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Abstract— Traffic management and sustainable mobility are
the central topics for intelligent transportation systems (ITS).
By means of modern technologies, it is possible to collect real-time
traffic flow data to extract useful information to monitor and
control vehicular traffic. On the other hand, costs to obtain
this piece of information are high. It requires either direct
measures in the network road by installing large number of
sensors (more precise data) or acquiring data from international
providers supplying data coming from onboard units, mobile
app, navigators, etc. In current paper, this problem has been
addressed providing a solution granting traffic flow data in
each road segment of the whole network by reconstructing the
computation by means of data from few scattered traffic sensors
in fixed positions of the road network. The proposed approach
combines the solution of nonlinear Partial Differential Equations
(PDEs) with machine learning for improving the state-of-the-
art solutions of PDE. The result has been a higher precision
with respect to PDE-based solutions, and a strongly reduced
execution time. Several different machine learning models have
been compared for such a purpose, demonstrating the general
viability of the hybrid architecture proposed. The research result
has been obtained in the framework of both the Sii-Mobility
national project on transport systems, and MOST, the National
Center on Sustainable mobility (both funded by the Italian
Ministry of Research), by exploiting the Snap4City platform.

Index Terms— Traffic flow reconstruction, traffic flows,
machine learning, hybrid architectures, machine learning PDE
solution.

I. INTRODUCTION

TRAFFIC flow computation consists in obtaining real time
traffic flow state in each segment of a road network in

a urban or rural area. Such a computation is fundamental
for implementing a large number of smart services such
as: dynamic route guidance, road digital signage, congestion
detection, traffic reduction; fuel consumption and pollution
emission monitoring, etc. [1], [2]. Often, traffic flow estimation
is related to a monitored area based on few fixed points/sensors
and thus no information is provided in other connected road
segments free of sensors. Many contributions focus on this
field of research as in [3], [4], [5], [6], [7], [8], and [9].
The usage of large number of traffic flow sensors can help
in getting more precise estimations in the whole city (road
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network), but costs may become unaffordable. Traffic density
measures are typically obtained by stationary sensors on
fixed positions and they are usually of different kinds: TV
cameras, road spires, etc. [10], producing measures in terms
of traffic flow density, velocity and number of vehicles. Due to
sustainability reasons, the number of deployed sensors has to
be limited. Thus, it is mandatory to adopt some reconstruction
algorithms to obtain the traffic flow condition in each road
segment of the city in order to have dense traffic flows in the
unmeasured road segments.

Surrogated traffic flow data can be obtained from: Mobile
Apps, on board units (insurance black boxes for instance),
social media app [11], and recently also from vehicle net-
works [12]. In [13], a deep Restricted Boltzmann Machine
and Recurrent Neural Network, RNN, architecture has been
used to predict traffic congestion evolution based on GPS
data from taxis, and thus on their position and velocity,
etc. In [14], a smartphone-based crowd sensing system for
traffic detection and measure has been proposed, where data
are gathered from the handheld devices. Data coming from
navigator Apps (e.g., TomTom, Google map, Waze), at long
term, could be very expensive for a municipality with respect
to the installation of sensors. Those measures are not related
to the actual counting of vehicles, since they are based on
measuring single vehicle velocity, which does not directly
relate to road traffic density. Vehicular Ad-Hoc Networks,
VANET, are modeling communication among vehicles, thus
creating a shared network of information which could be used
to understand local traffic [12], [15]. On the contrary, the usage
of TV Cameras located in specific critical points allows to
perform direct measures, which reduces costs, while increasing
precision in specific points. Then, multiple areas/lanes can
be controlled with a single installation, so as to enable the
control of a high number of traffic flows. Traffic flow sensors
provide continuous measuring of traffic on selected roads at
fine grain, and in most cases, they also provide information
about the kinds of vehicles: busses, tracks, cars, bikes, etc.
Generally speaking, to setup a network of traffic flow sensors
in a city drastically avoids the costs of taking updated data
from third parties such as Google or Navigator mobile Apps,
which provide statistical data, instead of specific and direct
measures.

A. Related Work

In the context of traffic flow theory, a distinction has to
be done between traffic flow Predictions in specific points
in urban contexts or highways (short or long terms in the
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future [9]) and traffic flow Reconstruction at small and large
scale (few roads, highways’ segments or whole city networks).

In the context of traffic flow predictions, a large number of
methods [7], [9], [16] use data-driven Machine/Deep Learning
approaches for predicting traffic flow data or congestion levels
in locations where those values are measured via sensors. The
traffic flow prediction is performed by using a stacked autoen-
coder (SAE) model in [7], the author uses the powerfulness
latent representation to build and infer the next flow traffic
estimation in specific points. In [9], authors compared a large
number of machine and deep learning solutions for traffic flow
prediction computed on the basis of different data sources.
In [16], authors combine convolution and LSTM (Long Short-
Term Memory) to form a Conv-LSTM module which can
extract the spatial-temporal information out of the traffic flow
information. Additionally, they adopt a Bi-directional LSTM
to analyze historical traffic data information and get traffic
flow periodicity features. In [17], authors use a representation
of the road network with a graph embedding: the encoded
information is applied to a generative adversarial network to
obtain road traffic state information in real-time.

