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Abstract
In this paper, we present E-ReMI, a new method for studying two-way interaction in row
by column (i.e., two-mode) data. E-ReMI is based on a probabilistic two-mode clustering
model that yields a two-mode partition of the data with maximal interaction between row and
column clusters. The proposed model extends REMAXINT by allowing for unequal cluster
sizes for the row clusters, thus introducing more flexibility in the model. In the manuscript,
we use a conditional classification likelihood approach to derive the maximum likelihood
estimates of the model parameters. We further introduce a test statistic for testing the null
hypothesis of no interaction, discuss its properties and propose an algorithm to obtain its
distribution under this null hypothesis. Free software to apply the methods described in this
paper is developed in the R language. We assess the performance of the new method and
compare it with competing methodologies through a simulation study. Finally, we present an
application of the methodology using data from a study of person by situation interaction.

Keywords Bicluster interaction effect parameters · Penalized classification maximum
likelihood · Likelihood ratio · Monte Carlo sampling

1 Introduction

This paper addresses the analysis of two-way two-mode data (Carroll & Arabie, 1980) that
can be arranged in an I × J real-valued data matrix D, with elements di j (i = 1, . . . , J , j =
1, . . . , J ), and in which the rows pertain to one of the two modes and the columns to the
other. Specifically, we consider the case in which both modes are considered as categorical
predictor variables and di j is a real-valued outcome value for the combination of row i and
column j . Such data abound in many research settings. An example is that of contextualized
personality research, where a set of I persons is measured on some behavior of interest in J
different situations. Other examples include the study of micro-array data in genome research
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where DNA expression level is obtained for a set of I genes under J different conditions;
Measurement studies, where a set of I units (e.g., tissues, subjects) is measured on some
characteristic of interest by a set of J measurement methods (e.g., questionnaires, raters);
Research in cognitive psychology, where the response time of I participants is recorded on
J test items or stimuli; and consumer research, where a preference rating is obtained for a set
of I customers on J different products. Typically, one of the two modes has a large number
of elements (e.g., persons) which are a random sample from a population of interest.

A question of scientific interest in these studies is whether there is an interaction between
the two modes and, if so, what is its nature. For instance, in studies on aggression it may be
of interest to observe how aggressively subjects react in a set of situations. In these studies,
in order to understand if and how specific contexts provoke aggression, it is crucial to know
whether context effects on aggression are equal for all individuals or not (Geiser et al.,
2015; Mischel & Shoda, 1995, 1998; Shoda et al., 2015, 2013). Likewise, if in a study of
agreement between measurement methods (Choudhary & Nagaraja, 2017) it appears that
two (or more) methods yield different measurements, it is important to know whether that
difference is attributable only to an additive constant that differs between methods (i.e., no
interaction between object and method) or whether that method effect depends on the object
being measured (i.e., object by method interaction).

When, for each combination of a row and column, only one observation is measured,
classical methods like ANOVA cannot be used. Thus, in the literature, authors have intro-
duced methods to reduce the number of interaction parameters under study to summarize
the massive amount of information in D or to ensure that some degrees of freedom are avail-
able to estimate residual variance (see e.g., (Tukey, 1949; Mandel, 1971; Corsten & Denis,
1990; Denis & Gower, 1994; Gauch, 2006; Post & Bondell, 2013; Franck et al., 2013; Fork-
man & Piepho, 2014; Alin & Kurt, 2006; Van Mechelen et al., 2004; Madeira & Oliveira,
2004)). Some of these methods focus only on hypothesis testing for interaction (for relatively
small data matrices). Shenaravi & Kharrati-Kopaei (2018) review a number of these, further
studying different methods for combining them into a single test, and provide an accompany-
ing R package that is available on CRAN (https://CRAN.R-project.org/package=combinIT).
However, as explained in the previous paragraph, it is often of major interest to additionally
understandwhat that interaction looks like, especiallywhen dealingwith larger datamatrices.
An example can be found in Piepho (1997), who considers a parsimonious representation of
the two modes in terms of latent factor-analytic components capturing as much of the row
by column interaction sum of squares as possible. However, with this type of approach, it is
challenging to interpret this interaction if more than two latent components are needed to fit
the data adequately.

Approaches that are typicallymore easily interpretable focus on simultaneously clustering
the rows and columns (i.e., biclustering/two-mode clustering). For example, Govaert &Nadif
(2013) proposed a two-mode clustering method using a mixture approach for modelling the
row clusters. This method estimates, among others, the population mean of each combination
of a row and a column cluster (i.e., bicluster), which is the joint effect of row and column
cluster main effects and of a row by column cluster interaction. This is a block mixture
model (Govaert & Nadif, 2003), a class of probabilistic biclustering approaches that includes
various methods suitable for specific data types, such as continuous, binary or count (Govaert
&Nadif, 2018). Common to models in this class is the assumption that there exists a partition
R into P row clusters R1, ..., RP on the row set and a partition C into Q column clusters
C1, ...,CQ on the column set, such that the randomvariablesdi j are conditionally independent
given R and C. This implies that these models assume absence of row (e.g., subject) effects
within row clusters and, likewise, absence of column (e.g., situation) effects within column
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clusters. Hence, if there are individual row (column)main effects, the row (column) partitions
may tend to capture those effects so as to explain the associations between observations of
any two columns (resp. between observations of any two rows) that are implied by those
effects (see Section 5 for an illustration). In short, a block mixture model does not yield
row and column partitions that maximize interaction but rather the sum of row and column
main effects plus row by column interaction. In contrast, REMAXINT (Ahmed et al., 2021)
assumes that the random variables di j are conditionally independent, not only given R and
C, but also the individual row and column main effects. Therefore, this method yields a two-
mode partition of D in which the row and column clusters explain the associations between
observations of any two columns (resp. between observations of any two rows) over and
above the associations that are implied by row/column main effects. REMAXINT extends
maximal interaction two-mode clustering ((Schepers et al., 2017), MAXINT), by allowing
the rows to be random instead of fixed.

Other biclustering approaches that are based on interaction concepts include the methods
proposed in Cheng & Church (2000) and Cho et al. (2004), which are widely applied to gene
expression data. These methods look for biclusters with minimal within-bicluster interaction,
that is, minimal mean sum-squared residue (Yu et al., 2021). Specifically, row and column
main effects are bicluster-specific and within-bicluster row by column interaction is negligi-
ble. This implies that the total row by column interaction sum of squares is represented by the
between-bicluster differences with regard to the bicluster means plus the between-bicluster
differences with regard to the bicluster-specific main effects. In contrast, in MAXINT (and
REMAXINT), row (resp. column)main effects are not specific to column (resp. row) clusters.
The total row by column interaction sum of squares is therefore represented more easily by
between-bicluster differences with regard to the bicluster means (i.e., biclusters with large
between-bicluster interaction). A thorough discussion comparing biclusteringmethods based
on interaction concepts can be found in Schepers et al. (2017).

In this paper, we focus on the objective of finding biclusters with large between-bicluster
interaction. Specifically, we propose E-ReMI (Extended-ReMaxInt), a new two-mode clus-
tering method that relaxes the unlikely assumption of equal population cluster sizes that is
(implicitly) made in REMAXINT. E-ReMI is a model-based clustering method (Bock, 1996;
Banfield & Raftery, 1993) that assumes interaction between row and column clusters in the
sense that all row by column interactions are identical within each of the PQ pairs of row and
column clusters (i.e., within each bicluster). In other words, it is assumed that any substantial
row by column interaction in the data matrix (D) is attributable to a row by column cluster
interaction. Our proposed method yields simultaneous partitions of the rows and columns of
D such that a conditional likelihood criterion is maximized. The row and column clusters are
not determined by differences between row and column main effects, respectively, but only
by row by column interaction effects. Furthermore, row main effects are considered random,
and row cluster sizes are allowed to vary between clusters and are unknown parameters to
be estimated. Additionally, we introduce a pivotal likelihood ratio test, based on E-ReMI
and Monte Carlo sampling, to test the null hypothesis of no interaction between the row
and column clusters. Finally, in order to make the methodology of this paper available to a
large public, we implement this method in the free software R. This implementation not only
includes the newly proposed method but also codes for REMAXINT, which was previously
only available in Matlab.

The remainder of this article is organized as follows: In Section 2 we formulate the
statistical model and consider parameter estimation using a conditional likelihood approach.
In Section 3, we propose amethod for statistical inference on the interaction effect parameters
that is based on a Monte Carlo scheme. Section4 investigates, by means of a simulation
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study, the impact of relaxing the assumption of equal row cluster sizes on statistical power
and parameter recovery. This study also includes a comparison, in terms of power, to some
of the tests reviewed in Shenaravi & Kharrati-Kopaei (2018). Section 5 studies this impact
on a real data set from a study in personality psychology. Finally, Section 6 is dedicated to a
discussion and some final remarks.

2 Method

2.1 Model Formulation

We consider a two-mode partitioning of an I × J two-mode real-valued data matrix D with
elements di j (i = 1, . . . , I , j =, 1, . . . , J ) to capture the gist of row by column interaction
that is included in these data. We assume that the elements of the row set R = {1, . . . , I }
are sampled independently from a population that includes P subpopulations with relative
sizes ωp (0 ≤ ωp ≤ 1; p = 1, . . . , P and

∑P
p=1 ωp = 1). This results in a latent random P-

partition R = {R1, ..., RP } of R that is characterized by the random P-dimensional cluster
indicator vectors Z1, ..., Z I , where, for every i , Zi = (Zi1, . . . , Zi P )T , with Zip = 1 for
i ∈ Rp and Zip = 0 for i /∈ Rp . This implies that Zi is distributed according to aMultinomial
distribution that consists of one draw on P categories with probabilities ω1, . . . , ωP (i.e.,
Zi ∼ MultP (1,ω), where ω = (ω1, . . . , ωP )T ).

Furthermore, we assume that there is a latent fixed Q-partition C = {C1, ...,CQ} of the
column set C = {1, . . . , J } that is characterized by the binary indicator matrix K, such that
an element k jq = 1 for j ∈ Cq and k jq = 0 for j /∈ Cq ( j = 1, . . . , J , q = 1, . . . , Q), with
|Cq | = ∑J

j=1 k jq .
The row and column clusters are characterized by two features:

1. The clusters must be jointly exhaustive, i.e.
⋃

p Rp = R and
⋃

q Cq = C , for rows and
columns, respectively;

2. The clustersmust bemutually exclusive, i.e. Rp
⋂

Rp′ = φ (∀p �= p′), andCq
⋂

Cq′ = φ

(∀q �= q′), for rows and columns, respectively.

