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Introduction

This thesis deals with Bayesian methods for different high-dimensional applica-
tions and faces the difficult challenges of prediction and variable selection when
the number of covariates is much greater than the number of observations. Chap-
ter 1 aims to explain the usefulness of these methods in a general framework. It
introduces the main controversial topics behind high-dimensional data from both a
statistical and computational point of view and gives an overview of the statistical
methods used throughout this dissertation. The presented methods rely on differ-
ent types of shrinkage priors for sparse models: Chapter 2 discusses a new class of
fast Bayesian spike-and-slab algorithms for continuous outcome, which relies on a
group of efficient updating methods based on the thinQR decomposition; Chapter
3 introduces a novel multivariate shrinkage prior for modelling multiple correlated
networks; Chapter 4 presents a flexible way to include prior information in the
estimation process improving prediction and variable selection. Final discussions
and comments are presented in Chapter 5.

15
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Chapter 1

Analysis of high-dimensional data

In many scientific fields where new data are collected with automated technologies,
the main interest relies on the analysis of datasets with a large number of features.
High-dimensional data are defined as data with a large number of observed vari-
ables, p, and a small number of observations, n. Note that the ratio between n
and p must be small for the data to be high-dimensional, that is, a dataset with
10000 features and 100000 observations is considered as low-dimensional. The rea-
sons behind a small sample size are mainly due to time and budget limitations or
practical restrictions (for example the study of rare diseases involving restricted
populations).

The analysis of high-dimensional data requires the application of non-standard
approaches, as common methods such as linear regression can not be estimated
when n < p. Even when the number of samples is slightly greater than the
number of variables, classical methods incur the so-called curse of dimensionality
(Bellman, 1961) and the quality of their estimates deteriorates. Indeed, in order
for linear regression’s results to be reliable, the needed number of observations
grows exponentially with the dimensionality of the problem (Hastie et al., 2009).

Different statistical and computational problems arise from large amount of
observed variables and a small number of available observations:

• Two practical problems with high-dimensional data are data visualization
and exploration, as it becomes impossible to plot the response variable
against each predictor in order to to identify the factors with a more likely
significant effect on the outcome;

• Few observations are associated to low degree of information. When the
sample size is not large enough, some of the variables are falsely selected, as
the effect on the outcome happens by chance and can not be generalized to
the whole population;

17
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• When the number of covariates increases, the correlations among the predic-
tors are more likely and the interactions with the response variable become
complex and difficult to model. Under these circumstances, classical methods
fail to provide an accurate variable selection procedure;

• The high number of variables makes the exploration of all subsets compu-
tationally infeasible, as the computational time increases exponentially with
the dimensionality (Saeys et al., 2007);

• In large p / small n analysis it is easy to face the problem of overfitting
(Raudys and Jain, 1991), which happens when the model fits (almost) per-
fectly the training data and fails to generalize to the whole population, re-
sulting in poor prediction performances.

A common approach to overcome the statistical problems above is given by penal-
ized regression methods, which are deterministic extensions of the ordinary linear
regression. These models have been widely used due to their ability of dealing
with high correlations among the predictors. They add a constraint on the di-
mension of the regression model and minimize a loss function (usually the residual
sum of squares) which includes one or more penalty parameters, with the goal
of decreasing the collinearity between variable by penalizing the inclusion of a
predictor in the model. The penalty parameter(s) plays a key role by shrinking
the estimates towards zero and reducing the dimensionality of the problem. Such
improvements, however, come with a cost: penalized regressions introduce bias in
the estimates in order to reduce their variance. That is, it is better to be slightly
wrong all the time than to be perfectly correct sometimes and completely wrong
some others. This concept is known as the bias-variance trade-off and usually
the decrease of the variance is greater than the increase of the bias. This way the
estimated model is more generalizable and the prediction outside training data be-
comes more accurate. Some examples of penalized regression are Ridge regression
(Hoerl and Kennard, 1970) and LASSO (Tibshirani, 1996), which minimize the
squared norm of the regression parameters (l2 penalization) and the sum of their
absolute values (l1 penalization), respectively. A compromise between these two
approaches is given by the Elastic-Net regression (Zou and Hastie, 2005), which
attempts to overcome their limitations by combining the l1 and l2 penalizations.
Another common method is the LARS algorithm of Efron et al. (2004).

These methods represent the golden standard techniques, but they are too sim-
plistic and often fail when the dimensionality of the problem is huge. Therefore,
modern developments focus on the extension of such methods. Within the pe-
nalization context, Bayesian inference has become a widely applied tool. As for
penalized regression, Bayesian methods introduce bias in the model in order to
improve the overall performances. On the other hand, they provide a much more
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flexible approach and a natural way to include external information. In Bayesian
statistics the parameters are treated as random variables and the inclusion of
prior knowledge in the model is allowed by assuming a prior distribution. This
approach provides a probabilistic process for the update prior beliefs in light of ob-
served data. When compared to their deterministic counterpart, Bayesian models
present several advantages. Above all, parameters become interpretable and they
are not abstract numbers anymore. Indeed, Bayesian models provide a posterior
distribution for the parameters rather than a point estimate and allow to quantify
the uncertainty in the estimates following the posterior standard deviations. In
penalized regression, the evaluation of the standard deviations, especially for the
penalty parameter, can be troublesome, with unreliable and unstable results in
the case of sandwich and bootstrap estimates (Kyung et al., 2010). The Bayesian
posterior distribution also allows to retrieve credible intervals for each parameter,
providing a useful tool for posterior inference which can be of great interest in
many scientific fields such as biology and genomics. Other advantages concerning
Bayesian estimation methods are: first, when dealing with multiple penalty pa-
rameters, these can be evaluated jointly with the other parameters of interest, thus
avoiding the need of cross-validation procedures; second, most of these methods
rely on Markov Chain Monte Carlo (MCMC) sampling algorithms, which provide
a more flexible tool than optimization when facing non-convex penalties. The
main drawback of Bayesian inference is the computational efficiency, as the imple-
mentation of iterative sampling procedures until convergence negatively affect the
computational performances.

The following section provides a brief introduction to Bayesian inference and
an overview of Bayesian shrinkage methods for the analysis of high-dimensional
data.

1.1 Bayesian inference

As opposed to the frequentist perspective, where the model parameters are con-
sidered fixed quantities to be estimated, Bayesian methods treat the parameters
as random variables and require the specification of a prior distribution alongside
the likelihood function. The parameters of the prior distributions are called hy-
perparameters and their choice guides the amount prior knowledge to be included
in the estimation process. When no prior evidence is available, non-informative
specifications for the prior distributions, such as Uniform distributions, can be
implemented and, therefore, the estimates are guided only by the data. The fi-
nal goal is the analysis of the posterior distribution conditionally on the observed
data, which can be retrieved with Bayes’ theorem, and the parameters are usually
estimated by selecting the posterior mean or mode. The posterior distribution is
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Figure 1.1: Bayes’ theorem with y | θ ∼ N (2, 0.22) and θ ∼ N (3, 1.32).

a combination between the likelihood function and the prior density. When data
are low-dimensional, the choice of the hyperparameters has a small influence on
the final results. However, when dealing with high-dimensional data, the posterior
distribution becomes more sensitive to the specification of the prior. In this case,
selecting a good prior becomes particularly important. Many attempts at select-
ing the best hyperparameters have been made, however there is not a prevalent
approach and is still an open subject of research. Among others, Empirical Bayes
(Casella, 1985) estimates the hyperparameters from the data, whereas modern de-
velopments include external information in the estimation process and model the
hyperparameters as a function of complementary data (co-data; Neuenschwander
et al., 2016; Van Nee et al., 2021).

Let y = [y1, . . . , yn]⊺ be the n-dimensional response vector and θ the (possibly)
multivariate vector of parameters of interest. From Bayes’ rule, the posterior
distribution π (θ | y) can be evaluated as

π (θ | y) =
l (y | θ)π (θ)

p (y)
,

where l (y | θ) is the likelihood function, π (θ) is the prior distribution and p (y)
is the normalizing constant. The prior’s and likelihood’s effect on the posterior
density is shown in Figure 1.1.

Density p (y) usually involves multiple integrals and is unknown. For this
reason, exact posterior inference becomes intractable. One way to overcome this
issue is to assume a conjugate prior, which allows the posterior to follow the
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same distribution as the prior. Well-known distributions are usually implemented
and p (y) is available in closed form, therefore the posterior inference can be easily
achieved. However, this can only be done with the most trivial probabilistic models
and the posterior quantities generally can not be directly inferred, requiring some
form of approximation in most cases.

1.1.1 MCMC methods

Markov Chain Monte Carlo (MCMC) methods represent a class of sampling al-
gorithms for approximating intractable integrals. They combine Markov chain
methodologies to randomly sample from high-dimensional distributions and Monte
Carlo integration. A detailed overview of MCMC methods can be found in Robert
and Casella (2004).

Their main goal is to overcome Monte Carlo problems. Typically, Bayesian
inference aims at estimating a function of the parameters of the form

Eπ(θ|y) [g (θ)] =

∫
Sθ

g (θ) π (θ | y) dθ, (1.1)

which usually does not admit an analytical solution. Monte Carlo integration
draws random values from the target distribution π (θ | y) and approximates the
integral in (1.1) as

Eπ(θ|y) [g (θ)] ≈ 1

B

B∑
b=1

g
(
θ(b)
)
, (1.2)

where B is the number of samples. When B is sufficiently large, estimate (1.2)
provides a consistent, unbiased and asymptotically normal estimator for g (θ).
This method, however, is not suited for high-dimensional problems: it assumes
the independence between the samples drawn from the target distribution and
requires techniques to easily generate these values, which is usually unrealistic
given the high dimensionality of the problem. For these reasons, MCMC methods
rely on Markov chains to randomly generate values from the target density in order
to achieve a Monte Carlo approximation of the required integral. Markov chains
provide a sampling scheme to sample from a distribution when its density is known
up to a normalizing constant. They represent a stochastic process where each value
only depends on the current state and not on the previous ones. More details
about Markov properties are discussed in Meyn and Tweedie (1993) and Robert
and Casella (2004), where the authors establish the results for the convergence of
a Markov chain to its target density.

There exist many MCMC approaches for sampling from a distribution without
directly requiring it. The most applied are the following two methods, which
represent the baseline for modern generalizations introduced in literature:
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• Metropolis-Hasting algorithm (Hastings, 1970): a flexible approach for
constructing a Markov chain is the Metropolis-Hastings algorithm (MH).
Sampling from the target density is achieved by proposing a new state of the
chain at each iteration and evaluating the transition between states with a
MH acceptance probability. Specifically, this method requires the introduc-
tion of a proposal density q (θ → θ′) to sample new values θ′. Let π (θ | y)
be the target density, new state θ′ is sampled from q (θ → θ′) and accepted
with the following probabilistic acceptance criterion;

α = min

{
1,
π (θ′ | y) q (θ′ → θ)

π (θ | y) q (θ → θ′)

}
.

In order for the MH algorithm to converge to the target density, proposal
density q must be able to generate all the values belonging to the support
of π, that is, q (θ → θ′) > 0 for every θ,θ′ ∈ Sπ (Roberts and Smith, 1994).
A good proposal distribution leads to faster convergence of the algorithm.
The tuning of q, however, is not straightforward, as many different choices
can be made and each of them leads to different results. Ideally, a good pro-
posal should provide high acceptance probabilities for the proposed states
and its covariance structure should reflect that of the target density. A main
advantage of MH algorithm is its ability to avoid getting stuck at a local
mode of the target density by occasionally accepting new values with lower
acceptance probability. This method is mainly used when the conditional
distributions of the parameters are not available or are either tricky or inef-
ficient to sample from;

• Gibbs sampler (Geman and Geman, 1984; Casella and George, 1992):
Gibbs sampling provides a sampling approach to construct a Markov chain
by iteratively updating one component θk at a time. Specifically, each com-
ponent is sampled from its full-conditional distribution π

(
θk | θ(−k),y

)
. This

approach can be seen as particular case of the MH algorithm, where the pro-
posal density q is the full-conditional distribution. For this reason, there is
not need of tuning of the proposal density and each new state of the chain
is accepted with probability equal to 1. Contrary to the MH algorithm,
however, Gibbs sampling is more prone to being stuck at local modes and
typically suffers from low convergence rate because of the local updates of
the parameters. This method is mainly applied in a conjugated framework,
where the full-conditionals are known and easy to sample from. More details
on Gibbs sampling and its convergence properties can be found in Casella
and George (1992); Roberts and Polson (1994); Roberts and Smith (1994).
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1.1.2 Variational Bayes approximation

When the number of covariates is huge MCMC sampling methods become com-
putationally infeasible. Variational inference (VI) is a deterministic optimization
approach to approximate the target density π (θ | y) with a variational distribu-
tion q (θ) and considers Bayesian inference as an optimization problem (Salimans
et al., 2015; Lee, 2022). Note that this approach, contrary to MCMC methods
that provide samples from the target distribution, gives mean point estimates of
the quantity of interest. Moreover, the standard deviations are usually underes-
timated (MacKay et al., 2003; Wang and Titterington, 2005; Turner and Sahani,
2011; Giordano et al., 2017), leading to a trickier and less accurate posterior infer-
ence. This lack of accuracy, however, does not necessarily affect the performance
of this methodology (Blei and Jordan, 2006).

The goal is to find q(θ) that minimizes the Kullback-Leibler divergence (KL)
between the target density and the variational distribution. Taking the expectation
with respect to q, the KL divergence is

KL (q∥π) = Eq
[
log

q (θ)

π (θ | y)

]
= Eq [log q (θ)] − Eq [log π (θ | y)]

= Eq [log q (θ)] − Eq [log π (θ,y)] + log p (y) , (1.3)

which depends on p(y), the (usually) unknown marginal distribution of y. The
minimization problem in (1.3) is eventually reduced to the maximization of the
Variational lower bound, which is defined as L = Eq [log π (θ,y)] − Eq [log q (θ)].
Following the non-negativity property of the KL divergence, it yields log p (y) ≥ L.
Thus, minimizing the KL divergence between q and p is equivalent to maximizing
the lower bound L.

A common factorization for q(θ) is the so-called mean-field Variational approx-
imation (Jordan et al., 1999; Beal, 2003), which is a compromise between compu-
tational tractability and accuracy of the performances. The variational family q(θ)
is assumed to be the product of independent marginal variational factors qk (θk),
k = 1, . . . , K, and is defined as

q(θ) =
K∏
k=1

qk (θk) .

The Coordinate Ascent Variational Inference algorithm (CAVI) (Bishop and Nasrabadi,
2006; Blei et al., 2017) is a useful tool for efficiently solving the optimization prob-
lem explained above. Until convergence of the lower bound L, the CAVI algorithm
iteratively updates the parameters of the variational factors qk (θk), k = 1, . . . , K,
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based on prior distributions’ hyperparameters and the current expectations of fac-
tor q−k (θ−k), considered fixed. This way the model is able to account for non-linear
dependencies among the parameters. Formally, the variational factors are updated
as

q⋆ (θk) = argminq KL

(
q (θk) ·

∏
h̸=k

q⋆ (θh) ∥π (θ | y)

)
, (1.4)

where the superscript ⋆ indicates that the corresponding factor has been updated
(Lee, 2022). Under the mean field approximation, where the components are
assumed to be independent, the optimal solution of (1.4) is

q⋆ (θk) ∝ exp
{
Eq−k

[log π (θk | θ−k,y)]
}
.

While the assumption of independence between factors is particularly strict, the
CAVI algorithm provides a flexible approach and ensures the convergence to a local
optimum (Blei et al., 2017). Note that, when working with exponential families
in a conjugated framework, variational factor q(θk) has the same kernel of the
full-conditional distribution π (θk | θ−k,y).

1.2 Bayesian model selection

This thesis deals with Bayesian shrinkage models under two different frameworks:
generalized linear regression and graphical models. In this section, a brief expla-
nation is given of how variable selection with shrinkage priors is achieved under
these circumstances, alongside a short introduction to the most common prior
assumptions.

Generalized Linear Models (GLM). These models represent a generalization
of the linear regression and allow a linear model to be related to the response
variable through a link function. This way, different types of outcomes (continuous,
binary, count data) can be modelled. Let y be the n-dimensional response vector
and X the n × p design matrix. The expected value of y is related to the linear
predictor Xβ, where β is the p-dimensional regression parameter vector, through
an invertible link function h. Shrinkage is applied to vector β element-wise by
decomposing the prior variances in a global scale τ 2 and a local scale λ2j , j =
1, . . . , p. The goal is to find a sparse solution for vector β. The general hypotheses
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of the model are

Yi | xi,β
ind∼ p (Yi | xi,β) ,

EYi|xi,β [Yi] = h−1 (xi
⊺β) , i = 1, . . . , n,

βj | τ 2, λ2j ∼ N
(
0, τ 2λ2j

)
,

λ2j ∼ π
(
λ2j
)
, j = 1, . . . , p,

τ 2 ∼ π
(
τ 2
)
.

When h is the identity function the model reduces to the ordinary linear regression.
Parameter λ2j guides the amount of shrinkage for regression parameter βj: when
λ2j → ∞ then no shrinkage is applied, whereas the coefficient βj is shrunk towards
0 when λ2j → 0.