The Traffic Flow Reconstruction, TFR, is the process to
estimate dense traffic density (flow) – e.g., vehicle per meter
(or vehicles per second) – for each road segment within the
road network by starting from a limited number of traffic flow
sensors or data providing traffic density (flow) in the roads,
or velocity in some cases and at the same time instant. It can
be regarded as an extrapolation approach passing, for example,
from 100 sensors data to 10.000 traffic flow data of road
segments. TFR approaches can be classified into three main
categories: model-driven, data-driven and mixed approaches.

TFR Model-driven approaches are those taking into account
the physical model of traffic in the spatio-temporal domain,
such as both agent-based and those solving differential equa-
tions. Agent-based solutions for the traffic flow reconstruction
are substantially simulators which compute traffic flow by
modeling vehicles as agents, thus showing typical problems
of scalability for large road networks [18], [19], [20]. For
example, InterSCSimulator [19] is an agent-based solution
which may scale up to relevant networks at the expense of
memory and computational time. Large scale simulators are
often based on origin destination data (O-D) and population
characteristics [21]. They focus on basic concepts and methods
of discrete choice analysis. They describe the application of
this methodology to travel demand modelling. Discrete choice
models use the principle of utility and benefit maximization:
operational models often consist in the characterization of
parameterized utility functions via statistical inference [22].
Discrete choice models are usually applied to forecast trips
by starting from origins-destinations data and considering
different transport modalities [23]. Other simulators have been
reviewed and compared in [24], identifying limitations when it
comes to both traffic flow evolution and addressing large scale
cases or small events. DEUS [15] is a Discrete-Event Universal
Simulator used to simulate a Vehicular Ad-Hoc Network.
VANET [12] has been used with SUMO (Simulation of Urban
Mobility, http://sumo.dlr.de) to create microsimulations of
traffic crossroad distribution. In those cases, the indeterminacy

of vehicle behavior at junction is performed by using data
coming from O-D or by making samples at the crossroads.

According to a different approach with respect to the above
described Agent Based, a traffic flow can be modeled as a fluid
moving into the road network, and thus the TFR problem can
be regarded as the classical solution of the LWR (Lighthill-
Whitham-Richards) model [25], [26], which considers traffic
density in terms of nonlinear Partial Differential Equations,
PDEs, and it is used to estimate traffic flow using scattered
observations, location of sensors and so forth. In this context,
the estimation of traffic distribution at junctions plays a crucial
role on the effectiveness of the LWR model application in
real contexts and its related solution is not trivial for large
networks, so called macroscale [27], [28], [29], [30], [31].
Moreover, traffic distribution at junctions may change over
time during day and week, and thus, its computational costs
may be very high.

On this line, a scalable traffic flow reconstruction approach
at macroscale has been proposed and applied in real-world
contexts of (large) city road networks [32]. Such an approach
is based on LWR model where the indeterminacy of traffic
distribution at junctions has been solved by means of a
stochastic relaxation technique which reduced system errors
at the expense of computational cost, while resulting more
scalable and effective with respect to agent-based solutions.
Limitations of this approach are related to the precision of the
estimation and on the execution time that could be improved.

TFR Data-driven approaches should derive traffic state
by means of the dependences learned from observed data
using statistical or machine learning methods. They should
rely on real time and historical data in each segment to
extrapolate data in each and every segment. This means that
it should not require a priori knowledge of traffic models
and laws, as it occurs with model driven solutions. Machine
and deep learning solutions can provide predictive capabilities
for nonlinear phenomena as long as historical data about
dense traffic flow are available. Data driven approaches have
been also used for traffic flow analysis. For example, in [33],
authors have proposed machine learning tasks to analyze road
networks to perform vehicle speed limit classification. Thus,
in current literature, there are many data-driven approaches
without a specific address of the traffic reconstruction over
the entire road traffic network [34].

In order to overcome such limitations belonging to
the above-described TFR Data Driven solutions, some
TFR Hybrid Approaches have been proposed in literature,
as well as in present paper. TFR Hybrid approaches combine
model-driven and data-driven methods to achieve more accu-
rate and efficient results for TFR computing. In [35], authors
have investigated the use of a model-based neural network for
traffic prediction problems, using noisy measurements coming
from Probe Vehicles. Designing a single optimization model,
they developed a solution using a deep neural network to
reduce both identification process and other processes like
reconstruction, prediction, and noise rejection. The physics-
informed deep learning (PIDL) framework has been proposed
for solving PDEs and recently it has been applied to various
physical models [36]. In the context of TFR, PIDL can
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describe the LWR model and it has been only applied to
simple road networks, like single road or road ring [37],
[38], [39]. In such studies, no road crossing modeling has
been considered to address the indeterminacy at junctions,
which would involve the solution of the so-called Riemann’s
problem.

Basically, when it comes to large road networks having a
limited number of traffic measurements (traffic data sensors),
the usage of data-driven or hybrid approaches is considered
prohibitive in terms of accuracy to capture the vehicular traffic
state of the whole network by assuming as input data the
observed data only, without any additional information.

Moreover, non-toy solutions are affected by data discon-
tinuities on observed sensor data in real-time, caused by
malfunctions of sensors and/or communication, thus reducing
the accuracy of the whole network data and TFR.

B. Article Aim and Structure

In this paper, two TFR Hybrid approaches have been
provided combining models based on machine learning
approaches and PDE solution, so as to solve indeterminacy at
junctions. The indeterminacy is due to the fact that measuring
the traffic flow arriving at a crossroad without measuring
the traffic produced in the output roads, the corresponding
out flows can be locally undetermined. On the other hand,
globally the distribution of flows on the outputs can estimated
by exploiting the knowledge of flow in the other parts of the
road network.

