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A B S T R A C T   

Understanding globular protein adsorption to fluid interfaces, their interfacial assembly, and structural reor-
ganization is not only important in the food industry, but also in medicine and biology. However, due to their 
intrinsic structural complexity, a unifying description of these phenomena remains elusive. Herein, we propose 
N-isopropylacrylamide microgels as a promising model system to isolate different aspects of adsorption, dila-
tational rheology, and interfacial structure at fluid interfaces with a wide range of interfacial tensions, and 
compare the results with the ones of globular proteins. In particular, the steady-state spontaneously-adsorbed 
interfacial pressure of microgels correlates closely to that of globular proteins, following the same power-law 
behavior as a function of the initial surface tension. However, the dilatational rheology of spontaneously- 
adsorbed microgel layers is dominated by the presence of a loosely packed polymer corona spread at the 
interface, and it thus exhibits a similar mechanical response as flexible, unstructured proteins, which are 
significantly weaker than globular ones. Finally, structurally, microgels reveal a similar spreading and flattening 
upon adsorption as globular proteins do. In conclusion, microgels offer interesting opportunities to act as 
powerful model systems to unravel the complex behavior of proteins at fluid interfaces.   

1. Introduction 

Globular proteins are ubiquitous, spherically-assembled bio-
polymers. Their amphiphilic nature drives them to adsorb to fluid in-
terfaces, where they undergo a structural deformation due to lateral 
interfacial stresses and thermodynamically favorable rearrangements. 
Understanding protein adsorption to fluid interfaces, and the conse-
quent assembly and refolding, is essential for the development of in-
dustrial emulsions and foams, the stability of pharmaceutical 
biotherapeutic formulations, the understanding of animal and human 
physiological mechanisms, and for many environmental processes 
[1–7]. However, elucidating the adsorption and reconfiguration pro-
cesses is a complex task with several unresolved issues. Efforts have been 
made to unravel the interfacial structure and degree of unfolding with 
neutron reflectometry, synchrotron radiation, circular dichroism, dy-
namic force microscopy, molecular dynamic simulations, and interfacial 
rheometry [3,8–13]. These studies suggest an unfolding of globular 
proteins depending on the protein’s internal structure and isoelectric 
point, ionic strength and pH of the aqueous phase, the presence of small 
surfactant molecules, and the properties of the hydrophobic phase. As 

experimental conditions may vary and the used methods are either in-
direct measurements or simulations, which only give access to mean 
properties, results reported in the beforementioned literature are partly 
inconsistent with each other. Therefore, a micron-sized model system, 
which can help further elucidate the interfacial deformation and 
morphology of adsorbed globular proteins, would be highly beneficial. 

Microgels made of polymerized N-isopropylacrylamide (pNIPAM) 
were proposed as promising simplified model systems for studying 
protein denaturation, 3D bulk gelation [14,15] and 2D adsorption and 
assembly of globular proteins [16–20]. The advantage of these synthetic 
polymer-based microgels is their high degree of monodispersity and 
uniformity compared to bio-based microgels, e.g., from proteins. The 
behavior of pNIPAM in water is governed by the competition of the 
screening of the hydrophobic groups from contact with water and the 
presence of conformational constraints, e.g. cross-links. This competi-
tion presents analogies with the case of proteins, where their tertiary 
structure is determined by a complex energy landscape [21]. Typically, 
pNIPAM microgels swell in aqueous solutions, resulting in porous par-
ticles with a denser core structure surrounded by a softer polymer 
corona [22]. Upon adsorption to a fluid interface, microgels rearrange 
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due to lateral stresses into a “fried-egg" morphology [23], similar to the 
interfacial reorientation of globular proteins. Finally, the adsorption and 
interfacial assembly of globular proteins has been shown to depend on 
their size, cross-linking, shape, and location of hydrophobic residues 
[10,24]. These factors can be accurately controlled during the synthesis 
of microgels, and have also been shown to affect their adsorption, 
interfacial assembly, and rearrangement upon lateral forces [25,26]. 
The adsorption and interfacial reorganization of globular proteins and 
microgels is schematically illustrated in Fig. 1. 

2. Materials and methods 

2.1. Materials 

Table 1 reports the oils used in this study, with their interfacial 
tension against pure water (γow). All oils were purified from polar con-
taminants with magnesium 70 silicate Florisil (MgO ⋅ SiO2, 100–200 
mesh, Fluka Chemie GmbH, CH), as already described elsewhere [27]. 