A bicluster Rp × Cq is the Cartesian product of row cluster Rp and column cluster Cq

and we denote a two-mode partition as R × C = {Rp × Cq ; p = 1, . . . , P, q = 1, . . . , Q}.
Let D1, . . . , D I denote a random sample of size I , where Di is a J -dimensional vector

with probability density function f (di ) onRJ . We use D = (D1, . . . , D I )
T to represent the

entire sample. We denote by d = (d1, . . . , d I )
T an observed random sample, where di =

(di1, . . . , di J )T is the realisation of the random vector Di . Likewise, zi = (zi1, . . . , zi P )T is
the realisation of the random vector Zi , with |Rp| = ∑I

i=1 zip . Given a two-mode partition
R × C of D, each of its elements Di j , is assumed to be described by the following linear
framework:

Di j = μ + αi + β j + γpq + εi j , (1)

for i ∈ Rp , j ∈ Cq , p = 1, . . . , P , q = 1, . . . , Q, and where μ is the overall mean, αi is a
randommain effect of row i ,β j is a fixedmain effect of column j and γpq is a fixed interaction
effect associated to bicluster Rp×Cq .We assume known numbers of row and column clusters
P and Q, respectively (we comment on this last assumption in the discussion). We assume
that the row main effects αi are random (with E(αi ) = 0 and σ 2

αi
> 0, ∀i) and that the

columnmain effectsβ j are fixed (with
∑J

j=1 β j = 0). Furthermore,we impose identifiability

constraints
∑P

p=1 ωpγpq = 0 (q = 1, . . . , Q) and
∑Q

q=1 |Cq |γpq = 0 (p = 1, . . . , P) on
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the interaction effect parameters. Lastly, εi j represents the random error term. The error terms
are assumed to be i .i .d. across rows and columns, with mean zero and variance σ 2.

We assume that the residuals εi j in (1) are Normally distributed. Then, conditionally on
i ∈ Rp and j ∈ Cq ,

Di j |αi ∼ N (μ + αi + β j + γpq , σ
2),

where the distribution function F(αi ) of the random effects αi does not need to be spec-
ified (see below). The random-partition model E-ReMI considers the data d1, . . . , d I as
incomplete since the associated row cluster labels z1, . . . , z I are unobserved (i.e., missing).
Note that the model assumes that, conditionally on zi and αi , the univariate random vari-
ables Di j ( j = 1, . . . , J ) are statistically independent (i.e., local stochastic independence).
Let gi j (di j |αi , μ, β j , γpq) denote the density function of Di j , conditionally on i ∈ Rp and
j ∈ Cq . We then have

fi (di , zi |μ, αi , ξ) =
P∏

p=1

⎛

⎝ωp

Q∏

q=1

J∏

j=1

gi j (di j |αi , μ, β j , γpq )
k jq

⎞

⎠

zip

(2)

=
P∏

p=1

⎛

⎝ωp

Q∏

q=1

J∏

j=1

(
1√
2πσ 2

exp

(

−1

2

(di j − μ − αi − β j − γpq )
2

σ 2

))k jq
⎞

⎠

zip

where ξ = (φ, θ , K ) is the vector of unknown parameters, and where

φ = (β1, . . . , βJ , σ
2),

θ = (θ1, . . . , θ P ),

θ p = (ωp, γp1, . . . , γpQ).

2.2 Conditional Classification Likelihood

In this section we will introduce some notation to shorten and simplify the interpretation of
the equations. For the convenience of the reader the introduced notation is listed in Table 1.

Table 1 Summary of the notation
introduced in this section to
shorten and simplify the
equations

Symbol Definition

W W = exp
(∑P

p=1
∑I

i=1 zip logωp

)

V V = exp
(−I J

2 log 2πσ 2
)

Ai Ai = (d̄i · − μ − αi )

Bi j Bi j = (di j − d̄i · − β j − γpq )

U U = ∑P
p=1

∑Q
q=1

∑I
i=1

∑J
j=1 zipk jq Bi j Ai

A A = ∑P
p=1

∑Q
q=1

∑I
i=1

∑J
j=1 zipk jq A

2
i

B B = ∑P
p=1

∑Q
q=1

∑I
i=1

∑J
j=1 zipk jq B

2
i j

H H = I J
2

(
log

(
I J
2π

)
− 1

)

(dc)i j di j − d̄i · − d̄. j + d̄.. (doubly centered data)
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For estimation of the parameters of interest, E-ReMI makes use of a combination of two
strategies, namely, conditional likelihood and classification likelihood. We first discuss the
conditional likelihood approach.

Conditional likelihood is a well-known approach in modern psychometrics (Andersen,
1973; Fischer & Molenaar, 1995) and biostatistics (Anderson & Senthilselvan, 1980) that
involves the elimination of so-called nuisance parameters from the likelihood function. The
nuisance parametersmay pertain to fixed or random effects ((Verbeke&Molenberghs, 2000),
sec.13.5). If the nuisance parameters pertain to random effects, the main advantage of this
approach is that no distributional assumption is needed with respect to those random effects
(Verbeke et al., 2001). Here, we treat the random effects αi in (2) as nuisance parameters
and, rather than maximizing the joint likelihood of all random variables, estimation of the
parameters of interest is achieved by maximizing the conditional likelihood given the suffi-
cient statistics (d̄i ·’s) for these nuisance parameters (αi ’s). We only assume that the latter are
i.i.d. with finite variance and zero expectation (the latter for identifiability ofμ in the model).
This leads us to formulate the following theorem.

Theorem For the I independent joint realizations (d1, z1), . . . , (d I , z I ), each with density
(2), the statistic d̄i · = 1

J

∑J
j di j (i = 1, . . . , I ) is sufficient for μ + αi (i = 1, . . . , I ) under

the following constraints:
∑Q

q=1 |Cq |γpq = 0 (p = 1, . . . , P), where |Cq | indicates the
cardinality of column cluster Cq

Proof We prove sufficiency of d̄i · (i = 1, . . . , I ) for μ + αi (i = 1, . . . , I ) by showing that
the joint density of the data matrix d and the row partition z

f (d, z|μ,α, ξ) =
I∏

i=1

fi (di , zi |αi , ξ), (3)

can be factored such that it satisfies Fisher’s factorization theorem (Fisher, 1922; Neyman,
1935; Rice, 2007), where α = (α1, . . . , αI ) is the vector of the random row main effects
and z = (z1, . . . , z I )T is the realized vector of the latent random row cluster membership
indicator vectors. For our purposes, we rewrite (3) as:

f (d, z|μ,α, ξ) = WV exp

⎛

⎝− 1

2σ 2

P∑

p=1

Q∑

q=1

I∑

i=1

J∑

j=1

zipk jq(di j − μ − αi − β j − γpq)
2

⎞

⎠ ,

where W = exp
(∑P

p=1
∑I

i=1 zip logωp

)
and V = exp

(−I J
2 log 2πσ 2

)
. Note that W and

V do not depend on the data nor on the main and interaction effect parameters. We then add
and subtract d̄i · = 1

J

∑J
j=1 di j into the last term of our expression and expand the square,

obtaining

f (d, z|μ,α, ξ) = WV exp

⎛

⎝− 1

2σ 2

⎛

⎝
P∑

p=1

Q∑

q=1

I∑

i=1

J∑

j=1

zipk jq(B
2
i j + A2

i )

⎞

⎠ + 2U

⎞

⎠ , (4)

where B2
i j = (di j − d̄i · − β j − γpq)

2 and A2
i = (d̄i · − μ − αi )

2 are the square terms, andU
is a sum of cross product terms that can be written as

U =
P∑

p=1

I∑

i=1

zip Ai

Q∑

q=1

|Cq |(−γpq). (5)
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We show how to get this result in Appendix A. Under the set of identifiability constraints
∑Q

q=1 |Cq |(−γpq) = 0 (p = 1, . . . , P), it follows that U = 0. Therefore, (4) reduces to the
simplified

f (d, z|μ,α, ξ) = exp

(

− 1

2σ 2 A

)

WV exp

(

− 1

2σ 2 B

)

, (6)

where B = ∑P
p=1

∑Q
q=1

∑I
i=1

∑J
j=1 zipk jq B2

i j and A = ∑P
p=1

∑Q
q=1

∑I
i=1

∑J
j=1 zipk jq A

2
i .

The joint density in (6) satisfies Fisher’s factorization theorem sinceW and V do not depend
on the observed data, A is a function ofμ+αi and depends on the observed data only through
the statistics d̄i ·, while B is not a function of μ + αi . 	


Estimation of the vector of unknown parameters ξ = (φ, θ , K ), conditional on the suffi-
cient statistics d̄i ·, impliesmaximizing the conditional likelihood obtained from (6) by leaving
out the first factor. Specifically,

CL(z, ξ ; d) = WV exp

(

− 1

2σ 2 B

)

=
I∏

i=1

fi (di , zi |d̄i ·, ξ), (7)

is maximized with respect to ξ and the unobserved row cluster labels z1, . . . , z I . Since the
latter are treated as parameters to be estimated alongwith ξ , this is referred to as a classification
likelihood approach (Scott & Symons, 1971; Symons, 1981; Bock, 1996; Govaert & Nadif,
2013). No restrictions are put on z (resp. K) other than that

∑P
p=1 zip = 1 i = 1, . . . , I

(resp.
∑Q

q=1 k jq = 1 j = 1, . . . , J ) and
∑I

i=1 zip ≥ 1 p = 1, . . . , P (resp.
∑J

j=1 k jq ≥ 1
q = 1, . . . , Q).

After applying a logarithmic transformation to (7), the equation for the conditional clas-
sification log-likelihood becomes:


(ξ) = logW + log V − 1

2σ 2 B. (8)

The unknown parameter σ 2 is involved in the kernel of this equation (and in V ) and, thus,
has to be accounted for in the maximization. We replace it with its maximizer, obtained by
partial differentiation of the equation above. This yields the following result

σ 2 =
∑P

p=1
∑Q

q=1

∑I
i=1

∑J
j=1 zipk jq(di j − d̄i · − β j − γpq)

2

I J
= B

I J
.

