
PHD PROGRAM IN SMART COMPUTING
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE (DINFO)

Optimization Methods

for Interpretable Machine Learning

Tommaso Aldinucci

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing

PhD Program in Smart Computing
University of Florence, University of Pisa, University of Siena

Optimization Methods

for Interpretable Machine Learning

Tommaso Aldinucci

Advisor:

Prof. Fabio Schoen

Head of the PhD Program:

Prof. Stefano Berretti

Evaluation Committee:
Prof. Marco Locatelli, Università degli Studi di Parma
Prof. Rafael Blanquero Bravo, Universidad de Sevilla

XXXVI ciclo — January 2024

Alla mia famiglia

Acknowledgments

Here we go again. Another time, the last, in the whole life that I have to find the
words to write this short Section. The period of my PhD has been the strangest of
my whole life. For the major part of these three years my mind was stacked into
solving life problems rather than optimization ones. As all men of science, we are
instinctively inclined to approach each problem using reasoning. Unfortunately, or
fortunately, life is not an optimization problem. Many times you have no power to
change all the variables in play, you can only try to do the best by acting on those
you can control. Well, if this PhD period had beenmore "relaxed", we all know from
the theory of relaxation that the results obtained would probably have been better
(surely not worse).

Now, some people I feel I should deeply thank. First of all, my advisor, Prof.
Fabio Schoen. I have had the pleasure of being under his supervision sincemy bach-
elor’s degree and these few lines don’t do justice to the extraordinary person he is.
The second person is undoubtedly Matteo. I still remember the first day I spoke
to you for the first time during a linear algebra class, almost twelve years ago now.
I knew immediately that you were a kind of "alien" compared to the rest of us. I
deeply thank you for the immense help in this very difficult time. Then, all the guys
of the optimization squad of the laboratory during these years: Pierluigi, Enrico, Si-
mone, Leonardo, Tomaso, Alessio and Marco. Thank you for all the laughs and for
the many scientific discussions addressed. Finally, Davide, Arturo and Saliha the
latest additions to the group. I hope to work with you in the future as well.

Florence, January 31, 2024.

Tommaso

iii

iv Acknowledgments

Abstract

This dissertation is concerned with optimization problems related to trans-
parent machine learning. In the contemporary landscape of machine learning,
the importance of interpretability has become essential, resonating across di-
verse industries and applications. As complex machine learning models, often
characterized as "black boxes," continue to demonstrate remarkable predictive
capabilities, there arises a pressing need to explain their decision-making pro-
cesses. Interpretability is crucial not only for building trust in automated sys-
tems but also for meeting ethical, legal, and regulatory requirements. In health-
care, interpretable models can offer insights into diagnostic reasoning, aiding
healthcare professionals in decision-making and enhancing patient trust. In fi-
nance, transparent models are essential for ensuring fair lending practices and
regulatory compliance. Legal systems increasingly demand explainability to
justify algorithmic decisions, emphasizing the significance of interpretable ma-
chine learning in justice.

Within this setting, wefirst brieflydescribe themost used interpretablemod-
els then we discuss novel optimization strategies to handle their learning prob-
lem. More precisely, we describe state-of-art approaches to learn decision tree
models and, to this aim, we propose two new techniques based to genetic algo-
rithms and mixed integer programming.

Afterwards, we present a work on risk score models, enhancing their ex-
pressiveness by extending these estimators in a more generalized framework.
Finally, in the context of local explanations, we propose a recommendation sys-
tem for random forest that dinamically maps each point to a single shallow tree
in the ensemble.

Contents

Acknowledgments iii

Contents 1

1 Introduction 3

2 Interpretable Models 7
2.1 Linear Regression . 7
2.2 Logistic Regression . 8
2.3 Generalized Additive Models . 9
2.4 Decision Trees . 12

3 Optimization for Classification Trees 15
3.1 CART . 16
3.2 Exact Formulations . 21
3.3 The Evolutionary Approach . 42
3.4 Concluding Remarks . 54

4 Optimization for Risk Scores 55
4.1 Learning Optimal Risk Scores . 57
4.2 Generalized Risk Scores . 59
4.3 The Optimal Generalized Risk Score Model 62
4.4 Numerical Experiments With Binary Features 68
4.5 Numerical Experiments With Continuous Feature 72
4.6 Concluding Remarks . 76

5 Decision Trees for Local Explanations 77
5.1 Preliminaries . 78
5.2 Proposed Method . 80
5.3 Numerical Experiments . 82
5.4 Discussion . 84
5.5 Concluding Remarks . 86

1

2 CONTENTS

6 Conclusions 87

A Publications 89

Bibliography 91

Chapter 1

Introduction

In the contemporary era of machine learning, where algorithms wield immense
power in shaping decisions across diverse domains, the call for transparency and
interpretability has never been more resonant. As artificial intelligence gradually
becomesmore andmore present in our lives, fromhealthcare diagnostics to financial
predictions and legal deliberations, the black-box nature of many advanced models
poses inherent challenges. The rise of interpretable models stands as a response to
the imperative need for understanding and trust in the decision-making processes
of these sophisticated algorithms.

Given the huge increase of complex models, such as deep neural networks, that
exhibit state-of-art predictive performance in many complex tasks, interpretability
is often sacrified to obtain more expressive power. While these models excel in dis-
cerning intricate patterns within very large datasets, the miss of explanations on
how they arrive at specific decisions raises ethical, legal, and practical concerns.
The ability to comprehend, question, and validate the reasoning behind algorithmic
outcomes becomes essential, especially in applications where human lives, financial
stability, or legal outcomes hang in the balance. Even though there is no a formal
definition for interpretability, it is worth to mention the one by (Miller, 2019):

"Interpretability is the degree to which a human can understand the cause of a decision."

The importance of interpretable models is underscored by the necessity to bridge
the gap between accuracy and transparency. It’s not merely a quest for simplicity
but a strategic imperative to empower end-users, be they healthcare professionals,
financial analysts, or legal experts, with the ability to gain insights into the decision-
making processes of these algorithms.

A common belief in the machine learning community suggests that enhanced
model complexity directly correlates with superior accuracy, implying the necessity
of intricate black-box structures for good predictive performance (see Figure 1.1).
However, this assumption often proves inaccurate, especially when dealing with

3

4 Introduction

structured data with a robust representation through inherently meaningful fea-
tures (Rudin, 2019). In these scenarios, there frequently emerges small differences
in performance between more intricate classifiers (such as deep neural networks,
boosted decision trees, and random forests) and considerably simpler counterparts
(like logistic regression).

Figure 1.1: A fictional graph of the relationship between the performance of models
and their interpretability.

As a compromise, a stream of research is focused on creating methods to explain
black-boxes, by fitting a surrogate transparent model to approximate the behaviour
of the black-box one. In this context, it is worth to mention the work (Ribeiro et al.,
2016) where a linear model is employed to provide explanations of single points
(local explanations) by building a first order approximator.

Within this background, in this thesiswe propose and analize different optimiza-
tion approaches to handle the learning problem of the most common transparent
models. In a supervised learning context, let X be the input space and Y be the out-
put space. For the rest of this manuscript, unless otherwise stated, we will focus on
datasets with N points and where X = Rp, using a bold notation to indicate feature
vectors x ∈ Rp. The output space Y will be chosen as R in the case of regression
and {−1, 1} for binary classification. The rest of the thesis is organized as follows:

• In Chapter 2, we briefly review the most know trasparent models, focusing on
their interpretability.

5

• In Chapter 3, we review the literature in the context of learning decision tree.
Moreover, we propose two novel methods for handling the problem. The first
one is a new memetic strategy based on genetic algorithms which is able to
induce classification trees with competitive performance with respect to exact
formulations on real-world datasets. In the second part we introduce the con-
cept of Loss Optimal Classification Trees by encapsulating different losses in a
general Mixed Integer Programming framework. Then we propose to use the
logistic loss to induce Optimal Logistic Classification Trees.

• In Chapter 4, we address the problem of learning Risk Scores that are very
common trasparent and sparse linear estimators widely used in the health-
care context. Moreover, we extend these models by proposing a generalized
framework to induce Optimal Generalized Risk Scores.

• In Chapter 5, we propose a recommendation system to dinamically select a
single shallow decision tree in a Random Forest to obtain post-hoc local expla-
nations for each point.

• In Chapter 6, we finally give some concluding remarks and suggest possible
themes for future research.

Chapter 2

Interpretable Models

A straightforward approach to enhance interpretability is to use algorithms that
generate models that are ineherently transparent every time that it is possible. Fre-
quently employed interpretable models include Linear Regression, Logistic Regres-
sion, and Decision Trees. In this Chapter, we provide a brief overview of these mod-
els without delving into extensive details.

2.1 Linear Regression
In the regression context, let yi ∈ R ∀i = 1, ..., N. A linear regression model is
a particular instance of a Generalized Linear Model (GLM) (Nelder and Wedder-
burn, 1972) where the response variable y is assumed to be linearly dependent with
respect to the feature vector x ∈ Rp, i.e.:

E[y|x] = g−1(wTx+ β + ϵ) (2.1)

where ϵ is a normally distributed random variable to represent a noise term and
g : R → R is known as link function of the GLM model and, for linear regression, it
is equal to the identity function thus, g(t) = t ∀t ∈ R, obtaining:

y = wTx+ β + ϵ (2.2)

The method commonly employed for determining the weights is Ordinary Least
Squares (OLS), which aims to minimize the squared differences between the ob-
served and predicted outcomes by solving:

min
w,β

L(w, β) =
1
N

N

∑
i=1

(yi −wTxi − β)2 (2.3)

7

8 Interpretable Models

which is an unconstrained, smooth and convex optimization problem that can be
efficiently solved with second order algorithms like the Newton Method and BFGS.

The primary strength of linear regression models lies in their linearity which
simplifies the estimation process. The additivity of the components facilitates the
straightforward isolation of their effects. However, in caseswhere there’s a suspicion
of feature interactions or a non-linear correlation between a feature and the target
value, this kind ofmodels tends to be insufficiently expressive. Notably, the straight-
forward interpretation of these models is related to the fact that each weight of the
classifier can be understood. This characteristic contributes to thewidespread use of
linear models and similar approaches across academic disciplines such asmedicine,
sociology, psychology, and various quantitative research fields. In the medical do-
main, for instance, the ability not only to predict a patient’s clinical outcome but also
to quantify the impact of a drug while incorporating factors like sex, age, and other
features in an easily interpretable manner is crucial.

2.2 Logistic Regression
In the same way, in the binary classification context, we assume y | x to be a tar-
get random variable with Bernoulli distribution B(p). A logistic regression model
m(x;w) is an instance of the GLM class that estimates the expected value E[y|x] =
p = P(y = 1 | x):

E[y|x] = g−1(wTx+ β) (2.4)

through the logistic link function g−1 = σ(l(x;w)) i.e., m is a linear estimator of the
log-odds or logit (Hastie et al., 2009):

logit(p) = log
(

p
1 − p

)
= m(x;w) = wTx+ β.

The choice of the weights of this model can be made by minimizing the logistic
loss function, which can be obtained by the maximum likelihood estimation (see,
e.g, (Hastie et al., 2009)):

l(wTx+ β; y) = log(1 + exp(−y(wTx+ β))) (2.5)

Thus, the empirical risk minimization problem becomes the following:

min
w,β

L(w, β) =
1
N

N

∑
i=1

log(1 + exp(−yi(w
T
i xi + β))) (2.6)

2.3 Generalized Additive Models 9

Also in this case, the learning problem 2.6 is unconstrained and the objective
function is smooth and convex. For this reason, even this time, second order algo-
rithms can be efficiently employed.

The interpretation of the weights in logistic regression differs from the one in
linear regression. In logistic regression, the outcome represents a probability thus,
the weights no longer implies directly a linear influence on the outcome since the
weighted sum undergoes a transformation through the logistic function to yield a
probability. Indeed we have:

logit(p) = log(
p

1 − p
) = wTx+ β (2.7)

odds =
p

1 − p
= exp(wTx+ β) (2.8)

We can infer how each feature xj is related to the odds of the positive outcome by
the odds ratio:

oddsxj+1

oddsxj

=
exp(∑k ̸=j wkxk + wj(xj + 1) + β)

exp(∑k wkxk + β)
= (2.9)

= exp(wj(xj + 1)− wjxj) = exp(wj) (2.10)

That is, a variation in a feature xj by one unit leads to a multiplicative change in the
odds ratio by a factor of exp(wj). Another way to articulate this is that a one-unit
change in xj increases the log odds ratio by the value of the corresponding weight.
Many individuals prefer interpreting the odds ratio directly, since dealing with the
log of a value is considered more difficult. Understanding the odds ratio itself can
be a bit challenging. For instance, if the odds are 2, it implies that the probability of
y = 1 is twice as high as y = 0.

2.3 Generalized Additive Models
Generalized Additive Models (GAMs) represent a flexible and powerful extension
of traditional GLMs, allowing for the modeling of complex, non-linear relationships
between variables. Introduced in (Hastie and Tibshirani, 1990) , GAMs are partic-
ularly useful when dealing with data that exhibits non-linearity, interactions, and
other intricate patterns that cannot be adequately captured by linear models. The
fundamental idea behind GAMs is to extend the linear model by incorporating sin-
gle functions of the predictor variables. Unlike linearmodels, which assume a linear
relationship between the predictors and the response, GAMs allow for non-linear
relationships by adding a general function f j(xj) for each covariate xj.

The general form of a GAM can be expressed as follows:

10 Interpretable Models

E[y|x] = g−1(∑
j

f j(xj) + β) (2.11)

where, as previously discussed for GLM, the link function g depends on the par-
ticular task.

The key innovation in GAMs is the inclusion of a single function for each feature.
These functions are flexible and can capture complex relationships without assum-
ing a specific functional form. Popular choices for smooth functions include splines,
thin-plate splines, and local regression. Due to the potential complexity of the shape
functions, GAMs exhibit higher accuracy compared to straightforward linear mod-
els but, even this time, they lack interactions between features, resulting in easily
interpretable models.

Themain approach to fit thesemodels is the Backfittingmethodwhich is a greedy
iterative optimization algorithm. For each predictor variable, its function is updated
while keeping the others fixed. This involves fitting a univariate smoother (e.g., a
spline) to the residuals from the current model. Then, the overall model is updated
by adding the component to the predictor and this process is repeated while a con-
vergence criteria is not satisfied, for further details see (Hastie and Tibshirani, 1990).

Finally, an end user can easily undertand how a component impacts on the target
by looking at the plot of the relative function. An example of this is shown in Figure
2.1.

2.3 Generalized Additive Models 11

Figure 2.1: A GAM learned on the spam dataset from the UCI repository (Dua and
Graff, 2017). Figure shows estimated functions for significant predictors. Therug
plot along the bottom of each frame indicates the observed values of the correspond-
ing predictor. Figure credit: (Hastie et al., 2009).

12 Interpretable Models

2.4 Decision Trees

Themain limitation of linear models is related to all the scenarios in which the asso-
ciation between features and outcomes is nonlinear or involves interactions among
features. In these cases, in the context of supervised learning, Decision Tree (DT)
models arewidely used alternatives for trasparentmachine learning. Formally, a DT
is a connected and acyclic graph G = (V , E)where V and E are the set of nodes and
arcs respectively. DTs iteratively divide the dataset based on specific threshold val-
ues within the features. This process involves creating distinct subsets of the data,
where each instance is assigned to a particular subset through successive splits. For
this purpose, the set V is divided in two subsets B and Lwhich represent the sets of
branch nodes and leaf nodes. Each branch is responsible for the creation of the split
at its level and it splits data in different subsets of points that will be forwarded to
different children. Finally, terminal nodes i.e., leaf nodes, encode the value of the
prediction for all points that have reached the leaf itself. If the output space Y is
a finite discrete set, these models are called Classification Trees (CTs) otherwise, if
y ∈ R, they are generally called Regression Trees (RTs).

Figure 2.2: A decision tree model for rain forecasting.

The major advantage of DTs is their intrinsic interpretability. Indeed, each pre-
diction is basically represented by the path followed by the point in the tree which
is the sequence of simple decision rules taken at each branch node. Moreover, the
final user can understand how different feature contribute to the final decision. An
example of the ease in the model uderstanding can be seen in Figure 2.2 where a
classification tree has been learned for the task of rain forecasting.

2.4 Decision Trees 13

In the rest of this thesis we will focus on binary decision trees with the following
differences:

• Axis-AlignedDecisionTrees: also knownas decision treeswith parallel splits,
are a type of decision tree where the decision boundaries are aligned parallel
to the axes of the feature space. In other words, the splits along the nodes of
the tree are made along one feature at a time, and each split is perpendicular
to the axis of that specific feature. This simplicity makes axis-aligned decision
trees easy to interpret and computationally efficient. However, it may struggle
with capturing complex relationships in the data when the decision bound-
aries are not aligned with the axes. An example of this kind of structures is
visible in Figure 2.3 (B);

• Oblique Decision Trees: also known as multivariate decision trees, on the
other hand, allow for more flexible decision boundaries that are not restricted
to aligning with the axes of the feature space. In oblique decision trees, the
splits are made through a general hyperplane wTx+ β, providing the model
with the ability to capture more complex relationships between features. This
flexibility allows oblique decision trees to potentially achieve better predictive
performance on datasets where the underlying patterns are not well-aligned
with the coordinate axes. However, the interpretability of oblique decision
trees may be clearly compromised. An example of this kind of structures is
visible in Figure 2.3 (A);

Figure 2.3: Two different classification tree on the same data. In figure (A) a single
node multivariate CT is able to linearly separate the two classes. In figure (B) the
feature space is divide by a CT of depth two in four regions.

Chapter 3

Optimization for Classification Trees

As previously mentioned in Chapter 2, in the context of supervised learning, Clas-
sification Trees (CTs) are some of the most widely used models for classification
problems (Kotsiantis, 2013; Song and Ying, 2015). Introduced in the seminal work
in Breiman et al. (1984), CTs have widely been employed for decades, especially for
tasks with small-sized tabular data.

The induction of optimal decision trees is aNP-complete problem (Laurent and
Rivest, 1976) and, for this reason, most algorithms employ a top-down greedy ap-
proach to fit themodel. Most interpretable classification trees are based on univariate
(axis-aligned) splits (Breiman et al., 1984; Quinlan, 1986; De Mántaras, 1991). With
univariate splits, a single feature is chosen at each node and the corresponding value
of each data point is compared to a given threshold; data points are thus forwarded
to one of the children nodes, based on the result of this comparison. Each prediction
of the model is therefore finally obtained following a path along the tree, based on
the sequence of “decisions” at each encountered node. Thus, it’s not surprising that
this kind of models are very common and useful especially in the healthcare context
(Intrator et al., 1992; Olanow et al., 2001; Bertsimas et al., 2019) and every time the
model understanding is a major requirement (Rudin, 2019).

In order to improve the expressive power of CTs, however, more complex split-
ting rules have been also considered in the literature for defining branching splits.
These rules can take into account linear (in this case we talk about oblique trees) or
even nonlinear relations between features (Friedman et al., 1977; Loh and Vanich-
setakul, 1988; John, 1995). However, even the simplest oblique trees, i.e., CTs using
general linear classifiers at each node to define splits, are not as interpretable as uni-
variate ones. For this reason, recent research has dealt with training algorithms to
construct CTs having both good predictive performance and intrinsic interpretabil-
ity properties. In particular, oblique trees are often considered interpretable as long
as branching linear classifiers are actually sparse models (Ross et al., 2017; Ribeiro
et al., 2016; Jovanovic et al., 2016).

15

16 Optimization for Classification Trees

Within this scenario, startingwith the best knowngreedy algorithmCART(Breiman
et al., 1984), we present state-of-art methodologies to address the optimization for
classification tree learning.

3.1 CART
The goal of the CART algorithm is to recursively split the dataset into subsets based
on the values of input features and labels. These splits are determined in a greedy
way that maximizes the "homogeneity" of the target variable within each subset.
Thus, from the root node, the algorithm iteratively determines a split by solving an
optimization problem to identify the most "effective" division. In this framework,
the concept of most effective split is related to a proper choice of an impurity mea-
sure (discussed later in this section) that acts as a proxy for the quality of the cut.
This process is repeated recursively until a stopping condition is met and, finally, to
each leaf is associated the label of the class which is the most present in the subset
of points arriving on the leaf itself. Figure 3.1 shows two different views of the tree
model induced by CART on the Iris dataset (Dua and Graff, 2017). It is easy to see
how the feature space is partitioned in an hierarchical manner as the result of the
five leaves generated by the algorithm.

(a) The axis-aligned feature space partition
generated by the tree in Figure 3.1b.

(b) The resulting tree structure of depth
four.

Figure 3.1: Different views of the tree model learned by the CART algorithm on the
Fisher’s “Iris” dataset from theUCI Repository (Dua andGraff, 2017). Figure credit:
Dunn (2018).

For the sake of completeness, we report in algorithm 1 the pseudocode of a stan-
dard CART scheme.

The scheme of the algorithm is very similar to a Depth-First Search where new
nodes are generated by solving the inner purity optimization problem and finally

3.1 CART 17

Algorithm 1 CART scheme
1: Input: Train data D
2: Initialize the tree T with the root node N0;
3: T = N0;
4: Initialize a list for exploration L = N0;
5: while L ̸= ∅ do
6: N = L.pop()
7: Generate two children nodes Nl and Nr solving the splitting problem for a

chosen metric on node N
8: if a chosen stopping criteria holds then
9: N.lea f = True
10: else
11: L.push(Nr)
12: L.push(Nl)
13: end if
14: end while

added to the tree only in the case they violate the criteria imposed to stop the grow-
ing. Each node, for which a stopping criterion applies, becomes a leaf and it is asso-
ciated with the label of the most numerous class among the examples that arrive to
it.

