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ABSTRACT
The synthesis of 3H-1,2-benzoxaphosphepine 2-oxides and evaluation of their inhibitory activity against
human carbonic anhydrase (hCA) isoforms I, II, IX, and XII are described. The target compounds were
obtained via a concise synthesis from commercial salicylaldehydes and displayed low to sub-micromolar
inhibition levels against the tumour-associated isoforms hCA IX and XII. All obtained benzoxaphosphepine
2-oxides possess remarkable selectivity for inhibition of hCA IX/XII over the off-target cytosolic hCA iso-
forms I and II, whose inhibition may lead to side effects.
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Introduction

Carbonic anhydrases (CA, EC 4.2.1.1) are a superfamily of metalloen-
zymes present across all kingdoms of life1. These enzymes catalyse a
simple yet essential physiological reaction – the reversible hydration
of carbon dioxide2. To date, 15 different human CA (hCA) isoforms
have been identified, out of which hCA IX and XII isoforms are highly
overexpressed in different tumour types and may contribute in the
survival and progression of tumour cells by regulating intra- and
extracellular pH2–6. Therefore, the development of selective hCA IX/
XII inhibitors is a potential strategy for designing anti-tumour agents.

Due to the high degree of structural homology and sequence
similarities within the active site of the hCA isoforms, the design
and development of isoform-selective hCA inhibitors pose a chal-
lenge7. A variety of compounds have been reported as potent
and selective inhibitors of tumour-associated isoforms hCA IX and
XII including coumarins8–11, thiocoumarins8,11, sulphocoumar-
ins8,12–15, as well as their congeners, homosulphocoumarins (3H-
1,2-benzoxathiepine 2,2-dioxides)16. In this work, attention was
drawn to phosphorus, as phosphorus-containing molecules display
a multitude of biological activities relevant in medicinal chemis-
try17. Additionally, several groups have shown the use of organo-
phosphorus compounds as CA inhibitors18.

Considering isosteric relationship between sulphonyl derivatives
and phosphonates19, our research group designed and synthesised a
series of benzoxaphosphepine 2-oxides pursuing the development of

new classes of selective CA inhibitors. These compounds showed
interesting inhibitory activity against hCA IX and XII. Moreover, the
results of current study demonstrate the bioisosteric utility of the
cyclic phosphonate moiety in the design of novel CA inhibitors.

Materials and methods

Chemistry

The air- or moisture-sensitive reactions were performed under
argon atmosphere using dry glassware. Toluene was freshly dis-
tilled from Na prior to use. DCM and NEt3 were distilled from
CaH2. Other reagents, starting materials and solvents were pur-
chased from commercial sources and used as received. TLC was
performed on silica gel plates (60 F254) and visualised under UV
light (254 and 365 nm). Melting points were determined on an
OptiMelt MPA100 apparatus. IR spectra were recorded on a
Shimadzu FTIR IR Prestige-21 spectrophotometer. 1H, 13C, and 31P
NMR spectra were recorded on a Bruker Avance Neo 400MHz
spectrometer. The chemical shifts (d) were reported in parts per
million (ppm) relative to the residual solvent peak as an internal
reference (DMSO-d6:

1H 2.50, 13C 39.52; CDCl3:
1H 7.26, 13C 77.16;

C6D6:
1H 7.16, 13C 128.06). 31P shifts were referenced externally to

H3PO4. The coupling constants (J) were expressed in Hertz (Hz).
HRMS was performed on a Q-TOF Micro mass spectrometer.
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General procedure for the synthesis of vinylphenols 2

To a stirred solution of MePPh3Br (2.3 eq) in dry THF (3ml/1mmol of
MePPh3Br) was added t-BuOK (2.35 eq) in small portions over
20min. The reaction mixture was stirred under inert atmosphere for
2h at rt. The corresponding hydroxybenzaldehyde 1 (1.0 eq) was
added, and the mixture was kept stirring at rt for another 18h. The
reaction mixture was treated with sat. aq NH4Cl (25ml) and then
was diluted with Et2O (3ml/1mmol of MePPh3Br). The organic layer
was washed with water (2� 40ml) and brine (2� 40ml), dried over
Na2SO4, filtered, and concentrated in vacuo. The crude product was
purified by column chromatography on silica gel (PE/EtOAc 4:1).

2-Vinylphenol (2a)

By following the general procedure, 2a was prepared from MePPh3Br
(13.46g, 37.7mmol), t-BuOK (4.32g, 38.5mmol), and 2-hydroxybenzal-
dehyde (1a) (2.00g, 16.4mmol) as a yellowish oil (1.71g, 87%)16a. 1H
NMR (400MHz, CDCl3) d¼ 5.34–5.38 (m, 2H), 5.75 (dd, 1H, J¼ 17.8,
1.4Hz), 6.80 (dd, 1H, J¼ 8.1, 1.1Hz), 6.89–7.01 (m, 2H), 7.12–7.17 (m,
1H), 7.40 (dd, 1H, J¼ 7.7, 1.7Hz) ppm. 13C NMR (101MHz, CDCl3)
d¼ 115.8, 116.0, 121.0, 125.0, 127.4, 129.0, 131.6, 153.0ppm.

4-Iodo-2-vinylphenol (2b)

By following the general procedure, 2b was prepared from
MePPh3Br (16.56 g, 46.4mmol), t-BuOK (5.32 g, 47.4mmol), and 2-
hydroxy-5-iodobenzaldehyde (1b) (5.00 g, 20.2mmol) as a yellow-
ish solid (4.17 g, 84%)16b. 1H NMR (400MHz, CDCl3) d¼ 5.23 (dd,
1H, J¼ 11.3, 1.3 Hz), 5.80 (dd, 1H, J¼ 17.6, 1.3 Hz), 6.67 (d, 1H,
J¼ 8.6 Hz), 6.77–6.87 (m, 1H), 7.37 (dd, 1H, J¼ 8.6, 2.4 Hz), 7.70 (d,
1H, J¼ 2.4 Hz), 9.94 (s, 1H) ppm. 13C NMR (101MHz, CDCl3)
d¼ 81.4, 115.1, 118.4, 126.9, 130.4, 134.4, 137.0, 154.6 ppm.

4-Bromo-2-vinylphenol (2c)

By following the general procedure, 2c was prepared from
MePPh3Br (8.17 g, 22.9mmol), t-BuOK (2.62 g, 23.4mmol), and 5-
bromo-2-hydroxybenzaldehyde (1c) (2.00 g, 10mmol) as a yellow-
ish solid (1.74 g, 88%)16a. 1H NMR (400MHz, CDCl3) d¼ 4.98 (s,
1H), 5.40 (dd, 1H, J¼ 11.3, 1.0 Hz), 5.74 (dd, 1H, J¼ 17.8, 1.0 Hz),
6.68 (d, 1H, J¼ 8.6 Hz), 6.85 (dd, 1H, J¼ 17.8, 11.3 Hz), 7.23 (dd, 1H,
J¼ 8.6, 2.4 Hz), 7.49 (d, 1H, J¼ 2.4 Hz) ppm.

2-Bromo-6-vinylphenol (2d)

By following the general procedure, 2d was prepared from
MePPh3Br (16.35 g, 45.8mmol), t-BuOK (5.25 g, 46.8mmol), and 3-
bromo-2-hydroxybenzaldehyde (1d) (4.00 g, 19.9mmol) as a
yellowish solid (3.05 g, 77%)16b. 1H NMR (400MHz, CDCl3) d¼ 5.34
(dd, 1H, J¼ 11.2, 1.3 Hz), 5.72 (s, 1H), 5.79 (dd, 1H, J¼ 17.7, 1.3 Hz),

6.77–6.82 (m, 1H), 7.00 (dd, 1H, J¼ 17.7, 11.2 Hz), 7.35–7.41 (m,
2H) ppm. 13C NMR (101MHz, CDCl3) d¼ 111.2, 116.2, 121.6, 126.2,
126.5, 131.1, 131.3, 149.6 ppm.

