a configuration ξ such that n(ξ) = 1, then the unique way to lower the
energy is to attach the free particle at cost −2U or −U , but again this does not suffice
due to (3.25). Since the path ω has to reach and therefore the number of particles has to
increase, the unique possibility in order to have an optimal path is that the path ω comes
back to the configuration η0. Thus we are done as claimed before.
If the particle attaches at cost −U , motions of particles at cost U can take place. The
unique possibility to first move a particle at costU is to attach it to the elementary rhom-
bus (see Fig. 11a), otherwise it is possible to move the last attached protuberance, but
in this case we can iterate the argument. All the configurations that are crossed during
these motions have energy either Γ K-Hex or Γ K-Hex −U . Since the energy has to further
lower in order to create a new particle and reach , the unique possibility is to detach
a protuberance at cost U and attach it to cover the unique internal angle of 5

3π (see
Fig. 11b). Thus we can argue as before for cases (5) and (6).
In cases (3), (4) and (7) note that the configuration η1 does not contain an internal angle of
5
3π , thus the free particle can attach only at cost−U . Let η2 be the configuration obtained
from η1 by attaching the free particle to the cluster at cost−U , thus H(η2) = Γ K-Hex−U .
Note that now the unique admissible moves are those at cost U at most, thus it is not
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(a) (b) (c) (d)

Fig. 11 In a we depict an example of configuration with η0 as in case (5) and a protuberance attached at cost
−U , in which we highlight in grey the triangular face that moves towards the elementary rhombus at cost U ,
while in bwe depict the final configuration of these moves, in which we highlight in grey the protuberance that
has to be detached. In c and d we depict an example of configuration with η0 as in case (3) and a protuberance
attached at cost −U : in c we highlight in grey the single protuberance, while in d we highlight in light grey
the free particle and in dark grey the last triangular face that has been moved towards left

possible to create a new particle before further lowering the energy.
In cases (3) and (7), since the path has to reach , the unique possibility is to move a
protuberance T in such a way it forms an angle of 5

3π with another protuberance. If the
two protuberances in configuration η0 are not on the longest side, we are left to analyze
case A for a configuration η2 as in cases (5) or (6) and therefore we can argue as before.
If the two protuberances in configuration η0 are on the longest side, we obtain a configu-
ration composed by a cluster as in case (1) or (2) with the addition of a protuberance. As
explained before, it is possible that motions at cost U take place. All the configurations
that are crossed during these motions have energy either Γ K-Hex or Γ K-Hex − U . At the
end of these motions, there are only the two following possibilities: there is a unique
cluster with an internal angle of 5

3π and either a free particle (see Fig. 11d) or a single
protuberance (see Fig. 11c). In the first case, the configuration that is obtained is in C(A∗

1).
In the latter case, since the energy has to further lower in order to create a new particle
and reach , the unique possibility is to detach the single protuberance at cost U and
attach to the cluster at cost −2U . When the protuberance is detached the path crosses
the set C(A∗

1).
In case (4), if the third protuberance is attached in such a way all the three protuberances
are attached to different sides, then the unique admissible moves are detaching a protu-
berance. Thus we can iterate this argument for a finite number of steps, since the path
has to reach . We are left to consider the case in which at least two protuberances are
attached to the same side. We can argue as above.
Case B. Let η1 be the configuration obtained from η0 by detaching a particle from a
cluster. Since H(η0) = Γ K-Hex − Δ and the path ω has to be optimal, the energy can
increase byU at most. Thus, only a protuberance can be detached. After that, only moves
with cost 0 at most are admissible. Since the path has to reach and therefore the free
particle cannot move for infinite time at zero cost, the unique possibility is to attach the
free particle to the cluster. Thus we obtain a configuration that is analogue to η0 and we
can iterate this argument for a finite number of steps, until we come back to case A.
Case C. Note that this case is admissible only for configurations η0 as in cases (1), (2),
(5) or (6). Since H(η0) = Γ K-Hex − Δ and the path ω has to be optimal, the energy can
increase by U at most.
In cases (1) or (2), starting from η0, all the configurations that can be obtained without
exceeding the energy value Γ K-Hex are in the set K(A∗

1 − 1): this directly follows from
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the definition of that set given in (2.39) since no particle is detached from the cluster.
From now on, since the energy of the last configuration is Γ K-Hex − Δ, it is possible
either to create a free particle, or to detach a protuberance at costU , or to move a particle
at cost U . In the first case, we can conclude as in case A. Note that the path ω crosses
the set C(A∗

1) when the free particle is created. In the second case, we can conclude as in
case B. In the latter case, we can iterate this argument for a finite number of steps.
In cases (5) or (6), we can argue as for the cases (1) or (2). Indeed, the same kind of
motions can take place, but when the free particle is created, we can argue as in the case
A for η1 as in cases (5) or (6). This concludes the proof.

2. The proof of this case is similar to the previous one.

Remark 3.28 We want to emphasize that this result is different from [18, Proposition 2.3.7].
Indeed, on the square lattice the authors were able to prove that any optimal path from the
metastable to the stable state reaches a square or quasi-square shape, then a protuberance is
attached and finally a free particle enters the box. However, Lemma 3.24 and Proposition 3.27
do not suffice to characterize the entrance in the gate. Indeed, several mechanism to enter
the gate appear on the hexagonal lattice. Clearly, one of these possibilities is to add a free
particle starting from a configuration inK(A∗

i − 1), with A∗
i ∈ {A∗

1, A
∗
2}. But there are many

other ways to enter K(A∗
i − 1) f p . For example, suppose that 0 < δ < 1

2 and an optimal
path ω : → crosses a configuration η of the type described in case (3) in the proof of
Proposition 3.27 with the addition of a free particle. Starting from η, it is possible that the free
particle is attached to the cluster in such a way that it forms an elementary rhombus together
with a triangular face already attached. Thus the energy reaches the value Γ K-Hex −U . Thus,
it is possible to move the other triangular face at cost U and, when it is detached, the path ω

crosses a configuration in S̃(A∗
1 − 1) f p ⊂ K(A∗

1 − 1) f p , but the path does not cross the set
K(A∗

1−1).With this example wewant to put the attention on the fact that several mechanisms
to enter the gate appear due to the particular shape of the lattice. Indeed, on the square lattice
it does not matter which side the protuberance is attached to because it is possible to move
it along the side at zero cost.

4 Recurrence Property

The goal of this Section is to prove Theorem 2.4. Recall (2.20) for the definition of stability
level. The following theorem states that every configuration of X different from and has
a stability level Δ +U at most.