Below we discuss both the most typical purity measure to determine the split
and common choices for the stopping criteria.

Splitting Criteria for Classification
Each iteration of CART involves solving of an optimization problem to define the pa-
rameters of the cut. We now discuss the two typical measures which are commonly
used as impurity function.

Gini Impurity

The Gini impurity quantifies the likelihood of misclassifying a randomly selected
elementwithin a dataset. Specifically, it measures the degree of disorder or impurity
in a given set of class labels. In the classification context, let C be the set of possible
classes, the Gini impurity G(D) of a dataset D is defined as:

G(D) = ∑
c∈C

pc(1 − pc) = 1 − ∑
c∈C

p2
c (3.1)

Where pc is the relative frequency of the class c in the dataset D. In the case of
axis-aligned trees, the algorithm exploits a weighted version of this measure with

18 Optimization for Classification Trees

respect to the left and right partiction, i.e., let D be the set of points reaching the
current node, each split s divides the feature space and forwards the subsetDl(s) of
points to the left child and the subsetDr(s) to the right one. At each iteration, CART
selects the best split s by solving the optimization problem:

min
s

1
N
(|Dl(s)|G(Dl(s)) + |Dr(s)|G(Dr(s))) (3.2)

It is easy to observe that the function in the problem 3.2 has 0 as global minimum
which is obtained where both the subsetsDr(s) andDl(s) are pure i.e., they contain
only points with the same label. Because of the non linear and non convex nature
of this objective function, CART solves the problem by enumerating all the possible
spits (couples feature/threshold), with a cost of O(Np), assuming that data has
been sorted before the training with respect to each feature (O(pNlogN)).

Information Gain

Another typical choice for the quality measure is the Information Gain which mea-
sures how much information a split provides to predict the target variable. This
metric is based on the entropy E of data D, that is:

E(D) = − ∑
c∈C

pclogpc (3.3)

Then, given a split s, we define the average entropy with respect to each subset of
data Dl(s), Dr(s) forwarded by the split on the left and right child respectively:

Ē(D(s)) =
1
N
(|Dl(s)|E(Dl(s)) + |Dr(s)|E(Dr(s))) (3.4)

Finally the information gain I(D(s)) is defined as:

I(D(s))) = E(D)− Ē(D(s)) (3.5)

The goal is to maximize information gain, which corresponds to minimizing the
average entropy on the children nodes.

This metric is commonly used, in addition to CART, in other greedy algorithms
such as ID3 (Quinlan, 1986) and C4.5 (Quinlan, 2014). Also in this case, the typical
strategy to obtain the global optimum is through enumeration.

Figure 3.2 shows the graphs of the discussed impurity measures. Also, it has
been reported themisclassification error. The fact that CART uses impuritymeasure

3.1 CART 19

Figure 3.2: Different impurity measures in the case of binary classification tasks (y-
axis). The x-axis is the probability that an instance belongs to the positive class.

when selecting splits, rather than using directly the misclassification error, which is,
in any case, the final objective to the aim of predictions, may be a little bit strange.
To understand the reason for this choice on this latter metric, it is worth to mention
the explanation reported in (Breiman et al., 1984):

...the [misclassification] criterion does not seem to appropriately reward splits that are more
desirable in the context of the continued growth of the tree. . . . This problem is largely
caused by the fact that our tree growing structure is based on a one-step optimization

procedure.

Thus, using directly the misclassifcation loss when bulding the tree in a greedy
fashion tends to increment the overfitting problem which is the major drawback of
this kind of models.

Stopping Conditions
For now, the described algorithm it is able to iterate by generating each time two
new children: the left and right node. This process may continue also until leaves
containing a single example of the dataset have been created. In this case, the final
model would be able to generate a feature space partition which is the most fine
grained, i.e., the estimator would reach the perfect accuracy on the train data at the
expense of a strong overfitting in out-of-sample predictions. For this reason, it is
very important to estabilish robust stopping criteria during the growing phase. We
now discuss different stopping criteria that are mostly employed for the implemen-
tation of CART.

20 Optimization for Classification Trees

• Maximum depth: the algorithm terminates when the tree reaches a given
maximum depth;

• Minimum number of sample in a split: the algorithm terminates where all
the nodes have a number of samples that is less than this parameter. Each node
with a number of samples less than this threshold becomes a leaf;

• Minimum number of samples in a leaf: the algorithm terminates when each
nodewhich has not yet been split would generate two nodes with fewer points
than this parameter. Thus each node of this kind will become a leaf;

• Minimum value for impurity decrease: the algorithm terminates when there
are not other nodes to split that can bring a reduction in their impurity of at
least this parameter.

When a splitting criterion is no longer met, a node becomes a leaf node, and a
class label is assigned based on the majority class of the instances in that node.

Pruning
After the tree is fully grown, pruning may be applied to avoid overfitting. Prun-
ing strategies play a crucial role in refining decision trees, ensuring they generalize
well to unseen data and avoid overfitting. Pruning involves the removal of specific
branches or nodes from a fully grown tree to enhance its simplicity and predictive
accuracy. Two primary approaches to pruning exist: pre-pruning and post-pruning.
Pre-pruning, also knownas early stopping, involves the usage of the aforementioned
criteria during the tree-building process to halt further growth.

Post-pruning, on the other hand, takes place after the tree has been fully grown.
It entails assessing the impact of each subtree on the model’s performance and re-
moving branches that contribute less significantly to predictive accuracy. Common
metrics for post-pruning include cross-validation techniques, where the tree’s per-
formance is evaluated on validation sets. Pruning strategies strike a delicate bal-
ance, preventing the model from becoming overly complex and capturing noise in
the training data, thereby fostering a more robust and generalizable decision tree.

Limitation
The primary drawback of the top-down approach utilized by CART (Breiman et al.,
1984), C4.5 (Quinlan, 2014), and ID3 (Quinlan, 1986), lies in its inherently greedy
nature, as each split in the tree is determined in isolation without considering the
potential impact of future splits. This approachmay result in trees that inadequately
capture the underlying characteristics of the dataset, potentially leading to subopti-
mal performance in classifying future data points.

3.2 Exact Formulations 21

In next sections we discuss some techinques that aim to search for the optimal
classification tree in a global perspective.

3.2 Exact Formulations
The sub-optimal structure induced by greedy methods such as CART, led, during
the years, to the need for new algorithms able to explore the global space of feasible
solutions. In particular, exact formulations of the learning problem exploiting linear
programming have been considered. Back in the early ’90s, Bennet et al. proposed
linear methods for constructing separation hyperplanes (Bennett andMangasarian,
1992, 1994) and for the induction of oblique classification trees solving an LP prob-
lem at each branch node (Bennett, 1992).

More recently, thanks to the outstanding improvements in both hardware power
and software solvers capabilities (Bixby, 2012), new formulations of the learning
problem have been developed. These formulations are related to both univariate
and multivariate splits, and exploit various mathematical optimization techniques
(Carrizosa et al., 2021) for an effective modelling of the learning problem. One par-
ticularly prominent approach involves the use of Mixed Integer Linear Program-
ming (MILP) formulations. The seminal work in this context is the one by Bertsimas
andDunn (Bertsimas andDunn, 2017), where an exactMILPmodel is proposed that
can be solved up to a certifiably globally optimal CT (OCT) structure (in terms of
misclassification error).

Inspired by this work, a plethora of improvedMILP-based approaches followed;
among them, we can notably cite a formulation of the problem for the case of binary
classification with categorical features (Günlük et al., 2021), or a flow-based formu-
lation exploiting linear relaxation and Bender’s decomposition to efficiently handle
the specific case of binary classification with binary features (Aghaei et al., 2021).

Focusing on the interpretability aspect of CTs, some works take advantage of
regularization terms to limit the number of branch nodes (Bertsimas and Dunn,
2017) and total number of leaves in the model (Hu et al., 2019; Lin et al., 2020). The
above formulations can in principle generate certified globally optimal structures.
In practice, however, there is a combinatorial explosion in the number of binary
variables as the depth of the tree or the size of the dataset increases. Thus, optimality
gap can be closed by branch-and-bound type procedures only for really shallow
trees and on tasks with a few hundred examples at most.

Recently, different losses have also been investigated instead of the standardmis-
classification error. Using a mixed-integer quadratic programming (MIQP) formu-
lation, D’Onofrio et al. (D’Onofrio et al., 2022) proposed a formulation of the CT
learning problem including the concept of maximummargin. This approach allows
to define OCTs where each branch node is a maximum-margin linear classifier. The

22 Optimization for Classification Trees

maximummargin property, obtainedminimizing the hinge loss at all branch nodes,
allows for significant improvements on generalization performance.

In this section, we introduce state-of-art MIP strategies for learning oblique clas-
sification trees with particular regard to the sparsity of coefficients as a proxy for
interpretability. We first show that the most relevant formulations in the literature
can be seen as being part of a more general framework of loss optimal classification
trees. Next we will show how to deal with logistic loss in a MILP framework with
the aim of induction ofOptimal Logistic Classification Trees (OLCT) (Aldinucci and
Lapucci, 2024) i.e., oblique trees with a logistic classifier at each branch node.

Preliminaries
In the binary classification context, let I = {1, ..., N} and D = {(xi, yi), xi ∈
Rp, yi ∈ {−1, 1}, i ∈ I} be a finite dataset of N observations with p features and
binary labels. To describe each element of the MIP problem we introduce the no-
tation, largely based on (Bertsimas and Dunn, 2017; D’Onofrio et al., 2022), which
will be used for the formulation of the learning problem. Formally, let T be the set
of branch nodes of a generic (oblique) CT. We denote by d the number of layers of
branching nodes of the tree, i.e., its depth, by H the set {1, . . . , d} and by Th the set
of nodes at depth h, for h ∈ H.

Each branch node t ∈ T is characterized by a linear function wT
t x+ bt, wt ∈

Rp, bt ∈ R, which induces the hyperplane wT
t x + bt = 0 as decision boundary.

This has the effect of forwarding an examined data point xi to the left child of node
t if wT

t xi + bt ≤ 0 and to the right child otherwise. Note that, using this notation,
a glass-box axis-aligned CT can be obtained as a special case, imposing ∥wt∥0 =

1, ∀ t ∈ T , where ∥ · ∥0 denotes the ℓ0 pseudo-norm.
Since we are interested in CTs where each node is a binary classifier, we can let

the final prediction of the point depend solely on the decision of the last branch
node. Indeed, each splitting hyperplane is a linear classifier with decision function
sgn(wT

t x+ b). In view of this, there is no need of tracking the points up until the
leaves, so that the number of nodes to be modelled can be reduced of 2d units, or, in
other words, cut to a half. An example of an oblique CT with branching classifiers
of depth 3 is shown in Figure 3.3.

We now introduce the essential building blocks of the MIP models proposed in
the literature for OCT training. Recalling that Td ⊂ T is the set of nodes of the last
branching layer, the routing of each point to the proper branch of the last layer can
be modelled introducing the binary variables:

zi,t =

{
1 if example xi reaches node t ∈ Td,

0 otherwise.

3.2 Exact Formulations 23

0wT
0 x+ b0 ≤ 0 wT

0 x+ b0 > 0

1
wT

1 x+ b1 ≤ 0 wT
1 x+ b1 > 0

3
≤ >

7

−1

8

1

4
≤ >

9

−1

10

1

2
wT

2 x+ b2 ≤ 0 wT
2 x+ b2 > 0

5
≤ >

11

−1

12

1

6
≤ >

13

−1

14

1

Figure 3.3: An oblique tree of depth 3. Branches are on white background, leaves
on gray.

Using these variables, we can force each point to be routed to exactly one of the
last branching nodes, complying with the structure of the model. In particular, this
can be obtained imposing the following constraints:

∑
t∈Td

zi,t = 1 ∀ i ∈ I , (3.6a)

zi,t ∈ {0, 1} ∀i ∈ I , t ∈ Td. (3.6b)

We then introduce the constraints to take into account the path of each data point,
which is fully determined by the sequence of decisions taken at the branch nodes.
For this purpose, we introduce the set Td(t) ⊆ Td as the set of branches at the last
layer that are successors of the node t; in other words, nodes in Td(t) belong to the
last layer of the sub-tree rooted at t; moreover, we define the subsets T r

d (t), T l
d (t) as

a partition of Td(t) such that:

• T r
d (t) is the set of nodes of the last branching level that belong to the right

sub-tree rooted at node t;

• T l
d (t) is the set of nodes of the last branching level that belong to the left sub-

tree rooted at node t.

Each branch t forwards points to its left child if wT
t x+ bt ≤ 0 and to the right

one otherwise. This logic can be enforced by means of the following forwarding

24 Optimization for Classification Trees

constraints:
wT

t xi + bt ≤ M
(

1 − ∑
s∈T l

d (t)

zi,s

)
∀ i ∈ I , ∀ t ∈ T \ Td, (3.7a)

wT
t xi + bt ≥ ϵ − M

(
1 − ∑

s∈T r
d (t)

zi,s

)
∀ i ∈ I , ∀ t ∈ T \ Td, (3.7b)

where M is a suitable constant for a big-M type constraint and ϵ is a small constant
preventing numerically degenerate cases.

For example, given t ∈ T and a data point xi, if zi,s = 1 and s ∈ Td(t), then xi
has to be routed to the last branch node s, which either belongs to T l

d (t) or T r
d (t).

Hence, one and only one of the following pair of equations hold:

∑
s∈T l

d (t)

zi,s = 1, ∑
s∈T r

d (t)
zi,s = 1.

If the former holds, then (3.7a) guarantees that wT
t xi + bt ≤ 0, otherwise (3.7b)

forceswT
t xi + bt > 0. The big-M strategy makes the constraint for the “wrong case”

irrelevant. Also, no constraint applies for branch t in case xi is forwarded to a node
s ∈ Td \ Td(t). Moreover, we shall observe that these constraints are not required if
t ∈ Td since the last branching level is only responsible to make the final prediction.

The Generalized Framework
In this section we show how different losses can be encapsulated in a general frame-
work through a proper definition of the slacks variables. For a CT to be meaningful,
a suitable loss function necessarily has to be used to push the last branching layers
and the overall model to correctly classify the data points. This can be done by esti-
mating the errors, or slacks ξi, i = 1, . . . , n, committed on each data point:

L = ∑
i∈I

ξi, ξ ∈ Rn. (3.8)

The definition of quantities ξ clearly depends on the particular loss function to be
used. For example, most MIP models for OCTs (Bertsimas and Dunn, 2017; Aghaei
et al., 2021; Hu et al., 2019; Carreira-Perpinán and Tavallali, 2018) directly employ
the misclassification loss, which is defined using additional binary variables and big-
M constraints as

wT
t xi + bt ≤ M(2 + ŷi − zi,t) ∀i ∈ I , ∀ t ∈ Td, (3.9a)

wT
t xi + bt ≥ −M(2 − ŷi − zi,t) ∀i ∈ I , ∀ t ∈ Td, (3.9b)

ξi =
1
2
(1 − yiŷi) ∀i ∈ I , (3.9c)

ŷ ∈ {−1, 1}n. (3.9d)

3.2 Exact Formulations 25

The additional variables ŷ model the predicted class for each data point; the slack
variable corresponding to each data point will be set to 0 if prediction is correct
yiŷi = 1, otherwise it will be equal to 1. Constraints (3.9a)-(3.9b) guarantee that,
for a point xi arriving at the leaf t, ŷi = 1 if and only if wT

t xi + bt ≥ 0.
However, this is not necessarily the only option for a loss function. In fact, dif-

ferent choices not only might be statistically more robust, but may also avoid the
introduction of the additional binary variables and logical constraints that increase
problem complexity. An example of a continuous loss with these features, easily
embeddable in the MIP framework, is the hinge loss, max{0, 1 − yi(w

Txi + b)}, that
can be modeled as:

ξi ≥ 1 − yi(w
T
t xi + bt)− M

(
1 − zi,t

)
∀ i ∈ I , ∀ t ∈ Td, (3.10a)

ξi ≥ 0 ∀ i ∈ I , ∀ t ∈ Td. (3.10b)
The objective function can then be defined as the sum of the total loss function

L and a regularization term for weights wt, t ∈ Td, so that we basically have an
empirical risk minimization problem:

L + λ ∑
t∈Td

Ω(wt). (3.11)

We note that:
• By setting λ = 0 and using (3.9), we actually retrieve the standard OCTs prob-

lem from (Bertsimas and Dunn, 2017);
• setting λ > 0, Ω(·) = ∥ · ∥2

2 and using (3.10) we get “SVM leaves”.
In fact, loss terms can also be associated with the upper branching nodes; in this

case, we have d vectors of slack variables, ξ1, . . . , ξd: along its path to the leaves, each
data point encounters only one node at each layer, and thus only the slack associated
with the corresponding classifier has to be taken into account. The overall objective
function for a general loss-optimal CT model is therefore given by

∑
h∈H

(
∑
i∈I

ξi,h + λh ∑
t∈Th

Ω(wt)

)
. (3.12)

It is worth noting at this point that the Margin Optimal CT models (MARGOT)
from (D’Onofrio et al., 2022) can then be retrieved as a special case of the general
framework, setting

ξi,h ≥ 1 − yi(w
T
t xi + bt)− M

(
1 − ∑

s∈Td(t)
zi,s

)
∀ i ∈ I , ∀ h ∈ H, ∀ t ∈ Th, (3.13a)

ξi,h ≥ 0 ∀ i ∈ I , ∀ h ∈ H. (3.13b)
and Ω(·) = ∥ · ∥2

2.

26 Optimization for Classification Trees

Exact Modelling of ℓ0 Terms

In order to enhance the interpretability of the models, sparsity can be compelled
within the weights of branching classifiers, thus inducing features selection. The
ℓ0 norm of vectors wt can easily be modeled, in a MINLP program, by introducing
binary indicator variables, big-M constraints and linear expressions:

δt ∈ {0, 1}p, −Mδt ≤ wt ≤ Mδt, ∥wt∥0 = 1Tδt. (3.14)

Then, the value of ∥wt∥0 can either be upper bounded or penalized. Following the
terminology in (D’Onofrio et al., 2022) we talk about Hard Feature Selection (HFS)
in the former case and Soft Feature Selection (SFS) in the latter one.

Optimal Logistic Classification Trees
In this section, we formalize a novel, particular instance of loss-optimal CT model,
the Optimal Logistic CT (OLCT). In particular, we first show how to introduce the
logistic loss function within the considered MIP; then, we point out the benefits
of using ℓ1-regularization terms; we then show the resulting overall optimization
model.

Logistic Loss in Mixed Integer Linear Optimization

The logistic loss function for binary linear classifiers is defined as

ℓ(wTxi + b; yi) = f (yi(w
Txi + b)) = log(1 + exp(−yi(w

Txi + b))).

This loss function appears in the individual terms of the summation in the negative
log likelihood function of logistic regression models (see, e.g, (Hastie et al., 2009)),
i.e., the linear model for binary classification that is obtained by maximum likeli-
hood estimation under the assumption that data follows a Bernoulli distribution.

In addition to often having strong performance in terms of out-of-sample pre-
diction accuracy, other advantages of logistic regression compared to other linear
classifiers, such as SVMs, include

(a) the possibility of obtaining estimates of features importance by simple manip-
ulation of the model weights (Hastie et al., 2009);

(b) the opportunity of getting calibrated probability estimates associatedwith pre-
dictions.

The above properties offer nice insights that are valuable from the perspective of
model interpretability. These considerations motivate us to consider the employ-
ment of the logistic loss within the general framework for loss-optimal CTs, dis-
cussed in the previous section.

3.2 Exact Formulations 27

The straightforward objection, at this point, concerns the nonlinearity of the lo-
gistic loss function; indeed, contrarily to the hinge loss defining SVMs, the log loss
cannot exactly be modeled by linear constraints in MILP. However, this issue can
be addressed following the strategy, proposed in (Sato et al., 2016), where the best
subset selection problem in logistic regression is solved by means of a MILP ap-
proach. In particular, Sato et al. proposed to approximate the logistic loss function
by a piece-wise linear underestimator (see figure 3.4).

Figure 3.4: Piece-wise linear approximation of the log-loss using V0 as set of tangent
points. Figure credit: Sato et al. (2016).

The function
f (v) = log(1 + exp(−v))

is a convex function, thus its tangent line at a point v0 constitutes a global underes-
timator; more explicitly, for all v, v0 ∈ R, it holds

f (v) ≥ f (v0) + f ′(v0)(v − v0).

To obtain an accurate approximation of the logistic loss, we can thus construct a
piece-wise linear underestimator obtained as the point-wise maximum of a family
of tangent lines:

f (v) ≈ max{ f (vk) + f ′(vk)(v − vk) | k = 0, . . . , K}.

Sato et al. also propose a greedy strategy to select points vk where computing the
tangent lines so as to minimize the approximation error: at each iteration, a tangent
line is added to the piece-wise linear approximation so that the area between the
exact and approximated loss function is minimized. The resulting sets of tangent
points to be used for increasingly accurate approximations of the logistic loss are

V0 = {0,±∞}, V1 = V0 ∪ {±1.9}, V2 = V1 ∪ {±0.89,±3.55},

V3 = V2 ∪ {±0.44,±1.37,±2.63,±5.16}.

28 Optimization for Classification Trees

Obviously, a larger number of points leads to a larger number of constraints in the
MILP model and thus makes it more difficult to solve.