2-Methoxy-6-vinylphenol (2e)

By following the general procedure, 2e was prepared from
MePPh3Br (2.70 g, 7.6mmol), t-BuOK (0.87 g, 7.7mmol), and 2-
hydroxy-3-methoxybenzaldehyde (1e) (0.50 g, 3.3mmol) as a
yellowish solid (0.40 g, 81%)20. 1H NMR (400MHz, CDCl3) d¼ 3.89
(s, 3H), 5.33 (dd, 1H, J¼ 11.2, 1.5 Hz), 5.83 (dd, 1H, J¼ 17.8, 1.5 Hz),
5.93–5.94 (m, 1H), 6.76–6.80 (m, 1H), 6.81–6.86 (m, 1H), 7.00–7.11
(m, 2H) ppm. 13C NMR (101MHz, CDCl3) d¼ 56.2, 109.7, 114.9,
118.9, 119.5, 124.1, 131.2, 143.4, 146.8 ppm.

2,4-Dichloro-6-vinylphenol (2f)

By following the general procedure, 2f was prepared from
MePPh3Br (2.15 g, 6.0mmol), t-BuOK (0.69 g, 6.2mmol), and 3,5-
dichloro-2-hydroxybenzaldehyde (1f) (0.50 g, 2.6mmol) as a
yellowish solid (0.38 g, 76%)21. 1H NMR (400MHz, CDCl3) d¼ 5.39
(dd, 1H, J¼ 11.2, 1.0 Hz), 5.70–5.72 (m, 1H), 5.80 (d, 1H, J¼ 17.7,
1.0 Hz), 6.92 (dd, 1H, J¼ 17.7, 11.2 Hz), 7.23 (d, 1H, J¼ 2.5 Hz),
7.32–7.34 (m, 1H) ppm. 13C NMR (101MHz, CDCl3) d¼ 117.3, 121.0,
125.5, 125.6, 127.2, 127.4, 130.1, 147.5 ppm.

4-Nitro-2-vinylphenol (2g)

By following the general procedure, 2g was prepared from
MePPh3Br (9.83 g, 27.5mmol), t-BuOK (3.16 g, 28.1mmol), and 2-
hydroxy-5-nitrobenzaldehyde (1g) (2.00 g, 11mmol). The solution
of nitrobenzaldehyde 1g in THF (20ml) was added at �78 �C. The
title product was obtained as a yellow solid (1.70 g, 86%)22. 1H
NMR (400MHz, DMSO-d6) d¼ 5.39 (dd, 1H, J¼ 11.3, 1.2 Hz), 5.98
(dd, 1H, J¼ 17.8, 1.2 Hz), 6.92 (dd, 1H, J¼ 17.8, 11.3 Hz), 7.01 (d,
1H, J¼ 9.0 Hz), 8.02 (dd, 1H, J¼ 9.0, 2.9 Hz), 8.28 (d, 1H, J¼ 2.9 Hz),
11.32 (s, 1H) ppm. 13C NMR (101MHz, DMSO-d6) d¼ 116.1, 116.9,
122.3, 124.7, 124.8, 130.1, 139.9, 161.0 ppm.

Diethyl allylphosphonate (S1)

Triethylphosphite (31.0ml, 180.5mmol) and allyl bromide (18.7ml,
216.7mmol) were stirred and heated for 24h at 70 �C. After evapor-
ation of the remaining allyl bromide, the residue was distilled in vacuo
(�4 mbar) to afford product S1 as a colourless liquid (29.00g, 90%),
b.p. 60–62 �C/4 mbar23. 31P NMR (162MHz, DMSO-d6) d¼ 26.81ppm.
1H NMR (400MHz, DMSO-d6) d¼ 1.22 (t, 6H, J¼ 7.1Hz), 2.62 (dt, 1H,
J¼ 7.3, 1.3Hz), 2.67 (dt, 1H, J¼ 7.3, 1.3Hz), 3.93–4.06 (m, 4H),
5.10–5.26 (m, 2H), 5.63–5.73 (m, 1H) ppm. 13C NMR (101MHz, DMSO-
d6) d¼ 16.2 (d, JP,C ¼ 5.7Hz), 30.6 (d, JP,C ¼ 136Hz), 61.2 (d, JP,C ¼
6.3Hz), 119.5 (d, JP,C ¼ 14.2Hz), 128.3 (d, JP,C ¼ 10.9Hz) ppm.
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Ethyl allylphosphonochloridate (3)

Diethyl allylphosphonate(S1) (28.6 g, 160.5mmol) was dissolved in
dry DCM (200ml). The solution was cooled down to 0 �C, and oxalyl
chloride (49.0ml, 0.562mol) was added dropwise. The reaction mix-
ture was stirred for 16h at rt. After evaporation of the solvent and
remaining oxalyl chloride, the residue was distilled in vacuo (�4
mbar) to afford product 3 as a colourless liquid (21.64g, 80%), b.p.
88–90 �C/4 mbar23. 31P NMR (162MHz, DMSO-d6) d¼ 39.17ppm. 1H
NMR (400MHz, DMSO-d6) d¼ 1.37 (t, 3H, J¼ 7.1Hz), 2.93 (dt, 1H,
J¼ 7.3, 1.2Hz), 2.99 (dt, 1H, J¼ 7.3, 1.2Hz), 4.16–4.37 (m, 2H),
5.26–5.36 (m, 2H), 5.72–5.86 (m, 1H) ppm. 13C NMR (101MHz, DMSO-
d6) d¼ 15.9 (d, JP,C ¼ 7.0Hz), 39.1 (d, JP,C ¼ 123Hz), 63.5 (d, JP,C ¼
8.4Hz), 122.2 (d, JP,C ¼ 16.8Hz), 125.4 (d, JP,C ¼ 12.8Hz) ppm.

General procedure for the synthesis of diolefins 4

The corresponding vinylphenol 2 (1.0 eq) was dissolved in dry
DCM (10ml/1mmol of 2). After cooling down the solution to 0 �C,
ethyl allylphosphonochloridate (3) (1.2 eq) and NEt3 (1.25 eq)
were added. The reaction mixture was stirred under inert atmos-
phere at rt for 18 h. Water (30ml) was added, and the mixture
was extracted with EtOAc (3� 40ml). The combined organic layers
were washed with brine (2� 40ml), dried over Na2SO4, filtered,
and concentrated in vacuo. The crude product was purified by col-
umn chromatography on silica gel (PE/EtOAc 1.5:1).