Graphical Models. Graphical models are a useful tool for network analysis
and their goal is to infer the dependencies between a set of variables. A net-
work (or graph) represents a collection of variables x = [x1, . . . , xp]

⊺ with a set of
vertex V = {1, . . . , p} and it encodes conditional dependencies by a set of edges
E :=

{
(s, k) ∈ E ↔ xs ⊥̸⊥ xk | xV\{s,k}

}
. That is, if pair (s, k) does not belong to E

then xs and xk are conditionally independent with respect to the other variables.
There exist many different types of graphs, however this thesis only focuses on
undirected networks. Graphical models use graph structure to model the depen-
dencies between variables. A common class of graphical models is the so-called
Gaussian Graphical models (GGM; Wang, 2012, 2015; Li et al., 2019), which relies
on the multivariate Gaussian likelihood

xi | Ω ∼ Np

(
0p,Ω

−1
)
, i = 1, . . . , n,

where Ω ≡ {ωsk}(p×p) denotes the p × p inverse covariance matrix, also called
precision matrix. There is a one-to-one correspondence between the zero pattern
in a precision matrix and an undirected graph. This property can be exploited to
learn conditional independencies between variables. Specifically, it can be shown
that under the Gaussian assumption, it yields ωsk = 0 if and only if variables s
and k are conditionally independent with respect to the other variables (Dempster,
1972). Therefore, the goal is the estimation of non-zero entries in Ω under the
assumption of sparseness. Edge selection is performed by assuming a Gaussian
prior distribution for entries ωsk and decomposing their prior variance in a global
scale τ 2 and a local scale λ2sk. Specifically,

ωsk | τ 2, λ2sk ∼ N
(
0, τ 2λ2sk

)
,

λ2sk ∼ π
(
λ2sk
)
, s < k, k = 1, . . . , p,

τ 2 ∼ π
(
τ 2
)
.
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As for the shrinkage in GLM, the local variances λ2sk guide the amount of shrink-
age imposed on edge ωsk. Graphical models estimation is computationally hard,
as the number of parameters to be estimated is of order O (p2), which becomes
particularly challenging in high-dimensional settings. Moreover, the estimation of
precision matrices is particularly difficult since they are constrained to the cone
of symmetric positive-definite matrices, which implies restrictive conditions on the
sampling scheme.

1.2.1 Shrinkage and selection priors

Different types of shrinkage can be applied based on the prior assumptions on local
scale parameters λ2j . Typically, most shrinkage priors share common properties
such as zero-mean and symmetry around zero. The main difference is the induced
amount of shrinkage on parameter βj, which can be inferred by integrating out local
scale λ2j : the resulting mass probability around zero and the tails of the induced
prior distribution reflect the imposed level of shrinkage. Below an overview of the
most famous shrinkage priors is presented. See Van Erp et al. (2019) for a detailed
list of the existing shrinkage methods.

• Ridge penalty
One of the first and most simplistic attempts at shrinkage variable selection
is the Ridge penalty (Hsiang, 1975), which corresponds to the l2 penalization
in Hoerl and Kennard (1970). This shrinkage method was originally intro-
duced to deal with multicollinearity between variables. It assumes the same
common prior variance for all the regression parameters βj. Specifically,

βj | λ2 ∼ N
(
0, λ2

)
, j = 1, . . . , p.

Prior variance λ2 can be treated either as a fixed parameter or as an unknown
quantity. For this latter case, common choices for π (λ2) are the inverse-
Gamma (Tipping, 2001) and the scale inverse-χ2 (De los Campos et al.,
2009; Montesinos López et al., 2022).

• Spike-and-slab prior
The so-called spike-and-slab prior (Mitchell and Beauchamp, 1988; George
and McCulloch, 1993) is a mixture of two components, a spike component
with mass concentrated around zero and a slab component with high vari-
ance v21. The predictors included in the model are assigned the slab prior
component, whereas the variables excluded are assigned the spike compo-
nent. It is different from the continuous scale mixture of Normal priors,
however a formulation that connects this prior to the other shown here is
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presented in Ishwaran and Rao (2005). A common specification is the Dirac
spike-and-slab prior, with prior assumptions

βj | γj, v21 ∼ γjN
(
0, v21

)
+ (1 − γj) δ0 (βj) ,

γj | ϕj ∼ Bern (ϕj) ,

ϕj ∼ Beta(a, b), j = 1, . . . , p,

where δ0 (·) denotes a Dirac’s Delta distribution with mass probability at 0.
Integrating γj out yields

βj | ϕj, v21 ∼ ϕjN
(
0, v21

)
+ (1 − ϕj) δ0 (βj) , j = 1, . . . , p,

which is a mixture distribution with mixing probabilities ϕj and 1 − ϕj.
Another common choice for the spike component is a Normal distribution
with low variance N (0, v20), with v20 << v21 (George and McCulloch, 1993;
Van Erp et al., 2019). Prior variances v20 and v21 can be either treated as
fixed parameters or considered unknown and assigned an Inverse-Gamma
prior distribution.

• t-Student prior
An extension of the Ridge shrinkage prior is to assume a specific local vari-
ance for each regression parameter βj (Meuwissen et al., 2001; Griffin and
Brown, 2005). The prior assumptions are

βj | τ 2, λ2j ∼ N
(
0, τ 2λ2j

)
,

λ2j ∼ IG
(
ν

2
,
ν

2ζ

)
, j = 1, . . . , p.

The induced prior distribution for βj after integrating λ2j out is

βj | τ 2, ν, ζ ∼ tν

(
0,
τ 2

ζ

)
, j = 1, . . . , p,

where tν (0, τ 2/ζ) denotes the Student-t distribution with ν degrees of free-
dom, centered at 0 and scale parameter τ 2/ζ. When ν = 1 the induced
prior reduces to a Cauchy distribution. Compared to Ridge penalization,
the Student-t distribution shows heavier tails, thus providing a sparser solu-
tion for β.

• LASSO penalty
The Bayesian version of the LASSO regression (l1 penalty) was proposed
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by Park and Casella (2008). The model assumes the following hierarchical
structure

βj | τ 2, λ2j ∼ N
(
0, τ 2λ2j

)
,

λ2j ∼ Exp

(
ν2

2

)
, j = 1, . . . , p.

Integrating λ2j out results in the following induced prior

βj | τ 2, ν2 ∼ DE
(

0,
τ

ν

)
, j = 1, . . . , p,

where DE denotes the double-exponential (or Laplace) distribution. Bayesian
LASSO presents some differences when compared to its penalized counter-
part (Tibshirani, 1996): first, the latter provides a variable selection method,
whereas the former does not set coefficients to zero, requiring a posterior se-
lection process; second, penalized LASSO can not select more predictors than
observations, which can be problematic when n > p; the Bayesian version,
instead, is able to overcome this issue; third, Bayesian LASSO does not fol-
low the oracle property (Polson et al., 2011), whereas the penalized version
follows it under some stringent conditions (Fan and Li, 2001; Zou, 2006).
Finally, both methods suffer from oversrhinkage of large effects (Polson and
Scott, 2011; Polson et al., 2011).

• Elastic-net penalty
The Bayesian elastic-net was introduced by Li and Lin (2010). It relies on
the following scale mixture of Normals assumption:

βj | τ2, λj ∼ N

(
0,

(
τ2

λj
λj − 1

)−1
)
,

λj | τ2, τ1 ∼ G(1,∞)

(
1

2
,
8τ2
τ 21

)
, j = 1, . . . , p,

where G(1,∞) denotes a Gamma distribution left-truncated at 1. The induced
prior distribution on parameter βj is

βj | τ2, τ1 ∝ exp

{
−1

2

(
τ1|βj| + τ2β

2
j

)}
, j = 1, . . . , p.

Penalty parameters τ1 and τ2 determine the amount of LASSO and Ridge
shrinkage, respectively. Although the estimation of these parameters leads
to overshrinkage in the penalized version, the Bayesian elastic-net is able to
overcome such issue by estimating them simultaneously.
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• Horseshoe prior
A modern shrinkage prior is the Horseshoe prior proposed by Carvalho et al.
(2010), which assumes a positive Half-Cauchy distribution for the local vari-
ances. Formally,

βj | τ 2, λj ∼ N
(
0, τ 2λ2j

)
,

λj ∼ C+(0, 1), j = 1, . . . , p.

The induced prior distribution on βj is not analytically tractable. The shrink-
age behaviour of this prior can be deduced by observing the posterior dis-

tribution of shrinkage coefficient κ2j =
(
1 + λ2j

)−1
, which shows a horseshoe

form. This leads to large effects assuming values similar to their OLS es-
timates, whereas small effects are heavily shrunk towards zero. Since the
local variances λ2j can not be easily sampled from their full-conditional dis-
tributions, a Gibbs sampler can be implemented by augmenting the model as
shown in Makalic and Schmidt (2016). An improved version of the Horseshoe
prior is the regularized Horseshoe in Piironen and Vehtari (2017), where the
authors give insights on the choice of the global scale prior distribution and
overcome the problem related to the amount of regularization for the largest
coefficients, which can be problematic with weakly identified parameters in
the ordinary Horseshoe setting.

1.3 Outline and contributions

The main goal of this thesis is to provide efficient and reliable Bayesian statisti-
cal methods for the analysis of high-dimensional data. Different frameworks and
hypothesis are considered, resulting in three independent projects. In order to
provide efficient tools, the algorithms are based on fast computational approaches
and are all implemented in C++ with Rcpp package for R software.

Chapter 2 addresses the problem of variable selection for sparse high-dimensional
linear regression with Gaussian errors. A new class of trans-dimensional MCMC
algorithms (Green, 1995; Fan et al., 2009) is introduced. In particular, a multiple-
try MH scheme (Liu et al., 2000; Martino et al., 2012; Casarin et al., 2013) based
on adaptive mixture of proposal distributions is discussed. The model relies on
a Dirac spike-and-slab prior (George and McCulloch, 1993) where at each iter-
ation a new model is proposed and accepted with a generalized MH step. The
target density of the algorithm is efficiently updated by exploiting a new class of
computational methods based on the thinQR decomposition.

Chapter 3 introduces a novel multivariate shrinkage prior for the estimation of
multiple similar networks. The model combines the approach of Peterson et al.
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(2020) and the Horseshoe prior (Carvalho et al., 2010) with the goal of inferring
correlated (sparse) precision matrices. This approach represents an extension of
the Graphical Horseshoe (Li et al., 2019) and scales well up to hundreds of vari-
ables. Finally, a novel approach for posterior edge selection based on model cuts
(Zigler et al., 2013; Plummer, 2015) is proposed.

Chapter 4 presents a flexible way to handle co-data variables in high-dimensional
regression for both binary and continuous outcome. The method relies on an in-
formative version of the Horseshoe prior (Carvalho et al., 2010) based on the
regression of the local variances on the co-data, following Van Nee et al. (2021).
Both Gibbs sampler and Variational approximation are implemented for the model
estimation. In particular, the former makes use of the method in Bhattacharya
et al. (2016) for sampling the regression parameters from a multivariate Gaus-
sian distribution and the latter relies on the computational methods presented in
Münch et al. (2019). Therefore, both provide algorithms with O(n2p) operations,
suited for high-dimensional problems.

Chapter 5 ends the thesis with several final discussions and comments. In
particular, insights on future extensions of the presented models are debated.



Chapter 2

Fast Bayesian model selection for

high-dimensional linear regression

models

2.1 Introduction

Mixture priors for Bayesian variable selection in univariate linear regression models
with Gaussian errors were originally proposed by Leamer (1978) and Mitchell and
Beauchamp (1988) and made popular by the spike-and-slab approach of George
and McCulloch (1993, 1997). Similar approaches have been proposed by Carlin and
Chib (1995), Clyde et al. (1996), Geweke (1996), Smith and Kohn (1996), Raftery
et al. (1997), Liang et al. (2001) and Dellaportas et al. (2002). Model and variable
selection methods have seen a renewed interest nowadays due to the availability of
huge datasets. Ročková and George (2014) propose the Expectation-Maximization
algorithm for variable selection computationally faster than the Gibbs sampler,
while Ročková and George (2018) extend the spike-and-slab approach to Laplace
mixture components, to allow variable selection and shrinkage. Computationally
efficient methods for the exploration of the space of competing models have been
introduced by the shotgun procedure of Hans et al. (2007). Hans (2009, 2011)
further extend the Bayesian model selection via Dirac spike-and-slab prior to the
case of Laplace mixture components and the Elastic-net prior of Li and Lin (2010).
Reviews of special features of the selection priors and on computational aspects
can be found in Chipman et al. (2001), Clyde and George (2004), Ishwaran and
Rao (2005), O’Hara and Sillanpää (2009), Heinze et al. (2018), Narisetty (2020),
Forte et al. (2018) and in the recent book of Tadesse and Vannucci (2021).

However, when the number of covariates is large, the complete model enumer-

31
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ation prevents the full exploration of the space of competing, Markov chain Monte
Carlo (MCMC) methods provides a viable and feasible alternative to the Gibbs
sampler. In the context of variable selection, trans-dimensional MCMC methods
(see, e.g. Green, 1995; Fan and Sisson, 2011; Hastie and Green, 2012) quickly and
efficiently explore the space of competing models looking for optimal solutions, i.e.
models with high posterior probability, see George and McCulloch (1997). A pop-
ular approach is the Metropolis scheme (MC3), proposed by Madigan et al. (1995)
in the context of model selection for discrete graphical models and subsequently
adapted to variable selection, see Raftery et al. (1997) and Brown et al. (1998,
2002), among others. Improved MCMC schemes have been proposed to achieve an
even faster exploration of the posterior space, see, for example, the shotgun algo-
rithm of Hans et al. (2007) and the evolutionary Monte Carlo schemes combined
with parallel tempering proposed by Bottolo and Richardson (2010), Bottolo et al.
(2011).

Within the regression context, reversible jump (RJ, hereafter) algorithms have
been previously proposed, for example, by Petralias and Dellaportas (2013) and for
generalised linear models by Papathomas et al. (2011). As any other Metropolis
schemes, the RJ-type proposals has the major disadvantage of performing a good
“local” exploration of the posterior distribution, thereby slowing down the con-
vergence speed as the dimension of the problem increases. Improving the mixing
and the rate of convergence of the chain can be achieved by means of multiple-
try Metropolis MCMC (MTM, hereafter) introduced by Liu et al. (2000) as an
extended version of the classical Metropolis-Hastings scheme that allows to select
the new state of the chain among several alternatives. MTM methods have been
widely studied and generalized, with different versions based mainly on different
choices for the trial proposals. The basic approach allows to propose multiple states
of the chain independently from the same distribution Liu et al. (2000), whereas
more complex versions involve correlated trials (Craiu and Lemieux, 2007; Bédard
et al., 2012) or different independent proposals (Casarin et al., 2013). All of the
cited papers assume the number of trials to be fixed in advance. In Martino and
Louzada (2017) the authors study the mixing properties of MTM algorithm when
the proposal distribution is a random walk: they state that large values of K do
not always improve the rate of convergence of the MCMC and propose different
solutions. To this aim, Chang et al. (2022) try to calibrate the optimal number of
trials. For a general overview of MTM methods, we refer to Martino (2018). A re-
versible jump MTM method for Bayesian model selection framework is proposed in
Pandolfi et al. (2010, 2014), where the authors rely on multiple trans-dimensional
moves to efficiently explore the space of models.

Other interesting developments have focused on adaptive methods for the op-
timization of parametric transition probabilities of MCMC algorithms, with the
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aim of improving efficiency and mixing of the Metropolis schemes. Early adapta-
tion schemes can be found in Gilks et al. (1998) and Haario et al. (2001), where
the authors propose the tuning of the transition kernel based on the previous
states visited by the chain. However, adaptation can lead to the loss of ergod-
icity of the chain (see, e.g. Andrieu and Moulines, 2006; Roberts and Rosenthal,
2007; Andrieu and Thoms, 2008; Craiu et al., 2015, for the theoretical properties
of adaptive MCMC algorithms). In Andrieu and Moulines (2006) and Andrieu
and Thoms (2008) the authors provide a general guidances on building adaptive
MCMC schemes and discuss a Metropolis scheme where the proposal density is
a mixture of distributions that belong to the family of exponential distributions.
Other applications dealing with adaptive proposal of Gaussian mixture can be
found in Douc et al. (2007), Ji and Schmidler (2013), Feng and Li (2015) and
Maire et al. (2019). Within the MTM framework, Yang et al. (2019) and Fontaine
and Bédard (2022) propose adaptive versions of the MTM algorithm.

Here, we introduce a novel trans-dimensional adaptive MTM algorithm that
exhaustively explores the target distribution. In particular, our approach considers
parallel jumps between models that include different predictors, while Lamnisos
et al. (2009) and Pandolfi et al. (2010, 2014) only consider jump between models
that differ only by a single variable. Similarly to the shotgun stochastic algorithm
of Hans et al. (2007), our model forces the chain to explore the model space in
the neighborhood of high-probability models. We rely on a mixture of proposal
distributions, where each component is related to a different degree of divergence
from the current model, i.e. the number of included or excluded predictors. The
importance of each component is calibrated to achieve optimal jumps, that is,
the mixing probabilities of the mixture associated to the different proposals are
estimated adaptively in order to ensure that the algorithm explores models that
provide high scores of the target density.

Finally, in Appendix 2.D, we present a new class of algebraic algorithms based
on the thinQR decomposition for the efficient update of the posterior covariance
matrix under Dirac’s spike-and-slab priors. These updating algorithms, alongside
the methods discussed in Section 2.4 for the efficient evaluation of the target den-
sity with O(p) operations, make our model one of the fastest Bayesian approaches
for model selection in high-dimensional linear regression with Gaussian errors.