Following this methodology, we can redefine the slack variables to finally intro-
duce the logistic loss in the general framework previosly discussed:

ξi,h ≥ f (vk) + f ′(vk)(yi(w
T
t xi + bt)− vk)− M

(
1 − ∑

s∈Td(t)
zi,s

)
,

∀ i ∈ I , ∀ h ∈ H, ∀ t ∈ Th, ∀v ∈ V.
(3.15)

Lasso Regularization

Together with the loss function defining the slack values, the second element to be
chosen in our generalizedOCT framework is the regularizer. Using an ℓ2-regularization
term, as for example in MARGOT, has the effect of making the entire problem an
MIQP instance. Here, we instead propose to consider a Lasso regularizer (Tibshi-
rani, 1996), i.e., an ℓ1 penalty term; there are two main reasons for doing so:

• the ℓ1-norm can be easily handled by linear constraints within a linear pro-
gramming model; thus, using the ℓ1-norm instead of the squared ℓ2-norm we
can derive a fully linear model which should be easier to solve;

• exploiting thewell-known properties of the ℓ1-norm (Bach et al., 2012), we can
implicitly induce sparsity within branch nodes classifiers, without the need of
recurring to explicit (and expensive) ℓ0-norm penalization as in SFS models.

The ℓ1-norm can be efficiently handled in a linear program, similarly as what is
done in (Figueiredo et al., 2007), setting

wt = w+
t −w−

t ∀t ∈ T , (3.16a)
wt,w+

t ,w−
t ∈ Rp ∀t ∈ T , (3.16b)

w+
j,t, w−

j,t ≥ 0 ∀t ∈ T , ∀ j = 1, . . . , p. (3.16c)

Basically, wt is split into its positive and negative parts w+
t and w−

t . Indeed, con-
straints (3.16) are satisfied by ŵ+

j,t = max{0, wj,t} and ŵ−
j,t = max{0,−wj,t}; this

solution is such that ŵ+
j,t + ŵ−

j,t = |wj,t|. If the term 1T(w+ +w−) is minimized in
the objective, then it is always guaranteed that 1T(ŵ+ + ŵ−) = ∥wt∥1.

Lasso regularization is well known not only to induce sparsity and guarantee
that the optimization process is well-behaved, but also to be beneficial at tackling
overfitting (Hastie et al., 2009; Tibshirani, 1996). Thus, if the sparsity requirement
within each node is not set by a specific budget (as in HFS), but it is imprecisely
imposed by means of a penalty, then the expedient of setting Ω(·) = ∥ · ∥1 allows
to preserve, at a much lower cost, both the predictive performance of the obtained
model and its interpretability.

3.2 Exact Formulations 29

The alternative SFS strategy from (D’Onofrio et al., 2022) exploits the objective
function

∑
t∈T

(
Ω(wt) + Ct ∑

i∈I
ξi,t + αt max(∥wt∥0, Bt)

)
.

This kind of penalty on the ℓ0-norm ofweights is modeledwith binary variables, see
eq. (3.14), highly increasing the complexity of the optimization model. Moreover,
here there is an additional hyperparameter to be tuned for each layer, making the
cross-validation procedure harder to manage.

The Overall Model

The overallOptimal Logistic Classification Tree (OLCT) model proposed in this thesis
is obtained putting together the pieces described thus far:

min
w,w+,w−

b,ξ,z

∑
h∈H

(
∑
i∈I

ξi,h + λh ∑
t∈Th

1T(w+
t +w−

t)

)
(3.17a)

s.t. (3.6), (3.7), (3.15), (3.16) (3.17b)
ξh ∈ Rn ∀ h ∈ H, (3.17c)
bt ∈ R ∀ t ∈ T . (3.17d)

The constraints referenced at (3.17b) contain almost all the defining elements of
the logistic tree: constraint (3.6) defines the indicator binary variables of data points
routing, constraints (3.7) enforce the routing logic along the tree, constraints (3.15)
define the slacks corresponding to the logistic loss and (3.16) define the branching
classifiers weights and model their ℓ1-norm.

Constraints (3.17c) and (3.17d) simply define the domain of the remaining vari-
ables. The objective function is nothing but the general loss (3.12) where the ℓ1

regularizer is employed, formulated as shown in Section 3.2.

Remark 1. Note that, in our model, we use a piece-wise linear underestimator, i.e., a surro-
gate function, to approximate the log-loss. Thus, at the end of the training process, we can
actually perform a refinement operation affecting the last layer of branching nodes. Specif-
ically, we can exactly fit an ℓ1-regularized logistic regression model at each node of the last
layer, using as training data the samples that actually reach that node. By this procedure, we
are guaranteed that the overall exact objective function associated with the entire tree model
decreases.

The same reasoning cannot be applied with higher level nodes: changes to the branching
classifiers possibly change how training data are forwarded to lower nodes, thus affecting the
corresponding loss terms. The overall loss associated with the tree might increase, because of
the lack of global perspective.

30 Optimization for Classification Trees

Remark 2. One of the most appealing features of classification trees is their glass-box nature;
however, the highest level of interpretability is only reached in the case of parallel splits. For
this reason, we believe it to be important to explicitly point out how to retrieve a univariate
optimal logistic classification trees. The model is basically equivalent to (3.17), except for
HFS type constraints, with an upper bound on the ℓ0-norm of each branching classifier set
to 1. This can be modeled in MILP terms by constraints (3.14) and setting 1Tδt ≤ 1.

Of course, the addition of a number of new binary variables and big-M type constraints
directly proportional to p× |T | is significant in terms of the computational resources needed
to solve the problem and especially to certify optimality, closing the optimality gap.

Interpreting OLCTs
Inheriting, at least partially, the nice interpretability properties of logistic regression
models is one of the main advantages of using the logistic loss within the OCTs
framework.

Specifically, there are some aspects that can be taken into account to retrieve ad-
ditional information about the model prediction mechanisms.

Evaluation of feature influence

At each branching node of oblique OLCTs, the influence of each individual param-
eter in the splitting decision can be estimated looking at the magnitude of the cor-
responding coefficient and multiplying it by the standard deviation of the feature
among the training data points reaching that node; formally, given the weights wt

at a node t̄ ∈ T , the influence rj,t̄ of feature j can be estimated by:

rj,t̄ = wj,t̄σj,t̄

Where:

Nt̄ = ∑
i∈I

∑
t∈Td(t)

zi,t, µj,t̄ =
1

Nt̄
∑
i∈I

xi,j ∑
t∈Td(t̄)

zi,t

 ,

σj,t̄ =

√√√√√ 1
Nt̄

∑
i∈I

(xi,j − µj,t̄)
2 ∑

t∈Td(t)
zi,t

The larger the coefficient rj,t is, the higher is the correlation of feature j with positive
outputs; on the other hand, the largest negative values of importance are associ-
ated with features pushing the point towards the left child of the branching node.
The features influence for an OLCT trained on the heart dataset is reported, as an
example, in Figure 3.5.

3.2 Exact Formulations 31

0

1 2

3 4

−1

−1 1

≤ 0

≤ 0

> 0

> 0

r0,3 : 4.20
r0,7 : −10.69
r0,9 : 0.4
r0,11 : 1.1

r2,2 : 0.09
r2,10 : 0.03

Figure 3.5: A learned logistic oblique tree of depth 2 for the heart dataset. Branches
and leaves are on white and gray background respectively. Each branch node is a
sparse linear regressor; the importance coefficient for each feature involved at each
decision is reported in the boxes.

Probabilistic interpretation of outputs

The sigmoid function s(z) = 1
1+exp(−z) is used in logistic regression to map the out-

put of the linear function defined by w, b to (0, 1), so that a data point x can finally
be classified as positive if s(wTx+ b) ≥ 0.5.

In a standalone logistic regression model, these “probability values” are related
to the odds of the positive outcome over the negative one; in particular, the linear
regressor is designed tomodel, bymaximum likelihood, the log-odds (logits) of the
output:

wTx+ b = logit(P(y = 1 | x)) = log
(

P(y = 1 | x)
P(y = −1 | x)

)
.

Exponentiating we get

exp(wTx+ b) =
P(y = 1 | x))

1 − P(y = 1 | x)) ,

and by simple algebraic manipulations we retrieve

P(y = 1 | x) = exp(wTx+ b)
1 + exp(wTx+ b)

=
1

1 + exp(−wTx− b)
= s(wTx+ b).

In other words, the logistic output is a probability estimate for the positive output,
i.e., the logistic model is well calibrated by construction.

32 Optimization for Classification Trees

Within the OLCTs framework, we can exploit this property both at the splitting
and the classifying nodes of the tree. If t ∈ Td, then the odds associated with the
outputs ofwt, bt are actually interpretable as the odds of the positive class over the
negative one, given that the data point belongs to the subspace deterministically
defined by the splits at the higher nodes. Since each node classifier is calibrated
within the corresponding space region, the overall output probability of the OLCT
models should also be implicitlywell-calibrated, with no need of any extra post-train
calibration.

If, on the other hand, t ∈ Th, h < d, then the classifier has been trained looking
not only at its corresponding slacks, but also at those of all its descendant nodes.
Thus, in this case we can (somewhat improperly) interpret the probability estimates
as the confidence about forwarding the data point to the right child rather than to
the left one. This concepts can be visualized through the example in Figure 3.6.

0

x

21

3 4

−1

−1 1

p = 0.3 p = 0.7

p = 0.81p = 0.19

Figure 3.6: Confidence at each branch node of the logis-
tic classification tree from Figure 3.5 for the sample x =
[0.69, 0.87,−1.23,−0.8,−0.4, 1.01,−1.87, 1.4,−0.94, 0.63, 0.35,−0.89,−0.07] of
the heart dataset. The true label y is equal to 1. In this case, the model predicts the
correct class of the point and, given the sigmoid activation, we are able to get the
confidence (0.7 × 0.81) of the forwarding decision at each branch node.

Numerical Experiments
In this section, we present the results of computational experiments carried out to
evaluate the performance of the proposed approach. All the experiments described
in this section have been carried out on a server with an Intel ®Xeon ®Gold 6330N
CPU with 28 cores and 56 threads @ 2.20GHz, but we set a limit of only 40 of the

3.2 Exact Formulations 33

56 available threads and the total available memory is 128GB. The code has been
implemented in Python (v. 3.9) and the commercial solver Gurobi (Gurobi Opti-
mization, LLC, 2022) has been used to solve all the mixed-integer programming
models considered in this work. All the code is available at https://github.com/
tom1092/Optimal-Logistic-Classification-Trees.

For each instance of classification tasks, we performed an 80/20 train/test split
of the data and we also standardized each feature before the training to zero mean
and unit variance. Experiments are always repeated for different random seeds,
resulting in different train/test splits. Hyperparameters have been tuned by cross-
validation over a grid of values, where the test balanced accuracy (see below) is used
as qualitymetric; more details will be provided for each group of experiments in the
following. The parameters M and ϵ in MIP formulations have been set to 100 and
10−5 respectively; the value of M = 100 is a reasonable value, large enough not to
introduce constraints and tight enough not to make Gurobi branch-and-bound too
inefficient; this same value was also used, for instance, in (D’Onofrio et al., 2022);
as for ϵ, the value 10−5 is much larger than the one employed for the IntFeasTol
parameter of Gurobi (10−9), so that the issues highlighted in (Liu et al., 2023) did
never occur, and at the same time is small enough to let the underlying logic of the
constraints work properly - no feasible solution is erroneously cut off. Without loss
of generality, we also decided to move the regularization parameter λh to the slack
component of the loss, to be aligned with the work in (D’Onofrio et al., 2022). The
objective function now has the form:

∑
h∈H

(
Ch ∑

i∈I
ξi,h + ∑

t∈Th

∥wt∥1

)

Note that, at the end of the optimization process of OLCTs, we applied the refine-
ment strategy discussed in Remark 1. For each node in the last layer, we retrained
the ℓ1-regularized logistic regression model using scikit-learn (Pedregosa et al.,
2011) implementation.

To compare the performance of each model, along with the running times, we
used the balanced accuracy metric defined as:

BAcc =
Sensitivity+ Specificity

2
=

1
2

(
TP

TP + FN
+

TN
TN + FP

)
,

where TP, TN, FP, FN are the number of true positive, true negative, false positive
and false negative outputs, respectively. The BAcc value is always computed on test
set data.

To provide a condensed view of the results, in the following we are making use
of performance profiles (Dolan and Moré, 2002). Performance profiles provide a
unified view of the relative performance of the solvers on a suite of test problems.

https://github.com/tom1092/Optimal-Logistic-Classification-Trees
https://github.com/tom1092/Optimal-Logistic-Classification-Trees

34 Optimization for Classification Trees

Formally, consider a benchmark of P problem instances and a set of solvers S . For
each solver σ ∈ S and problem π ∈ P , we define

cπ,σ = the cost for solver σ to solve problem π,

where cost is the performance metric we are interested in. In particular, we will be
interested in CPU time. We then consider the ratio

ηπ,σ =
cπ,σ

minσ∈S{cπ,σ}
,

which expresses a relative measure of the performance on problem π of solver σ

against the performance of the best solver for this problem. If a solver fails to solve
a problem, we shall put ηπ,σ = ηM, with ηM ≥ max{ηπ,σ | π ∈ P , σ ∈ S}.

Finally, the performance profile for a solver σ is given by the function

ρσ(τ) =
1
|P| · |{π ∈ P | ηπ,σ ≤ τ}| ,

which represents the estimated probability for solver σ that the performance ratio
ηπ,σ on an arbitrary instance π is at most τ ∈ R. The function ρσ(τ) : [1,+∞] →
[0, 1] is, in fact, the cumulative distribution of the performance ratio.

Note that the value of ρσ(1) is the fraction of problems where solver σ attained
the best performance; on the other hand, limτ→η−

M
ρσ(τ) denotes the fraction of prob-

lems solved from the given benchmark.
In addition to performance profiles, we will also make use of the cumulative

distribution of absolute gaps for a givenmetric µ; in particular, this tool has a similar
concept as performance profiles and is obtainable setting

ηπ,σ = |µπ,σ − optσ∈S{µπ,σ}|,

where the opt operator denotes the minimum or the maximum according to the
metric µ selected. Of course, in this case, we have ρσ(τ) : [0,+∞] → [0, 1]. The
distribution of absolute gaps is particularly useful when evaluating results in terms
of accuracy or objective values.

For example, let us consider a test suite to evaluate the accuracy performance of
a set of models on a benchmark of problem instances. From this kind of plot we can
infer, for eachmodel, estimates of the probability to obtain an accuracy value distant
at most t points from the best one attained by any model. In other words, for any
t, we can observe the fraction of times a model reaches an accuracy level within t
points from the best one. For t = 0, we obtain the fraction of times each model is
the best one among all those considered.

3.2 Exact Formulations 35

Preliminary experiments

The first experiments we carried out concern the assessment of the performance of
ourmodel aswe vary the setV of the tangent points that are used to obtain the piece-
wise linear underestimator of the logistic loss. In particular, we are interested in
finding a good trade-off between the quality of the approximation and the running
time of the model.

We considered a small benchmark of 5 datasets (parkinsons, wholesale, haber-
man, tik-tak-toe, sonar, see Table 3.1) from theUCI repositories (Dua andGraff,
2017), testing V0, V1, V2 with refinment as configurations for the MILP problem of
training an OLCT of depth 2. The experiment has been repeated for five different
random seeds for each dataset for a total of 25 different problems. The Gurobi time
limit has been set to 300s. In these experiments, we did not employ the ℓ1 regu-
larization terms, as we are mainly interested in assessing the effectiveness of log
loss approximation. Note that theMIP solution process is warm-started, initializing
the weights of each branch node following a strategy similar to the one adopted in
(D’Onofrio et al., 2022): starting from the root in a greedy fashion, we assign to each
node weights the values obtained training a logistic regression classifier using the
data that are forwarded to that node by the above branches. This strategy allows to
obtain significant speedups in computation.

As shown by the performance profiles in Figure 3.7, choosing V0 = {0,±∞}
to build the linear piece-wise approximation seems to provide a nice trade-off be-
tween running time and solution quality. Indeed, the use of V1 does not seem to
significantly improve the out-of-sample accuracy of the model; on the other hand,
the more accurate approximation obtained with V2 does result in better predictive
models, but a much higher training cost has to be paid. For this reason, we decided
to use the V0 setting to assess the performance of our model in the following sec-
tions. Nonetheless, we do not rule out that, in certain settings, it might be worth
exploiting the increased effectiveness provided by V2.

Impact Assessment for the Global Optimization Approach

In this Section, we investigate the actual beneficial effects of conducting a global opti-
mization phase during logistic trees training. Indeed, good performance of OLCTs
might be mainly due, in principle, to the warm-start or the refinement steps. In
particular, our greedy warm-start procedure constructs a logistic tree model with
an iterative top-down approach, which is somewhat similar to the one proposed in
(Chan and Loh, 2004) and therefore might actually already lead to an effective clas-
sifier. However, the results reported in Figure 3.8 suggest that solving model (3.17)
does provide a substantial boost to the performance of the resulting logistic tree.

In this experiment, we examined the value of the overall (in-sample) logistic loss

36 Optimization for Classification Trees

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
ab

s_
ga

p
<

t)

V0
V1
V2

(a) Cumulative distribution of the absolute
gap from the best test balanced accuracy
value attained by any model.

1 2 4 8 16
performance ratio - Runtime

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 p

ro
bl

em
s

V0
V1
V2

(b) Performance profiles of the running
times for solving the MIP models.

0 5 10 15 20 25
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
ab

s_
ga

p
<

t)

V0
V1
V2

(c) Cumulative distribution of the absolute
gap from the best (exact) loss attained on
the training set by any model.

Figure 3.7: Comparison of the performance of OLCTmodels when different tangent
point sets (V0, V1 or V2) are employed. At the end of the optimization process, the
refinement of the last layer was carried out for each model.

associated with the model after the warm-start, global optimization and refinement
steps, and then we also took into account the (out-of-sample) values of balanced ac-
curacy. Here, we solved the same 25 instances of classification problems considered
in Section 3.2. Again, in order to focus on the consequences of approximating the
loss in the global step, we did not employ the ℓ1 regularization terms. We also set
Gurobi time limit to 300s. Moreover, based on the results in the previous section,
we chose to employ the set V0 of tangent points in log loss approximation. We did
not focus on the running times of the three phases, as the global optimization step
obviously represents the main computational burden for our approach.

From Figure 3.8b, we observe that solving the training problem with a global

3.2 Exact Formulations 37

structure perspective generally allows to slightly improve the overall loss attained
by the greedy model. This result has to be underlined, taking into account that the
loss function is roughly approximated during the global optimization phase. Then,
the refinement step on the last layer allows to really polish the model on training
data, often leading to substantially lower values of loss.

The results in Figure 3.8a are even more appealing. Apparently, when it comes
to test performance, learning branching rules with a global point of view is crucial
to improve the effectiveness of the resulting model. In this perspective, although
visible, the positive effect of refinement is much more limited. Thus, we can ar-
guably state that the solving (3.17) as a global optimization has a significant effect
in improving the effectiveness of logisitic tree models.

0 1 2 3 4
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
ab

s_
ga

p
<

t)

OLCT-V0R
OLCT-V0
OLCT-W

(a) Cumulative distribution of the absolute
gap from the best test balanced accuracy
value attained by any model.

0 5 10 15 20 25
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
ab

s_
ga

p
<

t)

OLCT-V0R
OLCT-V0
OLCT-W

(b) Cumulative distribution of the absolute
gap from the best (exact) loss attained on
the training set by any model.

Figure 3.8: Performance of logistic CTs (test balanced accuracy and train logistic
loss) obtained carrying out: only the warm start procedure (OLCT-W); warm-start
and global optimization with V0 approximation (OLCT-V0); warm start, global op-
timization with V0 and last branch exact refinement (OLCT-V0R).

OLCTs Performance Evaluation

We now present the results of a larger computational experiment where we com-
pare the OLCT model to the MARGOT, SFS-MARGOT (D’Onofrio et al., 2022) and
OCT-H (Bertsimas and Dunn, 2017) approaches. To assess the performance of our
method,we considered 10 standard binary classificationdatasets from theUCI repos-
itories (Dua and Graff, 2017) that are reported in Table 3.1. For each dataset, we
consider 5 classification problem instances obtained considering different random
train/test splits, so that the overall benchmark is made up of 50 test instances. For
each problem instance, we set the depth of each tree model to 2. For all models, we

38 Optimization for Classification Trees

set the Gurobi time limit to 300s both for validation runs and the final fit over the
entire training set.

Dataset N p
breast 568 30
climate 539 18
haberman 305 13
heart 296 13
ionosphere 350 33
parkinsons 194 22
sonar 207 60
spectf 266 44
tik-tak-toe 957 27
wholesale 439 7

Table 3.1: Description of the datasets used in the computational experiments. All
datasets are from the UCI collection (Dua and Graff, 2017).

For hyperparameters tuning, this time we used a 4-fold cross-validation. For
both OLCT and MARGOT, we considered the slack parameters Ch ∈ {10i, i =

−2,−1, ..., 2} ∀ h ∈ H, obtaining 25 possible model configurations. On the other
hand, the SFS-MARGOT model has two hyperparameters for the classifiers at each
level: the slack parameter Ch and the ℓ0 penalty parameter αh. In order to consider
a comparable grid of configurations in size as that of OLCTs and MARGOTs, we
used the same α for each branch layer h letting Ch vary in {10−2, 1, 102} and α in
{10−1, 1, 10}, so that a total number of 27 models is considered for the SFS variant.
Finally for OCT-H we used the grid α ∈ {2i, i = −8,−1, ..., 2} ∪ {0} to tune the α

parameter that penalizes the number of features used at each branch node to make
the decision.

Again, we initialize the training phase of eachMIPmodel by injecting awarm start
solution, obtained training logistic or SVM classifiers, depending on the particular
tree classifier. For OCT models we used an analogous greedy strategy: we solve the
MILP problem at each individual single node, i.e., setting the depth of the tree equal
to 1 and only using the set of points reaching the considered branch node, with a
time limit of 30s. As also mentioned in (Bertsimas and Dunn, 2017), this strategy
can significantly speedup the optimization, providing a good initial upper bound
of the loss that may help the branch and bound method.

