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Simple Summary: Gastric cancer (GC), a severe form of gastrointestinal malignancy, impacts around
1 million individuals each year and is associated with high mortality rates. Surgery, mainly radical
gastrectomy, is the primary treatment, but challenges remain in distinguishing malignant from healthy
tissue and identifying metastatic lymph nodes. Surgeons often remove all lymph nodes, increasing
risks and recovery times. Near-infrared fluorescence imaging with indocyanine green (ICG) helps
visualize surgical fields in minimally invasive procedures but is limited as a non-targeted contrast
agent. Emerging targeted fluorescent agents aim to specifically bind to GC markers and the tumor
microenvironment, facilitating metastatic mapping and removal precision in robotic gastrectomy.
These innovations could improve surgical accuracy and improve recovery outcomes for GC patients.

Abstract: Gastric cancer (GC) is a malignant tumor of the gastrointestinal tract associated with high
mortality rates and accounting for approximately 1 million new cases diagnosed annually. Surgery,
particularly radical gastrectomy, remains the primary treatment; however, there are currently no
specific approaches to better distinguish malignant from healthy tissue or to differentiate between
metastatic and non-metastatic lymph nodes. As a result, surgeons have to remove all lymph nodes
indiscriminately, increasing intraoperative risks for patients and prolonging hospital stay. Near-
infrared fluorescence imaging with indocyanine green (ICG) can provide real-time visualization of
the surgical field using both conventional laparoscopy and robotic mini-invasive precision surgery
platforms. However, its application shows some limits, as ICG is a non-targeted contrast agent.
Several studies are now investigating the potential efficacy of fluorescent targeted agents that could
selectively bind to the tumor tissue, offering a valuable tool for metastatic mapping during robotic
gastrectomy. This review aims to summarize the key fluorescent agents that have been developed to
recognize GC markers, as well as those targeting the tumor microenvironment (TME) and metabolic
features. These agents hold great potential as valuable tools for enhancing precision surgery in robotic
gastrectomy procedures improving the clinical recovery of GC patients.

Keywords: gastric cancer; precision surgery; fluorescence

1. Introduction

Gastric cancer (GC) ranks as the third leading cause of cancer-related deaths world-
wide, with over 1 million new cases diagnosed each year [1–3]. Surgery remains the primary
treatment for potentially curative outcomes in GC patients, making surgical quality a key
research focus. However, current approaches for distinguishing malignant tissue from
healthy mucosa (HM) largely rely on tactile and visual cues, as well as the surgeon’s exper-
tise. Consequently, there is a risk of positive surgical margins (PSMs) or residual tumors
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remaining after resection [4]. Moreover, during surgery, it is impossible to discriminate
between metastatic and non-metastatic lymph nodes, and this leads to the indiscriminate
removal of all lymph nodes, increasing intraoperative risks for patients [5].

Over the past two decades, intraoperative navigation tools have been introduced
across various aspects of oncosurgery to enhance care quality. Among these, near-infrared
(NIR) fluorescence imaging with indocyanine green (ICG) has gained significant interest.
This technology allows for real-time assessment of the operative field and anatomy. Conven-
tional laparoscopy, as well as the da Vinci robotic platform, can integrate NIR fluorescence
with ICG into the surgical process. NIR light is characterized by low absorption, low
scattering, and low autofluorescence, enabling deeper tissue penetration than visible light.
When ICG is used, specific structures such as lymphatic vessels, lymph nodes, and blood
vessels can be clearly visualized [6–8], introducing new possibilities for intraoperative
visualization of critical surgical parameters, such as lymphatic drainage, offering valuable
decision support during surgery [9]. In addition, ICG helps ensure the completeness of
lymph node removal, and improves surgical dissection and visualization of anastomotic
perfusion. It also provides detailed information on the condition and composition of the tis-
sue examined, as well as various perfusion parameters [10,11]. However, ICG accumulates
passively in tumor tissue through the enhanced permeability and retention effect, yet it is
not a targeted fluorescent contrast agent. Additionally, ICG’s use is limited because it loses
its fluorescence after binding to proteins: indeed, ICG has a strong tendency to aggregate
in the presence of proteins. This aggregation can disrupt its electronic structure, and this
change can suppress the energy transitions required for fluorescence emission, effectively
quenching the fluorescence [12].

There is a significant need for the development of a targeted fluorescent contrast agent
that can actively accumulate in tumor tissue by recognizing specific biomarkers expressed
by tumor cells. Such an agent would help to delineate the margins between tumor and
surrounding normal tissues and allow for the precise visualization of metastatic lymph
nodes during the surgery.

In this review, we describe the latest and promising fluorescent probes that have been
developed to recognize GC markers, as well as those targeting the tumor microenvironment
(TME) and tumor metabolic features. These molecules could be integrated into NIR
technologies for use during gastrectomy.

2. Literature Search

PubMed was searched for articles in English using the following keywords, their
associations and their acronyms: “gastric cancer”, “gastrectomy”, “surgery”, “biomarker”,
“indocyanine green”, “near-infrared fluorescence”, “Da Vinci”, “robotic”, “clinical trials”,
“mini invasive surgery”, “laparoscopy”, “dye”, “imaging”, “intraoperative”, “laparoscopy”,
“microenvironment”, “microbiota”, and “intratumor”.

3. Gastrectomy with Fluorescence Imaging

Fluorescence imaging (FI) is currently the most popular approach used in image-
guided surgery. It can be applied to conventional laparoscopy [13], as well as with mini-
invasive robotic platforms, such as the da Vinci surgical system [14–16].

Traditional FI methods utilize fluorochromes within the visible light spectrum of 400 to
600 nm [17,18]. However, these methods are limited by a low penetration depth of just a
few millimeters due to high light absorption by biological chromophores and significant
background light/autofluorescence, resulting in a low signal-to-background ratio. To
achieve high sensitivity and deeper penetration, wavelengths are ideally confined to the
first NIR window, 650–900 nm, which offers reduced absorption, low autofluorescence,
high spatial resolution, and high sensitivity [19]. Recently, significant advances in the
second near-infrared region (NIR-II, 1000–1700 nm) are quickly developing, overcoming
some limitations. NIR-II fluorescence imaging effectively addresses challenges such as
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intense tissue absorption, autofluorescence, and photon scattering, offering deep tissue
penetration, micron-level spatial resolution, and high signal-to-background ratio [20].

Organic small molecular fluorophores, such as boron–dipyrromethene dyes, cyanine
dyes, and their derivatives, are the primary sources for synthesizing current NIR fluo-
rochromes. The Food and Drug Administration (FDA) approved ICG as an NIR dye for
clinical use. ICG is a nontoxic agent and can be rapidly excreted from the human body,
making a suitable tool for use in image-guided surgery. ICG is a water-soluble tricar-
bocyanin dye that rapidly binds to plasma proteins and is subsequently drained by the
lymphatic system; it emits fluorescence at a wavelength of about 820 nm and it can be
viewed by several devices. Current laparoscopic columns and some mini-invasive robotic
platforms are equipped with a fluorescence visualization system during surgery. Specif-
ically, the Da Vinci Xi robotic system has developed an innovative imaging technology
for ICG visualization, featuring a laser source integrated into the robotic camera (Firefly),
where surgeons can switch between white light, NIR light, and a composite vision [21]. The
integration of NIR technology during gastrectomy procedures has shown promising results
in improving tumor localization and surgical outcomes for GC patients, with a feasible and
simple ICG administration to patients [22]. Studies have highlighted the significance of
accurate tumor localization for establishing appropriate resection lines, impacting organ
function preservation and curability, aiding in determining the resection line and ensuring
negative margins, clearly visualizing lymph nodes, ultimately enhancing postoperative
quality of life (Figure 1) [23–28].
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Figure 1. Lymph nodes identification in FireFly FI mode during Da Vinci gastrectomy using ICG.
(A) White light view of gastric lymph nodes removal. (B) NIR view of the lymph nodes. A laser
light source is used to excite the fluorophore at wavelengths around 800 nm, and the emitted light is
captured by the image sensors on the endoscope.