After plugging this expression in the equation above, and after some simplifications, we
obtain the following criterion to maximize (see Appendix B):

logCL = logW − I J

2
log (B) + H ,

where H = I J
2

(
log

( I J
2π

) − 1
)
is an additive constant. This criterion is fully written as

logCL =
⎛

⎝
P∑

p=1

I∑

i=1

zip logωp

⎞

⎠ − I J

2
log

⎛

⎝
P∑

p=1

Q∑

q=1

I∑

i=1

J∑

j=1

zipk jq (di j − d̄i · − β j − γpq )
2

⎞

⎠ + H

(9)

where ωp (p = 1, . . . , P), β j ( j = 1, . . . , J ), γpq (p = 1, . . . , P , q = 1, . . . , Q), zip
(i = 1, . . . , I , p = 1, . . . , P) and k jq ( j = 1, . . . , J , q = 1, . . . , Q) are to be estimated,
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subject to the constraints given in this section. This is a penalized classification likelihood
criterion (Bryant, 1991; Celeux & Govaert, 1992), where the first term is a penalty term that
penalizes row partitions that imply higher levels of unpredictability (Shannon, 1948), that is,
solutions with more balanced cluster sizes.

2.3 Model fitting

Maximizing (9) with respect to the unknown parameters z, ω, β, γ , K is a mixed
continuous-combinatorial optimization problem because B and W involve the unknown
cluster membership indicators zip and k jq on top of the unknown row cluster sizes ωp and
the fixed effects β j and γpq . For this optimization problem, there are currently no routines
available in statistical software. We therefore developed an iterative procedure that is pre-
sented in this subsection. To explain this iterative procedure, we will first discuss parameter
estimation ofωp , β j , and γpq for a given two-mode partitionR×C, that is, for givenmatrices
z and K. Subsequently, we discuss how to maximize the criterion given in (9) with respect
to the two-mode partition R × C.

2.3.1 Parameter estimation given an arbitrary two-mode partition

For a fixed number of row and column clusters, P and Q, and a given arbitrary two-mode
partitionR×C,weobtain themaximum likelihood estimates ofωp,β j andγpq bymaximizing
(9) under the identifiability constraints

∑P
p=1 ωp = 1,

∑J
j=1 β j = 0,

∑P
p=1 ωpγpq = 0

(q = 1, . . . , Q) and
∑Q

q=1 |Cq |γpq = 0 (p = 1, . . . , P). This leads to the following
estimates (see Appendix C) for the parameters of interest:

ω̂p = |Rp|
I

,

β̂ j = d̄. j − d̄..,

γ̂pq = 1

|Rp||Cq |
I∑

i=1

J∑

j=1

zipk jq
(
di j − d̄i · − d̄. j + d̄..

)
,

for j = 1, . . . , J , p = 1, . . . , P and q = 1, . . . , Q

2.3.2 Estimation of two-mode partition

In the previous subsection, we discussed parameter estimation of ωp , β j and γpq , given an
arbitrary two-mode partitionR× C. The challenge of finding the best fitting E-ReMI model
for a data set at hand is completed by addressing the estimation of z and K.

Based on the estimates of ωp , β j and γpq , finding the best fitting configuration (i.e, the
configuration thatmaximizes 
(ξ)), given P and Q, comes down tomaximizing the following
clustering criterion1:

CC =
P∑

p=1

I∑

i=1

zip log ω̂p − I J

2
log

⎛

⎝
P∑

p=1

Q∑

q=1

I∑

i=1

J∑

j=1

zipk jq(di j − d̄i · − β̂ j − γ̂pq)
2

⎞

⎠ ,

1 This criterion is the likelihood Criterion (9) in which the parameters ωp , β j and γpq are replaced by their
maximum likelihood estimates and the constant H has been dropped.
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with respect to z and K. This is a combinatorial optimization problem, for which it is not
feasible to apply a procedure that guarantees finding the global maximizer. Instead, we use
a greedy optimization algorithm that starts from some initial configuration (z0,K0) and
deterministically searches through the solution space as long as neighbouring configurations
with a better likelihood value can be found.

In order to explain the details of this estimation algorithm, it is useful to rewrite the
optimization problem as follows:

CC =
P∑

p=1

I∑

i=1

zip log(
I∑

i=1

zip
I

)− I J

2
log

⎛

⎝
P∑

p=1

Q∑

q=1

I∑

i=1

J∑

j=1

zipk jq((dc)i j − γ̂pq)
2

⎞

⎠ , (10)

where (dc)i j = di j − d̄i · − d̄. j + d̄.. is a transformation (double centering, see Table 1) of the
observed data that can be computed once, before the start of the algorithm. The algorithm
generates increasing values of the (log)likelihood by iterating between obtaining updated
estimates of the row and column cluster membership indicators and the interaction effect
parameters, respectively. It is described in more detail in Algorithm 1. In order to increase
the probability of finding the global maximum, one may run the algorithm M times using
independently generated random initial configurations (z0,K0) and retain the configuration
that yields the highest value of (10).

Note that the assumption of equal row cluster sizes can be imposed by setting ω̂p = 1
P .

This implies that the term
∑P

p=1
∑I

i=1 zip log(
∑I

i=1
zip
I ) in (10) reduces to the constant

−I log(P). Let (CC)∗ denote this constrained criterion. Maximizing (CC)∗ is equivalent to
fitting a REMAXINT model (Ahmed et al., 2021) to the data at hand.

3 Hypothesis testing

In this section we are concerned with testing the null hypothesis that all interaction effect
parameters in (1) are equal to zero. Formally,

H0 : γpq = 0 (for p = 1, . . . , P, q = 1, . . . , Q)

H1 : ∃(p, q) s.t. γpq �= 0,

for a fixed number of row and column clusters P and Q, respectively.We propose a likelihood
ratio test for testing this null hypothesis. This implies obtaining the conditional likelihood of
the data under the null hypothesis. In the next subsection, we first obtain this expression and
then we propose a new test statistic based on the ratio of two conditional likelihoods, that is,
the conditional likelihoods under the alternative and null hypotheses.

3.1 Test statistic

Under the null hypothesis, all interaction effect parameters in (1) are equal to zero (i.e.,
γpq = 0, p = 1, . . . , P, q = 1, . . . , Q). This implies that (1) reduces to

di j = μ + αi + β j + εi j , (11)

for i = 1, . . . , I and j = 1, . . . , J . Note that (11) implies that there is no partitioning
in the data generating mechanism assumed by the reduced model. In order to obtain the
conditional likelihood expression for this model, we start by denoting the reduced parameter
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Algorithm 1 Algorithm to find E-ReMI local maximum.
Input: di j (i = 1, . . . , I , j = 1, . . . , J ), P, Q
Output: z,K (Estimated row and column cluster memberships)

function LocalMax(d, P, Q)
(dc)i j ← (di j − d̄i · − d̄. j + d̄..)

n ← 0
Randomly generate a starting configuration (zn ,Kn)

Compute γ̂ n
pq for that configuration

CC(0) ← the value of (10) for this initial configuration
ζ ← Any arbitrary value larger than 0
while ζ > 0 do

Keep Kn fixed and find update zn+1 as follows:
for (i = 1, . . . , I ) do

if i not in a singleton cluster then
for (p = 1, . . . , P) do

define candidate z by setting zip ← 1 and zip∗ ← 0(p∗ �= p)
update γ̂pq and evaluate (10)

end for
choose candidate z that maximizes (10) as zn+1

end if
end for
Keep zn+1 fixed and find update Kn+1 as follows:
for ( j = 1, . . . , J ) do

if j not in a singleton cluster then
for (q = 1, . . . , Q) do

define candidate K by setting k jq ← 1 and k jq∗ ← 0(q∗ �= q)

end for
end if
choose candidate K that maximizes (10) as Kn+1

end for
compute γ̂ n+1

pq based on zn+1 and Kn+1

compute value of (10) for zn+1, Kn+1 and γ̂ n+1
pq

CC(n+1) ← the value of (10) for the current configuration;
ζ ← CC(n+1) − CC(n);
n ← n + 1

end while
return (z,K)

end function

vector as ξ0 = φ = (μ, β1, . . . , βJ , σ
2), that does not include any parameters that pertain to

a bipartitionR× C (since there are no clusters). The density (conditional on α) of the entire
sample, can be written as:

f (d|α, ξ0) =
I∏

i=1

J∏

j=1

(
1√
2πσ 2

exp

(

−1

2

(di j − μ − αi − β j )
2

σ 2

)

.

We next factorize this joint density by applying the same steps as in Section 2.2 and finally
obtain the conditional log-likelihood for the model under the null hypothesis:


(ξ0) = log V − 1

2σ 2 B,
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where V and B are defined as in Section 2.2 butwith γpq = 0 (p = 1, . . . , P, q = 1, . . . , Q).
Replacing σ 2 by its maximizer yields, after some simplifications, the following criterion to
maximize w.r.t. the β j ’s

logCL0 = − I J

2
log

⎛

⎝
I∑

i=1

J∑

j=1

(di j − d̄i · − β j )
2

⎞

⎠ + I J

2

(

log

(
I J

2π

)

− 1

)

.

It can be shown that the conditional m.l. estimate of β j is β̂ j = d̄. j − d̄...
We propose the following test statistic to test the null hypothesis of no interaction:

λLR = 
(ξ̂) − 
(ξ̂
0
),

where 
(ξ̂) and 
(ξ̂
0
) are the logarithms of the maximized conditional likelihood functions

for the alternative and null model, respectively. After some simplifications, this yields the
following form of the test statistic:

λLR =
P∑

p=1

I∑

i=1

zip log ω̂p

+ I J

2

⎛

⎝log

⎛

⎝
I∑

i=1

J∑

j=1

(dc)i j
2

⎞

⎠ − log

⎛

⎝
P∑

p=1

Q∑

q=1

I∑

i=1

J∑

j=1

zipk jq((dc)i j − γ̂pq)
2

⎞

⎠

⎞

⎠ ,

(12)

where in practice zik and k jq are replaced by their estimated values ẑik and k̂ jq as returned
by Algorithm 1. Note that the difference between the logarithms in the parentheses (second
line) is a difference between log-squared-residuals that is necessarily non-negative and is
expected to grow if I and/or J is increased. The penalty term

∑P
p=1

∑I
i=1 zip log ω̂p =

∑P
p=1 |Rp| log ω̂p is necessarily negative (for P ≥ 2), does not depend on J , and becomes

smaller (i.e., larger in absolute value) if I increases.
It is worth noting that if one imposes an assumption of equal row cluster sizes by setting

ω̂p = 1
P , this penalty term becomes a constant E = −I log(P). Let this constrained version

of the test statistic be denoted as λ∗
LR :

λ∗
LR = E+ I J

2

⎛

⎝log

⎛

⎝
I∑

i=1

J∑

j=1

(dc)i j
2

⎞

⎠−log

⎛

⎝
P∑

p=1

Q∑

q=1

I∑

i=1

J∑

j=1

zipk jq((dc)i j −γ̂pq)
2

⎞

⎠

⎞

⎠ ,

= E + I J

2

(

log

( ∑I
i=1

∑J
j=1 (dc)i j 2

∑P
p=1

∑Q
q=1

∑I
i=1

∑J
j=1 zipk jq((dc)i j − γ̂pq)2

))

. (13)

Note that, for a given data set, the numerator of the term in the logarithm is a constant.
Therefore, (13) is maximized by minimizing the denominator of the term in the logarithm.
Furthermore, minimizing that term is equivalent tomaximizing

∑I
i=1

∑J
j=1 |Rp||Cq |(γ̂pq)

2,
since

I∑

i=1

J∑

j=1

(dc)i j
2 =

I∑

i=1

J∑

j=1

|Rp||Cq |(γ̂pq)
2 +

P∑

p=1

Q∑

q=1

I∑

i=1

J∑

j=1

zipk jq((dc)i j − γ̂pq)
2.
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This implies that the maximizer of (13) is the maximizer of

max-F =
∑I

i=1
∑J

j=1 |Rp||Cq |(γ̂pq)
2

∑P
p=1

∑Q
q=1

∑I
i=1

∑J
j=1 zipk jq((dc)i j − γ̂pq)2

,

which is the test statistic used to test for interaction in REMAXINT (Ahmed et al., 2021).
We therefore refer to a test based on (13) as REMAXINT test.