The rest of this chapter is organized as follows. In Section 2.2, we introduce
the model and prior specifications, while in Section 2.3, we outline the MCMC
algorithm and discusses the posterior sampling details. In Section 2.4, we assess
the problem of efficiently evaluating the target distribution of the algorithm. Sim-
ulation studies and applications to real datasets are presented in Section 2.5 and
2.6, respectively. Final discussions and comments are in Section 2.7.
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2.2 Model specification

Let y ∈ Rn be the n-dimensional response vector and X ∈ Rn×p be the n×p design
matrix. We consider the following univariate Gaussian linear regression model for
the continuous outcome yi, i = 1, . . . , n

yi = x⊺
iβ + εi,

εi ∼ N
(
0, σ2

)
, i = 1, . . . , n,

(2.1)

where xi =
(
xi,1, . . . , xi,p

)⊺ ∈ Rp, is the set of p covariates related to the i-th

observation and β =
(
β1, . . . , βp

)⊺ ∈ Rp is the p-dimensional vector of regression
parameters. To induce sparse solutions for β, we assume a Dirac spike-and-slab
prior with the slab component’s prior variance υ21 ≫ 0 considered as a fixed hy-
perparameter (George and McCulloch, 1997). This approach relies on an auxiliary
latent p-dimensional selection vector γ =

(
γ1, . . . , γp

)⊺
, where γj = 1, if the j-th

regressor is included in the model, and γj = 0 otherwise. Note that the complexity
of regression model γ can be retrieved as pγ =

∑p
j=1 γj. Let βγ ∈ Rpγ be the vec-

tor consisting of all elements βj for which γj = 1, j = 1, . . . , p, and β−γ = β \ βγ.
Then the Dirac spike-and-slab hierarchical prior for the regression model in (2.1)
is

βγ|γ, σ2 ∼ Npγ
(
βj|0, σ2Σβγ

)
,

π
(
β−γ|γ

)
=

p∏
j=1

δ
(
βj, 0

)1−γj ,
γj ∼ Ber

(
ϕ
)
, j = 1, . . . , p,

ϕ ∼ Beta
(
ξ, φ
)
,

σ2 ∼ IG(ν, λ),

(2.2)

where δ
(
x, 0
)

= I(0)(x) denotes the Dirac function evaluated at zero and Σβγ =
υ21Ipγ is the prior covariance matrix of βγ, with Ipγ denoting the identity matrix of
dimension pγ. Independent Bernoulli priors on the γj’s as specified in (2.2) with a
Beta hyper-prior are used, for example, by Brown et al. (1998). As argued by Scott
and Berger (2010), an attractive feature of these priors is that appropriate choices
of ϕ, that depend on the number of covariates p, impose an a-priori multiplicity
penalty.
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2.3 Posterior inference

For the Gaussian linear regression model defined in (2.1), under the hierarchical
Dirac spike-and-slab prior defined in (2.2), the joint posterior distribution is:

π
(
β,γ, σ2, ϕ|y,X

)
∝ σ−(n+pγ+2ν+2)|Σβγ |−1/2 exp

(
−
ε̃⊺γ ε̃γ + 2λ

2σ2

)
π(γ)π(ϕ), (2.3)

where ε̃γ is the n-dimensional vector of residuals for model γ defined as ε̃γ =

ỹ − X̃γβγ, with

ỹ =

(
y

0pγ

)
∈ Rn+pγ and X̃γ =

(
Xγ

Σ
−1/2
βγ

)
∈ R(n+pγ)×pγ , (2.4)

and Xγ ∈ Rn×pγ is the n×pγ matrix whose columns correspond to the components
of βγ. The set of full-conditional distributions for the update of parameters β, σ2

and ϕ is
βγ|y,X,γ, σ2 ∼ Npγ

(
Σ⋆
βγX

⊺
γy, σ

2Σ⋆
βγ

)
σ2|y,X,β,γ ∼ IG

(
ν +

n+ pγ
2

, λ+
ε̃⊺γ ε̃γ

2

)
ϕ|γ ∼ Beta

(
ξ + pγ, φ+ p− pγ

)
,

(2.5)

where Σ⋆
βγ

=
(
X̃⊺
γX̃γ

)−1
=
(
X⊺
γXγ +Σ−1

βγ

)−1
. Integrating out βγ and σ2 from (2.3)

yields the marginal posterior distribution of model indicator γ which is propor-
tional to

m(γ|y,X) ∝ ℓ(γ|y,X)π(γ)

ℓ(γ|y,X) ∝ |X̃⊺
γX̃γ|−1/2|Σβγ |−1/2

(
λ+

S2
γ

2

)−(ν+n/2)

π(γ) =

(
p

pγ

)
ϕpγ
(
1 − ϕ

)p−pγ
,

(2.6)

where S2
γ = y⊺y−y⊺Xγ

(
X⊺
γXγ+Σ−1

βγ

)−1
X⊺
γy. Here, the goal is the investigation of

the marginal posterior distribution m
(
γ|y,X

)
defined in equation (2.6). However,

the full exploration of the space of competing models and the complete model
enumeration become infeasible when the number of covariates is moderately large.
Therefore, we rely on trans-dimensional MCMC methods (Green, 1995; Fan and
Sisson, 2011) to sample the model indicators from the target distribution. Specif-
ically, in this Section, we present different MH schemes to explore m

(
γ|y,X

)
. We

rely on the thinQR updating methods introduced in Section 2.4 and Appendix
2.D to efficiently update the design matrix and the target distribution of model
indicator γ when one or more predictors are included or excluded from the set
defining the current regression model.
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2.3.1 Reversible jump

The first and most straightforward trans-dimensional method is an ordinary reversible-
jump MCMC. At each iteration the transition from current model γ to a new
model γ ′ is evaluated with a MH acceptance probability. Specifically, we consider
a new model γ ′ that differs from current model γ by the inclusion/exclusion of
one covariate. This can be achieved by sampling γ ′ from the following proposal
distribution (Lamnisos et al., 2009)

q
(
γ ′|γ

)
=

1

p
, if

p∑
j=1

|γ′j − γj| = 1, (2.7)

which is symmetric in γ and γ ′. This way all the models with dimensionality
(pγ − 1) or (pγ + 1) are taken into account with the same probability. Sampling
a new model γ ′ from (2.7) can be done by randomly selecting a predictor ι from
the set {1, . . . , p} with uniform probabilities; variable xι is then added to γ ′ if
not included in γ (i.e. γι = 0), whereas γ ′ is constructed by deleting xι from
the current regression model, otherwise (i.e. γι = 1). Because of the symmetry
of proposal distribution q

(
γ ′|γ

)
, i.e. q

(
γ|γ ′)/q(γ ′|γ

)
= 1, the MH acceptance

probability for new model indicator γ ′ is

αRJ

(
γ,γ ′) = min

{
1,
m
(
γ ′|y,X

)
m
(
γ|y,X

) } .
The transition from model γ to γ ′ means updating the target marginal posterior
distribution after the addition or deletion of a column in the design matrix. Specif-
ically, the method requires the computation of the posterior of variance-covariance

matrix Σ⋆
βγ′

=
(
X̃⊺
γ′X̃γ′

)−1
, with X̃γ′ ∈ R(n+pγ′ )×pγ′ and pγ′ = pγ ± 1, and the

quantity S2
γ′ = y⊺y− y⊺Xγ′

(
X⊺
γ′Xγ′ + Σ−1

βγ′

)−1
X⊺
γ′y. The thinQR updating meth-

ods discussed in Section 2.4 can be applied to efficiently achieve this. The RJ
algorithm is shown in Algorithm 1.

The jumps to models that only differ from the current model by the inclusion
or exclusion of one predictor do not allow a fast and efficient global exploration
of the space of competing models (see, e.g. Hans et al., 2007; Lamnisos et al.,
2009). In order to overcome this issue, in the following subsections, we discuss two
generalizations of the RJ method based on multiple-try approaches (Liu et al.,
2000) to allow the transition to models that differ by more than one variable and
further improve the flexibility of the model.
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Algorithm 1: RJ algorithm

1 Input: B ∈ N, y ∈ Rn, X ∈ Rn×p, (ν, λ) ∈ R2
+, (ξ, φ) ∈ R2

+ and υ1 ∈ R+;

2 Initialization: sample ϕ(0) and γ(0) from their prior distributions;

3 for (b = 1, 2, . . . , B) do

4 Sample ι ∼ U
(
{1, 2, . . . , p}

)
;

5 Set γ′
ι = 1− γ(b−1)

ι and compute m
(
γ′|y,X

)
;

6 Compute the MH acceptance probability:

α
(
γ(b−1),γ′) = min

{
1,

m
(
γ′|y,X

)
m
(
γ(b−1)|y,X

)} ,

where m
(
γ(b−1)|y,X

)
is defined in (2.6);

7 With probability α
(
γ(b−1),γ′) set γ(b) = γ′, otherwise set γ(b) = γ(b−1);

8 Sample ϕ(b) ∼ Beta
(
ξ + pγ , φ+ p− pγ

)
;

9 Optional: Sample β(b) and
(
σ2

)(b) from the corresponding full-conditional

distributions defined in (2.5).
10 end

2.3.2 Multiple-try

Here, we present a novel method to sample from (2.6) which relies on a multiple-
try approach of Liu et al. (2000), which we refer to as MTM algorithm. At each
iteration, a new state of the chain γ⋆ is selected among K ∈ N+ independent
alternatives (Casarin et al., 2013) and the trans-dimensional jump is evaluated
with a generalised MH step.

The k-th proposal is sampled according to the following distribution

qk
(
γ(k)|γ

)
=

1(
p
dk

) , if

p∑
j=1

|γ(k)j − γj| = dk, k = 1, . . . , K, (2.8)

which is symmetric in γ(k) and γ (see the results in Appendix 2.A for a theoretical
justification of equation (2.8)). This way, all model indicators γ(k) that differ by
the inclusion/exclusion of dk covariates from the current model indicator γ are
taken into account with the same probability. The MTM proposal distribution
(2.8) gains flexibility when compared to the proposal distribution in (2.7), as it
allows the chain to jump to any other possible model in the space, improving the
ability of avoiding local modes. When K = 1 and dK = 1 the chain reduces to RJ
algorithm introduced in Section 2.3.1.



38

Let DK = {d1, . . . , dK} denote the complete set of divergences between the
dimension of current and proposed models, the simple and straightforward MTM
extension of the RJ approach reduces to fixing dk = 1 for all k = 1, . . . , K. In
the same spirit of Casarin et al. (2013), to allow for more flexibility, we propose a
generalized MH step that accounts for multiple independent proposals. This ap-
proach allows several alternative sampling schemes that differ by the specification
of the set DK . An example is the specification DK = {1, . . . , K}, which allows the
transition to models that differ at most by K predictors. Of course, several alter-
native specifications of DK are possible. Motivated by the empirical evidence that
jumps to large spaces usually have low acceptance rate, the number of proposals
K can increase with the dimension of the explored space.

Let ιk = (ιk,1, . . . , ιk,dk)⊺ be an indexing vector of dimension dk, sampling
from the MTM proposal distribution qk

(
γ(k)|γ

)
defined in (2.8) can be achieved

by sampling without replacement a set of dk variables from a discrete Uniform
distribution U

(
{1, . . . , p}

)
defined over the set {1, . . . , p}. More specifically, the

h-th predictor of the k-th model indicator ιk,h is sampled from ιk,h ∼ U
(
{1, . . . , p}\

{ιk,1, . . . , ιk,h−1}
)

in such a way that P
(
ιk,h
)

= 1/(p − h + 1) for h = 1, . . . , dk,

with ι1 ∼ U
(
{1, . . . , p}

)
. Then, we set {γ(k)h }h∈ιk = 1 − {γh}h∈ιk . This way,

variables are included in the model if they were not and excluded, otherwise. The
new proposal γ⋆ is selected among the K alternatives according to the following
discrete probability density function:

w̄k(γ
(k)|γ) =

wk
(
γ(k)|γ

)∑K
k=1wk

(
γ(k)|γ

) , k = 1, . . . , K,

where a common choice for wk
(
γ(k)|γ

)
is that of the importance weights defined

as:

wk
(
γ(k)|γ

)
=
m(γ(k)|y,X)

qk(γ(k)|γ)
, k = 1, . . . , K,

where m
(
γ(k)|y,X

)
is the marginal posterior distribution of model γ(k) defined in

(2.6) and qk
(
γ(k)|γ

)
is the MTM proposal defined in (2.8). Thus, new proposal is

then selected as γ⋆ = γ(j), j ∈ {1, . . . , K}. Without defying the detailed balance
condition (Liu et al., 2000), the jump between models γ and γ∗ is accepted with
the generalized MH acceptance probability equal to

αMTM = min

{
1,

∑K
k=1wk

(
γ(k)|γ

)∑K
k=1wk

(
v(k)|γ⋆

)} , (2.9)

where v(k), k = 1, . . . , j− 1, j+ 1, . . . , K, are K − 1 auxiliary values sampled from
distribution qk

(
v(k)|γ⋆

)
, i.e. v(k) ∼ qk

(
v(k)|γ⋆

)
, and v(j) = γ. See Algorithm 2 for

the implementation of the MTM algorithm.
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It is worth recognizing that the importance weights in (2.9) depend on the
evaluation of (2.6) for each proposed model. Therefore, as for the RJ algo-

rithm, the needed quantities Σ⋆
β
γ(k)

=
(
X̃⊺
γ(k)

X̃γ(k)

)−1
, with X̃γ(k) ∈ R(n+p

γ(k)
)×p

γ(k)

and pγ(k) equal to the number of variables included in γ(k), and S2
γ(k)

= y⊺y −
y⊺Xγ(k)

(
X⊺
γ(k)

Xγ(k) + Σ−1
β
γ(k)

)−1
X⊺
γ(k)

y, k = 1, . . . , K, can be computed exploiting

the updating methods introduced in Section 2.4 after the inclusion/exclusion of dk
predictors.

2.3.3 Adaptive multiple-try

At each iteration, the MTM algorithm defined in Section 2.3.2 proposes K dif-
ferent candidate models by sampling from the proposals γ(k) ∼ qk

(
γ(k)|γ

)
, k =

1, 2, . . . , K, where qk
(
γ(k)|γ

)
is defined in (2.8). The idea, however, is that larger

jumps, i.e. the transition to models that differ from the current model by a large
number of variables, are more useful at the beginning of the chain, whereas they
should be avoided once the algorithm has converged to the true model. For this
reason, here we describe a novel adaptive MTM approach which relies on a mixture
of proposal kernels and adapt the mixing probabilities in order to minimise the
Kullback-Leibler (KL) divergence from the target distribution. Ji and Schmidler
(2013) have proposed a closely related method for adapting a mixture of exponen-
tial proposal distributions based on the KL divergence in the context of adaptive
MCMC samplers. We refer to this type of algorithm as adaptive MTM (adaMTM)
algorithm (see Algorithm 3 for details on the implementation).

Let ζ(k) ∼ Multin
(
1,θ
)
, ζ(k) =

(
ζ
(k)
1 . . . ζ

(k)
M

)⊺
and k = 1, . . . , K, θ =(

θ1 . . . θM
)⊺

and M ∈ N+ \ {0, 1}. The stochastic representation of the pro-
posal distribution for the adaptive MTM algorithm can be written as

qa
(
γ(k)|γ, ζ(k)

)
=

M∑
m=1

ζ(k)m qm
(
γ(k)|γ

)
,

M∑
m=1

ζ(k)m = 1,

π
(
ζ(k)|θ

)
=

M∏
m=1

θζ
(k)
m
m ,

M∑
m=1

θm = 1, k = 1, . . . , K, (2.10)

with marginal density

qa
(
γ(k)|γ,θ

)
=

M∑
m=1

θmqm
(
γ(k)|γ

)
, k = 1, . . . , K, (2.11)

which is a mixture of M proposals qm
(
γ(k)|γ

)
defined in (2.8), with mixing prob-

abilities θ. The sampling scheme of the adaptive MTM algorithm consists to
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Algorithm 2: MTM algorithm

1 Input: B ∈ N, y ∈ Rn, X ∈ Rn×p, K ∈ N, DK = {d1, . . . , dK}, (ν, λ) ∈ R2
+, (ξ, φ) ∈ R2

+

and υ1 ∈ R+;

2 Initialization: sample ϕ(0) and γ(0) from their prior distributions;

3 for (b = 1, . . . , B) do

4 for (k = 1, . . . ,K) do

5 Let ιk = [ι1, . . . , ιdk ]
⊺, sample ιk,1 ∼ U

(
{1, . . . , p}

)
and

ιk,h ∼ U
(
{1, . . . , p} \ {ιk,1, . . . , ιk,h−1}

)
for h > 1;

6 Set
{
γ

(k)
h

}
h∈ιk

= 1−
{
γ

(b−1)
h

}
h∈ιk

and compute the weights

wk

(
γ(k)|γ(b−1)

)
;

7 end

8 Select γ⋆ = γ(j) according to the probability density

w̄j =
wj

(
γ(j)|γ(b−1)

)∑K
k=1 wk

(
γ(k)|γ(b−1)

) , for j = 1, . . . ,K;

9 Set v(j) = γ(b−1) and sample v(1), . . . ,v(j−1),v(j+1), . . . ,v(K) auxiliary values:

10 for (k = 1, . . . , j − 1, j + 1, . . . ,K) do

11 Let ιk = [ι1, . . . , ιdk ]
⊺, sample ιk,1 ∼ U

(
{1, . . . , p}

)
and

ιk,h ∼ U
(
{1, . . . , p} \ {ιk,1, . . . , ιk,h−1}

)
for h > 1;

12 Set
{
v
(k)
h

}
h∈ιk

= 1−
{
γ

(j)
h

}
h∈ιk

and compute the weights wk

(
v(k)|γ(j)

)
;

13 end

14 Compute the MH acceptance probability:

α
(
γ(b−1),γ(j)) = min

{
1,

∑K
k=1 wk

(
γ(k)|γ(b−1)

)∑K
k=1 wk

(
v(k)|γ(j)

) }
;

15 With probability α
(
γ(b−1),γ(j)

)
set γ(b) = γ(j), otherwise set γ(b) = γ(b−1);

16 Sample ϕ(b) ∼ Beta
(
ξ + pγ , φ+ p− pγ

)
;

17 Optional: Sample β(b) and
(
σ2

)(b) from the corresponding full-conditional

distributions defined in (2.5).
18 end

sample k proposal indicators ζ(1), . . . , ζ(K) from ζ(k) ∼ Multin
(
1,θ
)
, k = 1, . . . , K,

and then sampling the model indicator γ(k) from the selected proposal distribu-
tion γ(k)|γ ∼

∑M
m=1 ζ

(k)
m qm(γ(k)|γ). The approach learns which proposal is more
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reliable based on the current value of mixing probabilities vector θ. Therefore,
the goal is to adapt the vector of probabilities θ to automatically select the most
promising degree of divergence from the current model, i.e. number of variables
to modify. In order to ensure that all the proposals are used at the early stages,
the number of proposals M should not greatly exceed the number of trials K.
Therefore, we assume M = K for the analysis in Section 2.5 and 2.6.