Additionally, the use of NIR/ICG technology during gastrectomy for advanced gastric
cancer (AGC) is being investigated in the iGreenGO study, aiming to evaluate its impact
on surgical conduct and lymphadenectomy outcomes [29]. Moreover, a meta-analysis
demonstrated increased lymph node retrieval, decreased operative time, and comparable
complication rates, highlighting the efficacy and safety of this approach [27,30].

Several clinical trials have been performed and are ongoing to assess intraoperative
fluorescence navigation using NIR/ICG during gastrectomy, which are summarized in
Table 1.

Despite its several advantages, ICG passively accumulates in tumor tissue through
the enhanced permeability and retention effect, but it remains a non-targeted fluorescent
contrast agent. Furthermore, the application of ICG in molecular imaging probes is con-
strained because it loses its fluorescence upon protein binding because of the ICG–proteins
aggregation that suppress the energy transitions required for fluorescence emission [12].
There is a strong need for the development of a targeted fluorescent contrast agent that
can actively accumulate in tumor tissue by recognizing a specific biomarker expressed by
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tumor cells. Such an agent could distinguish the margins between tumors and surrounding
normal tissues and enable the visualization of metastatic lymph nodes during gastrectomy.

Table 1. List of the clinical trials on robotic gastrectomy with the use of ICG. Available at https:
//www.clinicaltrials.gov/.

Clinical Trial Number Name of the Study Status Phase of the Study Type of Study

NCT05229874
Effect of CNSI vs. ICG in Lymph

Node Tracing During
Gastrectomy (FUTURE-01)

Active, not recruiting Phase 2 Interventional

NCT01926743

Identification of Complete
Lymph Node Removal by

Application of Near Infrared
Fluorescence Imaging in

Laparoscopic and Robotic
Gastrectomy

Completed Not Applicable Interventional

NCT04734821 Fluorescence Image Guided
Foregut Surgery (FOREGUT) Recruiting Not Applicable Interventional

NCT04107623
Quantitative Fluorescent Guided

Robotic Surgery for Cancer of
the Gastroesophageal Junction

Completed Not Applicable Interventional

NCT03931044
Fluorescence Image-Guided

Lymphadenectomy in Robotic
Gastrectomy (IG-MIG)

Unknown Not Applicable Interventional

NCT03396354

Prospective Comparison of
Surgical Outcomes with Using
Integrated Robotic Technology

Versus Conventional
Laparoscopy for Gastric Cancer

Surgery

Unknown Not Applicable Interventional

NCT04943484

ICG (Indocyanine Green)
Imaging Fluorescence
Technology in Surgical

Treatment of Advanced Gastric
Cancer (iGreenGO)

Recruiting Not Applicable Observational

NCT04352894
Intraoperative ICG Fluorescence

Imaging for Peritoneal
Carcinomatosis Detection

Unknown Not Applicable Interventional

NCT05685862

Laser Speckle Contrast Imaging,
Surgical Eye & ICG Fluorescence

Imaging for Perfusion
Assessment of the Gastric

Conduit (CONDOR-I)

Recruiting Not Applicable Observational

NCT05369117

Application of Indocyanine
Green Labeled Fluorescent

Laparoscopy in Proximal Gastric
Cancer

Not yet recruiting Not Applicable Interventional

NCT05687617

Near-infrared Imaging with
Indocyanine Green for Detection

of Peritoneal Metastases for
Gastric Adenocarcinoma.

Terminated Phase 2 Interventional

NCT04056260 ICG-NIR Guided Lymph Node
Dissection in Gastric Cancer Unknown Not Applicable Interventional

https://www.clinicaltrials.gov/
https://www.clinicaltrials.gov/
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Table 1. Cont.

Clinical Trial Number Name of the Study Status Phase of the Study Type of Study

NCT05618821

Clinical Outcomes of
Indocyanine Green Tracer Using

in Laparoscopic Gastrectomy
with Lymph Node Dissection for

Remnant Gastric Cancer

Recruiting Phase 2 Interventional

NCT01441310
Laparoscopic Sentinel Node

Navigation Surgery for Gastric
Cancer (SNNS)

Completed Phase 2 Interventional

NCT04352894
Intraoperative ICG Fluorescence

Imaging for Peritoneal
Carcinomatosis Detection

Unknown Not Applicable Interventional

NCT05720598

Staging LaParoscopy to Assess
Lymph NOde InvoLvement in

Advanced GAstric Cancer
(POLA)

Recruiting Not Applicable Interventional

NCT04591028

A Study to Evaluate Indocyanine
Green Lymphangiography to

Improve Lymphadenectomy in
Gastric Cancer Patients

Withdrawn Phase 4 Interventional

NCT04593615

Indocyanine Green Tracer Using
in Laparoscopic Radical
Gastrectomy for Locally

Advanced Gastric Cancer
(CLASS-11)

Active, not recruiting Not Applicable Interventional

NCT04973475

Indocyanine Green Tracer Using
in Laparoscopic Distal

Gastrectomy for Early Gastric
Cancer

Not yet recruiting Phase 2 Interventional

NCT04611997

IGG Using in Laparoscopic
Gastrectomy for Locally

Advanced Gastric Cancer After
Neoadjuvant Chemotherapy

Active, not recruiting Phase 3 Interventional

NCT03050879

Indocyanine Green Tracer Using
in Laparoscopic Gastrectomy
with Lymph Node Dissection

(ICGTinLG) [31]

Completed Phase 2 Interventional

NCT06421220

Evaluation of the Efficacy and
Safety of Indocyanine Green

Tracing in 3D Fluorescent
Laparoscopic Lymph Node

Dissection for Gastric Cancer

Not yet recruiting Not Applicable Interventional

4. Probes Targeting Gastric Cancer Surface Markers

Current studies on GC lymph node dissection using NIR revealed that surgical naviga-
tion with non-tumor-specific fluorescence can increase the total number of detected lymph
nodes and ensure completion of dissection but does not improve accuracy. Achieving accu-
rate lymph node dissection for GC depends on tumor-specific tracking of positive lymph
nodes. Although tumor-specific tracers are developing rapidly and related clinical studies
are emerging, there are still few specific reports on lymph node metastasis, indicating that
lymph node tracking remains a difficult problem to solve [32].

Combining molecular probes with specific tumor biomarkers allows the probes to
finely target cancer cells. This targeting strategy in molecular imaging can greatly enhance
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the accuracy and sensitivity of image-guided surgery. This approach involves conjugating
molecular probes with cancer-targeting ligands, such as small molecules, peptides, proteins,
antibodies, and aptamers [33–35].