The results of the experiment are shown in Figure 3.9 in the form of cumula-
tive distribution of absolute gap from the best balanced accuracy on the test set and
performance profiles (Dolan and Moré, 2002) of runtime and sparsity. Sparsity is
measured by the average number of features used at each node of the tree, and con-
stitutes a proxy measure for interpretability of oblique trees.

3.2 Exact Formulations 39

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
ab

s_
ga

p
<

t)

OCT-H
OLCT
MARGOT
SFS-MARGOT

(a) Cumulative distribution of the absolute
gap from the best test balanced accuracy
value attained by any model.

1 2 4 8 16
performance ratio - Time

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 p

ro
bl

em
s

OCT-H
OLCT
MARGOT
SFS-MARGOT

(b) Performance profiles of the running
times for solving the MIP models.

1 2 4 8 16
performance ratio - Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 p

ro
bl

em
s

OCT-H
OLCT
MARGOT
SFS-MARGOT

(c) Performance profiles of the average
number of features considered at each split
of the classification tree.

Figure 3.9: Comparison of the performance of OLCT, MARGOT and MARGOT-SFS
models, on a benchmark of 50 problem instances (10 datasets, 5 random seeds for
train/test split).

Observing Figure 3.9a we can infer, for each model, estimates of the probability
to obtain a test balanced accuracy value distant at most t points from the best one
attained by any model. In other words, for any t, we can observe the fraction of
times a model reaches an accuracy level within t points from the best one. This kind
of graph is very informative. For example, for t = 0 we obtain the fraction of times
each model is the best one among all those considered. From this point of view,
we observe that our proposed model attains the top accuracy in about 50% of cases;
moreover, it also appears to be the most robust, consistently being the most likely to
obtain an accuracy value close to the best one, as the gap parameter t increases. Our
model is thus not only most frequently the best one, but when it is not, it is still the

40 Optimization for Classification Trees

one with the lowest probability of falling shorter than any given threshold from the
best result.

Another interesting observation is that both SFS-MARGOT and MARGOT ex-
hibit similar performances. That is, the SFS variant is able to produce sparse trees
without drastically reduce the out-of-sample prediction performance. In this re-
gard, from Figure 3.9c we can observe that OLCT outperforms both MARGOT and
SFS-MARGOT in terms of sparsity, i.e., interpretability.

The high average levels of sparsity in OLCTs branches support the effective-
ness of the ℓ1-regularization approach to this aim. This is of course not particu-
larly surprising, as the effects of LASSO regularization are well known. Yet, the
ℓ1-regularization approach appears to also be able to somewhat outperform the SFS
strategy based on ℓ0 penalization: this result was not granted and is certainly worth
to be remarked, even more so taking into account that it is coupled with the effi-
ciency advantage due to the avoided use of binary variables.

On the other hand, the OCT-H approach proves to be the best one in terms of
sparsity. This result is driven by two elements within the model as described in
(Bertsimas and Dunn, 2017): the penalty term in the objective aimed to encourage
splits considering a low number of features, and a constraint in the formulation
which forces the weights of each split to have a unitary ℓ1 norm. However, as a
consequence of the combined use of these strategies, the final model tends to be
“over-regularized”, resulting the clearly worst one in terms of balanced accuracy as
shown in Figure 3.9a.

Finally, in Figure 3.9b, performance profiles of the running times highlight that
the vanilla MARGOT is, in general, the most likely model to close the optimality
gap in less than 300s. However, OLCT appears to have a comparable cost, whereas
the SFS-MARGOT and the OCT-H approaches are much more computationally de-
manding since these latter models make use of many more binary variables. By the
way, it is worth to notice that no model was able to close the optimality gap in more
than 70% of the instances with a time limit of 300s.

Summarizing, results highlight that our method is able to outperform other ap-
proaches in terms of balanced accuracy, to increase the interpretability, inducing
sparser structures and exploiting the well known logistic properties discussed in
Section 3.2, and finally that these improvements can be achieved in competitive run-
ning times with respect to the other approaches.

Performance Analysis with Larger Scale Problems

The mixed-integer optimization models associated with loss-optimal classification
trees grow very fast in size as the number of data points or nodes layers increases. In
particular, the number of integer variables (and of constraints) grows linearly with
the number of data points and exponentially with the trees depth.

3.2 Exact Formulations 41

This increment is problematic from the perspective of solving the training opti-
mization problem, as even the most efficient solvers from the state-of-the-art strug-
gle when the number of integer variables becomes large.

We are thus interested in conducting, at least, a preliminary assessment of the
scalability of the OLCT approach compared to the behavior of MARGOT and OCT-
H models. In this larger scale setting, we extended the time limit to 3600 seconds
for Gurobi during the final fitting of the models, after the cross-validation phase.

First, we considered 9 additional datasets1, whose size is reported in Table 3.2.
Since the computational burden to carry out the present experiment is significant,
we only considered a single train-test split for each dataset. The comparison con-
cerns the OLCT model with the V0 tangent points set, the MARGOT model and the
OCT-H model, setting trees depth to 2. The results of the experiment are reported
in Table 3.2. We do not report Gurobi running times as for no instance optimality of
the solutionwas certified. In fact, for all models, the optimality gapwas consistently
very close to 100% when the time limit of 3600s was reached.

We can observe that OCT-H heavily struggled on these problems, producing
meaningful models only with the least large instances of the benchmark. In the
most difficult problems, neither the warm start and the global steps were able to
find, within their time limits, anything better than a trivial tree forwarding all the
points up to the same leaf, leading to a value of BAcc of 0.5. On the other hand,
even if unable to certify optimality, both OLCT and MARGOT were able to handle
the datasets. The out-of-sample performance of the two approaches is close, with
OLCT apparently having a slight advantage; yet, the size of the benchmark does not
allow us to state that one model is better than the other.

BAcc
Dataset (N, p) OLCT - V0 MARGOT OCT-H
a6a (11220, 122) 74.49 73.57 50.00
german (1000, 24) 69.76 69.76 65.60
a5a (6414, 122) 76.72 77.50 50.00
w5a (9888, 300) 79.91 78.97 50.00
phishing (11055, 68) 94.44 93.93 50.00
w4a (7366, 300) 83.02 86.62 50.00
splice (1000, 60) 88.14 83.16 80.26
svmguide1 (3089, 4) 94.98 94.62 94.52
svmguide3 (1243, 22) 66.86 67.91 63.62

Table 3.2: Performance of depth-2 trees fit based on different OCT models on larger
scale datasets (available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/). Balanced accuracy (BAcc) is reported for an 80/20 train/test split. We
set 300s and 3600s as time limits for the validation and the training phase respec-
tively.

1datasets are available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

42 Optimization for Classification Trees

We then proceeded to evaluate the models as the depth of the trees increased.
Specifically, we conducted experiments for trees with a depth of 3. It is important
to note that, in this scenario, the cost of the experiments dramatically rises. The
addition of an extra layer of nodes necessitates tuning an additional hyperparameter.
Consequently, the number of hyperparameters configurations to be considered in
the cross-validation phase increases accordingly, rendering the entire process time-
consuming. As a result, we only considered 5 datasets from Table 3.1 with a single
train/test split.

The results of the experiment are reported in Table 3.3. We can observe that
the loss-optimal classification tree framework remains manageable when used to
train more complex tree classifiers with a depth of 3. In fact, the produced models
demonstrate generalization capabilities, underlining the effectiveness of the proce-
dure. OLCT models appear to have a slight advantage over MARGOT and OCT-H,
both in terms of accuracy and ease of training. However, it is important to note that
the size of the benchmark considered is too small to draw definitive conclusions in
this regard.

OLCT - V0 MARGOT OCT-H
Dataset BAcc Time BAcc Time BAcc Time
parkinsons 89.83 223.66 88.28 3600 83.28 3600
wholesale 88.69 3600 88.69 3600 87.86 3600
haberman 58.06 3600 54.03 3600 61.18 3600
ionosphere 81.78 3600 83.78 3600 80.67 3600
spectf 63.53 19.12 59.09 3600 53.28 14.9

Table 3.3: Performance of depth-3 trees fit based on different OCTmodels. Balanced
accuracy (BAcc) on test set and running times are reported on an 80/20 train/test
split. We set 300s and 3600s as time limits for the validation and the training phase
respectively.

3.3 The Evolutionary Approach
Given the computational complexity of MIP formulations and their observed dif-
ficulties in handling large datasets and deep trees, another stream of research that
attempt to induce the global structure of the tree, without guarantee of optimality,
involve the use of Evolutionary Algorithms (EAs) and Genetic Algorithms (GAs)
(Eiben et al., 2003).

The general idea of these methods is based on principles of natural selection
and genetics (Holland, 1992). Starting from a population (set) of individuals (solu-
tions), at each iteration a new solution is defined through selection and cross-over
operations. The quality of the obtained candidate is then assessed by means of a fit-
ness function, thus deciding whether it can replace another solution in the current

3.3 The Evolutionary Approach 43

set (Jones, 1998). Due to the absence of assumptions about the objective function,
these strategies have proven to be very effective in solving global optimization prob-
lems and, over the years, many algorithms of this type have been developed (Storn
and Price, 1997; Kennedy and Eberhart, 1995; Dorigo et al., 2006). Given the pop-
ularity of these techniques, evolutionary approaches have also been proposed both
for data mining problems and for knowledge discovery (Freitas, 2003).

Also in the context of decision tree learning, genetic algorithms have been ex-
plored. Instead of building the model by exploiting the standard greedy strategy,
this family of algorithms performs a more robust search in the global space of so-
lutions (Barros et al., 2011). In particular, in (Cantú-Paz and Kamath, 2003) a top-
downmethod for inducing oblique decision trees is presented which uses an evolu-
tionary approach to solve the hyperplane selection problem at each node, showing
that their strategy can build oblique treeswhose accuracy is competitivewith respect
to other methods. In (Papagelis and Kalles, 2001) is proposed a population-based
evolutionary method that dynamically evolves a set of minimal decision trees using
a fitness function which is balanced between the accuracy on the known instances
and the complexity of the new solution.

An extension of evolutionary algorithms is the memetic variant (Moscato et al.,
1989). This technique acts by performing local searches or refinement methods to
improve the quality of new solutions. Memetic strategies are quite common in the
field of global optimization (Jia et al., 2011; Wu and Che, 2019) and, recently, they
have been also proposed for solving clustering problems (Mansueto and Schoen,
2021).

Given the empirical effectiveness of this approach, the memetic variant has also
been investigated for decision trees in (Kretowski, 2008; Czajkowski and Kretowski,
2012). However, local searches employed in these early works operate at an inner
nodes level, greedily exploiting node information during the mutation step. The
complete tree structure is never considered as a whole during the optimization pro-
cess. We deem that the local optimization phase has to be run on thewhole tree once
that a new solution has been defined and, for this reason, in this section we describe
a novel genetic algorithm, Tree Memetic Optimization (TMO) (Aldinucci, 2023), that
evolves a set of feasible classification trees and exploits local searches to further op-
timize the whole structure of each new defined solution. Our method employs a
specialized local optimizer, Tree Alternating Optimization (TAO) (Carreira-Perpinán
and Tavallali, 2018), that is able to refine the whole structure encouraging the ex-
ploitation of local optimization. This methodology allows a better quality set of
solutions to be maintained during the iterations of the algorithm.

44 Optimization for Classification Trees

Preliminaries
Before introducing our method, it is worth recalling the standard scheme of any
genetic algorithm in the case of optimization problems for scalar function. Let f :
Rn → R be a generic objective function (we do not require any kind of regularity
on this objective). Without any guarantee of global optimality, genetic algorithms
aim to produce near-optimal solutions of the optimization problem:

min
x∈Rn

f (x) (3.18)

Genetic algorithms operate on a population (set) of feasible points, evolving
them over generations to find near-optimal solutions. These class of algorithms is
based on three fundamental operators: selection, crossover, and mutation.

• Selection: the selection process determines which individuals (or solutions)
from the current population will contribute to the next generation. Common
selection methods include roulette wheel selection, tournament selection, and
rank-based selection;

• Crossover: this operator combines different solutions to define new feasible
points;

• Mutation: introduces small perturbations to new solutions to maintain diver-
sity and explore the feasible space more thoroughly, avoiding premature con-
vergence to the same point;

Because in literature many different strategy have been explored for the definition
of the aformentioned phases, there are no limitations on the choices of selection,
crossover andmutationmechanisms. For this reason, in Algorithm 2we give a truly
general outline of the scheme of the genetic strategy.

Algorithm 2 Standard Genetic Algorithm Scheme
1: Define an initial random set of N feasible solutions S = {x1, ...,xN}
2: while A termination criterion is not satisfied do
3: fbest = min{ f (x), x ∈ S};
4: xbest = arg min{ f (x), x ∈ S};
5: Select K = {x1, ...,xk} k ≤ N solutions from S
6: Generate K̃ = {x̃1, ..., x̃k} using crossover and mutation operators from K;
7: Update S = S \ K ∪ K̃
8: end while
9: Return fbest,xbest

3.3 The Evolutionary Approach 45

Tree Memetic Optimization
Given the introduced framework, we now describe our method in detail. In the
context of binary classification problems, for any N ∈ N, let D := {(xi, yi), xi ∈
Rp, yi ∈ {0, 1}, i = 1, ..., N} be a finite set of data points with p features. To alleviate
the combinatorial explosion of the feasible space, we search for good classification
trees of a given maximum depth d, avoiding to introduce further complexity in the
exploration of the space of feasible tree structures.

In the starting phase of any evolutionary algorithm, the population is initialized
through the definition of an initial set of solutions. While random sampling in the
feasible space is the prevailing method for this task, we argue that a completely ran-
dom initialization might not be ideal for a population of decision trees due to their
inherent structural dependency. Consequently, a random sampling initialization
could lead the algorithm to explore "dead zones" within the search space, slowing
the convergence to near-optimal solutions.

Given thewell known trade-off between exploration and exploitation (Črepinšek
et al., 2013), our methodology aims to balance both these effects by adopting a Ran-
dom Forest (Breiman, 2001) as initial set of feasible classification trees. This latter
choice is motivated by the principles of bagging (Breiman, 1996) and the random
subspace method (Ho, 1998), integral components of the Random Forest training
process that ensure sufficient heterogeneity within the ensemble while maintaining
individual solution quality. Consequently, our algorithm adopts a Random Forest
RF = {t1, ..., tk} as a set of k decision trees for the initial population. Subsequent to
this, each model is locally optimized with respect to the misclassification loss using
TAO. In this way, the initial population becomes a set of local optima in the feasible
space of classification trees of depth d for the given problem.

After this first step, a standard genetic algorithm requires to carry out the evo-
lution by implementing the two main phases, selection and crossover. One of the
common strategy for the selection is to use a fitness function which measures the
"quality" of each solution (e.g., for minimization of scalar functions a trivial choice
for the fitness is − f (x)). Since in this context we are interested in the induction of
classification trees with low misclassification error, we employ the classification ac-
curacy on the train set as fitness function. For the purposes of this discussion, from
here on, we will denote by f (t) the accuracy of the tree t on the train set.

The selection process can be carried out by favouring individuals with high fit-
ness in the belief that theymay contain good components for generating better solu-
tions (Goldberg and Deb, 1991). The choice of the selection strategy greatly affects
the convergence rate and, in general, an higher selection pressure results in higher
convergence rates but it increases the chances that the populationmay converge pre-
maturely to a local optimum. For this reason, we decided to not take into account
the fitness of the individuals at this stage and to use a selection method which is

46 Optimization for Classification Trees

quite similar to the Differential Evolution algorithm (Storn and Price (1997)).
Our method iterates on eachmodel and it samples another one from the popula-

tion to obtain the couple of parents that will define a new solution. Let i ∈ {1, ..., k}
the index of the current tree, a second index j is sampled from a uniform distribu-
tion U{j=1,...,k, j ̸=i} over all the possible indexes except i. The solutions ti and tj are
then encoded through a one-to-one mapping in a fixed-length list. These new rep-
resentations will be used by the stochastic crossover operation, detailed in the next
section, to define a new candidate t̂.

Algorithm 3 TMO scheme
1: Input: Train data D, Maximum depth d, Number of generation ngen, Cross rate

parameter CR ∈ [0, 1]
2: Get initial population S = {t1, ..., tk} from a fitted Random Forest on D
3: fbest = max{ f (t), t ∈ S};
4: tbest = arg max{ f (t), t ∈ S};
5: for g = 1, .., ngen do
6: Get a bootstrap sample B(g)

D
7: for i = 1, ..., k do
8: Sample j ∼ U{j=1,...,k, j ̸=i}
9: for node z = 1, ..., 2d − 1 do
10: if U[0,1] < CR then
11: t̂z = tz

j
12: else
13: t̂z = tz

i
14: end if
15: end for
16: Optimize t̂ using L(t̂ ; B(g)

D)
17: if f (t̂) > f (ti) then
18: ti = t̂
19: end if
20: if f (t̂) > fbest then
21: fbest = f (t̂)
22: tbest = t̂
23: end if
24: end for
25: end for

Unlike common genetic strategies, before asserting the quality of the new solu-
tion through the fitness function, ourmethod exploits thememetic strategy to locally
optimize the new candidate with respect to the misclassification loss using TAO.
This latter local search algorithm, starting with a learned CT, employs a bottom-up
alternating optimization technique on each level of the tree by defining new sub-

3.3 The Evolutionary Approach 47

problems which aim to change the parameters of each node, to minimize the mis-
classification error of the points forwarded by the node itself.

This local optimization phase, indicated as L(t̂ ; BD), is made with respect to a
bootstrap sample BD of the training data. This allows to maintain a sufficient diver-
sity, avoiding an over-intensive exploitation that would compromise the ability to
explore the feasible space and to generate structures with good generalization per-
formance. Finally, the quality of the improved candidate t̂ is assessed by means of
the accuracy on the train set which acts as a fitness function. The pseudo-code of
our method is reported in Algorithm 3.

Tree encoding scheme

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

Figure 3.10: An unbalanced tree of depth 3

One of the key problems in the context of GAs applied to decision trees is the en-
codingmechanism used to get useful representations of feasible solutions. Different
strategies can be found in the literature to address this problem but, in general, most
common approaches used a tree-based encoding (Barros et al., 2011).

Our method maps each tree to a fixed-length list of tuples containing the pa-
rameters of every node in the structure. Since the class associated with each leaf is
always chosen by majority from the labels of the points arriving on the leaf itself,
these nodes do not directly contribute to the definitions of new solutions, thus the
last level of the structure can be omitted from the representation without loss of
information.

Similarly to the method in (Aitkenhead, 2008), given a tree t of depth d, the
encoding mechanism considers a balanced structure of depth d − 1 and it uses a
tuple of two elements to represent each node. Since the information of a branch z is
completely defined by the feature index fz and the threshold value τz that the node
uses to perform the split, we use the tuple (fz, τz) to encode the parameters of this
kind of nodes and the conventions (−1,−1), (nil, nil) for leaves and missing nodes
respectively.

48 Optimization for Classification Trees

The 2d − 1-length encoding list is finally built using all the representation tuples
and it is sorted following the order thatwould be used by a Breadth-First Search (BFS)
to visit the tree, giving priority to the left child.

Figure 3.10 shows an example of an unbalanced tree with respect to a complete
structure of depth 3. Branches, leaves and missing nodes are on white, gray and
black backgrounds respectively. The encoding of this structure, using our method,
is the 7-length list defined as:

[(f0, τ0), (−1,−1), (f2, τ2), (nil, nil), (nil, nil), (f5, τ5), (−1,−1)]

Generating new solutions

The core of every evolutionary algorithm is the method by which the definition of
new solutions occurs (lines 9-15 of Algorithm 3). This phase is usually defined
through the crossover operation. Our method employs a stochastic variant of this
procedure, encouraging the exploration of the feasible space. After the selection
step, the parents are encoded using the strategy described in the previous para-
graph and the crossover operation is performed on each node till depth d − 1. More
precisely, the nodes of the new solution are defined with respect to a cross-rate pa-
rameter CR. Given i, j as the indexes of the parents, each node z of the new solution
t̂ is defined as:

t̂z =

{
tz

j if U[0,1] ≤ CR

tz
i otherwise

Thus, we set each node of the new solution to have the same parameters as the
second parent node with probability CR and to have those of the first parent with
probability 1−CR. However, it is able to produce radical modifications in the struc-
ture of the new solution with respect to the parents.

Figures 3.11, 3.12, 3.13, 3.14 show some examples of this. Let ti be the reference
tree in figure 3.10, a branch to leaf modification on node 5 is reported in figure 3.11.
The effect of this operation is to prune all the sub-tree having the node 5 as root,
setting this node as leaf with class obtained by majority with respect to the labels of
the points arriving at that node.

On the other hand, the inverse operation is reported in figure 3.12. In this case
the leaf node 1 becomes a branch with the same parameters of the other parent and
its two leaves are created.

3.3 The Evolutionary Approach 49

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

Figure 3.11: Modification Branch/Leaf on node 5 with respect to the structure in
figure 3.10

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

Figure 3.12: Modification Leaf/Branch on node 1 with respect to the structure in fig-
ure 3.10

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

Figure 3.13: Modification Branch/NIL on node 5 with respect to the structure in fig-
ure 3.10

Because in the population there may exist very unbalanced structures, modifica-
tions like nil/branch and branch/nil are also possible. In those cases the structure
of the new solution undergoes the most massive transformations.

