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1. Introduction 

The information matrix (IM) test introduced by White (1982) constitutes a rather general procedure for examining the 

specification of models estimated by maximum likelihood (ML). It directly assesses the IM equality, which states that the 

sum of the Hessian matrix and the outer product of the score vector should be zero in expected value when the estimated

model is correctly specified. As an illustration, White (1982) derived the IM test for a univariate normal random variable,

proving that it simply checks that the third- and fourth-order Hermite polynomials of the standardised variable have zero 

means in the population. Therefore, it is equivalent to the version of the popular Jarque and Bera (1980) test proposed by

Kiefer and Salmon (1983) among many others. 

The theoretical properties and interpretation of the IM test as part of the general class of moment tests in Newey

(1985) and Tauchen (1985) (see White (1994) ), as well as its applications and finite sample behaviour, have been exten-

sively investigated. Multivariate normality tests have also been studied extensively. The intersection is limited to Smith 

(1987) , who related the IM test to a normality test against a multivariate Edgeworth-type A series expansion truncated 
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to the fourth order in the context of linear simultaneous limited dependent variable models. Given both the univariate 

precedent in White (1982) and the results in Smith (1987) , it is not surprising that we can prove that the IM test for a

multivariate normal random vector coincides with the sum of the two moment tests that look at the means of all the third-

and fourth-order multivariate Hermite polynomials. As a result, the IM test statistic is also equivalent to the smooth test 

against a fourth-order Hermite polynomial expansion of the multivariate normal density in Koziol (1987) , which is in turn

equivalent to Mardia and Kent (1991) score test of multivariate normality against exponential distributions whose sufficient 

statistics depend not only on the levels and cross-products of the observations, but also on all possible products of three and

four elements. The neglected heterogeneity interpretation of the IM test in Chesher (1984) provides a completely different 

justification, which might be more relevant in some empirical applications. 

The numerical equivalence between the IM test and the moment test based on Hermite polynomials is important be- 

cause, on the one hand, it allows the IM test, which is often regarded as a black box, to be reinterpreted in this context as

a moment test of a set of rather natural influence functions. On the other hand, it provides a likelihood-based justification

for using the third- and fourth-order multivariate Hermite polynomials to test normality. 

Rather than in unconditional models, often the interest is in conditional models in which a subset of dependent variables 

is modelled as a multivariate linear regression of another subset of exogenous variables. For that reason, we deconstruct the 

multivariate normality test by showing that it can be computed as the sum of three asymptotically orthogonal components: 

a marginal IM test for the regressors, a conditional IM test for the distribution of the dependent variables given those

regressors, and a third component that collects the remaining terms. In turn, we show that the conditional component 

can be computed as the sum of the aforementioned multivariate skewness and kurtosis tests applied to the regression 

residuals, a multivariate regression version of White (1980) test for conditional heteroskedasticity in those residuals, and 

an additional component that looks at the conditional skewness of residuals given regressors, which we call a test for 

conditionally heteroclicity following Bera and Lee (1993) . Similarly, we also prove that the remaining component of the joint 

test focuses on both the conditional heteroskedasticity and heteroclicity of the regressors given the regression residuals. 

We explicitly address the widespread and often justified concern that the IM test is unreliable in finite samples (see 

Horowitz (1994) and the reference therein) by explaining how to simulate its exact, parameter-free, finite sample distribu- 

tion, as well as that of its components, to any desired degree of accuracy for any dimension of the random vector and sample

size. In this respect, we exploit the numerical invariance of the different components of the IM test to affine transformations

of the observed variables to simulate draws extremely quickly. 

Finally, we apply our procedures to analyse the joint and conditional normality of the size of US cities and their rates

of growth using data from the 20 0 0, 2010, and 2020 censuses. As is well known, Gibrat’s law says that if the (continuously

compounded) rates of growth of the populations of cities are independent of their initial size, the cross-sectional distribution 

of city sizes in the steady state should be log-normal (see Bottazzi et al. (2001) for a related analysis of the pharmaceutical

industry). 

The rest of the paper is organised as follows. Section 2 includes our results on the joint IM test. Section 3 provides

the decomposition of the IM test that results from factorisation of the joint distribution into a marginal and a conditional

component. The results of some Monte Carlo exercises that examine the size and power of the tests in finite samples are

presented in Section 4 , while Section 5 assesses the joint and conditional normality of US city sizes. The conclusion in

Section 6 mentions some avenues for further research. Proofs and auxiliary results are relegated to appendices. 

2. The information matrix test 

Our null hypothesis is that the M × 1 vector is 

x ∼ i.i.d. N(ν, �) with | �| > 0 , (1) 

and ν and � unknown. Given a random sample on x of dimension N, { xn }N 
n =1 , the maximum likelihood estimators of ν and

� coincide with the sample mean vector ˆ νN and the covariance matrix ˆ �N (with denominator N). If ν and � are known, 

then there are no parameters to estimate under the null and, therefore, no gradient or information matrix. However, the 

test statistic in Proposition 1 in Section 2.3 with estimators replaced by true values would continue to be valid as a multi-

variate normality test. Similarly, we use the i.i.d. assumption mainly for computing the asymptotic variance of the influence 

functions, which, in principle, could be robustified for the presence of serial correlation. 

2.1. Multivariate Hermite polynomials and moment tests 

To enable a generalization of White’s (1982) result to the multivariate context, let us follow Barndorff-Nielsen and Pe- 

tersen (1979) in defining the (centred) multivariate Hermite polynomials of x of order k = k1 + · · · + kM 

≥ 0 as 

Hk1 ... kM 
[ε (ν) , �] · e− 1 

2 (x −ν)′ �(x −ν) = (−1)k ∂k 

(∂x1 )k1 . . . (∂xM 

)kM 

[ 
e− 1 

2 (x −ν)′ �(x −ν) 
] 
, (2) 

where � = �−1 and ε (ν) = (x − ν) . The mean of any Hermite polynomial of positive degree is known to be zero when

model (1) is correctly specified, so it constitutes a basis for testing multivariate normality. 
2
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The symmetry of the higher-order partial derivatives in (2) , however, implies that some of the Mk multivariate Hermite 

polynomials of order k will be replicated several times. Specifically, there are only 
(

M+ k −1 
k 

)
different polynomials for a given 

order, so we can avoid generalised inverse matrices by eliminating the redundancies from the list of moments to test. In the

third- and fourth-order cases, we can use the triplication and quadruplication matrices in Meijer (2005) , which generalise 

the duplication matrix (see also Smith (1987) for third- and fourth-order generalisations of the duplication and elimination 

matrices). 

For that reason, we define 

Hk (ε ;�) =

⎡ 

⎢ ⎢ ⎣ 

Hk, 0 ,··· , 0 (ε ;�) 
Hk −1 , 1 ,··· , 0 (ε ;�) 

. . . 
H0 ,··· , 0 ,k (ε ;�) 

⎤ 

⎥ ⎥ ⎦ 

(3) 

as the 
(

M+ k −1 
k 

)
× 1 vector that contains all the non-redundant multivariate Hermite polynomials of order k , which we 

simply denote by Hk (ε 
∗) for the special case of � = IM 

, so that H1 (ε 
∗) = ε ∗ with V [ H1 (ε 

∗)] = IM 

. Thus, we end up

with M(M + 1)(M + 2) / 6 and M(M + 1)(M + 2)(M + 3) / 24 distinct third- and fourth-order moment conditions, respectively,

which coincide with the degrees of freedom of the asymptotic chi-square distributions under the Gaussian null of the cor- 

responding multivariate skewness and kurtosis tests defined by 

h3 N = N m̄′ 
3 N (ˆ νN , ˆ γN ) { V [ H3 (ε 

∗)] }−1 m̄3 N (ˆ νN , ˆ γN ) (4) 

and 

h4 N = N m̄′ 
4 N (ˆ νN , ˆ γN ) { V [ H4 (ε 

∗)] }−1 m̄4 N (ˆ νN , ˆ γN ) , (5) 

where γ = v ech (�) , m̄3 N (ν,γ ) and m̄4 N (ν,γ ) denote the sample averages of H3 [ε 
∗(ν,γ )] and H4 [ε 

∗(ν,γ )] , respectively, over

the random sample of size N, with ε ∗(ν,γ ) = �−1 / 2 ε (ν) , and V [ H3 (ε 
∗)] and V [ H4 (ε 

∗)] denote their covariance matrices,

whose theoretical expressions we provide in Lemma 1 in Section 2.3 . 

2.2. IM influence functions for testing multivariate normality 

The contribution of one observation on x to the log-likelihood function is 

−M 

2 

ln 2 π − 1 

2 

ln | �| − 1 

2 

z′ (ν,γ ) �−1 z (ν,γ ) , 

where z (ν,γ ) = �ε (ν) = �−1 (x − ν) . The scores of this component with respect to the vector of mean parameters are 

sν(x ;ν,γ ) = z (ν,γ ) , 

which coincide with the first-order Hermite polynomials of x . Similarly, the scores with respect to the covariance matrix 

parameters are given by 

sγ (x ;ν,γ ) = 1 

2 

D′ 
M 

v ec[ z (ν,γ ) z′ (ν,γ ) − �] , 

which coincide with the product of the (transposed) duplication matrix DM 

and the second-order Hermite polynomials. 

Therefore, the Hessian matrix is given by 

hνν(x ;ν,γ ) = −�, 

hγν(x ;ν,γ ) = −D′ 
M 

[ z (ν,γ ) � �] , 

and 

hγγ (x ;ν,γ ) = −1 

2 

D′ 
M 

{ 2[(� � z (ν,γ ) z′ (ν,γ )] − (� � �) } DM 

. 

Hence, the sum of the outer product of the score and the Hessian, which constitute the basis for the IM test, yields the

terms 

dνν(x ;ν,γ ) = sνν(x ;ν,γ ) s′ 
νν(x ;ν,γ ) + hνν(x ;ν,γ ) 

= z (ν,γ ) z′ (ν,γ ) − �, (6) 

dγν(x ;ν,γ ) = sγν(x ;ν,γ ) s′ 
γν(x ;ν,γ ) + hγν(x ;ν,γ ) 

= 

1 

2 

D′ 
M 

v ec[ z (ν,γ ) z′ (ν,γ ) − �] z′ (ν,γ ) − D′ 
M 

[ z (ν,γ ) � �] , (7) 

and 
3
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dγγ (x ;ν,γ ) = sγγ (x ;ν,γ ) s′ 
γγ (x ;ν,γ ) + hγγ (x ;ν,γ ) 

= 

1 

4 

D′ 
M 

v ec[ z (ν,γ ) z′ (ν,γ ) − �] v ec′ [ z (ν,γ ) z′ (ν,γ ) � − �] DM 

−1 

2 

D′ 
M 

{ 2[ z (ν,γ ) z′ (ν,γ )] − (� � �) } DM 

. (8) 

When model (1) is correctly specified, the IM equality holds and the mean of 

d (x ;ν,γ ) =

⎡ 

⎣ 

dνν(x ;ν,γ ) 
dνγ (x ;ν,γ ) 
dγγ (x ;ν,γ ) 

⎤ 

⎦ 

is zero. Hence, if we denote by d̄N (ˆ νN , ˆ γN ) the sample average of d (x ;ν,γ ) evaluated at the ML estimators, by V [ d (x ;ν,γ )]

the covariance matrix of those influence functions adjusted for the sampling uncertainty in estimating ν and γ under the 

null, and by + the Moore-Penrose inverse of a square matrix, then the IM test of multivariate normality is simply 

IMN = N d̄′ 
N (ˆ νN , ˆ γN ) { V [ d (x ;ν,γ )] }+ d̄N (ˆ νN , ˆ γN ) , (9) 

which has an asymptotic chi-square distribution under the Gaussian null, with the number of degrees of freedom equal to 

the rank of V [ d (x ;ν,γ )] , whose singularity reflects the symmetric nature of the Hessian matrix and the corresponding outer

product of the scores, the redundant nature of some of the influence functions involved, and the fact that some of them are

linear functions of the scores. 

2.3. Reinterpretation of the IM test 

Our first result, which generalizes the example in White (1982) to the multivariate case, establishes the numerical equiv- 

alence between directly relying on (9) or using the sum of (4) and (5) for the purpose of testing the correct specification of

(1) . 

Proposition 1. The IM test statistic (9) , which compares the outer product of the score with the Hessian of model (1) evaluated

at the sample mean vector and covariance matrix, numerically coincides with the sum of the two asymptotically independent 

moment tests ( 4 ) and (5) , which check whether the expected values of all the distinct third- and fourth-order multivariate Hermite

polynomials of x are zero. 

Although we prove Proposition 1 from first principles for pedagogical reasons, it could also be derived using the results 

in Section 4 and Appendices A and B of Smith (1987) for the limiting case in which there are no regressors in the linear

simultaneous equation limited dependent variable model that he considers, but the limited dependent variables are in fact 

unlimited. 

Multivariate Hermite polynomials of different orders are known to be uncorrelated (see, e.g., Holmquist (1996) or Rahman 

(2017) ), which justifies the additive decomposition of the test statistic in Proposition 1 . In addition, Holly and Gardiol (1995) ,

building on the formulas for the higher order moments of the multivariate normal in Balestra and Holly (1990) , which in

turn generalises ( Magnus and Neudecker, 1979 ) and Phillips and Park (1988) , explain how to obtain matrix expressions for

the covariance matrices of the entire vector of polynomials of any given common order. 

On the basis of their results, we derive computationally simple closed-form expressions for the asymptotic covariance 

matrices of the sample moments underlying our tests effectively adjusted for parameter uncertainty under the null of 

Gaussianity, which should improve the finite sample performance of our testing procedures, as forcefully argued by Orme 

(1990) (see also Horowitz (1994) and the references therein). Specifically, the next result contains detailed expressions for 

the covariances between two arbitrary first-, second-, third-, and fourth-order Hermite polynomials, thereby generalising the 

results in Amengual et al. (2022a) . 

Lemma 1. Let δi j denote the (i, j)th element of �. When model (1) is correctly specified, 

cov (Hi , Hj ) = δi j , 

cov (Hi j , Hi′ j′ ) = δii′ δ j j′ + δi j′ δ ji′ , 

cov (Hi jk , Hi′ j′ k′ ) = δii′ δ j j′ δkk′ + δii′ δ jk′ δk j′ + δi j′ δ ji′ δkk′ 

+ δi j′ δ jk′ δki′ + δik′ δ ji′ δk j′ + δik′ δ j j′ δki′ , and 

cov (Hi jkh , Hi′ j′ k′ h′ ) = δii′ δ j j′ δkk′ δhh′ + δii′ δ j j′ δkh′ δhk′ + δii′ δ jk′ δk j′ δhh′ + δii′ δ jk′ δkh′ δh j′ 

+ δii′ δ jh′ δk j′ δhk′ + δii′ δ jh′ δkk′ δh j′ + δi j′ δ ji′ δkk′ δhh′ + δi j′ δ ji′ δkh′ δhk′ 

+ δi j′ δ jk′ δki′ δhh′ + δi j′ δ jk′ δkh′ δhi′ + δi j′ δ jh′ δki′ δhk′ + δi j′ δ jh′ δkk′ δhi′ 

+ δik′ δ ji′ δk j′ δhh′ + δik′ δ ji′ δkh′ δh j′ + δik′ δ j j′ δki′ δhh′ + δik′ δ j j′ δkh′ δhi′ 

+ δik′ δ jh′ δki′ δh j′ + δik′ δ jh′ δk j′ δhi′ + δih′ δ ji′ δk j′ δhk′ + δih′ δ ji′ δkk′ δh j′ 

+ δih′ δ j j′ δki′ δhk′ + δih′ δ j j′ δkk′ δhi′ + δih′ δ jk′ δki′ δh j′ + δih′ δ jk′ δk j′ δhi′ . 
4
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When � = IM 

, the components of x are stochastically independent and the multivariate Hermite polynomial 

Hk1 ... kM 
[ε (ν) , �] simplifies to the product of the univariate polynomials Hk1 

[ ε1 (ν1 )] , ..., HkM 
[ εM 

(νM 

)] . Moreover, Lemma 1 im-

plies that different multivariate Hermite polynomials of the same order become orthogonal to each other, so the IM test 

of model (1) effectively becomes the sum of the individual moments tests for all possible distinct multivariate Hermite 

polynomials of orders 3 and 4. Consequently, if we considered a sequence of local departures from a multivariate spheri- 

cally normal distribution, the non-centrality parameter of the asymptotic distribution of the skewness and kurtosis tests in 

Proposition 1 would be the sum of the non-centrality parameters of each of the 
(

M+2 
3 

)
+
(

M+3 
4 

)
asymptotically independent 

moment tests, which is easy to compute. 