The first use in humans of tumor-specific intraoperative FI for real-time surgical
visualization of cancer was performed in ovarian cancer by targeting the folate-α receptor,
which is overexpressed in 90–95% of epithelial ovarian cancers [36]. Moreover, Cao and
colleagues developed a new peptide that can specifically target human epidermal growth
factor receptor 2 (HER2) conjugated to the NIR-ICG to obtain a probe with high and
fast binding affinity and no observable toxicity to cells and tissues. Tumor resection was
successfully performed under the guidance of the novel molecule in the subcutaneous
SKOV3 mice model [37].

Regarding HER2 as a GC biomarker, Trastuzumab conjugated with IRDye800CW
demonstrated high affinity for HER2, allowing for clear visualization of HER2-positive
tumors in animal models: the fluorescence signal peaked at 24 h post-injection, enabling
the effective differentiation of tumors from surrounding tissues during surgery [38].

Previous basic research suggested that integrins play a crucial molecular role in GC
lymph node metastasis [39]. In particular, the integrin alpha(α)v beta(β)3 receptor is fre-
quently implicated in the progression of malignant tumors and is associated with cancer
angiogenesis and metastasis [40]. The αvβ3 receptor is abundantly expressed in prolifer-
ating tumor cells and activated endothelial cells, but it is expressed at very low levels in
healthy endothelial cells, quiescent vascular cells, and other cells, making it a suitable target
for tracers or anticancer agents [41,42]. The Arg-Gly-Asp (RGD) sequence binds to the
integrin αvβ3 with high affinity and strong selectivity; hence, these polypeptides can mark
lesions and angiogenesis for tumor detection, showing great potential for tumor diagnosis
and treatment. Radiolabeled RGD peptides and their analogs, especially 99mTc3PRGD2
molecule, have been extensively studied for use in the non-invasive imaging of integrin
αvβ3 receptor expression in diverse cancer types including lung cancer [43], breast can-
cer [44], and esophageal cancer [45,46], and provided effective lymph node imaging in
those cancers, and the derivative 99mTc-oncoFAPI PET-CT showed promising results for
lymph node imaging in GC [47].

Therefore, a very recent clinical trial aims to explore the potential application of
99mTc3PRGD2 and other probes in the molecular imaging of GC, guiding lymph node dis-
section and tracing, and accumulating preliminary clinical data to develop corresponding
fluorescent probes for intraoperative tracing (NCT06435741). Cheng and colleagues inves-
tigated peritoneal carcinomatosis from GC in a mouse model by using a self-developed
surgical navigation system combining optical molecular imaging with an RGD-ICG probe,
achieving a sensitivity and specificity of up to 93.93% and 100%, respectively, with a
diagnostic index (DI) of 193.93% and diagnostic accuracy rate of 93.93% [48].

Zheng and colleagues highlighted the efficacy of FITC-conjugated cyclic RGD pep-
tides, specifically FITC-Galacto-RGD2 and FITC-3P-RGD2, to stain integrin αvβ3/αvβ5
in human carcinoma tissues, including GC, showing a strong correlation between the
fluorescent intensity and the integrin expression levels [49]. Indeed, the study found that
GC tissues exhibited minimal staining when using FITC-Galacto-RGD2, due to the low ex-
pression levels of integrin αvβ3/αvβ5 in these tissues, indicating that the fluorescent probe
may not be effective for all types of cancer, mainly those with lower integrin expression
(Figure 2) [49].

The human carcinoembryonic antigen (CEA), also known as CEACAM5, is an at-
tractive target due to its well-defined nature as a tumor antigen. It is minimally present
during human embryonic development, absent in normal adult tissues, and highly ex-
pressed in various solid gastrointestinal cancers. Several groups have developed chimeric
antibodies conjugated with fluorescent agents in order to target human pancreatic cancer
in orthotopic xenograft mouse models [50–53], as well as colorectal cancer in mice mod-
els and patients [54–57]. Regarding GC, although many biomarkers have been reported,
CEACAM5 is the most frequently used in clinical practice and shows promising potential
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for the development of possible fluorescent molecules against this target [58–62]. The
SGM-101 anti-CEACAM5 antibody was conjugated to a near-infrared (NIR) fluorophore to
facilitate CEA-targeted fluorescence image-guided surgery at an absorbance band centered
at 705 nm [63]. The molecule achieved tumor area accumulation in the GC xenograft mouse
model with SGM-101, suggesting that tumor-specific NIR imaging may be a feasible tool for
image-guided surgery [64]. A promising clinical trial using SGM-101 is ongoing on patients
with peritoneal carcinomatosis from CEA-overexpressing digestive cancer (FLUOCAR-1,
NCT02784028). SGM-101 was also assessed in humans for intraoperative detection of CRC:
in a pilot study (NCT02973672), 38 patients with CRC were administered the molecule, and
the authors observed a good tolerability, safety, and efficacy of the drug [65]. Recently, Cox
and colleagues evaluated the ability of a humanized anti-CEA antibody (M5A) previously
developed by Yazaki [66] and then conjugated it with an 800 nm NIR dye to target GC in
orthotopic mouse models, achieving a high tumor-to-background ratio [67,68]. Yazaki et al.
developed a prototype anti-CEA-swPEG-IR800 conjugate with improved blood circulation
half-life and tumor sensitivity, enhancing optical imaging for intraoperative visualization
of CEA-expressing GI cancers [69]. In a very recent work, two patient-derived GC lines
were developed from surgical samples of two patients undergoing gastrectomy for adeno-
carcinoma. Tumor fragments obtained from these samples were implanted into the mice
stomach to create patient-derived orthotopic xenograft (PDOX) models [70].This approach
seems promising as a clinical tool for detecting the extent of the disease to determine
resectability and for visualizing tumor margins during GC resection.
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EpCAM (epithelial cell adhesion molecule) has also emerged as a promising target
for epithelial-derived tumors, due to their EpCAM overexpression, exploiting it for NIR
fluorescence-guided surgery, improving the precision of tumor resections in various types
of cancer. The anti-EpCAM monoclonal antibody conjugated with IRDye800CW effectively
delineate tumors in colorectal, breast, and head and neck cancers, allowing for the detec-
tion of millimeter-sized nodules invisible to the naked eye [71]. Houvast and colleagues
recently designed two ankyrin repeat proteins (DARPins) targeting EpCAM that have
been validated for their ability to provide clear tumor delineation in preclinical models,
indicating their potential for pan-carcinoma visualization [72]. The study, primarily ex-
amining colon cancer, established that a dosage of 6 nmol and an imaging time point of
24 h post-injection were optimal for both the two DARPins, and it found a good tumor-to-
background ratio [72]. In addition, the anti-EpCAM antibody fragment, EpCAM-F800, has
shown high specificity and rapid accumulation in CRC and breast cancer [73]. Although
the potential use of EpCAM as a multi-tumor target is promising, including epithelial-
derived GC, challenges remain in optimizing the specificity and safety of these agents for
clinical applications.

