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Abstract
We consider the 3D simplified Bardina turbulence model with horizontal filtering, fractional
dissipation, and the presence of a memory term incorporating hereditary effects. We analyze
the regularity properties and the dissipative nature of the considered system and, in our main
result, we show the existence of a global exponential attractor in a suitable phase space.

Keywords Simplified Bardina turbulence model · Memory kernels · Anisotropic filters ·
Dissipation · Exponential attractor

Mathematics Subject Classification 35B40 · 35B65 · 35Q30 · 37L30 · 45K05 · 76D05 ·
76F65 · 76D03

1 Introduction

Incompressible fluids with constant density are described by the Navier–Stokes equations

∂tu + ∇ · (u ⊗ u) − ν�u + ∇ π = f , (1)

∇ · u = 0 , (2)
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supplemented with initial and boundary conditions, where u(t, x) = (u1, u2, u3)(t, x) is the
velocity field, π(t, x) denotes the pressure, f (t, x) = ( f1, f2, f3) (t, x) is the external force,
and ν > 0 represents the kinematic viscosity.

In the recent years, the so called “α-models” have been proposed to perform numerical
simulations of the 3-dimensional fluid Eqs. (1)–(2).

These models are based on a filtering obtained through the application of the inverse of
the Helmholtz operator

A = I − α2�, (3)

where α > 0 is interpreted as a spatial filtering scale.
In this paper, we are concerned with a regularized model for the 3D Navier–Stokes equa-

tions derived by the introduction of a suitable horizontal (anisotropic) differential filter and
we prove the existence of a global attractor for the corresponding time-shift dynamical system
in path-space. Let us consider

x = (x1, x2, x3) , xh = (x1, x2) ,

∂ j = ∂x j , �h = ∂21 + ∂22 , ∇h = (∂1, ∂2) ,

where “h” stays for “horizontal” and, instead of choosing the filter given by (3), we take into
account the following anisotropic horizontal filter given by (see [5])

Ah = I − α2�h with α > 0. (4)

As discussed in [2,23,27], from the point of view of the numerical simulations, this filter is
less memory consuming with respect to the standard isotropic one.

The idea behind anisotropic differential filters can be traced back to the approach used
by Germano [23]. Recently, the Large Eddy Simulation (LES) community has manifested
interest in models involving such a kind of filtering (e.g, [1,2,4,10,18,20,33]) and the con-
nection with the family of α-models has been highlighted and investigated by Berselli in [5]:
exploiting the smoothing provided by the horizontal filtering (4), the author proved global
existence and uniqueness of a proper class of weak solutions to the considered regularized
model (see the system of Eqs. (6)–(7) below). Again, motivated by [5], in [8,9] a consid-
erable mathematical support to the well-posedness of initial-boundary value problems, in
suitable anisotropic Sobolev spaces, to the 3D Boussinesq equations with horizontal filter
for turbulent flows is given.

In the sequel, we consider the domain

D = {x = (x1, x2, x3) ∈ R3: − π L < x1, x2, x3 < π L},
L > 0, with 2π L periodicity with respect to x = (x1, x2, x3), i.e. we are considering a
3D-torus (see Remark 1.1 for motivations on such a choice).

Moreover, in what follows we assume the presence, in (1), of the fractional-order dissi-
pative term ν�2βu, � = (−�)1/2, 3/4 ≤ β < 1 (see (68) and what follows concerning this
assumption), in place of −ν�u. Although this is a situation of reduced regularity, compared
to that of the standard laplacian, the presence of this fractional dissipation allows us to study
long-range diffusive behaviors.

Set w = uh = A−1
h u and q = πh = A−1

h π, so that u = Ahw. Then, applying the
horizontal filter “ · h” component by component to the various fields and tensor fields in
(1)–(2), and solving the interior closure problem by the approximation

u ⊗ uh ≈ uh ⊗ uh
h = w ⊗ w

h
, (5)
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we finally get the regularized model

∂tw + ν�2βw + ∇ · (w ⊗ w)
h + ∇q = f

h
, (6)

∇ · w = 0, (7)

and we impose a suitable initial condition w|t=0 = w0.
Inspired by [19] (see also [24]), we introduce in the left-hand side of (6) a memory term

of the form ∫ ∞

0
g(s)w(t − s)ds. (8)

The map g : [0,∞) → R, called memory kernel, is assumed to be convex, nonnegative,
smooth on R+ = (0,∞), vanishing at infinity and satisfying the further condition

∫ ∞

0
g(s)ds = 1.

The considered model reads as follows:

∂tw + ν�2βw +
∫ ∞

0
g(s)w(t − s)ds + ∇ · (w ⊗ w)

h + ∇q = f
h
, (9)

∇ · w = 0. (10)

The presence of this additional integral term in (9) allows the system to account for memory
effects in the fluid. As described in [19,21], the nature of this term owes its origins to the
constitutive relations characterizing some families of polymers and geological materials and,
in this case, distributed relaxation effects are described through a distributed delay.

System (9)–(10) is supplemented with the initial conditions

w(0) = w0 and w(−s)|s>0 = ϕ0(s), (11)

where w0 and ϕ0( · ) are assigned data. Here, w0 and ϕ0( · ) denote, respectively, the initial
velocity field and the past history of the velocity, which is defined for almost every s > 0.

Due to the nature of the used horizontal filter, a different scheme, with respect to the one
used in [19], is needed to carry out our analysis. In fact, despite the smoothing created by
the horizontal filter, the regularity gained by the system, and therefore by the weak solutions,
does not guarantee neither a direct use of the standard Sobolev inequalities nor the validity of
compact embeddings, which are standard tools to prove dissipation and the existence of an
absorbing set for the dynamical system associated with the considered system of PDEs. In
order to recover, at least partially, these properties and to be able to exploit their consequences,
our estimates make explicit use of a splitting of both vector fields and differential operators
into horizontal and vertical components (see, e.g., [5,13]).

Moreover, the presence of the memory term makes the situation even more intricate and
this fact prevents us to obtain directly energy inequalities. Thus, before applying the just
mentioned splitting technique, we rewrite the system in an equivalent but handier way [see
the model given by (28)–(30] below).

In this paper we prove existence, uniqueness and regularity for this model. Also, after
proving suitable energy decay for the considered problem, estimating the related decay rate,
in our main result (Theorem 7.2) we show the existence of a global exponential attractor for
the corresponding dynamical system.
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Remark 1.1 A natural domain for the horizontal filter Ah would be

Dh = {x = (x1, x2, x3) ∈ R3: − π L < x1, x2 < π L,−d < x3 < d},
L > 0, with 2π L periodicity with respect to xh := (x1, x2), and homogeneous Dirichlet
boundary conditions on

Γ = {x = (x1, x2, x3) ∈ R3: − π L < x1, x2 < π L, x3 = ±d}. (12)

Actually, another significant advantage in choosing Ah instead of the isotropic operator A
is that there is no need to introduce artificial boundary conditions for the Helmholtz operator.

However, such a choicemakes problematic to properly define the fractional-order operator
�2β so that it might enjoy all the properties satisfied when defined in a fully periodic setting.
A possible way to circumvent this problem is to consider in the space domain Dh, with the
aforementioned boundary conditions, the fractional anisotropic filter Aβ

h = I + α2β�h
2β ,

�h = (−�h)
1/2, with 0 < β < 1 (see, e.g., [5,6,12,14]) coupledwith the stronger dissipation

term −ν�w, i.e. a full Laplacian appears instead of ν�2βw in (6) (and also in (9)). The case
β = 1 is more standard and it will not be considered here. Proceeding as before, this yields
the equations

∂tw − ν�w +
∫ ∞

0
g(s)w(t − s)ds + ∇ · (w ⊗ w)

h + ∇q = f
h
, ∇ · w = 0, (13)

instead of (9), where now ( · )h = (Aβ
h )

−1
( · ).

It is possible to verify that the results that we obtain in this paper can be achieved also
for the above model, following the same approach. Actually, some parts of the proof can be
even simplified and become quite standard. In order to give a more precise idea about this
point, apply Aβ

h term by term to (13), to get

∂t Aβ
hw + ν�Aβ

hw +
∫ ∞

0
g(s)Aβ

hw(t − s)ds + (w · ∇)w + ∇π = f , (14)

∇ · w = 0. (15)

Assuming to have at disposal sufficient regularity to test and manipulate Eq. (14) against w
in L2(Dh), after an integration by parts we reach

1

2

d

dt

(‖w‖2L2 + α2β‖�β
hw‖2L2

) + ν
(‖�β

hw‖2L2 + α2β‖�β
h∇w‖2L2

)

+
∫ ∞

0
g(s)(w(t − s),w(t))L2ds

+ α2β
∫ ∞

0
g(s)(�β

hw(t − s),�β
hw(t))L2ds = ( f ,w)L2 ,

with ‖ · ‖L2 and ( · , · )L2 , respectively, the norm and the scalar product in L2(Dh). Essentially,
the presence of the term να2β‖�β

h∇w‖2
L2 in the left-hand side of the above relation, allows us

to recover existence, uniqueness, well-posedness and regularity results adapting, to this case,
the calculations in Sections 3–to–5 performed in the fully periodic setting. Thus, we judge
more interesting the mathematical tools utilized for the proofs when the weaker dissipation
term ν�2βw in (9), i.e. ν�2βu in (1), is assumed (and produces να2‖�β∇hw‖2

L2 , after

applying Ah to (9) and performing the L2-test); for this reason, in what follows, we will
consider the Eqs. (9)–(10) in the periodic context.
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The proposed scheme for our study is as follows.
–Part 1 In Sect. 2 we introduce the notation, some basic facts and preliminary results. In
particular, after properly rewriting system (9)–(10) [see Eqs. (28)–(30) below].
–Part 2 Existence of suitable class of weak solutions is established in Sect. 3. In Sect. 3.1,
we provide a priori estimates for the considered system in suitable lower order norms. Higher
order energy estimates,which are needed to prove the existence of an exponential attractor, are
provided in subsequent sections. Section 4 is devoted to the study of continuous dependence
and uniqueness of weak solutions.