In addition, the expressions for the variance terms that appear in Lemma 1 simplify considerably. Specifically, for the 

special case of � = IM 

, so that H1 (ε 
∗) = ε ∗ with V [ H1 (ε 

∗)] = IM 

, the diagonal elements of V [ H2 (ε 
∗)] are V (ε∗2 

i 
− 1) = 2

and V (ε∗
i 
ε∗

i′ ) = 1 for i′ � = i , while those of V [ H3 (ε 
∗)] are V (ε∗3 

i 
− 3 ε∗

i 
) = 6 , V (ε∗2 

i 
ε∗

i′ − ε∗
i′ ) = 2 for i′ � = i , and V (ε∗

i 
ε∗

i′ ε
∗
i′′ ) =

1 for i′′ � = i′ � = i . Finally, the diagonal elements of V [ H4 (ε
∗)] are V [(ε∗2 

i 
− 3 ε∗

i 
)2 − 6] = 24 , V (ε∗2 

i 
ε∗2 

i′ − ε∗2 
i 

− ε∗2 
i′ + 1) = 4 for

i′ � = i , V (ε∗3 
i 

ε∗
i′ − 3 ε∗

i 
ε∗

i′ ) = 6 for i′ � = i , V (ε∗2 
i 

ε∗
i′ ε

∗
i′′ − ε∗

i′ ε
∗
i′′ ) = 2 for i′′ � = i′ � = i , and V (ε∗

i 
ε∗

i′ ε
∗
i′′ ε

∗
i′′′ ) = 1 for i′′′ � = i′′ � = i′ � = i (see

Amengual et al. (2022a) for further details). 

2.4. Computational considerations 

Consider the full-rank affine transformation y = c + Dx with | D | � = 0 . When (1) holds, y ∼ i.i.d. N(c + Dν, D�D 

′ ) . Our next

result shows that the IM test statistic is numerically invariant to the values of c and D . 

Lemma 2. The IM test statistic of model (1) numerically coincides with the analogous test statistic for y . 

This numerical invariance is a very desirable property of any multivariate normality test (see Henze (2002) ), but it also

provides a very fast numerical procedure for computing the test statistic. Specifically, given a sample of size N on x , we

can subtract the sample mean from each observation and premultiply the resulting vector by any square root of the sample

covariance matrix to create standardised random vectors for which the ML estimators of their mean vector and covariance 

matrix will be 0 and IM 

, respectively. Thus, the IM test statistic would be numerically equivalent to the sum of the individual

moments tests for all possible multivariate Hermite polynomials of orders 3 and 4, which are very simple to compute be-

cause of their factorisation as products of univariate Hermite polynomials. Asymptotically, we can obtain the non-centrality 

parameter of the test for any value of � by applying the same trick. 

Lemma 2 also implies that the sample mean vector and covariance matrix of the observations, which set the average of

the first and second multivariate Hermite polynomials to zero, do not affect the null distribution of our proposed test in

finite samples. Thus, it is possible to simulate its exact, parameter-free, finite sample distribution to any desired degree of 

accuracy for any dimension of x and sample size thanks to its pivotal nature, thereby avoiding the well-deserved criticism 

that the asymptotic distribution of IM tests provides a poor approximation in finite samples, especially when the number of 

moment conditions involved is large (see, e.g., Taylor (1987) ; Orme (1990) ; Chesher and Spady (1991) ; Davidson and MacK-

innon (1992) , and Horowitz (1994) ). Specifically, it suffices to simulate R times a random sample of size N of a spherical

Gaussian random vector of dimension M to obtain R independent draws of the IM test statistic for multivariate normality. 

Given that the sample mean and covariance matrix of a multivariate random vector take hardly any time to compute, and

that the IM test statistic for random vectors standardised in the sample can also be swiftly computed, our suggested pro-

cedure generates very accurate simulated p-values very quickly. In fact, given that the only characteristics of the original 

sample that matter are the values of N and M, a researcher could obtain tables with exact critical values before observing

the data, a very convenient strategy we follow in Sections 4 and 5 . 

3. Deconstructing the IM test 

As we mentioned in the introduction, in empirical research the interest is often in conditional models in which a sub-

set of dependent variables is expressed as a multivariate linear regression of another subset of exogenous variables, rather 

than in unconditional models. For that reason, in this section we deconstruct the multivariate normality test of Section 2 by

showing that it can be computed as the sum of three asymptotically orthogonal components: a marginal IM test for the re-

gressors, a conditional IM test for the distribution of the dependent variables given those regressors, and a third component 

consisting of the remaining terms, which we label as “the rest.”

Specifically, the joint test we considered in the previous section assesses the correct specification of the multivariate 

normal distribution of x in (1) . However, this model is known to be equivalent to 

x1 ∼ i.i.d. N(ν1 , �1 ) with | �1 | > 0 , (10) 

x2 | x1 ∼ i.i.d. N(α2 | 1 + B2 | 1 x1 , �2 | 1 ) , 
α2 | 1 = ν2 − �21 �

−1 
11 ν1 , 

B2 | 1 = �21 �
−1 
11 , and 

�2 | 1 = �22 − �21 �
−1 
11 �

′ 
21 with | �2 . 1 | > 0 , (11) 
5
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for any conceivable partition of the M elements of x into two groups x1 and x2 of dimensions M1 and M2 , respectively, with

M1 + M2 = M. 

Trivially, the IM test of the marginal component (10) is formally identical to the joint IM test in Proposition 1 , except

that it applies to x1 only, so all our results in Section 2 apply. 

3.1. The conditional IM test: A regression interpretation 

To develop the IM test of the conditional component (11) , let us define θ
′ = (ν′ 

1 
,γ ′ 

1 
, θ

′ 
2 | 1 ) , γ1 = v ech (�1 ) , θ

′ 
2 | 1 =

(α′ 
2 | 1 ,β

′ 
2 | 1 ,ω 

′ 
2 | 1 ) , β2 | 1 = v ec(B2 | 1 ) , ω 2 | 1 = v ech (�2 | 1 ) , 

ε 2 | 1 (α2 | 1 ,β2 | 1 ) = x2 − α2 | 1 − B2 | 1 x1 , 

�2 | 1 = �−1 
2 | 1 , and ε ∗

2 | 1 (θ2 . 1 ) = �−1 / 2 
2 | 1 ε 2 | 1 (α2 | 1 ,β2 | 1 ) . The derivations in Amengual et al. (2022b) or the results in Smith

(1987) for the limiting case in which the limited dependent variables are in fact unlimited allow us to prove the following

result. 

Proposition 2. The IM test that compares the outer product of the score with the Hessian of the multivariate regression model

(11) evaluated at the Gaussian maximum likelihood estimators ˆ θN is asymptotically equivalent under the null hypothesis of correct 

specification to the sum of the four moment tests 

hhN = Nm̄′ 
hN 

( ˆ θN )

{
V [ H2 (ε 

∗
2 | 1 )] �

(
�1 0 

0 D+ 
M1 

(IM2 
1 
+ KM1 M1 

)(�1 � �1 ) D
+ ′ 
M1 

)}
−1 m̄hN ( ˆ θN ) , (12) 

hasN = Nm̄′ 
asN (

ˆ θN ) { V [ H3 (ε 

∗
2 | 1 )] }−1 m̄asN ( ˆ θN ) , (13) 

hacN = Nm̄′ 
acN (

ˆ θN ) { V [ H3 (ε 

∗
2 | 1 )] ��1 }−1 m̄acN ( ˆ θN ) , and (14) 

hkN = Nm̄′ 
kN (

ˆ θN ) { V [ H4 (ε 

∗
2 | 1 )] }−1 m̄kN ( ˆ θN ) , (15) 

where m̄hN , m̄asN , m̄acN , and m̄kN are the sample averages of 

mhn (θ) = H2 [ε 

∗
2 | 1 n (θ)] � [(x1 n − ν1 )

′ , v ech′ (x1 n x
′ 
1 n − �1 )]′ , (16) 

masn (θ) = H3 [ε 

∗
2 | 1 n (θ)] , (17) 

macn (θ) = H3 [ε 

∗
2 | 1 n (θ)] � (x1 n − ν1 ) , and (18) 

mkn (θ) = H4 [ε 

∗
2 | 1 n (θ)] , (19) 

which converge in distribution to four mutually independent chi-square random variables whose degrees of freedom are (
M2 +1 

2 

)M1 ( M1 +3) 
2 , 

(
M2 +2 

3 

)
, 
(

M2 +2 
3 

)
M1 , and 

(
M2 +3 

4 

)
, respectively. 

Intuitively, when model (11) is correctly specified, (i) the expected value of any multivariate Hermite polynomial of 

positive degree k of the regression residuals conditional on the regressors is zero and (ii) the conditional covariance matrices 

of those polynomials coincide with the unconditional covariance matrices in Lemma 1 . 

In the next subsections we follow Amengual et al. (2022b) in providing a simple regression interpretation for each of 

the moment tests in Proposition 2 . These interpretations in terms of Lagrange multiplier (LM) tests may prove particularly 

useful for the purposes of indicating the specific directions in which to focus our modelling efforts to enrich model (11) . 

3.1.1. Testing against conditional heteroskedasticity 

Consider the multivariate regression of H2 [ε 
∗
2 | 1 (θ)] onto 1, (x1 − ν1 ) and v ech (x1 x

′ 
1 

− �1 ) . Given that (16) effectively 

contains the relevant normal equations of this regression evaluated under the null, it is straightforward to see that 

the test statistic (12) numerically coincides with the LM test of zero slopes in the aforementioned auxiliary regression 

(see Hall (1987) for an analogous result in the univariate case). As a consequence, if (11) holds, then the quadratic form

in (12) will be asymptotically distributed as a chi-square random variable with 

(
M2 +1 

2 

)M1 ( M1 +3) 
2 degrees of freedom. 

More generally, the test statistic (12) that looks at the conditional mean of the second-order multivariate Hermite poly- 

nomials can be understood as a test of neglected heterogeneity in the β2 | 1 parameters that determine the conditional mean 

of the observations, as explained by Hall (1987) and Bera and Lee (1993) in the univariate case, and Sentana (1995) in the

multivariate one. Nevertheless, this test will have no power to detect time variation in the constant terms of the multivariate

regression which is uncorrelated to the variation in any other of the model parameters because the first-order conditions of 

the estimators ˆ θN corresponding to the residual covariance matrix elements ω 2 | 1 ensure that the sample mean of H2 [ε 
∗
n (

ˆ θN )] 

is zero in a regression with an intercept. 
6
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3.1.2. Testing against conditional heterocliticity and unconditional asymmetry 

Consider the multivariate regression of H3 [ε 
∗
2 | 1 (θ)] onto a constant and (x1 − ν1 ) . Given that (17) and (18) effectively 

provide the normal equations of this regression evaluated under the null, it is straightforward to see that (13) and (14) nu-

merically coincide with the LM tests of zero means and zero slopes, respectively, in this auxiliary regression. In this respect,

(13) converges in distribution to a chi-square random variable with 

(
M2 +2 

3 

)
degrees of freedom, while (14) will converge to 

an independent chi-square with 

(
M2 +2 

3 

)
M1 degrees of freedom under the Gaussian null. In fact, we can exploit this asymp- 

totic independence to interpret the sum of (12) and (14) as a joint test of unconditional and conditional asymmetry of the

regression residuals given the regressors. 

If we re-write the multivariate regression model (11) in deviation from the means form as 

x2 = ν2 + B2 | 1 (x 1 − ν1 ) + �1 / 2 

2 | 1 ε 

∗
2 | 1 , 

then the results in Chesher (1984) imply that (13) is simply testing for dependence between random coefficient variation 

in the unconditional mean of the regressands ν2 and the elements of the covariance matrix of the residuals �2 | 1 . Unlike 

in the previous subsection, the intercepts provide additional degrees of freedom in this case. Similarly, the test statistic 

(14) that examines the conditional mean of the third-order polynomials effectively assesses dependence in the neglected 

heterogeneity of the mean and covariance parameters β2 | 1 and ω 2 | 1 , which in turn generate what Bera and Lee (1993) called

conditional heterocliticity in the univariate case. 

3.1.3. Testing against unconditional kurtosis 

Consider now the multivariate regression of H4 [ε 
∗
2 | 1 (θ)] on a constant. Given that (19) effectively contains the normal 

equations of this regression evaluated under the null, it is once more straightforward to prove that the quadratic form 

(15) numerically coincides with the LM test of zero intercepts in this auxiliary regression. Therefore, this test statistic will 

be asymptotically distributed as a chi-square random variable with 

(
M2 +3 

4 

)
degrees of freedom under the null. 

Using Chesher (1984) reinterpretation of the IM test as a LM test against parameter variation once again, we can also

regard the moment test statistic (15) that examines the unconditional mean of the fourth-order multivariate Hermite poly- 

nomials as a test of neglected heterogeneity in ω 2 | 1 , which are the parameters that characterise the covariance matrix of 

the innovations, as explained by Hall (1987) in the univariate case. 

Finally, it is worth mentioning that we can further exploit the asymptotic independence of the different test statistics in 

Proposition 2 to create a test of multivariate normality of the regression residuals ε ∗
2 | 1 as the sum of (13) and (15) . 

3.1.4. Computational considerations 

From a computational point of view, it is important to emphasise that, as explained in Section 2.4 , the diagonal covari-

ance matrices of Hk (ε 
∗
2 | 1 ) for k = 2 , 3 , 4 do not depend on any unknown quantities under the null of correct specification.

In addition, if we reconsider a full-rank affine transformation of both the dependent and independent variables given by 

y = c + Dx , with y = (y′ 
1 , y

′ 
2 )

′ and D lower triangular of full rank, we can show the following analogue to Lemma 2 . 

Lemma 3. The four components of the IM test statistic of model (11) in Proposition 2 numerically coincide with the corresponding

test statistics based on y2 and y1 . 