The importance weights for the adaptive MTM algorithm with the mixture
proposal defined in (2.11) are

wk
(
γ(k)|γ,θ

)
=
m
(
γ(k)|y,X

)
qa
(
γ(k)|γ,θ

) , k = 1, . . . , K, (2.12)

where m
(
γ(k)|y,X

)
is the target density defined in (2.6). The optimal model γ⋆

is selected among the K alternatives according to the following probabilities:

w̄k(γ
(k)|γ,θ) =

wk
(
γ(k)|γ,θ

)∑K
k=1wk

(
γ(k)|γ,θ

) ,
=

m
(
γ(k)|y,X

)∑K
k=1m

(
γ(k)|y,X

) , k = 1, . . . , K, (2.13)

where last equality holds for the symmetry of qa
(
γ(k)|γ,θ

)
with respect to γ(k) and

γ. New proposal is then selected as γ⋆ = γ(j), j ∈ {1, . . . , K}. Without defying
the detailed balance condition (see Appendix 2.A), the jump between models γ
and γ∗ is accepted with the generalized MH acceptance probability equal to

αadaMTM = min

{
1,

∑K
k=1m

(
γ(k)|y,X

)∑K
k=1m

(
v(k)|y,X

)} ,
where v(k), k = 1, . . . , j− 1, j+ 1, . . . , K, are K − 1 auxiliary values sampled from
distribution qa

(
v(k)|γ⋆,θ

)
, i.e. v(k) ∼ qa

(
v(k)|γ⋆,θ

)
, and v(j) = γ.

One of the major novelties of the proposed MTM algorithm is the possibility of
automatically tuning the vector of mixture probabilities θ to adapt the proposal
to the target online. As suggested by Haario et al. (2001); Andrieu and Moulines
(2006); Andrieu and Thoms (2008), at iteration t+1 the update of the component

θ
(t+1)
m , m = 1, . . . ,M , of the mixture proposal distribution qa

(
γ(k)|γ

)
defined in

(2.11) can be formulated as

θ(t+1)
m = θ(t)m + ηt+1H

(
θ(t)m , ζ

(t),γ(t)
)
,

M∑
m=1

θ(t+1)
m = 1, (2.14)
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where ηt = 1/(cta), with c > 0 and a ∈
(
0.5, 1

]
, is a non-increasing sequence of

positive step-sizes that satisfies the conditions
∑∞

t=1 ηt = ∞ and
∑∞

t=1 η
1+δ
t < ∞,

for some δ > 0 (see, e.g. Haario et al., 2001). The function H
(
θ
(t)
m , ζ

(t),γ(t)
)

in
(2.14) should be carefully selected in order to guarantee that the mixture weights
adaptation scheme forces the parameters to drive the MTM proposal closer to
the target. One possibility is to select a valid divergence metric and to adapt θ
in order to minimize that divergence. To this aim, we propose to minimize the
the Kullback-Leibler (KL, hereafter) divergence, as in Haario et al. (2001). A
natural adaptation strategy would be to select the vector parameter θ based on
the minimization of the KL divergence between π(γ) and the auxiliary distribution
of latent vector ζ, π

(
ζ|θ
)

defined in (2.10), specifically

KL
[
π(γ)∥π(ζ|θ)

]
=

∑
γ∈{0,1}p

π(γ) log
( π

(
γ
)

π
(
ζ|θ
))

∝ −
∑

γ∈{0,1}p
π(γ) log π

(
ζ|θ
)
. (2.15)

However, since the proposal distribution qa(γ
(k)|γ) in (2.11) is not tailored to

the target density π
(
γ
)

= m
(
γ|y,X

)
defined in (2.6), the maximization of the

negative of the Shannon entropy in (2.15) does not lead to a valid adaptation
strategy. Therefore we propose to adapt the mixing probabilities vector θ of the
mixture proposal distribution defined in (2.11) by minimizing the KL divergence
between π(γ) and the following distribution:

π
(
ζ|θ,γ

)
∝

M∏
m=1

θ
∑K

k=1 ζ
(k)
m w̄k

(
γ(k)|γ,θ

)
m , (2.16)

with
∑K

k=1

∑M
m=1 ζ

(k)
m = K, w̄k

(
γ(k)|γ

)
∈ (0, 1) being the normalized importance

weight of the k-th proposal defined in (2.13),
∑K

k=1 w̄k
(
γ(k)|γ,θ

)
= 1 and ζ

(k)
m

is defined in (2.10). π
(
ζ|θ,γ

)
in (2.16) is a proper distribution function and

it corresponds to a weighted likelihood function as introduced by Hu and Zidek
(2002) (see Appendix 2.A).

Proposition 2.3.1. The mixing probabilities of qa
(
γ(k)|γ

)
, k = 1, . . . , K are up-

dated as the solution of the following convex constrained maximization problem:

arg max
θm

∑
γ∈{0,1}p

π(γ) log π
(
ζ|θ,γ

)
s.t.

M∑
m=1

θm = 1,

(2.17)
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i.e.
θ(t+1)
m = θ(t)m + ηt+1

(
h
(
θ(t)m , ζ

(t),γ(t)
)
− h̄
(
θ(t)m , ζ

(t),γ(t)
))
, (2.18)

with

h
(
θ(t)m , ζ

(t),γ(t)
)

=
1

θ
(t)
m

K∑
k=1

ζ(k),(t)m w̄k
(
γ(k)|γ(t)

)
,

h̄
(
θ(t)m , ζ

(t),γ(t)
)

=
1

M

M∑
m=1

h
(
θ(t)m , ζ

(t),γ(t)
)

=
1

M

M∑
m=1

1

θ
(t)
m

K∑
k=1

ζ(k),(t)m w̄k
(
γ(k)|γ(t)

)
,

where ηt = 1/(cta) is the step-size of the adaptation, with a ∈
(
0.5, 1

]
.

Proof. See Appendix 2.A.

Remark 2.3.1. Note that the update in (2.18) ensures
∑M

m=1 θ
(t+1)
m = 1, but not

that θ
(t+1)
m > 0. Following Ji and Schmidler (2013), rather than adding slack vari-

ables to satisfy the Karush-Kuhn-Tucker conditions, we project negative weights in
the interval (0, 1) with the rule θ

(t+1)
m = |θ(t+1)

m |/
∑M

m=1 |θ
(t+1)
m |.

Proposition 2.3.2. The solution of the convex constrained optimization problem
in (2.17) is unique.

Proof. It follows immediately from the convexity of equation (2.17). See the proof
of Proposition 2.3.1 in Appendix 2.A.

Proposition 2.3.3. Let qa
(
γ(k)|γ,θ

)
be the proposal distribution defined in (2.11),

then the Markov chain generated by adaptive MTM algorithm satisfies the detailed
balance condition and converges to its stationary distribution.

Proof. See Appendix 2.A.

2.4 Fast evaluation of the marginal density

Let γ and γ⋆ be the current and new model indicators, respectively. In this section
we present how to efficiently sample regression parameters vector βγ⋆ and evaluate

marginal posterior m
(
γ⋆|y,X

)
defined in (2.6), following the addition or deletion

of one or more predictors to/from current model γ. Hereafter, let R1γ ∈ Rpγ×pγ be
the triangular matrix related to the thinQR decomposition (see Appendix 2.D.1) of
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Algorithm 3: Adaptive MTM algorithm

1 Input: B ∈ N, y ∈ Rn, X ∈ Rn×p, k ∈ N, DM = {d1, . . . , dM}, (ν, λ) ∈ R2
+, (ξ, φ) ∈ R2

+,

υ1 ∈ R+, c > 1 and a ∈
(
0, 1

]
;

2 Initialization: sample ϕ(0) and γ(0) from their prior distributions;

3 for (b = 1, . . . , B) do

4 for (k = 1, . . . ,K) do

5 Sample ζ(k) ∼ Multinom
(
1,θ

)
and set z(k) =

∑M
m=1 mζ

(k)
m ;

6 Let ιk = [ι1, . . . , ιd
z(k)

]⊺, sample ιk,1 ∼ U
(
{1, . . . , p}

)
and

ιk,h ∼ U
(
{1, . . . , p} \ {ιk,1, . . . , ιk,h−1}

)
for h > 1;

7 Set
{
γ

(k)
h

}
h∈ιk

= 1−
{
γ

(b−1)
h

}
h∈ιk

and compute the weights

wk(γ
(k)|γ(b−1));

8 end

9 Select γ⋆ = γ(j) according to the probability density

w̄j =
wj(γ

(j)|γ(b−1))∑K
k=1 wk(γ(k)|γ(b−1))

, for j = 1, . . . ,K;

10 Set v(j) = γ(b−1) and sample v(1), . . . ,v(j−1),v(j+1), . . . ,v(K) auxiliary values:

11 for (k = 1, . . . , j − 1, j + 1, . . . ,K) do

12 Sample ζ(k) ∼ Multinom
(
1,θ

)
and set z(k) =

∑M
m=1 mζ

(k)
m ;

13 Let ιk = [ι1, . . . , ιd
z(k)

]⊺, sample ιk,1 ∼ U
(
{1, . . . , p}

)
and

ιk,h ∼ U
(
{1, . . . , p} \ {ιk,1, . . . , ιk,h−1}

)
for h > 1;

14 Set
{
v
(k)
h

}
h∈ιk

= 1−
{
γ

(j)
h

}
h∈ιk

and compute the weights wk(v
(k)|γ(j));

15 end

16 Compute the MH acceptance probability:

α
(
γ(b−1),γ(j)) = min

{
1,

∑K
k=1 wk(γ

(k)|γ(b−1))∑K
k=1 wk(v(k)|γ(j))

}
;

17 Update vector θ(b) following the adaptation rule in (2.18);

18 With probability α
(
γ(b−1),γ(j)

)
set γ(b) = γ(j), otherwise set γ(b) = γ(b−1);

19 Sample ϕ(b) ∼ Beta
(
ξ + pγ , φ+ p− pγ

)
;

20 Optional: Sample β(b) and
(
σ2

)(b) from the corresponding full-conditional

distributions defined in (2.5).
21 end
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matrix X̃γ ∈ R(n+pγ)×pγ defined in (2.4) such that the current posterior variance-

covariance matrix is Σ⋆
βγ

=
(
X̃⊺
γX̃γ

)−1
=
(
R⊺

1γR1γ

)−1
. The bottleneck of the

algorithms discussed in Section 2.3 is the update of matrix R1γ⋆ ∈ Rp⋆γ×p⋆γ and
value S2

γ⋆ after the addition or deletion of one or more columns to/from the current
design matrix. Given R1γ, matrix R1γ⋆ can be efficiently computed following the
novel thinQR updating methods presented in Appendix 2.D.2, 2.D.2, 2.D.3, 2.D.3
and 2.D.3. Note that m

(
γ⋆|y,X

)
is invariant with respect to the ordering of the

variables. Therefore, it is assumed that new predictors are added at the end of the
design matrix, greatly improving the computational performances of the model.

The rest of this section assesses the problem of evaluating S2
γ⋆ given current

quantities R1γ, bγ = X⊺
γy ∈ Rpγ and dγ = R−⊺

1γ bγ ∈ Rpγ , where R−⊺
1γ denotes

the transpose of the inverse of R1γ, i.e. R−⊺
1γ =

(
R−1

1γ

)⊺
. Let Xγ ∈ Rn×pγ and

Xγ⋆ ∈ Rn×pγ⋆ be the current and new design matrices, respectively, the goal is the
efficient computation of

S2
γ⋆ = y⊺y − y⊺Xγ⋆

(
X⊺
γ⋆Xγ⋆ + Σ−1

βγ⋆

)−1
X⊺
γ⋆y

= y⊺y − y⊺Xγ⋆
(
R⊺

1γ⋆R1γ⋆
)−1

X⊺
γ⋆y

= y⊺y − b⊺
γ⋆R

−1
1γ⋆R

−⊺
1γ⋆bγ⋆

= y⊺y − d⊺
γ⋆dγ⋆ ,

where bγ⋆ = X⊺
γ⋆y ∈ Rpγ⋆ and dγ⋆ = R−⊺

1γ⋆bγ⋆ ∈ Rpγ⋆ . Moreover, target den-

sity m
(
γ⋆|y,X

)
relies on the evaluation of the determinant |Σβγ⋆ |, which can be

efficiently computed with O
(
pγ⋆
)

operations given R1γ⋆ as follows:

|Σβγ⋆ | =

pγ⋆∏
j=1

R1γ⋆ [j, j]−2 .

Eventually, the regression parameter vector βγ⋆ is computed as

βγ⋆ = R−1
1γ⋆

(
σz + dγ⋆

)
, (2.19)

where z is a pγ⋆-dimensional vector with entries zj ∼ N(0, 1), j = 1, . . . , pγ⋆ . The
inversion of triangular matrix R1γ⋆ in (2.19) can be achieved by solving the linear
equation R1γ⋆βγ⋆ = σz + dγ⋆ by means of forward substitutions algorithm with

O
(
p2γ⋆
)

operations.

2.4.1 Add and remove variables

Add variables
Given current matrix X̃γ ∈ R(n+pγ)×pγ , after the addition of a block of m ≥ 1
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columns X⋆ ∈ Rn×m at the end the updated form is

X̃γ⋆ =

[(
X̃γ

0m×pγ

)
X̃⋆

]
=

 Xγ X⋆

Σ
−1/2
βγ

0pγ×m

0m×pγ Σ
−1/2
⋆

 ∈ R(n+p⋆γ)×pγ⋆ ,

with X̃⋆ ∈ R(n+pγ⋆ )×m, Σ⋆ = diag{υ21, . . . , υ21} ∈ Rm×m and pγ⋆ = pγ + m. See
Appendix 2.D.3 for the computation of updated triangular matrix R1γ⋆ ∈ Rpγ⋆×pγ⋆

following the addition of a block of columns at position pγ + 1 (0 entries in X̃⋆ can
be exploited to further reduce the computational costs). Exploiting the block-form
of new matrix R1γ⋆ , vector dγ⋆ ∈ Rpγ⋆ is

dγ⋆ =

[
R⊺

1γ 0pγ×1

R⊺
12γ⋆ R⊺

22γ⋆

]−1 [
bγ
b⋆

]
, (2.20)

where b⋆ = X⊺
⋆y ∈ Rm, R12γ⋆ = R1γ⋆ [1 : pγ, (pγ + 1) : pγ⋆ ] ∈ Rpγ×m and

R22γ⋆ = R1γ⋆ [(pγ + 1) : pγ⋆ , (pγ + 1) : pγ⋆ ] ∈ Rm×m. Inversion of the block
triangular matrix in (2.20) yields

dγ⋆ =

[
R−⊺

1γ 0pγ×1

−R−⊺
22γ⋆R

⊺
12γ⋆R

−⊺
1γ R−⊺

22γ⋆

] [
bγ
b⋆

]
=

[
R−⊺

1γ bγ
−R−⊺

22γ⋆R
⊺
12γ⋆R

−⊺
1γ bγ + R−⊺

22γ⋆b⋆

]
=

[
dγ

R−⊺
22γ⋆

(
b⋆ −R⊺

12γ⋆dγ
)] . (2.21)

Following (2.21), S2
γ⋆ is efficiently evaluated as

S2
γ⋆ = y⊺y − d⊺

γdγ − ∥
(
b⊺
⋆ − d⊺

γR12γ⋆
)
R−1

22γ⋆∥22
= S2

γ − ∥
(
b⊺
⋆ − d⊺

γR12γ⋆
)
R−1

22γ⋆∥22. (2.22)

Therefore, new dγ⋆ and S2
γ⋆ are updated from current values of dγ, S

2
γ , R12γ⋆

and R22γ⋆ . Inversion of triangular matrix R22γ⋆ in (2.21) is efficiently computed
by means of forward substitutions algorithm with O(m2) operations. Note that
when m = 1, this algorithm only involves the computation of vectors and scalars.
Quantities dγ⋆ and S2

γ⋆ reduce to

dγ⋆ =

[
dγ

1
r22γ⋆

(
b⋆ − r⊺12γdγ

)]
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and

S2
γ⋆ = S2

γ −
1

r222γ⋆

(
b⋆ − r⊺12γ⋆dγ

)2
,

where b⋆ = x⊺
⋆y ∈ R and quantities r12γ⋆ = R1γ⋆ [1 : pγ, pγ + 1] ∈ Rpγ and

r22γ⋆ = R1γ⋆ [pγ + 1, pγ + 1] ∈ R are computed as in Appendix 2.D.2 following the
addition of one column.