–Part 3 Then, in Sects. 5 and 6 , we use the dissipative properties of the system to analyze
energy decay and dynamics. In so doing we prove the existence of a bounded absorbing set.
Finally, in Sect. 7 we show the existence of the global exponential attractor for the dynamical
system associated to Eqs. (9)–(10).

2 Preliminaries on the RegularizedModel, Basic Facts and Notation

We introduce the following function spaces:

L2(D) = {φ : D → R measurable, 2π L periodic in x,

∫
D
|φ|2 dx < +∞},

L2
0(D) = {φ ∈ L2(D) with zero mean with respect to x},

H = {φ ∈ (L2
0(D))3: ∇ · φ = 0 in D},

all with L2 norm denoted by ‖ · ‖, and scalar product (·, ·) in L2. Moreover, we set

V = {φ ∈ H: ∇φ ∈ (L2(D))9},
Vh = {φ ∈ H: ∇hφ ∈ (L2(D))6}.

The space Vh is endowed with the inner product

〈u, v〉Vh = (u, v) + α2(∇hu,∇hv),

where ‖u‖2Vh
= ‖u‖2 + α2‖∇hu‖2.

Further, for any 0 < β < 1, we define

Hβ = {φ ∈ H: �βφ ∈ L2(D)3},
H1+β
h = {φ ∈ Vh: �βφ ∈ Vh},

H1+2β
h = {φ ∈ H1+β

h : �2βφ ∈ Vh}
with norms, respectively,

‖φ‖2Hβ = ‖φ‖2 + ‖�βφ‖2,
‖φ‖2

H1+β
h

= ‖φ‖2Vh
+ ‖�βφ‖2Vh

,

‖φ‖2
H1+2β
h

= ‖φ‖2
H1+β
h

+ ‖�2βφ‖2Vh
.

In the sequel, in order to keep the notation compact, we omit the superscript indicating the
dimension of the considered spaces, reintroducing it only when it is strictly required by the
context.
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In the sequel (especially to get estimates in Hs , where s is not integer) we shall also use
some commutator-type estimates as the one in the following lemma concerning the operator
�s , s ∈ R

+ (see, e.g., [25,26,34], see also [7,36]), with � = (−�)1/2.

Lemma 2.1 For s > 0 and 1 < r ≤ ∞, and for smooth enough u and v, we get

‖�s(uv)‖Lr ≤ c(‖u‖Lp1 ‖�sv‖Lq1 + ‖v‖Lp2 ‖�su‖Lq2 ), (16)

where 1/r = 1/p1 + 1/q1 = 1/p2 + 1/q2 and c is a suitable positive constant.

We will make use of the following result about product-laws in Sobolev spaces (see
[17,32])

Lemma 2.2 Let s0, s1, s2 ∈ R. The product estimate

‖uv‖H−s0 ≤ c‖u‖Hs1 ‖v‖Hs2 (17)

holds, provided that

s0 + s1 + s2 ≥ n

2
, where n is the space dimension, (18)

s0 + s1 ≥ 0, (19)

s0 + s2 ≥ 0, (20)

s1 + s2 ≥ 0. (21)

If in (18) the equality sign holds, inequalities (19)–(21) must be strict. (22)

2.1 RegularizedModelWith Memory

To get the consideredmodel, we apply the operator Ah defined in (4), term by term to (9)–(10)
and, following the scheme proposed in [19], we finally reach

∂t Ahw + ν�2β Ahw +
∫ ∞

0
g(s)Ahw(t − s)ds + (w · ∇)w + ∇π = f , (23)

∇ · w = 0, (24)

where g has been introduced in (8). This is the simplified Bardina model with horizontal
filter, memory and fractional viscosity and we supply this problem with periodic boundary
conditions. Thus, system (23)–(24) can be thought on the 3D-torus T3 := R

3/2π LZ3.
Before starting our analysis, we give further notation and hypotheses to plug system (23)–

(24) in a suitable framework. We introduce the following L2-weighted Hilbert space on R+,
i.e.

M1
h = L2

μ(R+,Vh),

with inner product

〈η, ξ 〉M1
h

=
∫ ∞

0
μ(s)〈η(s), ξ(s)〉Vhds,

with ( · , · ) the L2-inner product and

‖η‖M1
h

=
(∫ ∞

0
μ(s)‖η(s)‖2Vh

ds

) 1
2 =

(∫ ∞

0
μ(s)

(‖η(s)‖2 + α2‖∇hη(s)‖2)ds

) 1
2

.

123



Journal of Dynamics and Differential Equations (2022) 34:505–534 511

Here, we assume μ nonnegative, absolutely continuous, decreasing (hence μ′ ≤ 0 a. e. on
R

+), and summable on R+ with total mass

κ =
∫ ∞

0
μ(s)ds > 0. (25)

Further conditions on the kernel μ will be provided at the end of this subsection.
The infinitesimal generator of the right-translation semigroup on M1

h is given by T η =
−∂sη, with domain

D(T ) = {
η ∈ M1

h : ∂sη ∈ M1
h, η(0) = 0

}
. (26)

Here, ∂sη is the distributional derivative of η(s)with respect to the internal variable s. Finally,
we define the extended memory spaceH1

h = Vh × M1
h endowed with the product norm

‖(w, η)‖2H1
h

= ‖w‖2 + α2‖∇hw‖2 + ‖η‖2M1
h
.

We also use more regular spaces: To this end we define

M1+β
h = L2

μ(R+;H1+β
h ),

with inner product analogous to that ofMh, and norm given by

‖η‖M1+β
h

=
(∫ ∞

0
μ(s)‖η(s)‖2

H1+β
h

ds

) 1
2

.

The corresponding higher order extendedmemory spaceH1+β
h = H1+β

h ×M1+β
h is endowed

with norm

‖(w, η)‖2H1+β
h

= ‖w‖2
H1+β
h

+ ‖η‖2M1+β
h

.

Again, in the sequel we will also consider M1+2β
h = L2

μ(R+;H1+2β
h ) and the extended

memory space H1+2β
h = H1+2β

h × M1+2β
h .

Following [19] (see also [24]), we introduce the past history variable

ηt (s) =
∫ s

0
w(t − σ)dσ =

∫ t

t−s
w(�)d�, s ≥ 0, t > s, (27)

which satisfies the following differential identity

∂tη
t (s) = −∂sη

t (s) + w(t).

Now, consider system (23)–(24) coupled with the previous equation. Using the operator
T = −∂s , an integration by parts in ds leads to an equivalent differential problem in the
variables w = w(t) and η = ηt (·), i.e.

123



512 Journal of Dynamics and Differential Equations (2022) 34:505–534

∂t Ahw + ν�2β Ahw +
∫ ∞

0
μ(s)Ahη(s)ds + (w · ∇)w + ∇π = f , (28)

∂tη = T η + w, (29)

∇ · w = 0, (30)

whereμ = −g′ and the system is considered on the 3D-torusT3. In what follows, we assume
g such that μ ∈ C1(R+) ∩ L1(R+), μ(s) ≥ 0 and μ′(s) ≤ 0 for every s ∈ R

+. We also
assume (see [19]) the condition

μ′(s) + δμ(s) ≤ 0 (31)

for some δ > 0 and almost every s > 0.
For the system (28)–(30), but also for the case corresponding to (23)–(24), the initial

conditions (11) can be rewritten as follows:

w(0) = w0 and η0 = η0,

and

η0(s) :=
∫ s

0
ϕ0(τ )dτ.

Wewill provide a precise definition of weak solution for system (23)–(24) at the beginning
of Sect. 3.

3 Existence

Let us introduce the definition of “regular weak solution”.

Definition 3.1 Given U0 = (w0, η0) ∈ H1
h, a function U = (w, η) ∈ C([0,∞),H1

h),

with w ∈ L∞(0, T ;Vh) ∩ L2(0, T ;H1+β
h ), w3 ∈ L∞(0, T ;V) ∩ L2(0, T ;H1+β), η ∈

L∞(0, T ;M1
h), and Ah∂tw ∈ L2(0, τ ;H−β) for every τ > 0, is a regular weak solution of

(28)–(30) with initial datum U (0) = (w(0), η0) = U0 if for every test function v ∈ H1+β
h

and almost every t > 0 we have that

(∂tw, v) + α2(∇h∂tw,∇hv) +ν(�βw,�βv) + να2(�β∇hw,�β∇hv)

+
∫ ∞

0
μ(s)〈η(s), v〉Vhds + (

(w · ∇)w, v
)=( f , v),

where η is such that

ηt (s) =

⎧⎪⎪⎨
⎪⎪⎩

∫ s

0
w(t − τ)dτ, 0 < s ≤ t,

η0(s − t) +
∫ t

0
w(t − τ)dτ, s > t .

(32)

Also, as we will see later (in relation (58) below) that this solution satisfies a suitable
energy-like equality instead of only an energy inequality as in the case of the standard
Navier–Stokes equations.

Here we proceed formally to derive an energy estimate (also in this case the calculations
can be made more rigorous by using a proper Galerkin scheme, see the following section)
starting from initial data (w0, η0) ∈ H1

h.
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Observe that, starting from initial data (w0, η0) ∈ H1
h, following the classical approach for

the Navier–Stokes equations, and using suitable controls on w, ∇hw and ∂tw (see relations
(46) and (52), below), one can prove the existence ofweak solutions analogous to Leray–Hopf
solutions (see, e.g., [22]).

Therefore, the existence of weak solutions is carried out by exploiting the energy estimates
provided in the next parts of this section, and then passing to the limit in the usual way. We
refer to [16,19] for more details on the Galerkin scheme in connection with equations with
memory.

In Sect. 5, in order to study the existence of an exponential attractor for the dynamical
system associated with (28)–(30), we will be interested in more regular solutions and show,
beyond the control at the end of this section, higher order estimates for ∂tw.