It is important to emphasize that z and K are not known, but must be estimated from
the data by maximizing (9). As a result, the sampling distribution of λLR is not known and
must be obtained byMonte Carlo simulations, just like related statistics defined on clustering
approaches (Ahmedet al., 2021;Bock, 1996).Wewill elaborate on theMonteCarlo procedure
in the next subsection, but first it is useful to discuss some properties of λLR .

Property 1 The distribution of λLR under H0 and H1 does not depend on the value of
the unknown residual variance σ 2.

Proof Consider the following transformation of the data: d ′
i j = m ·di j , that is, multiplication

by a constant factor m. This transformation implies the residual variance of the transformed
data to be σ ′2 = m2 · σ 2. This transformation further implies (dc)′i j = m · (dc)i j and
γ̂ ′
pq = m · γ̂pq . Since all terms within the squares of λLR are multiplied by this factor m, the

arguments of the logarithms in the second and third term of (12) are multiplied by m2 and
cancel out of the equation. 	


Property 2 The distribution of λLR under H0 and H1 does not depend on the values of
the unknown parameters μ, αi (i = 1, . . . , I ) and β j ( j = 1, . . . , J ).

Proof This follows from (dc)i j being only a function of γpq and εi j , which has been shown
in Ahmed et al. (2021). 	


3.2 Computational Procedure

In order to test the null hypothesis, it is possible to draw from the true null distribution of
λLR rather than using a bootstrap approach (e.g. (McLachlan & Peel, 1997; Hennig & Lin,
2015)). Specifically, in order to obtain the sampling distribution of the test statistic λLR under
the null hypothesis of no interaction, we propose a three steps Monte Carlo scheme (for fixed
numbers of row and column clusters P and Q, respectively),

• Step 1: Generate a datamatrixD(sim) of size I× J such that each cell (i j) contains a single
observation D(sim)

i j ∼ N (μ(sim) + α
(sim)
i + β

(sim)
j , σ 2(sim)), which is the model under the

null hypothesis of no interaction. We discuss briefly how to set these parameters below.
• Step 2: Fit themodel based on (1) to the generated datamatrixD(sim) usingAlgorithm 1 to
obtain estimates ẑ, K̂, ω̂, and 	̂ = (γ̂ 1, . . . , γ̂ P )T -with elements γ̂ p = (γ̂p1, . . . , γ̂pQ)T

- and compute λLR .
• Step 3: Repeat Step 1 and Step 2 L times. This yields the set of Monte Carlo values λ

(l)
LR

(l = 1, . . . , L).

If L is sufficiently large, the empirical distribution of λ
(l)
LR approaches the sampling distri-

bution of λLR under the null hypothesis. Importantly, in Step 1, Property 1 implies that one
may choose any arbitrary value, other than 0, for σ 2(sim). Furthermore, Property 2 implies
that one can set, without loss of generality, μ(sim) = 0, α(sim)

i = 0 (i = 1, . . . , I ), β(sim)
j = 0

( j = 1, . . . , J ).
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4 Simulation Study

In this section, we report an evaluation of the proposed methodology in terms of several
criteria. In the following subsections, we first present the design of the simulation studies
and then discuss the results, focusing on Type-I error rate and power of the likelihood ratio
test of interaction performed through λLR . Subsequently, we focus on evaluating E-ReMI
estimates in terms of parameter recovery.

4.1 Design

In this subsection we discuss the design of three simulation studies. The first study is used
to establish critical values of the test statistic λLR as a function of two completely crossed
experimental factors: size (I × J ) of the data set and number of clusters (P∗, Q∗) as assumed
in the data analysis. The critical values are found following the three steps in the computational
procedure described in Section 3.2, with L = 5000 and M = 20 number of random starts.
The second simulation study investigates to what extent these critical values are subject to
sampling errors, since the sampling distribution is generated based on a finite L . The third
simulation study is to assess the power of the test statistic λLR to detect row by column
interaction. In the first two simulation studies the design factors size of the data and number
of clusters were varied across a range of values:

(i) size (I × J ) of the data, at 6 levels: 20 × 20, 40 × 20, 50 × 30, 30 × 50, 100 × 20,
200 × 30;

(ii) number of clusters (P∗, Q∗), at 5 levels: (2, 2), (3, 2), (4, 2), (3, 3), (4, 4).

In the third simulation study, there are two additional design factors, which are, the true
number of clusters used for data generation (P, Q) and equality of expected row cluster
sizes. In this simulation study the design factors are not fully crossed.

4.1.1 Critical Values

In order to determine critical values of the proposed test statistic λLR we applied the three
steps Monte Carlo scheme described in Section 3.2. Specifically, we generated L = 5000
independent data setswithout any rowby column interaction for each level of the design factor
size (I × J ) of the data. That is, data were generated from the null model such that D(sim)

i j

∼ N (μ(sim) + α
(sim)
i + β

(sim)
j , σ 2(sim)) . Without loss of generality, we set σ 2(sim) = 1 and,

likewise, μ(sim) + α
(sim)
i + β

(sim)
j = 0, since λLR is pivotal with respect to these parameters

(see Section 3.2).
On each generated data set, we applied E-ReMI for each level of number of clusters

assumed in the analysis. For any combination of size and number of clusters this yields
L = 5000 simulated Monte Carlo test statistic values λLR = {λ(l)

LR; l = 1, . . . , L}, whose
distribution approaches the sampling distribution of λLR under the null hypothesis, if L is
sufficiently large (Efron, 1982; Chernick, 2011). From this simulated empirical distribution of
λLR we then obtain critical values λ

(α)
LR for any significance level α by finding its 100(1−α)th

quantile.
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4.1.2 Type-I Error Rate

In a second simulation studywe investigate towhich extent sampling error affects establishing
critical values if L = 5000. Specifically, for each level of size of the data, we generated a new
set of 5000 independent data sets from the null model such that Di j ∼ N (μ + αi + β j , σ 2),
where μ ∼ U(0, 1), αi ∼ N (0, 1) and β j ∼ N (0, 1) rather than set all of them to 0 as
in the first simulation study. Furthermore, given Property 1 of the test statistic λLR (see
Section 3.1), we set the error variance arbitrarily at σ 2 = 7.

Each data set was then analyzed by applying E-ReMI for each level of number of clus-
ters. Every single analysis yields an observed value of the test statistic λ

(obs)
LR , which may

be compared to the critical value for that combination of size and number of clusters
as was obtained in the first simulation study in Section 4.1.1. Specifically, if λ

(obs)
LR >

λ
(α)
LR the decision is to reject the null hypothesis (i.e., no row by column interaction)

in favour of the alternative hypothesis that there is some interaction. For each combi-
nation of size and number of clusters, the proportion of λ

(obs)
LR values (out of all 5000

data sets for that combination of size and number of clusters) that fall in the rejection
region corresponds to the empirical Type-I error rate of the E-ReMI interaction test. If
this study yields empirical Type-I error rates close to the nominal level α = 0.05, we
may conclude that choosing L = 5000 is sufficient for accurately establishing critical
values.

4.1.3 Power and Parameter Recovery

For this study, data sets were generated with a true underlying two-mode clustering structure
for the row by column interaction. Four design factors were varied in this study:

(i) size (I × J ) of the data, at 6 levels: 20 × 20, 40 × 20, 30 × 50, 50 × 30, 100 × 20,
200 × 30;

(ii) equality of expected row cluster sizes, at 2 levels: unequal versus equal;
(iii) true number of clusters (P, Q), at 3 levels: (2, 2), (3, 3), (4, 4);
(iv) number of clusters for the analysis (P∗, Q∗), at 3 levels: one level where (P∗, Q∗) =

(P, Q) and two other levels where the value of (P∗, Q∗) implies a misspecification
compared to (P, Q) (for details, see Figs. 1, 2, 3, 4, 5 and 6).