The aqueous phase consisted of MilliQ-water (18.2 mΩcm) and 
10 mM NaCl (Sigma Aldrich, >99.5 %). For the microgel synthesis and 
the single-particle analysis, the following chemicals were used: N,N′- 
methylenebis(acrylamide) (BIS, Fluka 99.0 %), methacrylic acid (MAA, 
Acros Organics 99.5 %), potassium persulfate (KPS, Sigma-Aldrich 99.0 
%), isopropanol (Fisher Chemical, 99.97 %), toluene (Fluka Analytical, 
99.7 %), n-hexane (SigmaAldrich, HPLC grade 95 %) and methyl tert- 
butyl ether (MTBE, SigmaAldrich, ACS reagent > 99.5 %) were used 
without further purification. N-isopropylacrylamide (NiPAM, TCI 98.0 
%) was purified by recrystallization in 60/40 v/v toluene/hexane. 

2.1.1. Microgels synthesis and characterization 
pNIPAM (poly-N-isopropylacrylamide) microgels were synthesized 

with 5 mol % (stiffer microgels, Dh = 918 nm), or 1 mol % (softer 
microgels, Dh = 786 nm) N-N-methylenebisacrylamide (BIS) as cross-
linker, and in addition copolymerized with 5 mol % methacrylic acid 
(MAA). The synthesis protocols are described in more detail in Vialetto 
et al. [28]. Their hydrodynamic diameter (Dh) is 918 ± 17 nm at 
T = 22 ◦C and 499 ± 2 nm at 40◦C for the stiffer microgel and 786 
± 13 nm at T = 22 ◦C and 319 ± 1 nm at 40 ◦C for the softer microgel 
(Zetasizer, Malvern). Before the experiments, we purified the microgels 
suspension by centrifugation and supernatant exchange with pure 
water. This was repeated until the interfacial tension of the supernatant, 
as measured via bubble pressure tensiometry, reached a value close to 
the one of pure water (72.8 mN/m). 

2.2. Methods 

2.2.1. Pendant drop tensiometry 
A drop profile tensiometer (PAT-1, SINTERFACE Technologies, 

Germany) was used for interfacial tension measurements, microgels 
adsorption kinetics, and dilatational rheology measurements, as 
described in detail by Loglio et al. [29]. We formed a droplet of microgel 
solution (500 mg/L and 10 mM NaCl) in pure oil at the tip of a capillary. 
Preceding the experiment, we tested each oil against water to confirm a 
correct and constant γow and ensure the oil’s purity. Axisymmetric drop 
shape analysis was employed to determine the interfacial tension from 

the contour of the drop monitored by a CCD camera. For particles to 
adsorb completely and the interfacial layer to reach equilibrium, the 
droplet was kept constant for 20 h. Following, we performed a dilatation 
amplitude sweep. Each oscillation cycle was performed for 30 min at a 
constant frequency of ω = 0.01 s− 1. The drop was left at a constant area 
for 20 min between the oscillations to reach an equilibrated shape. The 
strain modulus E′ was derived based on Rühs et al. [30] at the area 
change ΔA/A = 2 %. 

2.2.2. Single-particles analysis 
Isolated microgels were deposited onto silicon wafers from the fluid 

interface for atomic force microscopy (AFM) imaging following an 
already-reported procedure [26,28]. After cutting the silicon wafers into 
pieces, they were cleaned for 15 min by ultrasonication in solvents 
(toluene, isopropanol, acetone, ethanol, and MilliQ-water). A silicon 
wafer was fixed to a linear motion driver and immersed in water inside a 
Teflon beaker.. We formed the n-hexane, toluene, or MTBE interface to 
water subsequently. Approximately 10 μL microgel suspension (4:1 
water: isopropanol solution) were injected at the interface, and after an 
equilibration time of 10 min, the silicon wafers were extracted vertically 
at a speed of 25 μm s− 1. During the crossing of the fluid interfaces, the 
adsorbed microgels were collected. Thereafter, the microgel-covered 
wafers were imaged with an AFM (Bruker Icon Dimension) in tapping 
mode using cantilevers with ~300 kHz resonance frequency and ~26 
mN m− 1 spring constant (OMCLAC160TS-R3, Olympus). Height and 
phase images were recorded simultaneously. We firstly processed im-
ages with Gwyddion. After, images are analyzed with a custom MATLAB 
code to obtain the average microgel height profile. A horizontal and 
vertical height profile through the center was measured and averaged 
over 20 microgels for each analyzed microgel. Next, we determined the 
diameter by fitting a circle on the microgels in the phase images. Lastly, 
we measured the core diameter by setting a lower threshold of 2.5 nm in 
the height profiles. We then used this to calculate the lateral extension of 
the microgel corona (corona width). 