Ethyl (2-vinylphenyl) allylphosphonate (4a)

By following the general procedure, 4a was prepared from 2-vinyl-
phenol (2a) (0.38g, 3.16mmol), ethyl allylphosphonochloridate (3)
(0.56ml, 3.79mmol), and NEt3 (0.55ml, 3.95mmol) as a colourless oil
(0.48g, 60%). IR (thin film, cm�1): 1260 (P¼O), 1219 (P¼O). 31P
NMR (162MHz, DMSO-d6) d¼ 24.63ppm. 1H NMR (400MHz, DMSO-
d6) d¼ 1.19 (t, 3H, J¼ 7.0Hz), 2.84–2.97 (m, 2H), 4.00–4.16 (m, 2H),
5.19–5.32 (m, 2H), 5.36 (dd, 1H, J¼ 11.2, 0.9Hz), 5.71–5.83 (m, 1H),
5.86 (dd, 1H, J¼ 17.7, 0.9Hz), 6.96 (dd, 1H, J¼ 11.7, 11.2Hz),
7.16–7.22 (m, 1H), 7.26–7.33 (m, 2H), 7.67 (d, 1H, J¼ 7.7Hz) ppm. 13C
NMR (101MHz, DMSO-d6) d¼ 16.1 (d, JP,C ¼ 5.8Hz), 31.0 (d, JP,C ¼
138Hz), 62.6 (d, JP,C ¼ 6.8Hz), 116.3, 120.4 (d, JP,C ¼ 14.6Hz), 120.9
(d, JP,C ¼ 2.8Hz), 125.0, 126.3, 127.5 (d, JP,C ¼ 11.4Hz), 128.8 (d, JP,C
¼ 5.0Hz), 129.1, 130.2, 147.4 (d, JP,C ¼ 8.9Hz) ppm. HRMS (ESI)
[MþH]þ: m/z calcd for C13H18O3P: 253.0994, found 253.1003.

Ethyl (4-iodo-2-vinylphenyl) allylphosphonate (4b)

By following the general procedure, 4b was prepared from 4-iodo-2-
vinylphenol (2b) (2.50g, 10.2mmol), ethyl allylphosphonochloridate (3)
(1.81ml, 12.2mmol), and NEt3 (1.77ml, 12.7mmol) as a colourless oil
(3.53g, 92%). IR (thin film, cm�1): 1265 (P¼O), 1220 (P¼O). 31P NMR
(162MHz, DMSO-d6) d¼ 25.01ppm. 1H NMR (400MHz, DMSO-d6)
d¼ 1.19 (t, 3H, J¼ 7.1Hz), 2.90 (dt, 1H, J¼ 7.3, 1.2Hz), 2.96 (dt, 1H,
J¼ 7.3, 1.2Hz), 4.00–4.16 (m, 2H), 5.19–5.32 (m, 2H), 5.40 (dd, 1H,
J¼ 11.2, 0.7Hz), 5.69–5.83 (m, 1H), 5.93 (dd, 1H, J¼ 17.7, 0.7Hz), 6.84
(dd, 1H, J¼ 17.7, 11.2Hz), 7.11 (dd, 1H, J¼ 8.6, 1.3Hz), 7.63 (dd, 1H,

J¼ 8.6, 2.2Hz), 7.98 (d, 1H, J¼ 2.2Hz) ppm. 13C NMR (101MHz, DMSO-
d6) d¼ 16.1 (d, JP,C ¼ 5.6Hz), 30.9 (d, JP,C ¼ 137Hz), 62.7 (d, JP,C ¼
6.7Hz), 89.6 (d, JP,C ¼ 1.4Hz), 117.9, 120.5 (d, JP,C ¼ 15.0Hz), 123.2 (d,
JP,C ¼ 2.7Hz), 127.3 (d, JP,C ¼ 11.6Hz), 128.8, 131.3 (d, JP,C ¼ 5.3Hz),
132.2 (d, JP,C ¼ 2.6Hz), 134.7, 137.5, 147.3 (d, JP,C ¼ 9.0Hz) ppm.
HRMS (ESI) [MþH]þ: m/z calcd for C13H17O3PI: 378.9960,
found 378.9966.

Ethyl (4-bromo-2-vinylphenyl) allylphosphonate (4c)

By following the general procedure, 4c was prepared from 4-bromo-
2-vinylphenol (2c) (1.63g, 8.19mmol), ethyl allylphosphonochloridate
(3) (1.46ml, 9.83mmol), and NEt3 (1.42ml, 10.2mmol) as a colourless
oil (1.71g, 63%). IR (thin film, cm�1): 1266 (P¼O), 1224 (P¼O), 1174
(P¼O). 31P NMR (162MHz, DMSO-d6) d¼ 25.10ppm. 1H NMR
(400MHz, DMSO-d6) d¼ 1.16–1.22 (m, 3H), 2.91 (dt, 1H, J¼ 7.3,
1.2Hz), 2.97 (dt, 1H, J¼ 7.3, 1.2Hz), 3.99–4.17 (m, 2H), 5.19–5.32 (m,
2H), 5.43 (dd, 1H, J¼ 11.2, 0.8Hz), 5.70–5.83 (m, 1H), 5.97 (dd, 1H,
J¼ 17.7, 0.8Hz), 6.87 (dd, 1H, J¼ 17.7, 11.2Hz), 7.26 (dd, 1H, J¼ 8.7,
1.3Hz), 7.48 (dd, 1H, J¼ 8.7, 2.5Hz), 7.86 (d, 1H, J¼ 2.5Hz) ppm. 13C
NMR (101MHz, DMSO-d6) d¼ 16.1 (d, JP,C ¼ 6.0Hz), 30.9 (d, JP,C ¼
137Hz), 62.8 (d, JP,C ¼ 6.7Hz), 117.3 (d, JP,C ¼ 1.5Hz), 118.2, 120.5 (d,
JP,C ¼ 15.0Hz), 123.0 (d, JP,C ¼ 2.8Hz), 127.3 (d, JP,C ¼ 11.8Hz), 128.8
(d, JP,C ¼ 9.7Hz), 131.1 (d, JP,C ¼ 5.3Hz), 131.6, 146.6 (d, JP,C ¼
8.9Hz) ppm. HRMS (ESI) [MþH]þ: m/z calcd for C13H17O3PBr:
331.0099, found 331.0103.

2-Bromo-6-vinylphenyl ethyl allylphosphonate (4d)

By following the general procedure, 4d was prepared from 2-
bromo-6-vinylphenol (2d) (1.00 g, 5.02mmol), ethyl allylphospho-
nochloridate (3) (0.89ml, 6.03mmol), and NEt3 (0.87ml, 6.28mmol)
as a colourless oil (1.28 g, 77%). IR (thin film, cm�1): 1262 (P¼O),
1219 (P¼O). 31P NMR (162MHz, DMSO-d6) d¼ 25.07 ppm. 1H NMR
(400MHz, DMSO-d6) d¼ 1.16 (dt, 3H, J¼ 7.0, 0.4 Hz), 3.00–3.10 (m,
2H), 3.96–4.15 (m, 2H), 5.22–5.37 (m, 2H), 5.42 (dd, 1H, J¼ 11.1,
0.9 Hz), 5.77–5.92 (m, 2H), 7.06 (dd, 1H, J¼ 17.7, 11.1 Hz), 7.13–7.19
(m, 1H), 7.61 (dd, 1H, J¼ 7.9, 1.5 Hz), 7.69 (dd, 1H, J¼ 7.9, 1.5 Hz)
ppm. 13C NMR (101MHz, DMSO-d6) d¼ 16.0 (d, JP,C ¼ 6.0 Hz), 32.1
(d, JP,C ¼ 139Hz), 63.1 (d, JP,C ¼ 6.9 Hz), 116.5 (d, JP,C ¼ 4.0 Hz),
117.6, 120.5 (d, JP,C ¼ 15.2 Hz), 125.6 (d, JP,C ¼ 1.5 Hz), 126.7, 127.4
(d, JP,C ¼ 11.4 Hz), 130.7, 132.2 (d, JP,C ¼ 2.8 Hz), 132.8 (d, JP,C ¼
1.5 Hz), 145.0 (d, JP,C ¼ 10.7Hz) ppm. HRMS (ESI) [MþH]þ: m/z
calcd for C13H17O3PBr: 331.0099, found 331.0092.