Once again, this numerical invariance provides a very fast numerical procedure for computing the test statistics in 

Proposition 2 because the recursive nature of the lower triangular Cholesky decomposition implies that we can system- 

atically work with [ 

ε 

∗
1 n (

ˆ θN ) 

ε 

∗
2 | 1 n ( ˆ θN ) 

] 

=
(

ˆ �11 N 
ˆ �12 N 

ˆ �′ 
12 N 

ˆ �22 N 

)−1 / 2 (
x1 n − ˆ ν1 N 

x2 n − ˆ ν2 N 

)
(20) 

without loss of generality. In the preceding equality, the sample mean and covariance matrix are 0 and IM 

, respectively.

Similarly, it is straightforward to obtain exact critical values by simulation for each of the components that appear in 

Proposition 2 using a procedure entirely analogous to that described in Section 2.4 . In the case of the multivariate normality

test of the regression residuals ε ∗
2 | 1 mentioned at the end of the previous subsection, our exact finite sample procedure 

is slightly different from the analogous procedure for testing multivariate normality of the residuals in a conditionally ho- 

moskedastic, multivariate linear regression model proposed by Dufour et al. (2003) in that they treat x2 as fixed in repeated

samples, while we also simulate x2 . Nevertheless, they are both asymptotically valid. 

Finally, the fact that the population mean and covariance matrix of ε ∗
1 

and ε ∗
2 | 1 are also 0 and IM 

, respectively, implies

that we can easily compute the non-centrality parameters for local deviations from the null of correct specification of model 

(11) . 

3.2. The “rest”

The sum of the IM test statistic in Proposition 1 applied to x1 , which we call the marginal IM test, and the four compo-

nents of the IM test statistic in Proposition 2 .1, which we refer to as the conditional IM test, does not coincide with the IM
7
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test statistic in Proposition 1 applied to x , which we can call the joint IM test. At first glance, the reason may seem to be the

lack of numerical invariance of the IM to reparametrisation of the model. However, this is not the case because Amengual

et al. (2024) show that any IM test computed using either the population version of the asymptotic covariance matrix of

the influence functions or the sample version suggested by Chesher (1983) and Lancaster (1984) is numerically invariant to 

reparametrisation. 

In fact, the real reason is that those marginal and conditional components correspond to a specific partition of the 

elements of x , while the joint test considers all possible partitions. 

Nevertheless, we can easily characterise the missing components. 

Proposition 3. The IM test statistic in Proposition 1 applied to x numerically coincides with the sum of the following asymptoti-

cally independent moment tests: the IM test statistic in Proposition 1 applied to the marginal model for x1 in (10) , the IM statistic

in Proposition 2 applied to the conditional model for x2 given x1 in (11) , and the sum of the two moment tests 

hrhN = N m̄′ 
rhN (

ˆ θN )[ V [ H2 (ε 

∗
1 )] �IM2 

]−1 m̄rhN ( ˆ θN ) and 

hraN = N m̄′ 
raN (

ˆ θN )[ V [ H3 (ε 

∗
1 )] �IM2 

]−1 m̄raN ( ˆ θN ) , 

where m̄rhN and m̄raN are the sample averages of 

mrhn (θ) = H2 [ε 

∗
1 n (θ)] � ε 

∗
2 | 1 n (θ) and (21) 

mran (θ) = H3 [ε 

∗
1 n (θ)] � ε 

∗
2 | 1 n (θ) , (22) 

which converge in distribution to two mutually independent chi-square random variables whose degrees of freedom are 
(

M1 +1 
2 

)
M2 

and 
(

M1 +2 
3 

)
M2 , respectively. 

To provide intuition for this proposition, it is convenient to exploit the numerical invariances in Lemmas 2 and 3 to focus

directly on (20) . The marginal component of the IM test looks at the third and fourth multivariate Hermite polynomials of

ε ∗
1 
, H3 (ε 

∗
1 
) and H4 (ε 

∗
1 
) , respectively. In turn, the conditional component focuses on the third and fourth multivariate poly- 

nomials of ε ∗
2 | 1 , H3 (ε 

∗
2 | 1 ) and H4 (ε 

∗
2 | 1 ) , the Kronecker product of its second-order polynomials H2 (ε 

∗
2 | 1 ) with both H1 (ε 

∗
1 ) 

and H2 (ε 
∗
1 ) , as well as the Kronecker product of its third-order polynomials H3 (ε 

∗
2 | 1 ) with H1 (ε 

∗
1 ) . Therefore, the third- and

fourth-order polynomials of the joint test which do not appear in either the marginal or the conditional component are 

H2 (ε 
∗
1 
) � H1 (ε 

∗
2 | 1 ) and H3 (ε 

∗
1 
) � H1 (ε 

∗
2 | 1 ) , respectively, which we can interpret as focusing on the conditional heteroskedas- 

ticity and heteroclicity of ε ∗
1 

given ε ∗
2 | 1 . Importantly, each of the components of the conditional IM test in Proposition 2 is

asymptotically independent from the marginal component in Proposition 1 , as well as to the two remaining components 

introduced in Proposition 3 , which in principle offers multiple additive aggregations. 

4. Monte Carlo evidence 

We conduct an extensive simulation exercise to enable an evaluation of the performance of the different tests that we 

discussed in previous sections. Further, we compare them with the multivariate normality tests considered by Dufour et al. 

(2003) , namely those proposed by Mardia (1970) and Kilian and Demiroglu (20 0 0) (KD). The skewness component of Mardia

(1970) test is known to coincide with (4) , while its kurtosis component is based on his proposed multivariate excess kur-

tosis coefficient. Given the independence of these two components in large samples in the Gaussian case, the asymptotic 

distribution of their sum under the null is a chi-square random variable with M(M + 1)(M + 2) / 6 + 1 degrees of freedom.

In turn, the skewness and kurtosis components of the KD test are based on the cross-sectional sum of H3 (ε
∗
i 
) and H4 (ε

∗
i 
) ,

respectively, which means that each of them will be asymptotically distributed under normality as a chi-square random 

variable with M degrees of freedom. We also report their joint version, which is simply the sum of these two aggregate

statistics, whose asymptotic distribution is a chi-square with 2 M degrees of freedom. 

For each design we generate 20,0 0 0 samples and consider four cross-sectional dimensions ( M = 2 , 4, 8, and 16) and three

sample lengths ( N = 10 0 , 40 0, and 1,60 0). To save space, we report the Monte Carlo rejection rates at the conventional 5%

significance level only. We also make use of Lemmas 2 and 3 to fix the population mean vector to zero and the covariance

matrix to the identity matrix, which are nevertheless freely estimated in the sample. 

4.1. Size 

The discussion in Sections 2.4 and 3.1.4 indicates that the finite sample size of the tests we analyse should be accurate

given that we approximate the finite sample critical values with R = 106 Monte Carlo replications. Nevertheless, it is also 

interesting to gauge the small sample size distortions that arise when asymptotic critical values are used instead. For com- 

pleteness, we also report the rejection rates obtained with simulated critical values, whose differences with the nominal 

values are merely due to Monte Carlo variability. In this respect, the 95% confidence interval for those rejection rates is

(4 . 70% , 5 . 30%) for 20,0 0 0 simulated samples. 
8
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Table 1 

Joint normality tests: Size (asymptotic critical values). 

Monte Carlo rejection rates at the 5% significance level 

Panel A: Information matrix tests 

(co-)skewness (co-)kurtosis both 

M \ N df 100 400 1,600 df 100 400 1,600 df 100 400 1,600 

2 4 4.79 4.98 5.00 5 5.44 5.70 5.36 9 6.49 6.33 5.59 

4 20 4.81 5.03 5.05 35 8.51 8.29 6.53 55 9.30 8.61 6.61 

8 120 4.11 4.96 4.95 330 10.01 11.33 8.19 450 10.55 11.56 8.23 

16 816 2.23 4.35 4.88 3876 6.07 13.14 11.14 4692 6.44 13.39 11.18 

Panel B: Kilian and Demiroglu (2000) tests 

(co-)skewness (co-)kurtosis both 

M \ N df 100 400 1,600 df 100 400 1,600 df 100 400 1,600 

2 2 4.59 4.88 4.97 2 3.89 4.62 4.92 4 5.09 5.31 5.18 

4 4 4.56 4.91 5.00 4 4.76 5.29 5.22 8 5.91 5.92 5.47 

8 8 4.43 4.89 4.99 8 5.51 5.91 5.40 16 6.44 6.40 5.59 

16 16 4.15 4.78 4.97 16 5.93 6.35 5.64 32 6.58 6.61 5.69 

Panel C: Mardia (1970) tests 

(co-)skewness (co-)kurtosis both 

M \ N df 100 400 1,600 df 100 400 1,600 df 100 400 1,600 

2 4 4.79 4.98 5.00 1 2.95 4.33 4.80 5 4.64 5.01 5.02 

4 20 4.81 5.03 5.05 1 3.24 4.46 4.83 21 4.67 5.06 5.06 

8 120 4.11 4.96 4.95 1 5.17 4.98 4.97 121 3.97 4.92 4.95 

16 816 2.23 4.35 4.88 1 16.23 7.47 5.61 817 2.16 4.31 4.87 

Notes: We generate 20,0 0 0 samples from a spherical Gaussian random vector. df denotes degrees of freedom. 

Table 2 

Joint normality tests: Size (simulated critical values). 

Monte Carlo rejection rates at the 5% significance level 

Panel A: Information matrix tests 

(co-)skewness (co-)kurtosis both 

M \ N df 100 400 1,600 df 100 400 1,600 df 100 400 1,600 

2 4 4.74 5.15 4.75 5 4.75 5.08 4.85 9 4.87 4.87 4.71 

4 20 4.89 5.30 4.84 35 4.92 5.02 4.97 55 4.93 5.21 4.91 

8 120 5.00 5.04 5.09 330 5.09 4.72 4.81 450 5.07 4.86 4.83 

16 816 5.07 4.88 5.12 3876 4.94 4.88 4.96 4692 4.93 4.92 4.96 

Panel B: Kilian and Demiroglu (2000) tests 

(co-)skewness (co-)kurtosis both 

M \ N df 100 400 1,600 df 100 400 1,600 df 100 400 1,600 

2 2 4.49 5.19 4.72 2 4.86 4.99 4.88 4 4.83 5.07 4.76 

4 4 5.21 5.16 4.86 4 5.12 4.98 4.93 8 5.34 4.87 4.70 

8 8 4.93 4.83 5.10 8 5.13 5.07 5.18 16 4.98 5.08 5.02 

16 16 4.97 5.24 4.98 16 5.15 5.12 4.75 32 5.17 4.90 5.06 

Panel C: Mardia (1970) tests 

(co-)skewness (co-)kurtosis both 

M \ N df 100 400 1,600 df 100 400 1,600 df 100 400 1,600 

2 4 4.74 5.15 4.75 1 4.86 4.88 4.66 5 4.75 4.96 4.74 

4 20 4.89 5.30 4.84 1 4.95 4.81 5.05 21 4.91 5.37 4.86 

8 120 5.00 5.04 5.09 1 5.09 5.03 5.04 121 5.01 5.05 5.00 

16 816 5.07 4.88 5.12 1 4.73 5.15 5.09 817 5.08 4.88 5.12 

Notes: We approximate the exact finite sample critical values with R = 106 replications from a spherical Gaussian random vector. We generate 20,0 0 0 

additional samples to compute the rejection rates. df denotes degrees of freedom. 

 

 

 

 

 

The results with asymptotic critical values reported in Table 1 confirm the need for finite sample size adjustments, 

especially for the IM and Mardia tests when the cross-sectional dimension is large. As expected, KD is the test that shows

the smallest size distortions because the number of moment conditions is linear in M, rather than cubic or quartic. When

the sample length is moderately large ( N = 1 , 600 ), the size of all tests becomes rather accurate except for the kurtosis

component of the IM test. In contrast, Table 2 provides a completely different picture: Monte Carlo sizes are very accurate,

with the vast majority of rejection rates within the 95% confidence set. We observe no differences across sample lengths or

cross-sectional dimensions, which confirms the accuracy of the simulation-based critical values that we propose. 
9
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Table 3 

Marginal, conditional and remainder components of the information matrix test: Size. 

Monte Carlo rejection rates at the 5% significance level, N = 400 

Asymptotic Simulated 

df critical values critical values 

Panel A: Marginal 

Normality of regressor 

H3 (x ) (skewness) 1 4.90 4.98 

H4 (x ) (kurtosis) 1 4.21 5.03 

H3 (x ) & H4 (x ) (Jarque-Bera) 2 4.77 5.06 

Panel B: Conditional bivariate 

Normality of residuals 

H3 (u ) (skewness) 1 5.08 5.22 

H4 (u ) (kurtosis) 1 4.33 5.18 

H3 (u ) & H4 (u ) (Jarque-Bera) 2 4.77 5.09 

Heteroskedasticity 

H2 (u ) H1 (x ) & H2 (u ) H2 (x ) 2 4.78 5.01 

Asymmetry 

H3 (u ) H1 (x ) (conditional asymmetry) 1 4.96 5.19 

H3 (u ) & H3 (u ) H1 (x ) (total asymmetry) 2 5.34 5.17 

Total 

H3 (u ) & H2 (u ) H1 (x ) & H4 (u ) 

H3 (u ) H1 (x ) & H2 (u ) H2 (x ) 5 5.57 4.95 

Panel C: The “rest”

H1 (u ) H2 (x ) & H1 (u ) H3 (x ) 2 5.29 5.20 

Panel D: Joint bivariate 

All of them 9 6.48 5.04 

Notes: We approximate the exact finite sample critical values with R = 106 replications from a 

spherical Gaussian random vector. We generate 20,0 0 0 additional samples to compute the rejec- 

tion rates. df denotes degrees of freedom and u denotes the residual of the linear regression of x2 

onto a constant and x1 . 

 

 

 

 

 

 

 

 

 

Finally, Table 3 reports the results on the size of the components of the IM test in Propositions 2 and 3 for the bivariate

case with N = 400 ( a sample length representative of those in our empirical application in Section 5 ) . As explained in

Section 3.1.4 , we simultaneously draw x1 and x2 in each Monte Carlo simulation. The results reported in Panel A indicate

that tests based on the asymptotic critical values show little size distortions, which, in any event, are corrected by the

simulation-based critical values in Panel B. 

4.2. Power 

To assess the power properties of the several testing procedures, we generate 20,0 0 0 samples from three multivariate 

non-Gaussian distributions whose mean vector and covariance matrix are 0 and IM 

, respectively: the asymmetric Student 

t distribution, the two-component location-scale mixture of normals (LSMN) discussed by Mencía and Sentana (2009) , and 

the multivariate skew normal distribution in Azzalini and Dalla Valle (1996). Our results complement those in Best and 

Rayner (1988) , who studied the finite sample power of Koziol (1987) test in the bivariate case. 

We again make use of Lemmas 2 and 3 to exploit skewness as a common feature for these three distributions (see Engle

and Kozicki (1993) ); hence, orthogonal rotations of the original random vectors in which only one variable is asymmetric 

can always be found. Specifically, Theorem 5.12 in Azzalini and Capitanio (2014) provides a canonical representation of the 

multivariate skew normal with this property. Similarly, the LSMN representation in Mencía and Sentana (2009) allows us to 

do the same for the other two distributions. Thus, the non-normality of the multivariate distributions is effectively governed 

by two parameters: the skewness and kurtosis coefficients of the only asymmetric random variable. We choose a skewness 

coefficient of - 3 / 4 for all three distributions and a kurtosis coefficient of 4.5 for the two LSMNs, as the kurtosis of the skew

normal is a function of its skewness parameter only (see Appendix B.3 ). The main difference between the skew normal

distribution and the other two is that in the former, the other M − 1 variables are Gaussian and independent, so that all the

remaining third and fourth multivariate cumulants are zero, while in the latter, those variables are symmetric but neither 

normal nor independent of each other or of the first asymmetric component. 