The proposed solutions aimed at producing accurate TFR of
large road network, main problems are related to: (i) density
of traffic flow estimations on large graph roads from scattered
data sensors (agent based solutions are unsuitable and do
not address the indeterminacy at junctions, PDE based model
driven solutions are computationally expensive and may pro-
vide dense reconstructions in small scale, data driven solutions
at large scale are not available in the literature), (ii) inde-
terminacy of the traffic partition at junctions (difficult to be
solved by any approach, see model driven stochastic relaxation
approach of [32]), (iii) high computational complexity and thus
complexity of execution time (demanding a new estimation of
TFR at each new sample of the sensors for the whole network),
which can be more easily addressed by machine/deep learning
solutions rather than agent based and model based solutions
in general, and (iv) producing TFR also in the event of sensor
data showing discontinuities, e.g., missing observed data.

In more details, in this paper, a Hybrid TFR is proposed
by integrating machine learning with a data driven solution
based on PDE for large scale TFR computation in order to:
(a) improve the estimation accuracy of the TFR with respect
to the results of data driven based on PDE solutions [32],
(b) speed up the execution time needed for computing TFR
with respect to the performance in order to make the solution
more scalable for very large networks. The indeterminacy of
the traffic flow distribution at junctions has been solved at
level of TFR model. Therefore, the proposed Hybrid approach
is based on combining the TFR model based on PDE solution
with machine learning approaches by means of two possible

innovative hybrid architectures, which are identified in the
paper as Case (i) and Case (ii). Data driven models for TFR
have been trained on the history of traffic reconstruction data
to learn the traffic dynamics behavior in a large network. This
approach leads to solve the problem related to traffic distribu-
tion at the junctions which is generally very expensive from a
computational point of view, via model-driven approach. Then,
the proposed hybrid approach reduces the execution time for
both the entire TFR process and the whole road network.
Moreover, the combination of data dependency obtained with
such data-driven approach, together with the understanding of
physical model and its related traffic distribution through the
PDEs solution, allows to produce more accurate TFR solutions
than those attainable from model driven solutions at present
state of the art, e.g., [32]. Moreover, data imputation methods
have been also considered to solve the problem of missing
sensors data, which may cause, as to model-driven solutions,
the impossibility of computing the solution when the number
of missing sensor data is large in space and time. This has
brought a general improvement of the TFR accuracy.

To this end, a range of Machine Learning, ML approaches
(Adaboost [40], RF [41], XGboost [42], Bayesian [43],
Decision Tree [44], ExtraTree [45], MLP [46]), have been
compared to identify the best model to improve the PDE
based solutions in terms of TFR. The results presented in
this paper have been validated in a context of data related
to the actual traffic network of Florence city metro area. This
current study and its related outcomes have been produced and
validated by exploiting the Snap4City framework for smart
city, mobility and transport and data analytics, also using
Km4City/Sii-Mobility graph model and tools. The project has
been funded by the national Ministry of research [47] and by
MOST, Italian National Center on Sustainable Mobility of the
national Ministry [48]. Algorithms have been put in execution
by exploiting semantic model [31], [49] and the Snap4city
Platform [50], [51].

The paper is organized as follows. In Section II, the
computation of traffic Flow reconstruction via PDE solution
is recalled, together with the approach for result assessment.
In Section III, the proposed hybrid architecture and solution to
improve precision are described. In Section IV, both context
and data used for these experiments are presented. Section V
describes in detail the hybrid solution exploiting the machine
learning approaches and the first obtained results, Case (i).
In Section VI, an improved version of the solution proposed
in Section V is presented, by data analysis and exploiting
temporal information on data, thus focus is on Case (ii). In a
subsection of Section V, outcomes are compared one another
and with respect to model driven solutions. Conclusions are
drawn in Section VII.

II. TRAFFIC FLOW RECONSTRUCTION

Before discussing the proposed hybrid solutions,
an overview of model driven approaches for TFR based
on PDE solution is needed. In the latter, TFR computation is
performed by solving a nonlinear equation based on vehicle
conservation, which is described by the following scalar
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hyperbolic conservation law in a single road segment:

∂ρ (t, x)

∂t
+

∂ f (ρ (t, x))

∂x
= 0, (1)

where, ρ (t, x) is the traffic density of vehicles, with values
from 0 to ρmax , where ρmax > 0 is the max traffic density;
f (ρ(t, x)) function is the vehicular flow which is defined by
means of the product ρ (t, x) v (t, x), where v (t, x) is the vehi-
cle speed; and boundary conditions ρ (t, h) = ρh(t), ρ (t, k) =

ρk(t), initial values ρ (0, x) = ρ0(x), with x ∈ (h, k). In the
case of first order approximation, we assume that v (t, x)

is a decreasing function, depending on the density, then the
corresponding flow is a concave function. Thus, we consider
the local speed of the vehicles as v (ρ) = vmax (1 −

ρ
ρmax

)

and then f (ρ) = vmax

(
1 −

ρ
ρmax

)
ρ, where vmax is the speed

limit on a given road segment (these assumptions are known
in the literature as the Greenshield’s Model). Equation (1)
may be solved by means of an iterative process at finite
differences applied to each road segment of the whole network.
As proposed in [32], the achievable solution is grounded on
a Stochastic Relaxation Approach based on the measures of
Traffic Flow data in a limited number of sensor points at each
time instant. In this paper, the solution presented in [32] is
denoted as SRA4TF.