3.1 A Priori Estimates

In the sequel we proceed formally in order to find appropriate energy estimates. As already
mentioned, a rigorous proof can be easily obtained by introducing a suitable Galerkin approx-
imation scheme {(wk, ηk)} (see, e.g., [22]).

Testing (28) and (29) against w and η, respectively, we get

1

2

d

dt

(‖w‖2 + α2‖∇hw‖2) + ν
(‖�βw‖2 + α2‖�β∇hw‖2)

+
∫ ∞

0
μ(s)〈η,w〉Vhds = ( f ,w), (33)

∫ ∞

0
μ(s)〈∂tη, η〉Vhds = −

∫ ∞

0
μ(s)〈∂sη, η〉Vhds +

∫ ∞

0
μ(s)〈w, η〉Vhds, (34)

the above second equation can be rewritten as

1

2

d

dt
‖η‖2M1

h
−

∫ ∞

0
μ(s)〈η,w〉Vhds − 〈T η, η〉M1

h
= 0 (35)

and summing up (33) and (35) we get

1

2

d

dt

(‖w‖2 + α2‖∇hw‖2 + ‖η‖2M1
h

) + ν
(‖�βw‖2 + α2‖�β∇hw‖2)

−〈T η, η〉M1
h

= ( f ,w). (36)

To prove that 〈T η, η〉M1
h

≤ 0, we can use directly the argument in the proof of [24,
Theorem 3.1], and we report it here—adapted to our context—for the sake of completeness.
For any η ∈ D(T ) [see (26)], we have that

〈T η, η〉M1
h

= −1

2

∫ ∞

0
μ(s)

d

ds
‖η(s)‖2Vh

ds

= 1

2
lim
τ→0

(
−μ(1/τ)‖η(1/τ)‖2Vh

+ μ(τ)‖η(τ)‖2Vh
+

∫ 1/τ

τ

μ′(s)‖η(s)‖2Vh
ds

)
.

(37)
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Now, observing that

lim
τ→0

μ(τ)‖η(τ)‖2Vh
≤ lim sup

τ→0
μ(τ)

(∫ τ

0

d

d�
‖η(�)‖Vhd�

)2

≤ lim sup
τ→0

(∫ τ

0
μ(�)

1
2

d

d�
‖η(�)‖Vhd�

)2

≤ lim sup
τ→0

∫ τ

0
μ(�)‖η′(�)‖2Vh

d� = 0.

But the left-hand side of (37) is bounded, and the remaining two terms of the right-hand side
are negative. Then, we can conclude that both the integral and the limit exist and are finite.
In particular, this implies that the limit equals zero. As a direct consequence, we have that

〈T η, η〉M1
h

=
∫ ∞

0
μ′(s)‖η(s)‖2Vh

ds ≤ 0. (38)

Moreover, we also have that (see, e.g., [19] for isotropic flows)

δ

2
‖η‖2M1

h
≤ −〈T η, η〉M1

h
, (39)

with δ > 0 suitable constant.
Relation (36) along with (38)–(39) produces a first energy estimate for the system (28)–

(30) in M1
h. However, to get further a priori estimates, needed in order to prove existence,

some additional regularity is required in the considered model.

Remark 3.2 From (36), given an initial datum (w0, η0) ∈ H1
h, the corresponding energy at

time t ≥ 0, reads

E(t) = 1

2

(‖w‖2 + α2‖∇hw‖2 + ‖η‖2M1
h

)
. (40)

As a further step in order to prove the existence, we now consider relation (36), and using

( f ,w) ≤ ε‖�βw‖2 + c

ε
‖�−β f ‖2, (41)

along with (39), we get

1

2

d

dt

(‖w‖2 + α2‖∇hw‖2 + ‖η‖2M1
h

) + (ν − ε)(‖�βw‖2 + α2‖∇h�
βw‖2) + δ

2
‖η‖2M1

h

≤ c

ε
‖�−β f ‖2,

and, in particular, we infer

1

2

d

dt

(‖w‖2 + α2‖∇hw‖2 + ‖η‖2M1
h

) + ν̂

2
(‖�βw‖2 + α2‖∇h�

βw‖2 + ‖η‖2M1
h
)

≤ c

ε
‖�−β f ‖2. (42)

Remark 3.3 Using Hölder’s and Gagliardo–Nirenberg’s inequalities we have that:

‖w‖ ≤ c‖w‖Lp , p ≥ 2 and ‖w‖Lp ≤ C‖w‖1−σ ‖�βw‖σ (43)

with

0 <
3(p − 2)

2pβ
= σ ≤ 1.
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As a consequence of the above control, and assuming 3/4 ≤ β < 1 [see relation (68) below,
and its consequences; this provides a lower bound for β], we have that

0 <
3(p − 2)

2p
≤ 3

4
,

which implies, for 2 < p ≤ 4, that ‖w‖σ ≤ c‖�βw‖σ , and so

‖w‖ ≤ c‖�βw‖. (44)

Then, exploiting (42) along with (44), we reach

1

2

d

dt

(‖w‖2 + α2‖∇hw‖2 + ‖η‖2M1
h

) + ν̂

2

(‖w‖2 + α2‖∇hw‖2 + ‖η‖2M1
h

) ≤ c

ε
‖�−β f ‖2,

where ν̂ := cν̂. Then, setting Y (t) = (‖w‖2 + α2‖∇hw‖2 + ‖η‖2M1
h

)
(t), from the above

differential inequality we obtain

Y (t) ≤ Y0e−ν̂t + c‖�−β f ‖2(1 − e−ν̂t)
≤ Y0e−ν̂t + c‖�−β f ‖2,

(45)

that is, the following global estimate (here f ∈ L2(D)):(‖w‖2 + α2‖∇hw‖2 + ‖η‖2M1
h

)
(t)

≤ (‖w0‖2 + α2‖∇hw0‖2 + ‖η0‖2M1
h

)
e−ν̂t + c‖�−β f ‖2. (46)

In particular, we have w ∈ L∞(0,∞;Vh), w3 ∈ L∞(0,∞;H1) and η ∈ L∞(0,∞;M1
h).

We also obtain that �βw ∈ L2(0, T ;Vh), �βw3 ∈ L2(0, T ;H1), T > 0.

Remark 3.4 If we assume that f ∈ L2(0,+∞;H−β), adapting (42) accordingly, then we
can obtain that �βw ∈ L2(0,+∞;Vh), �βw3 ∈ L2(0,∞;H1). Also, from (46), it follows
that E ∈ L1(0,+∞), where E = E(t) was defined in (40).

Remark 3.5 We recall that U (t) = (w(t), η(t)) and assume ‖U (0)‖H1
h

≤ R. Integrating (42)
in time over [0, T ], for any T > 0, we deduce in particular

‖U (T )‖2H1
h

≤ ‖U (0)‖2H1
h
+ CT ≤ Q(

(R + T )2
)
, (47)

where

Q(t):=C1
(
t + C

√
t
)
, C1 > 0 large enough. (48)

Let us notice, in particular, that the functionQ(t) is positive and increasing. Then, integrating
(42), we get:

(‖w‖2 + α2‖∇hw‖2 + ‖η‖2M1
h

) +
∫ t

0

[
2(ν − ε)(‖�βw‖2 + α2‖∇h�

βw‖) + δ‖η‖2M1
h

]
ds

≤ Q(
(R + t)2

)
. (49)

Moreover, using (48), relation(46) can be rewritten as:(‖w‖2 + α2‖∇hw‖2 + ‖η‖2M1
h

)
(t) ≤ Q(‖U (0)‖2H1

h

)
e−ν̂t + ĉ‖�−β f ‖2, (50)

with ĉ = c/ε.

Remark 3.6 Hereafter, Q(t) will denote any positive increasing function, that can change
every time.
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3.2 Estimate for wt

Let us assume (w0, η0) ∈ H1
h = Vh ×M1

h and f = f (x). Then testing (28) against φ ∈ Hβ ,
we get

∣∣(wt + α2�hwt , φ
)∣∣ ≤ c

(
ν(‖�βw‖ + α2‖∇h�

βw‖) + ‖η‖M1
h

+‖ f ‖
)

‖φ‖Hβ + ∣∣((w · ∇)w, φ
)∣∣. (51)

In particular, it holds that [see (68) and (69) for further details]:∣∣((w · ∇)w, φ
)∣∣ ≤ ∣∣((wh · ∇h)w, φ

)∣∣ + ∣∣(w3∂3w, φ
)∣∣

≤ c
(‖(wh · ∇h)w‖H−β + ‖w3∂3w‖H−β

)‖φ‖Hβ

≤ c
(‖�βwh‖‖∇hw‖ + ‖w3‖H1‖�βw‖)‖φ‖Hβ

≤ c‖∇hw‖(‖�βwh‖ + ‖�βw‖)‖φ‖Hβ ,

(52)

and so ∫ T

0
‖wt + α2�hwt‖2H−β ds

≤ c
∫ T

0

(
ν(‖�βw‖ + α2‖∇h�

βw‖) + ‖η‖M1
h
+ ‖ f ‖

)2

ds

+ c
∫ T

0
‖�βw‖2ds.

Hence, it follows that ‖wt + α2�hwt‖2H−β ∈ L2
loc(0,+∞).

4 Energy Equality, Continuous Dependence and Uniqueness

We start by recalling the following result. Let wε, ηε denote the standard regularization
(convolution in time) of w, η, with 0 < t0 < t1 < T fixed, and 0 < ε < t0, ε < T − t1,
ε < t1 − t0 (see [5,22]). For each t ∈ [t0, t1], we have

wε(t) = ( jε ∗ w)(t) =
∫ t1

t0
jε(t − τ)w(τ ) dτ,

and

ηε(s) := ηt
ε(s) = ( jε ∗ η)t (s) =

∫ t1

t0
jε(t − τ)ητ (s) dτ,

where the smooth function jε is even, positive, supported in ] − ε, ε[, and such that∫ ε

−ε
jε(s) ds = 1. Under these assumptions, we have, for any w ∈ Lq(t0, t1; X), with

1 ≤ q < +∞ and X Hilbert space, the following properties (see [22]):

i) wε ∈ C∞([t0, t1]; X),
ii) lim

ε→0
‖wε − w‖Lq (t0,t1;X) = 0,

iii) lim
k→+∞‖(wk)ε − wε‖Lq (t0,t1;X) = 0 for each subsequence wk ∈ Lq(t0, t1; X) such that

wk → w in Lq(t0, t1; X),
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and the same identical properties, in proper spaces, hold true for ηε .Observe that the ε-
regularization commutes with the filter Ah and more generally with space derivatives.