Table 4 reports the results corresponding to the asymmetric t distribution. As expected, power increases with the 

sample size N. Similarly, power increases with M except for the KD test, which does not exploit any cross third- and

fourth-order moment of the non-Gaussian multivariate distribution. As we mentioned before, the IM test and the test in 

Mardia (1970) share the same (co-) skewness component, while the (co-) kurtosis component of the former is more power- 

ful in all cases, except when M is small and N is simultaneously large. 
10
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Table 4 

Joint normality tests: Power (asymmetric Student t). 

Monte Carlo rejection rates at the 5% significance level 

Panel A: Information matrix tests 

(co-)skewness (co-)kurtosis both 

M \ N df 100 400 1,600 df 100 400 1,600 df 100 400 1,600 

2 4 21.73 51.97 96.70 5 22.09 47.65 91.22 9 24.32 58.58 98.77 

4 20 28.73 59.73 97.47 35 32.76 70.29 99.22 55 34.56 76.41 99.86 

8 120 50.58 83.86 99.60 330 58.93 97.18 100.00 450 59.98 97.77 100.00 

16 816 86.34 99.73 100.00 3876 91.36 100.00 100.00 4692 91.57 100.00 100.00 

Panel B: Kilian and Demiroglu (2000) tests 

(co-)skewness (co-)kurtosis both 

M \ N df 100 400 1,600 df 100 400 1,600 df 100 400 1,600 

2 2 19.77 47.73 94.64 2 20.04 43.54 88.98 4 22.07 55.30 98.11 

4 4 19.43 45.39 91.74 4 22.16 53.62 96.80 8 23.55 61.53 99.30 

8 8 20.06 44.55 89.09 8 23.94 67.33 99.71 16 25.29 71.09 99.90 

16 16 20.26 46.33 87.50 16 25.25 81.41 100.00 32 26.63 82.94 100.00 

Panel C: Mardia (1970) tests 

(co-)skewness (co-)kurtosis both 

M \ N df 100 400 1,600 df 100 400 1,600 df 100 400 1,600 

2 4 21.73 51.97 96.70 1 21.11 52.14 96.07 5 25.32 62.84 99.33 

4 20 28.73 59.73 97.47 1 27.62 80.36 99.98 21 33.18 77.01 99.98 

8 120 50.58 83.86 99.60 1 37.91 99.11 100.00 121 53.49 94.10 100.00 

16 816 86.34 99.73 100.00 1 42.82 100.00 100.00 817 86.62 99.94 100.00 

Notes: We approximate the exact finite sample critical values with R = 106 replications from a spherical Gaussian random vector. We generate 20,0 0 0 

samples from the asymmetric Student t distribution with mean vector and covariance matrix are 0 and IM , respectively. See Appendix B.3 for details. df 

denotes degrees of freedom. 

Table 5 

Joint normality tests: Power (mixture of two normals). 

Monte Carlo rejection rates at the 5% significance level 

Panel A: Information matrix tests 

(co-)skewness (co-)kurtosis both 

M \ N df 100 400 1,600 df 100 400 1,600 df 100 400 1,600 

2 4 21.72 50.48 95.93 5 22.51 50.02 94.40 9 24.88 60.93 99.12 

4 20 30.94 61.10 97.18 35 36.22 76.02 99.76 55 38.14 81.83 99.97 

8 120 57.87 88.54 99.73 330 67.91 99.28 100.00 450 69.36 99.48 100.00 

16 816 92.03 99.97 100.00 3876 96.34 100.00 100.00 4692 96.36 100.00 100.00 

Panel B: Kilian and Demiroglu (2000) tests 

(co-)skewness (co-)kurtosis both 

M \ N df 100 400 1,600 df 100 400 1,600 df 100 400 1,600 

2 2 19.66 46.45 93.28 2 20.26 46.03 92.27 4 22.50 57.38 98.55 

4 4 19.97 44.16 90.46 4 23.70 58.54 98.61 8 25.14 65.44 99.61 

8 8 21.77 44.78 88.17 8 27.68 73.97 99.98 16 29.17 76.98 99.99 

16 16 22.76 48.94 87.11 16 29.64 88.93 100.00 32 31.38 89.70 100.00 

Panel C: Mardia (1970) tests 

(co-)skewness (co-)kurtosis both 

M \ N df 100 400 1,600 df 100 400 1,600 df 100 400 1,600 

2 4 21.72 50.48 95.93 1 21.58 56.96 97.95 5 25.80 65.22 99.56 

4 20 30.94 61.10 97.18 1 31.15 87.31 100.00 21 36.20 82.19 99.98 

8 120 57.87 88.54 99.73 1 46.20 99.80 100.00 121 61.21 97.47 100.00 

16 816 92.03 99.97 100.00 1 54.43 100.00 100.00 817 92.26 100.00 100.00 

Notes: We approximate the exact finite sample critical values with R = 106 replications from a spherical Gaussian random vector. We generate 20,0 0 0 

samples from the two-component location-scale mixture of normals discussed by Mencía and Sentana (2009) with mean vector and covariance matrix are 

0 and IM , respectively. See Appendix B.3 for details. df denotes degrees of freedom. 

 

 

 

 

The results for the LSMN distribution in Table 5 are qualitatively rather similar to those of the previous table: the KD

test is the worst, while both the IM and the Mardia tests perform reasonably well. It is interesting that the IM test benefits

the most from the increases in the cross-sectional dimension M. 

In turn, Table 6 displays the results of the simulations with the skew normal. When the sample length is small, all tests

fail to reject the null. Of more interest is that power systematically decreases with M for all sample lengths. The reason

is simple. Given the canonical representation of the skew normal mentioned above, the only thing that increasing M does 
11
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Table 6 

Joint normality tests: Power (skew normal). 

Monte Carlo rejection rates at the 5% significance level 

Panel A: Information matrix tests 

(co-)skewness (co-)kurtosis both 

M \ N df 100 400 1,600 df 100 400 1,600 df 100 400 1,600 

2 4 10.66 32.46 91.32 5 7.42 9.61 16.41 9 9.16 21.66 80.33 

4 20 7.31 16.24 65.64 35 6.34 7.57 10.39 55 6.69 11.19 42.02 

8 120 5.92 8.77 28.08 330 5.83 6.07 7.09 450 5.91 6.84 14.29 

16 816 5.38 6.37 10.99 3876 5.46 5.56 6.31 4692 5.51 5.71 7.55 

Panel B: Kilian and Demiroglu (2000) tests 

(co-)skewness (co-)kurtosis both 

M \ N df 100 400 1,600 df 100 400 1,600 df 100 400 1,600 

2 2 13.36 40.89 95.77 2 7.79 10.69 19.41 4 11.19 31.23 90.88 

4 4 9.98 31.55 91.00 4 6.74 9.19 15.93 8 8.42 22.70 81.85 

8 8 7.86 23.30 82.48 8 6.35 7.69 12.61 16 7.12 16.43 68.88 

16 16 6.44 16.98 69.04 16 5.50 6.75 10.24 32 5.96 12.31 53.49 

Panel C: Mardia (1970) tests 

(co-)skewness (co-)kurtosis both 

M \ N df 100 400 1,600 df 100 400 1,600 df 100 400 1,600 

2 4 10.66 32.46 91.32 1 6.53 8.31 12.71 5 10.33 29.13 89.25 

4 20 7.31 16.24 65.64 1 5.27 5.80 7.27 21 7.19 15.96 64.23 

8 120 5.92 8.77 28.08 1 4.71 4.99 4.98 121 5.96 8.92 27.79 

16 816 5.38 6.37 10.99 1 4.99 4.54 4.56 817 5.38 6.39 11.00 

Notes: We approximate the exact finite sample critical values with R = 106 replications from a spherical Gaussian random vector. We generate 20,0 0 0 sam- 

ples from the skew normal multivariate distribution in Azzalini and Dalla Valle (1996) with mean vector and covariance matrix are 0 and IM , respectively. 

See Appendix B.3 for details. df denotes degrees of freedom. 

Table 7 

Marginal, conditional and remainder components of the information matrix test: Power. 

Monte Carlo rejection rates at the 5% significance level, N = 400 

Asymmetric Mixture of Skew 

df Student t normals normal 

Panel A: Marginal 

Normality of regressor 

H3 (x ) (skewness) 1 52.62 50.59 51.66 

H4 (x ) (kurtosis) 1 36.81 37.40 12.70 

H3 (x ) & H4 (x ) (Jarque-Bera) 2 54.33 54.80 41.88 

Panel B: Conditional bivariate 

Normality of residuals 

H3 (u ) (skewness) 1 10.28 11.33 5.02 

H4 (u ) (kurtosis) 1 24.34 28.19 5.08 

H3 (u ) & H4 (u ) (Jarque-Bera) 2 23.16 26.41 5.05 

Heteroskedasticity 

H2 (u ) H1 (x ) & H2 (u ) H2 (x ) 33.44 33.77 5.29 

Asymmetry 

H3 (u ) H1 (x ) (conditional asymmetry) 1 15.33 15.68 4.98 

H3 (u ) & H3 (u ) H1 (x ) (total asymmetry) 2 16.00 16.89 4.96 

Total 

H3 (u ) & H2 (u ) H1 (x ) & H4 (u ) 

H3 (u ) H1 (x ) & H2 (u ) H2 (x ) 5 37.20 40.65 5.27 

Panel C: The “rest”

H1 (u ) H2 (x ) & H1 (u ) H3 (x ) 2 19.82 17.16 7.07 

Panel D: Joint bivariate 

All of them 9 58.60 61.48 22.25 

Notes: We approximate the exact finite sample critical values with R = 106 replications from a spherical Gaussian random vector. We 

generate 20,0 0 0 samples from three multivariate non-Gaussian distributions whose mean vector and covariance matrix are 0 and IM , 

respectively: the asymmetric Student t distribution and the two-component location-scale mixture of normals discussed by Mencía 

and Sentana (2009) , and the skew normal multivariate distribution in Azzalini and Dalla Valle (1996) . See Appendix B.3 for details. df 

denotes degrees of freedom and u denotes the residual of the linear regression of x2 onto a constant and x1 . 
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is to add more independent Gaussian components, which in turn add more (co-) skewness and (co-) kurtosis terms. As a

result, the non-centrality parameter does not change, while the number of degrees of freedom increases. It is, therefore, not 

surprising that the KD test is the best performer in this case. 

Finally, Table 7 displays the results of the different components of the IM test detailed in Section 3 for the case M =
2 and N = 400 . Given that skewness is a common feature for the three distributions that we simulate, it is not entirely

surprising that most of the power comes from the skewness component of the marginal tests. This is especially so when

the distribution is skew normal, which, as expected, leads to power equal to size in all the conditional bivariate tests. 

5. The distribution of US city sizes and their growth rates 

We apply our procedures to analyse the joint, conditional, and marginal normality of the size of US cities and their rates

of growth using the 20 0 0, 2010, and 2020 census data. Gibrat’s law says that if the (continuously compounded) rates of

growth of the populations of cities are independent of their initial size, the cross-sectional distribution of city sizes in the

steady state should be log-normal. 

In marked contrast to earlier studies, Eeckhout (2004) forcefully argued that if one looked at the entire non-truncated 

sample of cities and places in the 20 0 0 US census, their size distribution would be approximately log-normal. On the other

hand, Amengual et al. (2022) found that the non-normality of the joint distribution of US (log) city sizes in the 20 0 0 and

2010 censuses was very clearly seen in their growth rates (see also ( Ramos, 2017 ), and Massing et al. (2020) for further

evidence for other countries). 

We extend their analysis to include the recent 2020 US census data, identifying x2 and x3 with the continuously com- 

pounded rates of growth between 20 0 0 and 2010, and 2010 and 2020, respectively, and x1 with the log city size in the

20 0 0 census. Thus, we can simultaneously study not only the joint distribution of initial city sizes and their rates of growth,

whose independence is at the core of Gibrat’s law, but also the relationship between two consecutive growth rates. 

We follow the extant literature and treat Alaska, Hawaii, and the remaining off-shore insular territories like Puerto Rico 

separately from the remaining contiguous 48 states. Changes in boundaries and city names, as well as the creation of new

entities and the dissolution of others, imply that there is no one-to-one relationship between the entity names and codes 

of the Census Designated Places (CDPs) in the 20 0 0, 2010, and 2020 censuses files. For that reason, we look at the joint

distribution of the matched cities with a population of at least one in each of the censuses, as in Eeckhout (2004) . Some

CDPs were redefined or merged during our sample period, which results in anomalously high rises or drops in the popula-

tion figures. Moreover, the values reported by the US Census Bureau are incorrect for a handful of CDPs, but we could not

find reliable figures from other sources. For these reasons, we removed 32 observations from the merged sample, so that 

the effective sample size contains 23,830 observations. Consequently, the average number of observations across states is 

equal to 496. The median value is 383 and the interquartile range is 381, with a minimum of 22 CDPs in Rhode Island and

maximum of 1,443 in Texas. 

Figure 1 displays scatter plots for the three different pairs that we can form with x1 , x2 , and x3 for the 48 contiguous

states. We also include kernel density estimates of the marginal distributions for these three variables, together with the 

best normal approximations to them, which share their sample means and standard deviations. As highlighted by Eeckhout 

(2004) , the estimated density of (log) city sizes for the contiguous states in 20 0 0 does not differ much from its normal

approximation. Specifically, there is little evidence of kurtosis and only some evidence of asymmetry around the mode of 

the distribution rather than at the tails. The marginal normality test for this univariate distribution confirms both these 

impressions, with a kurtosis coefficient of 3.02, which is not statistically significantly different from 3, and a skewness 

coefficient of 0.27, which is nevertheless statistically significant in view of the large number of observations. 

In contrast, the joint bivariate distributions look rather non-normal. In fact, the joint IM tests for each pair, as well as

for the three variables together, reject massively, with p-values on the order of 10 −5 . Part of the reason is probably that the

variables are significantly positively correlated with each other (0.15, 0.26, and 0.24 in Figures 1 a, 1 b, and 1 c, respectively),

which contradicts the main assumption underlying Gibrat’s law (see also Ishikawa et al. (2020) ). 

Given that in the last few decades interstate migrations in the US have become less frequent than in the past, we also

conducted the analysis at the state level. Table 3 reports the number of states that reject the various components of the IM

statistics that we discussed in Section 3 at the 5% level, with exact critical values computed for each test statistic using one

million simulated samples for the appropriate number of cities. Specifically, by sequentially conditioning x2 on x1 , and x3 

on x1 and x2 , we can look at the following: 

1. normality of (log) city sizes in 20 0 0 (Panel A), which in turn, we decompose into its skewness and kurtosis components;

2. normality of the rate of growth between 2010 and 20 0 0 conditional on (log) city sizes in 20 0 0 (Panel B), which we also

decompose into the different components highlighted in Proposition 2 ; 

3. the residual of the joint normality test for x1 and x2 in Proposition 3 (Panel C); 

4. joint normality of the rate of growth between 2010 and 20 0 0 conditional on (log) city sizes in 20 0 0 (Panel D); 

5. normality of the rate of growth between 2020 and 2010 conditional on the rate of growth between 2010 and 20 0 0 and

(log) city sizes in 20 0 0 (Panel E), which once again we decompose along the lines of Proposition 2 ; 

6. the residual of the joint normality test for the three variables in Proposition 3 (Panel F); and 
7. joint normality of the three variables (Panel G). 
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Table 8 

Testing for normality of the distribution of (log) city sizes and their growth rates. 

