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Abstract
Skeletal muscle has remarkable regenerative abilities regulated by a highly orchestrated process involving the activation of 
cellular and molecular responses, which are dependent on satellite cells. These cells maintain the stem cell population and 
provide numerous myogenic cells that proliferate, differentiate, fuse and lead to new myofiber formation for a functional 
contractile tissue. We have isolated and characterized satellite cells obtained from human biopsies and established an in vitro 
model of myogenesis, evaluating muscle regeneration, monitoring the dynamic increases of the specific myogenic regulatory 
factors and the final formation of multinucleated myofibers. As the skeletal muscle is an endocrine tissue able of produc-
ing many substances that can act on distant organs, and it can be physiologically modulated by a variety of hormones, we 
embarked in a project of characterization of muscle cell endocrinology machinery. The expression of a large array of hormone 
receptors was quantified during the process of myogenesis. The results obtained showed a significant and generalized increase 
of all the tested hormone receptors along the process of differentiation of human cultured cells from myoblasts to myocytes. 
Interestingly, also the production of the myokine irisin increased in a parallel manner. These findings point to the human 
cultured myoblasts as an ideal model to characterize the skeletal muscle endocrine machinery and its hormonal regulation.
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Abbreviations
VDR	� Vitamin D receptor
TRα	� Thyroid receptor α
TRβ	� Thyroid receptor β

GCR​	� Glucocorticoid receptor
PTH-1R	� Parathyroid hormone receptor-1
IFG-1R	� Insulin-like growth factor 1 receptor
LRP-5	� Low-density lipoprotein receptor-related pro-

tein 5
LRP-6	� Low-density lipoprotein receptor-related pro-

tein 6
PAX-7	� Paired box protein 7
MRFs	� Myogenic regulatory factors
MHC	� Myosin heavy chain
hSkMC	� Human skeletal muscle-derived cells
SCs	� Satellite cells

Introduction

Skeletal muscle is the most abundant tissue in the human 
body, accounting for about 40–45% of total body weight. 
It plays an important role in controlling physical activ-
ity, including voluntary locomotion, postural behavior, 
and breathing. Moreover, it has an extraordinary ability 
to adapt to physiological demands, such as growth, and 
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to regenerate new muscle fibers after damage by injury or 
intense physical activity [1].

The regeneration and remodeling of skeletal muscles 
are extremely complex biological processes, in which skel-
etal muscle stem cells (also known as satellite cells, SCs) 
are involved. The SCs are located under the basal lamina 
of the myofiber; this position, between the myofiber and 
the surrounding extracellular matrix (ECM), is the reason 
Alexander Mauro gave them this name in 1961 [2]. In 
healthy adult mammalian muscle, SCs are predominantly 
quiescent (phase G0) and represent 2.5–6% of all nuclei 
of a given fiber; however, after injury or degeneration, 
SCs become activated and can generate large numbers of 
new myofibers within just few days [3]. Like stem cells, 
satellite cells also self-renew to maintain their own popu-
lation, re-establishing their numbers and quiescent state 
by homing back to highly specialized niches, thus allow-
ing future rounds of regeneration [4]. Specific temporal 
factors, called Myogenic Regulatory Factors (MRFs), 
members of the basic helix-loop-helix (bHLH) family of 
transcription factors including Myf-5, MyoD1, Myogenin 
and MRF4, are an essential group of four muscle-specific 
proteins responsible for acting at multiple points in the 
muscle lineage to cooperatively establish the skeletal mus-
cle phenotype [4, 5].

Besides its well-known structural and biomechanical 
functions for the purpose of movement, the skeletal mus-
cle is considered a secretory organ, capable of producing 
several substances called myokines, which can act on the 
muscle itself, on nearby tissues, and on distant organs, in 
an autocrine, paracrine and endocrine fashion, respectively 
[6–8]. These functions can be physiologically modulated 
by physical stimuli and by cytokines, mineral ions and 
hormones, or can be modified by sarcopenia, morphologi-
cal modification of muscle fibers and/or endocrinopathies.

The evaluation of the skeletal muscle as a secretory 
organ is not fully understood, neither it is the endocrine 
control of muscle function and differentiation [9]. A future 
chapter in the endocrine discipline will certainly be mus-
clecrinology. The aim of our study was to evaluate the 
endocrine machinery in an in vitro cellular model of myo-
genesis obtained from human skeletal muscle biopsies. 
The understanding of hormonal production and regula-
tion in the skeletal muscle remodeling may contribute to 
the identification of new possible therapeutic targets in 
pathologies in which the myogenesis and/or the function 
of mature myocytes is affected.