To generate a data set of size I × J , with true number of clusters equal to (P, Q), and with
unequal expected rowcluster sizes,we used the following procedure. First, randomly generate
row and column partition matrices z andK. Specifically, an I × P row partition matrix z with
unequal row cluster sizes (in expectation) is generated by randomly assigning each row to a
row cluster Rp with probability ωp , where ω1 = 0.7 and ωp = (1−ω1)/(P −1), (∀p �= 1).
This means one may expect one large row cluster that includes 70% of the rows, while the
remaining 30% of the rows are distributed evenly across the remaining row clusters. Since
this is true only in expectation, it is possible that this step yields empty row clusters, in which
case it is repeated until a z without empty clusters is generated. We further study the case of
equal row cluster sizes (in expectation), where the I × P row partition matrix z is generated
by randomly assigning each row to a row cluster Rp with probability ωp = 1/P , (∀p), and
this step is, if necessary, repeated until a z without empty clusters is generated. Likewise,
under each scenario, a J × Q column partition matrixK is generated by randomly assigning
each column to a column cluster Cq with probability 1/Q (if necessary repeated until a K
without empty clusters is obtained).
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Fig. 1 Empirical power as a function of method (x-axis) and size of the data (curves), for data generated with
unequal expected row cluster sizes. Column subfigures refer to true number of clusters set to (2, 2), (3, 3)
and (4, 4), for the first, second and third column, respectively. Subfigures in the first row are obtained when
the number of clusters for the analysis coincides with the true number of clusters (i.e., no misspecification),
while the second and third row correspond to misspecification of the number of clusters for the analysis (see
subfigure headings for details)
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Fig. 2 Empirical power as a function of method (x-axis) and size of the data (curves), for data generated
with equal expected row cluster sizes. Column subfigures refer to true number of clusters set to (2, 2), (3, 3)
and (4, 4), for the first, second and third column, respectively. Subfigures in the first row are obtained when
the number of clusters for the analysis coincides with the true number of clusters (i.e., no misspecification),
while the second and third row correspond to misspecification of the number of clusters for the analysis (see
subfigure headings for details)
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Next, each level of true number of clusters, we constructed a fixed P × Q matrix 	 of
true interaction parameter values γpq as

	 =
( −1

Iω1|C1|
+1

Iω1|C2|+1
Iω2|C1|

−1
Iω2|C2|

)
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, if (P, Q) = (4, 4),

where Iωp (p = 1, . . . , P) denotes the expected cluster cardinality of row cluster Rp

(p = 1, . . . , P) and |Cq | (q = 1, . . . , Q) denotes the cluster cardinality of column cluster
Cq (q = 1, . . . , Q) as implied by the generated column partition matrix K. Therefore, each
of these 	s guarantees that the constraints are met, that is

P∑

p=1

ωpγpq = 0,

for q = 1, . . . , Q, and

Q∑

q=1

|Cq |γpq = 0,

for p = 1, . . . , P .
Subsequently, an I × J matrix T, with elements ti j (i = 1, . . . , I , j = 1, . . . , J ), of true

interaction effects is obtained asT = z	KT and each element di j of the observed data matrix
D is generated as Di j ∼ N (ti j , σ 2

ε ). The value of σ 2
ε is chosen to obtain a specific effect size

η2 that is defined as the ratio of interaction variance to the sum of interaction variance and
error variance. Specifically,

η2 = ||T||2
||T||2 + I Jσ 2

ε

=
∑P

p=1
∑Q

q=1 |Rp||Cq |γ 2
pq

(∑P
p=1

∑Q
q=1 |Rp||Cq |γ 2

pq

)
+ I Jσ 2

ε

, (14)

which was set to η2 = 0.10.
For each combination of size, equality of expected row cluster sizes and true number of

clusters we generated 1000 simulated data sets. Each data setDwas then analyzed three times
using the newly proposed E-ReMI method, each of which setting the number of clusters for
the analysis equal to a specific value of (P∗, Q∗) (for details, see Figs. 1–6). This yielded for
each data set and each value of (P∗, Q∗) an observed value of the test statistic λ

(obs)
LR , which,

as in the second simulation study, was compared to the corresponding critical value λ
(α)
LR for

that combination of size and number of clusters (P∗, Q∗). The proportion of observed values
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(out of all 1000 data sets for that combination) that fall in the rejection region corresponds
to the empirical power of the E-ReMI test of interaction.

Furthermore, to study cluster recovery performance of E-ReMI, we examined the extent to
which the optimal partitions, as obtained from the data analyses, resemble the true partitions
underlying the data. Specifically, we measured the agreement between the true underlying
partition of the set of rows (z) and the estimated row partition (ẑ) making use of the adjusted
Rand index (ARI ), see (Hubert & Arabie (1985)). This index is 1 if the two partitions are
identical and 0 if the two partitions do not correspond more than expected by chance, and its
minimal value can be smaller than 0 (Chacón & Rastrojo, 2022). Furthermore, the index is
insensitive to permutations of the cluster labels.Wemeasured the agreement between the true
and estimated column partitions (i.e., K and K̂) in the same way. Finally, we examined the
extent to which the true interaction parameters are recovered by computing the normalized
squared error (NSE):

NSE = ||T − T̂||2
||T||2 = ||T − ẑ	̂K̂T ||2

||T||2 .

Note that NSE is a decreasing function of both cluster recovery and the extent to which
the estimated interaction effect parameters γ̂pq resemble the true interaction parameters γpq .
Larger values of NSE indicate stronger disagreement.

For the purpose of method comparison, each data set was also fitted by a model that
assumes equal expected row cluster sizes. This was achieved by using the constrained crite-
rion (CC)∗, as explained in Section 2.3. From a modeling perspective, this is equivalent to
fitting the REMAXINT model discussed in Ahmed et al. (2021). In order to test the hypoth-
esis of no interaction based on this model, we used the constrained test statistic λ∗

LR , as
explained in Section 3.1. Furthermore, we tested each simulated data set for the presence of
interaction by the methods developed in Boik (1993); Malik et al. (2016); Piepho (1994),
using the released R-package CombinIT (Shenaravi & Kharrati-Kopaei, 2018). This pack-
age includes various tests for the presence of interaction in two-mode data. We selected
those that are (computationally) able to handle the data sizes included in this simulation
study. Boik is based on a test statistic that involves the singular values of the (scaled) non-
additivity matrix (i.e., the matrix of least squares residuals from fitting a two-way additive
model to D). Malik partitions that set of residuals (non-additivity values) into three clusters
and is based on the idea that in the case of interaction one may expect to see at least one
cluster of residuals that are positive, one cluster of residuals that are negative, and possi-
bly one cluster with residuals close to zero. The test statistic is an F-like test statistic for
a two-way model that includes row and column main effects and a cluster effect. Piepho
tests for interaction by checking equality of variances between rows. This is based on the
fact that if there is no interaction, then the expected row variances are all equal. For further
details the reader is referred to the reference manual of combinIT on the CRAN website and
Shenaravi & Kharrati-Kopaei (2018).

We study empirical power for E-REMI, REMAXINT, Boik, Malik and Piepho. For the
estimated solutions obtained by REMAXINT, we also computed the three recovery measures
(i.e., ARI for rows, ARI for columns and NSE) and compared these results to those obtained
byE-ReMI.A similar comparison betweenE-ReMI andBoik,Malik andPiepho, respectively,
is not possible because these methods are not based on an underlying two-mode clustering
model and CombinIT only focuses on hypothesis testing for interaction.
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Table 2 Critical values λ
(α)
LR for

α = 0.05 for each combination of
size and number of clusters

Size Number of clusters (P∗,Q∗)

(2, 2) (3, 2) (4, 2) (3, 3) (4, 4)

20 × 20 15.029 14.542 12.844 25.043 34.636

40 × 20 13.875 12.932 10.476 22.349 29.991

50 × 30 18.562 17.975 15.288 28.986 39.144

30 × 50 29.511 29.213 27.725 47.065 62.392

100 × 20 13.101 11.655 8.157 20.167 27.509

200 × 30 17.206 15.738 11.909 26.005 35.052

4.2 Results

4.2.1 Critical Values

Table 2 shows critical values λ
(α)
LR for each combination of size of the data and number of

clusters, at a nominal significance level α= 0.05. These critical values were obtained by
applying the three steps Monte Carlo scheme described in Section 3.2.

Inspection of Table 2 shows that, for each level of size, the null distribution of λLR is
shifted towards the right for increasing number of column clusters. This is an expected
result because more parameters are estimated from the observed data and, thus, more chance
capitalization resulting in higher λLR values by chance. In contrast, increasing the number
of row clusters appears to result in null distributions that are shifted towards the left, despite
implying a larger number of estimated parameters. This shift must be attributed to the penalty
term in (12), which is affected by the number of estimated row clusters. Furthermore, if the
number of columns J is fixed, then for each level of number of clusters, the null distribution
of λLR is shifted to the left as the number of rows I increases. This is due to the penalty
term decreasing faster, as I increases, than the difference in log-squared-residuals (see (12)),
leading to smaller test statistic values. Finally, comparing 50 × 30 to 20 × 20 and 40 × 20
shows that increasing the number of columns J shifts the null distribution of λLR towards
the right, despite a larger number of rows I , which we have seen shifts the null distribution
to the left. This may be explained by the fact that J does not affect the penalty term in (12)
but only the difference in log-squared-residuals.

4.2.2 Type-I Error Rate

Table 3 shows the proportion of significant test results for all combinations of size and
number of clusters. Inspection of this table reveals that the proportion of significant test
results for each design is close to the nominal significance level α = 0.05. Specifically,
only one of the empirical Type-I error rates is outside the interval [0.0403; 0.0597], which
is the interval centered at the nominal significance level (i.e., 0.05) and with radius equal
to the (normal approximation of the) margin of error for a population proportion of 0.05,
with L = 5000 trials, and corrected for the number of tests, i.e. cells in the table, using
Bonferroni for familywise error rate of 5%. The accuracy of the empirical Type-I error rates
suggests that generating L = 5000 Monte Carlo data sets using the three steps Monte Carlo
scheme described in Section 3.2 is a reasonable choice for approximating the null distribution
of λLR .
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Table 3 Empirical Type-I error
rate for nominal α = 0.05 as a
function of size of the data and
number of clusters

Size Number of clusters (P∗,Q∗)

(2, 2) (3, 2) (4, 2) (3, 3) (4, 4)

20 × 20 .0424 .0564 .0562 .0596 .0520

40 × 20 .0536 .0502 .0420 .0464 .0566

50 × 30 .0550 .0440 .0442 .0526 .0512

30 × 50 .0418 .0492 .0504 .0492 .0542

100 × 20 .0492 .0512 .0450 .0518 .0488

200 × 30 .0510 .0608 .0492 .0496 .0426

4.2.3 Power and Parameter Recovery

Power
Figure 1 shows empirical power as a function of method (x-axis) and size of the data

(curves), for data generated with unequal expected row cluster sizes. Subfigures in each
column refer to true number of clusters set to (2, 2), (3, 3) and (4, 4), for the first, second
and third column, respectively. Subfigures in the first row are obtained when the number of
clusters for the analysis coincides with the true number of clusters (i.e., no misspecification),
while the second and third row correspond to misspecification of the number of clusters for
the analysis (see subfigure headings for details). Note that the methods Boik, Piepho and
Malik are not based on a two-mode clustering model, and hence their power depends only
on the generated data and not on the number of clusters for the analysis. The results of these
methods therefore do not change across the different rows of Fig. 1, but only across columns.
Overall, empirical power decreases if the number of observations (i.e., I and/or J ) decreases
(comparison between curves within a subfigure) and/or the true number of clusters (P, Q)

increases (comparison across subfigures of the first row). There is a decrease, but it is not
dramatic, in power for E-ReMI andREMAXINTwhen the number of clusters for the analysis
does not match the true number of clusters (comparison across rows of the subfigures within
each column). This suggests that, when using E-ReMI or REMAXINT as a test for interaction
a small under/over-fitting does not have serious consequences for power (see Section 6 for
a discussion on setting the number of clusters for the analysis). Comparing the different
methods, it stands out that Malik performs the worst, followed by Piepho, which shows
the second worst performance in terms of power. Comparing the remaining three methods
when the true number of clusters is set to (2, 2), REMAXINT seems to perform slightly
better than E-ReMI, which, in turn, tends to perform better than Boik. Instead, when the
true number of clusters is set to (3, 3) E-ReMI overall has the best performance, followed
by REMAXINT and then Boik. Given the choice of data generation mechanism (with one
row cluster comprising 70% of cases in expectation), this is not surprising as increasing the
number of row clusters leads to a higher level of inequality of the expected row cluster sizes.
Lastly, Boik becomes the best method, followed by E-ReMI, once the true number of clusters
increases to (4, 4).