At each timestamp, SRA4TF solution produces a value of
traffic flow density in each road segment of the network,
typically of 20 meter, as unit, that is the TFR. The accuracy
of SRA4TF solution mainly depends on the stochastic relax-
ation approach for estimating Traffic Distribution Matrices
(TDMs), which are the traffic flow distributions at junctions.
A TDMs describe the percentage of vehicles getting out of
each outcoming road with respect to those getting in from
each incoming road of the junction. Thus, the TDM is defined
as T DM = {w j i } j = n + 1, . . . , n + m, i = 1, . . . , n so that
0 < w j i < 1 and

∑n+m
j=n+1 w j i = 1, for i = 1, . . . , n

and j = n + 1, . . . , n + m, where w j i is the percentage
of vehicles arriving from the i-th incoming road and taking
the j-th outcoming road (assuming that, on each junction,
the incoming flow coincides with the outcoming flow). The
values of w j i depend on the time of the day and of day of
the week, etc., on the road size, cross light settings, etc., and
thus, it is unknown a priori. The values of w j i are estimated
by giving the lower mean error by means of this stochastic
relaxation technique as described in [32]. The computing of
TFR is progressively performed on a parallel architecture. The
estimation of traffic flow density for a city (e.g., in Florence
there are more than 30.000 road segments or units) at time
instant t would depend on traffic flows at time t-1 in the whole
network, and on the new measures coming from sensors at
time t .

Once T DM(t) are estimated (or initially guessed), the
SRA4TF solution computes the TFR in the road network
and verifies the Root Mean Square Error, RMSE, (or Mean
Absolute Error, MAE) with respect to actual values in sensor
locations. This is performed by computing the solution exclud-
ing data from each different sensor (all of them) by means
of a Leave-One-Out Crossing-Validation approach (LOOCV),
so as to estimate the deviation from the reconstructed traffic

density ρR(t), with respect to the observed density by the
sensor ρO(t), for each time t in T . In the rest of the paper,
we refer to R and O to denote reconstructed and observed
traffic flow densities (number of vehicles for space unit),
respectively. Then, in a road network having m traffic sensors,
the LOOCV approach consists in the application of the model
to the set of the observed data at time t , that is O(t) =

{O1(t), . . . , Om(t)}, by excluding the k-th observation Ok(t)
from O(t), for each k = 1, . . . , m. Then, the model is applied
to the remaining set of m − 1 sensor observations and the
reconstructed density Rk(t) in the road segment (unit) where
the k-th sensor is located, can be estimated and compared with
Ok(t) via RMSE or MAE estimation as follows:

RM SE(k) =

√
6T

t=1 (Rk (t) − Ok (t))2

T
, (2)

M AE(k) =
6T

t=1 (|Rk(t) − Ok(t)|)
T

. (3)

The RMSE and MAE are used to measure error values when
the perfect fit by 0. The unit of measure of RMSE and MAE
is the same of R and O number of vehicles for space unit.
Therefore, a value of 0.5 represents a 1/2 of a vehicle in the
space of 20 meter. For each round, the stochastic relaxation
may produce a new minimum of the RMSE that is taken
as a reference status, together with the produced new values
of the T DM(t), for next iterations. At each timestamp, the
RMSE(k) for each sensor in the LOOCV is measured and
the RMSE(system) ( average value of the RMSE on all the m
LOOCV sensors) is considered:

RM SE(system) =
1
m

∑m

k=1
RM SE(k). (4)

The value of RMSE is higher when traffic density is high and
thus it reflects the hourly behavior of incoming and outcoming
vehicle flow in the city having its maximum in the morning,
at about 8 am. On the other hand, the ratio from RMSE and
traffic flow density is almost constant in daily time and it is
in the range of 25% (see for details [32]). The computation of
the MAE(system) is estimated in similar manner on the basis
of Eq. (3).

The computational complexity of SRA4TF depends on
the dimension of the road network. As to the metropolitan
network of Florence, it includes 1390 nodes (or intersections,
junctions), 130 traffic sensors and 31217 road segments (units)
of 20 meter. Once T DMs are estimated, then the computa-
tional complexity of traffic reconstruction at each time t is
an O(H(V+U)) where: V is the number of nodes, U is the
number of road segments and H is the number of iterations
(generally H is equals to 250). Since U is much larger
than V , then we definitively have a complexity of an O(HU).
The stochastic relaxation approach randomly assigns T DM
values depending on road featuring. Then, at each attempt,
if the local error is lower than the previous one, weights are
confirmed. The procedure continues to try new TDM until the
computed RMSE(system) is minimized, by means of a sort
of Simulated Annealing. The procedure is computationally
heavy, and it is typically sporadically performed to update
the TDMs. Typically, the solution converges in 600 iterations.
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At each iteration, the LOOCV approach via parallel structures
considers more than 4 million of road segments/units (of
20 meter).