Ethyl (2-methoxy-6-vinylphenyl) allylphosphonate (4e)

By following the general procedure, 4e was prepared from 2-
methoxy-6-vinylphenol (2e) (0.32 g, 2.13mmol), ethyl allylphospho-
nochloridate (3) (0.38ml, 2.56mmol), and NEt3 (0.37ml, 2.66mmol)
as a colourless oil (0.40 g, 66%). IR (thin film, cm�1): 1274 (P¼O),
1179 (P¼O). 31P NMR (162MHz, DMSO-d6) d¼ 24.86 ppm. 1H NMR
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(400MHz, DMSO-d6) d¼ 1.19–1.24 (m, 3H), 2.86–2.96 (m, 2H), 3.82
(s, 3H), 3.96–4.18 (m, 2H), 5.18–5.31 (m, 2H), 5.37 (dd, 1H, J¼ 11.1,
1.1 Hz), 5.74–5.88 (m, 2H), 6.97 (dd, 1H, J¼ 17.7, 11.1 Hz), 7.04 (dd,
1H, J¼ 8.1, 1.5 Hz), 7.11–7.17 (m, 1H), 7.22 (dd, 1H, J¼ 7.9, 1.5 Hz)
ppm. 13C NMR (101MHz, DMSO-d6) d¼ 16.2 (d, JP,C ¼ 6.1 Hz), 31.8
(d, JP,C ¼ 139Hz), 55.9, 62.1 (d, JP,C ¼ 7.0 Hz), 112.2, 116.6, 117.3,
119.9 (d, JP,C ¼ 15.0 Hz), 125.2, 128.1 (d, JP,C ¼ 11.5 Hz), 130.4,
130.5 (d, JP,C ¼ 3.5 Hz), 137.1 (d, JP,C ¼ 9.6 Hz), 151.2 (d, JP,C ¼
3.0 Hz) ppm. HRMS (ESI) [MþH]þ: m/z calcd for C14H20O4P:
283.1099, found 283.1105.

2,4-Dichloro-6-vinylphenyl ethyl allylphosphonate (4f)

By following the general procedure, 4f was prepared from 2,4-
dichloro-6-vinylphenol (2f) (0.80 g, 4.23mmol), ethyl allylphospho-
nochloridate (3) (0.75ml, 5.08mmol), and NEt3 (0.74ml, 5.29mmol)
as a colourless oil (1.17 g, 86%). IR (thin film, cm�1): 1262 (P¼O),
1217 (P¼O). 31P NMR (162MHz, C6D6) d¼ 24.33 ppm. 1H NMR
(400MHz, C6D6) d¼ 0.88 (dt, 3H, J¼ 7.1, 0.4 Hz), 2.63–2.73 (m, 2H),
3.76–3.98 (m, 2H), 5.00–5.11 (m, 3H), 5.27 (d, 1H, J¼ 17.6 Hz),
5.76–5.89 (m, 1H), 7.03 (d, 1H, J¼ 2.5 Hz), 7.19–7.21 (m, 1H), 7.25
(dd, 1H, J¼ 17.6, 11.0 Hz) ppm. 13C NMR (101MHz, C6D6) d¼ 16.3
(d, JP,C ¼ 5.7 Hz), 33.0 (d, JP,C ¼ 141Hz), 63.4 (d, JP,C ¼ 7.0 Hz),
118.0, 120.4 (d, JP,C ¼ 15.0 Hz), 125.0 (d, JP,C ¼ 1.9 Hz), 127.5 (d,
JP,C ¼ 11.5Hz), 128.9 (d, JP,C ¼ 3.7 Hz), 129.4, 130.8, 130.9 (d, JP,C
¼ 2.1 Hz), 134.3 (d, JP,C ¼ 3.0 Hz), 143.8 (d, JP,C ¼ 10.7 Hz) ppm.
HRMS (ESI) [MþH]þ: m/z calcd for C13H16O3PCl2: 321.0214,
found 321.0233.

Ethyl (4-nitro-2-vinylphenyl) allylphosphonate (4 g)

By following the general procedure, 4g was prepared from 4-
nitro-2-vinylphenol (2g) (1.00 g, 6.06mmol), ethyl allylphosphono-
chloridate (3) (1.08ml, 7.27mmol), and NEt3 (1.05ml, 7.57mmol)
as a yellowish oil (1.70 g, 94%). IR (thin film, cm�1): 1273 (P¼O),
1232 (P¼O). 31P NMR (162MHz, DMSO-d6) d¼ 25.61 ppm. 1H NMR
(400MHz, DMSO-d6) d¼ 1.22 (dt, 3H, J¼ 7.1, 0.3 Hz), 3.00 (dt, 1H,
J¼ 7.3, 1.2 Hz), 3.06 (dt, 1H, J¼ 7.3, 1.2 Hz), 4.06–4.22 (m, 2H),
5.21–5.35 (m, 2H), 5.54–5.58 (m, 1H), 5.71–5.85 (m, 1H), 6.11 (dd,
1H, J¼ 17.7, 0.6 Hz), 6.96 (dd, 1H, J¼ 17.7, 11.2 Hz), 7.59 (dd, 1H,
J¼ 9.1, 1.2 Hz), 8.19 (dd, 1H, J¼ 9.1, 2.9 Hz), 8.45–8.48 (m, 1H)
ppm. 13C NMR (101MHz, DMSO-d6) d¼ 16.1 (d, JP,C ¼ 5.8 Hz), 30.9
(d, JP,C ¼ 137Hz), 63.1 (d, JP,C ¼ 6.9 Hz), 119.6, 120.8 (d, JP,C ¼
15.0Hz), 121.7 (d, JP,C ¼ 3.0 Hz), 121.8, 124.2, 127.0 (d, JP,C ¼
11.7Hz), 128.6, 129.9 (d, JP,C ¼ 5.5 Hz), 144.3, 152.0 (d, JP,C ¼
8.6 Hz) ppm. HRMS (ESI) [MþH]þ: m/z calcd for C13H17NO5P:
298.0844, found 298.0858.

General procedure for the synthesis of 2-ethoxy-3H-1,2-
benzoxaphosphepine 2-oxides 6

The corresponding diolefin 4 (1.0 eq) was dissolved in dry,
degassed PhMe (18ml/1mmol of 4). The solution was sparged
with argon followed by addition of ruthenium catalyst 5 (CAS:
254972–49-1) (5mol%). The reaction mixture was stirred at 70 �C
for 4 h, then cooled down to rt, and concentrated in vacuo. The

residue was purified by column chromatography on silica gel
(EtOAc 100%).

2-Ethoxy-3H-benzo[f][1,2]oxaphosphepine 2-oxide (6a)

By following the general procedure, 6a was prepared from ethyl
(2-vinylphenyl) allylphosphonate (4a) (0.43 g, 1.70mmol), and
ruthenium catalyst 5 (81mg, 0.085mmol) as a greenish dense oil
(0.28 g, 74%). IR (thin film, cm�1): 1265 (P¼O), 1203 (P¼O). 31P
NMR (162MHz, DMSO-d6) d¼ 40.00 ppm. 1H NMR (400MHz,
DMSO-d6) d¼ 1.28 (t, 3H, J¼ 7.1 Hz), 2.62–2.88 (m, 2H), 4.14–4.23
(m, 2H), 5.92–6.04 (m, 1H), 6.71 (dd, 1H, J¼ 10.8, 5.3 Hz), 7.17–7.27
(m, 2H), 7.31–7.41 (m, 2H) ppm. 13C NMR (101MHz, DMSO-d6)
d¼ 16.3 (d, JP,C ¼ 5.9 Hz), 25.5 (d, JP,C ¼ 125Hz), 62.2 (d, JP,C ¼
6.9 Hz), 121.6 (d, JP,C ¼ 3.4 Hz), 122.7 (d, JP,C ¼ 12.2 Hz), 125.0,
127.6 (d, JP,C ¼ 1.1 Hz), 129.4, 129.5, 129.6 130.6, 147.5 (d, JP,C ¼
8.3 Hz) ppm. HRMS (ESI) [MþH]þ: m/z calcd for C11H14O3P:
225.0681, found 225.0692.