Materials and Methods

Isolation of Human Skeletal Muscle‑Derived Cells 
(hSkMCs)

Primary cultures were isolated from human skeletal muscle 
biopsies of 3 healthy adult volunteers undergoing plastic sur-
gery, after signing an informed consent in accordance with a 
protocol approved by the Local Ethics Committee of AOU 
Careggi, Firenze (Italy), for human studies (Rif. N. 14.017), 
as well as the ethical standards stated in the Declaration 
of Helsinki (1964) and its later amendments or comparable 
ethical standards. The minced specimens were processed 
within 3 h from the operation and enzymatically digested 
for 3 h at 37 °C in Ham’s F12 Coon’s modification medium 
(Sigma-Aldrich) supplemented with 20% fetal bovine serum 
(FBS) and 3 mg/ml collagenase type I (C-0130, Sigma-
Aldrich). The tissues were then mechanically dispersed by 
pipetting and passed through a sterile 100 μm stainless steel 
tissue sieve to remove any large debris. The undigested tis-
sue trapped in the sieve was discarded, while the infranatant 
containing the hSkMC fraction was collected and the cells 
sedimented by centrifugation at 300×g for 5 min. The cells 
were then pre-plated into 100 mm Petri dishes for 1 h at 
37 °C to remove fibroblasts which adhere to plastic more 
avidly than satellite cells. Afterwards, the resulting suspen-
sion was seeded in 100 mm tissue culture plates at 37 °C in 
humidified atmosphere with 5% CO2 using a skeletal mus-
cle cell growth medium (GM) composed of Skeletal Mus-
cle Cell Basal Medium (PromoCell GmbH, cod. C-23260) 
supplemented with 5% Fetal Calf Serum (FCS), 50 µg/ml 
fetuin, 10 ng/ml Epidermal Growth Factor (EGF), 1 ng/ml 
basic Fibroblast Growth Factor (bFGF), 10 µg/ml insulin, 
0.4 µg/ml dexamethasone and 100 IU/ml penicillin, 100 μg/
ml streptomycin (Table  1). The medium was refreshed 
twice a week and the cells were used for further subcul-
turing or cryopreservation upon reaching 5 × 103 cells/cm2. 
Cells at the early passages (from 1 to 4) were used for all 

Table 1   Supplements and concentrations after their addition to the 
basal medium for growth medium and myogenic differentiation 
medium used in the experiments, respectively

Growth medium Myogenic 
differentiation 
medium

Fetal calf serum 0.05 ml/ml –
Fetuin 50 µg/ml –
Epidermal growth factor 10 ng/ml –
Basic fibroblast growth factor 1 ng/ml –
Insulin 10 µg/ml 10 µg/ml
Dexamethasone 0.4 µg/ml –
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the experiments. All tissue culture plates utilized for cell 
amplification and experiments were previously coated with 
Matrigel® (BD Biosciences) in order to increase cell attach-
ment, proliferation and to maintain cell phenotype [10].

hSkMC Characterization and Multipotency 
Evaluation

The characterization of the hSkMC cell lines was performed 
analyzing the presence of the surface markers of mesenchy-
mal stem cells and specific markers of the isolated satel-
lite cells by flow cytometry analysis and by studying their 
multipotency toward the myogenic, the adipogenic and the 
osteogenic phenotypes, as previously described [11].

Flow Cytometry

hSkMC lines were evaluated by flow cytometry with a 
CyFlow®Space cytometer (Sysmex Partec), equipped with 
FlowMax® software. The antibodies used (Abcam) were 
directed against the following antigens (the tags are given in 
parentheses): CD44 (PE/Cy7), CD90 (APC), CD105 (FITC), 
CD45 (PerPC), CD34 (PE) and CD56 (PerCP Cy5.5) and 
PAX-7 (FITC). Each antibody was diluted according to 
manufacturer’s instruction. Briefly, 1 × 105 cells were labeled 
with antibodies in PBS with 1% bovine serum albumin 
(BSA) for 20 min RT in the dark, then washed once and 
promptly analyzed.

Myogenic Differentiation

hSkMC lines at 70% of confluence were cultured with a spe-
cific myogenic medium (MM): Skeletal Muscle Cell Basal 
Medium (PromoCell GmbH, cod. C 23260) supplemented 
with 10 µg/ml insulin, 100 IU/ml penicillin and 100 μg/ml 
streptomycin. The medium was refreshed twice a week. 
The expression of the myogenic phenotype was evaluated 
by microscopic observations of the multinucleated cells for-
mation, by immunofluorescence of the myosin heavy chain 
(MHC) and by gene expression analysis, after 10 days of 
induction (Table 1).