Figure 2 is similar to Fig. 1 and shows empirical power as a function of method (x-axis)
and size of the data (curves), but for data generated with equal expected row cluster sizes
(same subfigure structure). Similarly as in the previous scenario, empirical power decreases if
the number of observations decreases (comparison between curves within a subfigure) and/or
the true number of clusters (P, Q) increases (comparison across subfigures of the first row).
However in this case, it seems that increasing the number of columns has a stronger effect
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than increasing the number of rows, as, when size is set to 30 × 50 results are equal or
better than when size is set to 50 × 30. A possible explanation is that since E-ReMI is too
flexible, it requires more columns so as not to overfit the data with respect to the row clusters.
REMAXINT, on the other hand, correctly assumes equal row cluster sizes and thus is less
affected by the number of columns. As in the unequal row cluster sizes case, there is a
small decrease in power for E-ReMI and REMAXINT when the number of clusters for the
analysis does not match the true number of clusters (comparison across rows of the subfigures
within each column), with E-ReMI being less robust to this misspecification. Comparing the
different methods, Malik and Piepho have clearly the worst performance. Comparing the
remaining three methods reveals that when the true number of clusters is set to (2, 2) and
to (3, 3) REMAXINT seems to perform better than E-ReMI and Boik, which have a similar
performance. When increasing the true number of clusters to (4, 4) Boik is clearly the best
performing method in terms of power.

Parameter recovery
Figures 3–6 present the results in terms of means, across all 1000 data sets per condition,

of ARI for rows, ARI for columns and NSE . Similarly to the figures for power, different
columns refer to different true number of clusters, while different rows to different number of
clusters for the analysis (see subfigure headings for details). For studying parameter recovery,
the comparison is possible only between E-ReMI and REMAXINT, as they are the only
two methods that yield estimated row and column partitions with corresponding bicluster
interaction effect parameters.

Figure 3 presents themeans across all 1000 data sets per condition of ARI for row clusters
as a function of method (x-axis) and size of the data (curves), for data generated with unequal
expected row cluster sizes. Overall, mean ARI is higher (i.e., better performance) for larger
data sizes. Specifically, it is the highest when size of the data is set to 200 × 30, followed
by 30 × 50 and then by 50 × 30. Moreover, for fixed number of columns and increasing
number of rows (i.e., comparing 100× 20, 40× 20 and 20× 20), the performance increases
as the number of rows increases. Lastly, comparing the cases 100×20, 50×30 and 30×50,
the latter has the overall best performance, while 100 × 20 has the worst, despite having
a larger number of total observations (i.e. 2000 as compared to 1500). This is as expected,
since a larger number of columns implies more information to estimate the row clusters.
Subfigures in the top row show the results when there is no missspecification of the number
of clusters for the analysis, that is, when they coincide with the true number of clusters.
Focusing on these figures, it can be seen that the two methods perform equally well in the
scenario with true number of clusters set to (2, 2), while E-ReMI performs better in the (3, 3)
and (4, 4) cases. In case ofmisspecification of the number of clusters for the analysis, E-ReMI
performs always better than REMAXINT. This result is particularly interesting in the (2, 2)
case, as the performance between the two methods was similar under correct specification
of the number of clusters. This increased comparative performance can be explained by the
fact that the misspecified models in this case imply an overfitting of the number of row
clusters. It is likely that E-ReMI is capable of classifying correctly most of the observations,
by creating additional small clusters for observations that (randomly) differentiate from the
two main clusters. REMAXINT, on the other hand, because of the implicit assumption of
equal row cluster sizes, is encouraged more strongly to yield surplus row clusters containing
a substantial number of rows.

Figure4presents themeans of ARI for rowclusters, for data generatedwith equal expected
rowcluster sizes.Overall,we see a slightly better performance ofREMAXINT in all scenarios
but those where the true number of clusters is equal to (2, 2) and the number of clusters for
the analysis are misspecified, where E-ReMI has clearly a better performance. These results
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can again be explained by the flexibility of E-ReMI with respect to yielding row clusters with
unequal row cluster sizes that may (partially) make up for the fact that an excess number of
row clusters is fitted to these data.

Figure5 presents the means of ARI for column clusters, for data generated with unequal
expected row cluster sizes. Overall, mean ARI is higher (i.e., better performance) for larger
data sizes. Specifically, it is the highest when size of the data is set to 200× 30, followed by
100× 20 and then by 50× 30. As opposed to ARI for rows, increasing the number of rows
has a stronger effect on ARI for columns than increasing the number of columns. This can
be seen by 50× 30 performing better than 30× 50 (it was the opposite in ARI for rows) and
by 100 × 20 performing better than those two (which was not the case for ARI for rows).
This is as expected, since a larger number of rows imply more information to estimate the
column clusters. The performance of the methods decreases for higher values of true number
of clusters (comparison across columns), and it is negatively affected by misspecification of
the number of clusters for the analysis when true number of clusters is set to (3, 3) and (4, 4)
(comparison across rows of the middle and rightmost columns). Note that when true number
of clusters is set to (2, 2), both misspecifications imply overfitting in terms of the number
of row clusters, whereas when true number of clusters is set to (4, 4) both misspecifications
imply underfitting in terms of the number of column clusters.When true number of clusters is
set to (2, 2) the two methods perform equally well, while when it is set to (3, 3) or (4, 4), the
two methods perform equally well in most cases, except for data sizes with a large number of
rows in which E-ReMI has a better performance. This suggests that estimation of the column
partitions benefits substantially from a correct specification of the model if that sample is
sufficiently large (i.e., 100 rows or more). Results when data are generated with equal row
cluster sizes are very similar, but now the two methods perform always equally well (results
not shown). Note that in this case, the sampling mechanism for the rows as assumed by
REMAXINT is correct.

Figure6 presents themeans of NSE , for data generated with unequal expected row cluster
sizes. The outcome measure NSE is the most general parameter recovery performance
measure out of the three considered in this study, since it takes into account the quality of the
estimated row clustering, of the estimated column clustering and of the estimated interaction
effect parameters. Bearing inmind that lower values of NSE imply better performance, mean
NSE is the lowest (and thus the best) for size set to 200× 30, i.e. the largest data size, and is
very similar for sizes set to 100× 20, 50× 30 and 30× 50. Since 100× 20 has a larger data
size than the other two cases, but it is also the most asymmetrical case, this suggests that more
symmetrical data sets tend to perform better in terms of NSE . Also in this case, increasing
the true number of clusters has a detrimental effect on the performance of the methods under
study. Interestingly, misspecification of the number of clusters for the analysis does not lead
to a clear trend with results that are sometimes not affected, sometimes positively affected
(better performance of the methods) and sometimes negatively affected (worse performance
of the methods). Lastly, E-ReMI tends to perform at least as well as REMAXINT, and, very
often, better. Results when data are generated with equal row cluster sizes are very similar,
but the two methods perform always equally well (results not shown).

Summarizing the results in this subsection, increasing size of the data leads to a better
performance, with some performance criteria more affected by an increase in the number of
rows and some others by an increase in the number of columns. Increasing the complexity
of the clustering structure, that is, when true number of clusters increases, leads to a worse
performance. Misspecification of the number of clusters for the analysis generally has a
detrimental effect on the performance of the methods, but for most performance criteria (in
most scenarios) this effect is minimal. As could be expected, in terms of power, E-ReMI
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tends to perform better than REMAXINT when data are generated with unequal expected
row cluster sizes whereas, in a few cases, the performance of REMAXINT is better than
that of E-ReMI when data are generated with equal expected row cluster sizes. Overall,
in terms of parameter recovery, E-ReMI performs better than REMAXINT when data are
generated with unequal expected row cluster sizes and both methods perform equally well
when data are generated with equal expected row cluster sizes. Lastly, when it comes to
power, Boik’s method is a good choice as its performance is always very good and it is
more robust to increased complexity of the data. However, this method was not designed to
facilitate interpreting the row by column interaction in a data set at hand. When interest is in
understanding that interaction, REMAXINT/E-ReMI are recommended because they yield
an estimated two-mode clustering structure and corresponding interaction effect parameter
estimates.

5 Application to a Study of Altruism Behavior

In this section, we analyze data from a real case study on altruism in order to infer
whether there is statistical evidence of interaction and to study what it looks like. The
application stems from a study of person by situation interaction, one of the key ques-
tions addressed by researchers in contextualized personality psychology (Geiser et al. 2015;
Mischel & Shoda 1995, 1998).

The data in question were collected in a study by Quintiens (1999) and were more recently
reanalyzed in Schepers & Van Mechelen (2011), Schepers et al. (2017) and Ahmed et al.
(2021). A group of I = 102 participants was presented with a set of J = 16 hypothetical
situations, each describing an emergency situation inwhich a victim could possibly be helped.
Each participantwas asked to indicate, for each situation, towhat degree theywould bewilling
to help the victim. Ratings were given on a 7-point scale from 1 (definitely not) to 7 (definitely
yes).