Likewise, ICAM1 (Intercellular Adhesion Molecule 1) is a transmembrane glycopro-
tein that plays a crucial role in immune responses and cellular signaling, facilitating the
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adhesion of leukocytes to endothelial cells during the inflammatory response [74]. Under
physiological conditions, ICAM-1 is expressed at low levels on the surface of endothelial
cells, epithelial cells, and some immune cells, and in inflammatory diseases, such as can-
cer, it is overexpressed, revealing to be a potential biomarker for early GC diagnosis and
prognosis, suggesting its role in precision surgery for the patients [75]. It was found that
49% of the patients showed ICAM-1 expression through immunohistochemical staining.
The rate of ICAM-1 expression was higher in advanced stages of cancer, especially in cases
with lymph node metastasis and liver metastasis [76]. Indeed, Wang et al. designed a novel
antibody–drug conjugate (ADC) targeting chromosomally unstable GC (CINGC) using
ICAM1 as a molecular target, offering a potential therapeutic approach for this aggressive
subtype of GC [77].

Olfactomedin 4 (OLFM4), an antiapoptotic factor glycoprotein that facilitates cell
adhesion, has been shown to be upregulated in various types of cancer and involved in
many cellular processes such as cell adhesion, apoptosis, and cell proliferation [78]. In GC,
the clinicopathological relevance of OLFM4 expression has been reported to be involved not
only in early stages of GC but also as a useful prognostic marker for advanced GC, which
is encouraging for further studies exploring OLFM4 as a potential target for GC therapy
or tracking [79]. OLFM4 is also linked to lymph node metastasis in GC patients, and
its depletion inhibits GC cell tumorigenicity in vitro and in vivo by enhancing caspase-3-
dependent apoptosis [80–82]. Due to its role in GC progression and prognosis, OLFM4 can
be a potential biomarker for precision surgery, aligning with the era of precision medicine
advancements [83].

Claudin 18.2 (CLDN18.2), member of a family of proteins which are the most relevant
components of the tight junctions, has also been identified as a potential target for precision
surgery in AGC. A molecular imaging strategy using an antibody specific for CLDN18.2,
5C9 has been investigated to detect specific lesions and guide surgery [84]. This strategy
involves the synthesis of imaging probes such as 124I-5C9 and Cy5.5-5C9, which have
demonstrated specificity for CLDN18.2 in cellular experiments and have been used in
immuno-PET and FI for tumor delineation and visualization. In addition, an NIR-II
fluorescent probe, FD1080-5C9, was designed to facilitate the complete surgical removal of
CLDN18.2-positive lesions, demonstrating the potential for precise surgical guidance in
AGC and other tumors [84].

Among others, aberrant glycosylation of proteins and lipids is considered a hallmark
of cancer [85,86]. During oncogenesis, immature mucin-type O-glycans and fucosylated gly-
can antigens, such as sialyl-Lewisa (sLea/CA19.9), are overexpressed on the cell membrane
of tumor cells, providing opportunities for molecular imaging. Houvast and colleagues
demonstrated the efficacy of real-time glycan-based imaging of gastrointestinal tumors us-
ing the CH88.2 antibody conjugated to the NIR fluorophore IRDye800CW. Specific binding
of the antibody was confirmed on human gastrointestinal tissues and various gastrointesti-
nal cell lines. The tracer specificity was further validated in vivo using subcutaneous mouse
models of gastrointestinal tumors. By combining a chimeric antibody with clinical-grade
NIR imaging systems, this approach could facilitate rapid clinical translation, not only
for this tracer but also for the broader concept of cancer imaging using glycan-targeted
tracers [87].

The epithelial-to-mesenchymal transition (EMT) is widely acknowledged as a key
pathway through which cancer cells acquire metastatic potential and is strongly associated
with poor patient survival [88,89]. While EMT plays a critical role in fetal development, its
occurrence in cancer cells is an early indicator of metastasis. Research has shown that the
cell surface protein CD146 serves as a distinct marker for EMT activation in cancer cells [90].
Owing to its varying expression in metastases and advanced primary tumors, along with
its minimal presence in normal tissue, CD146 has gained significant attention as a potential
target for early cancer diagnosis, prognosis, and treatment. Wang and colleagues developed
a new fluorescent antibody anti-CD146 and conjugated it to a superparamagnetic iron
oxide nanoparticle (SPION) and to an NIR fluorescent agent. The authors injected the
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molecule through the tail vein of mice to target the xenograft model of MKN45 GC cells,
demonstrating that the tumor could be clearly visualized as early as 30 min after injection.
Peak tumor uptake was quantified 24 h after injection [91].

Since cholecystokinin 2 receptor (CCK2R) is overexpressed in lung, colon, thyroid, pan-
creatic, and GC, but is largely absent in most non-tumor tissues [92], Wayua and colleagues
developed an NIR ligand that targets CCK2R-positive tumors. The authors performed
the synthesis and biological evaluation of LS-288, a CCK2R-targeted NIR conjugate. The
results documented that CRL-LS288 selectively bound to CCK2R-positive tumor cells with
high affinity and preferentially localized to CCK2R-expressing HEK293 murine tumor
xenografts, also revealing the presence of distant tumor metastases [93]. These findings
suggest the application of image-guided surgery in GC tumors.

Recently, the combination of NIR FI and magnetic resonance imaging (MRI) has been
successfully applied for precise and efficient in vivo tumor monitoring [94,95]. Therefore,
Yang and colleagues developed hollow nanocomposites for dual-modal MRI/FLI imaging
to improve imaging accuracy for both GC in situ and metastases. The nanocomposites were
then amino-modified and cross-linked with Cy7.5 and with folic acid. The study results
demonstrated that the nanocomposite possessed strong targeting abilities and showed
excellent biosafety both in vitro and in vivo. In an orthotopic metastatic GC model using
nude mice, the authors successfully achieved precise monitoring of primary and metastatic
tumors through MRI and FI guided by bioluminescence imaging for tumor localization [96].
Table 2 synthesizes the information described in this paragraph for each probe.

Overall, this targeting approach paves the way for potential applications in patients
for better, more radical cytoreductive surgery. Further research is essential to refine these
approaches and validate their efficacy in different patient populations.
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Table 2. Summary of the parameters highlighting fluorescence properties, performance metrics, working mechanisms, and influencing factors for probe effectiveness.

Probe/Target Fluorescence Properties Performance Working Principles Factors Affecting Sensitivity/Specificity

Folate-α Receptor
Targeting

Excitation: ~700 nm Emission:
~800 nm High affinity for ovarian cancers Conjugation with NIR dye for targeting folate-α

receptor overexpressed in ovarian cancer.
High receptor expression enhances specificity; low

expression in some tumors reduces sensitivity.

HER2 Targeting
(Trastuzumab +
IRDye800CW)

Excitation: ~774 nm Emission:
~789 nm

Peak signal at 24 h post-injection; specific
tumor visualization

Antibody conjugation targeting HER2 for
enhanced visualization during surgery.

HER2 overexpression improves sensitivity; variable
expression across tumors affects performance.

Integrin αvβ3 Targeting
(RGD Peptides)

Excitation: ~800 nm Emission:
~820 nm Sensitivity: 93.93%; Specificity: 100%

Binds integrin αvβ3 overexpressed in tumor
angiogenesis and metastasis; enables molecular

imaging and surgery.

Low integrin expression decreases sensitivity;
specificity maintained by low expression in healthy

tissues.

CEACAM5 Targeting
(SGM-101)

Excitation: ~705 nm Emission:
~720 nm Strong tumor accumulation; good tolerability

NIR-labeled antibody targets CEACAM5,
overexpressed in gastrointestinal cancers, for

real-time surgical guidance.