Adipogenic Differentiation

hSkMC lines were cultured with a specific adipogenic 
medium (AM): Ham’s F12 Coon’s modification medium 
supplemented with 10% (FBS), 100  IU/ml penicillin, 
100 μg/ml streptomycin and 1 μM dexamethasone, 1 μM 
bovine insulin, 0.5 mM isobutylmethylxanthine (IBMX). 
The medium was refreshed twice a week. The expression of 
the adipogenic phenotype was evaluated on cells cultured 
in AM for 10 days by cytochemical staining with Oil Red O 
and brightfield observations (Axiovert 200, Zeiss).

Osteogenic Differentiation

hSkMCs were plated on tissue culture dishes at a cell 
density of 1 × 104 cells/cm2 and grown to 70–80% conflu-
ence. Afterwards, the medium was switched to osteogenic 
medium (OM): Ham’s F12 Coon’s modification medium 
supplemented with 10% FBS, 100  IU/ml penicillin, 
100 μg/ml streptomycin, 10 nM dexamethasone, 0.2 mM 
sodium l-ascorbyl-2-phosphate, and 10 mM β-glycerol 
phosphate. The medium was refreshed twice a week. The 
expression of the osteoblastic phenotype was evaluated at 
20 days from induction by monitoring the production of 
mineralized nodules by cytochemical staining. The cells 
were washed with DPBS (two times), fixed in 4% para-
formaldehyde (PFA)/DPBS for 15 min, and washed with 
ultrapure water (three times). Calcium mineral deposits 
were stained with 1 µg/ml calcein added to the OM and 
nuclei were counterstained with 1 µg/ml bisbenzimide 
for 5 min; calcium mineralized deposits were stained in 
fluorescent green, nuclei in blue, and then visualized in 
epifluorescence microscopy (Axiovert 200, Zeiss).

Immunofluorescence

hSkMCs were seeded into 24-well plates (1 × 104 cells/
well) and cultured for 24 h in GM. Afterwards, cells were 
fixed for 10 min with 4% paraformaldehyde and permea-
bilized for 10 min with 0.2% Triton X 100 at RT. Cells 
were treated for another 30 min at 37 °C with RNAse 
in 2% bovine serum albumin (BSA) in order to degrade 
RNA and block non-specific sites. Samples were then 
incubated overnight with primary antibody for PAX-7 
and MHC (Abcam, Cambridge, UK) in PBS at 4 °C. After 
extensive washes with PBS, goat anti-mouse IgG (H + L) 
SuperClonal secondary antibody, Alexa Fluor 488 con-
jugate (Thermo Fischer Scientific, Waltham, MA, USA) 
was incubated for 1 h at room temperature in the dark. 
Subsequently, nuclei were counterstained with 10−5 M 
propidium iodide. Samples were then washed with PBS 
for observation in laser scanning confocal microscopy 
(LSCM), using an LSM 510 Meta microscope (ZEISS, 
Oberkochen, Germany) [12].

RNA Extraction and Real‑Time qPCR Analysis

Gene expression analysis in the hSkMCs was performed in 
GM and after 9 days of induction in MM. The genes included 
in the analysis were PAX-7, MyoD-1, Myf-5, MRF-4, Myo-
genin, Desmin, MHC, Irisin, and specific hormone receptor 
genes (VDR, TRα, TRβ, GCR, IGF-1, PTH1R, LRP-5, LRP-
6). Target gene expression was normalized to 40S ribosomal 
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Table 2   Primers and TaqMan 
probes used for the experiments

TaqMan probes with F as reporter fluorochrome (6-carboxyfluorescein [6-FAM]) and ZEN as quencher. 
Fluorochrome (Iowa Black FQ); bp base pairs of amplicon size; Tm melting temperature (°C)

Gene Primer sequences (5′–3′) and TaqMan probes Amplicon 
size (bp)

Tm (°C)