2-Ethoxy-7-iodo-3H-benzo[f][1,2]oxaphosphepine 2-oxide (6b)

By following the general procedure, 6b was prepared from ethyl
(4-iodo-2-vinylphenyl) allylphosphonate (4b) (3.50 g, 9.26mmol),
and ruthenium catalyst 5 (438mg, 0.46mmol) as a greenish dense
oil (2.46 g, 76%). IR (thin film, cm�1): 1265 (P¼O), 1173 (P¼O).
31P NMR (162MHz, DMSO-d6) d¼ 39.83 ppm. 1H NMR (400MHz,
DMSO-d6) d¼ 1.27 (t, 3H, J¼ 7.1 Hz), 2.66–2.92 (m, 2H), 4.13–4.22
(m, 2H), 5.95–6.07 (m, 1H), 6.63–6.70 (m, 1H), 6.99–7.04 (m, 1H),
7.68 (dd, 1H, J¼ 8.5, 2.2 Hz), 7.71 (d, 1H, J¼ 2.2 Hz) ppm. 13C NMR
(101MHz, DMSO-d6) d¼ 16.2 (d, JP,C ¼ 5.6 Hz), 25.5 (d, JP,C ¼
125Hz), 62.4 (d, JP,C ¼ 6.7 Hz), 89.3 (d, JP,C ¼ 1.4 Hz), 123.8, 123.9,
124.0, 128.3 (d, JP,C ¼ 8.7 Hz), 130.2, 137.9, 138.8, 147.4 (d, JP,C ¼
8.0 Hz) ppm. HRMS (ESI) [MþH]þ: m/z calcd for C11H13O3PI:
350.9647, found 350.9659.

7-Bromo-2-ethoxy-3H-benzo[f][1,2]oxaphosphepine 2-oxide (6c)

By following the general procedure, 6c was prepared from ethyl
(4-bromo-2-vinylphenyl) allylphosphonate (4c) (0.92 g, 2.78mmol),
and ruthenium catalyst 5 (132mg, 0.14mmol) as a greenish dense
oil (0.53 g, 63%). IR (thin film, cm�1): 1274 (P¼O), 1220 (P¼O).
31P NMR (162MHz, DMSO-d6) d¼ 44.68 ppm. 1H NMR (400MHz,
DMSO-d6) d¼ 1.27 (t, 3H, J¼ 7.1 Hz), 2.68–2.93 (m, 2H), 4.13–4.23
(m, 2H), 5.97–6.10 (m, 1H), 6.65–6.71 (m, 1H), 7.15–7.19 (m, 1H),
7.54 (dd, 1H, J¼ 8.6, 2.5 Hz), 7.58 (d, 1H, J¼ 2.5 Hz) ppm. 13C NMR
(101MHz, DMSO-d6) d¼ 16.2 (d, JP,C ¼ 5.4 Hz), 25.4 (d, JP,C ¼
125Hz), 62.5 (d, JP,C ¼ 7.0 Hz), 116.9 (d, JP,C ¼ 1.5 Hz), 123.8 (d, JP,C
¼ 3.5 Hz), 124.1 (d, JP,C ¼ 12.3Hz), 128.4 (d, JP,C ¼ 9.0 Hz), 130.0,
132.1, 132.9, 146.7 (d, JP,C ¼ 7.8 Hz) ppm. HRMS (ESI) [MþH]þ: m/
z calcd for C11H13O3PBr: 302.9786, found 302.9791.
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9-Bromo-2-ethoxy-3H-benzo[f][1,2]oxaphosphepine 2-oxide (6d)

By following the general procedure, 6d was prepared from 2-
bromo-6-vinylphenyl ethyl allylphosphonate (4d) (2.00 g, 6.04mmol),
and ruthenium catalyst 5 (286mg, 0.30mmol) as a greenish dense
oil (1.58 g, 86%). IR (thin film, cm�1): 1268 (P¼O), 1232 (P¼O). 31P
NMR (162MHz, DMSO-d6) d¼ 39.08ppm. 1H NMR (400MHz, DMSO-
d6) d¼ 1.29 (t, 3H, J¼ 7.1Hz), 2.70–2.83 (m, 1H), 2.87–3.00 (m, 1H),
4.18–4.32 (m, 2H), 5.95–6.08 (m, 1H), 6.67–6.74 (m, 1H), 7.17 (td, 1H,
J¼ 7.8, 0.6Hz), 7.34 (dd, 1H, J¼ 7.8, 1.6Hz), 7.68 (dd, 1H, J¼ 7.8,
1.6Hz) ppm. 13C NMR (101MHz, DMSO-d6) d¼ 16.2 (d, JP,C ¼
6.1Hz), 25.8 (d, JP,C ¼ 126Hz), 62.8 (d, JP,C ¼ 7.0Hz), 115.4 (d, JP,C ¼
3.8Hz), 123.4 (d, JP,C ¼ 12.2Hz), 126.1, 129.1 (d, JP,C ¼ 9.0Hz), 129.3,
130.4, 132.7, 144.2 (d, JP,C ¼ 7.8Hz) ppm. HRMS (ESI) [MþH]þ: m/z
calcd for C11H13O3PBr: 302.9786, found 302.9795.

2-Ethoxy-9-methoxy-3H-benzo[f][1,2]oxaphosphepine 2-oxide (6e)

By following the general procedure, 6e was prepared from ethyl
(2-methoxy-6-vinylphenyl) allylphosphonate (4e) (315mg,
1.12mmol), and ruthenium catalyst 5 (53mg, 0.056mmol) as a
greenish dense oil (0.23 g, 81%). IR (thin film, cm�1): 1270 (P¼O),
1244 (P¼O). 31P NMR (162MHz, DMSO-d6) d¼ 41.74 ppm. 1H NMR
(400MHz, DMSO-d6) d¼ 1.26 (t, 3H, J¼ 7.1 Hz), 2.50–2.63 (m, 1H),
2.79–2.91 (m, 1H), 3.84 (s, 3H), 4.13–4.22 (m, 2H), 5.92–6.04 (m,
1H), 6.65–6.72 (m, 1H), 6.86 (dd, 1H, J¼ 7.8, 1.4 Hz), 7.08 (dd, 1H,
J¼ 8.2, 1.4 Hz), 7.14–7.20 (m, 1H) ppm. 13C NMR (101MHz, DMSO-
d6) d¼ 16.1 (d, JP,C ¼ 6.1 Hz), 25.4 (d, JP,C ¼ 127Hz), 55.9, 62.0 (d,
JP,C ¼ 6.9 Hz), 112.0, 121.3, 122.9 (d, JP,C ¼ 12.2 Hz), 125.0, 128.7,
129.6 (d, JP,C ¼ 8.8 Hz), 136.6 (d, JP,C ¼ 8.4 Hz), 151.2 (d, JP,C ¼
3.1 Hz) ppm. HRMS (ESI) [MþH]þ: m/z calcd for C12H16O4P:
255.0786, found 255.0800.