Remove last variables
Equations (2.21) and (2.22) provide a way to easily calculate the value of the
marginal likelihood when the last m ≥ 1 variables, i.e. columns of the matrix
X̃γ ∈ R(n+pγ)×pγ , are removed. Let pγ⋆ = pγ −m, vector dγ⋆ and matrix R1γ⋆ are
immediately computed by taking the pγ⋆-dimensional sub-vector dγ⋆ = dγ [1 : pγ⋆ ]⊺

and the (pγ⋆ × pγ⋆)-dimensional sub-matrix R1γ⋆ = R1γ [1 : pγ⋆ , 1 : pγ⋆ ] (see Ap-
pendix 2.D.2 and 2.D.3), whereas quantity S2

γ⋆ is efficiently evaluated as

S2
γ⋆ = y⊺y − d⊺

γ⋆dγ⋆ .

Remove variables
Assume that m = 1 variable needs to be removed from current model γ. This

is equal to delete column x̃k =
[
x⊺ 0⊺

k−1 1/υ1 0⊺
p−k−1

]⊺
∈ R(n+pγ) at position

1 ≤ k < pγ from X̃ ∈ R(n+pγ)×pγ which is achieved by applying a set of pγ − k
Givens rotations

G = Gpγ (pγ − 1, pγ)
⊺ × · · · ×Gk+1(k, k + 1)⊺

to triangular matrix R1γ ∈ Rpγ×pγ (see Appendix 2.D.2). The sequence of Given
rotations can be exploited to efficiently compute new vector dγ⋆ = R−⊺

1γ⋆bγ⋆ ∈ Rp⋆γ ,
with pγ⋆ = pγ − 1 and bγ⋆ = bγ(k), where subscript (k) denotes the deletion of the
k-th entry from bγ. New vector dγ⋆ is

dγ⋆ = R−⊺
1γ⋆bγ⋆

=
(

[G⊺R1γ](pγ ,k)
)−⊺

bγ(k)

=

[
R11

1γ

[
R12

1γ

]
(·,1)

0(pγ−k)×(k−1)

[
G⊺
kR

22
1γ

]
(pγ−k+1,1)

]−⊺

bγ(k), (2.23)

where Gk = G [k : pγ, k : pγ]. Subscript (l, h) denote a matrix without row l and
column h, whereas · indicates that no row (or column) is removed. The block form
in equation (2.23) yields

dγ⋆ =

[ (
R11

1γ

)−⊺
0(pγ−k+1)×(k−1)

−
( [

G⊺
kR

22
1γ

]
(pγ−k+1,1)

)−⊺( [
R12

1γ

]
(·,1)

)⊺(
R11

1γ

)−⊺ ( [
G⊺
kR

22
1γ

]
(pγ−k+1,1)

)−⊺

]
bγ(k),

(2.24)
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where ([G⊺
kR

22
1γ](pγ−k+1,1))

−⊺ = [G⊺
k](pγ−k+1,·)[(R

22
1γ)

−⊺](·,1). Exploiting the proper-
ties of the Givens rotations, inverse of sub-matrix R22

1γ⋆ = [G⊺
kR

22
1γ](pγ−k+1,1) is

[G⊺
k](pγ−k+1,·)

(
R22

1γ

)−⊺
=

(
0(pγ−k)×1 [G⊺

k](pγ−k+1,·)

[(
R22

1γ

)−⊺
]
(·,1)

)
,

which implies the following equalities:

−
( [

G⊺
kR

22
1γ

]
(pγ−k+1,1)

)−⊺( [
R12

1γ

]
(·,1)

)⊺(
R11

1γ

)−⊺
bγ [1 : (k − 1)] =

− [G⊺
k](pγ−k+1,·)

(
R22

1γ

)−⊺(
R12

1γ

)⊺
dγ [1 : (k − 1)]

and ( [
G⊺
kR

22
1γ

]
(pγ−k+1,1)

)−⊺
bγ [(k + 1) : pγ] = [G⊺

k](pγ−k+1,·)
(
R22

1γ

)−⊺
bγ [k : pγ] .

Finally, new vector dγ⋆ is computed by plugging these results in 2.24, which yields

dγ⋆ =

 (
R11

1γ

)−⊺
bγ [1 : (k − 1)]

[G⊺
k](pγ−k+1,·)

(
R22

1γ

)−⊺
(
bγ [k : pγ] −

(
R12

1γ

)⊺
dγ [1 : (k − 1)]

)
=

[
dγ [1 : (k − 1)]

[G⊺
k](pγ−k+1,·) dγ [k : pγ]

]
.

Therefore, dγ⋆ is efficiently updated alongside the computation of matrix R1γ⋆

when a variable is removed from the current design matrix. This is achieved
by pre-multiplying previous dγ by the sequence of Givens rotations required to
update matrix R1γ. Updating dγ prevents the calculation of inverse R−1

1γ⋆ needed
to evaluate S2

γ⋆ , which becomes computationally infeasible as pγ⋆ increases. Given
matrix Gk, this update is linear in pγ, i.e. the evaluation of dγ⋆ is achieved with
O
(
pγ − k

)
operations.

Extension to the case m > 1 is done in the same fashion by replacing the
Givens rotations with the Householder reflections, which share similar properties.
Following Appendix 2.D.3, a block of columns X̃⋆ ∈ R(n+pγ)×m is deleted from
matrix X̃γ ∈ R(n+pγ)×pγ at position k = 1, . . . , pγ −m by applying a sequence of
pγ − k −m+ 1 Householder reflections

H = Hpγ (pγ −m+ 1, pγ) × · · · ×Hk+m(k + 1, k +m)

to current triangular matrix R1γ ∈ Rpγ×pγ . Relying on the same strategy for the
case m = 1, new vector dγ⋆ ∈ Rpγ⋆ , with pγ⋆ = pγ −m, is updated as

dγ⋆ =

[
dγ [1 : (k − 1)]

[Hk](pγ−k−m+1,·) dγ [k : pγ]

]
.
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Also in this case, given matrix Hk computed alongside the update of R1γ after the
deletion of m columns, vector dγ⋆ is easily updated with O(pγ−k−m) operations.

Appendix 2.D.3 assesses the problem of deleting a block of m > 1 non-adjacent
columns. The solution is given by applying a combination of Givens rotations
and Householder reflections. Therefore, the methods discussed in this section are
applied to efficiently evaluate the marginal posterior distribution following the
deletion of a set of non-adjacent variables given previous values of S2

γ , dγ and R1γ.

2.5 Simulation studies

In this Section, we assess the sampling properties of the algorithms discussed in
Section 2.3 with several simulation experiments. We test variable selection and
computational efficiency of RJ, MTM and adaptive MTM against the most efficient
stochastic search variable selection algorithm which is the scalable spike-and-slab
of Biswas et al. (2022) (SSS, R package “ScaleSpikeSlab”). For variable selection,
we consider the median probability model (MPM) of Barbieri and Berger (2004)
and the maximum a-posteriori (MAP) for RJ, MTM and adaMT, whereas only
MPM is evaluated for SSS. To assess the efficiency of the target distribution update
based on the thinQR methods explained in Section 2.4, we include in the analysis
also the RJ algorithm with ordinary QR updating methods (see, e.g. Chambers,
1971). Eventually, we compare algorithms RJ, MTM and adaMTM and show how
the latter outperforms the other competitors in terms of acceptance probability
and exploration of the target distribution.

We consider the simulation scheme of Johnson and Rossell (2012) with different
settings of n, p, p0, where p0 denotes the real number of non-zero coefficients. The
response vector is generated following the linear model defined in (2.1) with σ2 = 1.
The p-dimensional vector β is defined as β = (β⊺

0, 0
⊺
p−p0)

⊺, where

β0 = (−1)u5
( log(n)√

n
+ |z|

)
, (2.25)

with z ∼ Np0(0, Ip0) and u ∼ Bin(p0, 0.4).
For each simulated dataset, we perform 50000 updates of parameter γ (we do

not sample β and σ2) and variable selection is evaluated over a post-burnin period
of 25000 iterations. For each chain, in order to avoid the exploration of unreliable
models with huge dimension, we set the maximum number of predictors to 250.
We consider 20 replications of each simulation case. As concerns the choice of the
divergence set for MTM and adaMTM models and prior hyper-parameters setting,
previous empirical evidence suggests DK = {1, 3, 5, 10} and σ2 ∼ IG(0.5, 5), for all
the synthetic and standardized data examples. Higher values for λ, i.e. σ2 ∼
(0.5, 10), are set when dealing with small signal to noise ratio in order to avoid
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overfitting, for example when p > 5000. We specify hyper-parameters ξ, φ and υ21
following Narisetty and He (2014). In particular, we compute ξ and φ by fixing
the mean and standard deviation of the Beta hyper-prior in advance. In order to
force a sparse solution, we fix the prior standard deviation of ϕ to 0.01, whereas
the mean is computed such that P

(∑p
j=1 γj = 1 > Q|ϕ

)
= 0.1, for a default value

Q = max{40, log(n)}. Finally, we set υ21 = max{p2.1/(100n), log(n)}.

Simulation study 1. In the first scenario, we consider independent predictors
and the design matrix X ∈ Rn×p is generated as xij ∼ N(0, 1), i = 1, . . . , n, j =
1, . . . , p. We study the cases n = {100, 200, 400}, p = {500, 1000, 3000, 5000, 10000}
and p0 = {10, 20, 30}. The results of variable selection are shown in Figures 2.1
and 2.2, which represent the AUC and F1 scores for each considered value of n, p
and p0. Overall, adaMTM and SSS provide the best AUC scores, with the latter
performing better in the case of lowest information, i.e. when n = 100. Indeed,
in this case adaMTM works well up to p = 3000 and p0 = 20, with AUC score
around 0.7, whereas the performance dramatically worsen as p increases. On the
contrary, F1 scores are always better for adaMTM algorithm. This is due to the
fact that MPM in not the optimal model for SSS, as it provides low marginal
inclusion probabilities estimates (Figure 2.B.1 in Appendix 2.B). Therefore, the
optimal threshold is never 0.5 and other methods (such as BIC criterion) should
be implemented for its choice. When n = 200, RJ and MTM still provide low
scores of AUC and F1 when p = 10000, and they reach good results only when
n = 400. The difference between MPM and MAP models is small when n = 200
and n = 400, with the former achieving slightly higher scores for both AUC and
F1 indexes. On the other hand, MPM regularly outperforms MAP model when
n = 100.

Figure 2.B.2 in Appendix 2.B shows the comparison between RJ, MTM and
adaMTM in terms of exploration of the target density, e.g. the Hamming distance
between the visited and true models and the acceptance rate of the MCMC algo-
rithms. Algorithm adaMTM provides the fastest convergence to the true model
(Figures 2.B.2a and 2.B.2b) and the highest acceptance rate (Figure 2.B.2c). Fi-
nally, we analysed the efficiency of the considered competitors: thinQR updating
methods yield the most efficient approach, with a 10-fold decrease in computa-
tional time when comparing adaMTM and SSS algorithms. Therefore, to sum up,
the former is able to approach the variable selection performance of the latter with
a great improvement in terms of efficiency.

Simulation study 2. In the second simulation study, we sample the design ma-
trix with correlated predictors as xi ∼ Np(0p,ΣX), i = 1, . . . , n, where ΣX is such
that (ΣX)lj = ρ|l−j| and we fix ρ = 0.5. The considered cases are n = {200, 400},
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p = {1000, 3000, 5000, 10000} and p0 = {10, 20, 30}. AUC and F1 scores are shown
in Figure 2.B.3 and 2.B.4 in Appendix 2.B. Similar considerations to those of sim-
ulation study 1 can be done, however the difference between adaMTM and SSS
in terms of AUC is smaller, whereas F1 scores are regularly better for the for-
mer method, especially in the most high dimensional case. Even with correlated
predictors, MPM model outperforms MAP in terms of variable selection.

2.6 Real data applications

In this Section, we present the application of models RJ, MTM and adaMTM
defined in Section 2.3 to two real datasets. In the first application we consider a
low-dimensional case in order to assess the quality of the β estimates and compare
the marginal posterior inclusion probabilities against the scalable spike-and-slab
of Biswas et al. (2022) (SSS). We then apply the methods to a high-dimensional
microarray dataset concerning gene expression from eye tissue in laboratory rats.

2.6.1 Inflation data

The first dataset, “Inflation“, is taken from Bernardi et al. (2016) and considers
predicting US inflation, measured as the changes in the US consumer price index,
using quarterly data from several macroeconomic indicators. In this example,
we consider all the observations between 1978-Q2 and 2021-Q3, for a total of
n = 147 observations and p = 14 variables. Further details on the variables
and their sources can be found in Appendix 2.C, where Table 2.C.1 provides a
complete description of the variables used as covariates in the linear regression
model. We perform 5000 iterations, with a post-burnin of period 2500. The hyper-
parameters for RJ, MTM and adaMTM are set to σ2 ∼ IG(0.5, 5), ϕ ∼ Beta(1, 1)
and υ21 = max{p2.1/(100n), log(n)}.

Figure 2.4 shows the boxplot of the marginal posterior distribution of the com-
ponents β: these are similar for all the considered competitors. The main differ-
ence concerns the estimate of the smallest effects, as SSS provides a distribution
centered around 0, while RJ, MTM and adaMTM set those coefficients exactly
to 0. The estimated marginal posterior inclusion probabilities (Figure 2.C.1 in
Appendix 2.C) shows a higher degree of shrinkage on the coefficients for algorithm
RJ, MTM and adaMTM, which regularly provide lower probabilities for the zero
coefficients than SSS.
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Figure 2.4: Boxplot of the posterior distribution of parameters β for dataset Infla-

tion. Each algorithm has performed 2500 post-burnin iterations. The compared

algorithms are: RJ, MTM, adaMTM and the Scalable Spike-and-Slab algorithm

of Biswas et al. (2022) (“SSS”).

2.6.2 Microarray data

The second dataset, “Bardet-Biedl”, is a microarray dataset consisting of gene
expression measurements from the eye tissue of 120 laboratory rats. The data was
originally studied by Scheetz et al. (2006) to investigate mammalian eye disease,
and later analyzed by Breheny and Huang (2015); Bai et al. (2022) to demonstrate
the performance of their group variable selection algorithms. The goal of this
analysis is to identify genes which are associated with the gene TRIM32. TRIM32
has previously been shown to cause Bardet-Biedl syndrome (Chiang et al., 2006),
a disease affecting multiple organs including the retina. Following the approach
in Scheetz et al. (2006), 18976 of the 31042 probe sets on the array “exhibited
sufficient signal for reliable analysis and at least 2-fold variation in expression”.
These probe sets include TRIM32 and 18975 other genes that potentially influence
its expression. Among these, we consider a subset of most correlated predictors
with the response variable, for a total of p = 4703 selected probes.

We estimated the models from 10 different starting points, where each repli-
cation consists of a total of 50000 draws from the posterior distribution, with a
post-burnin period of 25000. As concerns the hyperparameters setting, after con-
trolling for the degree of sparsity of the estimated models, we set σ2 ∼ IG(0.5, 3.5),
whereas υ21, ξ and φ are estimated following Narisetty and He (2014), as in Section
2.5. The set of divergence for MTM and adaMTM is DK = {1, 3, 5, 10}, whereas
parameters of the adaptive step-size are set to c = 10 and a = 0.55.

The average marginal posterior inclusion probabilities of the predictors esti-
mated by RJ, MTM, adaMTM and SSS across the 10 replications are shown in
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Figure 2.5: Average marginal posterior inclusion probabilities of predictors for

dataset Bardet-Biedl across 10 replications of the models (25000 post-burnin iter-

ations for each replication). The compared algorithms are: RJ, MTM, adaMTM

and the Scalable Spike-and-Slab algorithm of Biswas et al. (2022) (“SSS”).

Figure 2.5. SSS does not include any gene in the model, with really low inclusion
probabilities. The probe with the highest inclusion probability is 1389907, which
is included in most of the MAP models (see Table 2.C.3). RJ tends to include a
larger number of predictors, whereas MTM and adaMTM assign higher probabili-
ties to a smaller number of probes. The main discrepancies between these last two
methods concern probes 1390168, 1378316 and 1391096. In particular, the latter
is never included by algorithm MTM.

The trace of the log-target density for RJ, MTM and adaMTM is shown in
Figure 2.C.2 in Appendix 2.C. All the three methods show similar behaviour across
the replications, even when starting from a low-density zone (chain 8). In this
latter case, adaMTM converges faster to local maximum. Finally, we study the
convergence of the MCMC chains by estimating the potential scale reduction factor
(Gelman and Rubin, 1992) marginally for each βj, j = 1, . . . , 4703 (see Table
2.C.2). These values give insights on the convergence, but they should not be
completely trusted, as the β are not always sampled at each iteration. Algorithm
adaMTM provides the best estimated values, i.e. closest to the interval (1.0, 1.2).