PAX-7 for GGT​ACC​GAG​AAT​GAT​GCG​G 124 55
PAX-7 rev CCC​ATT​GAT​GAA​GAC​CCC​TC
Pax-7 Probe 6-FAM/AGC​TGA​TTG /Zen/ACC​CGG​CCT​TGG​/3IABkFQ
MyoD-1 for GAC​GTG​CCT​TCT​GAG​TCG​ 148 55
MyoD-1 rev CTC​AGA​GCA​CCT​GGT​ATA​TCG​
MyoD-1 Probe 6-FAM/CGC​TGC​TCT/Zen/CTC​CCT​CGCTG/3IABkFQ
Myf-5 for ATG​CCA​TCC​GCT​ACA​TCG​ 145 55
Myf-5 rev ACA​GGA​CTG​TTA​CAT​TCG​GC
Myf-5 Probe 6-FAM/CCC​CAC​CTC/Zen/CAA​CTG​CTC​TGA​T/3IABkFQ
MRF-4 for CCC​TGG​AAT​GAT​CGG​AAA​CA 95 55
MRF-4 rev CTT​CAG​CTA​CAG​ACC​CAA​ACA​
MRF-4 Probe 6-FAM/ATC​TTG​AGG/ZEN/GTG​CGG​ATT​TCC​TGC/3IABkFQ
Myogenin for AGC​GAA​TGC​AGC​TCT​CAC​ 150 55
Myogenin rev TGT​GAT​GCT​GTC​CAC​GAT​G
Myogenin Probe 6-FAM/TGA​CCC​TAC/Zen/AGA​TGC​CCA​CAA​CC/3IABkFQ
MHC for GAG​TCC​TTT​GTG​AAA​GCA​ACAG​ 143 55
MHC rev GCC​ATG​TCC​TCG​ATC​TTG​TC
MHC Probe 6-FAM/CAA​GTC​TTC/Zen/CCC​ATG​AAC​CCT​CCC/3IABkFQ
Desmin for AAC​GCG​ATC​TCC​TCG​TTG​ 101 55
Desmin rev GAG​AAC​AAT​TTG​GCT​GCC​TTC​
Desmin Probe 6-FAM/CAA​TTC​TGC/ZEN/GCT​CCA​GGT​CAA​TGC/3IABkFQ
VDR for CCG​CAT​CAC​CAA​GGA​CAA​ 112 62
VDR rev CTT​CCT​CTG​CAC​TTC​CTC​ATC​
VDR Probe 6-FAM/TGT​GGA​CAT/ZEN/CGG​CAT​GAT​GAA​GGA/3IABkFQ
TRα for TCC​CTA​GTT​ACC​TGG​ACA​AAGA​ 133 59
TRα rev GGA​TGG​AGG​TTC​TTC​TGG​ATTG​
TRα Probe 6-FAM/ACA​GCG​GTA/ZEN/GTG​ATA​ACC​AGT​TGCC/3IABkFQ
TRβ for CTT​CCA​AAC​GGA​GGA​GAA​GAA​ 115 59
TRβ rev CGT​GAT​ACA​GCG​GTA​GTG​ATAC​
TRβ Probe 6-FAM/TGT​GTA​GTG/ZEN/TGT​GGT​GAC​AAA​GCCA/3IABkFQ
GCR for TGG​TCC​TGT​TGT​TGC​TGT​T 103 55
GCR rev CTT​CCC​TGG​TCG​AAC​AGT​TT
GCR Probe 6-FAM/TAA​GCT​CTC/ZEN/CTC​CAT​CCA​GCT​CCT/3IABkFQ
IGF-1 for CAG​CAA​GTG​AGG​AGA​GGA​AC 131 59
IGF-1 rev GTG​TGA​GAA​GAC​CAC​CAT​CAA​
IGF-1 Probe 6-FAM/TCG​AAG​AGA/ZEN/GCA​AAT​GCA​CAT​CCCT/3IABkFQ
LRP-5 for CCC​AGT​CTG​TCC​AGT​ACA​TG 134 59
LRP-5 rev CTC​AGA​GAC​CAA​CCG​CAT​C
LRP-5 Probe 6-FAM/CCA​ACC​TCA/ZEN/ATG/3IABkFQ
LRP-6 for CCC​ATT​TGT​GTT​TGA​TGT​CTCC​ 137 60
LRP-6 rev CAA​GTC​TGT​CCT​TCG​AGC​TAAA​
LRP-6 Probe 6-FAM/AAA​CCT​GCA/ZEN/AAG​ATG​GTG​CCA​CAG/3IABkFQ
PTH-1R for GGG​AAG​CCC​AGG​AAA​GAT​AAG​ 125 58
PTH-1R rev CAC​AGG​ATG​TGG​TCC​CAT​T
PTH-1R Probe 6-FAM/TGC​CTC​CTT/ZEN/GTC​CTC​CTC​AGA​CTC/3IABkFQ
Irisin for ACT​ATG​TAC​TCC​GTA​TCC​TCCTC​ 126 55
Irisin Rev TGT​CAT​CGG​ATT​TGC​CAT​CT
Irisin Probe 6-FAM/CCA​GCA​GAA/ZEN/GAA​GGA​TGT​GTC​GGAT/3IABkFQ
RPS18 for GAT​GGC​AAA​GGC​TAT​TTT​CCG​ 132 60
RPS18 rev TCT​TCC​ACA​GGA​GGC​CTA​C
RPS18 Probe 6-FAM/TTC​AGG​GAT(ZEN/CAC​TAG​AGA​CAT​GGC​TGC​/3IABkFQ
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protein S18 (RPS18). All procedures for amplification were 
previously described [13] (Table 2).