Number of states that reject the null at the 5% significance level 

Panel A: Marginal 

Normality 

H3 (x1 ) (skewness) 34 

H4 (x1 ) (kurtosis) 19 

H3 (x1 ) & H4 (x1 ) (Jarque-Bera) 37 

Panel B: Conditional of x2 given x1 

Normality of residuals 

H3 (u ) (skewness) 44 

H4 (u ) (kurtosis) 47 

H3 (u ) & H4 (u ) (Jarque-Bera) 47 

Heteroskedasticity 

H2 (u ) H1 (x1 ) & H2 (u ) H2 (x1 ) 43 

Asymmetry 

H3 (u ) H1 (x1 ) (conditional asymmetry) 41 

H3 (u ) & H3 (u ) H1 (x1 ) (total asymmetry) 47 

Total 

H3 (u ) & H2 (u ) H1 (x1 ) & H4 (u ) & H3 (u ) H1 (x1 ) & H2 (u ) H2 (x1 ) 47 

Panel C: The “rest”

H1 (u ) H2 (x1 ) & H1 (u ) H3 (x1 ) 20 

Panel D: Joint bivariate 

H3 (x1 ) & H3 (u ) & H2 (u ) H1 (x1 ) & H4 (x1 ) & H4 (u ) & H3 (u ) H1 (x1 ) & H2 (u ) H2 (x1 ) 47 

Panel E: Conditional of x3 given x1 and x2 

Normality of residuals 

H3 (v ) (skewness) 39 

H4 (v ) (kurtosis) 47 

H3 (v ) & H4 (v ) (Jarque-Bera) 47 

Heteroskedasticity 

H2 (v ) H1 (u ) & H2 (v ) H1 (x1 ) & H2 (v ) H2 (u ) & H2 (u ) H1 (v ) H1 (x1 ) & H2 (v ) H2 (x1 ) 47 

Asymmetry 

H3 (v ) H1 (u ) & H3 (v ) H1 (x1 ) (conditional asymmetry) 45 

H3 (v ) & H3 (v ) H1 (u ) & H3 (v ) H1 (x1 ) (total asymmetry) 45 

Total 

H3 (v ) & H2 (v ) H1 (u ) & H2 (v ) H1 (x1 ) & H4 (v ) & H3 (v ) H1 (u ) & 47 

H3 (v ) H1 (x1 ) & H2 (v ) H2 (u ) & H2 (u ) H1 (v ) H1 (x1 ) & H2 (v ) H2 (x1 ) 

Panel F: The “rest”

H1 (v ) H2 (u ) & H1 (v ) H1 (u ) H1 (x1 ) & H1 (v ) H2 (x1 ) & H1 (v ) H3 (u ) & 44 

H1 (v ) H2 (u ) H1 (x1 ) & H1 (v ) H1 (u ) H2 (x1 ) & H1 (v ) H3 (x1 ) 

Panel G: Joint trivariate 

All of them 48 

Notes: Samples consist on (log) city sizes in 20 0 0 ( x1 ) and their (continuously compounded) 

growth rates between 20 0 0 and 2010 ( x2 ), and 2010 and 2020 ( x3 ) for each of the 48 contigu- 

ous US states: 23,830 matched cities in the three censuses with a population of at least one 

in both years; see Section 5 for details. u and v denote the residual of the linear regression of 

x2 onto a constant and x1 , and x3 onto a constant, x1 and x2 , respectively. See Section 3 for a 

detailed description of the test statistics. 

 

 

 

 

 

 

Panel A confirms that (log) city sizes within states differ from normality mainly through asymmetry, with weaker ev- 

idence of kurtosis. In contrast, when we analyse the conditional distribution of the rate of growth between 2010 and 

20 0 0 given (log) city size in 20 0 0 in Panel B using the conditionally homoskedastic, linear regression model of x2 on a

constant and x1 , the different null hypotheses are rejected in almost all states, except for conditional homoskedasticity 

and conditional symmetry, against which we find little evidence in a few states. Interestingly, the leftover component in 

Proposition 3 reported in Panel C does not reject for more than half the states, so the joint normality results in Panel D are

mainly driven by those in Panel B. 

In turn, the pattern of rejections for the conditional distribution of the rate of growth between 2020 and 2010 given both

the rate of growth between 2010 and 20 0 0 and (log) city sizes in 20 0 0 in Panel E is qualitatively similar to that in Panel

B, indicating the presence of non-normality, conditional heteroskedasticity and conditional heteroclicity in the residuals of 

the conditionally homoskedastic, linear regression model of x3 on a constant, x1 and x2 . Moreover, the leftover term of 

Proposition 3 reported in Panel F leads to conclusions similar to those in Panel C. Finally, the conclusions for the bivariate

and trivariate normality tests in Panel D and Panel G, respectively, also agree, which is not entirely surprising given that

they reflect the sum of all the other components. 
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Fig. 1. Distribution of (log) city sizes and their growth rates Notes: Scatter plot of (log) city sizes for the contiguous US states in 20 0 0 and their (con- 

tinuously compounded) growth rates between 20 0 0 and 2010, and 2010 and 2020, as well as kernel density estimates of their marginal distributions 

(continuous lines), together with the best normal approximation to them (dotted lines), which share their sample means and standard deviations. Sample: 

23,830 matched cities in both censuses with a population of at least one in both years and exclude Alaska, Hawaii and the remaining off-shore insular 

territories like Puerto Rico; see Section 5 for details. 

 

 

 

6. Conclusions 

We have shown that the IM test for a normal random vector coincides with the sum of the moment tests for all third-

and fourth-order multivariate Hermite polynomials. We have also decomposed this joint test as the sum of the marginal 

IM test for a subvector, the conditional IM test for the complementary subvector, and a third leftover component. In turn, 

the conditional IM test is the sum of an analogous multivariate normality test for the regression residuals, the multivariate 

version of White’s test for conditional homoskedasticity, and a test for conditionally homoclicity which assesses the potential 

dependence of the third-order multivariate Hermite polynomials of those residuals on the regressors. Finally, we decompose 

the leftover component as the sum of analogous tests for conditional homoskedasticity and conditional homoclicity of the 

regressors given the regression residuals. 

We also show that all these tests are numerically invariant to affine transformations of the variables involved, which 

considerably simplifies their calculation and also implies that they are pivotal in finite samples. As a result, we can simulate

exact finite sample distributions in no time by drawing many spherical Gaussian vectors and orthogonalising them using 

sample moments. 

Finally, we use all these tests to assess the implications of Gibrat’s law for US city sizes using the three most recent cen-

suses, finding that although the marginal distribution of (log) city sizes is reasonably close to a normal, their (continuously 

compounded) growth rates are not independent of either past growth rates or initial city sizes. 

Our Monte Carlo exercises confirm the non-trivial power of the IM tests against empirically plausible alternatives, even 

though they are not consistent, because in arbitrary large samples they would fail to reject with probability one departures 

from normality such that all third- and fourth-order cumulants are zero. Unlike in the univariate case, the construction 

mechanism for distributions with this characteristic is not obvious because it is difficult to ensure the global positivity of 

multivariate Hermite expansions of the Gaussian density. 
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The IM test can be extended to examine the correct specification of more general multivariate distributions. Amengual 

et al. (2024) are currently exploring this interesting research avenue for finite Gaussian mixtures. 
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Appendix A. Proofs 

A1. Proof of Proposition 1 

If we vectorise the expressions (6) –(8) before we premultiply or postmultiply them by the duplication matrix or its 

transpose and ignore the dependence of z (ν,γ ) on ν and γ for notational simplicity, then we obtain that the νν block of

the sum of the outer product of the score with the Hessian will be 

v ec(zz ′ − �) = (z � z ) − δ, (23) 

where δ = v ec(�) , because 

v ec(zz ′ ) = (z � z ) . 

Similarly, the γν block will be related to 

v ec[ v ec(zz ′ − �) z′ − 2(z � �)] = (z � z � z ) − (z � δ) − 2(KMM 

� IM 

)(z � δ) , (24) 

where KMM 

is the commutation matrix of orders M and M, because 

v ec[ v ec(zz ′ ) z′ ] = [ z � v ec(zz ′ )] = (z � z � z ) , 

v ec[ v ec(�) z′ ] = (z � δ) and 

v ec(z � �) = (1 � KMM 

� IM 

)(z � δ) = (KMM 

� IM 

)(z � δ) , 

in view of Theorem 3.10 in Magnus and Neudecker (2019) . 

Finally, the γγ block will depend on 

v ec{ v ec(zz ′ − �) v ec′ (zz ′ − �) − [4(� � zz ′ ) − 2(� � �)] } 
= (z � z � z � z ) − (z � z � δ) − 5(δ � z � z ) + (δ � δ) + 2(IM 

� KMM 

� IM 

)(δ � δ) (25) 

because 

v ec[ v ec(zz ′ ) v ec′ (zz ′ )] = [ v ec(zz ′ ) � v ec(zz ′ )] = (z � z � z � z ) , 

v ec[δv ec′ (zz ′ )] = [ v ec(zz ′ ) � δ] = (z � z � δ) , 

v ec[ v ec(zz ′ )δ′ 
] = [δ � v ec(zz ′ )] = (δ � z � z ) , 

v ec(δδ
′ 
) = (δ � δ) , 

v ec(� � zz ′ ) = (IM 

� K1 M 

� IM 

)[δ � v ec(zz ′ )] = (δ � z � z ) and 

v ec(� � �) = (IM 

� KMM 

� IM 

)(δ � δ) . 

Holly and Gardiol (1995) express the vectors of first, second, third and fourth centred multivariate Hermite polynomials 

of z in matrix notation as 

SMι1 
z 

SMι2 
[(z � z ) − δ] , (26) 

SMι3 
[(z � z � z ) − 3(z � δ)] and (27) 

SMι4 
[(z � z � z � z ) − 6(z � z � δ) + 3(δ � δ)] , (28) 

where SMιk 
(k = 1 , . . . , 4) are the symmetrisation operators discussed by Holmquist (1996) , whose detailed expressions we

provide in Appendix B.1 . In this respect, the vectors Hk in (3) for k = 1 , . . . , 4 contain the non-redundant elements of these

expressions. 
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As the detailed analysis of the bivariate case in Appendix B.2.2 illustrates, the sum of the outer product of the scores

and the Hessian matrix contains either duplicated elements or others which are multiples of each other. Premultiplying or 

postmultiplying by the (transpose of the) duplication matrix eliminates some of those duplicities, but not all of them. For 

that reason, in the rest of the proof we will show that the symmetrised values of (23), (24) and (25) are 0 in expectation

by showing that they coincide with (26), (27) and (28) , respectively. 

It is easy to see that the νν term coincides with the second-order Hermite polynomials because SMι2 
applied to (z � z )

has no effect and KMM 

δ = δ by the symmetry of �. However, a comparison of this term with sγ (x ;ν,γ ) confirms that these

cannot be used for testing purposes because they will be identically 0 when evaluated at the ML estimators when the mean

and variance parameters are freely estimated. 

Let us now look at the γν block. Clearly, SMι3 
applied to (z � z � z ) has no effect either. In contrast, if we apply 6 SMι3 

to

(z � δ) we obtain 

[ IM3 + (IM 

� KMM 

) + (KMM 

� IM 

) + (IM 

� KMM 

)(KMM 

� IM 

) 

+ (KMM 

� IM 

)(IM 

� KMM 

) + (KMM 

� IM 

)(IM 

� KMM 

)(KMM 

� IM 

)](z � δ) 

= (z � δ) + (z � δ) + (KMM 

� IM 

)(z � δ) + (δ � z ) 

+ (KMM 

� IM 

)(z � δ) + (δ � z ) 

= 2[(z � δ) + (δ � z ) + (KMM 

� IM 

)(z � δ)] , 

so that 

(IM 

� KMM 

)(z � δ) = (z � δ) and 

(IM 

� KMM 

)(KMM 

� IM 

)(z � δ) = KM2 M 

(z � δ) = (δ � z ) 

by virtue of Theorems 3.7 (iii) and 3.1 in Magnus (1988) , and 

(KMM 

� IM 

)(IM 

� KMM 

)(KMM 

� IM 

)](z � δ) = (KMM 

� IM 

)(δ � z ) = (δ � z ) . 

Similarly, 

6 SMι3 
(δ � z ) = [ IM3 + (IM 

� KMM 

) + (KMM 

� IM 

) + (IM 

� KMM 

)(KMM 

� IN ) 

+ (KMM 

� IM 

)(IM 

� KMM 

) + (KMM 

� IM 

)(IM 

� KMM 

)(KMM 

� IM 

)](δ � z ) 

= (δ � z ) + (IM 

� KMM 

)(δ � z ) + (δ � z ) + (IM 

� KMM 

)(δ � z ) 

+ (z � δ) + (z � δ) 

= 2[(z � δ) + (δ � z ) + (IM 

� KMM 

)(δ � z )] , 

because 

(KMM 

� IM 

)(δ � z ) = (δ � z ) and 

(KMM 

� IM 

)(IM 

� KMM 

)(δ � z ) = KM M2 (δ � z ) = (z � δ) 

by virtue of expression (3.3) in Magnus (1988) , which implies that KM M2 = K−1 
M2 M 

, and his Theorem 3.1. 

Finally, 

6 SMι3 
(KMM 

� IM 

)(z � δ) = [ IM3 + (IM 

� KMM 

) + (KMM 

� IM 

) + (IM 

� KMM 

)(KMM 

� IM 

) 

+ (KMM 

� IM 

)(IM 

� KMM 

) + (KMM 

� IM 

)(IM 

� KMM 

)(KMM 

� IM 

)](KMM 

� IM 

)(z � δ) 

= (KMM 

� IM 

)(z � δ) + (δ � z ) + (z � δ) + (z � δ) 

+ (δ � z ) + (KMM 

� IM 

)(z � δ) 

= 2[(z � δ) + (δ � z ) + (KMM 

� IM 

)(z � δ)] . 

because 

(KMM 

� IM 

)(KMM 

� IM 

) = IM3 . 

Hence, 

SMι3 
[(z � δ) + 2(KMM 

� IM 

)(z � δ)] 

= [(z � δ) + (δ � z ) + (KMM 

� IM 

)(z � δ)] = 3 SMι3 
(z � δ) , 

so that SMι3 
times (24) does indeed coincide with (27) . In effect, the proof is exploiting expression (38) in Appendix B.1 be-

low. 