4.1 Energy Equality

Starting from initial data in (w0, η0) ∈ H1
h, we prove that the energy equality holds true for

the model (28)–(30).
Consider a sequence {(wk, ηk)} of Galerkin approximating functions such that

wk → w in L∞(0, T ;Vh) ∩ L2(0, T ; V ∩ H1+β
h ),

ηk⇀η in L2(0, T ;M1
h),

ηk
∗
⇀η in L∞(0, T ;M1

h),

(53)

then test (28) against wk,ε in L2, and integrate on the interval [t0, t1] in dτ , to get:
∫ t1

t0

[
(w, ∂twk,ε)+α2(∇hw, ∂t∇hwk,ε)−ν(�βw,�βwk,ε) − να2(�β∇hw,�β∇hwk,ε)

+ (
(w · ∇)wk,ε, w

)]
(τ ) dτ −

∫ t1

t0

∫ ∞

0
μ(s)〈η(s),wk,ε(τ )〉Vh ds dτ

= −
∫ t1

t0
( f , wk,ε)(s) ds + (w(t1), Ahwk,ε(t1)) − (w(t0), Ahwk,ε(t0)) ,

(54)

with Ah = I − α2�h.
Testing (29) against ηk,ε inM1

h, and then integrating on the interval [t0, t1] in dτ , we get
(after using Fubini’s theorem and an integration by parts):

−
∫ t1

t0

∫ ∞

0
μ(s)〈η, ∂tηk,ε〉Vh ds dτ +

∫ ∞

0
μ(s)

[
〈ηt1 , η

t1
k,ε〉Vh − 〈ηt0 , η

t0
k,ε〉Vh

]
ds

+
∫ t1

t0

∫ ∞

0
μ(s)〈∂sη, ηk,ε〉Vh ds dτ −

∫ t1

t0

∫ ∞

0
μ(s)〈w(τ ), ηk,ε〉Vh ds dτ = 0,

that is
∫ t1

t0

∫ ∞

0
μ(s)〈η, ∂tηk,ε〉Vh ds dτ +

∫ t1

t0
〈T η, ηk,ε〉M1

h
dτ

+
∫ t1

t0

∫ ∞

0
μ(s)〈w(τ ), ηk,ε〉Vh ds dτ

=
∫ ∞

0
μ(s)

[
〈ηt1 , η

t1
k,ε〉Vh − 〈ηt0 , η

t0
k,ε〉Vh

]
ds.

(55)

Adding relations (54) and (55), we reach
∫ t1

t0

[
(w, ∂twk,ε) + α2(∇hw, ∂t∇hwk,ε)

− ν(�βw,�βwk,ε) − να2(�β∇hw,�β∇hwk,ε)

+ (
(w · ∇)wk,ε, w

)]
(τ ) dτ +

∫ t1

t0

∫ ∞

0
μ(s)〈∂tηk,ε, η〉Vh ds dτ
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+
∫ t1

t0
〈T ηk,ε, η〉M1

h
dτ

+
∫ t1

t0

∫ ∞

0
μ(s)

[
〈ηk,ε,w(τ )〉Vh − 〈η,wk,ε(τ )〉Vh

]
ds dτ

= −
∫ t1

t0
( f , wk,ε)(s) ds + 〈w(t1), wk,ε(t1)〉Vh − 〈w(t0), wk,ε(t0)〉Vh

+
∫ ∞

0
μ(s)

[
〈ηt1 , η

t1
k,ε〉Vh − 〈ηt0 , η

t0
k,ε〉Vh

]
ds.

Now, we use the same argument as in [9] (see also [22]): By taking k → +∞, and using the
converges types (53), we get

∫ t1

t0

[
(w, ∂twε) + α2(∇hw, ∂t∇hwε) − ν(�βw,�βwε) − να2(�β∇hw,�β∇hwε)

+ (
(w · ∇)wε, w

)]
(τ ) dτ +

∫ t1

t0

∫ ∞

0
μ(s)〈∂tηε, η〉Vh ds dτ +

∫ t1

t0
〈T ηε, η〉M1

h
dτ

+
∫ t1

t0

∫ ∞

0
μ(s)

[
〈ηε,w(τ )〉Vh − 〈∇hη(s),wε(τ )〉Vh

]
ds dτ

= −
∫ t1

t0
( f , wε)(s) ds + 〈w(t1), wε(t1)〉Vh − 〈w(t0), wε(t0)〉Vh

+
∫ ∞

0
μ(s)

[
〈ηt1 , ηt1

ε 〉Vh − 〈∇hη
t0 ,∇hη

t0
ε 〉Vh

]
ds.

(56)

To pass to the limit as ε → 0, we use the facts listed in the remark below

Remark 4.1 By using the regularity of w, we have

lim
ε→0

∫ t1

t0

(
(w · ∇)wε,w

)
dτ =

∫ t1

t0

(
(w · ∇)w,w

)
dτ = 0, (57)

where the equality to zero is obtained in a standard way by approximatingw through smooth
functions and using the fact that ∇ · w = 0.

Since jε is supported in ]−ε, ε[ and even, so that its derivative j ′ε := ( jε)′ is odd. Recalling
the definition of wε , we infer

∫ t1

t0

(
w(τ ), ∂twε(τ )

)
dτ =

∫ t1

t0

∫ t1

t0
j ′ε(τ − r)

(
w(τ ), w(r)

)
dτ dr

=
∫∫

E1

+
∫∫

E2

j ′ε(τ − r)
(
w(τ ), w(r)

)
dτ dr = 0 ,

where, in the first integral in the second line, the integrand is the same as in the second one
but omitted for brevity, and

E1 = {(r , τ ) ∈ [t0, t1] × [t0, t1]: r ≤ τ ≤ r + ε},
E2 = {(r , τ ) ∈ [t0, t1] × [t0, t1]: r − ε ≤ τ ≤ r , r ≤ t1}.

Indeed, note that E1 is symmetric to E2 with respect to τ = r , and j ′ε(τ − r) is odd with
respect to τ − r , hence

∫∫
E2

= − ∫∫
E1
.
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Similarly, after using Fubini’s theorem and the previous mentioned symmetries, we have
that

∫ t1

t0

∫ ∞

0
μ(s)〈∂tηε(s), η(s)〉Vh ds dτ

=
∫ t1

t0

∫ ∞

0
μ(s)〈∂tη

τ
ε (s), ητ (s)〉Vh ds dτ

=
∫ ∞

0
μ(s)

(∫ t1

t0

∫ t1

t0
j ′ε(τ − r)〈ηr (s), ητ (s)〉Vh dτ dr

)
ds

=
∫ ∞

0
μ(s)

(∫∫
E1

+
∫∫

E2

j ′ε(τ − r)〈η(s), η(s)〉Vh dτ dr

)
ds

= 0.

Also, we have that
(∇hw(t1), ∇hwε(t1)

) = 1
2‖∇hw(t1)‖2 + O(ε) as well as

(
w(t0), wε(t0)

)
= 1

2‖w(t0)‖2 + O(ε). Finally, it holds true that

∫ ∞

0
μ(s)

[
〈ηt1 , ηt1

ε 〉Vh − 〈ηt0 , ηt0
ε 〉Vh

]
ds = 1

2

(‖ηt1‖2M1
h
− ‖ηt0‖2M1

h

) + O(ε).

The remaining terms in (56) can be handled in a similar way.

Then, in light of Remark 4.1, passing to the limit as ε → 0 in (56), we find

1

2

(‖w(t1)‖2Vh
+‖ηt1‖2M1

h

)+ν

∫ t1

t0

[
‖�βw‖2+α2‖�β∇hw‖2

]
(τ ) dτ −

∫ t1

t0
〈T η, η〉M1

h
dτ

=
∫ t1

t0
( f , w)(τ ) dτ + 1

2

(‖w(t0)‖2Vh
+ ‖ηt0‖2M1

h

)
,

(58)

which is the appropriate version of the energy equality for the considered model.

4.2 Continuous Dependence and Uniqueness

To study the continuous dependence on initial data, let us consider two solutions (w1, η1)

and (w2, η2) to (28)–(29), and setw = w1−w2 and η = η1−η2. Then, we test the equations
for w against (Ahw)k,ε (note that Ahw and Ahη are not directly allowed as test functions).
Proceeding as in the previous subsection, we can pass to the limit k → +∞, to get

∫ t

0

{
(w, ∂twε) + α2(∇hw, ∂t∇hwε) − ν(�βw,�βwε) − να2(�β∇hw,�β∇hwε)

+ (
(w1 · ∇)wε,w1

)−(
(w2 · ∇)wε,w2

)}
(s)ds−

∫ t

0

∫ ∞

0
μ(s)〈η(s),wε(τ )〉Vh ds dτ

= (w(t),wε(t)) + α2(∇hw(t),∇hwε(t)
) − (

w(0),wε(0)
) − α2(∇hw(0),∇hwε(0)

)
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and so∫ t

0

{
(w, ∂twε) + α2(∇hw, ∂t∇hwε) − ν(�βw,�βwε) − να2(�β∇hw,�β∇hwε)

+ (
(w · ∇)wε,w

) + (
(w2 · ∇)wε,w

) + (
(w · ∇)wε,w2

)}
(s)ds

−
∫ t

0

∫ ∞

0
μ(s)〈η(s),wε(τ )〉Vh ds dτ

= (w(t),wε(t)) + α2(∇hw(t),∇hwε(t)
) − (

w(0),wε(0)
) − α2(∇hw(0),∇hwε(0)

)
.