Statistical Analysis

All gene expression analyses were performed in tetraplicate 
and each experiment was repeated three times. All data were 
expressed as means ± SD and are the number of mRNA mol-
ecules of the specific genes normalized to the housekeeping 
RPS18 mRNA. Statistical differences among mean values 
were analyzed using ANOVA and a post hoc sequentially 
rejective multiple Bonferroni test, with predetermined 
(default) experimentwise probability αT = 0.05, comparing 
two groups: the value of the specific gene after 9 days of 
myogenic induction with respect to the control in proliferat-
ing medium.

Results

Isolation and Characterization of hSkMCs

The cell populations derived from human skeletal muscle 
biopsies (Fig. 1a), obtained by surgical resection, were 
amplified in Matrigel® coated plates in order to increase cell 
adherence and maintain cell phenotype. In fact, the isolated 
cells, when plated for the first time in a dish (passage 0), 
attach showing a rounded shape that persists for 2–3 days, 
with a slow proliferation rate (Fig. 1b). After that period, 
cells become flatter and show an elongated morphology with 
2–4 cytoplasmic extensions (Fig. 1c).

Expanded cells were subsequently characterized by flow 
cytometry in order to verify their phenotype, analyzing 
the cluster of differentiation (CD) marker surface proteins 
(CD44, CD90, CD105, CD56, CD34, CD45) and one of the 
most reliable markers of the satellite cells (PAX-7).

The phenotype analysis revealed that isolated hSkMCs 
expressed the surface markers CD44, CD90, CD105, com-
monly used to identify mesenchymal stem cells, with a very 
high percentage of positiveness. In contrast, the hematopoi-
etic lineage marker CD45 was negative. Regarding PAX-7, 
analysis showed the presence of the nuclear transcription 
factor in 99.12% of total cells (Fig. 2a). On the contrary, 
CD34 and CD56, commonly used to identify satellite cells 
derived from mouse skeletal muscle, turned out to be non-
specific for satellite cells derived from human skeletal mus-
cle tissues; in fact, their presence on the cell surface is close 
to 0% and 9%, respectively (Fig. 2).

Immunofluorescent staining of PAX-7, observed in 
LSCM, allowed the expression of the nuclear marker to be 
assessed. As expected from cytometry, it is clearly shown 
that the PAX-7 protein is present in the nuclei in all the 
expanded hSkMCs, confirming the isolation of human satel-
lite cells (Fig. 2b).

Moreover, the gene expression of PAX-7 was analyzed 
over time, to verify its presence at cellular passages used 
for the experiments. As shown by Real-Time qPCR, we 
confirmed PAX-7 presence, but, as the passages increase, 
the gene expression of PAX-7 decreases, reducing the dif-
ferentiating potential of cells (Fig. 2c). For that reason, we 
have limited the use of hSkMCs to passage 4.

Multipotentiality of hSkMCs

The multipotent evaluation of hSkMCs was assessed by the 
induction toward the adipogenic, osteogenic and myogenic 
phenotypes, using appropriate media described in “Materials 
and Methods” section.

Adipogenic differentiation was performed culturing the 
hSkMCs in AM for 7 days, and confirmed, using Oil Red 
O staining, by the multiple intracellular lipid-filled droplets 
accumulation and microscopic observations in brightfield. 

Fig. 1   Photo of human skeletal muscle biopsy (a); representative observations of primary culture of hSkMCs in phase contrast microscopy at 
passage 0 after 1 day in the dish; objective ×20 (b) and after 3 days in the dish; objective ×10s (c)
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In contrast, control cells grown in GM for the same time did 
not show any formation of lipid droplets (Fig. 3a, b).

Osteogenic induction of hSkMCs was assessed with OM 
up to 15 days and observed monitoring the production of 
the mineralized calcium deposits, thanks to the fluorophore 
calcein added to the medium. Epifluorescence microscopic 
observations have shown calcein uptake in the calcium nod-
ules after 15 days of osteogenic induction; in contrast, the 
control cells grown in GM for the same time did not show 
any deposition of calcium deposits (Fig. 3c, d).

Afterwards, the hSkMCs were differentiated toward 
the myogenic phenotype using DM for 9 days. During this 
period, cells started to approach one another, fusing with 
one another. Observations in phase contrast microscopy 
have revealed the presence of multinucleated elongated 
cells (containing from 3 to more than 8 nuclei) referable to 
myotubes (Fig. 3e, f).