CEACAM5 overexpression improves detection;
heterogeneous expression impacts specificity.

EpCAM Targeting
(IR-Dye800CW)

Excitation: ~774 nm Emission:
~789 nm

Clear tumor delineation; mm-sized nodules
detectable

Antibody/DARPins conjugated to NIR dyes target
EpCAM for precise imaging in epithelial-derived

tumors.

Tumor overexpression of EpCAM increases
sensitivity; systemic overexpression may

reduce specificity.

ICAM1 Targeting Excitation: ~700–800 nm
Emission: ~800–850 nm High expression in metastatic GC cases

Antibody–drug conjugates (ADCs) targeting
ICAM1 in advanced GC for therapeutic and

imaging purposes.

High ICAM1 expression in advanced cases
enhances specificity; low expression in early GC

limits sensitivity.

OLFM4 Targeting Excitation: ~700 nm Emission:
~800 nm

Promising prognostic marker; lymph node
metastasis tracking

Targets OLFM4 glycoprotein involved in cell
adhesion and apoptosis, associated with

GC progression.

Overexpression in advanced GC improves
sensitivity; low expression in early stages reduces

utility.

CLDN18.2 Targeting Excitation: ~650 nm Emission:
~670 nm Demonstrates tumor specificity in imaging

Antibody-based NIR imaging (e.g., Cy5.5-5C9)
enables precise lesion delineation in gastric

adenocarcinoma (AGC).

Specific CLDN18.2 expression increases accuracy;
reduced signal in negative tissues limits sensitivity.

Aberrant Glycosylation
Targeting

Excitation: ~800 nm Emission:
~820 nm

Effective lymph node imaging; high tracer
specificity

CH88.2 antibody targets glycan-based markers for
real-time imaging of gastrointestinal tumors.

Overexpression of glycan markers enhances
sensitivity; variability across cancer subtypes may

limit application.

CD146 Targeting Excitation: ~700 nm Emission:
~800 nm

High tumor–background ratio;
early visualization

Antibody conjugated with NIR and nanoparticles
targets EMT marker CD146, linked to GC

metastases.

High CD146 expression in metastatic cells increases
sensitivity; variability impacts specificity.

CCK2R Targeting Excitation: ~700 nm Emission:
~800 nm High affinity for CCK2R-positive tumors NIR ligand selectively binds CCK2R,

overexpressed in various cancers, including GC.

High receptor density improves detection; limited
receptor presence in some tumors reduces

sensitivity.

Dual-Modal Imaging
(MRI + FI)

Excitation: ~750–800 nm
Emission: ~820 nm

Improved localization of primary/metastatic
tumors

Nanocomposites with Cy7.5 and folic acid provide
MRI and NIR imaging capabilities for precise

tumor tracking.

Strong targeting enhances specificity; non-specific
uptake in normal tissues may reduce

signal-to-noise ratio.
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5. Probes Targeting Tumor Microenvironment Biomarkers of Gastric Cancer

As is well known, any type of tumor is strongly characterized by its own microenvi-
ronment that shapes its characteristics and aggressiveness, supporting proliferation and
invasion into surrounding tissues [97–99]. For this reason, in addition to probes that bind
tumor biomarkers, there are many studies demonstrating the efficacy of probes that target
specific features of the tumor microenvironment, such as neo-angiogenesis capacity or
metalloprotease production.

Tumor blood vessels carry specific markers that are usually related to angiogenesis.
Some markers were found to be expressed only in tumor-activated endothelial cells, making
them suitable targets for tumor-tracing [100].

GEBP11 is a peptide that specifically binds to the tumor vasculature of human GC.
In vivo tracking experiments have shown that the GEBP11 isotope probe effectively targets
GC tissue with a specific distribution, suggesting its potential for clinical applications [101].
This innovative probe had relevant potential applications in GC diagnosis, vascular target-
ing therapy, and evaluation of therapeutic effects, indicating its classification in biomedical
technology and cancer treatment [101]. In addition, the development of an NIR dye-labeled
GEBP11 dimer peptide targeted to the tumor vasculature holds promise for image-guided
surgery in GC. Moreover, the GEBP11 peptide was successfully conjugated with Cy5.5,
enhancing tumor-specific binding and detection capabilities [102]. Furthermore, the use
of the GEBP11 peptide in a dual-modality imaging probe allowed visualization of tumor
angiogenesis in GC models, highlighting its potential for in vivo imaging guidance during
surgery, holding great promise for improving the accuracy and efficacy of image-guided
surgery in GC [103]. About GEBP11 and GC imaging, a new magnetic resonance and
fluorescence (MR/Fluo) dual-modality imaging probe is developed by covalently cou-
pling 2,3-dimercaptosuccinnic acid-coated paramagnetic nanoparticles (DMSA-MNPs) and
Cy5.5 to the GEBP11 peptide, showing good imaging properties, high stability, and low
cytotoxicity [104].

Bevacizumab-IRDye800CW is emerging as a promising tool to improve tumor de-
tection in CRC via fluorescence-guided surgery. This approach leverages the targeting of
vascular endothelial growth factor α (VEGFα), which is frequently overexpressed in tumors,
allowing for improved visualization during surgical procedures. Studies suggest that this
fluorescent tracer can significantly improve the tumor-to-background ratio, enhancing the
surgeon’s ability to distinguish between cancerous and healthy tissues, not only in CRC
but also in breast cancer, showing to be a promising candidate for GC as well [105–107].

Ogawa and colleagues examined whether matrix metalloprotease-14 (MMP-14) was
a candidate enzyme in FI for the diagnosis of peritoneal metastasis in GC [108]. MMP-14
showed significantly higher expression in cancerous tissues compared to normal tissues,
and its protease activity can be exploited to convert the fluorescent probe BODIPY-MMP
into its active form. This specificity enhanced the effectiveness of intraoperative FI, assisting
surgeons in precisely identifying metastatic sites [108].

In addition to MMPs, other proteases can be used as probes activators, such as cysteine
cathepsins, members of the papain-like cysteine protease family. The 6QC-ICG probe is a
fluorescently quenched substrate that is activated in the presence of cysteine cathepsins,
which are particularly abundant in tumors. The probe is initially non-fluorescent due
to the quenching mechanism. When the probe encounters the proteases, they cleave the
substrate at specific amide bonds, releasing a fragment that contains the fluorescent reporter
(ICG) [109].

Fibroblast activation protein-alpha (FAPα) plays a crucial role in most solid cancer
types, including GC. FAPα is overexpressed by cancer-associated fibroblasts (CAFs), which
are a major component of the tumor stroma and have been reported to exhibit increased
glycolysis. This metabolic shift enables CAFs to produce high-energy nutrients, such as
lactate, pyruvate, and other metabolites, which are then transferred to malignant cells.
These nutrients support the energetic and biosynthetic needs of cancer cells, facilitating their
growth, proliferation, and survival [110–112]. Recent advancements in imaging techniques
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leaded to the development of an FAP-targeted NIR fluorescent dye FTL-S-S0456, which
provide high specificity and sensitivity for detecting solid tumors, including GC with high
specificity and affinity, producing high-contrast, long-lasting images of malignant lesions
with little or no retention in healthy tissue [113].