III. HYBRID ARCHITECTURE FOR IMPROVING PRECISION

As stated in the Introduction, in this paper, we are presenting
a hybrid solution able to improve model driven solutions,
such as SRA4TF, by using machine learning. More precisely
obtaining: (i) improvement of precision in dense traffic flow
estimation, reduction of RMSE(system), (ii) reduction of exe-
cution time. With this aim, a number of ML techniques
have been tested as listed above. In [37], [38], and [39],
small road segments/networks were studied by using ML
approaches exploiting the knowledge of road traffic physical
model in the loss function. The proposed hybrid solution
overcomes this limitation covering the whole network with
a new hybrid architectural solution, which could be also used
in solving/improving other PDE solutions. The hybrid solution
proposed in this paper consists in using ML together with the
exploitation of knowledge about the road network traffic and
the SRA4TF solution; it can be regarded as a neuro-symbolic
approach.

Indeed, this paper has its focus on two different approaches
to tackle problems (improving precision, and performance of
TFR estimation from sensors data), which are called Case (i)
(see Section V), and Case (ii) (see Section VI). Each of them
shares the same architecture in terms of data flow for the
phases of training and execution of the ML solution (passing
from the former to the latter with the trained model and
parameter). In Case (i), the ML model is trained by taking
in input the traffic flow densities observed in the locations
of sensors and the corresponding values of TFR estimated by
the SRA4TF. Case (ii) is improved by adding some features
related to temporal information in order to model in terms of
feature the seasonality of sensors data and traffic flows. Such
temporal information is used to distinguish days from festive,
pre-festive and working days and consider the related time
slots.

In the following, O(t) means the vector of the observations
(measures) from sensors at time t , while R(t) is the vector of
the traffic density reconstructed in other segments of the road
network at time t . The SRA4TF produces a traffic density for
the whole road network which can be regarded as vector R(t)
as follows:

SRA4TF(O(t − 1), R (t − 1) , O(t), RoadGraph) → R (t) .

Having m traffic sensors in a road network, we obtain
that the total road segments (units) in the road network is
m + n considering O(t) = {O1(t), . . . , Om(t)} and R(t) =

{R1(t), . . . , Rn(t)}.

A. Hybrid Architecture, Case (i)

The hybrid architecture for TFR computation of Case (i)
is reported in Figure 1, where both training and execution
data flows are reported. The training data flows are reported
as dashed lines, while the execution data flows are represented
as dotted lines. The training phase is fed by using data

Fig. 1. Hybrid training (continuous and dashed lines) and ML data
driven execution (dotted line) for traffic flow reconstruction. Continuous lines
describe the model-based traffic flow reconstruction flows.

produced by both observation and SRA4TF solution (green
lines). ML approach in Case (i) learns a Model able to produce
a full set of traffic flow densities on the basis of observations,
that is the TFR, at each time instant, disregarding its temporal
evolution.

The ML is trained without considering the temporal infor-
mation related to the evolution of time series:

f̂ (O (t)) → R(t) Case(i)

Thus, the SRA4TF is used for generating dense traffic flow
training data with respect to observed values, for the ML
function f̂ (.). Moreover, function f̂ (.) learns how to compute
the TFR according with R(t) on the basis of the observed
values O(t). Once trained, the ML solution could be used at
run time to produce dense traffic flow results in faster manner
(if compared to PDE iterative solution). The resulting R(t) can
be compared with the measured values obtained by sensors by
using the LOOCV approach in specific O(t) locations, thus
estimating the RMSE as depicted by means of the bold arrows
in Figure 1. This has allowed us to assess the precision of the
produced results by using Case (i) proposed.

IV. URBAN CONTEXT AND ASSESSMENT

In order to assess the accuracy of the estimated R(t) from
SRA4TF and from ML solutions, beyond the training period,
the estimated R(t) has to be compared with respect to the
O(t) by using the LOOCV approach and thus estimating the
RMSE as described in Section II. In terms of performance,
the main advantages of a data-driven model usage have to
do with time efficiency with respect to the SRA4TF solution
which is iterative.

A. Data vs City Scenario

As to the assessment of the proposed solution, a small road
network (subnet of the whole metropolitan traffic network
of Florence) included in the bounding box in Figure 2
has been taken under exam; 7 traffic sensors are located
and denoted as: METRO707, METRO709, METRO740,
METRO741, METRO756, METRO757 and METRO814 (in
the context of https://www.snap4city.org Florence knowledge
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Fig. 2. Representation of real-time traffic flow reconstruction data over
the network within the city of Florence. The bounding box delimits the
subnetwork where data have been taken from to be analyzed in present work.

base and Organization). The considered area is constituted by
735 road segments (units) and 103 intersections/junctions or
nodes, thus TDMs for SRA4TF.

The area of Figure 2 is part of the road network of the
metropolitan area of Florence where the SRA4TF solution
for computing TFR has been operative since many years.
By means of incoming/outcoming traffic flows observations
on the border, the selected subnet satisfies the traffic flow
conservations in the area leading to a correct SRA4TF model
application. Moreover, the selected subnet is relevant in terms
of traffic flow in the city of Florence, since it constitutes one
of the high traffic areas and includes one of the main accesses
to city downtown and main railway station.