2.7 Conclusion and discussion

With this paper we develop multiple trans-dimensional MCMC sampling methods
for model selection in high-dimensional linear regression with Gaussian errors. The
introduced methods rely on a Delta spike-and-slab prior (George and McCulloch,
1993, 1997), with prior inclusion probability of the predictors guided by a Beta
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hyper-prior. In particular, we implement three different algorithms (RJ, MTM
and adaMTM described in Section 2.3) and assess their sampling properties with
intensive simulations and the application to two real datasets. The most promising
approach is represented by the adaptive method adaMTM, which provides better
results in terms of variable selection, exploration of the target density and rate
of convergence. Moreover, by relying on the thinQR updating methods discussed
in Section 2.4, these results are achieved with a much improved computational
efficiency when compared to SSS model of Biswas et al. (2022).

In Section 2.5 and 2.6 we analysed different settings for the hyperparameters
and we find that our approaches are sensitive to their choice. We rely on the
considerations of Narisetty and He (2014) in order to provide sensible values of
υ21, ξ and φ. The most delicate issue concerns the specification of ν and λ related
to the prior distribution of residual variance σ2: different choices lead to different
degrees of sparsity in the estimated models and influence the convergence of the
algorithms. Therefore, an optimal calibration, based also on prior evidence, is
fundamental for obtaining accurate results.

Algorithm adaMTM is justified by some theoretical properties of the adap-
tive scheme in Appendix 2.A. However, additional proofs on the ergodicity of the
MCMC are needed. To this aim, the works of Ji and Schmidler (2013) and Fontaine
and Bédard (2022) provide promising results for the analysis of the convergence
of our approach.

The main drawback of adaMTM is the important loss of accuracy when low
information is available, i.e. when the number of observation is particularly small.
In this case, further tuning of the mixture proposal distribution is required, where
a possible extension is provided by the informed trans-dimensional transitions
(Gagnon, 2021).

Future work will be to account for the considerations made in Martino and
Louzada (2017) and to calibrate the optimal number of trials. An interesting
solution could be to assume a random maximum divergence K ≥ 1, with the goal
of adapting the MCMC jumps size as the chain proceeds. Such generalization
must come with a theoretical justification of the method, as it is not clear whether
it provides an ergodic MCMC algorithm.

Finally, the described methods can be extended to the case of binary outcome
via probit data-augmentation scheme (Albert and Chib, 1993). However, the up-
dating methods implemented for linear regression with Gaussian errors can not
be directly applied to this case, as the introduction of the probit latent variable
does not allow the update of the fixed vector dγ = (Σ⋆

βγ
)−1/2X⊺

γy (defined in Sec-
tion 2.4) after the addition or deletion of a set of variables and, therefore, further
considerations are required.
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Appendix

Appendix 2.A Additional theoretical results and

proofs

Proposition 2.A.1. (Proposal distribution for the MTM algorithm) Let γ be the
current model, the number of models that differ from the current model by adding
or deleting dk predictors in the adaptive MTM algorithm defined in Subsection
2.3.2 is

dk∑
j=0

(
p− pγ
j

)(
pγ

dk − j

)
=

(
p

dk

)
, (2.26)

where
(
n
k

)
is the Binomial coefficient.

Proof. The Quantity
(
p−pγ
j

)(
pγ
dk−j

)
in (2.26) denotes the total number of models

that differ from the current model γ by adding j and deleting dk− j different pre-
dictors. The right hand side of (2.26) is obtained by applying the Vandermonde’s
convolution formula Graham et al. (1994) as it is evident since there are

(
p
dk

)
ways

to choose an (unordered) subset of dk regressors from the set of p covariates.

Proof. (of weighted likelihood being a valid distribution) After some simple alge-
braic operations, at the t-th iteration, the updating probability distribution is

59
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π
(
ζ|θ,γ

)
∝

K∏
k=1

(
π
(
ζ(k)|θ

))w̄k

(
γ(k)|γ,θ(t)

)
(2.27)

∝
K∏
k=1

(
M∏
m=1

θζ
(k)
m
m

)w̄k

(
γ(k)|γ,θ(t)

)

∝
K∏
k=1

M∏
m=1

θ
ζ
(k)
m w̄k

(
γ(k)|γ,θ(t)

)
m

∝
M∏
m=1

(
K∏
k=1

θ
ζ
(k)
m w̄k

(
γ(k)|γ,θ(t)

)
m

)

∝
M∏
m=1

θ
∑K

k=1 ζ
(k)
m w̄k

(
γ(k)|γ,θ(t)

)
m ,

with
∑K

k=1

∑M
m=1 ζ

(k)
m = K, where π(ζ(k)|θ) is the likelihood function of latent vec-

tor parameter ζ(k) defined in (2.10) and w̄k
(
γ(k)|γ,θ(t)

)
∈ (0, 1) is the normalized

importance weight of the k-th proposal defined in (2.13), with
∑K

k=1 w̄k
(
γ(k)|γ,θ(t)

)
=

1. Therefore, from (2.27), π
(
ζ|θ,γ

)
is the probability density function of a Multi-

nomial random variable π
(
ζ(k)|θ

)
weighted by w̄k

(
γ(k)|γ,θ(t)

)
> 0. The normal-

izing constant of (2.27) is

K∏
k=1

(
M !∏M

m=1

(
ζ
(k)
m

)
!

)w̄k

(
γ(k)|γ,θ(t)

)
,

which completes the proof.

Proof. (of Proposition 2.3.1, theoretical justification for adaptive MTM updating
mechanism) As suggested by Haario et al. (2001); Andrieu and Moulines (2006);

Andrieu and Thoms (2008), the update of the component θ
(t+1)
m , m = 1, . . . ,M ,

of algorithm adaMTM proposal distribution qa(γ
(k)|γ) =

∑M
m=1 θmqm(γ(k)|γ) at

iteration t+ 1 can be formulated as

θ(t+1)
m = θ(t)m + ηt+1H

(
θ(t)m , ζ

(t),γ(t)
)
,

M∑
m=1

θ(t+1)
m = 1, (2.28)

where ηt = 1/(cta), with c > 0 and a ∈
(
0.5, 1

]
, is a non-increasing sequence of

positive step-sizes that satisfies the conditions
∑∞

t=1 ηt = ∞ and
∑∞

t=1 η
1+δ
t < ∞,
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for some δ > 0 (see, e.g. Haario et al., 2001). The function H
(
θ
(t)
m , ζ

(t),γ(t)
)

in (2.28) is selected in order to minimize the KL divergence between π(γ) and
π
(
ζ|θ,γ

)
as defined in equation (2.16), i.e.

arg max
θm

∑
γ∈{0,1}p

π(γ) log π
(
ζ|θ,γ

)
s.t.

M∑
m=1

θm = 1.

Under the constraint
∑M

m=1 θm = 1, the minimization problem above can be solved
by means of Lagrange multipliers, (see, e.g. Nocedal and Wright, 2006). Specifi-
cally

H
(
θm, ζ,γ

)
= arg min

θm

− ∑
γ∈{0,1}p

π(γ) log π
(
ζ|θ,γ

)
− λ
( M∑
m=1

θm − 1
)

= arg max
θm

 ∑
γ∈{0,1}p

π(γ) log π
(
ζ|θ,γ

)
+ λ
( M∑
m=1

θm − 1
)

=
∂

∂θm

 ∑
γ∈{0,1}p

π
(
γ
)

log π
(
ζ|θ,γ

)
+ λ
( M∑
m=1

θm − 1
)

=
∑

γ∈{0,1}p
π
(
γ
)∑K

k=1 ζ
(k)
m w̄k

(
γ(k)|γ,θ(t)

)
θm

+ λ,

where λ ≥ 0 is the Lagrange multiplier. Since H
(
θm, ζ,γ

)
involve the intractable

summation over the space of competing models we rely on the Monte Carlo ap-
proximation

Ĥ
(
θm, ζ,γ

)
=

1

B

B∑
b=1

(∑K
k=1 ζ

(k)
m w̄k

(
γ(k)|γ(b),θ(t)

)
θm

)
+ λ,

where γ(b) ∼ π(γ), for b = 1, . . . , B, and B > 1 is the number of MC samples.
Taking B = 1, i.e. only the quantity evaluated at the last iteration, and imposing
the property

∑M
m=1 Ĥ

(
θm, ζ,γ

)
= 0 in order to ensure that vector of probabilities

θ sum up to 1, it yields

λ = − 1

M

M∑
m=1

1

θm

K∑
k=1

ζ(k)m w̄k
(
γ(k)|γ,θ(t)

)
,

which completes the proof.
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Proof. (of Proposition 2.3.3, detailed balance condition for the adaptive MTM
algorithm) Let π(γ) = m(γ|y,X) denote the target density. To guarantee that
the Markov chain generated by the adaptive MTM algorithm converges to its
stationary distribution, we prove that the transition kernel T(·, ·) generated by
algorithm 3 fulfills the property π(γ)A(γ,γ⋆) = π(γ⋆)A(γ⋆,γ), where γ⋆ = γ(j)

is the selected j-th proposal among the K trials and A(γ,γ⋆) is the transition
probability for the jump from γ to γ⋆. Specifically, let

Tζ

(
γ⋆|γ

)
≡ T

(
γ⋆|γ, ζ

)
=

M∑
m=1

ζ(j)m qm
(
γ⋆|γ

)
,

be the transition kernel conditional to the component indicator z(j) =
∑M

m=1mζ
(j)
m

and let

T
(
γ⋆|γ,θ

)
=

M∑
m=1

P
(
z(j) = m|θ

)
qm
(
γ⋆|γ

)
=

M∑
m=1

θmqm
(
γ⋆|γ

)
,

be the corresponding unconditional kernel to transit from γ to γ⋆. Following Liu
et al. (2000), we define

wj
(
γ⋆|γ,θ

)
= π(γ⋆)T

(
γ|γ⋆,θ

)
λ
(
γ⋆,γ

)
where λ

(
γ⋆,γ

)
is a symmetric function, i.e. λ

(
γ⋆,γ

)
= λ

(
γ,γ⋆

)
. The importance

weights for the adaptive MTM algorithm discussed in Section 2.3.3 imply the
following choice of the function λ

(
γ⋆,γ

)
:

λ
(
γ⋆,γ

)
= T

(
γ⋆|γ,θ

)−1T
(
γ|γ⋆,θ

)−1
.

Without loss of generality, assume γ ̸= γ⋆ and that the j-th component is sampled,
the detailed balance condition states
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π(γ)A(γ,γ⋆) = Kπ(γ)
∑
γ(1)

· · ·
∑
γ(j−1)

∑
γ(j+1)

· · ·
∑
γ(K)
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· · ·
∑
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∑
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× · · · × T
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× · · ·

× T
(
γ(K)|γ,θ

) wj
(
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)
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)
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× · · · × T
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1
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1
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× · · · × T
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×

× T
(
v(j+1)|γ⋆,θ
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× · · · × T

(
v(K)|γ⋆,θ

)
,

where v(k), k = 1, . . . , j− 1, j+ 1, . . . , K, are K − 1 auxiliary values sampled from
distribution qa(v

(k)|γ⋆,θ), i.e. v(k) ∼ qa(v
(k)|γ⋆,θ), and v(j) = γ. Because of the

symmetry of λ
(
γ⋆,γ

)
, we conclude that π(γ)A(γ,γ⋆) = π(γ⋆)A(γ⋆,γ).

Appendix 2.B Additional results for the simula-

tion study

In this Appendix we report some additional figures for the evaluation of variable se-
lection and the exploration of the target density concerning the simulation studies
in Section 2.5.
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Appendix 2.C Additional material for real data

applications

In this Appendix some additional materials on the datasets used in Section 2.6 are
reported.

2.C.1 Inflation data

Inflation prediction, measured as the changes in the consumer price index (CPI-
AUCSL, CPILFESL), using quarterly data from several macroeconomic indicators,
see Bernardi et al. (2016). Table 2.C.1 provides a complete description of the vari-
ables used as covariates in the linear regression model. In this example, we consider
all the observations between 1978-Q2 and 2021-Q3. Further details on the vari-
ables used and their sources can be found in the Data Appendix of Bernardi et al.
(2016).

Table 2.C.1: Inflation database, see Bernardi et al. (2016) for further details.

All the variables are publicly available for download from the FRED database

maintained by the Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org.

# Variable name Variable type Variable description

1 DATE date date

2 CPIAUCSL numerical
Consumer Price Index for All Urban Consumers:

All Items in U.S. City Average

3 CPILFESL numerical
Consumer Price Index for All Urban Consumers:

All Items Less Food and Energy in U.S. City Average

4 UNRATE numerical Unemployment Rate

5 PCEC numerical Real Personal Consumption Expenditures

6 PRF numerical Private Residential Fixed Investment

7 GDPC1 numerical Real Gross Domestic Product

8 HOUST numerical New Privately-Owned Housing Units Started: Total Units

9 USPRIV numerical Employees, Total Private

10 TB3MS numerical 3-Month Treasury Bill Secondary Market Rate

11 T10Y3MM numerical 10-Year Treasury Constant Maturity Minus 3-Month Treasury Constant Maturity

12 M1SL numerical Money supply - M1

13 MICH numerical University of Michigan: Inflation Expectation

14 PPIACO numerical Producer Price Index by Commodity: All Commodities

15 DJIA numerical Dow Jones Industrial Average Index

16 PMI numerical Purchasing Manager’s composite index (Institute of Supply Management)

17 VENDOR numerical NAPM vendor deliveries index

https://fred.stlouisfed.org
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Figure 2.C.1: Estimated marginal posterior inclusion probability for each pre-

dictors of dataset Inflation. Each algorithm has performed 2500 post-burnin it-

erations. The compared algorithms are: RJ, MTM, adaMTM and the Scalable

Spike-and-Slab algorithm of Biswas et al. (2022) (“SSS”).

2.C.2 Microarray data

Here, we provide additional details on the application of algorithms RJ, MTM and
adaMTM to the dataset Bardet-Biedl.

Table 2.C.2: Distribution of the estimated potential scale reduction factors com-

puted over a post-burning period of 25000 updates for regression parameter β

across 10 replications. NAs are related to those predictors with marginal posterior

inclusion probability equal to 0. Optimal values of the index should lie in the

interval (1, 1.2).

Algorithm Min 1st Qu. Median Mean 3rd Qu. Max NAs

RJ 1.158 1.304 1.348 1.479 1.457 5.352 3557

MTM 1.154 1.305 1.345 1.456 1.447 5.443 3559

adaMTM 1.101 1.291 1.299 1.306 1.327 2.906 2133
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Table 2.C.3: Probes of dataset Bardet-Biedl selected more than once across 10

replications by the MAP models with RJ, MTM and adaMTM, along with the

average β estimate and marginal posterior inclusion probability (mip).

probe RJ MTM adaMTM SSS

est. mip est. mip est. mip est. mip

1371109 at 0.04 0.14 0.00 0.00 0.00 0.02 0.00 0.00

1372671 at 0.06 0.15 0.01 0.04 0.00 0.01 0.01 0.00

1378289 at -0.02 0.14 0.00 0.00 -0.02 0.10 -0.01 0.00

1378316 at -0.06 0.25 -0.07 0.28 -0.02 0.08 -0.02 0.05

1383783 at 0.02 0.09 0.00 0.00 0.00 0.01 0.00 0.00

1384110 at 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00

1389907 at 0.15 0.41 0.20 0.51 0.27 0.64 0.03 0.08

1390168 a at -0.07 0.19 0.00 0.00 -0.02 0.10 0.00 0.00

1391096 at -0.04 0.11 -0.02 0.05 -0.09 0.21 -0.01 0.01

1391322 at 0.00 0.04 0.00 0.02 0.00 0.02 0.00 0.00

1391484 at -0.04 0.22 -0.01 0.04 -0.03 0.13 -0.01 0.03

1394037 at 0.02 0.09 0.00 0.01 0.00 0.02 0.01 0.00

1368625 at 0.01 0.04 0.03 0.10 0.00 0.00 0.00 0.00

1372262 at 0.02 0.09 0.00 0.00 0.00 0.00 0.00 0.00

1373777 at 0.02 0.10 0.00 0.00 0.00 0.01 0.00 0.00

1378452 at -0.01 0.05 0.00 0.00 0.00 0.01 0.00 0.00

1383638 at 0.00 0.09 0.00 0.00 0.00 0.01 0.00 0.00

1384903 at -0.01 0.04 0.00 0.03 0.00 0.01 0.00 0.00

1390682 at -0.01 0.04 0.00 0.01 -0.01 0.04 0.00 0.00

1393063 at 0.02 0.09 0.01 0.05 0.00 0.04 0.01 0.00

1393360 at 0.01 0.08 0.00 0.00 0.00 0.00 0.00 0.00

1395517 at 0.02 0.06 0.00 0.01 0.00 0.01 0.00 0.00

1395881 at 0.01 0.05 0.00 0.00 0.00 0.02 0.00 0.00

1398590 at -0.01 0.10 0.00 0.00 0.00 0.04 0.00 0.00

1367874 at 0.01 0.12 0.00 0.00 0.00 0.02 0.00 0.00

1368484 at 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00

1368980 at -0.02 0.08 0.00 0.01 0.00 0.00 0.00 0.00

1370201 at 0.00 0.04 0.00 0.00 0.00 0.00 0.01 0.00

1370411 at 0.01 0.08 0.00 0.00 0.00 0.01 0.00 0.00

1371524 at 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00

1371841 at 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.00

1372821 at 0.00 0.04 0.00 0.02 0.00 0.01 0.00 0.00

1378438 at 0.01 0.08 0.01 0.03 0.00 0.02 0.00 0.00

1378524 at 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00

1383106 at 0.01 0.05 0.00 0.00 0.00 0.01 0.01 0.00

1387732 at 0.00 0.10 0.00 0.00 0.00 0.01 0.00 0.00

1389618 at 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 2.C.2: Exploration of the target density for dataset Bardet-Biedl across 10

replications of the models. The compared algorithms are: RJ, MTM and adaMTM.