In figure 3.13 a branch/nil alteration on node 5 is shown. Because the node has
to be deleted from the structure, this implies that its father has to become a leaf.
Thus, this kind of transformation acts as a total pruning of the sub-trees rooted at
that node and at the brother (node 6), setting their father as leaf. Note that the same

50 Optimization for Classification Trees

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

Figure 3.14: Modification NIL/Branch on node 3 with respect to the structure in fig-
ure 3.10

result can also be achieved with a branch/leaf change applied to the parent node.
Figure 3.14 shows a nil/branch conversion on node 3. This operation enlarges the

structure of the model. Since a new branch has to be created, also the parent node
(node 1), being a leaf, has to become a branch to maintain a correct hierarchy in the
model. The parameters of the parent node are initialized as random while those of
the current node are taken from the other tree participating in the crossover. Finally,
the brother node (node 4) has also to be created and it is set to be a leaf with the
class chosen by majority respect to the labels of the points arriving to the leaf itself.

Numerical experiments
To assess the performance of our method, we used a total of 14 benchmark datasets
from LIBSVM 2 repositories .

The aim of the experiments is to compare ourmethodwith respect to three differ-
ent baselines. The first one is the previously described CART algorithm for decision
trees which is, even today, the most common baseline for classification trees induc-
tion. The second one is the alternating optimization TAO algorithm which takes as
input the given CART structure and performs a local minimization with respect to
the misclassification loss. Finally, we compare our method to the state-of-art MILP
approach, OCT, proposed in (Bertsimas and Dunn, 2017).

Each dataset is split up in three parts (64 % training set, 16 % validation set, 20
% test set). We performed experiments considering trees with depth till 4 following
the work in (Bertsimas and Dunn, 2017) that, given the exponential increase of the
number of binary variables, limits the depth to this value.

First, we fitted theCARTbaselinewith the standard implementation of the scikit-
learn framework (Pedregosa et al., 2011), setting only the maximum depth param-
eter and leaving the rest as default. Then, we run a TAO implementation (python3)
on the model obtained by scikit-learn to get the second baseline. Finally, we coded

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

3.3 The Evolutionary Approach 51

Dataset Dimension CART TAO TMO OCT

A2a 2265 × 119 81.02 ± 1.57 81.02 ± 1.57 80.93 ± 1.25 78.81 ± 3.56
A4a 4781 × 122 82.28 ± 0.77 82.28 ± 0.77 82.34 ± 0.74 82.28 ± 0.77
Biodeg 1055 × 41 74.41 ± 2.45 76.30 ± 4.52 77.73 ± 3.68 74.79 ± 2.29
Breast 194 × 33 70.77 ± 6.61 71.28 ± 3.77 71.28 ± 4.41 74.36 ± 3.24
Diabetes 768 × 8 72.08 ± 1.69 72.08 ± 1.69 72.21 ± 2.92 69.61 ± 4.07
Digits 3823 × 63 94.72 ± 0.39 94.72 ± 0.39 94.93 ± 0.46 93.59 ± 1.99
Heart 270 × 25 70.74 ± 3.78 70.74 ± 4.29 71.48 ± 5.19 67.41 ± 6.48
Ionosphere 351 × 34 89.86 ± 1.64 90.7 ± 1.13 90.7 ± 1.13 87.32 ± 5.19
Libras 360 × 90 95.0 ± 1.88 95.28 ± 1.88 95.0 ± 2.26 94.44 ± 1.76
Parkinsons 195 × 22 83.59 ± 3.48 84.62 ± 3.63 83.59 ± 4.47 82.05 ± 6.07
Phishing 11055 × 68 90.75 ± 0.61 90.75 ± 0.61 91.43 ± 0.78 90.15 ± 0.88
Spam 4601 × 57 85.41 ± 1.72 85.99 ± 1.39 86.47 ± 1.13 83.71 ± 2.39
Spectf 267 × 44 75.19 ± 5.69 78.52 ± 3.43 78.15 ± 3.59 77.41 ± 3.78
Sonar 208 × 60 69.52 ± 6.97 70.0 ± 5.75 72.38 ± 6.14 66.67 ± 2.13

Table 3.4: Accuracy and Standard Deviation formaximumdepth d = 2, Gurobi time
= 600s

the OCT formulation of the problem and we used gurobipy (Gurobi Optimization,
LLC, 2022) to handle the optimization. The original formulation of OCT for axis-
aligned splits includes a regularization term to take into account the total number
of branch nodes, thus encouraging sparsity in the structure. For this reason, we
tuned the relative hyperparameter α, sampling 3 values from a log-uniform distri-
bution in [10−3, 1] and choosing the one with the best accuracy on the validation
set. Moreover, to provide a strong initial upper bound on the optimal solution we
followed the idea of the original OCT paper by performing a warm start procedure,
initializing the optimization phasewith themodel obtained by the CART algorithm.

Our method, as described in the previous sections, employs a random forest to
initialize the population for the evolutionary procedure. Also in this case we used
the standard implementation in scikit-learn to fit the ensemble, setting only themax-
imum depth and a number of 100 classification trees as the size of the population.

We decided not to validate the cross-rate hyperparameter as we empirically ob-
served that setting CR = 0.75 is a good trade-off for the exploration and it allows to
obtain competitive solutions. Moreover, with reference to the pseudo-code reported
in Algorithm 3 we set the number of generations of our algorithm ngen equal to 5.
Finally, for each method we set the maximum running time limit to 600s.

All the experiments are carried out on a serverwith an Intel®Xeon®Gold 6330N

52 Optimization for Classification Trees

Dataset Dimension CART TAO TMO OCT

A2A 2265 × 119 80.79 ± 1.3 80.75 ± 1.32 80.97 ± 1.54 78.90 ± 3.60
A4A 4781 × 122 81.9 ± 1.18 82.22 ± 0.6 82.68 ± 0.95 80.08 ± 3.44
Biodeg 1055 × 41 78.1 ± 1.06 78.1 ± 2.77 79.91 ± 1.81 74.41 ± 5.59
Breast 194 × 33 69.74 ± 5.94 74.36 ± 3.63 67.69 ± 3.48 72.31 ± 5.71
Diabetes 768 × 8 69.87 ± 2.45 71.43 ± 2.63 74.42 ± 1.2 69.35 ± 3.97
Digits 3823 × 63 96.44 ± 0.71 96.81 ± 0.87 96.89 ± 0.62 92.55 ± 2.92
Heart 270 × 25 78.15 ± 0.74 78.52 ± 0.91 81.85 ± 2.16 79.45 ± 1.23
Ionosphere 351 × 34 90.99 ± 1.13 90.99 ± 0.69 87.32 ± 1.99 88.45 ± 4.22
Libras 360 × 90 93.89 ± 1.11 94.72 ± 1.36 95.28 ± 2.72 94.44 ± 1.76
Parkinsons 195 × 22 81.54 ± 1.92 86.15 ± 2.61 90.77 ± 3.08 86.67 ± 6.36
Phishing 11055 × 68 90.59 ± 0.56 91.23 ± 0.83 91.92 ± 0.45 89.43 ± 0.81
Spam 4601 × 57 87.84 ± 1.75 88.47 ± 1.5 89.73 ± 0.9 88.56 ± 1.23
Spectf 267 × 44 72.59 ± 9.18 72.22 ± 8.61 71.85 ± 8.23 78.15 ± 4.6
Sonar 208 × 60 72.86 ± 4.9 75.71 ± 5.91 69.52 ± 3.81 70.95 ± 3.50

Table 3.5: Accuracy and Standard Deviation formaximumdepth d = 3, Gurobi time
= 600s

CPUwith 28 cores and 56 threads @ 2.20GHz. The total available memory is 128GB.
For each dataset we report the size, the mean out-of-sample accuracy and the stan-
dard deviation of each method on 5 different seeds.

Discussion

In Tables 3.4, 3.5, 3.6 we compare the performance of our approach in case of trees
with maximum depth up to 4. The comparison aims to prove the effectiveness of
our method with respect to different depths, to capture also information about the
performance trend with respect to the transparency of the model. Moreover, the
main contribution is related to the applicability of ourmethod to real world datasets
with thousand of samples in opposition to the MILP approach that often fails to
obtain a better solution than the one provided by the CART warm start.

Both for depth 2 and 3, results highlights the effectiveness of our memetic evolu-
tionary method which outperforms other approaches in 9 out of 14 datasets (64%).
More generally, it is evident that TMO is often able to induce structures with better
generalization capabilities even for datasets with thousands of samples. This re-
sult is particularly evident for larger datasets (Phishing, A4A, Spam, Digits) where
MILP models suffers the fact that the number of binary variables scales exponen-

3.3 The Evolutionary Approach 53

Dataset Dimension CART TAO TMO OCT

A2a 2265 × 119 80.66 ± 1.22 81.1 ± 1.44 81.20 ± 1.85 80.57 ± 2.84
A4a 4781 × 122 82.22 ± 1.41 82.11 ± 1.27 82.13 ± 0.87 80.44 ± 2.89
Biodeg 1055 × 41 81.23 ± 2.26 80.85 ± 2.57 80.85 ± 2.55 80.09 ± 1.44
Breast 194 × 33 67.18 ± 4.41 68.72 ± 5.23 72.31 ± 5.23 77.44 ± 1.03
Diabetes 768 × 8 70.78 ± 2.36 70.65 ± 3.49 72.21 ± 2.07 69.61 ± 4.01
Digits 3823 × 63 97.15 ± 0.58 97.23 ± 0.48 97.39 ± 0.45 97.31 ± 0.28
Heart 270 × 25 75.56 ± 4.44 75.93 ± 4.22 78.89 ± 3.63 73.70 ± 3.78
Ionosphere 351 × 34 88.45 ± 3.26 89.01 ± 2.25 86.76 ± 2.61 84.51 ± 3.88
Libras 360 × 90 95.0 ± 1.88 95.0 ± 1.11 93.61 ± 3.36 94.72 ± 2.04
Parkinsons 195 × 22 83.59 ± 3.48 84.1 ± 2.99 85.64 ± 4.76 86.67 ± 5.94
Phishing 11055 × 68 91.67 ± 0.32 91.67 ± 0.32 92.15 ± 0.76 -
Spam 4601 × 57 89.75 ± 1.17 90.16 ± 1.24 90.47 ± 0.68 89.88 ± 1.57
Spectf 267 × 44 72.59 ± 6.87 73.33 ± 7.46 73.33 ± 6.04 78.52 ± 5.44
Sonar 208 × 60 70.0 ± 4.9 67.62 ± 3.56 69.52 ± 3.81 68.10 ± 8.19

Table 3.6: Accuracy and Standard Deviation formaximumdepth d = 4, Gurobi time
= 600s

tially with respect to the depth of the tree and linearly with respect to the number
of samples in the datasets. Moreover, OCT, although it exploits the warm start pro-
cedure, can rarely outperform CART. This drawback is mainly related to the model
becoming intractable, making hard for the MILP solver to find any better feasible
solution than the one initially provided by CART.

An example of this fact is visible in the results for depth 4 (Table 3.6) for the
phishing dataset. The OCT approach exceeds the availbale RAM (128GB) as the
branch and bound tree allocated by the Gurobi solver requires too much memory
during the validation, causing the operating system to kill the process. This is clearly
a consequence of the NP-completeness of the problem that makes exact models
unusable for real world datasets even with small trees.

These latest results show also that OCT can sometimes provide structures with
better out-of-sample accuracy for deeper trees, exploiting the regularization term
thatmay discover prunedmodels, encouraging generalization. However, also at this
depth, our algorithm is the most competitive among the four proposed, achieving
the best performance on half of the datasets.

Finally, although theoretically able to provide the certified global optimum, in
practice results show that this optimal solution is almost never reached (or, at least,
certified) because of the difficulties in closing the optimality gap. For this reason,

54 Optimization for Classification Trees

our method, with no claim to provide the global optimum, has proven to be a good
trade-off between the applicability of over-exploited greedy approaches and the
need of exploration of the feasible space to induce near-optimal solutions.

Computational complexity
Unlike MILP models, the complexity of our method does not depend exponentially
on the depth of the tree. In fact, at each iteration of the algorithm, the method per-
forms the selection/crossover phase which can be made in O(2d), then an instance
of the local optimizer TAO is performed and its cost is comparable to running CART
to grow a tree of the same depth (Carreira-Perpinán and Tavallali, 2018), thus get-
ting a complexity of O(npd). These two routines are repeated for each tree in the
population getting a total cost of O(k2d + knpd). Note that in case of shallow trees
and large datasets, complexity mainly depends on the term O(knpd) saying that a
generation of TMO is comparable to running CART a number of times equal to the
size of the population.

3.4 Concluding Remarks
In this chapter we reviewed the most relevant methods for the induction of CTs.
Starting with the most common greedy algorithm, CART, we discussed the recent
state-of-art exact MIP formulations for the modelling of the learning problem. We
then introduce a general framework for loss-optimal classification trees, showing
how different losses can be handled through a proper definition of the slack vari-
ables. Following further this path, we provided a new formulation which employs
a piece-wise linear surrogate of the log-loss for the induction of logistic multivariate
classification trees. We showed how logistic splits with a standard LASSO regular-
ization can be used to construct sparser and more interpretable trees with better
generalization performances, with a reasonable computational cost. The trade-off
between out-of-sample accuracy, interpretability and running time attained by our
proposed approach thus appears to be optimal among themodels considered in our
numerical experiments.

On the other hand, given the computational complexity ofMIP formulations and
their observed difficulties in handling large datasets and deep trees, we reviewed
genetic strategies which, without any claim to certify optimality, are empirically able
to learn classification trees with competitive performance. In this regard, we extend
the standard evolutionary scheme by exploiting the memetic approach to perform
local searches during the evolution, increasing the effectiveness of the algorithm in
inducing near optimal solutions.

Chapter 4

Optimization for Risk Scores

In this Chapter we discuss the optimization problem of learning a particular class
of linear models called Risk Scores (RSs). RSs (Ustun and Rudin, 2019) are widely
used linear classificationmodels that enable users to assess the risk (or equivalently,
in statistical terms, the log-odds) of a positive outcome by means of a simple sum-
mation of few small integer terms. More precisely, RSs can be described as very
(Super) Sparse Linear Integer Models (SLIMs) (Ustun and Rudin, 2016) that are
designed for risk assessment (RiskSLIM) rather than for decision. For this reason,
suchmodels are optimized using the logistic loss function as opposed to the 0-1 loss
used for SLIM models.

Thanks to the extreme glass-box nature of risk scores, users can estimate the
impact, on the predicted result, of changes to one or even several input variables;
informed decisions can then be made, even rejecting the output of the model if it is
found to be unreasonable by experts. In the health care context especially, the use of
this kind of models enables clinicians and researchers to understand the factors in-
fluencing risk assessment and enhances the reliability of the predictions. Addition-
ally, risk scores provide valuable insights into the decision-making process, allow-
ing for improved clinical outcomes and patient care. Famous risk scores models in
healthcare includeWells’ criteria for Deep Vein Trombosis (DVT) (Wells et al., 1995,
1997, 2003, 2006) and for pulmonary embolism (Wells et al., 2001; Wolf et al., 2004),
the Glasgow Coma Scale (GCS) (Teasdale and Jennett, 1974), the Sepsis-related Or-
gan Failure Assessment (SOFA) score (Vincent et al., 1996) and the CHADS2 risk
score (Figure 4.1) to assess stroke risk (Gage et al., 2001); more examples can be
seen at www.mdcalc.com.

The broad acceptance and utilization of risk scores in these delicate domains can
be attributed to their ease of employment and comprehension from the user side; as
opposed to many other classification models, risk scores are specifically designed
to be simple and transparent, being accessible to individuals with diverse levels of
technical expertise.

55

www.mdcalc.com

56 Optimization for Risk Scores

Congestive Heart Failure (CHF) history + 1 point
Hypertension history + 1 point
Age ≥ 75 years + 1 point
Diabetes mellitus history + 1 point
Stroke or TIA symptoms previously + 2 points

Variable Score

Total Score:
Risk:

0 1 2 3 4 5 6

1.9% 2.8% 4.0% 5.9% 8.5% 12.5% 18.2%

Figure 4.1: CHADS2 risk score to assess the stroke risk for patients with atrial fibril-
lation.

Although early studies on risk factor models can be found as early as the first
half of the 1900s (Burgess, 1928), in practice even today the learning process in
most cases involves the use of ad-hoc strategies. In fact, such models are often
hand-crafted by experts of the specific field of use, deploying heuristics to capture
relations between the features and the outcome (McGinley and Pearse, 2012). Ap-
proaches based on logistic regression can also be found in the literature; however,
thesemethods usually consist of a pipeline that involves an initial stage of feature se-
lection followed by the fitting of the logistic model and finally a rounding procedure
to obtain integer scores (Antman et al., 2000).

All in all, the aforementioned procedures are blind greedy strategies, that do not
consider an exact formulation of the problem. The natural way to solve this issue
would be to train the entire model in a single step: the result could be considered
an Optimal Risk Score (ORS) for the given dataset. Constructing a risk score model
intrinsically requires a series of discrete decisions, such as the selection of relevant
features to be considered and the scores to be assigned to each one; thus, the def-
inition of the learning problem as an optimization one naturally leads to a Mixed
Integer Optimization (MIO) program to handle.

Indeed, following this path, the seminal work for learning ORSs (Ustun and
Rudin, 2019) exploits a Lattice Cutting Plane Algorithm (LCPA) to handle the non-
linear log-loss in a MILP context but is limited to the case of binary features.

Within this scenario, in this chapter we give a new formulation for learningORSs
on binary features, which leverages on the same piece-wise linear underestimator,
previously discussed forOptimal Logistic Classification Trees (chapter 3), to efficiently
handle the logistic loss in MILP. Moreover we extend this kind of models by intro-
ducing Generalized Risk Scores (GRSs). The new class of models extends standard
risk scores by generating boolean decisions from each feature to assign the score.
By leveraging this mechanism, the GRS model enhances its predictive performance
and flexibility, with no loss of interpretability and it is able to handle each type of
features.

4.1 Learning Optimal Risk Scores 57

4.1 Learning Optimal Risk Scores
Let us consider a training dataset of N observations D = {(xi, yi), xi ∈ Rp, yi ∈
{−1, 1} ∀i ∈ I}, being I = {1, 2, ..., N} the index set. In the binary classification
context, we assume y | x to be a target random variable with Bernoulli distribution
B(p). A logistic regression model R(x; s) is a linear classifier that estimates the
expected value p = P(y = 1 | x) through the logistic activation σ(R(x; s)) i.e., R is
a linear estimator of the log-odds or logit (Hastie et al., 2009):

logit(p) = log
(

p
1 − p

)
= R(x; s) = sTx+ β.

We say that R(x; s) is a risk score model (cfr. Ustun and Rudin (2019)) for D if the
following holds:

sj ∈ A ⊂ Z ∀j = 1, ..., p, (4.1a)
∥s∥0 = T, (4.1b)

where ∥ · ∥0 denotes the ℓ0 pseudo-norm of a vector, i.e., the number of nonzero
components and, for interpretability reasons, we constraint this number to be not
greater than a small threshold which frequently is set to seven (see (Miller, 1956)
for psychological details on this choice).

A risk scoremodel is thus a very sparse logistic regression classifier with (small)
integer weights chosen from a set A which is user defined.

Constraints (4.1) greatly enhance interpretability. Weights sparsity simplifies
the understanding and interpretation of the model, as it makes it easier to discern
the features that have a significant impact on predictions (Tibshirani, 1996; Fonti
and Belitser, 2017). On the other hand, integer weights are in general much easier
to manage for humans even without the help of a calculator.

Given this background, we are now able to introduce each block of our formula-
tion to induce ORSs which is largely based on the work in (Ustun and Rudin, 2019).

We are given the set A ⊂ Z of feasible scores and a number of rules T which
have to be created. To satisfy the constraint (4.1b) the model must be able to choose
only T features among p and we handle this combinatorial selection by introducing
the indicator variables:

aj =

{
1 if feature j is selected
0 otherwise.

∀j = 1, ..., p

And imposing the following equation to handle the ℓ0 pseudo-norm constraint:
p

∑
j=1

aj = T (4.2)

58 Optimization for Risk Scores

Each coefficient sj is then linked to the variables aj through the common big-M
strategy:

sj ≤ Maj (4.3a)
sj ≥ −Maj (4.3b)

where the value for the big-M constant can be chosen as M = max{|s|, ∀s ∈ A}
which is in general very small (≤ 5). Constraints (4.2) and (4.3) are sufficient to
model all the required logic of a RS, leaving to define only the form of the loss func-
tion used.

In a binary classification context the log-loss, which is related to the negative log
likelihood for logistic regression (see, e.g, (Hastie et al., 2009)), is defined as

ℓ(wTxi + β; yi) = f (yi(wTxi + β)) = log(1 + exp(−yi(wTxi + β))).

In addition to having excellent properties in terms of out-of-sample accuracy,
this function provides insights on features importance bymanipulation of themodel
weights (Hastie et al., 2009) and it is also known for inducingwell calibratedmodels.

However, the main issue with this loss function is the fact that it cannot exactly
be modeled in aMILP context because of its nonlinear nature. To address this issue,
instead of using cutting plane strategies as in (Ustun and Rudin, 2019), we follow
themethod proposed by Sato et al. in (Sato et al., 2016) already employed in Chapter
3 for the induction of Optimal Logistic Classification Trees. Thus, we approximate the
log-loss through the maximum of a set of its tangent lines built at some points vk,
i.e.,

f (v) ≈ max{ f (vk) + f ′(vk)(v − vk) | k = 0, . . . , K}.

We recall that the sets of tangent points proposed by Sato et al. are:

V0 = {0,±∞}, V1 = V0 ∪ {±1.9}, V2 = V1 ∪ {±0.89,±3.55},

V3 = V2 ∪ {±0.44,±1.37,±2.63,±5.16}.