Proposition 4.1 Let η ∈ X be a configuration such that η /∈ { , }, then Vη ≤ Δ +U.

An immediate consequence of Proposition 4.1 is that the only configurations with a sta-
bility level greater than Δ + U are and , as reported in Theorem 2.4. The proof of
Proposition 4.1 is divided in two steps. First of all, in Sect. 4.1 we prove that the configura-
tions with peculiar geometrical properties has a stability level smaller than or equal toΔ+U
(see Lemmas 4.2-4.7), and then in Sect. 4.2 we show that all configurations, different from
and , has a stability level smaller than or equal to Δ + U , i.e., XΔ+U \ { , } = ∅ (see

Lemma 4.8).

123



   46 Page 28 of 44 S. Baldassarri, V. Jacquier

4.1 Configurations with Stability Level1+ U at Most

Recall (2.22) for the definition of V -irreducible states. In this Section, we emphasize the dif-
ferent stability level for configurations depending on their particular geometrical properties.
For the proof of the lemmas we refer to Sect. 4.3. The following Lemma characterizes the
configurations in X0.

Lemma 4.2 Any configuration η ∈ X0 has no free particles.

In order to state the following Lemmas, we need the following definition. Moreover, recall
Definition 3.5 for the definition of a hole.

Definition 4.3 Two clusters are called interacting if their lattice distance is two. Otherwise,
two clusters are called non-interacting if its lattice distance is strictly greater than 2.

Lemma 4.4 If a configuration σ contains a cluster with an internal angle of 1
3π and no free

particles, no holes and no interacting clusters, then it has a stability level smaller than or
equal to U, i.e., σ /∈ XU .

Lemma 4.5 If a configuration σ contains a cluster with an internal angle of 5
3π and no free

particles, no holes and no interacting clusters, then it has a stability level smaller than or
equal to Δ, i.e., σ /∈ XΔ.

Lemma 4.6 If a configuration σ contains a cluster with an internal angle of 4
3π and no free

particles, no holes and no interacting clusters, then it has a stability level smaller than or
equal to 2Δ −U, i.e., σ /∈ X2Δ−U .

The next lemma investigates the case in which a configuration contains two interacting
clusters or a cluster with a hole.

Lemma 4.7 If a configuration σ contains two interacting clusters or a cluster with a hole,
then it has a stability level smaller than or equal to Δ +U, i.e., σ /∈ XΔ+U .

4.2 Identification of Configurations inX1+U

In Sect. 4.1, we established that the configurations with particular geometrical properties
has a stability level Δ + U at most. The configurations, that do not satisfy Lemma 4.2 and
Lemma 4.7, has no free particle and no interacting clusters.Moreover, the configurations, that
do not satisfy Lemmas 4.4-4.6, contain clusters with internal angles of π and 2

3π only. Thus,
the clusters contained in these configurations have an hexagonal shape. Now, we partition
the set of remaining configurations, different from and , into three subsets Z , R, Y and
we prove that also these configurations has a stability level smaller than or equal to Δ +U .
Thus, it follows that if there exists a configuration with a stability level strictly greater than
Δ +U , then it is or .

Z is the set of configurations consisting of a single quasi-regular hexagonal cluster (see
Fig. 12 on the left-hand side). More precisely, Z = Z1 ∪ Z2, where:

– Z1 is the collection of configurations such that there exists only one cluster with shape
EBm (r) ⊂ Λ with r ≤ r∗ and m ∈ {0, 1, 2, 3, 4, 5};

– Z2 is the collection of configurations such that there exists only one cluster with shape
EBm (r) ⊂ Λ with r ≥ r∗ + 1 and m ∈ {0, 1, 2, 3, 4, 5}.
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Fig. 12 On the left-hand side we
depict an example of the cluster
in a configuration of Z , while on
the right-hand side an example of
the cluster in a configuration of R

Z1, Z2 R1, R2

We define the set R to be the set of configurations consisting of a single hexagonal cluster
(see Fig. 12 on the right-hand side). Formally, R = R1 ∪ R2, where:

– R1 is the collection of configurations such that there exists only one clusterwith hexagonal
shape E ⊂ Λ such that it contains the greatest quasi-regular hexagon with radius r ≤ r∗;

– R2 is the collection of configurations such that there exists only one clusterwith hexagonal
shape E ⊂ Λ such that it contains the greatest quasi-regular hexagon with radius r ≥
r∗ + 1.

The set Y contains all configurations with more than one hexagonal cluster of the types
in Z1, Z2, R1, R2 (see Fig. 13). More precisely, we have Y = Y1 ∪ Y2, where:

– Y1 is the collection of configurations such that there exists a family of non-interacting
clusters with hexagonal shape such that it contains the greatest quasi-regular hexagon
with radius r ≤ r∗;

– Y2 is the collection of configurations such that there exists a family of clusters with at
least one having hexagonal shape containing the greatest quasi-regular hexagon with
radius r ≥ r∗ + 1.

In other words Y1 contains a collection of clusters of the same type of those in Z1 or R1, and
Y2 contains a collection of clusters where at least one is of the same type of those in Z2 or
R2.

Lemma 4.8 If σ ∈ Z ∪ R ∪ Y , then Vσ ≤ Δ +U.

We refer to Sect. 4.3 for the proof of this lemma.

4.3 Proof of Lemmas

Proof of Lemma 4.2 If η has a free particle, then η is obviously 0-reducible, i.e., its stability
level is 0 and therefore η /∈ X0. Indeed, the reducing path is immediately obtained by bringing
the free particle outside Λ or attaching it to a cluster.

Proof of Lemma 4.4 Let σ be a configuration as in the statement and letC(σ ) be a cluster with
an internal angle α = 1

3π . Let j be a site such that σ( j) = 1 and that belongs to the closed
triangular face of C(σ ) intersecting its boundary in two edges (see Fig. 14b). We define η as
the configuration obtained from σ by detaching the particle in j and then moving it outside
Λ. Note that it is possible to bring the particle outside Λ since σ does not contain clusters
with holes or interacting clusters. We construct a path ω : σ → η as

ω = (σ, ξ1, ξ2, . . . , ξn, η), (4.1)

where ξ1 is the configuration obtained from σ by moving the particle at site j in one of the
two empty nearest-neighbor sites. The cost of this move is U . Then the particle, after being
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Y1, Y2

Fig. 13 An example of clusters in a configuration of Y

j

(a)

jjj

(b)

j1

j2

(c)

Fig. 14 On the left-hand side (resp. center) we depict the site j when σ has an internal angle of 5
3π (resp.