7,9-Dichloro-2-ethoxy-3H-benzo[f][1,2]oxaphosphepine 2-oxide (6f)

By following the general procedure, 6f was prepared from 2,4-
dichloro-6-vinylphenyl ethyl allylphosphonate (4f) (0.70 g,
2.18mmol), and ruthenium catalyst 5 (103mg, 0.109mmol) as a
greenish dense oil (0.46 g, 72%). IR (thin film, cm�1): 1276 (P¼O),
1242 (P¼O). 31P NMR (162MHz, DMSO-d6) d¼ 40.02 ppm. 1H NMR
(400MHz, DMSO-d6) d¼ 1.29 (t, 3H, J¼ 7.1 Hz), 2.76–3.05 (m, 2H),
4.15–4.31 (m, 2H), 6.02–6.15 (m, 1H), 6.66–6.72 (m, 1H), 7.46 (d,
1H, J¼ 2.6 Hz), 7.73 (d, 1H, J¼ 2.6 Hz) ppm. 13C NMR (101MHz,
DMSO-d6) d¼ 16.2 (d, JP,C ¼ 6.0 Hz), 25.7 (d, JP,C ¼ 126Hz), 62.9 (d,
JP,C ¼ 6.9 Hz), 125.0 (d, JP,C ¼ 12.2Hz), 126.8 (d, JP,C ¼ 3.6 Hz),
128.0 (d, JP,C ¼ 9.2 Hz), 128.8, 128.9, 129.1, 130.8, 142.3 (d, JP,C ¼
7.6 Hz) ppm. HRMS (ESI) [MþH]þ: m/z calcd for C11H12O3PCl2:
292.9901, found 292.9908.

2-Ethoxy-7-nitro-3H-benzo[f][1,2]oxaphosphepine 2-oxide (6 g)

By following the general procedure, 6g was prepared from ethyl
(4-nitro-2-vinylphenyl) allylphosphonate (4g) (1.85 g, 6.22mmol),

and ruthenium catalyst 5 (295mg, 0.31mmol) as a brown dense
oil (1.12 g, 67%). IR (thin film, cm�1): 1278 (P¼O), 1233 (P¼O).
31P NMR (162MHz, DMSO-d6) d¼ 38.90 ppm. 1H NMR (400MHz,
DMSO-d6) d¼ 1.29 (t, 3H, J¼ 7.1 Hz), 2.78–3.03 (m, 2H), 4.18–4.28
(m, 2H), 6.06–6.19 (m, 1H), 6.81–6.88 (m, 1H), 7.44–7.48 (m, 1H),
8.22 (dd, 1H, J¼ 8.9, 2.8 Hz), 8.30 (d, 1H, J¼ 2.8 Hz) ppm. 13C NMR
(101MHz, DMSO-d6) d¼ 16.2 (d, JP,C ¼ 5.8 Hz), 25.7 (d, JP,C ¼
124Hz), 62.8 (d, JP,C ¼ 6.8 Hz), 123.2 (d, JP,C ¼ 3.8 Hz), 124.6, 125.0
(d, JP,C ¼ 12.4 Hz), 126.4, 128.2 (d, JP,C ¼ 9.2 Hz), 128.8, 144.1,
151.9 (d, JP,C ¼ 8.0 Hz) ppm. HRMS (ESI) [MþH]þ: m/z calcd for
C11H13NO5P: 270.0531, found 270.0539.

General procedure for the synthesis of 2-hydroxy-3H-1,2-
benzoxaphosphepine 2-oxides 7

The corresponding ethoxy derivative 6 (1.0 eq) was dissolved in
dry DCM (20ml/1mmol of 6), then TMSBr (6.0 eq) was added
dropwise. The reaction mixture was stirred under inert atmos-
phere at rt for 24 h. The volatiles were removed in vacuo, and the
residue was treated with MeOH (15ml/1mmol of 6), concentrated,
purified by column chromatography on silica gel (EtOAc 100%).
Products were recrystallised from EtOAc.

2-Hydroxy-3H-benzo[f][1,2]oxaphosphepine 2-oxide(7a)

By following the general procedure, 7a was prepared from 2-
ethoxy-3H-benzo[f][1,2]oxaphosphepine 2-oxide (6a) (0.32 g,
1.43mmol) and TMSBr (1.12ml, 8.56mmol) as a white solid
(0.25 g, 88%). Mp: 128–129 �C. IR (KBr, cm�1): 2487 (O¼ P-OH),
2203 (O¼ P-OH), 1665 (O¼ P-OH), 1258 (P¼O), 1223 (P¼O). 31P
NMR (162MHz, DMSO-d6) d¼ 36.64 ppm. 1H NMR (400MHz,
DMSO-d6) d¼ 2.57 (dd, 1H, J¼ 6.7, 1.0 Hz), 2.62 (dd, 1H, J¼ 6.7,
1.0 Hz), 5.88–6.01 (m, 1H), 6.64 (dd, 1H, J¼ 10.8, 5.0 Hz), 7.09–7.14
(m, 1H), 7.17–7.23 (m, 1H), 7.27–7.37 (m, 2H) ppm. 13C NMR
(101MHz, DMSO-d6) d¼ 27.1 (d, JP,C ¼ 125Hz), 121.8 (d, JP,C ¼
3.4 Hz), 123.6 (d, JP,C ¼ 12.2 Hz), 124.5, 127.9, 129.1 (d, JP,C ¼
8.4 Hz), 129.2, 130.6, 147.9 (d, JP,C ¼ 7.6 Hz) ppm. HRMS (ESI)
[MþH]þ: m/z calcd for C9H10O3P: 197.0368, found 197.0371.

2-Hydroxy-7-iodo-3H-benzo[f][1,2]oxaphosphepine 2-oxide (7b)

By following the general procedure, 7b was prepared from 2-
ethoxy-7-iodo-3H-benzo[f][1,2]oxaphosphepine 2-oxide (6b)
(2.22 g, 6.34mmol) and TMSBr (4.98ml, 38.0mmol) as a white solid
(1.66 g, 81%). Mp: 193–194 �C.IR (KBr, cm�1): 2490 (O¼ P-OH),
2198 (O¼ P-OH), 1652 (O¼ P-OH), 1259 (P¼O), 1217 (P¼O). 31P
NMR (162MHz, DMSO-d6) d¼ 36.14 ppm. 1H NMR (400MHz,
DMSO-d6) d¼ 2.59 (dd, 1H, J¼ 6.7, 1.0 Hz), 2.65 (dd, 1H, J¼ 6.7,
1.0 Hz), 5.91–6.03 (m, 1H), 6.56–6.62 (m, 1H), 6.92 (dd, 1H, J¼ 8.4,
1.1 Hz), 7.64 (dd, 1H, J¼ 8.4, 2.2 Hz), 7.68 (d, 1H, J¼ 2.2 Hz) ppm.
13C NMR (101MHz, DMSO-d6) d¼ 27.1 (d, JP,C ¼ 125Hz), 88.6 (d,
JP,C ¼ 1.5 Hz), 124.2 (d, JP,C ¼ 3.2 Hz), 124.9 (d, JP,C ¼ 12.2 Hz),
127.8 (d, JP,C ¼ 8.4 Hz), 130.6, 137.6, 138.7, 147.9 (d, JP,C ¼ 7.4 Hz)
ppm. HRMS (ESI) [MþH]þ: m/z calcd for C9H9O3PI: 322.9334,
found 322.9345.
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7-Bromo-2-hydroxy-3H-benzo[f][1,2]oxaphosphepine 2-oxide (7c)