Now, using suitable slack variables ξi ∈ R+, we are able to approximate the
log-loss to be managed in a MILP context as follows

ξi ≥ f (vk) + f ′(vk)(yi(sTxi + β)− vk) ∀i, ∀k (4.4)

Clearly, the larger the setV, themore accurate is the approximation of the logistic
loss but also the number of linear constraints to handle the definition of the slack
variables and, thus, the complexity of the MILP model.

In the numerical experiments we will show how different sets lead to different
results both for the quality of the approximation and for the predictive accuracy of
the estimator. Finally, the resulting MILP model for learning ORS is the following:

4.2 Generalized Risk Scores 59

min
s,ξ,a,

β

∑
i∈I

ξi (4.5a)

s.t. (4.2), (4.3), (4.4) (4.5b)
ξi ∈ R+ ∀i ∈ I , (4.5c)
β ∈ R (4.5d)
aj ∈ {0, 1} ∀j = 1, ..., p (4.5e)
sj ∈ A ∀j = 1, ..., p (4.5f)

This model allows to potentially learn the optimal risk score given a number T of
features to be considered. However, there is no assumption on the type of these
variables and the highest levels of interpretability for a risk score model is clearly
obtained with binary features (Ustun and Rudin, 2019). Indeed, in this special case,
the final score for a given sample is established by very simple and clear rules as
shown in the model in Figure 4.1.

4.2 Generalized Risk Scores
The assumption that data contains only binary features is very limiting and, when
attained in practice, it is often the result of a heuristic preprocessing phase of dis-
cretization (as done inUstun andRudin (2019)) thatmay lead to poor out-of-sample
performance.

Arguably, the main advantage of binary features is that end users can readily
assesswhether the score has to be assigned or not. However, the ease of determining
the binary decision to assign a score is what really matters, rather than data being
of binary nature.

With the above observation in mind, we are motivated to define risk scores in a
more general way. In particular, we want numerical features to be handled directly
during the learning phase, preserving the useful binary conditions structure.

The extension of risk score classifiers is carried out by means of possibly nonlin-
ear, general functions f j(xj), j = 1, . . . , p, such that the logit of the positive outcome
is now modeled as:

logit(p) =
p

∑
j=1

f j(xj) + β = R(x;f , β) (4.6)

In this way, the contribution of each feature to the final score is easily understood
observing the map f j.

60 Optimization for Risk Scores

Equation (4.6) actually represents the standard form of a Generalized Additive
Model (GAM) (Hastie and Tibshirani, 1990).

GAMs allow for the incorporation of non-linear functions of individual predic-
tors, enabling them to capture intricate patterns in the data. One of the key strengths
of these models lies in their interpretability. By decomposing the relationship be-
tween the response variable and predictors into a series of non linear functions,
GAMs provide a clear visual representation of the impact of each predictor, allow-
ing researchers and practitioners to gain insights into the data without sacrificing
model transparency. Consequently, GAMs strike a delicate balance between com-
plexity and comprehensibility and for this reason are very common choices in the
health-care context (Hastie and Tibshirani, 1995; Caruana et al., 2015).

We are now able to introduce the Generalized Risk Score (GRS) model as a par-
ticular instance of a GAM, such that each function f j has the form

f j(xj) = sjrj(xj) (4.7)

with rj : R → {0, 1} and constraints (4.1a) and (4.1b) hold. We can thus denote
GRS models as

RG(x; s, r, β) =
p

∑
j=1

sjrj(xj) + β

Functions rj can in principle be any arbitrary mapping to {0, 1}; the only underlying
requirement is that they need to be easily interpretable. In other words, a GRS is
a very sparse GAM where each component is a transparent step function with a
small integer response. For this class of models, we are able to prove the following
equivalence result.

Theorem 4.1 (Editability of Generalized Risk Scores). Let RG(x; s, r, β) be any GRS
model. Let k ∈ {1, . . . , p}, and consider vectors ŝ, r̂ and the value β̂ defined as follows:

ŝj =

{
−sj if j = k

sj otherwise,
r̂j(xj) =

{
1 − rj(xj) if j = k

rj(xj) otherwise,
β̂ = β + sk.

Then, RG(x; ŝ, r̂, β̂) = RG(x; s, r, β) for all x ∈ Rp, i.e., model RG(x; ŝ, r̂, β̂) is equiva-
lent to RG(x; s, r, β).

Proof. For any arbitrary point x ∈ Rp we have

RG(x; s, r, β) = sTr(x) + β

4.2 Generalized Risk Scores 61

Now, let us define the functions r̄j(xj) = 1{rj(xj) = 0} = 1 − rj(xj). Then, for all
k = 1, ..., p we have

∑
j

sjrj(xj) + β = ∑
j ̸=k

sjrj(xj) + sk(1 − r̄k(xk)) + β

= ∑
j ̸=k

sjrj(xj)− skr̄k(xk) + β + sk

= ∑
j

ŝjr̂j(xj) + β̂,

defining β̂ = β + sk,

ŝj =

{
−sj if j = k,

sj otherwise
and

r̂j(xj) =

{
r̄j(xj) if j = k,

rj(xj) otherwise,

we got the thesis.

The above proposition states that an end user can edit any decision of a gener-
alized risk score by inverting the logic of that binary function, the sign of the as-
sociated score and updating the bias to obtain an equivalent model. This property
can be particularly useful for an expert that can be able to modify the final model
increasing the versality and the ease of use.

Moreover, from this latter Theorem we are able to deduce this nice Corollary.

Corollary 4.1. Let RG(x; s, r, β) be any GRS model. Then, there exist an equivalent model
RG(x; ŝ, r̂, β̂) such that ŝj ≥ 0 for all j = 1, . . . , p.

Proof. Following the same technique of the proof of Theorem 4.1 we have:

RG(x; s, r, β) = sTr(x) + β

=
p

∑
j=1

sjrj(xj) + β

= ∑
j:sj≥0

sjrj(xj) + ∑
j:sj<0

sjrj(xj) + β

Now, let us define the functions r̄j(xj) = 1{rj(xj) = 0} = 1 − rj(xj). Setting β̂ =

β + ∑j:sj<0 sj and

ŝj =

{
sj if sj ≥ 0,

−sj otherwise

62 Optimization for Risk Scores

r̂j(xj) =

{
rj(xj) if sj ≥ 0,

r̄j(xj) otherwise,

we get
RG(x; s, r, β) = ∑

j:sj≥0
sjrj(xj) + ∑

j:sj<0
sj(1 − r̄j(xj)) + β

= ∑
j:sj≥0

sjrj(xj) + ∑
j:sj<0

−sjr̄j(xj) + β + ∑
j:sj<0

sj

=
p

∑
j=1

ŝjr̂j(xj) + β̂

= RG(x; ŝ, r̂, β̂).

Taking into account that ŝj ≥ 0 for all j, we got the thesis.
In addition to providing a nice insight into this type of models, the result tells us

that we could consider only positive scores when modelling the learning problem,
reducing the complexity of the formulation without loss of expressive power.

4.3 The Optimal Generalized Risk Score Model
In this Section we formalize our novel formulation for the OGRS model. In partic-
ular, we first introduce the form of rj that we use in our approach then we describe
how to model OGRS through Mixed Integer Linear Programming.

Choosing the family of the rj functions
In Section 4.2 we gave the standard form of a GRS, specifing how the functions rj
should be chosen. Fromhere on, wewill use the term "rule" to indicate each decision
function rj. Among the many possible choices for such rules, we specialized on rj
that are defined through a single clause that tests if the value xj is greater or equal
than a threshold bj, that is, rj can be written as:

rj(xj) = 1{xj ≥ bj} = max{0, sign(xj − bj)}
Using rules of a single clause provides several advantages. Since single clauses

involve the usage of one condition, they are easy to comprehend, to test their value
and thus to obtain the final decision. Moreover, they often enhance efficiency by de-
manding fewer computational resources for the learning. Additionally, the utiliza-
tion of single clauses offers flexibility in modifying or extending the logic, allowing
a simplified editing.

Moreover, from theorem 4.1 we are able to derive another corollary on the verse
of each rule.

4.3 The Optimal Generalized Risk Score Model 63

Corollary 4.2. Let RG(x; s, r, β) be any GRS model. Then, there exist an equivalent model
RG(x; ŝ, r̂, β̂) such that r̂j(xj) = 1{xj ≥ bj} or r̂j(xj) = 1{xj < bj} for all j = 1, . . . , p,
i.e, all the rules in the model have the same logic.

Proof. Without loss of generality we prove the thesis for rules rj(xj) = 1{xj ≥ bj}.
Following the same technique of the proof of theorem 4.1 we have:

RG(x; s, r, β) = sTr(x) + β

Now, let us define the functions r̄j(xj) = 1− rj(xj) and the sets J̄ = {j = 1, . . . , p | rj(xj) =

1{xj < bj}} and J = {j = 1, . . . , p | rj(xj) = 1{xj ≥ bj}}. Then we have

∑
j

sjrj(xj) + β = ∑
j∈J

sjrj(xj) + ∑
j∈J̄

sjrj(xj) + β

= ∑
j∈J

sjrj(xj) + ∑
j∈J̄

sj(1 − r̄j(xj)) + β

= ∑
j

ŝjr̂j(xj) + β̂,

setting β̂ = β + ∑j∈J̄ sj and

ŝj =

{
sj if j ∈ J ,

−sj otherwise

r̂j(xj) =

{
rj(xj) if j ∈ J ,

r̄j(xj) otherwise,

we got the thesis.

Formulating OGRS as a MIO problem
We are given the set A ⊂ Z of feasible scores and a number of rules T which have
to be created. Without loss of generality, we assume that each feature has been nor-
malized in the range [0, 1]. We want the model to select, among all the p features,
only T of these to create clauses in the form xj ≥ bj (note that corollary 4.2 guaran-
tees that this assumption is not limiting) associated to a score st ∈ A. Each point
receives a total score s̄i ∈ Z which is the summation of the scores obtained at each
satisfied rule.

To handle the decision of each rule we introduce the binary variables:

aj,t =

{
1 if feature j is selected by rule t ∈ T ,

0 otherwise.

64 Optimization for Risk Scores

Using these variables we can force the formulation to comply with the structure
of the model.

The first constraint we add is related to the selection of the T features that will
be considered as rules, thus, ∀t ∈ T we impose that each rule has to select exactly
one feature through the following:

p

∑
j=1

aj,t = 1 ∀t (4.8a)

Moreover we want to avoid feature repetitions in the rules, that is, the model can
select each feature at most once. This can be enforced imposing that for each feature
j, at most one variable aj,t is active i.e.:

T

∑
t=1

aj,t ≤ 1 ∀j (4.9a)

The number of possibleways for selecting T features from p is equal to (p
T). Since,

for now, a permutation in the order of the rules leads to different configurations
associated with the same risk score, we prune the space of feasible solutions for the
variables ajt by a factor of T!, imposing that rules have to be ordered with respect to
the features considered. Thus, if rule t splits on feature j, then each rule s < t cannot
split on a feature k > j. This fact can be imposed through the following inequality.

p

∑
k=j+1

t−1

∑
s=1

ak,s ≤ (1 − aj,t) T ∀j, ∀t (4.10a)

We also need to know whether a point xi satisfies a rule t ∈ T in order to assign
the related score. For this purpose we introduce the binary variables:

zi,t =

{
1 if xi satisfies rule t ∈ T ,

0 otherwise.

The GRS model must also be able to select, for each rule t, the threshold bt that
imposes the satisfaction of the clause.

Hence, if rule t splits on feature j then, ∀ i | zi,t = 1 i.e, for each point xi that
satisfies rule t, it must hold xj

i ≥ bt. Otherwise the point xi does not satisfy the rule
and zit = 0.

This logic can be inferred through the following constraints:

4.3 The Optimal Generalized Risk Score Model 65

aT
t x

i ≥ bt − 1 + zi,t ∀t, ∀i (4.11a)
aT

t x
i ≤ bt − ϵ + zi,t ∀t, ∀i (4.11b)

Constraint (4.11a) force each point xi that fulfil the rule t to impose zi,t = 1 and
to satisfy the clause aT

t x
i ≥ bt. On the other hand, constraint (4.11b) force the point

to respect the opposite logic, aT
t x

i < bt, in case zi,t = 0. Please note that the small ϵ

constant in constraint (4.11b) is the common method to model strict inequalities in
commercial MIP solvers that are not able to handle this type of constraints directly.

Another requirement that we want to be satisfied by the model is related to the
definition of discriminative rules, i.e., to derive clauses that are satisfied at least by
one sample (constraint (4.12a)) but not by all (constraint(4.12b)). Therefore we
impose:

∑
i

zi,t ≥ 1 ∀t (4.12a)

∑
i

zi,t ≤ N − 1 ∀t (4.12b)

Then, we introduce the score obtained by each point xi on the rule t ∈ T as the
integer variable ŝi,t which is defined as the score st of the rule t if the point satisfies
that rule or 0 otherwise.

ŝi,t =

{
st if zi,t = 1

0 if zi,t = 0

That is, ŝi,t = stzi,t. We can model this bilinear constraint with a common big-M
strategy using the following four linear constraints:

ŝi,t ≥ st − (1 − zi,t)M ∀t, ∀i (4.13a)
ŝi,t ≤ st + (1 − zi,t)M ∀t, ∀i (4.13b)

ŝi,t ≥ −zi,tM ∀t, ∀i (4.13c)
ŝi,t ≤ zi,tM ∀t, ∀i (4.13d)

Where M = max{|s| ∈ A} is sufficient to fullfil the logic and to obtain the tiniest
relaxation of the big-M inequalities.

The total score of each sample xi obtained by the model is tracked through the
integer variables s̄i:

s̄i = ∑
t

ŝi,t ∀i (4.14a)

66 Optimization for Risk Scores

Finally, we help the model to select the threshold bt for the subset BD ⊆ {1, ..., p}
of binary features. In fact, if the rule t selects a binary feature j, the threshold is
trivially imposed to be 0.5 by the following constraints:

aj,t − 1 ≤ bt − 0.5 ∀t, ∀j ∈ BD (4.15a)
1 − aj,t ≥ bt − 0.5 ∀t, ∀j ∈ BD (4.15b)

To handle the optimization phase, we used the same piece-wise linear approxima-
tion as proposed for standard Risk Scores. Indeed, in this case, the LCPA approach
is not applicable due to the presence of the decision variables used to assess wether
a sample has to obtain the score for each rule, making it impossible to use gradient-
based approximation for the objective function.

Putting all of this together gives the MILP formulation for learning OGRS re-
ported in the next page.

4.3 The Optimal Generalized Risk Score Model 67

min ∑
i∈I

ξi (4.16a)

s.t. (4.16b)
p

∑
j=1

aj,t = 1 ∀t (4.16c)

T

∑
t=1

aj,t ≤ 1 ∀j (4.16d)
p

∑
k=j+1

t−1

∑
s=1

ak,s ≤ (1 − aj,t) T ∀j, ∀t (4.16e)

aT
t x

i ≥ bt − 1 + zi,t ∀t, ∀i (4.16f)
aT

t x
i ≤ bt − ϵ + zi,t ∀t, ∀i (4.16g)

∑
i

zi,t ≥ 1 ∀t (4.16h)

∑
i

zi,t ≤ N − 1 ∀t (4.16i)

ŝi,t ≥ st − (1 − zi,t)M ∀t, ∀i (4.16j)
ŝi,t ≤ st + (1 − zi,t)M ∀t, ∀i (4.16k)
ŝi,t ≥ −zi,tM ∀t, ∀i (4.16l)
ŝi,t ≤ zi,tM ∀t, ∀i (4.16m)
s̄i = ∑

t
ŝi,t ∀i (4.16n)

ξi ≥ f (vk) + f ′(vk)(yi(s̄i + β)− vk) ∀i, ∀k (4.16o)
aj,t − 1 ≤ bt − 0.5 ∀t, ∀j ∈ BD (4.16p)
1 − aj,t ≥ bt − 0.5 ∀t, ∀j ∈ BD (4.16q)
ξi ∈ R+ ∀i, β ∈ R (4.16r)
aj,t ∈ {0, 1} ∀j, ∀t, zi,t ∈ {0, 1} ∀i, ∀t (4.16s)
st ∈ A, bt ∈ R ∀t (4.16t)
ŝi,t ∈ R ∀i, ∀t, s̄i ∈ R ∀i (4.16u)

68 Optimization for Risk Scores

4.4 Numerical Experiments With Binary Features

In this section we show the results obtained by the standard Risk Score model, pro-
posed in section 4.1, in the case of binary features. We considered a benchmark of 6
datasets (tik-tak-toe, mushrooms, income, mammo, spambase, balance), from
the UCI repositories (see Table 4.1), performing an 80/20 train/test split. For all the
experiments we used A = {−5, ..., 5} thus setting the big-M constant to 5. More-
over, to avoid numerical issues, we set ϵ to 10−4 that is much larger than the one
employed for the IntFeasTol parameter of Gurobi (10−6).

Dataset N p
balance 576 20
income 32561 36
mushrooms 8124 113
mammo 961 14
tik-tak-toe 957 27
spambase 4601 57

Table 4.1: Description of the datasets used in the computational experiments. All
datasets are from the UCI collection (Dua and Graff, 2017).

Preliminary Experiments

The first experiments we carried out concern the assessment of the performance of
the RS model for binary features as we vary the set V of the tangent points that are
used to obtain the piece-wise linear underestimator of the logistic loss. In particu-
lar, we are interested in finding the set of tangent points that is able to obtain the
best AUC on the test set. For this reason, we run the experiments for Risk Scores
with 3 rules and for five different random seeds for each dataset, obtaining a total
of 30 different problems. The Gurobi time limit has been set to 3600s. As shown
by the performance profiles in Figure 4.2, choosing V3 to build the linear piece-wise
underestimator seems to provide the best overall AUC and the best approximation
with the respect to the true logistic loss computed. This is clearly at cost the com-
putational time due to the presence of more constraints in in the MILP formulation.
For this reason, we decided to use the V3 setting to compare the performance of our
model with the state-of-art LCPA approach of Ustun and Rudin (2019) in the next
section.

4.4 Numerical Experiments With Binary Features 69

0 1 2 3 4
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
ab

s_
ga

p
<

t)

V0
V1
V2
V3

(a) Cumulative distribution of the absolute
gap from the best test AUC score accuracy
value attained by any model.

1 2 3 4 5 6 7 8 9 10
performance ratio - Runtime

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 p

ro
bl

em
s

V0
V1
V2
V3

(b) Performance profiles of the running
times for solving the MIP models.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
ab

s_
ga

p
<

t)

V0
V1
V2
V3

(c) Cumulative distribution of the absolute
gap from the best (exact) loss attained on
the training set by any model.

Figure 4.2: Comparison of the performance of Risk Scoresmodels for binary features
when different tangent point sets (V0, V1, V2 V3) are employed.

ORS Performance Evaluation
In this section, we describe numerical results of the comparison between ourmethod
and the LCPA approach of Ustun and Rudin (2019) on datasets with binary feature
with the aim to show that our method can be a valid alternative to handle the opti-
mization. Also in this case, we used the datasets reported in Table 4.1 and we per-
formed 80/20 train/test splits testing 5 seeds, obtaining 30 different problems. Since
we are interested in the comparison by varying the number of the rules, we avoid
to validate this parameter and we study the performance of the two approaches on
each problem with 3, 5 and 7 rules. The results of the experiment are shown in Fig-
ure 4.3 in the form of cumulative distribution of absolute gap from the best AUC
on the test set and performance profiles (Dolan and Moré, 2002) of runtime. The

70 Optimization for Risk Scores

general trend which can be observed is that both our method with V3 and LCPA are
able to obtain very similar results in terms of AUC for each number of rules consid-
ered. The major differences are related to the running times. Indeed, LCPA tends to
be faster than our method but it seems to scale worse when increasing the number
of the rules.

4.4 Numerical Experiments With Binary Features 71

0 1 2 3 4
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
ab

s_
ga

p
<

t)

V3
LCPA

(a) Cumulative distribution of the absolute
gap from the best test AUC score accuracy
value attained by our method and the LCPA
approach. The number of rules is equal to 3.

1 2 3 4 5 6 7 8 9 10
performance ratio - Runtime

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 p

ro
bl

em
s

V3
LCPA

(b) Performance profiles of the running
times for solving theMIPmodels. The num-
ber of rules is equal to 3.

0 1 2 3 4
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
ab

s_
ga

p
<

t)

V3
LCPA

(c) Cumulative distribution of the absolute
gap from the best test AUC score accuracy
value attained by our method and the LCPA
approach. The number of rules is equal to 5.

1 2 3 4 5 6 7 8 9 10
performance ratio - Runtime

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 p

ro
bl

em
s

V3
LCPA

(d) Performance profiles of the running
times for solving theMIPmodels. The num-
ber of rules is equal to 5.

0 1 2 3 4
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
ab

s_
ga

p
<

t)

V3
LCPA

(e) Cumulative distribution of the absolute
gap from the best test AUC score accuracy
value attained by our method and the LCPA
approach. The number of rules is equal to 7.

1 2 3 4 5 6 7 8 9 10
performance ratio - Runtime

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 p

ro
bl

em
s

V3
LCPA

(f) Performance profiles of the running
times for solving theMIPmodels. The num-
ber of rules is equal to 7.

Figure 4.3: Comparison of the performance of Risk Scores on binary feature varying
the number of rules. We report both running time and the out-of-sample AUC for
our method with V3 and the state-of-art LCPA approach from Ustun and Rudin
(2019).

72 Optimization for Risk Scores

4.5 Numerical Experiments With Continuous Feature
In this section we show the results obtained by the Generalized Risk Score model,
proposed in Section 4.3 on general datasets with both continuous and binary fea-
tures. We considered a benchmark of 10 datasets from the UCI repositories (see
Table 4.2), performing an 80/20 train/test split. For all the experiments we used the
same parameters as for the standard Risk Score model previously described.