In order to infer whether there is evidence of interaction between person and situation
clusters, E-ReMI and REMAXINT interaction tests were both applied to the 102 × 16 data
matrix of help ratings. For REMAXINT, this implied analyzing the data set at hand by
maximizing constrained criterion (CC)∗, see Section 2.3, and testing the hypothesis based
on the constrained test statistic λ∗

LR , see Section 3.1. For both methods, we analyzed the data
assuming (P, Q) = (3, 3), since Ahmed et al. (2021) suggested this choice for REMAXINT,
using a post-hoc analysis. In order to obtain critical values for λLR and λ∗

LR , we employed
the procedure described in Section 3.2 for a significance level α = 0.05, and using Algorithm
1. Each analysis yields an observed value λ

(obs)
LR (for E-ReMI) and λ

∗(obs)
LR (for REMAXINT)

that was based on M = 500 random starts to reduce the possibility of finding a locally
optimal solution. For each test, p-values were computed as P(λ

(l)
LR > λ

(obs)
LR ) (for E-ReMI)

and P(λ
∗(l)
LR > λ

∗(obs)
LR ) (for REMAXINT). The results are shown in Table 4.

Table 4 Test results of E-ReMI
and REMAXINT applied to help
data assuming (P, Q) = (3, 3)

Method
E-ReMI REMAXINT

Critical value for α = 0.05 19.732 −9.22

Test statistic 40.292 18.40

P-value 0.0000 0.0000
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For both methods, the observed value of the test statistic falls in the rejection region. In
fact, for both tests, the observed test statistic value is larger than any of the simulated values
obtained under the null hypothesis, implying empirical p-values that are equal to zero. Thus,
based on the E-ReMI and REMAXINT interaction tests assuming (P, Q) = (3, 3), there is
strong empirical evidence to conclude that there is an interaction between person cluster and
situation cluster on willingness to help.

We now turn to studying what the gist of the interaction in these data looks like. For this
purpose, Fig. 7 shows bicluster means associated to the estimated person and situation parti-
tions yielded by E-ReMI and REMAXINT (middle and right panel, respectively), assuming
P = 3 person clusters and Q = 3 situation clusters. Furthermore, this figure also shows
the bicluster means associated to the estimated person and situation partitions yielded by a
Gaussian latent block mixture model (Govaert & Nadif, 2003) assuming the same number
of person and situation clusters (left panel). The block mixture model parameter estimates
can be seen as a summary of the data. Hence, if there is substantial interaction in some data
set, one may expect to see it exhibited in a suitable summary of those data. The latent block
mixture model was estimated using the R package blockcluster (Bhatia et al., 2017) allow-
ing unequal person and situation cluster sizes and assuming homogeneous residual variance
across biclusters.

Compared to the latent block mixture model, REMAXINT and E-ReMI yield person
and situation clusters that represent a stronger degree of person cluster by situation cluster
interaction. This difference implies a substantially different type of conclusion. Notably,
for the latent block mixture model, a ranking of the person clusters in terms of average
willingness to help is consistent across all three situation clusters. This implies that members
of one person cluster are on average more willing to help than members of another person
cluster, regardless of the situation. In contrast, for REMAXINT and E-ReMI that ranking
of the person clusters depends on the situation cluster. Specifically, the latter two methods
yield person clusters with members that, in some situations, are on average more willing
to help than members of another person cluster, but not in other situations. This difference
between, on the one hand, the solution yielded by the latent block mixture model and, on the
other the hand, the solutions yielded by REMAXINT and E-ReMI is due to the presence of
individual person and situation main effects in these data. The latent block mixture model

situation cluster

Bi
cl

us
te

r m
ea

n 
la

te
nt

 b
lo

ck
 m

od
el

2
3

4
5

6
7

1 2 3

0.03
0.60
0.36

situation cluster

Bi
cl

us
te

r m
ea

n 
R

EM
AX

IN
T

2
3

4
5

6
7

1 2 3

0.31
0.26
0.42

situation cluster

Bi
cl

us
te

r m
ea

n 
E−

R
eM

I

2
3

4
5

6
7

1 2 3

0.86
0.11
0.03

Fig. 7 Bicluster means for latent block mixture model (left panel), REMAXINT (middle panel) and E-ReMI
(right panel) applied to altruism data. Situation clusters are represented on the x-axis. Person clusters are
represented by the curves. The legends include, for each method, the estimated person cluster sizes. Since
REMAXINT does not estimate population person cluster sizes, the person cluster sizes for this method were

obtained by calculating the relative person cluster cardinalities of the estimated person clusters (i.e.,
|Rp |
102 )
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yields person and situation clusters that capture person by situation interaction as well as
person and situation main effects. Remember that the latent block mixture model does not
allow for row differences within a given row cluster, and likewise not for column differences
within a given column cluster. Stated differently, it assumes stochastic independence between
observations within the same row and column cluster. In contrast, REMAXINT and E-ReMI
assume local independencegivenR andC and the individual person and situationmain effects,
implying that person and situation clusters as yielded by these methods are not affected by
those main effects. It is important to note that this does not imply that the REMAXINT
and E-ReMI person clusters (resp. situation clusters) are necessarily independent of the
person (resp. situation) main effects in the data. For instance, it can be seen in Fig. 7 that
the situation clusters yielded by REMAXINT differ in terms of average willingness to help.
The same applies to the situation clusters yielded by E-ReMI. However, this association
simply happens to be a characteristic of these data and may be (almost) absent in other
applications.

Choosing between a latent block mixture approach or a maximal interaction clustering
approach must be based on the type of question that one wishes to address with the chosen
method. A latent block mixture approach will yield parameter estimates that are a good sum-
mary of the data, and will thus yield row and column partitions that also capture row and
columnmain effects. A maximal interaction clustering approach is more useful if one wishes
to describe the gist of the row by column interaction. As the nature of person by situation
interaction is of central interest in contextualized personality psychology, and not somuch the
possible person and situation main effects, one may argue that a maximal interaction cluster-
ing approach is the more interesting choice for this application. Using a latent block mixture
approach may, compared to a maximal interaction clustering approach, require the extraction
of muchmore row and column clusters to capture the observed correlations between columns
and rows, respectively. Furthermore, compared to E-ReMI, REMAXINT tends towards yield-
ing person clusters that aremore equal in size. According to E-ReMI, there is one large cluster
and twomuch smaller oneswhereas the relative cluster cardinalities of the rowclusters yielded
byREMAXINTare closer to each other. A likelihood ratio test suggests that E-ReMI provides
a better fit to these data than REMAXINT (−2(
(ξ0)−
(ξ)) = 43.784, d f = 2, p = 0.000).
Note that the person cluster by situation cluster interaction captured by E-ReMI is structurally
different from the one captured by REMAXINT. For REMAXINT, a ranking of the situation
clusters in terms of average willingness to help is equal across all three person clusters. This
implies that, consistently across person clusters, situations of one situation cluster elicit on
average more willingness to help than situations of another situation cluster. In contrast, for
E-ReMI this ranking of the situation clusters depends on the person cluster: Situations of sit-
uation cluster 2 elicit on average more willingness to help than situations of situation cluster
1 for members of two of the three person clusters, but the opposite holds for members of the
other person cluster. In contextualized personality psychology, this difference in structure is of
theoretical importance, as the consistent ranking of situation clusters as yielded by REMAX-
INT suggests the possible existence of a latent (one-dimensional) force that stems from the
situations and that plays a key role in determining the behavior of all persons (VanMechelen,
2009). In this application, an example of that force could be the level of compassion as induced
by a situation. However, since E-ReMI yields a structure that does not show a consistent rank-
ing of the situation clusters, and fits the altruism data better than REMAXINT, it appears that
willingness to help cannot be explained by such a one-dimensional underlying situational
force.
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6 Discussion

In this paper, we presented E-ReMI, a method based on a probabilistic two-mode clustering
model that yields two-mode partitions of the data with maximal interaction between row
and column clusters. Specifically, this paper extends existing work (Ahmed et al., 2021), in
several ways. First, in the specification of the model, we relaxed the assumption of equal
cluster size on the random rows, thus allowing for unequal cluster size of the row clusters.
Moreover, we introduced a new testing procedure for the null hypothesis of no interaction.
This includes a test statistic, its properties and an algorithm to obtain the distribution of the
test statistic under the null hypothesis. Finally, we developed software for all the methods
presented in this paper (i.e., estimating E-ReMI and REMAXINT models and Monte Carlo
sampling for hypothesis testing). In order to make these methods available to a large group
of users, we implemented our codes in the free software R. In summary, using the proposed
method, users will be able to test the presence of interaction between rows and columns.
They will also obtain a two-mode partition of the data set based on maximal interaction, as
well as estimates of the model parameters, i.e. interaction effects, row cluster weights and
main effects.

We assessed the performance of the proposedmethod bymeans of a simulation study and a
real-life application. We further compared the proposed method with other competing meth-
ods, wherever possible. Specifically, in the simulation studies, we studied the performance
of E-ReMI in terms of Type-I error rate, power and parameter/partition recovery. Empirical
Type-I error rates showed good performance, as their deviation from the nominal significance
level was not more than what is expected by chance. In terms of power, as predictable, we
observed lower power of the methods considered here when size of the data decreases or the
number of row/column clusters increases. Misspecification of the number of clusters for the
analysis generally has a detrimental effect on the performance of the methods, but for most
performance criteria (in most scenarios) this effect is minimal. Boik’s method has always
a good performance and it is more robust to increased complexity of the data as compared
to E-ReMI and REMAXINT, however it is not designed to facilitate interpreting the row by
column interaction found. E-ReMI tends to perform better than REMAXINT under unequal
expected row cluster sizes, whereas in a few cases REMAXINT performs better than E-ReMI
under equal expected row cluster sizes. As for parameter/partition recovery E-ReMI tends to
perform better than REMAXINT under unequal expected row cluster sizes and both methods
perform equally well when data are generated with equal expected row cluster sizes. In an
analysis of a real data set on altruism, we found strong empirical evidence for person by
situation interaction based on REMAXINT and E-ReMI hypothesis testing. For these data,
we further discussed the parameter estimates yielded by REMAXINT, E-ReMI and a Gaus-
sian latent block mixture model and highlighted the different underlying structures that are
uncovered by the methods, including their implications for important substantive research
questions in contextualized personality psychology.

Several extensions of the work reported in this paper are possible. Firstly, a limitation
of the current approach is the assumption of normality on the residual terms εi j of the
probabilistic model of E-ReMI. It is not clear how the method behaves in case of a violation
of this assumption, which may be likely in applications. Therefore, it would be interesting
to perform a study on the robustness of E-ReMI to violations of the normality assumption.
This study is beyond the scope of this paper and it is currently under investigation. Secondly,
just like REMAXINT, the newly proposed method E-ReMI requires that the number of
row and column clusters are fixed a priori. Ahmed et al. (2021) proposed a post analysis
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approach to select optimal values for these parameters, but other approaches are certainly
possible. For example, this can be done developing a method where P and Q are parameters
to be estimated (see e.g., (Miller & Harrison, 2018)). Thirdly, it would be interesting to
generalize the model such that it allows to perform two-mode maximal interaction clustering
for binary or count response data. This can be done using a logistic and Poisson regression
framework, respectively, but may necessitate using a marginal likelihood approach with a
distributional assumption on the random row effects αi instead of a conditional likelihood
approach. Finally, for some applications it may be more suitable to fit a model with a random
effects assumption for the columns too (and assuming a latent random Q-partition of the
column set). It is to be studied whether a conditional likelihood approach that conditions
on sufficient statistics for the row main effects as well as sufficient statistics for the column
main effects, is an appropriate choice as a method for estimating the model parameters of
interest.