1
3π ). On the right-hand side we depict the two sites j1, j2 when σ has an internal angle of 4

3π

detached, can be brought outside Λ passing through the configurations ξ2, . . . , ξn , possibly
interacting with other clusters. We need to bring the particle outside Λ because the energy
does not necessarily decreases by 2U when the particle interacts with the clusters during
the motion. Note that the energy of the configurations ξ2, . . . , ξn is H(ξ1) at most. Thus we
obtain

H(η) − H(σ ) = U − Δ < 0, (4.2)

where the inequality follows from the condition Δ > U . Thus, η belongs to Iσ and Vσ ≤ U .
��

Proof of Lemma 4.5 Let σ be a configuration as in the statement and let C(σ ) be a cluster
with an internal angle α = 5

3π . Let j be the site at distance one to a site in C(σ ) such that
σ( j) = 0 and that belongs to the closed triangular face intersecting the boundary of C(σ )

in two or more edges (see Fig. 14a). We define η as the configuration obtained by σ after
creating a particle and then attaching it in the site j . Note that it is possible to bring the
particle from the boundary of Λ towards the site j since σ does not contain clusters with
holes or interacting clusters. We construct a path ω connecting σ and η as

ω = (σ, ξ1, ξ2, . . . , ξn, η), (4.3)

where ξ1 is the configuration obtained from σ by creating a particle in ∂−Λ at cost Δ. Then,
this particle moves towards the cluster C(σ ), passing through the configurations ξ2, . . . , ξn ,
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until it is attached in the site j at cost −2U giving rise to the configuration η. Note that the
energy of the configurations ξ2, . . . , ξn is H(ξ1) at most. Thus we obtain

H(η) − H(σ ) = Δ − 2U < 0, (4.4)

where the inequality follows from Δ < 3
2U . Thus, η belongs to Iσ and Vσ ≤ Δ.

Proof of Lemma 4.6 Let σ be a configuration as in the statement and letC(σ ) be a cluster with
an internal angle α = 4

3π . Let j1, j2 be two sites such that σ( j1) = σ( j2) = 0, d( j1, j2) = 1
and let each of them belong to one closed triangular face intersecting the boundary of C(σ )

in one edge (see Fig.14c). We define η as the configuration obtained by σ after the following
sequence of moves: creation of a particle and movement of it until it is attached in the site
j1; creation of another particle and movement of it until it is attached in the site j2. Note that
it is possible to bring particles from the boundary of Λ towards the sites j1 and j2 since σ

does not contain clusters with holes. We construct a path ω connecting σ and η as

ω = (σ, ξi1 , ξi2 , . . . , ξin , ξ, ξ j1 , . . . , ξ jm , η), (4.5)

where ξi1 is the configuration obtained from σ by creating a particle in ∂−Λ at cost Δ. Then,
this particle moves towards the cluster C(σ ), passing through the configurations ξi2 , . . . , ξin ,
until it is attached in the site j1 at cost −U giving rise to the configuration ξ . Note that the
energy of the configurations ξi2 , . . . , ξin is H(ξi1) at most. The configuration ξ j1 is obtained
from ξ by creating a particle in ∂−Λ at cost Δ. Then, this particle moves towards the cluster
C(σ ), passing through the configurations ξ j2 , . . . , ξ jm , until it is attached in the site j2 at cost
−2U giving rise to the configuration η. Note that the energy of the configurations ξ j2 , . . . , ξ jm
is H(ξ j1) at most. Thus we obtain

H(η) − H(σ ) = 2Δ − 3U < 0, (4.6)

where the inequality follows from Δ < 3
2U . Thus, η belongs to Iσ and Vσ ≤ 2Δ −U .

Proof of Lemma 4.7 We analyze the configuration σ starting from the clusters with minimal
distance to the boundary ofΛ. If the first clustersC1(σ ) andC2(σ ), according to this minimal
distance, are interacting, we consider the shared vertex v := C1(σ )∩C2(σ ) on the triangular
lattice, see the first and the second pictures in Fig. 15. We let into Λ a particle and we call
σ1 this new configuration. Then this new particle moves until it is attached to v giving rise
to the configuration σ2. In this way, there are two possibilities:

(i) the triangular face of this particle shares an edge with C1(σ ), an edge with C2(σ ) and
contains v, see the second picture in Fig. 15;

(ii) the triangular face of this particle contains v and shares an edge either with C1(σ ) or
C2(σ ), see the first picture in Fig. 15.

Case (i). We have

H(σ1) − H(σ ) = Δ,

H(σ2) − H(σ1) = −2U
(4.7)

and therefore

H(σ2) − H(σ ) = [H(σ2) − H(σ1)] + [H(σ1) − H(σ )] = −2U + Δ < 0. (4.8)

Thus, the stability level of σ in this case is Vσ = Δ.
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v

C1

C1 v

C1C1C1

C2

T ′ T1
T2

Fig. 15 Here we represent clusters in light grey. In the first two pictures we depict two interacting clusters C1
and C2, while in the third one (resp. fourth one) we depict an example of configuration belonging to case 2
(resp. case 3) in the proof of Lemma 4.7

Case (ii).We may assume without loss of generality that the triangular face T of the new
particle shares an edge with C1(σ ). We have that

H(σ1) − H(σ ) = Δ,

H(σ2) − H(σ1) = −U
(4.9)

and therefore

H(σ2) − H(σ ) = −U + Δ > 0. (4.10)

since Δ > U . Thus, the energy has to further lower. We define the configuration σ3 as the
one obtained from σ2 by creating a new particle. Then this particle moves towards the cluster
until it is attached close to the triangular face T in such a way it is attached also to the cluster
C2(σ ). This configuration is called σ4. Thus, we have

H(σ3) − H(σ2) = Δ,

H(σ4) − H(σ3) = −2U .
(4.11)

Follows that

H(σ4) − H(σ ) = [H(σ4) − H(σ3)] + [H(σ3) − H(σ2)]
+ [H(σ2) − H(σ1)] + [H(σ1) − H(σ )]

= −3U + 2Δ < 0

(4.12)

and the stability level of σ in this case is Vσ = 2Δ −U .
Thus we conclude that the stability level for a configuration with two interacting clusters

is max{Δ, 2Δ −U } = 2Δ −U .
Next, suppose that the first clusters are not interacting. Let C(σ ) be the first cluster of σ

with a hole. Consider one of the empty triangular faces in the hole that share at least an edge
with the cluster. There are three cases:

1. The empty triangular face shares three edges with the cluster;
2. The empty triangular face shares two edges with the cluster, which we represent with the

dark grey triangular face T ′ in the third picture in Fig. 15;
3. The empty triangular face shares only one edge with the cluster, which we represent with

the dark grey triangular face T1 in the fourth picture in Fig. 15.