Appendix 2.D ThinQR update

In Appendix 2.D.1 we present an overview of QR and thinQR decompositions, as
well as the most common methods for their computation (see Golub and Van Loan
(2013) for a detailed dissertation). In Appendix 2.D.2 and 2.D.3 we discuss novel
updating algorithms for the efficient update of thinQR decomposition.

2.D.1 QR and thinQR decompositions

Many statistical applications require the inversion of matrix X̃⊺X̃ = X⊺X + Σ−1
βγ

,

where X̃ ∈ R(n+pγ)×pγ . A way of speeding up this inversion is by exploiting the
QR decomposition. In what follows we will consider a generic N ×m matrix X of
full column rank.

The QR decomposition factorises matrix X into QR, where Q is a N × N

orthogonal matrix and R is a N × m upper trapezoidal matrix R =

[
R1

0N−m,m

]
with R1 being a square upper triangular matrix and

Q⊺X = R.

The two most common methods to obtain such factorisation are by exploiting
either a sequence of Householder reflections or Givens rotations. For further ref-
erences see Golub and Van Loan (2013) and Björck (2015).
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Following the work of Golub and Van Loan (2013), it can be shown that, for
k ∈ {1, . . . ,m} it yields

span {x1, . . . ,xk} = span {q1, . . . ,qk} ,

where q1, . . . ,qk is the k-dimensional subspace formed by the columns of matrix
Q and span {S} refers to the smallest linear subspace of S. This result allows a
reduced QR decomposition such that

[
Q1 Q2

]⊺
X =

[
R1

0

]
,

where Q1 ∈ RN×m, Q2 ∈ RN×
(
N−m

)
and R1 ∈ Rm×m represents the thinQR

decomposition of X. It is straightforward to show that X = Q1R1. Hence, com-
putational costs may be lowered by applying algorithms that update only the
reduced matrix R1.

Householder reflections

The most common method of computing QR decomposition relies on multiple
Householder reflections applied to X. An Householder matrix with normal vector
v ∈ RN is a N ×N symmetric and orthogonal matrix defined as

H = IN − τvv⊺, τ =
2

∥v∥22
,

where ∥v∥2 =
√
v⊺v is the ℓ2-norm of the vector v. The Householder matrix H

for the first column of X is built so that Hx1 = αe1, where e1 ∈ RN is the first
column of IN . By setting

ṽ =

[
x1[1] + sign

(
x1[1]

)
∥x1∥2

x1[2 : N ]

]
v =

ṽ

ṽ[1]
,

it can be shown that Hx1 = −sign
(
x1[1]

)
∥x1∥2e1. Thus, the QR decomposition of

X can be computed as a sequence of m Householder reflections applied to X. This
way all elements under the diagonal of X are set to zero. The orthogonal matrix
Q⊺ is then defined as

HmHm−1 × · · · ×H1 = Q⊺,
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where Hi, i = 1, 2, . . . ,m, is the Householder matrix related to the i-th column of
X, with normal vectors vi = ṽi/ṽi[i] with

ṽi =

 0i−1

xi [i] + sign
(
xi [i]

)
∥xi [i : N ] ∥2

xi [(i+ 1) : N ]

 .
In general, it is possible to set to 0 the elements from j > i to k of column i of
X while modifying only element xi[i] of column i. This can be done by multi-
plying X by the Householder matrix Hi(j, k), which has normal vector vi(j,k) =
ṽi(j,k)/ṽi(j,k)[i] with

ṽi(j,k) =


0i−1,1

xi[i] + sign
(
xi [i]

)
∥xi[⋆]∥2

0j−i−1,1

xi[j : k]

0N−k,1

 ,

where xi[⋆] = [xi[i] xi[j : k]] is the vector obtained by stacking entry i and entries
from j to k of column xi.

Givens rotation

Another method to compute QR decomposition of a matrix X ∈ RN×m relies
on Givens rotations, which introduces one zero at a time under the diagonal. A
Givens matrix is a N ×N orthogonal matrix defined as

G(i, j) =

i j


Ii−1

... 0i−1,j−i−1
... 0i−1,N−j

. . . c . . . s . . . i

0j−i−1,i−1
... Ij−i−1

... 0j−i−1,N−j

. . . −s . . . c . . . j

0N−j,i−1
... 0N−j,j−i−1

... IN−j

where the dots stand for vectors of 0’s of the appropriate dimension, c = cos
(
θ
)

and s = sin
(
θ
)
, for some θ and i < j with i, j ∈ Z+. Let x be a N -dimensional

vector, then values c and s can be computed analytically as

c =
xi√
x2i + x2j

, s =
−xj√
x2i + x2j

,
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and G(i, j)⊺x = x̃, where

x̃k =


cxi − sxj, if k = i

0, if k = j,

xk otherwise.

The QR decomposition can be computed by applying a sequence of Givens rota-
tions to sequentially set to zero all elements under the diagonal. In particular,
orthogonal matrix Q can be computed as

Gm(m,m+ 1)⊺ · · ·Gm(m,N)⊺ · · ·G1(1, 2)⊺ · · ·G1(1, N)⊺ = Q⊺,

where subscript j denotes the Givens rotation applied to the j-th column of X.

2.D.2 Adding and deleting one column

Here we consider the update of triangular matrix R1 following the addition of
column x⋆ ∈ RN at the end or the deletion of column xk ∈ RN at position
k = {1, . . . ,m}.

Adding one column

The thinQR update of the augmented matrix X+ =
[
X x⋆

]
∈ RN×

(
m+1
)

after

the addition of column x⋆ ∈ RN at the end of matrix X (i.e. at position m+ 1) is[
Q⊺

1

Q⊺
2

]
X+ =

[
R1 z⋆1
0 z⋆2

]
= R̃+

1 ,

where z⋆1 = Q⊺
1x⋆ and z⋆2 = Q⊺

2x⋆. Matrix R+
1 can be obtained by setting to

zero the last N − m − 1 elements of the last column of R̃+
1 , as shown in Figure

2.D.1. This may be achieved by pre-multiplying R̃+
1 by the appropriate set of

Givens matrices. However, this procedure requires the evaluation of matrices Q1

and Q2. In order to avoid such computation, z⋆1 can be determined by solving the
linear system R⊺

1z⋆1 = X⊺x⋆, while the element R+
1 [m+1,m+1] can be computed

exploiting the relation R+⊺
1 [,m+ 1]R+

1 [,m+ 1] = x⊺
⋆x⋆, therefore

R+
1 [m+ 1,m+ 1] =

√√√√x⊺
⋆x⋆ −

p∑
i=1

z2⋆1[i].

This update takes O
(
Nm

)
operations. The algorithm is shown in Algorithm 6.
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Note that the thinQR decomposition only allows the update of R1 following
the addition of the column at the end. However, in our case this is not an issue, as
marginal posterior distribution m

(
γ|y,X

)
is invariant with respect to the ordering

of the variables. Therefore, it is assumed that they are added at the end of the
design matrix.

R̃1 =



+ + + + z⋆1[1]

0 + + + z⋆1[2]

0 0 + + z⋆1[3]

0 0 0 + z⋆1[4]

0 0 0 0 z⋆2[1]

0 0 0 0 z⋆2[2]

0 0 0 0 z⋆2[3]


→



+ + + + z⋆1[1]

0 + + + z⋆1[2]

0 0 + + z⋆1[3]

0 0 0 + z⋆1[4]

0 0 0 0 z̃⋆2[1]

0 0 0 0 0

0 0 0 0 0


= R+

1

Figure 2.D.1: Add one column at the end with N = 7 and m = 4; vector z⋆1 is

computed by solving the linear system R⊺
1z⋆1 = X⊺x⋆.

Deleting one column

Let X− =
[
X
[
, 1 :

(
k − 1

)]
X [, (k + 1) : m]

]
∈ RN×

(
m−1
)

be the reduced form
of X after the deletion of column k = {1, . . . ,m}, then

R̃−
1 =

[
R1k− R1k+

]
,

where R1k− = R1[, 1 : (k− 1)] and R1k+ = R1[, (k+ 1) : m] are upper trapezoidal.
Updated matrix R−

1 can be obtained by setting to 0 the m − k elements on the
sub-diagonal in R1k+ , as shown in Figure 2.D.2. This can be achieved by pre-
multiplying matrix R̃−

1 for the sequence of Given rotations given by Gm(m −
1,m)⊺ × · · · ×Gk+1(k, k + 1)⊺, leading to[

R−
1

0⊺

]
= Gm−1(m− 1,m)⊺ × · · · ×Gk(k, k + 1)⊺R̃−

1 .

The number of operations required for this update is O
(
(m−k)2

)
, which becomes

0 if k = m. The algorithm is shown in Algorithm 7.

2.D.3 Adding and deleting a block of columns

Here we consider the update of triangular matrix R1 following the addition of a
block of columns X⋆ ∈ RN×d at the end or the deletion of a block of (adjacent and
non-adjacent) columns Xk ∈ RN×d from position k = {1, . . . ,m− d+ 1}.
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R1 =


+ + + +

0 + + +

0 0 + +

0 0 0 +

→


+ + +

0 + +

0 ⊙ +

0 0 ⊙

 = R−
1

Figure 2.D.2: Delete one column with N = 7, m = 4 and k = 2; symbol ⊙ denotes

an element set to zero with a Givens rotation.

Adding a block of columns

The thinQR update of the augmented matrix X+ =
[
X X⋆

]
∈ RN×

(
m+d
)

after

the addition of a block of columns X⋆ ∈ RN×d at the end of matrix X (i.e. at
position m+ 1) is [

Q⊺
1

Q⊺
2

]
X+ =

[
R1 Z⋆1
0 Z⋆2

]
= R̃+

1 ,

where Z⋆1 = Q⊺
1X⋆ and Z⋆2 = Q⊺

2X⋆. Matrix R+
1 can be obtained through tri-

angularization of matrix Z⋆2, as shown in Figure 2.D.3. This may be achieved
by pre-multiplying R̃+

1 by the appropriate set of Givens matrices. However, this
procedure requires the evaluation of matrices Q1 and Q2. In order to avoid such
computation, Z⋆1 can be determined by solving the linear system R⊺

1Z⋆1 = X⊺X⋆.
Entries R+

1 [m+ i,m+ j], for i = 1, . . . , d and j ≥ i, . . . , d can be computed by
iteratively exploiting the relationship X+⊺X+ = R1

+⊺R1
+, see Algorithm 8. This

update takes O(dNm) operations.

As for the case d = 1, note that the thinQR decomposition only allows the
update of R1 following the addition of the block of columns at the end. However,
in our case this is not an issue, as marginal posterior distribution m

(
γ|y,X

)
is

invariant with respect to the ordering of the variables. Therefore, it is assumed
that they are added at the end of the design matrix.

Deleting a block of adjacent columns

Let X− =
[
X
[
, 1 :

(
k − 1

)]
X [, (k + d) : m]

]
∈ RN×

(
m−d
)

be the reduced form
of X after the deletion of a block of d < m adjacent columns starting from position
k = {1, . . . ,m− d+ 1}, then

R̃−
1 =

[
R1k− R1k+

]
,

where R1k− = R1[, 1 : (k− 1)] and R1k+ = R1[, (k+ d) : m] are upper trapezoidal.
Updated matrix R− can be obtained through triangularization of matrix R1k+ , as
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R̃1 =



+ + + + Z⋆1[1, 1] Z⋆1[1, 2]

0 + + + Z⋆1[2, 1] Z⋆1[2, 2]

0 0 + + Z⋆1[3, 1] Z⋆1[3, 2]

0 0 0 + Z⋆1[4, 1] Z⋆1[4, 2]

0 0 0 0 Z⋆2[1, 1] Z⋆2[1, 2]

0 0 0 0 Z⋆2[2, 1] Z⋆2[2, 2]

0 0 0 0 Z⋆2[3, 1] Z⋆2[3, 2]


→



+ + + + Z⋆1[1, 1] Z⋆1[1, 2]

0 + + + Z⋆1[2, 1] Z⋆1[2, 2]

0 0 + + Z⋆1[3, 1] Z⋆1[3, 2]

0 0 0 + Z⋆1[4, 1] Z⋆1[4, 2]

0 0 0 0 Z̃⋆2[1, 1] Z̃⋆2[1, 2]

0 0 0 0 0 Z̃⋆2[2, 2]

0 0 0 0 0 0


=

R+
1

Figure 2.D.3: Add a block of columns at the end with N = 7, m = 4 and d = 2;

matrix Z⋆1 is computed by solving the linear system R⊺
1Z⋆1 = X⊺X⋆.

shown in Figure 2.D.4. This can be achieved by pre-multiplying matrix R̃−
1 for a

set of Householder reflections as follows[
R−

1

0⊺

]
= Hm−d(m− d+ 1,m) × · · · ×Hk(k + 1, k + d)R̃1

where Hj(l, n), j = k, . . . ,m − d, is the Householder matrix with normal vector
vj(l, n) ∈ Rm defined as in equation (2.D.1). Eventually, the upper triangular
sub-matrix R−

1 ∈ R(m−d)×(m−d) is selected.
The number of operations required for this update is O

(
dm2

)
if k ∈ {1, . . . ,m−

d} and 0 if k = m− d+ 1. The algorithm is show in Algorithm 9.

R1 =


+ + + + +

0 + + + +

0 0 + + +

0 0 0 + +

0 0 0 0 +

→


+ + +

0 + +

0 ⊙ +

0 ⊙ ⊙
0 0 ⊙

 = R−
1

Figure 2.D.4: Delete a block of columns with N = 7, m = 5, k = 2 and d = 2;

symbol ⊙ denotes an elements set to zero with Householder reflections.

Deleting a block of non-adjacent columns

Let X− ∈ RN×(m−d) be the reduced form of X after the deletion of d < m non-
adjacent columns in positions k1, . . . , kd, then updated matrix R−

1 can be obtained
through triangularization of matrix R1 after the deletion of columns k1, . . . , kd.
Following the case for d adjacent columns, this can be done by applying either
Givens rotations or Householder reflections, depending on the number of elements
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below the main diagonal that are set to zero (see Figure 2.D.5). In this case,
Givens rotations are applied to R− when setting to zero one element below the
new diagonal of R−, whereas Householder reflections are applied when setting to
zero more than one element below the main diagonal.

R1 =


+ + + + +

0 + + + +

0 0 + + +

0 0 0 + +

0 0 0 0 +

→


+ +

⊙ +

0 ⊙
0 ⊙
0 ⊙

 = R−
1

Figure 2.D.5: Delete a block of non-adjacent columns with N = 7, m = 5, d = 3,

k1 = 1, k2 = 3 and k3 = 4; symbol ⊙ denotes an elements set to zero with Givens

rotations or Householder reflections.

2.D.4 ThinQR update algorithms

Algorithm 4: Householder reflection, (τ,v, µ) = householder
(
a,x
)

1 Input: a ∈ R, x ∈ RN ;

2 s = ∥x∥22, v =
[
1 x⊤

]⊤
;

3 if (s == 0) & (a == 0) then τ = 0;

4 if (s == 0) & (a > 0) then

5 τ = −2;

6 else

7 µ =
√
s+ a2;

8 if (a ≤ 0) then

9 v [1] = a− µ;

10 else

11 v [1] = −s/(a+ µ);

12 end

13 end

14 b = (v[1])2, τ = 2b/(s+ b), v =
[
1

(
v[2 : (N + 1)]/v[1]

)⊤]⊤;

15 return (τ,v, µ);
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Algorithm 5: Givens rotation, (c, s) = givens
(
a, b
)

1 Input: a ∈ R, b ∈ R;

2 if (b == 0) then

3 c = 1;

4 s = 0;

5 else

6 if (|b| > |a|) then

7 r = −a/b;

8 s = 1/
√
1 + r2;

9 c = s ∗ r;

10 if (b > 0) then c = −c, s = −s;

11 else

12 r = −b/a;

13 c = 1/
√
1 + r2;

14 s = c ∗ r;

15 if (a < 0) then c = −c, s = −s;

16 end

17 end

18 return (c, s);

Algorithm 6: ThinQR update when a column is added at position k =

m+ 1, R+
1 = thinqraddcol

(
R1,X,u

)
1 Input: R1 ∈ Rm×m, X ∈ RN×m, u ∈ RN ;

// add one column

2 Solve R⊺
1r12 = X⊺u with respect to r12 with forward substitution algorithm;

3 R1 =

 R1 r12

01×m 0

;

// update R1

4 R1 [m+ 1,m+ 1] = ∥u∥22 − ∥r12∥22;

5 R1 [m+ 1,m+ 1] =
√

|R1 [m+ 1,m+ 1] |;

6 return R1;
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Algorithm 7: ThinQR update when a column is deleted at position

1 ≤ k ≤ m, R−
1 = thinqrdelcol

(
R1, k

)
1 Input: R1 ∈ Rm×m, k ∈ {1, . . . ,m};

// delete one column

2 if (k = m) then return R1 [1 : (m− 1), 1 : (m− 1)];

3 R1 [, k : (m− 1)] = R1 [, (k + 1) : m];

4 for
(
i = k; i < p; i++

)
do

5 (c, s) = givens
(
R1 [i, i] ,R1 [i+ 1, i]

)
as in Algorithm 5;

6 G =

 c s

−s c

;