The training set is based on traffic sensor data updated every
(about) 10 minutes (144 measures should be observed per
day per sensor) during the weeks from 2019 November 1st

to 2020 February 29th, i.e., 24 (hours) per 121 (days). The
entire dataset is composed by 13208 observations O(.) from
7 sensors, while 13208 reconstructions R(.) of the traffic
density can be computed in 728 units composing the selected
subnet of 735. During the day some observations may be
missing from some or all the sensors due to a given number of
reasons (lack of connectivity, faults, maintenance, etc.): when
many observations are missing, SRA4TF does not produce
results.What may physically happen is that one or more
sensors would not provide data for some samples or even
days, and this occurrence can be regarded as local missing
Spatial and Temporal at the same time. In some special cases,
the whole area may lack of data when the gateway is under
maintenance; therefore, a complete global missing data for the
whole area is obviously spatial and temporal together. As to the
time period taken for training and test, most days did have all
the correct 96 observations (each sensor produces 4 measures
per hour, and thus 96 per day). In fact, from Figure 3, 23 days
show all the values from sensors, while the remaining days
have some missing values. Most days have more than 60% of
their traffic sensors values. Therefore, local missing and short
time global missing are solved as discussed hereafter. Global
missing for long periods may be covered with the so-called
typical time trends computed on statistical basis and long terms
predictions. Sensitive analysis on missing rates for short terms
predictions has been carried out in [9].

Fig. 3. Histogram of missing observations during the selected time period
for each day under consideration.

Fig. 4. MAE and RMSE at traffic sensors for SRA4TF.

B. Estimated Traffic Flow Reconstruction via SRA4TF

Please note that one of the aims of this proposed solu-
tion is to reduce errors in computing the TFR produced by
SRA4TF being the basis of Case (i) architecture, as reported
in Figure 1. For this reason, in this section, we are recalling
a description of R(t) produced by SRA4TF with respect to
observations O(t). The SRA4TF solution has turned out to be
one of the best solutions in the state of the art in [32].

Thus, the assessment reported in Figure 4 depicts both MAE
and RMSE (at level of sensor location using LOOCV), over
3500 timestamps (which constituted about 30% of the above-
described dataset). The reported errors are associated with each
traffic sensor where its actual value is also estimated and its
average estimation, in terms of (mean and median) system
error, is also considered in the selected subnet.

According to LOOCV approach, the positions of sensors
present MAE and RMSE values close to (or less than) the
vehicular density of 0.5 cars/20m, except for METRO814.
In such a location sensor measured traffic data are very
high and they are typically 2 or 3 times greater than
others, therefore traffic volume is affecting model accuracy.
Yet, normalized errors, with respect to the traffic volume
in each sensor location, allow a similar behavior as
described in [32].
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C. Assessment Metrics

The above presented approach has been validated by tak-
ing into account different aspects: (i) the observed data are
only available on sensor locations, (ii) the validation can be
performed using LOOCV scheme, (iii) the aim is to reduce
the general error of SRA4TF in computing TFR. Once the
training with ML approaches has been performed, both MAE
and RMSE between the left-out target sensor and the estimated
value in the observation for both cases are viable.

Therefore, the new hybrid approach of Figure 1 and original
SRA4TF can be compared on the basis of MAE and RMSE
via LOOCV on single sensor position or at system level
MAE(system), RMSE(system). In addition, we can compare the
new hybrid approach and the original SRA4TF by comparing
the whole TFR in all segments; we have to be sure that
convergence on sensors location, aiming at reducing the error
in those locations, does not degenerate the precision in the
other segments. More precisely, the mean TFR deviation 1R
is computed as:

1R =
1
T

T∑
t=1

1R(t).

where instant deviation is:

1R(t) =
1
n

n∑
z=1

|R̂z (t) − Rz (t) |

and where: Rz (t) is the traffic density value of the zth

reconstructed unit at timestamp t using SRT4TF and R̂z (t)
is the reconstructed traffic density value by the data-driven
model of the zth unit at timestamp t by the data-driven model.

V. MACHINE LEARNING APPROACHES CASE (i)

In this section, we report the outcomes related to the usage
of the above-mentioned machine learning techniques in the
architectural context described in Figure 1. Different ML
solutions have been compared, with the aim of identifying
the best possible solution to learn and compute TFR. To this
end, we have considered ensemble learning techniques such as
Adaboost [40], Random Forest, RF [41], and XGboost [42].
However, we took into account also more concise and inter-
pretable models such as a Bayesian regressor [43], a Decision
Tree, DT [44], ExtraTree [45], and multi-layer perceptron,
MLP [46]. Other ML and deep learning, DL, architectures
could be applied: the value of what is proposed in this
paper is not in the specific adopted model, but in the hybrid
architecture. In fact, we could demonstrate that a number of
ML approaches can be used for the same purpose, maybe with
some adaptations according to the ML/DL adopted models.

All the models have been trained with the same training
set and validated on the same validation data set, so as to
perform the comparison on the same conditions. As mentioned
in Section IV-C, validation data set is constituted of about 30%
of the entire dataset which is described in Section IV-A. The
remaining 70% is devoted to the training phase. The selection
has been random. As to experiment settings, we adopted the
following parameters. For Adaboost a maximum of 50 deci-
sion trees has been used with a maximum depth of 3 to

Fig. 5. MAE(system) and RMSE(system) of TFR for Case (i), with their
confidence intervals. For STR4FT, MAE(system) = 0.4, and RMSE(system) =

0.53, have been registered.

improve the error. RF had 100 decision trees each as base
estimator that is grown to minimize the absolute error with the
target without limitation in depth. XGBoost model enclosed
decision trees built with a max depth of 6 using all features to
improve the previously fitted tree. Bayesian model employed a
Gamma distribution prior for the estimation of the parameters,
having as hyperparameters alpha and lambda equal to 1e−6.
The DTs had no limits in depth and have been trained to
minimize the absolute error with the target. ExtraTrees have
been built using a maximum of 100 decision trees using all
features to find the best split. MLP had a single hidden layer
composed by 100 neurons using as activation function ReLu,
and the activation function of the output layer has been ReLu;
the optimizer used to train the network has been Adam, the
network has been trained by using MAE as loss function.