In the first case, we move the empty triangular face until it reaches the internal boundary of
the cluster. Since every triangular face in the internal boundary of the cluster shares at least
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an edge with the empty triangular faces outside the cluster, then

H(η) − H(σ ) ≤ −U , (4.13)

where η is the configuration obtained from σ by exchanging the empty triangular face of the
hole with a triangular face on the internal boundary of the cluster. Thus Vσ = 0.

In the second case, as before, we move the empty triangular face T ′ until it reaches
the internal boundary of the cluster giving rise to the configuration σ1. If σ and σ1 can be
connected via one step of the dynamics, then the energy value remains the same. Otherwise,
during the first step, the energy increases by U , indeed the empty triangular face T ′ can be
detached from the other empty triangular face by breaking two bonds and creating only a new
bond (see the third picture in Fig. 15). Thus in both cases it holds that H(σ1) − H(σ ) ≤ U .
Moreover, every triangular face in the internal boundary of the cluster shares one or two
edges with the empty triangular face outside the cluster.

– If there exists a triangular face T in the internal boundary of the cluster C(σ ) with two
shared edges with some empty triangular faces, then, denoting by η the configuration
obtained from σ1 by exchanging the empty triangular face of the hole with T , we have

H(η) − H(σ1) = −2U , (4.14)

H(η) − H(σ ) = [H(η) − H(σ1)] + [H(σ1) − H(σ )] ≤ −U . (4.15)

Thus Vσ = U .
– Otherwise, if each triangular face in the internal boundary has only one shared edge with

an empty triangular face outside cluster, then we have

H(σ2) − H(σ1) = −U , (4.16)

where σ2 is the configuration obtained from σ1 by exchanging the empty triangular face
of the hole with a triangular face in the internal boundary of the cluster. Thus, we obtain
H(σ2) = H(σ ), and by construction σ2 has an internal angle of 5

3π (see Fig. 14a). We
define a configuration σ3 obtained from σ2 by getting in Λ a new particle, and we define
σ4 from σ3 by moving and attaching this particle to cover the internal angle of 5

3π . We
have

H(σ3) − H(σ2) = Δ,

H(σ4) − H(σ3) = −2U
(4.17)

and therefore

H(σ4) − H(σ ) = [H(σ4) − H(σ3)] + [H(σ3) − H(σ2)] + [H(σ2) − H(σ )]
≤ −2U + Δ < 0.

(4.18)

Thus Vσ = Δ.

In the third case, the empty triangular face T1 has only one shared edge with the cluster, so
there exists another empty triangular face T2 in the hole that is connected with T1. We move
the two empty triangular faces until they reach the internal boundary of the cluster giving rise
to the configuration σ1. If σ and σ1 can be connected via one step of the dynamics, then the
energy value increases by U . Otherwise, during the first step, the energy increases by 2U ,
indeed the empty triangular face moves T1 from the other empty triangular face by breaking
two bonds (see the fourth picture in Fig. 15). Thus in both cases we have that

H(σ1) − H(σ ) ≤ 2U . (4.19)
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Moreover, every triangular face in the internal boundary of the cluster shares one or two
edges with the empty triangular faces outside the cluster, and we proceed as in the previous
case.

– If there exist two triangular faces T , T ′ in the internal boundary of the cluster C(σ ) such
that they both share two edges with some empty triangular faces, then we denote by η

the configuration obtained from σ1 by exchanging the empty triangular face of the hole
with T . We have

H(η) − H(σ1) = −2U , (4.20)

H(η) − H(σ ) = [H(η) − H(σ1)] + [H(σ1) − H(σ )] ≤ 0. (4.21)

Then, in a similar way, we move the empty triangular face T2 until the internal boundary
of the cluster in T ′. During the first step, the energy possibly increases by U as in the
second case. If we denote by η1 this configuration, then we have H(η1) − H(η) ≤ U .
Moreover, T ′ has two shared edges with some empty triangular face, then, denoting by ξ

the configuration obtained from η1 by exchanging the empty triangular face of the hole
with T , we have

H(ξ) − H(η1) = −2U , (4.22)

H(ξ) − H(η) = [H(ξ) − H(η1)] + [H(η1) − H(η)] ≤ −U . (4.23)

Thus we obtain

H(ξ) − H(σ ) = [H(ξ) − H(η)] + [H(η) − H(σ )] = −U (4.24)

and therefore by (4.19) it follows that Vσ = 2U .
– If there exists only one triangular face T such that it shares two edgeswith some triangular

face outside of the cluster, then we define the configurations σ1, η, η1 and ξ as before.
Since now H(ξ) − H(η1) = −U , we obtain H(ξ) − H(σ ) = 0. By construction ξ has
an internal angle of 5

3π , see Fig. 14a. We define a configuration ξ1 obtained from ξ by
getting in Λ a new particle, and we define ξ2 as the configuration obtained from ξ1 by
moving and attaching this particle to cove the internal angle of 5

3π . We have

H(ξ1) − H(ξ) = Δ,

H(ξ2) − H(ξ1) = −2U
(4.25)

and therefore

H(ξ2)−H(σ )=[H(ξ2)−H(ξ1)]+[H(ξ1) − H(ξ)] + [H(ξ) − H(σ )] = −2U + Δ.

(4.26)

Thus by (4.19) Vσ = 2U .
– If each triangular face in the internal boundary has only one shared edge with an empty

triangular face outside cluster, then we have

H(σ2) − H(σ1) = −U , (4.27)

where σ2 is the configuration obtained from σ1 by exchanging the empty triangular face
of the hole with a triangular face T1 in the internal boundary of the cluster. Thus, we
obtain H(σ2) − H(σ ) ≤ U , and by construction σ2 has an internal angle of 5

3π (see
Fig. 14a). We define a configuration σ3 obtained from σ2 by getting in Λ a new particle,
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Fig. 16 We depict an example of the energy landscape between EBm (r) and EBm−1 (r) for the value r = 4.
We highlight with a circle the maximum of the energy, which is attained in ω9

and we define σ4 as the configuration obtained from σ3 by moving and attaching this
particle to cover the internal angle of 5

3π . We have

H(σ3) − H(σ2) = Δ,

H(σ4) − H(σ3) = −2U
(4.28)

and therefore

H(σ4) − H(σ ) = [H(σ4) − H(σ3)] + [H(σ3) − H(σ2)] + [H(σ2) − H(σ )]
= −U + Δ > 0.