An entirely analogous procedure confirms that if one premultiplies (25) by SMι4 
, one ends up with (28) by virtue of

expression (39) and the fact that 

SMι4 
(δ � z � z ) = SMι4 

(z � z � δ) 

because both the left- and right-hand side expressions involve all possible permutations of the same vectors. �
17
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A2. Proof of Lemma 1 

It follows directly from Proposition 8 in Rahman (2017) . �

A3. Proof of Lemma 2 

Given that the mapping from x to y is affine, its first-order Jacobian will be B while all other higher-order Jacobians

will be 0. As a result, the application of Faà di Bruno’s generalised chain rule to (2) implies that the vector of multivariate

Hermite polynomials of order k for y will be B�k = B � B � ... � B ︸ ︷︷ ︸ 
k times 

times the vector of multivariate Hermite polynomials of 

order k for x . The numerical invariance of moment tests to linear transformations of the influence functions with constant

coefficients yields the desired result. �

A4. Proof of Proposition 2 

Given (11) , the conditional mean vector and covariance matrix of x2 given x1 will be 

μ2 (θ2 | 1 ) = α2 | 1 + B2 | 1 x1 = 
2 | 1 w1 and �2 (θ ) = �2 | 1 , 
respectively, where w′ 

1 = (1 , x′ 
1 ) , 
2 | 1 = (α2 | 1 | B2 | 1 ) and π2 | 1 = v ec(
2 | 1 ) , so that θ2 | 1 = (π′ 

2 | 1 ,ω 

′ 
2 | 1 ) . For simplicity of nota-

tion, we shall drop the 2 | 1 subscripts in what follows. Consequently, the contribution from a single observation n to the

conditional log-likelihood function is 

−M2 

2 

ln (2 π) − 1 

2 

ln | �2 . 1 | − 1 

2 

(x2 n − 
w 1 n )
′ �−1 (x2 n − 
w 1 n ) = −M 

2 

ln (2 π) − 1 

2 

ln | �| − 1 

2 

ςn (θ) , 

where ςn (θ) = ε ∗′ n (θ)ε ∗n (θ) . 

The maximum likelihood estimators of the model parameters are known in closed-form without the need to conduct 

any numerical optimisation. Specifically, 

( ˆ αN , ˆ BN ) = ˆ 
N =
( 

N ∑ 

n =1 

x2 n w
′ 
1 n 

) ( 

N ∑ 

n =1 

w1 n w
′ 
1 n 

) −1 

and 

ˆ �N = 1 

N 

[ 

N ∑ 

n =1 

(x2 n − ˆ 
N w1 n )(x2 n − ˆ 
N w1 n )
′ 
] 

. 

Nevertheless, we need expressions for the score and Hessian matrix to be able to derive the IM test. 

To compute the score, we first differentiate μn (θ) and �n (θ) with respect to the q = M2 (M1 + 1) + M2 (M2 + 1) / 2 model

parameters in θ. Specifically, the first derivatives are given by 

∂μn (θ) 

∂π′ = w′ 
1 n � IM2 

and 

∂v ec[ �n (θ)] 

∂ω 

′ = DM2 
. 

Thus, the conditional log-likelihood score is 

sn (θ) = wln (θ)ε 

∗
n (θ) + Zsn (θ) v ec[ε 

∗
n (θ)ε 

∗′ 
n (θ) − IM2 

] , 

where 

Zln (θ) = 

[
w1 n � �− 1 

2 ′ 
0 

]
and 

Zsn (θ) = 

[
0 

1 
2 

D′ 
M2 

(�− 1 
2 ′ � �− 1 

2 ′ ) 

]
. 

As a result, the scores will be 

sπn (θ) = [ w1 n � �− 1 
2 ′ ε 

∗
n (θ)] =

[(
1 

x1 n 

)
� �−1 (x2 n − 
w 1 n )

]
= v ec[ �−1 (x2 n − 
w 1 n ) x

′ 
1 n ] (29) 

and 

sω n (θ) = 

1 

D′ 
M2 

(�− 1 
2 ′ � �− 1 

2 ′ ) v ec[ε 

∗
n (θ)ε 

∗′ 
n (θ) − IM 

] 

2 

18
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= 

1 

2 

D′ 
M2 

v ec[ �−1 (x2 n − 
w 1 n )(x2 n − 
w 1 n )
′ �−1 − �−1 ] . (30) 

Consequently, the outer product of the scores will be 

sπn (θ) s′ 
πn (θ) = [ w1 n w

′ 
1 n � �− 1 

2 ′ ε 

∗
n (θ)ε 

∗′ 
n (θ) �− 1 

2 ] 

= [ w1 n w
′ 
1 n � �−1 (x2 n − 
w 1 n )(x2 n − 
w 1 n )

′ �−1 ] , 

sω n (θ) s′ 
πn (θ) = 

1 

2 

D′ 
M2 

(�− 1 
2 ′ � �− 1 

2 ′ ) v ec[ε 

∗
n (θ)ε 

∗′ 
n (θ) − IM 

][ w′ 
1 n � ε 

∗′ 
n (θ) �− 1 

2 ] 

= 

1 

2 

D′ 
M2 

v ec[ �−1 (x2 n − 
w 1 n )(x2 n − 
w 1 n )
′ �−1 − �−1 ][ w′ 

1 n � (x2 n − 
w 1 n )
′ �−1 ] 

and 

sω n (θ) s′ 
ω n (θ) = 

1 

4 

D′ 
M2 

(�− 1 
2 ′ � �− 1 

2 ′ ) v ec[ε 

∗
n (θ)ε 

∗′ 
n (θ) − IM2 

] 

×v ec′ [ε 

∗
n (θ)ε 

∗′ 
n (θ) − IM2 

](�− 1 
2 ′ � �− 1 

2 ′ ) DM2 

= 

1 

4 

D′ 
M2 

v ec[ �−1 (x2 n − 
w 1 n )(x2 n − 
w 1 n )
′ �−1 − �−1 ] 

×v ec′ [ �−1 (x2 n − 
w 1 n )(x2 n − 
w 1 n )
′ �−1 − �−1 ] DM2 

. 

To compute the Hessian, it is convenient to use the general expressions for elliptical distributions in Appendix C of 

Fiorentini and Sentana (2021) , namely 

hθθn (φ) = ∂2 dn (θ) 

∂θ∂θ
′ +

∂2 g
[
ςn (θ) ,η

]
(∂ς )2 

∂ςn (θ) 

∂θ

∂ςn (θ) 

∂θ
′ +

∂g
[
ςn (θ) ,η

]
∂ς 

∂2 ςn (θ) 

∂θ∂θ
′ , 

where 

∂2 dn (θ) /∂θ∂θ
′ = 2 Zsn (θ) Z′ 

sn (θ) − 1 

2 

{
v ec′ [�−1 

n (θ) 
]

� Iq 

}
∂ v ec

{
∂ v ec′ [�n (θ) 

]
/∂θ
}
/∂θ

′ 

and 

∂2 ςn (θ) /∂θ∂θ
′ = 2 Zln (θ) Z′ 

ln (θ) + 8 Zsn (θ)[ IM2 
� ε 

∗
n (θ)ε 

∗′ 
n (θ)] Z′ 

sn (θ) 

+ 4 Zln (θ)[ε 

∗′ 
n (θ) � IM2 

] Z′ 
sn (θ) + 4 Zsn (θ)[ε 

∗
n (θ) � IM2 

] Z′ 
ln (θ) 

− 2[ε 

∗′ 
n (θ) �

− 1 
2 ′ 

n (θ) � Iq ] ∂ v ec[ ∂μ′ 
n (θ) /∂θ] ∂θ

′ 

− { v ec′ [ �− 1 
2 

n (θ)ε 

∗
n (θ)ε 

∗′ 
n (θ) �

− 1 
2 ′ 

n (θ)] � Iq } ∂ v ec{ ∂ v ec′ [ �n (θ)] /∂θ} /∂θ
′ 
. 

In the case of model (11) , dn (θ) = − 1 
2 ln | �| and 

∂2 dn (θ) /∂θ∂θ
′ = 1 

2 

[
0 0 

0 D′ 
M2 

(�−1 
� �−1 ) DM2 

]
. 

Similarly, we have that g
[
ςn (θ) ,η

]
= − 1 

2 ςn (θ) under normality, so that ∂ g
[
ςn (θ) ,η

]
/∂ ς = − 1 

2 and ∂2 g
[
ςn (θ) ,η

]
/ (∂ ς )2 = 0 .

Finally, 

∂2 ςn (θ) /∂θ∂θ
′ = 2

(
x1 n x

′ 
1 n � �−1 0 

0 0 

)

+ 2

{
0 0 

0 D′ 
M2 

(�− 1 
2 ′ � �− 1 

2 ′ )[ IM2 
� ε 

∗
n (θ)ε 

∗′ 
n (θ)](�− 1 

2 � �− 1 
2 ) DM2 

}

+ 2

{
0 (x1 n � �− 1 

2 ′ )[ε 

∗′ 
n (θ) � IM2 

](�− 1 
2 � �− 1 

2 ) DM2 

0 0 

}

+ 2

{
0 0 

D′ 
M2 

(�− 1 
2 ′ � �− 1 

2 ′ )[ε 

∗
n (θ) � IM2 

](x′ 
1 n � �− 1 

2 ) 0 

}

= 2

{
(w1 n w

′ 
1 n � �−1 ) [ w′ 

1 n (x2 n − 
w 1 n ) �
−1 

� �−1 ] DM2 

D′ 
M2 

[ �−1 (x2 n − 
w 1 n ) w
′ 
1 n � �−1 ] D′ 

M2 
[ �−1 

� �−1 (x2 n − 
w 1 n )(x2 n − 
w 1 n )
′ �−1 ] DM2 

}
, 

where we have exploited the fact that the second derivatives of the conditional mean and covariance functions with respect 

to the model parameters are all zero. 
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Therefore, we can write the Hessian matrix as 

−
{

(w1 n w
′ 
1 n � �−1 ) 

D′ 
M2 

[ �−1 (x2 n − 
w 1 n ) w
′ 
1 n � �−1 ] 

[ w′ 
1 n (x2 n − 
w 1 n ) �

−1 
� �−1 ] DM2 

D′ 
M2 

{ �−1 
� [ �−1 (x2 n − 
w 1 n )(x2 n − 
w 1 n )

′ �−1 − 1 
2 
�−1 ] } DM2 

}
The sum of the outer product of the score and the Hessian yields the following three terms: 

ππ: [ w1 n w
′ 
1 n � �−1 (x2 n − 
w 1 n )(x2 n − 
w 1 n )

′ �−1 ] − (w1 n w
′ 
1 n � �−1 ) , (31) 

ωπ : 
1 

2 

D′ 
M2 

v ec[ �−1 (x2 n − 
w 1 n )(x2 n − 
w 1 n )
′ �−1 − �−1 ][ w′ 

1 n � (x2 n − 
w 1 n )
′ �−1 ] 

−D′ 
M2 

[ �−1 (x2 n − 
w 1 n ) w
′ 
1 n � �−1 ] , (32) 

and 

ωω : 
1 

4 

D′ 
M2 

v ec[ �−1 (x2 n − 
w 1 n )(x2 n − 
w 1 n )
′ �−1 − �−1 ] 

× v ec′ [ �−1 (x2 n − 
w 1 n )(x2 n − 
w 1 n )
′ �−1 − �−1 ] DM2 

− D′ 
M2 

{ �−1 
� [ �−1 (x2 n − 
w 1 n )(x2 n − 
w 1 n )

′ �−1 − 1 

2 

�−1 ] } DM2 
. (33) 

When x1 n = 1 , these formulas reduce to those in the proof of Proposition 1 . In fact, a straightforward application of the

arguments in that proof eventually show that the expressions for the symmetrised version of the sum of the Hessian and

the outer product of the scores coincide with the influence functions mhn (θ) , masn (θ) , macn (θ) and mkn (θ) . Therefore, the

only task left is to derive expressions for the asymptotic covariance matrices of the sample averages of those influence func-

tions. But since we are maintaining the assumption of i.i.d. sampling, and the conditional distribution of the standardised 

regression residuals does not depend on the regressors under the null, we can easily prove that 

lim N→∞ 

V [
√ 

N m̄hN ( ˆ θN )] = V { H2 [ε 

∗
2 | 1 (θ)] } �

⎡ 

⎣ 

0 0′ 0′ 
0 �1 0 

0 0 D+ 
M1 

(IM2 
1 
+ KM1 M1 

)(�1 ��1 ) D
+ ′ 
M1 

⎤ 

⎦ , (34) 

lim N→∞ 

V [
√ 

N m̄asN ( ˆ θN )] = V { H3 [ε 

∗
2 | 1 (θ)] } , (35) 

lim N→∞ 

V [
√ 

N m̄acN ( ˆ θN )] = V { H3 [ε 

∗
2 | 1 (θ)] } � �1 and 

(36) 

lim N→∞ 

V [
√ 

N m̄kN ( ˆ θN )] = V { H4 [ε 

∗
2 | 1 (θ)] } , (37) 

where the only slight complication is to prove that 

V { [1 , (x1 − ν1 )
′ , v ech′ (x1 x

′ 
1 − �1 )]′ } =

⎡ 

⎣ 

0 0′ 0′ 
0 �1 0 

0 0 D+ 
M1 

(IM2 
1 
+ KM1 M1 

)(�1 ��1 ) D
+ ′ 
M1 

⎤ 

⎦ , 

which follows directly from the expressions for the third- and fourth-order central moments of a multivariate normal ran- 

dom vector with zero mean and covariance matrix �1 . �

A5. Proof of Lemma 3 

The proof follows immediately from well-known numerical invariance properties of multivariate regression residuals to 

lower triangular affine transformations of the regressors and the regressands. �

A6. Proof of Proposition 3 

Given the numerical invariance of the test statistics in Lemmas 1 and 3 , the proof of this statement can be obtained by

comparing the influence functions involved in Propositions 1 and 2 after transforming the observations using the population 

version of (20) . �
20
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Appendix B. Auxiliary results and computational details 

B1. The symmetrisation operators 

The correct expressions for the first four symmetrisation operators discussed by Holmquist (1996) are 

SMι1 
= IM 

, 

SMι2 
= 1 

2 

(IM2 + KMM 

) , 

SMι3 
= 1 

6 

[ IM3 + (IM 

� KMM 

) + (KMM 

� IM 

) + (IM 

� KMM 

)(KMM 

� IM 

) 

+ (KMM 

� IM 

)(IM 

� KMM 

) + (KMM 

� IM 

)(IM 

� KMM 

)(KMM 

� IM 

)] and 

SMι4 
= 1 

24 

[ IM4 + (IM2 � KMM 

) + (IM 

� KMM 

� IM 

) + (IM2 � KMM 

)(IM 

� KMM 

� IM 

) 

+ (IM 

� KMM 

� IM 

)(IM2 � KMM 

) + (IM 

� KMM 

� IM 

)(IM2 � KMM 

)(IM 

� KMM 

� IM 

) 

+ (KMM 

� IM2 ) + (KMM 

� KMM 

) + (IM 

� KMM 

� IM 

)(KMM 

� IM2 ) 

+ (IM2 � KMM 

)(IM 

� KMM 

� IM 

)(KMM 

� IM2 ) + (IM 

� KMM 

� IM 

)(KMM 

� KMM 

) 

+ (IM 

� KMM 

� IM 

)(IM2 � KMM 

)(IM 

� KMM 

� IM 

)(KMM 

� IM2 ) 

+ (KMM 

� IM2 )(IM 

� KMM 

� IM 

) + (IM2 � KMM 

)(KMM 

� IM2 )(IM 

� KMM 

� IM 

) 

+ (IM 

� KMM 

� IM 

)(KMM 

� IM2 )(IM 

� KMM 

� IM 

) 

+ (IM2 � KMM 

)(IM 

� KMM 

� IM 

)(KMM 

� IM2 )(IM 

� KMM 

� IM 

) 

+ KM2 M2 + (IM2 � KMM 

) KM2 M2 + (KMM 

� IM2 )(IM 

� KMM 

� IM 

)(IM2 � KMM 

) 

+ (KMM 

� IM2 )(IM 

� KMM 

� IM 

)(IM2 � KMM 

)(IM 

� KMM 

� IM 

) 

+ (KMM 

� IM2 )(IM 

� KMM 

� IM 

)(KMM 

� KMM 

) 

+ (IM2 � KMM 

)(KMM 

� IM2 )(IM 

� KMM 

� IM 

)(KMM 

� KMM 

) 

+ (KMN � IN2 ) KN2 N2 + (IN2 � KNN )(KNN � IN2 ) KN2 N2 . 