3. Results and discussions 

To outline the extent of the similarity between proteins and micro-
gels at fluid interfaces, we compare the following aspects: (i) their 
adsorption behavior and interfacial pressure build-up, (ii) their dilata-
tional rheology, and (iii) their size and shape after adsorption and 
denaturing/spreading. 

Fig. 1. Schematic illustration of the adsorption and interfacial deformation (spreading) of a globular protein and a pNIPAM microgel at an oil-water or air- 
water interface. 

Table 1 
List of all the oils used, featuring their interfacial tension and purity.  

Oil γow [mN/ 
m] 

Purity 
[%] 

Company 

n-Octane  50.0 ≥99 % Fisher Chemical, 
Germany 

n-Hexane  50.4 ≥97 % Sigma Aldrich, France 
1-Chlorooctane  36.0 99 % Alfa Aesar, Germany 
1-Octanol  7.8 ≥99 % Sigma Aldrich, USA 
Toluene  36.8 ≥99 % Merck KGaA, Germany 
MCT (Myritol 318)  28.0 N.A. BASF, Germany 
MTBE (Methyl tert-butyl 

ether)  
9.8 100 % VWR Chemicals, France  

N. Nussbaum et al.                                                                                                                                                                                                                             



Colloids and Surfaces B: Biointerfaces 217 (2022) 112595

3

To elucidate the first aspect, we measured the spontaneous, 
diffusion-controlled adsorption of two different microgels (a “softer" and 
a “stiffer" one, having 1 or 5 mol % of N-N-methylenebisacrylamide 
(BIS) as cross-linker, respectively) with the pendant drop technique by 
monitoring the profile of an aqueous droplet (containing the microgels) 
in oils with different initial interfacial tension γow. The adsorption starts 
at an interfacial pressure Π = 0 and the adsorbing microgels increase Π 
to a final, steady-state, interfacial pressure Π∞ = γow − γ∞, with γ∞ 
being the equilibrated interfacial tension, as shown in the Supporting 
information Figure S1. The increase in Π originates from the adsorption 
of microgels to the interface and the subsequent spreading of surface- 
active polymer chains, which results in a decrease of the interfacial 
energy. Higher values of γow cause stronger lateral deformation forces on 
the adsorbed particles, resulting in a faster and more pronounced 
spreading at the interface [28,31]. Furthermore, the adsorption of 
microgels depends on the diffusive and convective mass transport to the 
interface as well as on the presence of energetic barriers [19], analo-
gously to the case of globular proteins [9]. The initial concentration 
affects mass transport, and the adsorption barriers depend on the 
interfacial coverage, with high interfacial coverage reducing the 
adsorption rate [32]. Hence, globular protein adsorb faster to fluid in-
terfaces than microgels (see the interfacial diffusion coefficient in Sup-
plementary information Figure S2), presumably due to their 
significantly smaller radii, and consequently increased bulk diffusion 
coefficient. 

To compare the equilibrium adsorption at different oil interfaces, the 
values of Π∞ are plotted as a function of γow, as shown in Fig. 2 [8,17,24, 
33,34]. The lowest Π∞ is found at the 1-octanol-water interface, which 
has the lowest γow. For interfaces with increasing γow, Π∞ rises as a 
power-law with an exponent a: 

Π∞∝γa
ow (1) 

Both microgels reveal an exponent a = 1.5. In comparison to other 
adsorbing substances such as surfactants (a = 1) [34], flexible protein 
(a = 1.25) [24], and noncrystalline cellulose (a = 3) [33], microgels 
closely resemble the behavior of globular proteins, which also show 
a = 1.5. In both cases, it is hypothesized that the exponent of 1.5 
originates from a dependency on the lateral interfacial forces, which 
unfold and flatten the proteins and the microgels at the interface [10, 
24]. 

After examining adsorption, we move to the characterization of the 

dilatation storage (E′) and loss (E”) moduli, which describe the 2D 
viscoelastic response upon compression and expansion of the adsorbed 
microgel monolayers. To assess the mechanical properties of the 
monolayers as a function of the interfacial tension of the fluid interface, 
E′ and E” were measured with the pendant drop tensiometer after the 
interface reached steady-state (Π = Π∞). 