(4.29)

We observe that in σ4 there is an empty triangular face as in the second case. So, we iterate
the same procedure starting from σ4. Finally we obtain for the energy a total decreasing
value t ≤ (−U + Δ) + (−2U + Δ), thus the stability level is Vσ = Δ + U , which is
obtained in σ3.

��

Proof of Lemma 4.8 We distinguish the three cases σ ∈ Z , σ ∈ R and σ ∈ Y . Recall
Definition 3.15 and extend it to clusters. Moreover, recall the definition of Θ(·, ·) given in
Sect. 2.4 point 1.

Stability level of Z . We begin by considering the set Z1. For any configuration σ ∈ Z1 we
construct a pathω ∈ Θ(σ, Iσ ∩(Z1∪{ })) that dismantles the bar on one of the shortest sides
of the quasi-regular hexagon starting from one of its corners. Starting from σ ≡ ω0 ∈ Z1,
we will define ω1 as follows. Consider a corner in one of the shortest sides of the cluster
in EBm (r), with m = 0, . . . , 5 and let j be a site belonging to this corner. Define ω1 as the
configuration obtained starting from ω0 by moving the particle in j to the empty nearest
site. Since ω1 is obtained by breaking two bonds, we have H(ω1) − H(ω0) = 2U . Then,
considerω2 as the configuration obtained fromω1 bymoving the same particle outsideΛ.We
observe that ω1 and ω2 are not connected via one step of the dynamics, but there exist some
configurations ξ1, . . . , ξn such that (ω1, ξ1, . . . , ξn, ω2) is a path with H(ξi ) = H(ξ j ) for all
i, j ∈ {1, . . . , n}. We have H(ω2) − H(ω1) = −Δ. Then, we analogously define ω3 and ω4

by considering the site j1, where j1 is the other site belonging to the same corner. In this case,
when a particle is detached from the cluster defining ω3, only one bond is broken. Thus we
have H(ω3) − H(ω2) = U and H(ω4) − H(ω3) = −Δ. By iterating this procedure along
the considered side, a bar of the cluster is erased and we obtain the configuration η ≡ ωk
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such that η = EBm−1(r) for m �= 0, otherwise η = EB5(r − 1) for m = 0. Note that k is twice
the cardinality of the bar. See Fig. 16.

Note that if the initial configuration contains a regular hexagon with radius length one,
then the final configuration contains a trapeze composed by three particles.

In order to determine where the maximum is attained, we observe that H(ω2 j ) <

H(ω2 j+1) for every j = 0, . . . , k−2
2 and H(ωk) < H(ωk−1). Thus, we will find the maxi-

mum over the configuration with odd index. By (2.3), we have

H(ω1) − H(ω0) = 2U , (4.30)

H(ω3) − H(ω0) = 3U − Δ (4.31)

and for every s = 2, · · · , k−4
2 , we have

H(ω2s+1) − H(ω2s−3) = 3U − 2Δ, (4.32)

H(ωk−1) − H(ωk−5) = 2U − 2Δ. (4.33)

It follows that for n < k − 1 odd, n = 2s̃ + 1, we obtain

H(ωn) − H(ω0) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

s=2,..,s̃
s even

[H(ω2s+1) − H(ω2s−3)] + [H(ω1) − H(ω0)] if s̃ even

∑

s=3,..,s̃
s odd

[H(ω2s+1) − H(ω2s−3)] + [H(ω3) − H(ω0)] if s̃ odd,

=
{

s̃
2 (3U − 2Δ) + 2U if n = 2s̃ + 1 with s̃ even,
s̃−1
2 (3U − 2Δ) + 3U − Δ if n = 2s̃ + 1 with s̃ odd.

(4.34)

Thus, for n = k − 1 we have

H(ωk−1) − H(ω0) = [H(ωk−1) − H(ωk−5)] + [H(ωk−5) − H(ω0)]
= 2U − 2Δ + k − 6

4
(3U − 2Δ) + 2U

= k − 2

4
(3U − 2Δ) +U , (4.35)

where we have used that s̃ is even, indeed k − 1 = 2(2r − j) − 1 = 2s̃ − 1 with j ∈
{−1,+1,+3}. Since the result is an increasing function of n = 2s̃ + 1, comparing the three
maxima,we see that the absolutemaximum is attained inωk−5. Since k is twice the cardinality
of a bar, by Definitions 3.8 and 3.9, we have

– k = 2(2r − 1) if the initial configuration is EB1(r);
– k = 2(2r + 1) if the initial configuration is EBm (r) for m = 2, 3, 4, 5;
– k = 2(2r + 3) if the initial configuration is E(r + 1).

So, by using (4.34) and replacing k − 5 = 2s̃ + 1 with s̃ even, we have

Φ(ω) − H(ω0) = H(ωk−5) − H(ω0) = k − 6

4
(3U − 2Δ) + 2U . (4.36)

Thus Φ(ω) depends only on the value k, that is an increasing function of the radius r of the
quasi-regular hexagon. The cardinality of the longest bar among those of the quasi-regular
hexagon in a configuration in Z1 is 2r∗ + 1 (obtained by removing B5 from EB5(r

∗)), so we
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choose k = 2(2r∗ + 1). Note that the maximum is not obtained for k = 2(2r∗ + 3), since
E(r∗ + 1) /∈ Z1.