(59)

To pass to the limit as ε → 0, we observe that, by proceeding as in (57) and following,
we have that

i)
∫ t

0

{
(w, ∂twε) + α2(∇hw, ∂t∇hwε)

}
(s)ds = 0,

ii) lim
ε→0

∫ t

0

{
ν(�βw,�βwε) + να2(�β∇hw,�β∇hwε)}(s)ds

= ν

∫ t

0

{
‖�βw‖2 + α2‖�β∇hw‖

}
(s)ds,

iii) lim
ε→0

∫ t

0

(
(w · ∇)wε,w

) + (
(w2 · ∇)wε,w

) + (
(w · ∇)wε,w2

)}
(s)ds

=
∫ t

0

(
(w · ∇)w,w2

)
(s)ds,

iv) lim
ε→0

∫ t

0

∫ ∞

0
μ(s)〈η(s),wε(τ )〉Vh ds dτ

=
∫ t

0

∫ ∞

0
μ(s)〈η(s),w(τ )〉Vh ds dτ,

and, in particular, we have that

(w(t),wε(t)) + α2(∇hw(t),∇hwε(t)) − (
w(0),wε(0)

) − α2(∇hw(0),∇hwε(0)
)

= 1

2

(
‖w(t)‖2 + α2‖∇hw(t)‖2 − ‖w(0)‖2 − α2‖∇hw(0)‖2

)
+ O(ε).

Hence, using (59) along with the above relations, we obtain

1

2

(‖w(t)‖2 + α2‖∇hw(t)‖2) + ν

∫ t

0

(
‖�βw‖2 + α2‖�β∇hw‖

)
(s)ds

+
∫ t

0

∫ ∞

0
μ(s)〈η(s),w(τ )〉Vh ds dτ

≤
∣∣∣∣
∫ t

0

(
(w · ∇)w,w2

)
(s)ds

∣∣∣∣ + 1

2

(
‖w(0)‖2 + α2‖∇hw(0)‖2

)
.

(60)

Now, using the fact that η satisfies the representation formula (32) (see [16,19]) it follows
that

1

2
‖ηt‖2M1

h
− 1

2
‖η0‖2M1

h
≤

∫ t

0
〈ητ ,w(τ )〉M1

h
dτ. (61)

Also, the nonlinear term in the right-hand side of (60) can be controlled as follows:
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∣∣((w · ∇)w,w2
)∣∣ ≤ C(‖wh · ∇hw‖H−β + ‖w3∂3w‖H−β )‖w2‖Hβ

≤ C(‖wh‖Hβ ‖∇hw‖ + ‖w3‖H1‖∂3w‖Hβ−1)‖w2‖Hβ

≤ C(‖�βw‖ ‖∇hw‖ + ‖∇hw‖ ‖�βw‖)‖w2‖Hβ

≤ C‖∇hw‖2‖w2‖2Hβ + ν

2
‖�βw‖2,

where we have used duality, Lemma 2.2 with 3/4 ≤ β < 1, ∂3w3 = −∇hwh (so that
‖w3‖H1 ≤ C‖∇hw‖), and the Young inequality. Hence

∫ t

0

∣∣((w · ∇)w,w2
)
(s)

∣∣ds ≤ ν

2

∫ t

0

(
‖�βw(s)‖2 + α2‖�β∇hw(s)‖2

)
ds

+ C
∫ t

0
‖w2‖2Hβ ‖∇hw‖2ds.

(62)

Then, using (60) together with (61) and (62), we reach

1

2

(‖w(t)‖2 + α2‖∇hw(t)‖2 + ‖ηt‖2M1
h

) + ν

2

∫ t

0

(
‖�βw‖2 + α2‖�β∇hw‖

)
(s)ds

≤ C
∫ t

0
‖w2‖2Hβ

(‖w‖2 + α2‖∇hw‖2 + ‖ηs‖2M1
h

)
ds

+ 1

2

(‖w(0)‖2 + α2‖∇hw(0)‖2 + 1

2
‖η0‖2M1

h

)
,

and the conclusion follows by an application of Gronwall’s lemma.

Remark 4.2 Thanks to an argument very close to the one just used for the continuous depen-
dence, we can also conclude about uniqueness (see [9] for details).

Consideringmore regular initial data, for instance (w0, η0) ∈ H1+β
h or (w0, η0) ∈ H1+2β

h ,
we can reproduce the previous scheme–with improved properties for the considered solutions
– still proving continuous dependence on initial data. When we take into account the case
of (w0, η0) ∈ H1+β

0 , we consider again two solutions (w1, η1) and (w2, η2) to (28)–(29),
with w = w1 − w2 and η = η1 − η2, and we test the equation for w against (Ah�

2βw)k,ε.
The argument follows by performing the same calculations previously presented in this
subsection, where the only significant difference is the estimate for the nonlinear term

(
(w ·

∇)w,�2βw
)
. The way to handle this term (and even higher order versions) is shown in

Sect. 5; see (68), (86) and the subsequent computations for the details.

5 Dissipation and Absorbing Sets

We now proceed as in [11] (see also [15,30,31])

Lemma 5.1 There exists a bounded absorbing set B0 ⊆ H1
h of radius R0 = √

2ĉ‖�−β f ‖.
In particular,

B0 = {
U = (w, η) ∈ H1

h :
∫ 1

0
‖U (s)‖2H1

h
ds ≤ 2ĉ‖�−β f ‖2}, (63)

where ĉ > 0 is a suitable constant.
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Proof Let B0 be another bounded set inH1
h. There exists L0 such that

∫ t
0 ‖U (s)‖2H1

h
ds ≤ L0,

for all U ∈ B0. Take U ∈ B0, t0 ∈ [0, 1], t > 0, then thanks to (50) we have that

‖S(t)U (t0)‖2H1
h

= ‖U (t + t0)‖2H1
h

≤ Q(‖U (t0)‖2H1
h

)
e−ν̂t + c‖�−β f ‖2, (64)

Now integrating in t0 over (0, 1), we obtain that (up to take a larger constant than L0, we
also have that

∫ t
0 Q(‖U (s)‖2H1

h
)ds ≤ L0, for all U ∈ B0) the following relation holds true:

∫ 1

0
‖S(t)U (t0)‖2H1

h
dt0 ≤ L0e−ν̂t + ĉ‖�−β f ‖2.

We can take t0 such that

L0e−ν̂t0 ≤ ĉ‖�−β f ‖2, and so t0 ≥ ν̂−1 ln

(
L0

ĉ‖�−β f ‖2
)

.

As a consequence S(t)(U ) ∈ B0, for any t ≥ t0. ��

5.1 Dissipation inH1+ˇ
h

Here we prove the existence of an absorbing ball inH1+β
h = H1+β

h × M1+β
h for the system

(28)–(30). Assume (w0, η0) ∈ H1+β
h .

Theorem 5.2 Let β ≥ 3/4, and let f ∈ L2(0,+∞;L2). Then, for any initial datum U0 =
(w0, η

0) ∈ H1+β
h , the corresponding energy

E1+β(t) = 1

2
‖S(t)U0‖2H1+β

h
, (65)

satisfies the estimate

E1+β(t) ≤ CQ(R2)e−2ν̄t + C, ∀t ≥ 0, (66)

where ν̄ is a constant depending only on the parameters involved in the system and on the
domain, and C = C(‖ f ‖L2(L2), ‖U0‖H1+β

h
).

To prove this result we first introduce some preliminary calculations and lemmas.
Testing (28) against �2βw in L2 and (29) against �2βη inM1

h, and proceeding as before,
we reach

1

2

d

dt

(‖�βw‖2 + α2‖∇h�
βw‖2 + ‖�βη‖2M1

h

) + (ν − ε)
(‖�2βw‖2 + α2‖∇h�

2βw‖2)

− 〈T �βη,�βη〉M1
h

≤ cε‖ f ‖2 + ∣∣((w · ∇)w,�2βw
)∣∣.

(67)

Now, observe that, up to lower order terms,
∣∣((w · ∇)w,�2βw

)∣∣ ≤ (‖(wh · ∇h)w‖ + ‖w3∂3w‖)‖�2βw‖
≤ cε

(‖(wh · ∇h)w‖2 + ‖w3∂3w‖2) + ε‖�2βw‖2
≤ c‖wh‖2L4‖∇hw‖2L4 + c‖w3‖2H1+β ‖∂3w‖2Hβ−1 + ε‖�2βw‖2
≤ c‖�βwh‖2‖∇h�

βw‖2 + c‖w3‖2H1+β ‖∂3w‖2Hβ−1 + ε‖�2βw‖2
(68)
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where we used Lemma 2.2 with s0 = 0, s1 = 1+β, and s2 = β −1 and so, as a consequence
of (18), we have that 0 + 1 + β + β − 1 ≥ 3/2 if and only if β ≥ 3/4.

In particular, we have that

‖w3‖2H1+β ‖∂3w‖2Hβ−1 ≤ c‖�βw3‖2H1‖∂3w‖2Hβ−1

≤ c‖�βw3‖2H1‖∇w‖2Hβ−1

≤ c‖�β∇w3‖2‖�βw‖2
≤ c‖∇h�

βw‖2‖�βw‖2.