The adjectival noun “symmetrisation” reflects the fact that when one applies these operators to the arbitrary vectors a , 

b , c and d of dimension M, one ends up with 

SMι1 
a = a , 

SMι2 
(a � b ) = 1 

2 

[(a � b ) + (b � a )] , 

SMι3 
(a � b � c ) = 1 

6 

[(a � b � c ) + (a � c � b ) + (b � a � c ) 

+(b � c � a ) + (c � a � b ) + (c � b � a )] , 

SMι4 
(a � b � c � d )= 1 

24 

[(a � b � c � d ) + (a � b � d � c ) + (a � c � b � d ) + (a � c � d � b ) 

+ (a � d � b � c ) + (a � d � c � b ) + (b � a � c � d ) + (b � a � d � c ) 

+ (b � c � a � d ) + (b � c � d � a ) + (b � d � a � c ) + (b � d � c � a ) 

+ (c � a � b � d ) + (c � a � d � b ) + (c � b � a � d ) + (c � b � d � a ) 

+ (c � d � a � b ) + (c � d � b � a ) + (d � a � b � c ) + (d � a � c � b ) 

+ (d � b � a � c ) + (d � b � c � a ) + (d � c � a � b ) + (d � c � b � a )] . 

Two very useful properties of these operators that Grant Hillier has shared with us are 

SMι3 
(KMM 

� IM 

) = SMι3 
and (38) 

SMι4 
(IM 

� KMM 

� IM 

) = SMι4 
, (39) 

which effectively follow from the fact that postmultiplying by (KMM 

� IM 

) and (IM 

� KMM 

� IM 

) just rearranges the terms in 

SMι3 
and SMι4 

, respectively. 

B2. Special cases 

B2.1. The univariate case 

The contribution of x to the log-likelihood function is 

−1 

2 

ln 2 π − 1 

2 

ln γ 2 − ε2 (ν) 

2 γ 2 
21
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The score of this component with respect to the mean parameter is 

sν (x ;ν, γ 2 ) = z(ν, γ 2 ) , 

while the score with respect to the variance parameter is given by 

sγ2 (x ;ν, γ ) = 1 

2 

[ z2 (ν, γ 2 ) − δ2 ] , 

where δ2 = γ −2 , so they coincide with the first and second Hermite polynomials of z(ν, γ 2 ) . 

In turn, the Hessian matrix is given by [
hνν(x ;ν, γ 2 ) hγν(x ;ν, γ 2 ) 
hγν(x ;ν, γ 2 ) hγγ (x ;ν, γ ) 

]
= −
[

δ2 δ2 z(ν, γ 2 ) 
δ2 z(ν, γ 2 ) δ2 [ z2 (ν, γ 2 ) − δ2 ] 

]
, 

while the covariance matrix of the score will be the expected value of the outer product matrix [
z2 (ν, γ 2 ) 1 

2 
z(ν, γ 2 )[ z2 (ν, γ 2 ) − δ2 ] 

1 
2 

z(ν, γ 2 )[ z2 (ν, γ 2 ) − δ2 ] 1 
4 

[ z2 (ν, γ 2 ) − δ2 ]2 

]
. 

Therefore, the sum of the outer product of the score and the Hessian yields the following three terms 

νν : z2 (ν, γ 2 ) − δ2 , 

γ 2 ν : 
1 

2 

z(ν, γ 2 )[ z2 (ν, γ 2 ) − δ2 ] − δ2 z(ν, γ 2 ) = 1 

2 

[ z3 (ν, γ 2 ) − 3 δ2 z(ν, γ 2 )] 

and 

γ 2 γ 2 :
1 

4 

[ z2 (ν, γ 2 ) − δ2 ]2 − δ2 [ z2 (ν, γ 2 ) − δ2 ] = 1 

4 

[ z4 (ν, γ 2 ) − 6 δ2 z2 (ν, γ 2 ) + 3 δ4 ] . 

Under the null of correct specification, the expected value of these three terms should be zero. However, the expected value

of the first term will also be zero under misspecification, so the test should only be based on the other two terms, which

coincide with the third- and fourth-order Hermite polynomials of z(ν, γ 2 ) , as claimed. 

B2.2. The bivariate case 

The contribution of x = (x1 , x2 )
′ to the log-likelihood function is 

− ln 2 π + 1 

2 

ln | �| − 1 

2 

ε 

′ (ν) �ε (ν) , 

where ν = (ν1 , ν2 )
′ and v ech (�) = (δ11 , δ12 , δ22 ) . 

If we suppress the dependence on the means for notational simplicity, the scores of this component with respect to the

vector of mean parameters are 

sν(x ;ν,γ ) =
(

δ11 δ12 

δ12 δ22 

)(
ε1 

ε2 

)
=
(

δ11 ε1 + δ12 ε2 

δ12 ε1 + δ22 ε2 

)
, 

which coincide with the H10 (ε , �) and H01 (ε , �) bivariate Hermite polynomials of ε in Barndorff-Nielsen and Petersen 

(1979) . 

Similarly, the scores with respect to the covariance matrix parameters γ = (γ11 , γ12 , γ22 )
′ are given by one half of the

product of the transpose of the duplication matrix 

D′ 
2 =

⎛ 

⎝ 

1 0 0 0 

0 1 1 0 

0 0 0 1 

⎞ 

⎠ 

times 

v ec

[(
δ11 δ12 

δ12 δ22 

)(
ε1 

ε2 

)(
ε1 ε2 

)(δ11 δ12 

δ12 δ22 

)
−
(

δ11 δ12 

δ12 δ22 

)]

=

⎡ 

⎢ ⎣ 

δ2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 − δ11 

δ11 δ12 ε
2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 − δ12 

δ11 δ12 ε2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε2 
2 − δ12 

δ2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 − δ22 

⎤ 

⎥ ⎦ 

, 

which coincide with the H20 (ε , �) , H11 (ε , �) and H02 (ε , �) bivariate Hermite polynomials of ε in Barndorff-Nielsen and

Petersen (1979) . Therefore, the νν term of the sum of the outer product of the score and the Hessian matrix are identical to 

these polynomials. 
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In turn, the γν term is one half the transpose of the duplication matrix times ⎡ 

⎢ ⎣ 

(δ2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 − δ11 )(δ11 ε1 + δ12 ε2 ) 

(δ11 δ12 ε
2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 − δ12 )(δ11 ε1 + δ12 ε2 ) 

(δ11 δ12 ε2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε2 
2 − δ12 )(δ11 ε1 + δ12 ε2 ) 

(δ2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 − δ22 )(δ11 ε1 + δ12 ε2 ) 

(δ2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 − δ11 )(δ12 ε1 + δ22 ε2 ) 

(δ11 δ12 ε
2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 − δ12 )(δ12 ε1 + δ22 ε2 ) 

(δ11 δ12 ε
2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 − δ12 )(δ12 ε1 + δ22 ε2 ) 

(δ2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 − δ22 )(δ12 ε1 + δ22 ε2 ) 

⎤ 

⎥ ⎦ 

−2

⎡ 

⎢ ⎣ 

δ11 (δ11 ε1 + δ12 ε2 ) δ12 (δ11 ε1 + δ12 ε2 ) 
δ12 (δ11 ε1 + δ12 ε2 ) δ22 (δ11 ε1 + δ12 ε2 ) 
δ11 (δ12 ε1 + δ22 ε2 ) δ12 (δ12 ε1 + δ22 ε2 ) 
δ12 (δ12 ε1 + δ22 ε2 ) δ22 (δ12 ε1 + δ22 ε2 ) 

⎤ 

⎥ ⎦ 

, 

which reduces to ⎡ 

⎣ 

(δ2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 − δ11 )(δ11 ε1 + δ12 ε2 ) 

2
(
δ11 δ12 ε

2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 − δ12 )(δ11 ε1 + δ12 ε2 

)
(δ2 

12 ε
2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 − δ22 )(δ11 ε1 + δ12 ε2 ) 

(δ2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 − δ11 )(δ12 ε1 + δ22 ε2 ) 

2
(
δ11 δ12 ε

2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 − δ12 )(δ12 ε1 + δ22 ε2 

)
(δ2 

12 ε
2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 − δ22 )(δ12 ε1 + δ22 ε2 ) 

⎤ 

⎦ 

−2

⎡ 

⎣ 

δ11 (δ11 ε1 + δ12 ε2 ) δ12 (δ11 ε1 + δ12 ε2 ) 
2 δ11 δ12 ε1 + (δ2 

12 + δ11 δ22 ) ε2 (δ2 
12 + δ11 δ22 ) ε1 + 2 δ22 δ12 ε2 

δ12 (δ12 ε1 + δ22 ε2 ) δ22 (δ12 ε1 + δ22 ε2 ) 

⎤ 

⎦ 

=

⎡ 

⎣ 

(δ2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 − δ11 )(δ11 ε1 + δ12 ε2 ) − 2 δ11 (δ11 ε1 + δ12 ε2 ) 

2(δ11 δ12 ε
2 
1 +(δ2 

12 +δ11 δ22 ) ε1 ε2 +δ22 δ12 ε
2 
2 −δ12 )(δ11 ε1 +δ12 ε2 )−2(2 δ11 δ12 ε1 +(δ2 

12 +δ11 δ22 ) ε2 ) 
(δ2 

12 ε
2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 − δ22 )(δ11 ε1 + δ12 ε2 ) − 2 δ12 (δ12 ε1 + δ22 ε2 ) 

(δ2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 − δ11 )(δ12 ε1 + δ22 ε2 ) − 2 δ12 (δ11 ε1 + δ12 ε2 ) 

2(δ11 δ12 ε
2 
1 +(δ2 

12 +δ11 δ22 ) ε1 ε2 +δ22 δ12 ε
2 
2 −δ12 )(δ12 ε1 + δ22 ε2 )−2((δ2 

12 +δ11 δ22 ) ε1 +2 δ22 δ12 ε2 ) 
(δ2 

12 ε
2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 − δ22 )(δ12 ε1 + δ22 ε2 ) − 2 δ22 (δ12 ε1 + δ22 ε2 ) 

⎤ 

⎦ 

It is tedious but trivial to see that the (2,1) and (2,2) elements are twice as big as the (1,2) and (3,1) ones, respectively.

Therefore, the number of different elements coincides with the number of different third moments, which is M(M + 1)(M +
2) / 6 = 4 in the bivariate case. Those four terms are 

(δ2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 − δ11 )(δ11 ε1 + δ12 ε2 ) − 2 δ11 (δ11 ε1 + δ12 ε2 ) 

= δ3 
11 ε

3 
1 + 3 δ2 

11 δ12 ε
2 
1 ε2 + 3 δ11 δ

2 
12 ε

2 
2 ε1 + δ3 

12 ε
3 
2 − 3 δ2 

11 ε1 − 3 δ11 δ12 ε2 = H30 (ε , �) , 

(δ2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 − δ11 )(δ12 ε1 + δ22 ε2 ) − 2 δ12 (δ11 ε1 + δ12 ε2 ) 

= δ2 
11 δ12 ε

3 
1 +
(
δ22 δ

2 
11 + 2 δ11 δ

2 
12 

)
ε2 

1 ε2 + (δ3 
12 + 2 δ11 δ22 δ12 ) ε

2 
2 ε1 + δ22 δ

2 
12 ε

3 
2 

− 3 δ11 δ12 ε1 − (2 δ2 
12 + δ11 δ22 ) ε2 = H21 (ε , �) , 

(δ2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 − δ22 )(δ11 ε1 + δ12 ε2 ) − 2 δ12 (δ12 ε1 + δ22 ε2 ) 

= δ2 
22 δ12 ε

3 
2 +
(
δ11 δ

2 
22 + 2 δ22 δ

2 
12 

)
ε2 

2 ε1 +
(
δ3 

12 + 2 δ11 δ22 δ12 

)
ε2 

1 ε2 + δ11 δ
2 
12 ε

3 
1 

−(2 δ2 
12 + δ11 δ22 ) ε1 − 3 δ22 δ12 ε2 = H12 (ε , �) , 

and 

(δ2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 − δ22 )(δ12 ε1 + δ22 ε2 ) − 2 δ22 (δ12 ε1 + δ22 ε2 ) 

= δ3 
22 ε

3 
2 + 3 δ2 

22 δ12 ε
2 
2 ε1 + 3 δ22 δ

2 
12 ε

2 
1 ε2 + δ3 

12 ε
3 
1 − 3 δ22 δ12 ε1 − 3 δ2 

22 ε2 = H03 (ε , �) , 

which coincide with the four different bivariate Hermite polynomials of order three in Barndorff-Nielsen and Petersen 

(1979) , as expected. 
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Finally, the γγ term of the outer product of the score is one quarter of ⎡ 

⎣ 

δ2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 − δ11 

2(δ11 δ12 ε
2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 − δ12 ) 

δ2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 − δ22 

⎤ 

⎦ 

×

⎡ 

⎣ 

δ2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 − δ11 

2(δ11 δ12 ε
2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 − δ12 ) 

δ2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 − δ22 

⎤ 

⎦ 

′ 

=

⎡ 

⎣ 

(δ2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 − δ11 )

2 

2(δ11 δ12 ε
2 
1 +(δ2 

12 +δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 −δ12 )(δ

2 
11 ε

2 
1 +2 δ11 δ12 ε1 ε2 +δ2 

12 ε
2 
2 −δ11 ) 

(δ2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 − δ22 )(δ

2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 − δ11 ) 

2(δ2 
11 ε

2 
1 +2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 −δ11 )(δ11 δ12 ε

2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 +δ22 δ12 ε
2 
2 − δ12 ) 

4(δ11 δ12 ε
2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 − δ12 )

2 

2(δ2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 − δ22 )(δ11 δ12 ε2 

1 + (δ2 
12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε2 

2 − δ12 ) 

(δ2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 − δ11 )(δ

2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 − δ22 ) 

2(δ11 δ12 ε
2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 − δ12 )(δ

2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 +δ2 

22 ε
2 
2 −δ22 ) 

(δ2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 − δ22 )

2 

⎤ 

⎦ . 