Let us check thatωk ∈ Iσ ∩(Z1∪{ }). Since k ≤ 2(2r∗+1)with r∗ =
⌊

U
2(3U−2Δ)

−1/2
⌋

and by (4.35), we get

H(ω0) − H(ωk) = [H(ω0) − H(ωk−1)] + [H(ωk−1) − H(ωk)]
= −k − 2

4
(3U − 2Δ) −U + Δ

≥ −2(2r∗ + 1) − 2

4
(3U − 2Δ) −U + Δ = δ(3U − 2Δ) > 0. (4.37)

Finally, by Eqs. (4.36) and (4.37), we have

Vσ ≤ Φ(ω) − H(σ ) = k − 6

4
(3U − 2Δ) + 2U . (4.38)

Thus, we find V ∗
Z1

= maxσ∈Z1 Vσ by choosing k = 2(2r∗ + 1) and recalling r∗ =⌊
U

2(3U−2Δ)
− 1/2

⌋
, i.e.,

V ∗
Z1

≤ 3Δ − 2U . (4.39)

Next, we analyze the set Z2. For any configuration σ ∈ Z2 we construct a path ω ∈
Θ(σ, Iσ ∩ (Z2 ∪ { })). Starting from σ ≡ ω0 ∈ Z2, define ω1 by adding a free particle
in Λ. Let us define ω2 in the following way. Consider a corner in one of the longest sides
of the cluster in EBm (r) and let j be a site belonging to this corner. Let j1 be the site at
distance one from j such that σ( j1) = 0. We define ω2 by moving the free particle in ω1

until it reaches the site j1. We observe that ω1 and ω2 are not connected via one step of the
dynamics, but there exist some configurations ξ1, . . . , ξn such that (ω1, ξ1, . . . , ξn, ω2) is a
path with H(ξi ) = H(ξ j ) for all i, j ∈ {1, . . . , n}. Moreover, we have

H(ω1) − H(ω0) = Δ, (4.40)

H(ω2) − H(ω1) = −U . (4.41)

We consider j2 the site at distance one from j1 such that σ( j2) = 0 and d( j2, j ′) = 2 where
j ′ �= j is another site of the initial cluster. The configuration ω3 is obtained from ω2 by
adding a free particle, and ω4 is obtained from ω3 by moving the free particle until it reaches
the site j2. Again, we have

H(ω3) − H(ω2) = Δ, (4.42)

H(ω4) − H(ω3) = −U . (4.43)

Let us define ω5 and ω6. The configuration ω5 is obtained from ω4 by adding a free particle,
and ω6 is obtained from ω5 by moving the free particle until it reaches the site j3, where j3
is the site at distance one from j2 such that σ( j3) = 0 and d( j3, j ′) = 1 where j ′ �= j is
another site of the initial cluster. We have

H(ω5) − H(ω4) = Δ, (4.44)

H(ω6) − H(ω5) = −2U . (4.45)

We note that the energy has decreased by 2U , since the particle has covered an internal angle
of 5

3π . By iterating this procedure along the considered side, a bar is added to the initial
cluster. We obtain the configuration η ≡ ωk such that η = EBm+1(r) for m �= 5, otherwise
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η = E(r + 1) for m = 5. Note that the length of the path k is equal to twice the cardinality
of the bar.

In order to determine where the maximum is attained, we observe that H(ω2 j ) <

H(ω2 j+1) for every j = 0, . . . , k−2
2 and H(ωk) < H(ωk−1). Thus, we will find the maxi-

mum over the configuration with odd index. By (2.3), we have

H(ω1) − H(ω0) = Δ, (4.46)

H(ω3) − H(ω0) = 2Δ −U , (4.47)

H(ω5) − H(ω0) = 3Δ − 2U (4.48)

and for every s = 3, . . . , k−2
2 we have

H(ω2s+1) − H(ω2s−3) = 2Δ − 3U . (4.49)

It follows that for n > 5 odd, n = 2s̃ + 1, we obtain

H(ωn) − H(ω0) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

s=3,..,s̃
s odd

[H(ω2s+1) − H(ω2s−3)] + [H(ω5) − H(ω0)] if s̃ odd,

∑

s=4,..,s̃
s even

[H(ω2s+1) − H(ω2s−3)] + [H(ω3) − H(ω0)] if s̃ even,

=
{

s̃−2
2 (2Δ − 3U ) + (3Δ − 2U ) if n = 2s̃ + 1 with s̃ even,

s̃−1
2 (2Δ − 3U ) + (2Δ −U ) if n = 2s̃ + 1 with s̃ odd.

(4.50)

Since 2Δ − 3U < 0 and therefore the result is a decreasing function of n, the absolute
maximum is attained in ω5. So, we have

Φ(ω) − H(ω0) = H(ω5) − H(ω0) = 3Δ − 2U . (4.51)

Finally, let us check that ωk ∈ Iσ ∩ (Z2 ∪ { }). If σ ∈ Z2 \ E(r∗ + 1), then the cardinality
of the smallest bar among those of the quasi-regular hexagon in a configuration in Z2 is

kmin = 2(r∗ + 1) + 1. Since r∗ =
⌊

U
2(3U−2Δ)

− 1
2

⌋
and by using (4.50), we have

H(ω0) − H(ωk) = [H(ω0) − H(ωk−2)] + [H(ωk−2) − H(ωk)] (4.52)

=
[k − 1

2
(2Δ − 3U ) + (2Δ −U )

]
+U − Δ (4.53)

= (r∗ + 1)(2Δ − 3U ) + (2Δ −U ) +U − Δ (4.54)

= −2U + 2Δ > 0, (4.55)

since Δ > U . Thus

Vσ ≤ Φ(ω) − H(σ ) = 3Δ − 2U . (4.56)

Now we consider E(r∗ + 1) and we note that H(E(r∗ + 1)) < H(EB1(r∗ + 1)). Thus our
path ω is the composition of the path we have previously defined, which connects E(r∗ + 1)
to EB1(r∗ + 1), and an additional part depending on the value of δ (recall that δ ∈ (0, 1) is
such that r∗ = U

2(3U−2Δ)
− 1

2 − δ). If 0 < δ < 1
2 , then we add the bar B2 as we have done

above for B1 obtaining thatω connects E(r∗ +1) to EB2(r∗ +1) passing through EB1(r∗ +1).
If 1

2 < δ < 1, then in the same manner we add the bars B2, B3, B4, B5, B6 obtaining that
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ω conncets E(r∗ + 1) to EB6(r∗ + 1) ≡ E(r∗ + 2) passing through EBi (r∗ + 1) for any
i = 2, . . . , 5. In both cases the last configuration of the new paths belong to IE(r∗+1), indeed

H(E(r∗ + 1)) > H(EB2(r∗ + 1)), if δ ∈
(
0,

1

2

)
,

H(E(r∗ + 1)) > H(E(r∗ + 2)), if δ ∈
(
1

2
, 1

)
.