(69)

Therefore, using (67) along with(68) and (69), we find

1

2

d

dt

(‖�βw‖2 + α2‖∇h�
βw‖2 + ‖�βη‖2M1

h

)

+ (ν − 2ε)
(‖�2βw‖2 + α2‖∇h�

2βw‖2) + δ

2
‖�βη‖2M1

h

≤ cε‖ f ‖2 + cε‖�βw‖2‖∇h�
βw‖2,

(70)

and using Gronwall’s inequality we obtain
(‖�βw‖2 + α2‖∇h�

βw‖2 + ‖�βη‖2M1
h

)
(t)

+ ν̂

∫ t

0

(
‖�2βw‖2 + α2‖∇h�

2βw‖2 + ‖�βη‖2M1
h

)
(s)ds

≤ (‖�βw0‖2 + α2‖∇h�
βw0‖2 + ‖�βη0‖2M1

h
+ c‖ f ‖2)e

∫ t
0 b(s)ds,

(71)

with b = (‖w‖2 + ‖�βw‖2) ∈ L2(0, T ), for any T > 0. Hence w ∈ L2(0, T ;H1+2β
h ) ∩

L∞(0, T ;H1+β
h ), w3 ∈ L2(0, T ;H1+2β) ∩ L∞(0, T ;H1+β) and η ∈ L∞(0, T ;M1+β

h ), for
any T > 0.

Moreover, if we assume f ∈ L2(0,+∞;L2), then adapting (71) accordingly, we also
gain that �2βw ∈ L2(0,+∞;Vh), �2βw3 ∈ L2(0,+∞;H1): As a matter of fact, it holds
true that

(‖�βw‖2 + α2‖∇h�
βw‖2 + ‖�βη‖2M1

h

)
(t)

+ ν̂

∫ t

0

(
‖�2βw‖2 + α2‖∇h�

2βw‖2 + ‖�βη‖2M1
h

)
(s)ds

≤ (‖�βw0‖2 + α2‖∇h�
βw0‖2 + ‖�βη0‖2M1

h
+ c

∫ ∞

0
‖ f ‖2dt

)
e
∫ t
0 b(s)ds ≤ C .

(72)

Lemma 5.3 Assume f ∈ L2(0,+∞,L2). There exists R1 > 0 such that, for any given
R ≥ 0, there is a nonnegative function ψ vanishing at infinity such that

‖S(t)U0‖H1+β
h

≤ ψ(t) + R1, ∀ U0 = (w0, η0) ∈ BH1+β
h

(R). (73)

Here ψ(t) = CQ(R2)e−2ν̄t , with ν̄ = ν̄(ν, δ) and C = C(‖ f ‖L2(L2), ‖U0‖H1+β
h

).

Proof Given R ≥ 0, let us consider the ball BH1+β
h

(R). We easily infer from the continuous

embeddingH1+β
h ⊂ H1

h that BH1+β
h

(R) ⊂ BH1
h
(Q(R)). Therefore, on account of (50),
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there exists te = te(R) such that{ ‖S(t)BH1+β
h

(R)‖ ≤ Q(R), ∀t ≤ te,

‖S(t)BH1+β
h

(R)‖ ≤ R0, ∀t ≥ te.
(74)

Taking an arbitrary U0 ∈ BH1+β
h

(R), we consider the higher-order energy functional intro-

duced in (65), i.e.

E1+β(t) = 1

2
‖S(t)U0‖2H1+β

h
.

Now, using (71) along with (74), for t ≤ te, we get(‖�βw‖2 + α2‖∇h�
βw‖2 + ‖�βη‖2M1

h

)
(t)

≤ (‖�βw0‖2 + α2‖∇h�
βw0‖2 + ‖�βη0‖2M1

h
+ c‖ f ‖2)e

∫ t
0 b(s)ds,

≤ Q(R2)e
∫ t
0 b(s)ds

(75)

and combining with (49), we obtain the following relation, for any t ≤ te, i.e.

E1+β(t) ≤ CQ(R2) eQ((R+te)2) =: CQ(R2), ∀t ≤ te. (76)

Let us consider the case of t ≥ te. By using (70) along with (43), we find

1

2

d

dt

(‖�βw‖2 + α2‖∇h�
βw‖2 + ‖�βη‖2M1

h

)

+ ν̄
(‖�βw‖2 + α2‖∇h�

βw‖2 + ‖�βη‖2M1
h

)

≤ cε‖ f ‖2 + cε

(‖w‖2 + ‖�βw‖2)‖∇h�
βw‖2

(77)

with ν̄ = min{(ν − 3ε), δ/2}. Then, assuming f ∈ L2(0,+∞,L2), and exploiting relation
(72) we have that:

d

dt

(‖�βw‖2 + α2‖∇h�
βw‖2 + ‖�βη‖2M1

h

)

+ 2ν̄
(‖�βw‖2 + α2‖∇h�

βw‖2 + ‖�βη‖2M1
h

)

≤ cε‖ f ‖2 + C

(78)

and so

‖�βw‖2 + α2‖∇h�
βw‖2 + ‖�βη‖2M1

h
≤ CQ(R2)e−2ν̄(t−te) +

∫ ∞

0
‖ f ‖2 + C

≤ CQ(R2)e−2ν̄(t−te) + C, ∀t ≥ te,

(79)

where Q(R2) is as in (76). Hence

E1+β(t) ≤ CQ(R2)e−2ν̄(t−te) + C, ∀t ≥ te, (80)

and using together (76) and (80), we finally get

E1+β(t) ≤ CQ(R2)e−2ν̄t + C, ∀t ≥ 0. (81)

This proves Lemma 5.3, after setting ψ(t) = CQ(R2)e−2ν̄t and R1 = C =
C(‖ f ‖L2(L2), ‖U0‖H1+β

h
). ��
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The Proof of Theorem 5.2 follows by Lemma 5.3.
In the next section, we will use the following results concerning the existence of a higher

order absorbing ball and a higher order uniform control. Using the same argument as in
Lemma 5.1, we can prove that

Lemma 5.4 There exists a bounded absorbing set B̄0 ⊆ H1+β
h of radius R̄0 = √

2c̄‖ f ‖. In
particular,

B̄0 = {
U = (w, η) ∈ H1+β

h :
∫ 1

0
‖U (s)‖2H1+β

h
ds ≤ 2c̄‖ f ‖2}, (82)

where c̄ > 0 is a suitable constant.

Let us now consider higher order estimates for the system (28)–(30), taking initial data in
H1+2β

h .

Lemma 5.5 Assume f ∈ L2(0,+∞;Hβ). For every initial datum U0 = (w0, η0) ∈ B0 ⊂
H1+2β

h , we have the estimate

‖S(t)U0‖H1+2β
h

≤ C, and
∫ +∞

0
‖S(t)U0‖2H1+3β

h
dt ≤ C . (83)

Proof Testing (28) against �4βw, and (29) against �4βη, we find

1

2

d

dt

(‖�2βw‖2 + ‖∇h�
2βw‖2) + ν

(‖�3βw‖2 + α2‖∇h�
3βw‖2)

+
∫ ∞

0
μ(s)〈�2βη,�2βw〉Vhds

≤ ‖�β f ‖‖�3βw‖ + |(�β((w · ∇)w),�3βw
)|,

(84)

and

1

2

d

dt
‖�2βη‖2M1

h
−

∫ ∞

0
μ(s)〈�2βη,�2βw〉Vhds − 〈T �2βη,�2βη〉M1

h
= 0. (85)

Hence, summing them up we infer

d

dt

(‖�2βw‖2 + α2‖∇h�
2βw‖2 + ‖�2βη‖2M1

h

)

+ ν
(‖�3βw‖2 + α2‖∇h�

3βw‖2) − 〈T �2βη,�2βη〉M1
h

≤ cε‖�β f ‖2 + ε‖�3βw‖2 + |(�β((w · ∇)w),�3βw
)|,

and so

d

dt

(‖�2βw‖2 + α2‖∇h�
2βw‖2 + ‖�2βη‖2M1

h

)

+ ν
(‖�3βw‖2 + α2‖∇h�

3βw‖2) + δ‖�2βη‖2M1
h

≤ cε‖�β f ‖2 + ε‖�3βw‖2 + ∣∣(�β((w · ∇)w),�3βw
)∣∣.

(86)

Now, we have that∣∣(�β((w · ∇)w),�3βw
)∣∣ ≤ ‖�β((w · ∇)w)‖‖�3βw‖

≤ cε‖�β((w · ∇)w)‖2 + ε‖�3βw‖2,
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and

‖�β((w · ∇)w)‖2
≤ c‖�β

(
wh · ∇h)w

)‖2 + c‖�β
(
w3∂3w

)‖2
≤ c

(‖�βwh‖2L4‖∇hw‖2L4 + ‖wh‖2L∞‖∇h�
βw‖2) + c‖w3‖2H1+2β ‖∂3w‖2H−1+β

≤ c
(‖�2βwh‖2‖∇h�

βw‖2 + ‖�2βwh‖2‖∇h�
βw‖2) + c‖�2β∇w3‖2‖�βw‖2,

≤ c‖�2βw‖2‖∇h�
βw‖2 + c‖�2βw‖2‖∇h�

βw‖2 + c‖�2β∇hw‖2‖�βw‖2,

(87)

where we used the embeddings W2β,2 ↪→ L∞, Wβ,2 ↪→ L4, Lemma 2.1 with p1 = q1 = 4,
and p2 = ∞, q2 = 2, and Lemma 2.2 with s0 = −β, s1 = 1 + 2β, and s2 = −1 + β (and
β ≥ 3/4).