To obtain the Hessian, we need the following matrix ⎡ 

⎢ ⎣ 

2 δ11 (δ
2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 ) − δ2 

11 

2 δ11 (δ11 δ12 ε
2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 ) − δ11 δ12 

2 δ12 (δ
2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 ) − δ12 δ11 

2 δ12 (δ11 δ12 ε
2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 ) − δ2 

12 

2 δ11 (δ11 δ12 ε
2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 ) − δ11 δ12 

2 δ11 (δ
2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 ) − δ11 δ22 

2 δ12 (δ11 δ12 ε
2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 ) − δ2 

12 

2 δ12 (δ
2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 ) − δ12 δ22 

2 δ12 (δ
2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 ) − δ12 δ11 

2 δ12 (δ11 δ12 ε
2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 ) − δ2 

12 

2 δ22 (δ2 
11 ε

2 
1 + 2 δ11 δ12 ε1 ε2 + δ2 

12 ε
2 
2 ) − δ22 δ11 

2 δ22 (δ11 δ12 ε
2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 ) − δ22 δ12 

2 δ12 (δ11 δ12 ε
2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε
2 
2 ) − δ2 

12 

2 δ12 (δ
2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 ) − δ12 δ22 

2 δ22 (δ11 δ12 ε2 
1 + (δ2 

12 + δ11 δ22 ) ε1 ε2 + δ22 δ12 ε2 
2 ) − δ22 δ12 

2 δ22 (δ
2 
12 ε

2 
1 + 2 δ12 δ22 ε1 ε2 + δ2 

22 ε
2 
2 ) − δ2 

22 

⎤ 

⎥ ⎦ 

which postmultiplied by the duplication matrix and premultiplied by its transpose yields ⎡ 

⎣ 

δ11 

(
2 ε2 

1 δ
2 
11 + 4 ε1 ε2 δ11 δ12 + 2 ε2 

2 δ
2 
12 − δ11 

)
4 ε2 

1 δ
2 
11 δ12 + 2 δ22 ε1 ε2 δ

2 
11 + 6 ε1 ε2 δ11 δ

2 
12 + 2 δ22 ε

2 
2 δ11 δ12 + 2 ε2 

2 δ
3 
12 − 2 δ11 δ12 

δ12 

(
2 δ11 ε

2 
1 δ12 + 2 ε1 ε2 δ

2 
12 + 2 δ11 δ22 ε1 ε2 + 2 δ22 ε

2 
2 δ12 − δ12 

)
4 ε2 

1 δ
2 
11 δ12 + 2 δ22 ε1 ε2 δ

2 
11 + 6 ε1 ε2 δ11 δ

2 
12 + 2 δ22 ε

2 
2 δ11 δ12 + 2 ε2 

2 δ
3 
12 − 2 δ11 δ12 

2 ε2 
1 δ

2 
11 δ22 + 6 ε2 

1 δ11 δ
2 
12 + 12 ε1 ε2 δ11 δ12 δ22 + 4 ε1 ε2 δ

3 
12 + 2 ε2 

2 δ11 δ
2 
22 + 6 ε2 

2 δ
2 
12 δ22 − 2 δ11 δ22 − 2 δ2 

12 

2 ε2 
1 δ

3 
12 + 2 δ11 ε

2 
1 δ12 δ22 + 6 ε1 ε2 δ

2 
12 δ22 + 2 δ11 ε1 ε2 δ

2 
22 + 4 ε2 

2 δ12 δ
2 
22 − 2 δ12 δ22 

δ12 

(
2 δ11 ε

2 
1 δ12 + 2 ε1 ε2 δ

2 
12 + 2 δ11 δ22 ε1 ε2 + 2 δ22 ε

2 
2 δ12 − δ12 

)
2 ε2 

1 δ
3 
12 + 2 δ11 ε

2 
1 δ12 δ22 + 6 ε1 ε2 δ

2 
12 δ22 + 2 δ11 ε1 ε2 δ

2 
22 + 4 ε2 

2 δ12 δ
2 
22 − 2 δ12 δ22 

δ22 

(
2 ε2 

1 δ
2 
12 + 4 ε1 ε2 δ12 δ22 + 2 ε2 

2 δ
2 
22 − δ22 

)
⎤ 

⎦ 

If we subtract twice this matrix from the compressed outer product of the score we end up with a 3 × 3 matrix with

the following elements 

(1 , 1 ) : ε4 
1 δ

4 
11 + 4 ε3 

1 ε2 δ
3 
11 δ12 + 6 ε2 

1 ε
2 
2 δ

2 
11 δ

2 
12 − 6 ε2 

1 δ
3 
11 + 4 ε1 ε

3 
2 δ11 δ

3 
12 

−12 ε1 ε2 δ
2 
11 δ12 + ε4 

2 δ
4 
12 − 6 ε2 

2 δ11 δ
2 
12 + 3 δ2 

11 , 

(2 , 1 ) : 2 ε4 
1 δ

3 
11 δ12 + 2 δ22 ε

3 
1 ε2 δ

3 
11 + 6 ε3 

1 ε2 δ
2 
11 δ

2 
12 + 6 δ22 ε

2 
1 ε

2 
2 δ

2 
11 δ12 + 6 ε2 

1 ε
2 
2 δ11 δ

3 
12 

−12 ε2 
1 δ

2 
11 δ12 + 6 δ22 ε1 ε

3 
2 δ11 δ

2 
12 + 2 ε1 ε

3 
2 δ

4 
12 − 6 δ22 ε1 ε2 δ

2 
11 

−18 ε1 ε2 δ11 δ
2 
12 + 2 δ22 ε

4 
2 δ

3 
12 − 6 δ22 ε

2 
2 δ11 δ12 − 6 ε2 

2 δ
3 
12 + 6 δ11 δ12 , 
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(3 , 1 ) : ε4 
1 δ

2 
11 δ

2 
12 + 2 ε3 

1 ε2 δ
2 
11 δ12 δ22 + 2 ε3 

1 ε2 δ11 δ
3 
12 + ε2 

1 ε
2 
2 δ

2 
11 δ

2 
22 + 4 ε2 

1 ε
2 
2 δ11 δ

2 
12 δ22 + ε2 

1 ε
2 
2 δ

4 
12 

−ε2 
1 δ

2 
11 δ22 − 5 ε2 

1 δ11 δ
2 
12 + 2 ε1 ε

3 
2 δ11 δ12 δ

2 
22 + 2 ε1 ε

3 
2 δ

3 
12 δ22 − 8 ε1 ε2 δ11 δ12 δ22 

−4 ε1 ε2 δ
3 
12 + ε4 

2 δ
2 
12 δ

2 
22 − ε2 

2 δ11 δ
2 
22 − 5 ε2 

2 δ
2 
12 δ22 + δ11 δ22 + 2 δ2 

12 , 

(1 , 2 ) : 2 ε4 
1 δ

3 
11 δ12 + 2 δ22 ε

3 
1 ε2 δ

3 
11 + 6 ε3 

1 ε2 δ
2 
11 δ

2 
12 + 6 δ22 ε

2 
1 ε

2 
2 δ

2 
11 δ12 

+ 6 ε2 
1 ε

2 
2 δ11 δ

3 
12 − 12 ε2 

1 δ
2 
11 δ12 + 6 δ22 ε1 ε

3 
2 δ11 δ

2 
12 + 2 ε1 ε

3 
2 δ

4 
12 − 6 δ22 ε1 ε2 δ

2 
11 

− 18 ε1 ε2 δ11 δ
2 
12 + 2 δ22 ε

4 
2 δ

3 
12 − 6 δ22 ε

2 
2 δ11 δ12 − 6 ε2 

2 δ
3 
12 + 6 δ11 δ12 , 

(2 , 2 ) : 4 ε4 
1 δ

2 
11 δ

2 
12 + 8 ε3 

1 ε2 δ
2 
11 δ12 δ22 + 8 ε3 

1 ε2 δ11 δ
3 
12 + 4 ε2 

1 ε
2 
2 δ

2 
11 δ

2 
22 + 16 ε2 

1 ε
2 
2 δ11 δ

2 
12 δ22 + 4 ε2 

1 ε
2 
2 δ

4 
12 

− 4 ε2 
1 δ

2 
11 δ22 − 20 ε2 

1 δ11 δ
2 
12 + 8 ε1 ε

3 
2 δ11 δ12 δ

2 
22 + 8 ε1 ε

3 
2 δ

3 
12 δ22 − 32 ε1 ε2 δ11 δ12 δ22 

− 16 ε1 ε2 δ
3 
12 + 4 ε4 

2 δ
2 
12 δ

2 
22 − 4 ε2 

2 δ11 δ
2 
22 − 20 ε2 

2 δ
2 
12 δ22 + 4 δ11 δ22 + 8 δ2 

12 , 

(3 , 2 ) : 2 δ11 ε
4 
1 δ

3 
12 + 2 ε3 

1 ε2 δ
4 
12 + 6 δ11 ε

3 
1 ε2 δ

2 
12 δ22 + 6 ε2 

1 ε
2 
2 δ

3 
12 δ22 

+ 6 δ11 ε
2 
1 ε

2 
2 δ12 δ

2 
22 − 6 ε2 

1 δ
3 
12 − 6 δ11 ε

2 
1 δ12 δ22 + 6 ε1 ε

3 
2 δ

2 
12 δ

2 
22 + 2 δ11 ε1 ε

3 
2 δ

3 
22 

− 18 ε1 ε2 δ
2 
12 δ22 − 6 δ11 ε1 ε2 δ

2 
22 + 2 ε4 

2 δ12 δ
3 
22 − 12 ε2 

2 δ12 δ
2 
22 + 6 δ12 δ22 , 

(1 , 3 ) : ε4 
1 δ

2 
11 δ

2 
12 + 2 ε3 

1 ε2 δ
2 
11 δ12 δ22 + 2 ε3 

1 ε2 δ11 δ
3 
12 + ε2 

1 ε
2 
2 δ

2 
11 δ

2 
22 

+ 4 ε2 
1 ε

2 
2 δ11 δ

2 
12 δ22 + ε2 

1 ε
2 
2 δ

4 
12 − ε2 

1 δ
2 
11 δ22 − 5 ε2 

1 δ11 δ
2 
12 + 2 ε1 ε

3 
2 δ11 δ12 δ

2 
22 + 2 ε1 ε

3 
2 δ

3 
12 δ22 

− 8 ε1 ε2 δ11 δ12 δ22 − 4 ε1 ε2 δ
3 
12 + ε4 

2 δ
2 
12 δ

2 
22 − ε2 

2 δ11 δ
2 
22 − 5 ε2 

2 δ
2 
12 δ22 + δ11 δ22 + 2 δ2 

12 , 

(2 , 3 ) : 2 δ11 ε
4 
1 δ

3 
12 + 2 ε3 

1 ε2 δ
4 
12 + 6 δ11 ε

3 
1 ε2 δ

2 
12 δ22 + 6 ε2 

1 ε
2 
2 δ

3 
12 δ22 + 6 δ11 ε

2 
1 ε

2 
2 δ12 δ

2 
22 

− 6 ε2 
1 δ

3 
12 − 6 δ11 ε

2 
1 δ12 δ22 + 6 ε1 ε

3 
2 δ

2 
12 δ

2 
22 + 2 δ11 ε1 ε

3 
2 δ

3 
22 − 18 ε1 ε2 δ

2 
12 δ22 

− 6 δ11 ε1 ε2 δ
2 
22 + 2 ε4 

2 δ12 δ
3 
22 − 12 ε2 

2 δ12 δ
2 
22 + 6 δ12 δ22 and 

(3 , 3 ) : ε4 
1 δ

4 
12 + 4 ε3 

1 ε2 δ
3 
12 δ22 + 6 ε2 

1 ε
2 
2 δ

2 
12 δ

2 
22 − 6 ε2 

1 δ
2 
12 δ22 + 4 ε1 ε

3 
2 δ12 δ

3 
22 

− 12 ε1 ε2 δ12 δ
2 
22 + ε4 

2 δ
4 
22 − 6 ε2 

2 δ
3 
22 + 3 δ2 

22 . 

Once again, it is tedious but straightforward to prove that the elements (2,1), (3,1) and (3,2) are equal to the elements

(1,2), (1,3) and (2,3), respectively. In addition, the (2,2) element is four times the (3,1) and (1,3) ones. Therefore, the number

of different elements coincides with the number of different fourth moments, which is M(M + 1)(M + 2)(M + 3) / 24 = 5 in

the bivariate case. Those five terms are 

δ4 
11 ε

4 
1 + 4 δ3 

11 δ12 ε
3 
1 ε2 + 6 δ2 

11 δ
2 
12 ε

2 
1 ε

2 
2 + 4 δ11 δ

3 
12 ε1 ε

3 
2 + δ4 

12 ε
4 
2 

− 6 δ3 
11 ε

2 
1 − 12 δ2 

11 δ12 ε1 ε2 − 6 δ11 δ
2 
12 ε

2 
2 + 3 δ2 

11 = H40 (ε , �) , 

2 δ3 
11 δ12 ε

4 
1 + 2(δ22 δ

3 
11 + 3 δ2 

11 δ
2 
12 ) ε

3 
1 ε2 + 6(δ22 δ

2 
11 δ12 + δ11 δ

3 
12 ) ε

2 
1 ε

2 
2 

+ 2(3 δ22 δ11 δ
2 
12 + δ4 

12 ) ε1 ε
3 
2 + 2 δ22 δ

3 
12 ε

4 
2 

− 12 δ2 
11 δ12 ε

2 
1 − 6(δ22 δ

2 
11 + 3 δ11 δ

2 
12 ) ε1 ε2 − 6(δ22 δ11 δ12 + δ3 

12 ) ε
2 
2 + 6 δ11 δ12 = 2 H31 (ε , �) , 

δ2 
11 δ

2 
12 ε

4 
1 + 2

(
δ22 δ

2 
11 δ12 + δ11 δ

3 
12 

)
ε2 ε
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)
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(
δ4 
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2 
22 + δ11 δ
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and 

δ4 
12 ε

4 
1 + 4 δ3 

12 δ22 ε
3 
1 ε2 + 6 δ2 

12 δ
2 
22 ε

2 
1 ε

2 
2 + 4 δ12 δ
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22 ε1 ε

3 
2 + δ4 

22 ε
4 
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− 6 δ2 
12 δ22 ε

2 
1 − 12 δ12 δ

2 
22 ε1 ε2 − 6 δ3 

22 ε
2 
2 + 3 δ2 

22 = H04 (ε , �) , 

which are (multiples of) the five different bivariate Hermite polynomials of order four in Barndorff-Nielsen and Petersen 

(1979) , as expected. 
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B3. Alternative distributions 

For the multivariate skew normal distribution, we use its canonical representation, choosing 0.83, 1.30 and −1 . 35 for the

location, scale and skew, respectively, of the first component of the random vector, which yield values of −3 / 4 and 3.60

for its skewness and kurtosis coefficients (see Figure 2.2 in Azzalini and Capitanio (2014) for the feasible skewness-kurtosis 

combinations). In contrast, the remaining M − 1 components are drawn from independent univariate standard normals. 

In the case of the multivariate asymmetric Student t , we choose η = 0 . 042 and b = (−0 . 91 , 0′ )′ , which yield values of

−3 / 4 and 4.5 for the skewness and kurtosis coefficients of the first element (see Proposition 1 in Mencía and Sentana

(2009) for details on how to obtain a random vector whose mean vector and covariance matrix are 0 and IM 

, respectively).

Finally, for the discrete mixture of two normal vectors, we fix their means to (1 − λ)υ and −λυ, where λ = 1 / 4 is the

probability of the first Gaussian vector and υ = (−. 57 , 0′ )′ , and their covariance matrices to 

�1 = 

1 

λ + 
(1 − λ) 

[
IM 

− υυ′ (1 − λ
)
λ
]

and 

�2 = 
�1 

with 
 = . 51 , so as to achieve the same skewness and kurtosis coefficients for the first variable as in the case of the asym-

metric Student t . 
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