Fibronectin (FN) levels are significantly elevated in CAFs compared to normal fibrob-
lasts, making it a prime target for imaging agents [114,115]. The development of dual-modal
MR/NIRF imaging contrast agents targeting FN represents a significant advance in the
non-invasive diagnosis of GC and peritoneal metastases [114]. Moreover, the dual-modal
agents like CREKA-Cy7-(Gd-DOTA) and FeGdNP-ICG/GOx-RGD2-mPEG demonstrated
high specificity and sensitivity in detecting GC and peritoneal metastasis [116]. These
agents exploit the fibronectin upregulation in CAFs, enhancing imaging capabilities and
potentially improving clinical outcomes.

A recent study identified multiple biomarkers and created a fluorescent nanoma-
chine for the combined diagnosis of GC, offering a novel design for a functionalized
DNA nanomachine and a practical approach to translating serum biomarkers into clinical
diagnostic tools. In detail, miR-5585-5p and PLS3 mRNA were identified through next-
generation sequencing and RT-qPCR as biomarkers, enabling highly sensitive and specific
early gastric cancer (EGC) screening [117].

Very recently, a nanocomposite fluorescence probe, ICG@MSNs-PEG-Ab, has been
developed by coupling an anti-PD-L1 antibody to mesoporous silica nanoparticles (MSNs)
loaded with ICG and coated with polyethylene glycol (PEG) for breast cancer. Hopefully,
this kind of probe could also be applied to GC in the future. This nanocomposite probe
exhibited first-rate biocompatibility, emitting stable fluorescence in the NIR-II spectrum,
with enhanced resistance to photodegradation [118].

Quantum dots (QDs), a subtype of nanoparticles, possess properties that make them
suitable as NIR fluorescent probes, offering an alternative to organic dyes. Typically
composed of inorganic semiconducting materials, they are generally less than 50 nm in
size and exhibit high photostability for prolonged imaging, an easier multicolor imaging,
and exceptional brightness for detecting receptor-level concentrations [119–121]. In the
NIR range, QDs outperform organic dyes in photoluminescence quantum yields (PLQYs),
reaching up to 45% in aqueous media. Their longer lifetimes in the excited state allow
delayed microscopy, reducing cellular autofluorescence. In addition, their high surface
area/volume ratio facilitates efficient functionalization, allowing multimodal probes for
imaging at different tissue depths. NIR QDs, in particular, offer advantages such as
small size (down to 30 nm), biocompatibility, and high photostability, making them often
superior to conventional dyes. Together with their ability to carry targeting motifs and
therapeutic agents, QDs hold great promise for the advancement of preclinical biomedical
therapeutics and imaging [122,123]. Leveraging these properties of QDs, a fluorescent
probe was designed to specifically label GC cells in vitro. Primary QDs were conjugated
with the tumor-associated glycoprotein 72 (TAG-72) monoclonal antibody CC49, resulting
in CC49-QDs probe, which is capable of targeting tumor cells with high specificity. After
evaluating the diameter and emission spectrum of the CC49-QDs, they were successfully
applied in immunofluorescence analysis [124,125]. Moreover, NIR QD probes able to detect
simultaneously biomarkers such as cytokeratin 20 (CK20) and proliferating cell nuclear
antigen (PCNA) in GC tissues were synthesized, revealing stronger immunostaining ability
compared to visible QDs [125,126]. Recently, Zhang and colleagues developed a probe
leveraging perovskite quantum dots (PQDs) and peptide ligands. Using CsPbBr3 PQDs
modified with azithromycin (AZI) and a specific polypeptide ligand targeting CD44v6, a
gastric cancer biomarker, they created the AZI-PQDs probe. This perovskite-based probe is
capable of specifically identifying gastric cancer tumors [127] (Table 3).
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Table 3. Summary of the fluorescence properties, sensitivity/specificity, working principles, and factors influencing probe performance in GC microenviron-
ment imaging.

Probe/Target Fluorescence Properties Performance Working Principles Factors Affecting Sensitivity/Specificity

GEBP11-Cy5.5 Excitation: ~650 nm
Emission: ~670 nm

High tumor-specific binding
, clinical potential in image-guided surgery

Targets tumor vasculature, binds to tumor-specific
markers on endothelial cells.

Tumor-specific vasculature expression
enhances performance. Non-specific binding

or systemic degradation reduces effectiveness.

Bevacizumab-IRDye800CW Excitation: ~774 nm
Emission: ~794 nm

Improved tumor-to-background ratio,
enhanced visibility in surgery

Binds VEGFα, overexpressed in tumors, enabling
fluorescence-guided surgery.

VEGFα expression level in tumor
microenvironment affects targeting. Systemic

uptake decreases specificity.

BODIPY-MMP Excitation: ~500–520 nm
Emission: ~520–540 nm

High specificity in detecting metastatic
GC tissues

Activated by MMP-14 protease activity, leading
to fluorescence.

High MMP-14 levels improve detection. Low
enzyme activity in certain tumor regions

reduces effectiveness.

6QC-ICG Excitation: ~780 nm
Emission: ~805 nm

Effective in detecting cysteine cathepsins in
tumor environment

Activated by cysteine cathepsins,
releasing fluorescent ICG reporter.

High cathepsin levels increase sensitivity.
Overlapping fluorescence signals or
enzyme-independent activation may

reduce specificity.

FTL-S-S0456 Excitation: ~700 nm
Emission: ~750 nm

High specificity and sensitivity for solid
tumors, long-lasting imaging

Targets FAPα on cancer-associated fibroblasts in
tumor stroma.

Overexpression of FAPα enhances
performance. Limited FAPα expression in

some tumors reduces effectiveness.

CREKA-Cy7-(Gd-DOTA) Excitation: ~720 nm
Emission: ~740 nm

High sensitivity and specificity in detecting
fibronectin in GC

Targets fibronectin in CAFs; dual-modal
MR/NIRF imaging.

Elevated fibronectin levels improve detection.
Poor probe stability or retention in non-target

tissues reduces performance.

CC49-QDs
Excitation: ~450–500 nm

Emission: ~650–800 nm (NIR
range)

Highly specific labeling of tumor cells Conjugates QDs with anti-TAG-72 monoclonal
antibodies to target tumor cells.

Tumor-associated glycoprotein 72 (TAG-72)
expression enhances specificity.

Cross-reactivity with other glycoproteins may
reduce accuracy.

AZI-PQDs Excitation: ~450–490 nm
Emission: ~520–550 nm

Specific identification of gastric
cancer tumors

Uses CsPbBr3 PQDs modified with azithromycin
and peptide ligand targeting CD44v6, a

GC biomarker.

Strong CD44v6 expression improves specificity.
Aggregation or degradation of PQDs may

lower sensitivity.

ICG@MSNs-PEG-Ab ICG@MSNs-PEG-Ab High stability and low cytotoxicity, excellent
biocompatibility

Combines mesoporous silica nanoparticles loaded
with ICG, PEG coating, and anti-PD-L1 antibody

for NIR-II imaging.

High expression of PD-L1 enhances targeting.
Photodegradation or systemic inflammation

can decrease specificity.

Dual-Marker QDs
(CK20/PCNA)

Excitation: ~450–500 nm
Emission: ~650–800 nm (NIR

range)

Strong immunostaining ability, higher
performance than visible QDs

Targets cytokeratin 20 (CK20) and proliferating cell
nuclear antigen (PCNA) for simultaneous

biomarker detection.