A. Experimental Results for Case (i)

According to the above-described assessment, for Case (i)
MAE and RMSE have been computed for SRA4TF method and
compared with the results obtained by using the above pre-
sented ML techniques. Both MAE(system) and RMSE(system)
estimated for the above described ML models by using
LOOCV approach are reported in Figure 5.

According to the results reported in Figure 5, RF model
turned out to be the best, as it provides the smallest MAE(),
RMSE() and confidence interval values. Moreover, almost all
ML approaches tested in the context of Case (i) could improve
the STR4FT solution (the reconstruction of the last unseen
3500 timestamps). The mean improvement has been in the
range of delta MAE(system) of 0.22, which is a reduction of
more than the 50% of the STR4FT error in estimating traffic
flow. The performance of ML solutions in terms of 1R are
listed in Table I. Also in this case, RF turned out to be the
best model in reducing the difference in all TFR segments
with respect to STR4FT solution.

In terms of execution time for TFR, we used the test set
partition, composed by 3500 timestamps. The results are listed
in Table II. The executions have been conducted on a GPU
board NVIDIA Quadro GV100 with 32GByte Ram, which
has 5120 CUDA Cores, FP64 perf as 7.4 TFLOPS. Therefore,
in terms of execution time, RF improved the execution time
of SRA4TF, providing a speed up of about 2. A better
compromise can consist in the adoption of MLP which is not
the best solution in terms of error reduction (see Table I), and
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TABLE I
TFR DEVIATION 1R ACCORDING TO THE

DIFFERENT MODELS IN CASE (i)

TABLE II
EXECUTION TIMES FOR THE TFR PERFORMED WITH SRA4TF

ONLY, AND VIA ML MODELS FOR CASE (i)

it provides a speed up of about 16000 times with respect to
the SRA4TF execution time.

VI. CODING TEMPORAL INFORMATION: CASE (ii)

A further analysis has been performed to improve the preci-
sion of the ML phase in terms of system MAE, RMSE. In this
Case (ii), the model of Case (i) has been enriched by adding
in inputs different kinds of coding for temporal information,
while addressing problems related to discontinuous input data.
This latter problem was not addressed in Case (i) which
produced results only based on input data presence, while
the rate of missing in the realistic case produced also some
sporadic missing in the output. The problem can be largely
overcome with some imputation via predictions or typical time
trends [9]. When temporal data are adopted in the model, the
impact of missing data can be much higher and thus has to be
addressed.

Moreover, temporal information has to be encoded in fea-
tures so as to consider data seasonality, which can be daily
and weekly mainly. To this end, we (i) tagged days as festive,
pre-festive and working days; and (ii) we added the time slot
of the day.The added features can be estimated a priori by
knowing the day conditions and its related time slot. To this
end, an analysis has been performed to identify those classes
and make the addition of this information easier at each
time stamp. In some cases, a weekday in the middle of the
week may present a traffic flow profile like a festive one,
for example in the event of national or religious festivities.
For instance, the days of the 1st November, 24th, 25th, 26th,
30th and 31st of December, despite being working days, have
a traffic flow profile that resemble much more a festive/pre-
festive day according to the clustering, being indeed related
to Christmas, Christmas Eve and New year Eve festivities.
The day tag has been assessed automatically by using the

Fig. 6. Horizontal clustering identifying the festive, pre-festive, and working
days: in dark purple the festive days, in dark pink the pre-festive days and in
yellow the working days.

Fig. 7. Example of trends for the observed traffic flow density (cars/20m)
in the different clusters, identified as festive, pre-festive, and working days.

K-Means unsupervised clustering technique with k equal to 3
(the festive, pre-festive, and working days). Thus, traffic flow
data trends over 24 hours have been clustered. Similarity
metric for the clustering has been the Euclidean distance with
the nearest neighbours. As a result, days providing similar
trends have been grouped (see Figure 6).

Typical trends are reported in Figure 7. We denoted this
feature as d(t), which is an additional info for each observed
sensor data. The feature d(t) is defined as the average value
(cars/20m) estimated over a range of days at a given sensor
location at time t, thus being a typical time value/trend.

According to the day specification we have a typical
trend for festive, pre-festive and working days, respectively,
as sketched in Figure 7.

An analysis over time has been performed likewise on
traffic flow data. Final choice has been to encode the temporal
information into hours as additional temporal feature h(t)
added to the input. The feature h(t) defines different time slots
where data are performed, thus h(t) can be in the range [0-23]
and successively normalized to stay on [0.0-1.0]. Alternatively,
daily hours can be coded in 4 time slots as typically happening
in many transport system applications. The adopted partition
in 4 time slots has been [start, end] as follows: [00:00, 05:59],
[06:00, 11:59], [12:00, 17:59], [18:00, 23:59]. These slots
correspond to a quite uniform traffic behavior.

A. Assessing Results by Comparison)

Therefore, the model enriched with temporal explicit infor-
mation with h(t) and d(t) assumes the form:

f̂ (O (t) , h(t), d(t)) → R(t) Case(i i)
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Fig. 8. Results in terms of MAE(system). For each ML model, 5 values
represent the results for cases CL0-CL4. The last box on the right in red
depicts the distribution of the error produced by SRA4TF.