By following the general procedure, 7c was prepared from 7-
bromo-2-ethoxy-3H-benzo[f][1,2]oxaphosphepine 2-oxide (6c)
(0.31 g, 1.02mmol) and TMSBr (0.80ml, 6.14mmol) as a white solid
(0.23 g, 82%). Mp: 163–164 �C. IR (KBr, cm�1): 1652 (O¼ P-OH),
1224 (P¼O), 1206 (P¼O). 31P NMR (162MHz, DMSO-d6)
d¼ 36.27 ppm. 1H NMR (400MHz, DMSO-d6) d¼ 2.61 (dd, 1H,
J¼ 6.7, 0.9 Hz), 2.66 (dd, 1H, J¼ 6.7, 0.9 Hz), 5.93–6.06 (m, 1H),
6.58–6.64 (m, 1H), 7.07 (dd, 1H, J¼ 8.6, 0.9 Hz), 7.50 (dd, 1H,
J¼ 8.6, 2.5 Hz), 7.54 (d, 1H, J¼ 2.5 Hz) ppm. 13C NMR (101MHz,
DMSO-d6) d¼ 27.1 (d, JP,C ¼ 125Hz), 116.3 (d, JP,C ¼ 1.5 Hz), 124.0
(d, JP,C ¼ 3.4 Hz), 125.1 (d, JP,C ¼ 12.0 Hz), 127.9 (d, JP,C ¼ 8.6 Hz),
130.3, 131.8, 132.8, 147.2 (d, JP,C ¼ 7.6 Hz) ppm. HRMS (ESI)
[MþH]þ: m/z calcd for C9H9O3PBr: 274.9473, found 274.9470.

9-Bromo-2-hydroxy-3H-benzo[f][1,2]oxaphosphepine 2-oxide (7d)

By following the general procedure, 7d was prepared from 9-bromo-
2-ethoxy-3H-benzo[f][1,2]oxaphosphepine 2-oxide (6d) (0.60g,
1.98mmol) and TMSBr (1.55ml, 11.9mmol) as a white solid (0.49g,
90%). Mp: 180–181 �C. IR (KBr, cm�1): 2545 (O¼ P-OH), 2125 (O¼ P-
OH), 1214 (P¼O), 1210 (P¼O). 31P NMR (162MHz, DMSO-d6)
d¼ 36.44ppm. 1H NMR (400MHz, DMSO-d6) d¼ 2.63 (dd, 1H, J¼ 6.6,
0.9Hz), 2.68 (dd, 1H, J¼ 6.6, 0.9Hz), 5.92–6.05 (m, 1H), 6.61–6.67 (m,
1H), 7.09–7.14 (m, 1H), 7.30 (dd, 1H, J¼ 7.8, 1.3Hz), 7.64 (dd, 1H,
J¼ 7.9, 1.5Hz) ppm. 13C NMR (101MHz, DMSO-d6) d¼ 27.3 (d, JP,C ¼
125Hz), 115.9 (d, JP,C ¼ 3.8Hz), 124.6 (d, JP,C ¼ 12.1Hz), 125.5, 128.6
(d, JP,C ¼ 8.6Hz), 129.7, 130.2, 132.4, 144.9 (d, JP,C ¼ 7.4Hz) ppm.
HRMS (ESI) [MþH]þ: m/z calcd for C9H9O3PBr: 274.9473,
found 274.9473.

2-Hydroxy-9-methoxy-3H-benzo[f][1,2]oxaphosphepine 2-oxide (7e)

By following the general procedure, 7e was prepared from 2-
ethoxy-9-methoxy-3H-benzo[f][1,2]oxaphosphepine 2-oxide (6e)
(185mg, 0.73mmol) and TMSBr (0.57ml, 4.37mmol) as a white
solid (120mg, 73%). Mp: 200–201 �C. IR (KBr, cm�1): 2527 (O¼ P-
OH), 2224 (O¼P-OH), 1275 (P¼O), 1256 (P¼O).31P NMR (162MHz,
DMSO-d6) d¼ 37.38 ppm. 1H NMR (400MHz, DMSO-d6) d¼ 2.56
(dd, 1H, J¼ 6.6, 0.9 Hz), 2.61 (dd, 1H, J¼ 6.6, 0.9 Hz), 3.80 (s, 3H),
5.87–5.99 (m, 1H), 6.59 (dd, 1H, J¼ 10.9, 4.8 Hz), 6.82 (dd, 1H,
J¼ 7.7, 1.3 Hz), 7.01–7.05 (m, 1H), 7.08–7.14 (m, 1H) ppm. 13C NMR
(101MHz, DMSO-d6) d¼ 27.3 (d, JP,C ¼ 126Hz), 55.9, 112.0, 121.6,
123.7 (d, JP,C ¼ 12.2 Hz), 124.4, 128.9, 129.0, 129.1, 137.2 (d, JP,C ¼
7.6 Hz), 151.5 (d, JP,C ¼ 3.3 Hz) ppm. HRMS (ESI) [MþH]þ: m/z
calcd for C10H12O4P: 227.0473, found 227.0477.

7,9-Dichloro-2-hydroxy-3H-benzo[f][1,2]oxaphosphepine 2-
oxide (7f)

By following the general procedure, 7f was prepared from 7,9-
dichloro-2-ethoxy-3H-benzo[f][1,2]oxaphosphepine 2-oxide (6f)

(0.37 g, 1.26mmol) and TMSBr (1.00ml, 7.57mmol) as a white solid
(0.27 g, 81%). Mp: 192–193 �C. IR (KBr, cm�1): 2522 (O¼ P-OH),
2219 (O¼ P-OH), 1230 (P¼O), 1155 (P¼O).31P NMR (162MHz,
DMSO-d6) d¼ 36.50 ppm. 1H NMR (400MHz, DMSO-d6) d¼ 2.68
(dd, 1H, J¼ 6.7, 0.9 Hz), 2.73 (dd, 1H, J¼ 6.7, 0.9 Hz), 5.99–6.11 (m,
1H), 6.62 (dd, 1H, J¼ 11.1, 4.9 Hz), 7.41 (d, 1H, J¼ 2.6 Hz), 7.66 (d,
1H, J¼ 2.6 Hz) ppm. 13C NMR (101MHz, DMSO-d6) d¼ 27.3 (d, JP,C
¼ 125Hz), 126.1 (d, JP,C ¼ 12.2 Hz), 127.2 (d, JP,C ¼ 3.8 Hz), 127.5
(d, JP,C ¼ 8.6 Hz), 128.2, 128.5, 128.9, 131.2, 143.0 (d, JP,C ¼ 7.4 Hz)
ppm. HRMS (ESI) [MþH]þ: m/z calcd for C9H8O3PCl2: 264.9588,
found 264.9595.

2-Hydroxy-7-nitro-3H-benzo[f][1,2]oxaphosphepine 2-oxide (7 g)

By following the general procedure, 7g was prepared from 2-
ethoxy-7-nitro-3H-benzo[f][1,2]oxaphosphepine 2-oxide (6g)
(0.33 g, 1.23mmol) and TMSBr (0.96ml, 7.36mmol) as a white solid
(0.21 g, 71%). Mp: 183–184 �C. IR (KBr, cm�1): 2558 (O¼ P-OH),
2263 (O¼ P-OH), 1262 (P¼O), 1221 (P¼O). 31P NMR (162MHz,
DMSO-d6) d¼ 39.26 ppm. 1H NMR (400MHz, DMSO-d6) d¼ 2.69
(dd, 1H, J¼ 6.6, 0.9 Hz), 2.74 (dd, 1H, J¼ 6.6, 0.9 Hz), 6.02–6.15 (m,
1H), 6.73–6.80 (m, 1H), 7.32–7.36 (m, 1H), 8.18 (dd, 1H, J¼ 8.9,
2.9 Hz), 8.25 (d, 1H, J¼ 2.9 Hz) ppm. 13C NMR (101MHz, DMSO-d6)
d¼ 27.4 (d, JP,C ¼ 125Hz), 123.2 (d, JP,C ¼ 3.6 Hz), 124.3, 126.0 (d,
JP,C ¼ 12.0Hz), 126.3, 127.7 (d, JP,C ¼ 9.0 Hz), 129.1, 143.7, 152.7
(d, JP,C ¼ 7.6 Hz) ppm. HRMS (ESI) [MþH]þ: m/z calcd for
C9H9NO5P: 242.0218, found 242.0226.