All interfacial layers exhibit predominately elastic properties, i.e., 
E′ > E”. For simplicity reasons, Fig. 3 only depicts E′ as a function of γow. 
For the stiffer microgels, the elasticity of the interfacial layers increases 
slightly with higher γow, due to increasing deformation. The increased 
deformation results in larger particle diameters, thereby increasing 
microgel contact at the interface and providing more resistance to me-
chanical stress [35]. The softer microgels’ viscoelastic response to 
dilatation is weaker than the one measured for the stiffer microgels. 
Additionally, E′ remained essentially unaffected by the nature of the oil 
phase, maintaining an approximately constant value of E′ ≈ 4 mN/m. 
The softer microgels have a significantly larger corona width, as shown 
in Vialetto et al. [28]. Hence, the loose corona polymers dominate the 
mechanical interaction between the individual soft microgels. Such 
interpretation is supported by the values E′ of the linear pNIPAM poly-
mer, which is in a similar range as the softer microgels, especially at high 
γow, where the softer microgels are stretched more. 

Fig. 3 also contains literature results from globular and flexible 
proteins [8,10]. The comparison clearly shows that E′ is distinctly lower 
for the microgels. The elastic moduli of the measured microgels are 
instead in the range of flexible proteins, which suggests that the loose 
polymer coronas govern the 2D mechanical interactions for spontane-
ously adsorbed monolayers. Increasing the interfacial microgel density 
by compression increases the core to core contacts and might increase 
the similarity of the interfacial rheological behavior of microgels and 
globular proteins. Pinaud et al. [20] in fact measured dilatational 
moduli of microgels at the n-hexadecane-water interfaces in a similar 
range as found for globular proteins. 

Whether cross-linking between proteins in interfacial layers plays a 
dominant role or not in the defining the mechanical response has not 
been fully unraveled yet. Dickinson and Matsumura [36] have proposed 
that strong covalent bonds enforce interactions in globular protein 
layers. However, recent works [10,37] indicate that disulfide bonds play 
a minor role in the formation of uniform and elastic interfacial networks 
with commonly used proteins such as β-lactoglobulin and lysozyme. To 
this end, in-situ cross-linking of microgels at interfaces could in the 
future offer a promising test to verify the role of chemical bonds in the 

Fig. 2. Final interfacial pressure as a function of the initial interfacial tension 
for both microgel types and different oil-water interfaces compared to data of 
globular proteins redrawn from Ref. [17,24]. 

Fig. 3. Elastic dilatational modulus E′ of microgels plotted as a function of γow 
for various o/w interfaces. 
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interfacial rheology of globular proteins. 
Finally, moving on to the conformation of single objects at the 

interface, the choice of existing methods to elucidate the structural 
rearrangements of single proteins at oil-water interfaces is limited and 
available techniques either measure the degree of unfolding indirectly 
or quantify average thickness and roughness of the whole interface [8]. 
Conversely, single-particle characterization via atomic force microscopy 
has been shown for microgels after adsorption at the interface and 
subsequent deposition onto solid substrates [28]. Fig. 4, combines AFM 
data for microgels and literature results for two different kinds of 
globular proteins in the case of two interfaces with low γow and high γow, 
respectively. Fig. 4A reports the particle dry height for the same 
microgels used in this study after adsorption to a n-hexane-water 
interface (γow = 50 mN/m) and a methyl tert-butyl ether (MTBE)-water 
interface (γow = 10 mN/m). Even if the two microgels have slightly 
different dimensions in bulk (918 nm for the stiffer microgels and 
786 nm for the softer microgels), the height difference after deposition 
from the interface is exacerbated due to the variation in cross-linking 
density. For both microgels, the height is significantly reduced at the 
high-γow interface compared to low-γow. A similar trend was found for 
globular proteins, as shown in Fig. 4B, with data based on interfacial 
globular protein layer thickness results from neutron reflectometry of 
β-lactoglobulin (BLG) layers from Bergfreund et al. [10] and dynamic 
force microscopy of bovine serum albumin (BSA) layers from Jia et al. 
[12]. Here, the main difference between BLG and BSA originates from 
the larger initial native size of BSA compared to BLG [10]. Bergfreund 
et al. [10] performed the BLG measurements with n-hexane and MTBE. 
Whereas for the BSA height measurements, perfluorodecalin was used as 
the high-γow oil (γow = 56.6 mN/m [38]) and perfluorotributylamine was 

used as low-γow oil (γow = 16 mN/m [39]). Similarly to the microgels, the 
interfacial height of globular proteins reduces by approximately 50 % at 
the high-γow interfaces compared to the low-γow interfaces. This findings 
are schematically illustrated in Fig. 4C and D. 