Therefore, using the above estimates along with (86) and (87), we infer

d

dt

(‖�2βw‖2 + α2‖∇h�
2βw‖2 + ‖�2βη‖2M1

h

) + (ν − 2ε)
(‖�3βw‖2 + α2‖∇h�

3βw‖2)

+ δ‖�2βη‖2M1
h

≤ cε‖�β f ‖2 + C(‖�βw‖2 + ‖∇h�
βw‖2)(‖�2βw‖2 + ‖∇h�

2βw‖2).
(88)

Integrating in time, we reach and using Gronwall’s inequality we obtain
(‖�2βw‖2 + α2‖∇h�

2βw‖2 + ‖�2βη‖2M1
h

)
(t)

+ ν̂

∫ t

0

(
‖�3βw‖2 + α2‖∇h�

3βw‖2 + ‖�2βη‖2M1
h

)
ds

≤ (‖�2βw0‖2 + α2‖∇h�
2βw0‖2 + ‖�2βη0‖2M1

h
+ c

∫ +∞

0
‖�β f ‖2ds

)
e
∫ t
0 b̄(s)ds,

with b̄ = (‖�βw‖2 + ‖�β∇hw‖2) ∈ L2(0,+∞), as a consequence of Remark 3.4. Thanks
to this last estimate the proof is concluded. ��

5.2 Further Estimates for wt

Let us assume (w0, η0) ∈ H1+β
h = Vh×M1

h and f = f (x). Then testing (28) againstwt , in
L2, using Hölder’s and Young’s inequalities and properly reabsorbing the so obtained terms
on the left-hand side, we get

(1 − ε)(‖wt‖2 + α2‖∇hwt‖2) ≤ cε

(
ν(‖w‖2 + α2‖∇h�

βw‖2) + ‖η‖2M1
h
+ ‖ f ‖2)

+cε‖(w · ∇)w‖2, (89)

and it holds that

‖w · ∇w‖2 ≤ c‖wh · ∇hw‖2 + c‖w3∂3w‖2
≤ c‖wh‖2L4‖∇hw‖2L4 + c‖w3‖2H1+β ‖∂3w‖2H−1+β

≤ c‖�βwh‖2‖�β∇hw‖2 + c‖�β∇w3‖2‖�βw‖2
)

≤ C
(‖�βwh‖2‖�β∇hw‖2 + ‖�β∇hwh‖2‖�βw‖2)

≤ C‖�βw‖2‖�β∇hw‖2,
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where, up to lower order terms, we used Lemma 2.2with s0 = 0, s1 = 1+β, and s2 = −1+β

(and β ≥ 3/4). In particular, from (71), we have that ‖�βw‖, ‖�β∇hw‖ ∈ L∞
loc(0,+∞).

As a direct consequence of the above estimates, we obtain
∫ t

0
(‖wt‖2 + α2‖∇hwt‖2)ds ≤ C(1 + t), (90)

and so it holds that ‖wt‖, α‖∇hwt‖ ∈ L2
loc(0,+∞).

In the same spirit as before, if we assume (w0, η0) ∈ H1+2β
h and f ∈ Hβ , then we can

prove that ‖�βwt‖, α‖∇h�
βwt‖ ∈ L2

loc(0,+∞). Indeed, testing (28) against �2βwt , in
L2, using Hölder’s and Young’s inequalities and properly reabsorbing the so obtained terms
on the left-hand side, we get

(1 − ε)(‖�βwt‖2 + α2‖∇h�
βwt‖2)

≤ cε

(
ν(‖�2βw‖2 + α2‖∇h�

2βw‖2) + ‖�βη‖2M1
h
+ ‖�β f ‖2)

+ cε‖�β((w · ∇)w)‖2.
(91)

It is enough to control the nonlinear term. Hence, with the same identical calculations as
done in Lemma 5.5, we have

cε‖�β((w · ∇)w)‖2 ≤ c‖�2βwh‖2‖∇h�
βw‖2 + c‖∇h�

βwh‖2‖�2βw‖2
+ c‖�2β∇hwh‖2‖�βw‖2. (92)

Using (91) together with the above control, we obtain the claimed regularity for wt .

6 Exponentially Attracting Sets

It is known that dynamical systems generated by equation with memory do not regularize in
finite time, due to the nature of the memory term (see, e.g., [19]). This behavior still remain
the same even in the case under consideration. In particular, this prevents the existence of
absorbing sets having higher regularity than the initial data.

Definition 6.1 A bounded set B� is said to be exponentially attracting for S(t) in H1+β
h if

there exists ω > 0 such that

distH1+β
h

(S(t)B,B�) ≤ Q(‖B‖H1+β
h

)e−ωt for every bounded subset B ⊂ H1+β
h ,

where Q is a generic positive increasing function, and

distH1+β
h

(B1, B2) = sup
b1∈B1

inf
b2∈B2

‖b1 − b2‖H1+β
h

is the Hausdorff semidistance in H1+β
h between two (nonempty) sets B1 and B2.

Proposition 6.2 There exists R� > 0 such that the ball

B� := BH1+β
h

(R�) (93)

is exponentially attracting for S(t).
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It is enough to prove that the ball B� exponentially attracts the absorbing set B̄0 ⊂ H1+β
h

determined in (46), Sect. 5. To this end, for every initial data U0 = (w0, η0) ∈ B̄0, in the
same spirit of Temam [35] we decompose the solution S(t)U0 into the sum

S(t)U0 = L(t)U0 + K (t)U0,

where L(t)U0 = (
v(t), ξ(t)

)
and K (t)U0 = (

u(t), ζ(t)
)
solve, respectively, the problems

∂t (I − α2�h)v − ν�2β(I − α2�h)v −
∫ ∞

0
μ(s)Ahξ(s)ds = 0,

∂tξ = T ξ + v,

(v(0), ξ(0)) = (w0, η0),

(94)

and

∂t (I − α2�h)u − ν�2β(I − α2�h)u −
∫ ∞

0
μ(s)Ahζ(s)ds + (w · ∇)u = f̃ ,

∂tζ = T ζ + u,

(u(0), ζ(0)) = (0, 0),

(95)

with f̃ = f − (w · ∇)v.
Existence and uniqueness of these problems are similar to the case previously considered

for the full system (28)–(30). We will show that system (94) is exponentially stable with
respect the H1+β

h -norm, and that the solutions to (95) are uniformly bounded in the space

H1+2β
h .
In the sequel, the generic positive constant C may depend on ‖ f ‖ as well as on the radius

R̄0 of the absorbing set B̄0. The proof of Proposition 6.2 is a direct consequence consequence
of Lemma 6.3 and Lemma 6.4 here below.

Lemma 6.3 The following control holds true

‖L(t)U0‖H1+β
h

≤ ce−ωt , (96)

where ω := ε(� − Cεγ ), with ε and γ are utility constants, ε as needed, and � = �(ν, α).

Observe that, control (96) (and hence Lemma 6.3) can be proved by following the same
steps used to reach (73). We are now ready to show that the solutions of (95) are uniformly
bounded inH1+β

h

Lemma 6.4 Assume f ∈ L2(0,+∞;L2). For every initial datum U0 ∈ B0 ⊂ H1+β
h , we

have the estimate

‖K (t)U0‖H1+2β
h

≤ C, and
∫ +∞

0
‖K (t)U0‖2H1+3β

h
dt ≤ C . (97)

Also in this case, the above result follows by the same calculations previously performed to
reach (83).

We highlight the fact that we do not expect compactness for the embedding M1+2β
h ⊂

M1+β
h (see [29] for a counterexample to compactness in the case of isotropic spaces with

memory). As a consequence, also the embeddingH1+2β
h ⊂ H1+β

h is in general not compact
as well. However, there is a general argument (see [29]) that allows to retrieve the desired
compactness, producing a compact subset B′

� ⊂ B� which is still exponentially attracting. In
turn, thanks to well-established results, this entails the existence of the global attractor A.
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Remark 6.5 After obtaining the higher-order energy estimates in Sect. 5 (used directly to
prove Lemmas 6.3 and 6.4 ), and proving the existence of an absorbing set inH1+β

h , to show

the existence of a global exponential attractor E ⊂ H1+β
h for the system (28)–(30), we adapt

the proof of [19, Theorem 7.2], since, at this level, the main technical difficulty left is related
to the presence of the memory term.

7 Exponential Attractor

In this section we establish the existence of a regular exponential attractor for the semigroup
associated with system (28)–(30) in the phase spaceH1+β

h .
For the reader’s convenience, we recall the definition of exponential attractor (see also

[3,19,29]). In the next definition we consider a general H that, however, in our case, plays
the role ofH1+β

h .

Definition 7.1 Consider a semiflow S(t) : H → H, t ≥ 0, on the phase spaceH. A compact
set E ⊂ H is an exponential attractor for S(t) if

• E is positively invariant, i.e. S(t)E ⊂ E for every t ≥ 0,
• E is exponentially attracting for the semigroup,
• E has finite fractal dimension inH.

Let us also recall that the fractal dimension of E in H is defined as

dimH(E) = lim sup
ε→0

ln N (ε)

ln(1/ε)
,

where N (ε) is the smallest number of ε-balls ofH needed to cover E.
The main result of the paper reads as follows.

Theorem 7.2 Assume β ≥ 3/4 and f ∈ L2(0,+∞,L2)∩L2
loc(0,+∞,Hβ). The dynamical

system S(t) on H1+β
h admits an exponential attractor E, which is bounded in H1+2β

h .

As a consequence of the existence of a compact attracting set, S(t) possesses the global
attractor A, which is the smallest among the compact attracting sets (hence contained in the
exponential attractor).

COROLLARIO The dynamical system S(t) onH1+β
h possesses the global attractor A. ��

The Proof of Theorem 7.2, carried out in the next Subsection, is based on an abstract result
from Danese et al. (2015) (see Theorem 5.1, see also Lemma ), that we report here below as
a lemma, in a specific version prepared to fit our particular case. To this end, we will make
use of the projections P1 and P2 ofH1+β

h onto its components H1+β
h andM1+β

h , namely,

P1(u, η) = u and P2(u, η) = η. (98)

Lemma 7.3 Let the following assumptions hold.

(i) There exists R� > 0 such that the ball B� = BH1+2β
h

(R�) is exponentially attracting.
(ii) Assume For every R ≥ 0 and every θ > 0 sufficiently large, then

∫ 2θ

θ

(‖�βwt‖2 + α2‖∇h�
βwt‖2

)
ds ≤ Q(R + θ).

for all w(t) = P1S(t)U0 with U0 ∈ BH1+2β
h

(R).
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(iii) There exists R1 > 0 such that: For any given R ≥ 0, there exists a nonnegative function
ψ vanishing at infinity such that

‖S(t)U0‖H1+2β
h

≤ ψ(t) + R1,

for all U0 ∈ BH1+2β
h

(R).