Data Availability R codes for generating simulated data as described in Section 4 are available in DataverseNL
at the following url https://doi.org/10.34894/PWQHEC. We do not own the rights for the person by situation
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Appendix A: Cross-product Term U

In this appendix, we show how to derive (5). The cross product termU in (4) can be rewritten
as

U =
P∑

p=1

I∑

i=1

Q∑

q=1

J∑

j=1

zipk jq Ai Bi j

=
P∑

p=1

I∑

i=1

zip Ai

Q∑

q=1

J∑

j=1

k jq(di j − d̄i · − β j − γpq)

=
P∑

p=1

I∑

i=1

zip Ai

Q∑

q=1

|Cq |(−γpq).

The second line is obtained by replacing Bi j by its definition, i.e. Bi j = di j − d̄i · −β j −γpq ,
see Table 1, and by taking the elements that do not depend on j out of its summation. The third
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line is obtained by noting that
∑Q

q=1

∑J
j=1 k jq(di j − d̄i ·) = 0 and

∑Q
q=1

∑J
j=1 k jqβ j =

∑J
j=1 β j = 0, since each column j is assigned to one and only one cluster, and the summation

is across all k jq . Additionally,
∑Q

q=1

∑J
j=1 k jq(−γpq) = ∑Q

q=1 |Cq |(−γpq), since γpq does
not depend on j, and |Cq | is the cardinality of column cluster Cq .

Appendix B: Conditional Likelihood

In this appendix, we show how to derive (9). The conditional classification log-likelihood in
(8) can be rewritten as:


(ξ) = logW + log V − 1

2σ 2 B

= logW − I J

2
log 2πσ 2 − 1

2σ 2 B

By replacing V by its definition, i.e. V = exp
(−I J

2 log 2πσ 2
)
, see Table 1. The optimization

problem entails maximizing this function w.r.t. ωp, β j and γpq . This problem is equivalent
to maximizing the conditional classification log-likelihood logCL , obtained by replacing σ 2

in 
(ξ) with its likelihood maximizer B
I J obtained by partial differentiation of 
(ξ) w.r.t. σ 2.

This leads to

logCL = logW − I J

2
log

2π

I J
B − I J

2

= logW − I J

2
log (B) + H ,

where H = I J
2

(
log

( I J
2π

) − 1
)
is an additive constant.

Appendix C: Maximum Likelihood Estimation

In this appendix we derive the estimates of the parameters ωp, β j and γpq , by maximizing
the conditional classification log-likelihood in (9). We first rewrite the full expression as

logCL =
⎛

⎝
P∑

p=1

I∑

i=1

zip logωp

⎞

⎠ − I J

2
log

⎛

⎝
P∑

p=1

Q∑

q=1

I∑

i=1

J∑

j=1

zipk jq (di j − d̄i · − β j − γpq )
2

⎞

⎠ + H ,

where H is an additive constant. In order to obtain the estimate of ωp , it is sufficient to note

that only
(∑P

p=1
∑I

i=1 zip logωp

)
depends on ωp , and that this is equivalent to finding the

maximum likelihood estimate of a multinomial distribution. Thus ω̂p = |Rp |
I , p = 1, . . . , P .
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Nextwe apply the Lagrangemultipliermethod to find the estimate ofβ j and γpq . Focusing
on the terms that depend on β j and γpq the Lagrangian function is written as

L = − I J

2
log

⎛

⎝
P∑

p=1

Q∑

q=1

I∑

i=1

J∑

j=1

zipk jq(di j − d̄i · − β j − γpq)
2

⎞

⎠

−λβ

J∑

j=1

β j − λγq

P∑

p=1

|Rp|γpq − λγp

Q∑

q=1

|Cq |γpq , (15)

where λβ , λγq and λγp are the Lagrange multipliers associated to the equality constraints on
β j and γpq .

Focusing on finding themaximumof the β j ( j = 1, . . . , J ) parameters, the first derivative
is:

∂L
∂β j

= 1

σ 2

⎛

⎝
P∑

p=1

I∑

i=1

zip
(
di j − d̄i · − β j − γpq

)
⎞

⎠ − λβ.

Equating this equation to 0, and solving for β j leads to the following result,

∂L
∂β j

= 1

σ 2

⎛

⎝
P∑

p=1

I∑

i=1

zip
(
di j − d̄i · − β j − γpq

)
⎞

⎠ − λβ = 0

⇐⇒
P∑

p=1

I∑

i=1

zipdi j −
P∑

p=1

I∑

i=1

zipd̄i · − β j

P∑

p=1

I∑

i=1

zip −
P∑

p=1

γpq

I∑

i=1

zip − σ 2λβ = 0

⇐⇒ β j = d̄. j − d̄.. − 1

I

P∑

p=1

|Rp|γpq − 1

I
λβσ 2,

where the second line is obtained by applying the sum operators to each term within the
brackets and multiplying each side of the equation by σ 2. The third line is obtained by
noting that

∑P
p=1

∑I
i=1 zipdi j = I d̄. j ,

∑P
p=1

∑I
i=1 zipd̄i · = I d̄..,

∑P
p=1

∑I
i=1 zip = I ,

∑I
i=1 zip = |Rp| (for a specific p), and by solving for β j .
In order to find the Lagrange multiplier λβ , the next step is to apply a sum operator over

j to both sides of the equations leading to

J∑

j=1

β j =
J∑

j=1

d̄. j −
J∑

j=1

d̄.. − 1

I

J∑

j=1

P∑

p=1

|Rp|γpq − 1

I

J∑

j=1

λβσ 2

⇐⇒ J

I
λβσ 2 = − J

I

P∑

p=1

|Rp|γpq

⇐⇒ λβ = − 1

σ 2

P∑

p=1

|Rp|γpq ,

with the second line resulting from
∑J

j=1 β j = 0 (constraint) and
∑J

j=1 d̄. j −∑J
j=1 d̄.. = 0,

and the final result obtained by solving for λβ . This result, together with the equation obtained
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for β j , leads to

β̂ j = d̄. j − d̄..,

since, after replacing λβ in the derivative, the last two terms cancel out.
The estimate of γpq can be obtained similarly. First, we compute the first derivative of

(15) w.r.t. γpq

∂L
∂γpq

= 1

σ 2

⎛

⎝
I∑

i=1

J∑

j=1

zipk jq
(
di j − d̄i · − β j − γpq

)
⎞

⎠ − λγq |Rp| − λγp |Cq |.

Equating this equation to zero, and solving for γpq leads to the following result,

∂L
∂γpq

= 1

σ 2

⎛

⎝
I∑

i=1

J∑

j=1

zipk jq
(
di j − d̄i · − d̄. j + d̄.. − γpq

)
⎞

⎠ − λγq |Rp| − λγp |Cq | = 0

⇐⇒ γpq |Rp||Cq | =
⎛

⎝
I∑

i=1

J∑

j=1

zipk jq
(
di j − d̄i · − d̄. j + d̄..

)
⎞

⎠ − λγq |Rp|σ 2 − λγp |Cq |σ 2,

where in the first line β j is replaced by its estimate, and the second line is obtained by
solving for γpq and noting that

∑I
i=1

∑J
j=1 zipk jqγpq = γpq

∑I
i=1 zip

∑J
j=1 k jq and

γpq
∑I

i=1 zip
∑J

j=1 k jq = γpq |Rp||Cq |. In order to find the Lagrange multiplier λγq , the
next step is to apply a sum operator over p to both sides of the equations leading to

P∑

p=1

γpq |Rp||Cq | =
⎛

⎝
J∑

j=1

I∑

i=1

P∑

p=1

zipk jq
(
di j − d̄i · − d̄. j + d̄..

)
⎞

⎠ −
P∑

p=1

λγq |Rp|σ 2 −
P∑

p=1

λγp |Cq |σ 2

⇐⇒ − Iλγq σ
2 − |Cq |σ 2

P∑

p=1

λγp = 0

⇐⇒ λγq = −|Cq |
I

P∑

p=1

λγp ,

with the second line resulting from
∑P

p=1 γpq |Rp||Cq | = 0 (constraint),
∑I

i=1
∑P

p=1 zip
(
di j − d̄i ·

) = 0,
∑J

j=1 k jq
(
d̄.. − d̄. j

) = 0 and
∑P

p=1 |Rp| = I , and the

final result obtained by solving for λγq . Similarly, one can obtain λγp = −|Rp |
J

∑Q
q=1 λγq .

Putting these results on the Lagrange multipliers together with the equation obtained for γpq ,
leads to

γ̂pq |Rp||Cq | =
⎛

⎝
J∑

j=1

I∑

i=1

zipk jq(dc)i j

⎞

⎠+ |Cq ||Rp|σ 2

I

P∑

p=1

λγp +
|Rp||Cq |σ 2

J

Q∑

q=1

λγq

⇐⇒ γ̂pq |Rp||Cq | =
⎛

⎝
J∑

j=1

I∑

i=1

zipk jq(dc)i j

⎞

⎠ + |Rp||Cq |σ 2

I J

⎛

⎝J
P∑

p=1

λγp + I
Q∑

q=1

λγq

⎞

⎠

⇐⇒ γ̂pq = 1

|Rp||Cq |
J∑

j=1

I∑

i=1

zipk jq
(
di j − d̄i · − d̄. j + d̄..

)
,
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The second line of the equation is obtained by collecting common terms. Last line is obtained
by noting that J

∑P
p=1 λγp + I

∑Q
q=1 λγq = 0. This last result is derived as follows

J
P∑

p=1

λγp + I
Q∑

q=1

λγq = −J
P∑

p=1

|Rp|
J

Q∑

q=1

λγq + I
Q∑

q=1

λγq

= I
Q∑

q=1

λγq − I
Q∑

q=1

λγq = 0,

with the first equality obtained by replacing λγp with −|Rp |
J

∑Q
q=1 λγq and the second noting

that
∑P

p=1 |Rp| = I .
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