Dual targeting improves specificity. Poor
functionalization of QDs or overlapping

signals may affect accuracy.
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6. Metabolic GC Tracers

Tumor cells are characterized by increased glucose uptake compared to normal cells,
a phenomenon known as the Warburg effect [128]. As a result, glucose consumption is
significantly elevated in cancer cells. Monitoring cellular glucose consumption is therefore
an effective method to distinguish cancerous from non-cancerous tissues. This approach is
exemplified by the common clinical use of 2-deoxy-2-(18F) fluoro-D-glucose (18F–FDG), a
radiolabeled glucose analog. 18F–FDG is routinely used in positron emission tomography
(PET) to image tumors and their metastases in vivo [129,130].

The new synthesized NIR fluorescent dye-labeled glucose analogs can be used in
cancer cell imaging. The first NIR fluorescent dye-labeled glucose analog was Pyro-2DG,
a derivative of 2-deoxyglucose (2-DG), effective for cancer detection and photodynamic
therapy [131]. Later, Cy5.5-2DG was used for tumor imaging in mice, but its uptake was
not inhibited by D-glucose, raising concerns about its glucose transporter (GLUT) deliv-
ery [132]. IRDye800CW 2-DG showed good cancer cell uptake and was blockable by excess
2-DG or D-glucose, but its negative charge hindered cell membrane permeability [133].
CyNE 2-DG had better cell permeability and higher fluorescence but was not tested in
animal models [134]. Other analogs like Cypate-2DG and ICG-Der-02-2DG showed tumor-
targeting abilities with different clearance rates [135]. A novel NIR dye, DCPO, with
boosted photostability [136], inspired the synthesis of five glucose analogs by Fang and
colleagues, among which the N2 molecule showed potential for sensing glucose uptake
in cancer cells through GLUT-1 glucose transporters, which are overexpressed in a wide
variety of solid tumors. N2 could be used to monitor cellular glucose consumption and,
therefore, could be applied in the bioimaging of cancer cells (Figure 3) [137].
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Zhao and colleagues investigated the tumor-targeting capability of the NIR fluorescent
heptamethine carbocyanine dye, MHI-148, in cultured GC cells as well as in GC cell-
derived and patient-derived tumor xenograft (PDX) models. The results of the study
demonstrated that the dye selectively accumulated in tumor areas in both xenograft models.
The authors demonstrated that hypoxia enhanced the uptake of MHI-148 in GC cells
primarily through the activation of hypoxia inducible factor 1 α (HIF1α), which upregulated
organic-anion-transporting polypeptide (OATP) transporters, leading to increased dye
accumulation in tumor regions [138]. In addition to MHI-148, another cyanine dye, IR-
783, was taken up by cancer cells through the OATP pathway and showed localization
primarily in the mitochondria and lysosomes, suggesting that the dyes may interact with
specific organelles [139]. This mechanism highlights the potential of using hypoxia-targeted
imaging agents in clinical settings.

Another metabolic characteristic of solid tumors is the acid microenvironment, due
to increased metabolic rates, higher glycolysis, and inadequate vasculature [140,141]. The
acidic microenvironment can be exploited to activate specific probes such as ONM-100,
which was designed with an ultra-pH-sensitive amphiphilic polymer that responds to
the low pH levels found in the tumor microenvironment. This sensitivity allowed the
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nanoprobe to remain inactive in neutral or alkaline conditions, but when the pH drops
due to tumor acidosis, the polymer irreversibly dissociated, leading to the release of the
ICG fluorescent dye, revealing a strong fluorescence signal that can be detected during
surgery [142]. A similar mechanism was utilized by another probe that focused on DNA
nanoassemblies that responded to pH changes. The DNA nanoassembly detected GC cells
by recognizing specific biomarkers prevalent in these cells, ensuring stability in normal
tissues while being activated in the acidic tumor microenvironment [143] (Table 4). A
limitation of this approach may be that other inflammatory conditions may also have an
acidic pH, resulting in the activation of the probe outside the tumor site. A schematic
representation of three kind of probes described is summarized in Figure 4.
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Figure 4. Schematic representation of the three types of probes described in the previous sections: in
blue, we show an example of a probe targeting tumor cells. In yellow, we show a probe that targets
the tumor microenvironment, in this case, the blood vessels. Metabolic tracers are represented by a
fluorescent probe internalized by tumor cells.
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Table 4. We cover fluorescence properties, sensitivity, specificity, and factors affecting probe performance in detecting tumor-specific metabolic features such as glucose
uptake and acidic microenvironments.

Probe/Target Fluorescence Properties Performance Working Principles Factors Affecting Sensitivity/Specificity

Pyro-2DG Excitation: ~600 nm
Emission: ~650 nm

Effective for cancer detection and
photodynamic therapy

NIR fluorescent derivative of 2-deoxyglucose;
targets high glucose consumption in tumors.

Strong GLUT expression and Warburg effect
improve performance. Non-specific uptake

reduces specificity.

Cy5.5-2DG Excitation: ~675 nm
Emission: ~694 nm

Moderate uptake in cancer cells, but not
GLUT-specific

Tumor targeting through glucose metabolism, but
non-blockable by excess glucose, raising concerns

about mechanism.

Non-specific uptake reduces specificity. Proper
conjugation enhances targeting.

IRDye800CW 2-DG Excitation: ~774 nm
Emission: ~794 nm

Good cancer cell uptake, blockable by 2-DG
or D-glucose; limited by poor

membrane permeability

NIR fluorescent glucose analog targeting GLUT
transporters; negatively charged dye

limits penetration.

Improved permeability enhances specificity.
Negative charge limits efficiency.

CyNE 2-DG Excitation: ~710 nm
Emission: ~740 nm

High fluorescence; not tested in
animal models

NIR glucose analog with better membrane
permeability for cancer imaging.

Increased permeability and proper GLUT targeting
improve sensitivity. Lack of in vivo validation may

limit confidence in specificity.

Cypate-2DG Excitation: ~785 nm
Emission: ~810 nm

Tumor-targeting ability with varied
clearance rates

NIR glucose analog exploiting high glucose uptake
in tumors.

Effective clearance and strong GLUT targeting
enhance performance. Poor metabolic stability

reduces specificity.

DCPO-N2 Excitation: ~720 nm
Emission: ~750 nm

Effective for sensing glucose uptake in
cancer cells via GLUT-1 transporters

NIR dye with high photostability; selectively
monitors glucose consumption in tumors.

High GLUT-1 expression improves sensitivity.
Insufficient probe targeting specificity

decreases performance.

MHI-148 Excitation: ~710–740 nm
Emission: ~750–780 nm

Selective tumor accumulation in hypoxic
regions via OATPs; tested in

xenograft models

Heptamethine cyanine dye; hypoxia activates
HIF1α, enhancing OATPs expression and dye

uptake in tumors.

High hypoxia levels and HIF1α activation improve
sensitivity. Reduced hypoxia or insufficient OATP

expression limits specificity.

IR-783 Excitation: ~710 nm
Emission: ~780 nm

Preferential localization in mitochondria and
lysosomes; taken up via OATPs

Cyanine dye targeting cancer cells through OATPs;
localizes in specific organelles like mitochondria

and lysosomes.