In order to confirm the myogenic induction of hSkMCs, 
we have performed, using Real-Time qPCR, the analysis 
of the MRFs (MyoD-1, Myf-5, MRF-4, Myogenin), the 

Fig. 2   Scattergrams of phenotype characterization of hSkMCs by 
flow cytometry analysis. The overlay plot shows the percentage of 
hSkMCs expressing the nuclear marker PAX-7 (open histogram); 
grey histogram: autofluorescence of unstained cells (a); Observation 

in LSCM of the nuclear transcription factor of satellite cells PAX-7, 
objective ×40 (b); Real-Time qPCR of the PAX-7 gene during pas-
sages (from 1 to 4) of hSkMCs. Data are normalized for the house-
keeping gene RPS18 (c)
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main myogenic differentiation genes, Desmin and MHC, 
after cultivating cells in MM up to 9 days. The results have 
shown a significant increase in the expressions of these 
genes during myogenesis, except for Myf-5, with respect 
to the control in GM (Time 0), indicating that differentia-
tion occurred (Fig. 6). Moreover, differentiation has been 
supported by the presence of significant increases in the 
gene expression of Desmin and MHC, which represent 

essential proteins for proper muscular structure and func-
tion (Fig. 4).

In particular, MHC was assessed at different time points 
(T0, 3, 6, 9 days) in order to follow the effective myogenesis 
over time (Fig. 4f). Since MHC is one of the most important 
proteins in skeletal muscle, and it is essential for contraction 
and muscle movement, it was analyzed by immunofluores-
cence staining. The microscopic observation of hSkMCs 

Fig. 3   Adipogenic phenotype 
evaluation of the hSkMCs. 
Representative images of the 
adipogenic phenotype evalua-
tion of skeletal muscle-derived 
cells at time 0 (a) and after 
7 days of induction (b). The 
intracellular lipid droplets are 
stained in red by Oil Red O, 
and nuclei counterstained with 
Mayer’s acid hemalum in blue. 
Images acquired in brightfield 
microscopy. Objective ×20. 
Osteogenic phenotype evalu-
ation of the hSkMCs. Repre-
sentative images of calcium 
staining at time 0 (c) and after 
15 days of osteogenic induction 
(d). The mineralized calcium 
deposits are in fluorescent green 
and nuclei counterstained with 
propidium iodide in con-
ventional blue color. Images 
acquired in epifluorescence 
microscopy. Objective ×10. 
Representative images in phase 
contrast microscopy of the 
multinucleated cells after 9 days 
of myogenic induction (e, f). 
The arrows show the formed 
myotubes. Objectives ×20
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after 9 days in MM has shown the presence of MHC, dem-
onstrating the suitability of our in vitro myogenesis model 
(Fig. 5).

Gene Expression Analysis of Hormone Receptors 
in hSkMCs During In Vitro Myogenesis

The hSkMCs were differentiated using the MM and, after 
9 days of induction, we analyzed the gene expression of the 
hormone receptors, in order to characterize the maturation 
and endocrine properties of the cellular model during myo-
genesis. In particular, we analyzed the following genes by 
Real-Time qPCR: VDR, TRα, TRβ, GCR, PTH-1R, IFG-1R, 
LRP-5, LRP-6 and Irisin.

The results of the hormone receptors analyzed have shown 
significant increases in gene expressions during cell differen-
tiation with respect to the control group in growth medium, 
demonstrating the formation of the skeletal muscle as an endo-
crine apparatus during myogenesis (Fig. 6). Subsequently, the 
expression of Irisin, a hormone secreted by skeletal muscle, 
specifically suggests the development and maturation of new 
myofibers, since it represents a myokine secreted by mature 
endocrine tissue.

Fig. 4   Real-Time qPCR analysis of the main genes during in  vitro 
myogenesis of hSkMCs, in proliferation (red), and after 9  days of 
myogenic induction in DM (blue). Values are the mean ± SD of 

3 independent experiments and they are expressed as the number 
of mRNA molecules of the genes normalized to the housekeeping 
RPS18 mRNA. *p < 0.001, **p < 0.005 versus control group in GM
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Discussion

The last decade has been an exciting period for the study 
of the biology of skeletal muscle stem cells and tissue 
regeneration and the development of novel human in vitro 

cell models can contribute to the identification of new 
mechanisms that control myogenesis [14–20]. These 
human cell cultures appear more suitable for predictive 
screening strategies when compared to rodent cell lines, 
such as C2C12 or rat L6 myoblasts [21, 22].