Dataset N p
breast 568 30
diabetes 768 8
heart disease 296 13
ionosphere 350 33
parkinsons 194 22
sonar 207 60
spectf 266 44
heart failure 299 12
wholesale 439 7
haberman 305 3

Table 4.2: Description of the datasets used in the computational experiments. All
datasets are from the UCI collection (Dua and Graff, 2017).

Preliminary Experiments
As previously made for Risk Score models, in this section we show how different
choices for the set of tangent points lead to different performance in Generalized
Risk Scores. For this purpose, we used the datasets reported in Table 4.2. As made
for the case of binary features, in Figure 4.4, we report numerical experiments in the
form of performance profileswith respect to 3 rulesmodels. Also in this case, choos-
ing V3 as set of tangent points lead to the best AUC and to the best approximation
with respect to the true logistic loss. However, due to the combinatorial complexity
of the MILP model, the solver is able to certify the optimum in 3600s only in 10% of
the problems even in the case of V0.

OGRS Performance Evaluation
In this section we show the last part of the experiments. In this case we compare the
OGRS method with the LCPA approach after having binarized each feature. In the
seminal work of Ustun and Rudin (2019) authors performs an a-priori binarization
of each continuous feature through discretization in a predefined number of inter-
vals. This strategy, however, lead to a huge increase in the final number of features

4.5 Numerical Experiments With Continuous Feature 73

0 1 2 3 4
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
ab

s_
ga

p
<

t)

V0
V1
V2
V3

(a) Cumulative distribution of the absolute
gap from the best test AUC score accuracy
value attained by any model.

1 2 3 4 5 6 7 8 9 10
performance ratio - Runtime

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 p

ro
bl

em
s

V0
V1
V2
V3

(b) Performance profiles of the running
times for solving the MIP models.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
ab

s_
ga

p
<

t)

V0
V1
V2
V3

(c) Cumulative distribution of the absolute
gap from the best (exact) loss attained on
the training set by any model.

Figure 4.4: Comparison of the performance of Risk Scoresmodels for binary features
when different tangent point sets (V0, V1, V2 V3) are employed.

thus compromising the ability of the LCPA method to obtain good cuts for the ap-
proximation of this new high dimensional objective. For this reason, we decided to
perform a more robust binarization by fitting a single-node decision tree on each
feature, using the log-loss as impurity measure. More precisely, we defined a new
dataset where each feature j ∈ {1, ..., p} has been binarized according to the thresh-
old tj obtained by fitting a single decision stump on that feature. In thisway, we used
the transformation xj → 1{xj ≥ tj} to obtain a new binarized dataset with the same
number of feature, thus avoiding to compromise the quality of the LCPA approach.
Note that this method acts as a greedy baseline for our approach. We are interested
in showing that our formulation of OGRS is able to induce a final model by defining
each rule in a global perspective. Also in this case, we show numerical experiments

74 Optimization for Risk Scores

of the 10 datasets reported in Table 4.2 and 5 seeds for a total of 50 different problem
instances. We set the Gurobi time limit to 3600 and we report the performance pro-
files of the out-of-sample AUC for 3, 5, and 7 rules in Figure 4.5. We do not report
the running times since the LCPA approach is applied to the binarized dataset and
it is clearly always the fastest one. Moreover, we employed a warm start strategy to
initialize the optimization phase with a good feasible solution, i.e., at each iteration
we solve the problem on just one rule maintaining the other variables fixed to the
values obtained at the previous iterations.

We observe that our proposed model appears to obtain the best performance,
consistently being the most likely to obtain an AUC value close to the best one, as
the gap parameter t increases. Our model is thus not only most frequently the best
one, but when it is not, it is still the one with the lowest probability of falling shorter
than any given threshold from the best result. Finally, we can observe that in case of
7 rules the two methods are quite comparable and this is mainly bacause the OGRS
model becomes clearly more difficult to optimize.

4.5 Numerical Experiments With Continuous Feature 75

0 1 2 3 4
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
ab

s_
ga

p
<

t)

V3
LCPA

(a) Cumulative distribution of the absolute
gap from the best test AUC score accuracy
value attained by our method and the LCPA
approach on the binarized dataset. The
number of rules is equal to 3.

0 1 2 3 4
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
ab

s_
ga

p
<

t)

V3
LCPA

(b) Cumulative distribution of the absolute
gap from the best test AUC score accuracy
value attained by our method and the LCPA
approach on the binarized dataset. The
number of rules is equal to 5.

0 1 2 3 4
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
ab

s_
ga

p
<

t)

V3
LCPA

(c) Cumulative distribution of the absolute
gap from the best test AUC score accuracy
value attained by our method and the LCPA
approach on the binarized dataset. The
number of rules is equal to 7.

Figure 4.5: Comparison of the performance of Generalized Risk Scores varying the
number of rules. We report the out-of-sample AUC for our method with V3 and the
LCPA approach from Ustun and Rudin (2019) with binarization.

76 Optimization for Risk Scores

4.6 Concluding Remarks
In this Chapter we reviewed the literature of Risk Score which are essentially very
sparse linear models with small integer weights. Then, we proposed to use the
piece-wise linear approximation of Sato et al. (2016) rather than the LCPA approach
of Ustun and Rudin (2019) to handle the non linear logistic loss in a MILP context.
We shown how these two approaches perform quite similar on datasets with binary
feature. Moreover, we extended the concept of Risk Scores by proposing General-
ized Risk Scores as a special form of Generalized Additive Models and we gave a
MILP formulation which aims at the induction of Optimal GRS in the case of rules
made with a single clause. Numerical experiments highlighted how this new gen-
eralized model is able to handle each kind of feature and to derive rules in a global
perspective, outperforming standard approaches based to a preprocessing phase of
binarization, maintaining its semplicity and increasing the ease of editability from
an end user.

Chapter 5

Decision Trees for Local Explanations

Aspreviously discussed inChapter 2, the concept of explainability inmachine learn-
ing is taking on an increasingly important role (Rudin, 2019; Burkart and Huber,
2021). In particular, in the context of deep learning, several methods have been pro-
posed to obtain explanations for a single point prediction (local explanations), using
interpretable surrogate models (Ribeiro et al., 2016; Kenny and Keane, 2021; Blanco-
Justicia et al., 2020).

In this chapter we describe an application of Contextual Bandits to a feature-
based selection of a single Decision Tree (DT) in a Random Forest, aiming at a final
prediction that is explainable (Aldinucci et al., 2022). The proposed system learns a
mapping which links the input feature space to the space of grown decision trees in
order to identify an interpretable and effective predictor for that input sample. We
clarify that the proposed recommendation system is itself a black-box model but its
recommendation leads to an interpretable model. More specifically, although our
method leads to post-hoc local interpretability, the recommended tree does not act
as a surrogate explainer of the whole black-box Random Forest. Our intuition is
that the presence of such a black-box layer, which guarantees a dynamic and data-
driven selection of decision trees, can approximate the predictive performances of
the Random Forest. Due to this context-based nature, we will refer to our approach
as Contextual Classification Tree (CCT) or Contextual Regression Tree (CRT) for,
respectively, classification and regression tasks.

More in detail, the problem is addressed within a Contextual Multi-Armed Ban-
dit framework, which represents a subclass of Markov Decision Processes (MDP)
with an unitary length of each episode (Gampa and Fujita, 2019). The usage of
Multi-Armed Bandit models for recommendations is well known in the literature
and it is employed in fields such as advertisements, personalized news articles,
healthcare and finance (Zhang et al., 2021; Li et al., 2010; Durand et al., 2018; Shen
et al., 2015).

In our case, the action taken by the agent consists in the choice of one tree of

77

78 Decision Trees for Local Explanations

the Random Forest on the basis of the input features which act like the observed
context. This choice is determined by a parametrized policy which encodes a prob-
ability distribution over the trees of the Random Forest. After each choice, the agent
receives a reward that depends both on the context and the selected action. Con-
sidering that we focus on prediction, the adopted reward is related to the predictive
ability of the chosen tree: high reward if the selected one obtains a low prediction
error and vice-versa.

Parameters of policy are learnt, using policy gradient Reinforcement Learning
(RL) methods (Gampa and Fujita, 2019), in order to maximize the cumulative re-
wards over a certain period. Gradient methods for bandits are well motivated in
(Sutton and Barto, 1998) and can be applied also in the contextual case (Pan et al.,
2019).

5.1 Preliminaries
Reinforcement Learning (RL) aims to train autonomous agents in order to learn
behavior through trial-error interactions with a dynamic environment. The agent
chooses an action at each time step, which changes the state of the environment in
an unknown way, and receives feedback based on the consequence of the action.

RL can be formally defined as aMarkov Decision Process (MDP) (Arulkumaran
et al., 2017) consisting of:

• a set of states S ;

• a set of actions A;

• transition dynamics d(st+1|st, at) mapping a state, action couple at time t into
a distribution of possible states at time t + 1;

• a Reward Function

rt+1 = r(st, at, st+1) : S ×A× S → R;

• a discount factor γ ∈ [0, 1), where lower values place more emphasis on im-
mediate rewards.

In addition to this, RL models are based on the use of a policy π:

π : S → p(A = a|S)

i.e., a mapping from states to a probability distribution over the set A of actions,
which determines the behavior of the agent in the choice of adequate actions. Our

5.1 Preliminaries 79

method considers episodicMDP,where the agent interacts with the environment re-
peatedly in episodes of fixed length T. Each episode is characterized by a sequence
of states and actions τ = (st, at)

T−1
t=0 , usually called trajectory. The accumulated re-

ward R(τ) for a trajectory is given as

R(τ) =
T−1

∑
t=0

γtrt+1.

We stress the fact that the policy affects the probability of a given trajectory, i.e.,
τ = τπ.

Policy search methods, which represent one of the main approaches to solve RL
problems (Arulkumaran et al., 2017), are conceived to find the best policy π∗ that
maximizes the expected return over all possible trajectories:

π∗ = arg max
π

Eτ∼π[R(τ)].

Policy search methods use parametrized policies πθ and, in deep RL (Arulku-
maran et al., 2017), deep neural networks are employed to approximate these poli-
cies. The network outputs a probability distribution over the set of actions A and
the action with the highest probability will define the move that the policy should
do in order to get the highest final reward. In this setting, policy parameters θ are
updated using a gradient-based approach in order tomaximize the expected return:

Jθ = Eτ∼πθ
[R(τ)].

The gradient is computed by means of the REINFORCE algorithm (Williams,
1992), which belongs to the class of Likelihood-ratio methods (Deisenroth et al.,
2013). These methods make use of the so called “likelihood-ratio” trick i.e., given a
random variable X ∼ p(x|θ) and a function f (x) we have:

∇θEX
[

f (x)
]
= ∇θ

∫
X

f (x)p(x|θ)dx = (5.1)

=
∫

X
∇θ p(x|θ) f (x)dx =

∫
X

p(x|θ)∇θ p(x|θ)
p(x|θ) f (x)dx = (5.2)

= EX
[

f (x)∇θ log p(x|θ)
] (5.3)

Thus, we can use the loss function L:

L(θ) = − 1
N

N

∑
i=1

T−1

∑
t=0

log πθ(at|st) · R(τ(i))

where N is the number of episodes that define a training batch.

80 Decision Trees for Local Explanations

5.2 Proposed Method
Our method, as summarized in Fig. 5.1, exploits the structure of Random Forests to
provide a general locally-interpretable and feature-based recommendation system.
Given a Random Forest RF = {h1, h2, . . . , hB} with B trees and an input space X ,
the aim of our approach consists of training an autonomous agent to learn a policy
of tree recommendation which, given an input point x ∈ X as context and a state
s ∈ S returns a probability distribution over the indexes of the trained trees of the
forest T = {1, 2, . . . , B}:

π(·) : X × S → p(A = a|S ,X)

Therefore, our action space A is the discrete index set T of all the possible B trees
in the Random Forest.

As mentioned above, our scenario can be viewed as a contextual multi-armed
bandit problem. Contextual bandit is a variant of the bandit problem, where at each
episode i the agent conditions its action ai on the context xi of the environment and
observes the reward r(ai) for the chosen action. Moreover, it is important to note that
the action affects only the immediate reward and for this reason our formulation is
one-state and one-step episodic, meaning that our episode is made by only one step
and ai does not condition the next state which will be always the same. Hence, for
this particular set up, the following holds:

T = 1, st = s, at = axi = ai,

R(st, at) = R(axi) = r(ai),

π(·) : X → p(A = a|X)

Note that in our case, since T = 1 and there is only one state, the reward depends
only on the action taken given the context x. Thus, there is no need to consider any
transition dynamics over the trajectory and the resulting MDP has only one state.

In our scenario the reward brings information about the predictive ability of the
trees of the forest. Both the ground truth values and the predictions of the trees,
which act like signals from the environment, contribute to the computation of the
reward. We define two different rewards for binary classification and regression
problems.

In the classification context we use the function:

r(ax) =

{
+1 hax(x) = y

−1 otherwise,
(5.4)

where y ∈ {−1, 1} is the ground truth value corresponding to the observed fea-
ture vector x and hax(x) ∈ {−1, 1} is the prediction provided by the tree selected

5.2 Proposed Method 81

...

h1

...

h2

.

.

.

...

hB

Random Forest

x

Policy

y

Figure 5.1: A high level view of our system: a Deep Neural Network (DNN) based
policy selects the tree of a trained Random Forest that will make the final predic-
tion. Each data point x is observed as context by the agent and the policy aims to
recommend the best tree of the Random Forest in terms of predictive performances.

through the action ax. Concerning regression problems, the reward function de-
pends on the squared prediction error d = (hax(x)− y)2 as follows:

r(ax) = 1 − 2d (5.5)

where, for each example, d is normalized in [0, 1] respect to the squared errors of
the best and worst tree in the forest. The use of a linear reward (w.r.t. the distance),
rather than a step wise one, allows to give greater importance to the well-aimed
actions of the agent. Indeed, using a step-wise reward like the one chosen for the
classification case, would cause the agent to over exploit the tree in the forestwith the
minimum squared error with respect to the target and this may lead to overfitting.

We employ a DNN of parameters θ to approximate the policy (Deep RL). In the
training phase, we used the classical RL trial-error approach to update the policy
parameters θ for every batch of examples (see Algorithm 4).

The main problem in multi-armed bandits is the need for balancing exploration
and exploitation. We want to avoid the agent to greedily select just those trees that
seem to appear best, as they may in fact be suboptimal due to imprecision in the
knowledge of the agent. Thus, during the training, we want the policy to explore
the action space by choosing also seemingly not good trees to obtain more informa-

82 Decision Trees for Local Explanations

tion about them. For this reason, we introduced a regularization term Hθ(axi |xi) =

−πθ(axi |xi)log(πθ(axi |xi)) in our loss that gives importance also at the entropy of
the distribution of the actions in the current batch. In this way, we are able to obtain
a good exploration/exploitation trade-off, preventing the agent to rapidly converge to
suboptimal tree recommendations.

Algorithm 4 Policy Update
1: Input: θk, {(xi, yi)}N

i=1 (batch)
2: for i = 1 to N do
3: Sample actions axi ∼ πθk(axi |xi)
4: Compute rewards r(axi)
5: end for
6: Obtain D = {

(
xi, r(axi)

)
}N

i=1
7: Define L(θ) = − 1

N ∑N
i=1(log πθ(axi |xi)r(axi) + λHθ(axi |xi))

8: Compute gradient ∇θL(θ)
9: Update parameters θk+1 = θk − αk∇θL(θ)
10: Return θk+1

Predictions on new data are finally obtained with the support of the trained RL
system which dynamically selects trees based on the input data. In particular, for a
given new instance xnew, the system detects a suitable tree predictor hi∗(·) selecting
the index i∗ as

i∗ = arg max
i∈T

πθ(axnew |xnew).

Final predictions are computed following the path of decision rules from hi∗(·).

5.3 Numerical Experiments
We applied our method both for binary classification and regression problems. We
used benchmark datasets from LIBSVM (https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/) and UCI (https://archive.ics.uci.edu/ml/datasets.
php) data repositories to assess our method. A description of datasets involved in
our experiments is reported in Table 5.1 and Table 5.2.

The aim of the experiments is to compare the predictive performances of CCT
and CRT with the ones of CART, Random Forest (the one on which our method is
built on) and a supervised baseline (to bring an empirical evidence on the need of
our RL approach). Both for CART andRandomForestwe set themaximumdepth of
trees at most equal to four. This choice is related to comprehensibility: it is important
that a human can rely on easily understandable explanations. This fact is dependent
on psychological and social implications (Molnar, 2020). Setting the maximum tree

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php

5.3 Numerical Experiments 83

depth equal to four ensures also that the Miller’s law (Miller, 1956) holds. Fur-
thermore, we grew up the Random Forest with fifty tree predictors: a forest with
hundreds of trees would compromise the exploration phase of the agent, slowing
down the convergence during the training of the policy.

The original whole dataset is split up in three parts (64 % training set, 16 % val-
idation set, 20 % test set) and the training phase consists of two steps. The first one
involves the training of both CART and Random Forest, while the second is about
the training of the neural network to approximate the policy.

We first used a grid search strategy, exploiting the validation set, to choose the
bestmaximumdepth for the baselineCARTmodel. As anticipated above, in order to
favour the interpretability, onlymaximumdepths of 2, 3 and 4 have been considered
as candidates. Subsequently, a Random Forest of 50 decision trees predictors, each
grown up to the validated maximum depth, is trained on the training set. The other
hyperparameters of both CART and Random Forest are set equal to their default
values from the scikit-learn package (Pedregosa et al., 2011).

As network structure, we employed a 3-layers architecture with ReLU activa-
tions and a 0.2 Dropout layer (Srivastava et al., 2014). An early stopping strategy
(Montavon et al., 2012) is used to stop the training according to the predictive per-
formances on the validation set. For both classification and regression problems we
have used ADAM optimizer (Kingma and Ba, 2014) with an initial learning rate of
10−3 and no weight decay in combination with a cosine scheduler (Loshchilov and
Hutter, 2017) to slightly reduce the learning rate after each epoch. Finally, we set
the regularization term λ, related to the entropy of the policy output distribution,
to 10−4 since we empirically observe to be a good tradeoff between exploration and
exploitation.

Regarding the supervised baseline, we used the same network structure with a
softmax activation in the last layer and the same hyperparameters. In classification
context, we created the dataset labeling each sample with the label of the tree with
the greatest probability among the set of the trees that lead to the correct prediction.
In case there is no tree of the forest that correctly predicts the example, the label is
randomly chosen according to a uniform distribution over the Random Forest trees.
Similarly, in the case of regression, the chosen label is the one related to the tree in
the forest that produces the smallest quadratic error with respect to the target. We
maintained the same dataset split configuration and, also for this model, an early
stopping strategy is used respect to the predictive performances on the validation
set.

84 Decision Trees for Local Explanations

N p
Phishing 11055 68
Biodeg 1055 41
Heart 270 25
Spam 4601 57
A2A 2265 119

Table 5.1: Overview of the datasets for binary classification

N p
California 20640 8
Friedman 5000 20
Yearpred 463715 90
Abalone 4177 8
CPU 8192 12

Table 5.2: Overview of the datasets for regression

Dataset CCT CART Supervised RF Tree Depth

Phishing 0.9394 ± 0.001 0.9209 0.589 ± 0.009 0.9294 4
Biodeg 0.8025 ± 0.016 0.7867 0.624 ± 0.012 0.8057 4
Heart 0.7963 ± 0.030 0.7778 0.605 ± 0.038 0.8333 3
Spam 0.9233 ± 0.003 0.8881 0.706 ± 0.013 0.9077 4
A2A 0.8293 ± 0.008 0.8190 0.718 ± 0.010 0.7748 3

Table 5.3: Accuracy and standarddeviation for classification tasks. We report in bold
the best results between CCT, CART (Decision Tree) and the Supervised approach
among five different seeds. For the sake of completeness we also report here the
results obtained by the Random Forest (RF).

5.4 Discussion
The obtained predictive results, reported in Tables 5.3, 5.4, indicate that our method
substantially outperforms CART and the supervised approach in both regression
and classification tasks.

The supervised strategy has proved particularly unsuccessful in the classification
and regression scenario due to the ill-defined mechanism of assignment of labels.
We believe that a full supervised approach restricts the exploration of action space
and adversely affects the ability to generalize on unseen data.

Conversely, the more accurate predictive results, obtained by our method, are
strongly linked to the capability of the agent to more thoroughly explore the action
space. In this respect, the role of the entropy regularization is fundamental to en-
courage exploration. Aweak regularizationwith respect to the entropy of the action

5.4 Discussion 85

Dataset Scale CRT CART Supervised RF Tree Depth

California 104 7.456 ± 0.032 7.828 7.420 ±0.015 7.602 4
Friedman 100 3.014 ± 0.013 3.040 3.122 ±0.008 2.718 4
Yearpred 101 0.995 ± < 0.001 1.010 1.007±<0.001 1.001 4
Abalone 100 2.379 ± 0.004 2.389 2.487 ± 0.045 2.307 4
CPU 100 4.205 ± 0.026 4.566 4.281 ± 0.023 4.173 4
Table 5.4: Root Mean Squared Error and standard deviation for regression tasks.
We report in bold the best results between CRT, CART (Regression Tree) and the
Supervised approach among five different seeds. For the sake of completeness we
also report here the results obtained by the Random Forest (RF).