Strong OATP expression enhances sensitivity.
Off-target accumulation or improper organelle

targeting decreases specificity.

ONM-100 Excitation: ~800 nm
Emission: ~820 nm

High specificity for acidic
tumor microenvironment

Ultra-pH-sensitive amphiphilic polymer; remains
inactive in neutral/alkaline pH but releases ICG

dye in acidic tumor environments.

Tumor acidosis improves specificity. Variations in
tumor pH or non-specific activation

reduce performance.

DNA Nanoassembly
Probe

Excitation: depends on
specific fluorescent markers

Emission: varies by dye

High specificity and stability in normal
tissues; activated in acidic

tumor environments

DNA nanoassemblies respond to pH changes;
specifically recognizes GC biomarkers and

activates in acidic microenvironments.

Acidic tumor pH and robust biomarker targeting
enhance specificity. Inconsistent activation or

off-target pH sensitivity may reduce performance.
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7. The Intratumor Microbiota as Biomarker

Next-generation sequencing has shed light on the intricate relationship between GC,
microbial profiles, and precision surgery. Studies have revealed distinct genetic alterations
in GC patients of different origins, underscoring the potential of precision medicine to
address oncological disparities [144,145]. The gastric microbiota, especially lactic acid bac-
teria and oral microflora, play a critical role in gastric carcinogenesis by inducing chronic
inflammation and promoting the production of nitroso compounds [146–149]. In addi-
tion, the identification of specific microbial markers, such as Streptococcus, Pseudomonas,
Fusobacterium, Selenomonas, Peptostreptococcus, and Prevotella, has shown promise in
distinguishing GC from non-cancerous patients, offering new avenues for non-invasive
diagnostic approaches and potential therapeutic targets [150,151]. The GC microbiota may
be a signature of cancer development and progression, characterized by distinct micro-
bial profiles identified in different molecular subtypes [144,152]. Research indicates that
Helicobacter pylori and other organisms in the intratumoral microbiome have a significant
impact on GC pathogenesis and progression [144,153]. Studies have shown that GC is
associated with decreased microbial diversity, with a specific enrichment of bacteria such
as Helicobacter, Lactobacillus, Streptococcus, Prevotella, and Bacteroides in tumor samples
compared with nonmalignant tissue [144,153]. Furthermore, the presence of GC is linked
to a specific fungal mycobiomic signature, characterized by altered fungal composition
and ecology, indicating a potential role of the fungal microbiome in the pathogenesis of
GC [154].

Identifying a distinct microbial signature within GC tissue could pave the way for the
development of specialized probes that target specific microbial species associated with
the tumor. These probes could enhance surgery precision by improving the localization
of tumor metastasis, allowing for more accurate identification of cancerous regions. This
approach holds potential to complement existing techniques and increase the overall
effectiveness of fluorescence-guided surgery in GC treatment.

8. Discussion

Intraoperative fluorescence-targeted imaging probes in GC represent a transforma-
tive approach to improve surgical outcomes through tumor visualization and margin
delineation. Current research focuses on the development of probes with high specificity,
stability, and biocompatibility. Among these, NIR fluorophores, peptide-based probes,
and QDs stand out for their excellent optical properties and ability to be conjugated with
tumor-specific ligands such as antibodies or peptides targeting biomarkers.

Regarding the advantages and disadvantages of TME-targeted probes compared to
surface marker-targeted probes, we need to argue some points. TME-targeted probes have
broad applicability; they can identify common features such as hypoxia and angiogenesis,
which are shared by many cancer types, including GC. In addition, these biomarkers
are often distributed throughout the tumor, allowing for better visualization of poorly
accessible regions within the tumor mass, providing insights into tumor physiology and
interactions with surrounding tissues, offering insights into aggressiveness and progression.
These probes have great potential to be effective in heterogeneous tumors; in fact, tumor
microenvironment features tend to be more consistent within a tumor than surface markers,
making them suitable for imaging heterogeneous tumors. On the other hand, TME features
may also be present in inflamed or damaged non-cancerous tissues, reducing the specificity
for GC. In addition, probes targeting TME may fail to distinguish between tumor types, as
many tumors share similar microenvironmental characteristics. For probes targeting surface
markers, a major advantage is high specificity because binding to antigens or receptors is
unique to GC cells, allowing precise tumor identification and delineation, distinguishing
tumor cells from surrounding healthy tissue, decreasing unnecessary removal of non-
cancerous tissue during surgery, and may help identify and resect metastatic lymph nodes
more effectively. On the other hand, these kinds of probes may not reach deeper tumor
regions due to heterogeneity and limited vascular accessibility. Moreover, some GCs exhibit
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low expression of surface markers, reducing probe effectiveness and potentially missing
tumor regions. Additionally, there is the possibility that tumor markers may change
over time due to mutations or treatment, which can reduce probe reliability. An optimal
approach may be to combine both types of probes to obtain comprehensive imaging and
effective treatment planning.

Regarding the toxicity risk of the probes, certain nanoparticles can accumulate within
the body, potentially causing long-term toxicity. Additionally, materials designed to en-
hance biocompatibility may, in rare cases, provoke immune responses or hypersensitivity
reactions. The effects are often dose-dependent, as high concentrations of NIR probes can
overwhelm the body’s elimination processes, resulting in localized or systemic toxicity.
Furthermore, the breakdown of NIR probes could release harmful byproducts, depending
on the chemical stability of their components. Innovations in probe formulation, such
as biodegradable or self-assembling materials, could mitigate toxicity concerns. Finally,
incorporating artificial intelligence and machine learning into image analysis may optimize
real-time intraoperative decision-making.

To address these challenges, comprehensive preclinical studies are urgently needed
to assess the safety of NIR probes, including their pharmacokinetics, biodistribution, and
long-term effects.

9. Conclusions

Despite promising results, the above-mentioned strategies often lack tumor applicabil-
ity due to intratumor heterogeneity and diversity of expressed markers. This challenge is
mostly pronounced when patients receive neoadjuvant treatment prior to surgery. Such
treatment often results in tumors that assume an irregular shape and lose their structural
integrity, complicating the ability of probes to effectively target and penetrate cancerous
tissue. Altered tissue architecture and variable marker expression can hinder the probes’
accuracy and efficacy, making precise tumor localization difficult.

Another limitation of fluorescence-guided precision surgery for GC is that the gastric
acidic pH could affect the effectiveness of the probes in reaching the tumor site. The
harsh acidic environment may degrade or alter the stability and function of the fluorescent
probes, decreasing their ability to target and highlight the cancerous tissue accurately,
thereby compromising the precision of the surgery.

Extensive studies involving large patient populations will be essential to validate the
efficacy of these probes before they can be considered for clinical use. Such research is
crucial to ensure that the probes consistently deliver accurate and reliable results across
diverse patient groups, addressing any variability in tumor characteristics and treatment
responses. Only with comprehensive data and successful validation can these probes be
confidently integrated into clinical practice. Once fully validated, these advancements
could lead to more accurate tumor localization, reduce damage to healthy tissue, and
consequently decrease patient discomfort. Moreover, by enhancing surgical precision,
targeted tracers may also improve long-term outcomes, including faster recovery, shorter
hospital stay, decreased complication rates, a lower likelihood of tumor recurrence, and an
overall better prognosis for GC patients.
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