Fig. 5   Microscopic observa-
tions in LSCM of MHC in 
hSkMCs after 9 days of myo-
genic induction (Alexa Fluor 
488, conventional green color). 
Nuclei counterstained with pro-
pidium iodide in conventional 
red color. Objective ×20 (a) and 
×40 (b)

Fig. 6   Real-Time qPCR of the hormone receptor genes during 
in vitro myogenesis of hSkMCs, in proliferation (red) and after 9 days 
of myogenic induction in DM (blue). Values are the mean ± SD 
of 3 independent experiments and they are expressed as the num-

ber of mRNA molecules of the genes normalized to RPS18 mRNA. 
*p < 0.001, **p < 0.005, °p < 0.01, §p < 0.05 versus control group in 
GM
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In this study, we have isolated and characterized skeletal 
muscle-derived cells from human biopsies to be used for the 
in vitro study of myogenesis. The developed cellular model 
was enriched in satellite cells, as confirmed by analyzing the 
presence of PAX-7 in more than 99% of the hSkMCs and 
the disappearance of the PAX-7 gene with each passage in 
culture [23]. For this reason, we decided to use cells not over 
the fourth passage in vitro.

Although CD34 antigen is a marker of satellite cells in 
murine models, our results indicate that, in human SCs, 
CD34 expression is not the hallmark of SCs, as it is present 
in only 0.5% of hSkMCs [24]. The same is true for CD56 
antigen, which is present in only 9% of the isolated hSkMCs, 
a result that may be controversial considering other data in 
the literature, since it also marks natural killer lymphocytes 
[25, 26]. Flow cytometry analysis in hSkMCs has permit-
ted the verification of the presence of the principal markers 
to be expressed on the surface of mesenchymal stem cells, 
specifically CD44, CD105 and CD90, and the negativity 
of the hematopoietic CD45 antigen, confirming the mes-
enchymal stemness of our cells, as largely recognized in 
the literature. The multipotentiality of the isolated hSkMCs 
was confirmed by demonstrating their own capacity to dif-
ferentiate into the adipogenic, osteogenic and myogenic phe-
notypes, as assessed by cytochemical staining performed on 
cells, properly induced with specific differentiating media, 
as reported in the literature [27].

Using appropriate differentiation medium with confluent 
cells at 70–80% density in the plate, we were able to induce 
the alignment of the activated cells (myoblasts), the subse-
quent fusion with each other and, finally, the differentiation 
into multinucleated myofibers. Gene expression analyses 
have shown significant increases of MRFs, MyoD-1, MRF-
4, and Myogenin, 9 days after myogenic induction which, 
together with Desmin and MHC gene expression augmen-
tation during the entire study period, have confirmed myo-
blast determination and muscle differentiation, confirming 
the suitability of our in vitro myogenesis model. The only 
non-significance increase in gene expression was detected 
for the Myf-5 gene, in agreement with data reported in the 
literature. The reason may the fact that this transcription 
factor is the main controller of the activation of SCs toward 
myogenic differentiation and is expressed in a majority of 
quiescent SCs in adult muscle [3]. It is also reported that 
Myf-5, in the absence of MyoD-1, MRF-4 and Myogenin 
during development, is unable to drive myogenic differentia-
tion, so Myf-5 may contribute to controlling "stemness" in 
the niche [4] [28].

Once validated the in vitro model, we embarked in the 
project of characterization of the endocrine machinery in 
the different stages of myocytic differentiation. This anal-
ysis was never performed before in in vitro models. The 
analysis was focused on selected receptor genes known to 

mediate a specific hormonal action on skeletal muscle tis-
sue or suggested to mediate an endocrine action on skeletal 
muscles: VDR, TRα, TRβ, IGF-1R, PTH-1R, GCR, LRP-5 
and LRP-6.

In the literature, it has been reported that vitamin D defi-
ciency is a condition associated with skeletal muscle weak-
ness and small muscle fiber size [29]. In animal models, 
the skeletal muscle dysfunction observed in vitamin D defi-
ciency is reversed by vitamin D repletion, whereas vitamin 
D supplementation in humans has been found to increase 
skeletal muscle strength [30]. Many reports suggest that the 
VDR is expressed in skeletal muscle [31]. VDR deletion in 
mice results in alterations in muscle function and strength 
[32], and its association with interleukin-6 may play a role 
in intramuscular inflammation [33].

The thyroid hormone plays an essential role in myogen-
esis; it acts as a pleiotropic factor during development and 
regulates genes involved in growth and differentiation [34, 
35]. In particular, data on C2C12 cells and primary myo-
blasts from mice have suggested the essential role of TRα in 
the optimal fusion and regeneration of myofibers after mus-
cle injury and to maintain the SC niche during aging [36, 
37]. Moreover, it has been reported that TRα is the dominant 
isoform thyroid receptor in C2C12 and murine primary myo-
blasts. This is in agreement with our results in which mRNA 
expression is higher for TRα with respect to TRβ.