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.974

0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

(a) (b) (c)

Figure 5.2: Reward (above) and Tree selection histograms (below) during training
in classification: (a) Spam; (b) Digits; (c) A2A.

distribution inevitably would lead to a very greedy tree selection and therefore our
methodwill tend to perform similar to the supervised baseline. Figure 5.2 highlights
the trade-off between exploration and exploitation varying the training epochs. It is
indeed possible to note that rewards do not rise considerably after 2000 epochs and,
moreover, after the first tens epochs, the RL agent learns to select the same two or
three trees of the Random Forest. This latter point evidences that the agent has got
sufficient information about the reward obtained from the estimators and therefore
the policy tends to converge choosing always a subset of trees that provides better
performance. This means that only few estimators of the Random Forest contribute
to the increase of the reward over the training epochs, basically excluding a large

86 Decision Trees for Local Explanations

part of the trees. As a matter of fact, some works (Bernard et al., 2009; Zhang and
Wang, 2009; Latinne et al., 2001; Tripoliti et al., 2010), although with different argu-
ments, agree on the existence of well performing sub-forests which constitute the
core of the whole ensemble.

We also underline that the obtained results are particularly significant since good
predictive accuracy is obtained without losing in terms of interpretability.

5.5 Concluding Remarks
In this Chapter, we described a feature-based method which is able to recommend
a single shallow tree in a Random Forest. Wemodelled this problem as a contextual
multi-armed bandit and solved by RL methods. Since decision trees operate on in-
put features to form their decision paths, our intuition is that an intelligent system
able to appropriately recommend a single estimator of a grown Random Forest, can
be advantageous in terms of predictive performance. A very important character-
istic of our method is that an interpretable model is returned. More specifically, in
order to compute a new prediction, differently from Random Forest, only one of its
decision trees is in turn employed.

Our method outperforms CART and a supervised baseline in both regression
and classification tasks and the obtained results are also comparable with the ones
of Random Forest.

Interestingly, we also observed that the trained system chooses the same two or
three decision trees after the first tens of epochs. This fact suggests that it is possible
to obtain sub-forests with a very small number of trees but with performance that
are competitive with the whole forest.

Chapter 6

Conclusions

In this thesis work, we have dealt with optimization problems related to the learning
of interpretable models. Specifically, emphasis was put on decision trees and risk
scores that are very common choices in many field where transparency is a major
requirement. In this context, we gave a brief review of linear models that are, still
now, the easiest choice in supervised learning. Then, we addressed the problem of
learning classification trees andwe proposed two differentmethods that are capable
to obtain competitive performancewith respect to the state-of-art optimization algo-
rithms. Subsequently, we introduced a study focused on refining the expressiveness
of risk score models. This improvement is achieved by expanding the scope of these
estimators within a more generalized framework. Additionally, within the context
of local explanations, we proposed a novel recommendation systemdesigned specif-
ically for random forests. This system dynamically associates each data point with
a single shallow tree within the ensemble, contributing to a more nuanced under-
standing of the decision-making process of the model. On the basis of the results
achieved, new possibilities of research may include:

• The extention of the loss-optimal classification tree framework to the multi-
class setting;

• The definition of different types of rules to improve the performance of gener-
alized risk score models.

87

Appendix A

Publications

Journal Papers
T. Aldinucci, M. Lapucci, "Loss-Optimal Classification Trees: AGeneralized Frame-
work and the Logistic Case" , TOP, An Official Journal of the Spanish Society of Statistics
and Operations Research (2024), To appear.

89

Bibliography

Aghaei, S., Gómez, A., and Vayanos, P. (2021). Strong optimal classification trees.
arXiv preprint arXiv:2103.15965.

Aitkenhead, M. J. (2008). A co-evolving decision tree classification method. Expert
Systems with Applications, 34(1):18–25.

Aldinucci, T. (2023). A novel memetic strategy for optimized learning of classifica-
tion trees. arXiv preprint arXiv:2305.07959.

Aldinucci, T., Civitelli, E., Di Gangi, L., and Sestini, A. (2022). Contextual decision
trees. arXiv preprint arXiv:2207.06355.

Aldinucci, T. and Lapucci, M. (2024). Loss-optimal classification trees: A general-
ized framework and the logistic case. TOP. To appear.

Antman, E. M., Cohen, M., Bernink, P. J., McCabe, C. H., Horacek, T., Papuchis, G.,
Mautner, B., Corbalan, R., Radley, D., and Braunwald, E. (2000). The timi risk
score for unstable angina/non–st elevation mi: a method for prognostication and
therapeutic decision making. Jama, 284(7):835–842.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). A
brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866.

Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al. (2012). Optimization with
sparsity-inducing penalties. Foundations and Trends® in Machine Learning, 4(1):1–
106.

Barros, R. C., Basgalupp, M. P., De Carvalho, A. C., and Freitas, A. A. (2011). A
survey of evolutionary algorithms for decision-tree induction. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(3):291–312.

Bennett, K. P. (1992). Decision tree construction via linear programming. Technical
report, University of Wisconsin-Madison Department of Computer Sciences.

Bennett, K. P. and Mangasarian, O. L. (1992). Robust linear programming discrimi-
nation of two linearly inseparable sets. Optimization methods and software, 1(1):23–
34.

91

92 BIBLIOGRAPHY

Bennett, K. P. and Mangasarian, O. L. (1994). Multicategory discrimination via lin-
ear programming. Optimization methods and Software, 3(1-3):27–39.

Bernard, S., Heutte, L., and Adam, S. (2009). On the selection of decision trees in
random forests. In 2009 International Joint Conference on Neural Networks, pages
302–307. IEEE.

Bertsimas, D. and Dunn, J. (2017). Optimal classification trees. Machine Learning,
106(7):1039–1082.

Bertsimas, D., Kung, J., Trichakis, N., Wang, Y., Hirose, R., and Vagefi, P. A.
(2019). Development and validation of an optimized prediction of mortality
for candidates awaiting liver transplantation. American Journal of Transplantation,
19(4):1109–1118.

Bixby, R. E. (2012). A brief history of linear and mixed-integer programming com-
putation. Documenta Mathematica, 2012:107–121.

Blanco-Justicia, A., Domingo-Ferrer, J., Martínez, S., and Sánchez, D. (2020). Ma-
chine learning explainability via microaggregation and shallow decision trees.
Knowledge-Based Systems, 194:105532.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and
regression trees. Chapman and Hall/CRC, Boca Raton London New York Wash-
ington, D.C.

Burgess, E.W. (1928). Factors determining success or failure on parole. The workings
of the indeterminate sentence law and the parole system in Illinois, pages 221–234.

Burkart, N. and Huber, M. F. (2021). A survey on the explainability of supervised
machine learning. Journal of Artificial Intelligence Research, 70:245–317.

Cantú-Paz, E. and Kamath, C. (2003). Inducing oblique decision trees with evolu-
tionary algorithms. IEEE Transactions on Evolutionary Computation, 7(1):54–68.

Carreira-Perpinán, M. A. and Tavallali, P. (2018). Alternating optimization of de-
cision trees, with application to learning sparse oblique trees. Advances in neural
information processing systems, 31.

Carrizosa, E., Molero-Río, C., and Romero Morales, D. (2021). Mathematical opti-
mization in classification and regression trees. TOP, 29(1):5–33.

BIBLIOGRAPHY 93

Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., and Elhadad, N. (2015). In-
telligible models for healthcare: Predicting pneumonia risk and hospital 30-day
readmission. In Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1721–1730.

Chan, K.-Y. and Loh, W.-Y. (2004). Lotus: An algorithm for building accurate and
comprehensible logistic regression trees. Journal of Computational and Graphical
Statistics, 13(4):826–852.

Črepinšek, M., Liu, S.-H., and Mernik, M. (2013). Exploration and exploitation in
evolutionary algorithms: A survey. ACM computing surveys (CSUR), 45(3):1–33.

Czajkowski, M. and Kretowski, M. (2012). Does memetic approach improve global
induction of regression and model trees? In Swarm and Evolutionary Computation:
International Symposia, SIDE 2012 and EC 2012, Held in Conjunction with ICAISC
2012, Zakopane, Poland, April 29-May 3, 2012. Proceedings, pages 174–181. Springer.

DeMántaras, R. L. (1991). A distance-based attribute selectionmeasure for decision
tree induction. Machine learning, 6(1):81–92.

Deisenroth, M. P., Neumann, G., Peters, J., et al. (2013). A survey on policy search
for robotics. Foundations and trends in Robotics, 2(1-2):388–403.

Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with per-
formance profiles. Mathematical Programming, 91:201–213.

D’Onofrio, F., Grani, G., Monaci, M., and Palagi, L. (2022). Margin optimal classifi-
cation trees. arXiv preprint arXiv:2210.10567.

Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony optimization. IEEE
computational intelligence magazine, 1(4):28–39.

Dua, D. and Graff, C. (2017). Uci machine learning repository.

Dunn, J. W. (2018). Optimal trees for prediction and prescription. PhD thesis, Mas-
sachusetts Institute of Technology.

Durand, A., Achilleos, C., Iacovides, D., Strati, K.,Mitsis, G.D., andPineau, J. (2018).
Contextual bandits for adapting treatment in a mouse model of de novo carcino-
genesis. In Doshi-Velez, F., Fackler, J., Jung, K., Kale, D., Ranganath, R., Wallace,
B., andWiens, J., editors, Proceedings of the 3rd Machine Learning for Healthcare Con-
ference, volume 85 of Proceedings of Machine Learning Research, pages 67–82. PMLR.

Eiben, A. E., Smith, J. E., et al. (2003). Introduction to evolutionary computing, vol-
ume 53. Springer, Heidelberg New York Dordrecht London.

94 BIBLIOGRAPHY

Figueiredo, M. A., Nowak, R. D., and Wright, S. J. (2007). Gradient projection for
sparse reconstruction: Application to compressed sensing and other inverse prob-
lems. IEEE Journal of Selected Topics in Signal Processing, 1(4):586–597.

Fonti, V. and Belitser, E. (2017). Feature selection using lasso. VUAmsterdam research
paper in business analytics, 30:1–25.

Freitas, A. A. (2003). A survey of evolutionary algorithms for data mining and
knowledge discovery. In Advances in evolutionary computing, pages 819–845.
Springer, Verlag Berlin Heidelberg 2003.

Friedman, J. H. et al. (1977). A recursive partitioning decision rule for nonparamet-
ric classification. IEEE Trans. Computers, 26(4):404–408.

Gage, B. F., Waterman, A. D., Shannon, W., Boechler, M., Rich, M. W., and Radford,
M. J. (2001). Validation of clinical classification schemes for predicting stroke:
results from the national registry of atrial fibrillation. Jama, 285(22):2864–2870.

Gampa, P. and Fujita, S. (2019). Banditrank: Learning to rank using contextual
bandits. arXiv preprint arXiv:1910.10410.

Goldberg, D. E. and Deb, K. (1991). A comparative analysis of selection schemes
used in genetic algorithms. In Foundations of genetic algorithms, volume 1, pages
69–93. Elsevier.

Günlük, O., Kalagnanam, J., Li, M., Menickelly, M., and Scheinberg, K. (2021). Op-
timal decision trees for categorical data via integer programming. Journal of global
optimization, 81(1):233–260.

Gurobi Optimization, LLC (2022). Gurobi Optimizer Reference Manual.

Hastie, T. and Tibshirani, R. (1995). Generalized additive models for medical re-
search. Statistical methods in medical research, 4(3):187–196.

Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, New
York, NY.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized additive models, volume 43.

Ho, T. K. (1998). The random subspace method for constructing decision forests.
IEEE transactions on pattern analysis and machine intelligence, 20(8):832–844.

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory anal-
ysis with applications to biology, control, and artificial intelligence. MIT press, One
Broadway 12th Floor Cambridge, MA 02142.

BIBLIOGRAPHY 95

Hu, X., Rudin, C., and Seltzer, M. (2019). Optimal sparse decision trees. Advances
in Neural Information Processing Systems, 32.

Intrator, J., Allan, E., and Palmer, M. (1992). Decision tree for the management
of substance-abusing psychiatric patients. Journal of substance abuse treatment,
9(3):215–220.

Jia, D., Zheng, G., and Khan, M. K. (2011). An effective memetic differential evolu-
tion algorithm based on chaotic local search. Information Sciences, 181(15):3175–
3187.

John, G. H. (1995). Robust linear discriminant trees. In Pre-proceedings of the Fifth
International Workshop on Artificial Intelligence and Statistics, pages 285–291. PMLR.

Jones, G. (1998). Genetic and evolutionary algorithms. Encyclopedia of Computational
Chemistry, 2:1127–1136.

Jovanovic, M., Radovanovic, S., Vukicevic, M., Van Poucke, S., and Delibasic, B.
(2016). Building interpretable predictive models for pediatric hospital readmis-
sion using tree-lasso logistic regression. Artificial Intelligence inMedicine, 72:12–21.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings
of ICNN’95-international conference on neural networks, volume 4, pages 1942–1948.
IEEE.

Kenny, E. M. and Keane, M. T. (2021). Explaining deep learning using examples:
Optimal featureweightingmethods for twin systems using post-hoc, explanation-
by-example in xai. Knowledge-Based Systems, 233:107530.

Kingma, D. P. and Ba, J. (2014). Adam: Amethod for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kotsiantis, S. B. (2013). Decision trees: a recent overview. Artificial Intelligence Re-
view, 39(4):261–283.

Kretowski, M. (2008). Amemetic algorithm for global induction of decision trees. In
SOFSEM 2008: Theory and Practice of Computer Science: 34th Conference on Current
Trends in Theory and Practice of Computer Science, Novỳ Smokovec, Slovakia, January
19-25, 2008. Proceedings 34, pages 531–540. Springer.

Latinne, P., Debeir, O., and Decaestecker, C. (2001). Limiting the number of trees in
random forests. In International workshop on multiple classifier systems, pages 178–
187. Springer.

Laurent, H. and Rivest, R. L. (1976). Constructing optimal binary decision trees is
np-complete. Information processing letters, 5(1):15–17.

96 BIBLIOGRAPHY

Li, L., Chu, W., Langford, J., and Schapire, R. (2010). A contextual-bandit approach
to personalized news article recommendation. Computing Research Repository -
CORR.

Lin, J., Zhong, C., Hu, D., Rudin, C., and Seltzer, M. (2020). Generalized and scal-
able optimal sparse decision trees. In International Conference on Machine Learning,
pages 6150–6160. PMLR.

Liu, E., Hu, T., Allen, T. T., and Hermes, C. (2023). Optimal classification trees
with leaf-branch and binary constraints applied to pipeline inspection. Available
at SSRN 4360508.

Loh, W.-Y. and Vanichsetakul, N. (1988). Tree-structured classification via gen-
eralized discriminant analysis. Journal of the American Statistical Association,
83(403):715–725.

Loshchilov, I. and Hutter, F. (2017). Sgdr: Stochastic gradient descent with warm
restarts. arXiv: Learning.

Mansueto, P. and Schoen, F. (2021). Memetic differential evolution methods for
clustering problems. Pattern Recognition, 114:107849.

McGinley, A. and Pearse, R. M. (2012). A national early warning score for acutely
ill patients. Bmj, 345.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on
our capacity for processing information. Psychological review, 63(2):81.

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sci-
ences. Artificial intelligence, 267:1–38.

Molnar, C. (2020). Interpretable machine learning. Lulu. com.

Montavon, G., Orr, G., andMüller, K.-R. (2012). Neural networks-tricks of the trade
second edition. Springer, DOI, 10:978–3.

Moscato, P. et al. (1989). On evolution, search, optimization, genetic algorithms and
martial arts: Towardsmemetic algorithms. Caltech concurrent computation program,
C3P Report, 826:1989.

Nelder, J. A. and Wedderburn, R. W. (1972). Generalized linear models. Journal of
the Royal Statistical Society Series A: Statistics in Society, 135(3):370–384.

Olanow, C. W., Watts, R. L., and Koller, W. C. (2001). An algorithm (decision tree)
for the management of parkinson’s disease (2001):: Treatment guidelines. Neu-
rology, 56(suppl 5):S1–S88.

BIBLIOGRAPHY 97

Pan, F., Cai, Q., Tang, P., Zhuang, F., and He, Q. (2019). Policy gradients for contex-
tual recommendations. In The World Wide Web Conference, page 1421–1431, New
York, NY, USA. Association for Computing Machinery.

Papagelis, A. andKalles, D. (2001). Breeding decision trees using evolutionary tech-
niques. In ICML, volume 1, pages 393–400.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del,M., Prettenhofer, P.,Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Courna-
peau, D., Brucher, M., Perrot, M., andDuchesnay, E. (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1):81–106.

Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). "Why should I trust you?" Ex-
plaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1135–1144.

Ross, A., Lage, I., and Doshi-Velez, F. (2017). The neural lasso: Local linear sparsity
for interpretable explanations. In Workshop on Transparent and Interpretable Ma-
chine Learning in Safety Critical Environments, 31st Conference on Neural Information
Processing Systems, volume 4.

Rudin, C. (2019). Stop explaining black boxmachine learningmodels for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, pages
206–215.

Sato, T., Takano, Y., Miyashiro, R., and Yoshise, A. (2016). Feature subset selection
for logistic regression via mixed integer optimization. Computational Optimization
and Applications, 64:865–880.

Shen, W., Wang, J., Jiang, Y.-G., and Zha, H. (2015). Portfolio choices with orthogo-
nal bandit learning. In Twenty-fourth international joint conference on artificial intel-
ligence.

Song, Y.-Y. andYing, L. (2015). Decision treemethods: applications for classification
and prediction. Shanghai archives of psychiatry, 27(2):130.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting. Jour-
nal of Machine Learning Research, 15(56):1929–1958.

98 BIBLIOGRAPHY

Storn, R. and Price, K. (1997). Differential evolution–a simple and efficient heuris-
tic for global optimization over continuous spaces. Journal of global optimization,
11(4):341–359.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT
Press.

Teasdale, G. and Jennett, B. (1974). Assessment of coma and impaired conscious-
ness: a practical scale. The Lancet, 304(7872):81–84.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288.

Tripoliti, E. E., Fotiadis, D. I., and Manis, G. (2010). Dynamic construction of ran-
dom forests: Evaluation using biomedical engineering problems. In Proceedings
of the 10th IEEE International Conference on Information Technology and Applications
in Biomedicine, pages 1–4. IEEE.

Ustun, B. and Rudin, C. (2016). Supersparse linear integer models for optimized
medical scoring systems. Machine Learning, 102:349–391.

Ustun, B. and Rudin, C. (2019). Learning optimized risk scores. J. Mach. Learn. Res.,
20(150):1–75.

Vincent, J. L., Moreno, R., Takala, J., Willatts, S., De Mendonça, A., Bruining, H.,
Reinhart, C., Suter, P., and Thijs, L. G. (1996). The sofa (sepsis-related organ
failure assessment) score to describe organ dysfunction/failure: On behalf of the
working group on sepsis-related problems of the european society of intensive
care medicine (see contributors to the project in the appendix).

Wells, P., Hirsh, J., Anderson, D., Lensing, A. A., Foster, G., Kearon, C., Weitz, J.,
D’Ovidio, R., Cogo, A., Prandoni, P., et al. (1995). Accuracy of clinical assessment
of deep-vein thrombosis. The Lancet, 345(8961):1326–1330.

Wells, P. S., Anderson, D. R., Bormanis, J., Guy, F., Mitchell, M., Gray, L., Clement,
C., Robinson, K. S., and Lewandowski, B. (1997). Value of assessment of
pretest probability of deep-vein thrombosis in clinical management. The Lancet,
350(9094):1795–1798.

Wells, P. S., Anderson, D. R., Rodger, M., Forgie, M., Kearon, C., Dreyer, J., Kovacs,
G., Mitchell, M., Lewandowski, B., and Kovacs, M. J. (2003). Evaluation of d-
dimer in the diagnosis of suspected deep-vein thrombosis. New England Journal of
Medicine, 349(13):1227–1235.

BIBLIOGRAPHY 99

Wells, P. S., Anderson, D. R., Rodger, M., Stiell, I., Dreyer, J. F., Barnes, D., Forgie, M.,
Kovacs, G., Ward, J., and Kovacs, M. J. (2001). Excluding pulmonary embolism at
the bedside without diagnostic imaging: management of patients with suspected
pulmonary embolism presenting to the emergency department by using a simple
clinical model and d-dimer. Annals of internal medicine, 135(2):98–107.

Wells, P. S., Owen, C., Doucette, S., Fergusson, D., and Tran, H. (2006). Does this
patient have deep vein thrombosis? Jama, 295(2):199–207.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 8(3):229–256.

Wolf, S. J., McCubbin, T. R., Feldhaus, K. M., Faragher, J. P., and Adcock, D. M.
(2004). Prospective validation of wells criteria in the evaluation of patients with
suspected pulmonary embolism. Annals of emergency medicine, 44(5):503–510.

Wu, X. and Che, A. (2019). A memetic differential evolution algorithm for energy-
efficient parallel machine scheduling. Omega, 82:155–165.

Zhang, H. and Wang, M. (2009). Search for the smallest random forest. Statistics
and its Interface, 2(3):381.

Zhang, M., Wang, G., Ren, L., Li, J., Deng, K., and Zhang, B. (2021). Metonr: A
meta explanation triplet oriented news recommendation model. Knowledge-Based
Systems, page 107922.

	Acknowledgments
	Contents
	Introduction
	Interpretable Models
	Linear Regression
	Logistic Regression
	Generalized Additive Models
	Decision Trees

	Optimization for Classification Trees
	CART
	Exact Formulations
	The Evolutionary Approach
	Concluding Remarks

	Optimization for Risk Scores
	Learning Optimal Risk Scores
	Generalized Risk Scores
	The Optimal Generalized Risk Score Model
	Numerical Experiments With Binary Features
	Numerical Experiments With Continuous Feature
	Concluding Remarks

	Decision Trees for Local Explanations
	Preliminaries
	Proposed Method
	Numerical Experiments
	Discussion
	Concluding Remarks

	Conclusions
	Publications
	Bibliography