The above presented temporal information improved both
LOOCV approach in terms of MAE(system) or RMSE(system),
and TFR deviation 1R with respect to Case (i) which does
not take into account temporal information. Hereafter we refer
to 4 different cases.

1) CL0 is Case (i) as described in Section V.
2) CL1 is the case where the d(t) are 3 classes and

h(t) are in 4 time slots. They are coded together into
3×4 = 12 possible values in a unique input data encoded
together.

3) CL2 is the case where d(t) are 3 classes and h(t) are in
24 time slots. They are separately encoded.

4) CL3 is the case where d(t) are 3 classes and h(t) are in
4 time slots, while they are separately encoded, which
makes it different from CL1.

5) CL4 is the case where d(t) are 3 classes and h(t) are in
48 time slots. They are separately encoded.

For this reason, Case (ii) has been substantially implemented
in 4 different encoding cases. As a result, temporal information
of d(t) and h(t) led to a performance improvement for every
model. Generally, CL1-CL4 cases improved CL0 cases, except
for Adaboost model which admitted CL3 and CL4 larger
than CL0, while CL1 and CL2 are better than CL0. The
improvement in the reconstruction error of real observed traffic
flow data has been observed in terms of MAE(system) (see
Figure 8) for almost all the techniques. The cases passing
from CL0 to CL4 provide an increment of the complexity
of the input data. In these conditions Adaboost provided a
decrement of performance since it is less capable to learn
non-linear models than the others and it is more sensitive to
noise (the reduction of time slots reduce the noise). The best
results have been obtained by RF.

Since changes are not easily observable in Figure 8,
in Figure 9 a differential representation is presented. The
largest improvement has been obtained by the DT model,
while a detrimental effect has been observed for the Adaboost
Model. Taking into account all the different time encoding in
Case (ii), the best has been CL2.

Thus, best results have been obtained by RF for CL2, which
takes into account 3 classes clustering and 24 hours coding.
In Figure 10, distributions of delta MAE of TFR of model

Fig. 9. The differences of performances in terms of MAE(system) of TFR
for Cases (ii) with respect to Case (i) (i.e., CL0).

Fig. 10. The delta MAE of TFR for case RF CL2 with respect to CL0,
Case (i), for all traffic flow sensors.

Fig. 11. Comparison of improvements expressed as the differences of
MAE(system) obtained for TFR estimation by using different ML models for
case CL2 (with temporal information) with respect to CL0 (without temporal
information).

CL2 with respect to CL0 (case (i)) for the traffic flow sensors
where the error is assessed. The largest improvement has been
observed in the reconstruction of the observed traffic flow data
for sensor METRO740.

In Figure 11, the improvements obtained by considering
temporal information are reported as distributions of delta
MAE(system) of the TFR of model CL2 with respect to
CL0 (case (i)) for the different ML models. With a median
improvement of 0.0129 for MAE, the additional informa-
tion could generate the highest improvement for DT model.
According to Figure 8, RF CL2 is the best solution in terms
of MAE(system).

In Figure 12, TFR deviation 1R obtained by CL2 with
respect to SRA4TF method is reported. Almost all ML models
provided marginal changes.

Finally, according to Figure 8, MAE(system) obtained by
the data driven models with respect to SRA4TF has generally
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Fig. 12. Changes in terms of 1R for Case(i), CL0 and CL2 (case (ii)).
The additional information has slightly changed the related variation in terms
of 1R.

improved the estimation precision. More precisely, RF model,
according to CL2 configuration, has provided a MAE(system)
of 0.16, against the value of 0.4 of SRA4TF. The time needed
for the LOOCV computation by data-driven models is lower if
compared to SRA4TF. Therefore, the goal of both improving
accuracy of traffic flow reconstruction and providing faster
execution times has been achieved.

As a remark, we can finally assert that the speed up obtained
by RF in terms of execution time is lower than SRA4TF,
which is one of the faster estimators in literature [32]. On the
other hand, a good compromise in term of performance and
speed-up could be MLP with a speed up of 16000 with respect
to the SRA4TF execution time and a precision comparable to
the one of RF.

VII. CONCLUSION

In this work, a new architecture for computing traffic flow
reconstructions from sensors data has been presented. The
solution is based on a hybrid architecture combining model
and data driven approaches. It starts from a model driven
SRA4TF to compute dense traffic flow data in the road
network, while any other estimators could be used for the
same purpose. Machine learning models have been used to
improve dense traffic flow data resulting from SRA4TF. The
paper presented and compared various solutions for machine
learning models. This comparison allowed us to identify the
best possible solution based on RF, Random Forest. The
current solution has improved results in terms of: (a) precision
of the TFR as MAE(system) of more than 0.2, (b) speed up the
computational time needed for TFR estimation, thus allowing
the computation to be more sustainable on large networks.
Our outcomes did demonstrate that the integration of model
driven, and data driven is possible. Several ML approaches
have been used, and results have proven that many of them
can be profitably used to improve precision and speed-up.
As a final remark, the approach proposed for improving the
computed TFR could be applied to any kind of traffic flow
estimation models, no matter which way they are computed.
Furthermore, both approach and architecture could be also
used to improve the results produced by other PDE resolutions.
This could be done with finite element approaches, which are
always very time consuming. On this regard several applica-
tions in the fluid dynamic and hydraulic fields can be easily
foreseen.
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