Carbonic anhydrase inhibition assay

The CA-catalysed CO2 hydration activity was assayed by using an
applied photophysics stopped-flow apparatus24. Phenol red
(0.2mM) was used as indicator following the initial rates of the
CA-catalysed CO2 hydration reaction for a period of 10–100 s. The
indicator worked at the absorbance maximum of 557 nm, with
20mM HEPES buffer (pH 7.4) and 20mM NaClO4 for maintaining
constant ionic strength. For the determination of the kinetic
parameters and inhibition constants, the CO2 concentrations were
varied from 1.7 to 17mM. For each inhibitor, at least six traces of
the initial 5–10% of the reaction were used for determining the
initial velocity. The uncatalysed rates were determined in the
same fashion and subtracted from the total observed rates. The
stock solutions of inhibitor were prepared as 1mM solutions in
distilled, deionised water. Afterwards, dilutions down to 0.01 nM
were prepared in distilled and deionised water. Inhibitor and
enzyme were preincubated together for 6 h at room temperature
in order to allow for the formation of the enzyme–inhibitor com-
plex. The inhibition constants were acquired by the non-linear
least squares method using PRISM 3 and the Cheng–Prusoff equa-
tion, whereas the kinetic parameters of uninhibited enzymes were
obtained from Lineweaver–Burk plots and represent the mean
from at least three different determinations. All CA isoforms were
recombinant, obtained in-house as reported earlier25–27.

Results and discussion

Chemistry

The synthetic strategy for the synthesis of 3H-1,2-benzoxaphos-
phepine 2-oxides is outlined in Scheme 1. The synthesis
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commenced with the Wittig reaction of commercially available 2-
hydroxybenzaldehydes 1, which provided olefins 2 in high yields.
In the following step, compounds 2 were treated with ethyl allyl-
phosphonochloridate (3, the reagent was prepared according to
the literature procedure23) to give diolefins 4 in good to excellent
yields. These key intermediates 4 were successfully cyclised by
ring-closing metathesis, utilising commercially accessible Ru-based
catalyst 5. The reaction furnished corresponding cyclic ethyl phos-
phonates 6 in good yields. Finally, compounds 6 were treated
with TMSBr to afford hydroxy derivatives 7 in very good yields.

Carbonic anhydrase inhibition

The newly synthesised compounds 6 and 7 were evaluated for
their CA inhibition activity by using the stopped-flow CO2 hydrase
assay24. The study was carried out against four human CA iso-
forms – the ubiquitous cytosolic CA I and II as well as trans-mem-
brane tumour-associated CA IX and XII1–7. The clinically used
acetazolamide (AAZ) was used as the reference drug. The results
of this study are shown in Table 1, and the following inferences
could be drawn:

i. All synthesised benzoxaphosphepine2-oxide derivatives 6–7
have no inhibitory activity towards cytosolic isoforms hCA I
and hCA II (KI > 100 mM), whose inhibition in most cases is
undesirable, as hCA I and II isoforms are found in many tis-
sues of the organism1,2,7. It should be mentioned that AAZ is
a highly effective inhibitor of all the four hCA isoforms con-
sidered here, which explains the many side effects of
that drug28,29.

ii. The tumour-associated hCA IX isoform was inhibited by all
synthesised compounds 6–7 with inhibition constants in the
sub-micromolar to low micromolar range (KI: 0.67–11.3 mM).
The compound 7g was found to be the most potent hCA IX
inhibitor among tested compounds with KI ¼ 0.67 mM.

iii. The other tumour-associated isoform hCA XII was also notably
inhibited by all the synthesised derivatives 6–7 with KI values in
the low micromolar and sub-micromolar range (KI: 0.51–7.4

mM). Among all tested compounds, compound 7a was the
most effective inhibitor against hCA XII with KI ¼ 0.51 mM.

iv. Overall, hydroxy derivatives 7 showed slightly higher inhib-
ition potency against tumour-associated hCA IX and XII than
the corresponding ethoxy derivatives 6. In the case of
hydroxy derivatives 7, the range of KI values was found to be
from 0.67 to 2.5 mM for hCA IX and from 0.51 to 1.8 mM for
hCA XII. Regarding ethoxy derivatives 6, the range of KI val-
ues was from 0.76 to 11.3 mM for hCA IX and from 0.95 to
7.4 mM for hCA XII.

Scheme 1. Reagents and conditions: (i) MePPh3Br, t-BuOK, THF, rt, 18 h, 76–88%; (ii) NEt3, DCM, 0 �C to rt, 18 h, 60–94%; (iii) 5, PhMe, 70 �C, 4 h, 63–86%; (iv) TMSBr,
DCM, rt, 24 h, 71–90%.

Table 1. Inhibition data of compounds 6–7 and the standard inhibitor acetazo-
lamide (AAZ) against human CA isoforms I, II, IX and XII.

Cmpd R R1 R2

KI (mM)
a,b

hCA I hCA II hCA IX hCA XII

6a Et H H >100 >100 0.82 0.82
7a H H H >100 >100 1.3 0.51
6b Et I H >100 >100 4.7 2.4
7b H I H >100 >100 0.88 0.68
6c Et Br H >100 >100 0.76 1.6
7c H Br H >100 >100 1.0 0.96
6d Et H Br >100 >100 11.3 3.3
7d H H Br >100 >100 2.5 1.8
6e Et H OMe >100 >100 9.0 7.4
7e H H OMe >100 >100 1.8 1.2
6f Et Cl Cl >100 >100 6.1 3.4
7f H Cl Cl >100 >100 0.80 1.7
6g Et NO2 H >100 >100 3.9 0.95
7g H NO2 H >100 >100 0.67 1.0
AAZ – 0.25 0.012 0.025 0.006
aValues are mean from three different assays using the stopped-flow technique
(errors were in the range of ± 5–10% of the reported values).
b6 h incubation.
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Albeit the efficacy of the synthesised compounds 6–7 was
lower in comparison to the reference drug AAZ, these compounds
displayed desirable isoform-selective inhibition activity for tumour-
associated isoforms hCA IX and hCA XII. The establishing of the
selectivity is necessary to prevent possible side effects from inhib-
ition of cytosolic hCA I and II isoforms7,28,29.

Conclusions

Herein we report the synthesis of novel benzoxaphosphepine 2-
oxide derivatives as a new class of tumour-associated CA IX and
XII inhibitors. These compounds were investigated against four
human CA isoforms with pharmacological applications (hCA I, hCA
II, hCA IX, and hCA XII). All tested compounds exhibited selective
inhibition of the tumour-associated hCA isoforms IX and XII with
activities in the sub-micromolar or low micromolar range, whereas
the off-target cytosolic isoforms hCA I and II were not significantly
inhibited by these compounds. Considering that hCA IX and XII
are implicated in processes connected to tumourigenesis2–6, pre-
sent findings give an insight towards development of new select-
ive anti-tumour agents.
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