Thus, using Eqs. (4.50), (4.51) and (4.56), we obtain

Vσ ≤
⎧
⎨

⎩
3Δ − 2U + H(EB1(r∗ + 1)) − H(E(r∗ + 1)), for δ ∈

(
0, 1

2

)
,

3Δ − 2U + H(EB5(r∗ + 1)) − H(E(r∗ + 1)), for δ ∈
(
1
2 , 1

)
,

=
⎧
⎨

⎩
3Δ − 2U + δ(3U − 2Δ) < 2Δ − U

2 , for δ ∈
(
0, 1

2

)
,

3Δ − 2U + (2δ − 1)(3U − 2Δ) < Δ +U , for δ ∈
(
1
2 , 1

)
.

(4.57)

Thus we find

V ∗
Z2

= max
σ∈Z2

Vσ ≤ Δ +U . (4.58)

In conclusion, we have V ∗
Z = max{V ∗

Z1
, V ∗

Z2
} ≤ Δ +U .

Stability level of R. Consider the set R1. For any configuration σ ∈ R1 we construct a
path ω ∈ Θ(σ, Iσ ∩ (R1 ∪ Z1))). Starting from σ ≡ ω0 ∈ R1, let us define ω1 as follows.
Consider the corner in one of the shortest sides of the cluster and let j be a site belonging
to it. Define the configuration ω1 starting from ω0 by moving the particle in j to the nearest
empty site. Since with this move two bonds are broken, we have H(ω1) − H(ω0) = 2U .
Then, considerω2 as the configuration obtained fromω1 by moving the same particle outside
Λ. We observe that ω1 and ω2 are not connected via one step of the dynamics, but there exist
some configurations ξ1, . . . , ξn such that (ω1, ξ1, . . . , ξn, ω2) is a path with H(ξi ) = H(ξ j )

for all i, j ∈ {1, . . . , n}. We have H(ω2) − H(ω1) = −Δ. Then, analogously define ω3 and
ω4 by considering the site j ′, where j ′ is the other site belonging to the same corner. In this
case, when a particle is detached from the cluster defining ω3, only one bond is loss. Thus
we have that H(ω3) − H(ω2) = U and H(ω4) − H(ω3) = −Δ. By iterating this procedure
along the shortest side, a bar of the cluster is erased and we obtain the configuration η ≡ ωl ,
where l is twice the cardinality of the considered bar.We observe that the greatest value of l is
always smaller than k, where k is twice the cardinality of the greatest bar of the quasi-regular
hexagon contained in the cluster. Analogously to the case ω ∈ Z1, we have that ωl ∈ Iσ .
Thus Vσ < 3Δ − 2U and therefore

V ∗
R1

= max
σ∈R1

Vσ < 3Δ − 2U . (4.59)

Next, we consider the set R2. For any configuration σ ∈ R2 we construct a path ω ∈
Θ(σ, Iσ ∩ (R2 ∪ Z2 ∪ { })). Starting from σ ≡ ω0 ∈ R2, let us define ω1 as follows.
Consider a corner in one of the shortest sides of the cluster and let j be a site belonging to it.
We distinguish two cases depending on the length of the bar l of the shortest side.

– If the cardinality of the bar l is smaller than 2(r∗ +1)−1, we define ω1 by detaching the
particle in j from the cluster. Then, we define ω2 by moving the free particle outside Λ.
Next, we consider the other site j ′ belonging to the corner of the cluster and defineω3 and
ω4 by detaching andmoving the particle in j ′ outsideΛ. By iterating this procedure along
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the shortest side, a bar of the cluster is erased and we obtain the configuration η ≡ ωl̃ ,
where l̃ = 2l is twice the cardinality of the considered bar. Since l < 2(r∗ + 1) − 1,
we observe that the greatest value of l̃ is always smaller than k, where k is twice the
cardinality of the greatest bar of the quasi-regular hexagon contained in the cluster, that
is l̃ < k. Analogously to the case σ ∈ Z1, we have that ωl̃ ∈ Iσ . Thus Vσ < 3Δ − 2U .

– If the cardinality of the bar l is at least 2(r∗ + 1) − 1, consider the site j1 at distance one
from j and such that σ( j1) = 0. We define the configuration ω1 starting from ω0 and by
adding a free particle. Then, we defineω2 bymoving the free particle inω1 until it reaches
the site j1. Next, we consider j2 the site at distance one from j1 such that σ( j2) = 0 and
d( j2, j ′) = 2, where j ′ �= j is another site of the initial cluster. We define ω3 and ω4 in
the following way. The configuration ω3 is obtained from ω2 by adding a free particle
in Λ, and ω4 is obtained from ω3 by moving the free particle until it reaches the site j2.
Let j3 be the site at distance one from j2 such that σ( j3) = 0 and d( j3, j ′) = 1, where
j ′ �= j is another site of the initial cluster. We define ω5 and ω6 in the same way used
before. The configuration ω5 is obtained from ω4 by adding a free particle in Λ, and ω6

is obtained from ω5 by moving the free particle until it reaches the site j3. By iterating
this procedure along the considered side, a bar is added to the initial cluster. Analogously
to the case ω ∈ Z2, we have that ω2l ∈ Iσ since l ≥ 2(r∗ + 1) − 1. Thus Vσ < Δ + U
and

V ∗
R2

< Δ +U . (4.60)

In conclusion, we have that V ∗
R = max{V ∗

R1
, V ∗

R2
} < Δ +U .

Stability level of Y . First, consider the set Y1. For every configuration σ in Y1, all clusters
are non-interacting and are of the same type of those in Z1 or R1. If σ contains a cluster that is
not a quasi-regular hexagon, then we take our path to be the path that cuts a bar, analogously
to what has been done for R1. We get a configuration in Iσ ∩ Y1. Otherwise, if all clusters
are quasi-regular hexagons, then we take our path to be the path that cuts a bar of the cluster,
analogously to what has been done for Z1. We get a configuration in Iσ ∩ (Y1 ∪ Z1). So, we
have

V ∗
Y1 = max{V ∗

R1
, V ∗

Z1
} < 3Δ − 2U . (4.61)

Next, consider the set Y2. For every configuration σ in Y2, there exists at least a cluster of
the same type of those in Z2 or R2. If σ contains a cluster of the type of those in R2, i.e.,
σ contains a cluster that is not a quasi-regular hexagon, we take our path to be the path
that either cuts or adds a bar as it has been done for R2. We get a configuration in Iσ ∩ Y2.
Otherwise, if the cluster is like those in Z2, i.e., the cluster is a quasi-regular hexagon, then
we take the path that adds a bar to the quasi-regular hexagon, alike the cases encountered
when considering Z2. We get a configuration in Iσ ∩ (Y2 ∪ { }). So, we have

V ∗
Y2 = max{V ∗

R2
, V ∗

Z2
} < Δ +U . (4.62)

We conclude that

V ∗
Y = max{V ∗

Y1 , V
∗
Y2} = V ∗

Z .