Insulin-like Growth Factor-1 (IGF-1), the mediator of 
growth hormone function, strongly promotes the prolifera-
tion and differentiation of skeletal myoblasts. The anabolic 
effects of IGF-1 are mediated through specific binding with 
IGF-1R to promote the activation of the PI3K/art/mTOR 
signaling pathway, which is associated with protein syn-
thesis and muscle hypertrophy [38, 39]. Moreover, IGF-
1R is required for normal muscle growth, and its loss on 
mouse muscle leads to increased basal glucose uptake 
due to increases in levels of Glu1 and Glu4 transporters, 
chronic activation of Akt and AMPK signaling, and a loss of 
TBC1D1, data confirmed also in L6 myotubes [40].

Regarding parathyroid hormone (PTH) and its receptor 
(PTH-1R), very few data in the literature are reported about 
their effects on skeletal muscle cells. PTH has been shown 
to enhance the differentiation of mesoderm to various cell 
types, including osteoblasts and smooth muscle cells [41, 
42]. Since skeletal muscle cells are derived from the meso-
derm, it is conceivable that PTH may also influence the dif-
ferentiation of these cells. It has been reported that PTH and 
the expression of PTH-1R accelerate the differentiation of 
SCs to myotubes in a mouse model [43].

Skeletal muscle is a notable target for glucocorticoids 
(GCs) in health and disease. GCs convey their signals mainly 
through an intracellular glucocorticoid receptor (GCR). 
Chronically increased levels of endogenous or exogenous 
GCs can lead to proteolysis, muscle wasting, myopathy, and 
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induce insulin resistance with severe perturbation in sys-
temic energy metabolism, while short exposures to high GC 
concentrations have been involved in the development of 
crucial illness myopathy [44, 45]. Despite its importance, 
data on GC signaling during human skeletal muscle regen-
eration and how GCR primary target genes confer metabolic 
function of GCs remain incomplete [46]. In the literature, it 
has been reported that GCR is involved in a positive regula-
tion of muscle regulatory gene Myf-5 in the mouse myo-
genic cell line C2 [47].

LRP-5 and LRP-6 are highly homologous proteins with 
key functions in canonical Wnt signaling. Alteration in 
genes encoding these receptors or their interacting proteins 
is linked to human diseases and, for that reason, they have 
been a major focus of drug development efforts to treat sev-
eral human conditions, including osteoporosis, cancer and 
metabolic disease [48]. Sclerostin is a circulating osteocyte-
derived glycoprotein produced by the osteocytes that in a 
paracrine fashion negatively regulates Wnt signaling after 
binding the LRP5/LRP6 co-receptors in osteoblastic cells 
and its pharmacologic inhibition produces bone anabolic 
effects [49]. Conversely, endocrine effects of sclerostin on 
muscle morphology remain unknown, and very little data 
are reported in the literature [50].

In the present study, the genes encoding the receptors 
for the above outlined hormones were detected in a limited 
number of collected hSkMCs. Moreover, all the assayed 
receptor genes significantly increase during in vitro myo-
genesis of hSkMCs, supporting their role in the maturation 
of the human skeletal muscle. The fact that the two scle-
rostin receptors LRP-5 and LRP-6 are expressed in hSkMCs 
is opens for this important osteocytic protein a function as 
a hormone in the reciprocal interaction between bone and 
skeletal muscle. Interestingly, also the expression of the 
gene encoding Irisin, an important hormone produces by 
mature skeletal muscle tissue that affects cortical bone [51] 
increases during the process of in vitro differentiation of 
the hSkMCs.

Conclusions

In conclusion, our results have demonstrated the utility of 
skeletal muscle satellite cells, isolated from human biop-
sies, as an in vitro cell model to study the myogenesis 
process and the characterization of the skeletal muscle 
as an endocrine apparatus and a target organ for sev-
eral hormones. In fact, all the assayed hormone receptor 
genes may represent feasible targets during skeletal mus-
cle regeneration to be modulated throughout the skeletal 
muscle differentiation pathway. Similarly, muscle func-
tion should be evaluated in patients suffering of various 
endocrinopathies, a problem not routinely carried out by 

the endocrinologists. These findings could stimulate fur-
ther research for a better understanding of disorders asso-
ciated with impaired adult myogenesis, to help identify 
novel therapeutic interventions for these conditions. Future 
developments of this research will include the enlarge-
ment of the culture collection and the characterization of 
the novel evidenced targets in human skeletal myogenesis.
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