(iv) For every fixed R ≥ 0, the semigroup S(t) admits a decomposition of the form S(t) =
L(t) + K (t) satisfying for all initial data U0,i ∈ BH1+β

h (R)
relations

‖L(t)U0,1 − L(t)U0,2‖H1+β
h

≤ ψ(t)‖U0,1 − U0,2‖H1+β
h

,

‖K (t)U0,1 − K (t)U0,2‖H1+2β
h

≤ Q(t)‖U0,1 − U0,2‖H1+β
h

.

Here, both Q and the nonnegative function ψ vanishing at infinity depend on R. More-
over, the function

ζ̄ t = P2K (t)U0,1 − P2K (t)U0,2

satisfies the Cauchy problem
{

∂t ζ̄
t = T ζ̄ t + w̄(t),

ζ̄0 = 0,

for some w̄ satisfying the estimate ‖w̄(t)‖
H1+β
h

≤ Q(t)‖U0,1 − U0,2‖H1+β
h

.

Then S(t) possesses an exponential attractor E contained in the ball BH1+2β
h

(R1).

Remark 7.4 The above result is a consequence of [19, Lemma 7.4] (see also [35]) which has
been adapted to the present framework.

7.1 Proof of Theorem 7.2

Essentially, we have to prove the four points in Lemma 7.3. We actually have that: point (i) is
the content of Proposition 6.2, while (ii) is an immediate consequence of relations (91)–(92).
Accordingly, we are left to show the validity of (iii) and (iv). In what follows, the generic
positive constant C may depend on ‖ f ‖ (or on ‖ f ‖Hβ ) and on the radius R̄0 of the absorbing
set B̄0 defined in (82).

–Point (iii): Given R ≥ 0, let us consider the ball BH1+2β
h

(R). We easily infer from the

continuous embedding H1+2β
h ⊂ H1+β

h that BH1+2β
h

(R) ⊂ BH1+β
h

(Q(R)). Therefore, on

account of (50),
there exists te = te(R) such that

{ ‖S(t)BH1+2β
h

(R)‖ ≤ Q(R), ∀t ≤ te,

‖S(t)BH1+2β
h

(R)‖ ≤ R0, ∀t ≥ te.
(99)

Taking an arbitrary U0 ∈ BH1+2β
h

(R), we define the higher-order energy functional

E1+2β(t) = 1

2
‖S(t)U0‖2H1+2β

h
. (100)
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Now, using (99) and Lemma 5.5, and proceeding as in Lemma 5.3, we obtain point (iii) of
Lemma 7.3.

–Point (iv): Now, we refer to the splitting performed in (94) and (95). In this case we have
already seen that L(t) is a strongly continuous linear semigroup on H1+β

h . Besides, L(t)
is exponentially stable. This is a direct consequence of the results proved in the previous
section.

Let us now take R ≥ 0 be fixed, and let U0,1, U0,2 ∈ BH1+2β
h

(R). For the remainder of

this proof, the generic positive constant C is allowed to depend on R. Then, we decompose
the difference Then, we decompose the difference

(w̄(t), η̄t ) = S(t)U0,1 − S(t)U0,2 (101)

into the sum

(w̄(t), η̄t ) = (v̄(t), ξ̄ t ) + (ū(t), ζ̄ t ), (102)

where

(v̄(t), ξ̄ t ) = L(t)U0,1 − L(t)U0,2, and (ū(t), ζ̄ t ) = K (t)U0,1 − K (t)U0,2. (103)

Observe that, thanks to relation (iii), the following relation holds true

‖S(t)U0,i‖H1+2β
h

≤ C . (104)

Moreover, the exponential stability of L(t) implies the existence of a universal constant
� > 0 (see [19,35]) such that

‖L(t)U0,1 − L(t)U0,2‖H1+β
h

≤ Ce−� t‖U0,1 − U0,2‖H1+β
h

. (105)

Essentially, we have to prove the desired estimate for the difference (ū, ζ̄ ), solution to the
system

∂t (I − α2�h)ū − ν�2β(I − α2�h)ū −
∫ ∞

0
μ(s)Ah ζ̄ (s)ds = −(w̄ · ∇)w1 − (w2 · ∇)w̄

∂t ζ̄ = T ζ̄ + ū,

(ū(0), ζ̄ 0) = (0, 0).

(106)

Testing (28) against �4β ū in L2 and (29) against �4β ζ̄ inM1
h, and proceeding as before, we

reach

1

2

d

dt

(‖�2β ū‖2 + α2‖∇h�
2β ū‖2 + ‖�2β ζ̄‖2M1

h

) + ν
(‖�3β ū‖2 + α2‖∇h�

3β ū‖2)

− 〈T �2β ζ̄ ,�2β ζ̄ 〉M1
h

≤ ∣∣(�β((w̄ · ∇)w1),�
3β ū

)∣∣ + ∣∣(�β((w2 · ∇)w̄)),�3β ū
)∣∣ := Ĩ1 + Ĩ2

(107)
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Then, arguing as in the Proof of Lemma 5.5, we have that

Ĩ1 ≤ cε

(‖�β((w̄h · ∇h)w1)‖2 + ‖�β(w̄3∂3w1)‖2
) + ε‖�3β ū‖2

≤ c
(‖�βw̄h‖2‖∇hw1‖2L∞ + ‖w̄h‖2L4‖∇h�

βw1‖2L4

)
+ c

(‖�βw̄3‖2L6‖∂3w1‖2L3 + ‖w̄3‖2L∞‖∂3�βw1‖2
)

+ ε‖�3β ū‖2
≤ c‖�βw̄h‖2‖∇h�

2βw1‖2 + c‖∇h�
βw̄h‖2‖�2βw1‖2

+ c‖�βw̄h‖2‖∇h�
2βw1‖2 + c‖�β∇hw̄h‖2‖w1‖2H3β + ε‖�3β ū‖2

≤ C
(‖�β ū‖2 + ‖∇h�

β ū‖2)(‖�3βw1‖2 + ‖∇h�
2βw1‖2

+ ‖�2βw1‖2 + ‖∇h�
βw1‖2

) + C
(‖�β v̄‖2 + ‖∇h�

β v̄‖2)(‖�3βw1‖2
+ ‖∇h�

2βw1‖2 + ‖�2βw1‖2 + ‖∇h�
βw1‖2‖

) + ε‖�3β ū‖2,

(108)

where we used Lemma 2.1 with p1 = q1 = 4 and p2 = ∞ and q2 = 2 for the first
term, then p1 = ∞, and q1 = 2 and p2 = 6 and q2 = 3 for the second term, and the
embeddings W3β,2 ↪→ W1+β,2, W2β,2 ↪→ L∞, W1+β,2 ↪→ L∞, W2β,2 ↪→ W1,3, Wβ,2 ↪→
L4, and H1 ↪→ L6. Observe that ‖�3βw1‖2 + ‖∇h�

2βw1‖2 + ‖�2βw1‖2 + ‖∇h�
βw1‖2 ∈

L1(0,+∞).
Using the same embeddings as above, we also have that

Ĩ2 ≤ cε

(‖�β((w2,h · ∇h)w̄)‖2 + ‖�β(w2,3∂3w̄)‖2) + ε‖�3β ū‖2
≤ c

(‖�βw2,h‖2L4‖∇hw̄‖2L4 + ‖w2,h‖2L∞‖�β∇hw̄‖2) + ‖w2,3‖2H1+2β ‖∂3w̄‖2H−1+β

)
+ ε‖�3β ū‖2

≤ c‖�2βw2,h‖2‖∇h�
βw̄‖2 + c‖�2βw2,h‖2‖�β∇hw̄‖2

+ ‖∇h�
2βw2,h‖2‖�βw̄‖2 + ε‖�3β ū‖2

≤ C
(‖∇h�

β ū‖2 + ‖�β ū‖2)(‖∇h�
2βw2,h‖2 + ‖�2βw2,h‖2

)
+ C

(‖∇h�
β v̄‖2 + ‖�β v̄‖2)(‖∇h�

2βw2,h‖2 + ‖�2βw2,h‖2
) + ε‖�3β ū‖2

(109)

where, in particular we used Lemma 2.2 with s0 = −β, s1 = 1 + 2β, and s2 = −1 + β.
Also in this case ‖∇h�

2βw2,h‖2 + ‖�2βw2,h‖2 ∈ L1(0,+∞).
Therefore, combining (107) along with (108) and (109) (and applying (44)), we get

1

2

d

dt

(‖�2β ū‖2 + α2‖∇h�
2β ū‖2 + ‖�2β ζ̄‖2M1

h

) + (ν − 2ε)
(‖�3β ū‖2 + α2‖∇h�

3β ū‖2)

+ δ‖�2β ζ̄‖M1
h

≤ C
(‖∇h�

β ū‖2 + ‖�β ū‖2)d(t) + C
(‖∇h�

β v̄‖2 + ‖�β v̄‖2)d(t),

where d(t) = ‖�3βw1‖2 + ∑2
i=1

(‖∇h�
2βwi (t)‖2 + ‖�2βwi (t)‖2 + ‖∇h�

βwi (t)‖2
)
.
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Recalling that (w̄(0), η̄0) = (0, 0), and using (105), an application of the Gronwall’s
lemma produces

E1+2β(t) = (‖�2β ū‖2 + α2‖∇h�
2β ū‖2 + ‖�2β ζ̄‖2M1

h

)
(t)

≤ C
∫ t

0
e
∫ t

s d(�)d�d(s)
(‖∇h�

β v̄‖2 + ‖�β v̄‖2)ds

≤ Ce
∫ t
0 d(�)d�

(∫ t

0
d(s)ds

)
e−� t‖U0,1 − U0,2‖H1+β

h

≤ CeC̃t‖U0,1 − U0,2‖H1+β
h

(110)

where to obtain the final estimate we used the regularity of the solutions w1 and w2.
The control provided by (110) is exactly the last point of (iv) in Lemma 7.3, and it also

concludes the Proof of Theorem 7.2.
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