��

123



Metastability for Kawasaki Dynamics on the Hexagonal Lattice Page 41 of 44    46 

4.4 Proof of Theorem 2.2

In this Section we identify stable and metastable states by proving Theorem 2.2.

Proof of Theorem 2.2 First, by direct computation we deduce that H( ) < H( ) if L is
sufficiently large, say L > 2r∗ + 3. Moreover, we know that X s ⊆ XV for any V ≥ 0. Thus,
using Theorem 2.4 and Proposition 4.1, we conclude thatX s = { }. To show thatXm = { },
we need to prove that V = Φ( , ) = Γ K-Hex > V ∗, with V ∗ = Δ + U . This part of the
proof is analogue to the proof of [41, equation (3.86)]. ��

4.5 Proof of Theorems 2.3 and 2.5

In this Section we give the proof of the main Theorems 2.3 and 2.5.

Proof of Theorem 2.3 Combining [40, Theorem 4.1], [40, Theorem 4.9], [40, Theorem 4.15],
Theorem 2.2 and Corollary 3.26, we get the claim.

Proof of Theorem 2.5 If follows by Proposition 3.27. ��

4.6 Proof of Theorem 2.7

We refer to [40, eq. (2.7)] for the definition of cycle. To prove Theorem 2.7 we need [44,
Theorem 3.2], which states that every state in a cycle is visited by the process before the exit
with high probability. Using this result, to prove Theorem 2.7 we need to prove the following:

1. if 0 < δ < 1
2 , then

(i) if η is a quasi-regular hexagon contained in EB4(r∗), then there exists a cycle C
containing η and and not containing ;

(ii) if η is a quasi-regular hexagon containing EB0(r∗ + 1), then there exists a cycle C
containing η and and not containing ;

2. if 1
2 < δ < 1, then

(i) if η is a quasi-regular hexagon contained in EB0(r∗ + 1), then there exists a cycle C
containing η and and not containing ;

(ii) if η is a quasi-regular hexagon containing EB2(r∗ + 1), then there exists a cycle C
containing η and and not containing .

Case 1. Let us start with (i). Let C be the maximal connected set containing such
that maxη′∈C H(η′) < Γ K-Hex. Note that by definition C is a cycle containing and not

containing since Φ( , ) = Γ K-Hex. It remains to prove that η belongs to C . The proof
goes as follows. We construct a path ωη, going from η to keeping the energy less than
Γ K-Hex. This path is obtained by erasing site by site each bar of η, as explain in the first
case of the proof of Lemma 4.8. Let η ∈ EBi (r) with r ≤ r∗ and 0 ≤ i ≤ 5. If η /∈ EB0(r),
i.e., if η is not a regular hexagon, consider the sequence of configurations {ω̄η,

i }i=−ī ,...,−1
connecting η to the regular hexagon EB0(r) by erasing site by site each bar. If η ∈ EB0(r), we
consider this path empty. From now on, let {ω̄η,

i }i=0,...,r be a sequence of configurations that
contain regular hexagons, starting from EB0(r) and ending in , with radius r−i . To complete
the construction we can use the same idea applied in the construction of the reference path.

More precisely, between each pair (ω̄
η,
i , ω̄

η,
i+1) we can add a sequence of configurations
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ω̃
η,
i = {ω̃η,

i, j } j=0,...,12r−6 such that ω̃
η,
i,0 = ω̄

η,
i and ω̃

η,
i, j is obtained from ω̄

η,
i by

erasing j sites for j > 0. Again, as in the reference path, the last interpolation consists in

inserting between every pair of configurations in ω̃
η,
i a sequence of configurations with a

free particle in a suitable sequence of sites connecting the boundary ofΛ to the site previously
occupied by the erased particle. Either for any r < r∗ and 1 ≤ i ≤ 6 or r = r∗ and 1 ≤ i ≤ 5,
we have that H(EBi−1(r)) < H(EB5(r∗)). Thus by Proposition 3.17 for the path ωη, we
obtain

max
i

H(ω
η,
i ) = max

r≤r∗ H(EBi−1(r)) + 3Δ − 2U < Γ K-Hex. (4.63)

The proof of (ii) is similar. Let C be the maximal connected set containing such that
maxη′∈C H(η′) < Γ K-Hex. Again C is a cycle containing and not containing since

Φ( , ) = Γ K-Hex. To prove that C contains η we define a path ωη, going from η to as
follows. It is obtained first by reaching a regular hexagon shape and, from there, following the
reference path ω∗ defined in Sect. 3.2. Suppose that η ∈ EBi (r), with r ≥ r∗ and 0 ≤ i ≤ 5.
If η is a regular hexagon, then we define ωη, as the part of the reference path going from η

to . Otherwise, we add bars to η with a mechanism similar to the time reversal of the one
used in the construction of ωη, , until the path reaches a configuration in η ∈ EB0(r + 1).
The remaining part of the path follows the part of the reference path ω∗ from EB0(r + 1) to
. Since for any r ≥ r∗, 0 ≤ i ≤ 5 and 0 < δ < 1

2 , we have that H(EBi (r)) < H(EB5(r∗)),
for the path ωη, we obtain

max
i

H(ω
η,
i ) = max

r≥r∗ H(EBi (r)) + 3Δ − 2U < Γ K-Hex. (4.64)

Case 2. The proof is analogue to the one done for the case 1 with the following changes.
In the proof of (i), since 1

2 < δ < 1, and either for any r < r∗ + 1 and 1 ≤ i ≤ 6 or for
r = r∗+1 and i = 1, we have that H(EBi−1(r)) < H(EB1(r∗+1)). Thus by Proposition 3.17
for the path ωη, we obtain

max
i

H(ω
η,
i ) = max

r≤r∗+1
H(EBi−1(r)) + 3Δ − 2U < Γ K-Hex. (4.65)

In the proof of (ii), since either for any r > r∗ + 1 and 0 ≤ i ≤ 5 or for r = r∗ + 1 and any
2 ≤ i ≤ 5, we have that H(EBi (r)) < H(EB1(r∗ + 1)), for the path ωη, we obtain

max
i

H(ω
η,
i ) = max

r≥r∗+1
H(EBi (r)) + 3Δ − 2U < Γ K-Hex. (4.66)

This concludes the proof.
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