In comparison to the relative simplicity of microgels, the highly 
structured morphology of globular proteins with secondary and tertiary 
structures leads to a more defined unfolding. For instance, Zare et al. 
[13] computed with molecular dynamic simulations that at non-polar 
oil-water interfaces, such as n-alkane-water, BLG adsorbs in a distinct 
orientation and open its cavity with the hydrophobic residues toward 
the oil phase. At polar o/w interfaces, such as triglycerides and 1-octa-
nol, BLG adsorbs in a random orientation and retains a more native 
structure according to simulations [13]. Highly stable globular proteins, 
such as lysozyme and plant-based proteins, preserve a more native 
structure even at non-polar o/w interface [7,10,40]. Nevertheless, 
analysis of the secondary structure shows a slight decrease of α-helices 
upon adsorption [40], which indicates an increase in randomly folded 
peptide chain parts that probably are spread by the interfaces and 
assemble as a corona. This behavior is similar to the less cross-linked 
outer polymer chains of the microgels, which are capable of more sig-
nificant distortion upon adsorption [23,26]. 

Contrary to hard particles, surrounding solvent molecules penetrate 
microgels and globular proteins [41,42]. The penetration of the solvents 
into the porous microgel and globular protein structures depends on the 
interaction of the polymer chains with the solvents. Strong interactions 
result in swelling, well described for microgels by the Hansen and Hil-
debrand parameter [28,43]. The different solubility in each solvent re-
sults in a distinct interfacial positioning and swelling on each side of the 
interface. Nevertheless, defining a contact angle for microgels and 
globular proteins is elusive, due to the high porosity and conformation 
[19]. Zare et al. [13] showed with molecular dynamic simulations that 
with increasing oil polarity, globular proteins increase the interactions 
with the oil molecules and bury themselves in the oil phase, which is in 
line with neutron reflectometry results [10]. Finally, microgels and 
globular proteins have different conformational changes at elevated 
temperatures. Dan et al. [16] pointed out that microgels shrink upon 
heating whereas globular proteins unfold. Even though both confor-
mational changes result in increased interfacial activity, the adsorption 
mechanisms and interfacial behavior are different. 

4. Conclusion 

In summary, we have demonstrated the existence of similarities be-
tween pNIPAM microgels and globular proteins at fluid interfaces and 
emphasized their differences. A broad variety exists in terms of protein 
conformations, and in the shape and density profiles of microgels, which 
can be controlled during synthesis [25,26,44] enabling the selection of 
promising and relevant model systems. In particular, the steady-state 
interfacial pressures of two different pNIPAM microgels upon sponta-
neous adsorption to different o/w interfaces follow the same correlation 
as the one of globular proteins. However, the dilatational rheology of 
spontaneously adsorbed microgel interfaces differs significantly from 
the one of globular proteins monolayers, due to the dominating effect of 
the microgel’s polymer corona in their mechanical response. Finally, the 
morphological interfacial rearrangements of microgels strongly depend 
on the γow, as in the case of globular proteins, even though the high 
complexity of their internal structure results in a protein-specific 
unfolding, in particular at high-γow. Microgels and most globular pro-
teins reveal a similar reduction in their interfacial height, as they flatten 
more with increasing γow due to stronger lateral forces. Concluding, to 
date, even if pNIPAM microgels cannot resemble the fine details of 
structure-defined adsorption orientation and unfolding processes found 
with globular proteins, they present interesting analogies. Synthesis of 
new anisotropic and heterogeneous microgels could further extend their 
characteristics towards the ones of globular proteins and strengthen 
their role as models systems for complex behavior. 

Fig. 4. Height of (A) stiffer and softer microgels after adsorption to n-hexane- 
water (high γow) and MTBE-water (low γow) interfaces and (B) globular proteins, 
BLG adsorbed at n-hexane-water and MTBE-water interfaces and BSA at 
perfluorodecalin-water (high γow) and perfluorotributylamine (low γow) in-
terfaces. Schematic illustration of microgels and globular proteins at (C) high- 
γow and (D) low-γow interfaces. (A) contains data taken from Vialetto et al. [28] 
and (B) contains data taken from Bergfreund et al. [10] and Jia et al. [12]. 
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