// update R1

7 R1 [i, i] = c ∗R1 [i, i]− s ∗R1 [i+ 1, i];

8 R1 [i+ 1, i] = 0;

9 if (i < m− 1) then

10 R1 [i : i+ 1, (i+ 1) : (m− 1)] = G⊺R1 [i : i+ 1, (i+ 1) : (m− 1)];

11 end

12 end

13 return R1 = R1 [1 : (m− 1), 1 : (m− 1)];
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Algorithm 8: ThinQR update when d ≥ 2 columns are added from

position k = m+ 1 to k + d− 1, R+
1 = thinqraddblockcols

(
R1,X,U

)
1 Input: R1 ∈ Rm×m, X ∈ RN×m, U ∈ RN×d;

// add d columns

// compute R12

2 Solve R⊺
1R12 = X⊺U with respect to R12 with forward substitution algorithm;

// compute R22

3 R22 = 0d×d;

4 R22 [1, 1] =
√

∥U[, 1]∥22 − ∥R12[, 1]∥22|;

5 R22 [1, 2 : d] =
(
U [, 1]⊺ U [, 2 : d]−R12 [, 1]

⊺ R12 [, 2 : d]
)
/R22 [1, 1];

6 for
(
i = 2; i ≤ d; i++

)
do

7 R22 [i, i] =
√

|∥U [, i] ∥22 − ∥R12 [, i] ∥22 − ∥R22 [1 : (i− 1), i] ∥22|;

8 if
(
i < d

)
then R22 [i, (i+ 1) : d] =

(
U [, i]⊺ U [, (i+ 1) : d]−R12 [, i]

⊺ R12 [, (i+ 1) : d]−

R22 [1 : (i− 1), i]⊺ R22 [1 : (i− 1), (i+ 1) : d]
)
/R22 [i, i];

9 end

10 R1 =

 R1 R12

0d×m R22

;

11 return R1;
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Algorithm 9: ThinQR update when 2 ≤ d < m columns are deleted from

position 1 ≤ k ≤ m−d+ 1 to k+d− 1, R−
1 = thinqrdelblockcols

(
R1, k, d

)
1 Input: R1 ∈ Rm×m, k ∈ {1, . . . ,m− d+ 1}, d ∈ {2, . . . ,m+ 1− k};

// delete d columns

2 if (k = m− d+ 1) then return R1 [1 : (m− d), 1 : (m− d)];

// permute columns

3 R1 [, k : (m− d)] = R1 [, (k + d) : m];

4 for
(
i = k; i ≤ m− d− 1; i++

)
do

5 (τ,v, µ) = householder(R1 [i, i] ,R1 [(i+ 1) : (i+ d), i]) as in Algorithm 4;

6 R1 [i, i] = µ;

7 R1 [(i+ 1) : (i+ d), i] = 0d;

8 R1 [i : (i+ d), (i+ 1) : (m− d)] =

R1 [i : (i+ d), (i+ 1) : (m− d)]− (τ ∗ v)
(
v⊺R1 [i : (i+ d), (i+ 1) : (m− d)]

)
;

9 end

// update R1 [m− d,m− d]

10 R1 [m− d,m− d] =
√

∥R1 [(m− d) : m,m] ∥22;

11 return R1 [1 : (m− d), 1 : (m− d)];
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Algorithm 10: Apply either Givens rotation or Householder reflection

to column i, R1 = thinqrstep
(
R1, i, a

)
1 Input: R1 ∈ Rm×l, i ∈ {1, . . . , l − 1}, a ∈ {1, . . . ,m− i};

2 if
(
a > 1

)
then

// Householder reflection

3
(
τ,v, µ

)
= householder

(
R1 [i, i] ,R1 [(i+ 1) : (i+ a), i]

)
as in Algorithm 4;

4 R1 [i, i] = µ;

5 R1 [i : (i+ a), (i+ 1) : l] = R1 [i : (i+ a), (i+ 1) : l]−
(
τ ∗v

)(
v⊺R1 [i : (i+ a), (i+ 1) : l]

)
;

6 R1 [(i+ 1) : (i+ a), i] = 0a;

7 else

8 (c, s) = givens
(
R1 [i, i] ,R1 [i+ 1, i]

)
as in Algorithm 5;

9 G =

 c s

−s c

;

// update R1

10 R1 [i, i] = c ∗R1 [i, i]− s ∗R1 [i+ 1, i];

11 R1 [i+ 1, i] = 0;

12 R1 [i : (i+ 1), (i+ 1) : l] = G⊺R1 [i : (i+ 1), (i+ 1) : l];

13 end

14 return R1;
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Algorithm 11: ThinQR update when d non-adjacent columns are

deleted, R−
1 = thinqrdelblockcols nonadj

(
R1,k

)
1 Input: R1 ∈ Rm×m, k[i] ∈ {1, . . . ,m}, i = 1, . . . , d, k[i] < k[j] ∀ i < j, i, j = 1, . . . , d;

// delete d columns

2 if
(
d = 1

)
then return thinqrdelcol

(
R1,k [1]

)
in Algorithm 7;

3 if
((
k [d]− k [1]

)
= (d− 1)

)
then return thinqrdelblockcols

(
R1,k [1] , d

)
in Algorithm 9;

4 e = 1 : m;

5 k = e \ k;

6 l = k[m− d];

7 q = d− (m− l);

8 k = k[1 : q];

9 R1 = R1 [1 : l, 1 : l];

10 if
(
q = 1

)
then return thinqrdelcol

(
R1,k [1]

)
in Algorithm 7;

11 if
((
k [q]− k [1]

)
= (q − 1)

)
then return thinqrdelblockcols

(
R1,k [1] , q

)
in Algorithm 9;

// delete columns

12 R1 = R1

[
,k

]
;

13 k = k [k [1] : (l − q)];

// compute a[1]

14 a = 0l−q−k[1]+1; a[1] = k[1]− k[1];

// update R1

15 for
(
i = 1; i ≤ (l − q − k[1]); i++

)
do

16 R1 = thinqrstep
(
R1, i+ k[1]− 1,a[i]

)
in Algorithm 10;

17 a[i+ 1] = a[i] +
(
k[i+ 1]− k[i]

)
− 1

18 end

19 R1[l−q−k[1]+1, l−q−k[1]+1] =
√

∥R1[(l − q − k[1] + 1) : (l − k[1] + 1), l − q − k[1] + 1]∥22;

20 return R1[1 : (l − q), ];



Chapter 3

Multiple graphical horseshoe

estimator for modeling correlated

precision matrices

3.1 Introduction

Graphical models are a popular tool used in many scientific fields to analyze and in-
fer networks. In the Gaussian setting, the main challenges in graph estimation are
the positive-definiteness constraint on precision matrices (inverse-covariance ma-
trices) and the quadratic growth, with respect to the number of variables included
in the analysis, of the number of free parameters. Traditional methods, such as the
ones based on pairwise model comparisons, become computationally infeasible as
the number of considered variables increases. For exchangeable observations, a col-
lection of the existing methods for high-dimensional covariance matrix estimation
is available in Pourahmadi (2011), in which the author proposes to reduce the prob-
lem to multiple independent (penalized) least-squares regressions. Other common
approaches, such as the Graphical LASSO of Friedman et al. (2008) and the Graph-
ical SCAD of Fan et al. (2009), are based on a penalized likelihood optimization
and provide a sparse solution for the precision matrix in high-dimensional settings.
A few approaches for the estimation of high-dimensional sparse networks have also
been proposed within the Bayesian framework. In particular, the Bayesian ver-
sion of the Graphical LASSO (Wang, 2012), the spike and slab stochastic search
method (Wang, 2015), and the more recent Graphical Horseshoe presented in Li
et al. (2019); all Bayesian methods implemented a block Gibbs sampler that has
shown good computational performances up to a few hundred variables.

We are interested in settings where observations can be considered exchange-

85
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able only within groups; in these settings, a separate group-specific estimation will
reduce the statistical power, while an analysis of data pooled across groups will
lead to spurious findings (Peterson et al., 2015). Generalizations of the graphi-
cal models, called multiple graphical models, have been proposed with the aim
of jointly estimating multiple correlated networks. Among the penalized likeli-
hood approaches, the fused Graphical LASSO and the group Graphical LASSO of
Danaher et al. (2014) rely on convex optimization problems and force similar edge
values and similar graph structures, respectively. Bayesian approaches have been
first proposed to encourage similar network structures across related subgroups
(Peterson et al., 2015; Shaddox et al., 2018). More recent attempts, such as the
generalization of the Bayesian spike and slab stochastic method of Peterson et al.
(2020) and the GemBAG of Yang et al. (2021), focus on shared sparsity structures
and precision matrix elements. See Ni et al. (2022) for a recent review of Bayesian
approaches for complex graphical models, including methods for multiple groups.

Here we propose a generalization of the Graphical Horseshoe of Li et al. (2019)
in the presence of multiple correlated sample groups, which we refer to as the
multiple Graphical Horseshoe (mGHS). This model works under the multivariate
gaussianity assumption with multiple dependent precision matrices. The proposed
model is based on a novel prior on multiple covariance matrices that builds upon
the Horseshoe prior proposed in Carvalho et al. (2010) and lets the data decide
whether borrowing strength across groups and then encouraging similar precision
matrices is appropriate. The properties of the Horseshoe prior are well-studied
and include the improved Kullback-Leibler risk bound (Carvalho et al., 2010),
minimaxity in estimation under the l2 loss (Van der Pas et al., 2014) and improved
risk properties in linear regression (Bhadra et al., 2016). Through simulation
studies, we empirically show that the model benefits from the similar structures
of the groups and provides better statistical performances than the Graphical
Horseshoe applied separately to each group. The model relies on a Metropolis-
within-Gibbs sampler where the parameters are updated by sampling from their
full-conditional distributions and, in particular, a novel method is introduced in
order to sample the local variance parameters. This method scales well with respect
to the number of variables and is the first full Bayesian approach (to our knowledge)
able to analyze multiple undirected graphs of hundreds of nodes. In Castelletti
et al. (2020) the authors propose an efficient full Bayesian approach for multiple
networks, however they consider only directed acyclic graphs (DAGs). Finally, we
discuss a novel idea for posterior edge selection based on model cuts. The main
novelties can be summarized as follow: 1) a novel shrinkage prior for multiple
precision matrices, 2) an efficient algorithm that scales exceptionally well, and 3)
a novel approach for edge selection based on model cuts.

The paper is organized as follows. In Section 3.2 the proposed sampling model
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is introduced. Section 3.3 illustrates how to sample from a three-parameters
Gamma distribution (G3p) with a modified rejection sampling approach. Section
3.4 outlines the proposed algorithm in detail. In Section 3.5 we present a novel
proposal for model selection. Section 3.6 illustrates comparative simulation stud-
ies, whereas in Section 3.7 we present an application to a benchmark bike-sharing
dataset. Discussions and comments are presented in Section 3.8.

3.2 The model

In this section, we introduce the sampling model used to infer relationships among
variables within each of K possibly related sample groups, each represented by
a graph Gk = (V,Ek), where V corresponds to a set of vertices and Ek to a set
of group-specific edges. Let ysk be the p-dimensional random vector related to
the observation s in group k, where s = 1, . . . , nk and k = 1, . . . , K. Under the
multivariate normal distribution, the corresponding sampling model is

ysk ∼ Np (0,Σk) ,

where Ωk ≡ (ωkij)p×p = Σ−1
k is the precision matrix of group k. There is a one-

to-one correspondence between the zero patterns in a precision matrix and an
undirected graph Gk that, in turn, can be used to learn conditional independencies.
Specifically, it can be shown that ωkij = 0 if and only if variables i and j are
conditionally independent conditioning on the other variables (Dempster, 1972);
in this case, the undirected graph Gk will have a missing edge between nodes i
and j. Therefore, the goal is the joint estimation of non-zero entries in precision
matrices with the aim of capturing significant connections among variables. In
high-dimensional settings, the number of parameters to be estimated in Ωk is of
order O (p2). This task is particularly challenging since these precision matrices,
in addition to being very large, are constrained to the cone of symmetric positive
definite matrices. Building upon the Graphical Horseshoe proposed by Li et al.
(2019), we propose in Sections 3.2.1 and 3.4 model and algorithm, respectively,
that use shrinkage priors to perform full Bayesian inference of multiple related
high-dimensional undirected graphical models.

3.2.1 An horseshoe prior for multiple related precision ma-

trices

Li et al. (2019) have successfully developed the Graphical Horseshoe prior, a shrink-
age prior for (single) precision matrices. In this section, we describe how to extend
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the Graphical Horseshoe prior to multiple related precision matrices. The pro-
posed approach will both achieve shrinkage and borrowing strength across related
subgroups; as a key modeling feature, our approach will learn from the data which
pairs of groups are related and which ones can be considered independent. With
respect to the model proposed by Peterson et al. (2020), the only alternative full
Bayesian approach that uses a joint prior on related multiple precision matrices,
the proposed approach will result in a much more scalable algorithm, as detailed
in Section 3.4.

Let ωij =
(
ω1
ij, . . . , ω

K
ij

)⊺
be the vector of precision matrix entries corresponding

to edge (i, j) across K groups. Our approach builds upon the Graphical Horse-
shoe prior (Li et al., 2019), as we shrink non-informative edges ωkij with a novel
multivariate Horseshoe prior (Carvalho et al., 2010); we assume a non-informative
prior for diagonal entries ωkjj. The joint prior distribution for precision matrices
Ω1, . . . ,ΩK can be written as

π
(
ωkjj
)
∝ 1, k = 1, . . . , K, j = 1, . . . , p

π (Ω1, . . . ,ΩK |Ψij : i < j) ∝
∏
i<j

NK (ωij|0,Ψij) · I(Ω1,...,ΩK∈Mp
+)

where Mp
+ denotes the space of p×p positive-definite symmetric matrices. The pro-

posed prior jointly models multiple precision matrices and, specifically, accounts
for similarity between groups by imposing a K-variate normal prior distribution
for ωij with prior covariance matrix specific for each pair ij. As in Peterson et al.
(2020), the proposed prior jointly learns both the within-group and across-group
associations from the data in a single step, but it is computationally more efficient
because it is based on continuous mixtures of multivariate normal distributions.
Indeed, there is no need to sample the binary edge inclusion indicators as in Pe-
terson et al. (2020).

Following the separation strategy introduced by Barnard et al. (2000), the
across-group covariance matrices Ψij can be decomposed as Ψij = ∆ijR∆ij,
where ∆ij = diag{δij,1, . . . , δij,K} contains the standard deviations of edge (i, j)
and R = {rk′k : k′ < k} ∈ MK

+ is a valid correlation matrix with diagonal entries
equal to one. As suggested by Barnard et al. (2000), we model variances δij,k and
correlations rk′k separately since it is generally not clear how these elements inter-
act with each other. We apply the Horseshoe prior from Carvalho et al. (2010) by
decomposing δij,k = τkλij,k and imposing the following priors:

λij,k ∼ C+ (0, 1) , (3.1)

τk ∼ C+ (0, 1) , (3.2)

where C+ denotes the positive half-Cauchy distribution. In (3.1) and (3.2), pa-
rameters τk and λij,k control the global and local shrinkage of ωkij, respectively.
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The heavy-tail distribution of λij,k allows ωkij to avoid overshrinkage and lets the
coefficients free to reach larger values. The amount of common shrinkage shared
by the entries ωkij is then controlled by the global scale parameter τk. When K = 1,
the proposed model reduces to the Graphical Horseshoe of Li et al. (2019).

The selection of the prior distribution for correlation matrix R is often more
complicated. Barnard et al. (2000) give an overview of the most common prior for
a correlation matrix. Here we follow Peterson et al. (2020) and choose the prior
distribution

π (R) ∝ 1 · I(R∈CK
+ ),

where CK
+ denotes the space of K ×K definite-positive correlation matrices with

diagonal entries equal to 1. The matrix R allows the local variances λkij to share
information between each other when the correlations between groups are large.
On the contrary, the model reduces to the Graphical Horseshoe of Li et al. (2019)
applied separately to each group when R = IK is the identity matrix. In Section
3.3 we introduce a new sampling algorithm for the three-parameter Gamma dis-
tribution that will be used within the algorithm for posterior inference detailed in
Section 3.4.

3.3 The three-parameter Gamma distribution and

a modified rejection sampling algorithm

In this section, we introduce a modified acceptance-rejection method designed to
generate samples from the three-parameter Gamma (G3p) distribution. Ahrens and
Dieter (1982) and Stadlober (1982) demonstrated how to apply a rejection sam-
pling for a target distribution when no valid proposal distribution is available. In
particular, they proposed a modified rejection sampling to sample from a Gamma
distribution and a t-Student distribution, respectively. Here the same situation
applies since no trivial distribution, such as Gaussian or Gamma distributions,
can be used as a valid proposal distribution. Indeed, it can be shown that these
densities do not cover the target function on the latter’s support, as required by
the standard rejection sampling method. Therefore, we propose to overcome this
problem by applying a modified rejection sampling with a Gaussian proposal dis-
tribution. The technical and theoretical aspects of this approach are detailed in
Appendix 3.A, where we also provide a proof that the method proposed in this
section draws samples from the target distribution (3.3). For the sake of clarity,
the notation used in this section does not relate to the notation used in the other
sections.



90

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

t

g(t)
N(0, w2)

Figure 3.3.1: density g and h with γ = 4, α = 2.75, β = 3.3; dotted lines represent

t1 and t2.

Let X ∼ G3p (γ, α, β), α, β ̸= 0, γ ∈ N+, a random variable with density

fX (x | γ, α, β) =
e−

β2

8α2 (2α2)
γ+1
2

Γ (γ + 1)D−γ−1

(
− β

α
√
2

)xγe−α2x2+βx · I(x>0), (3.3)

where Da (b) is the Parabolic Cylinder function with parameters a and b. The
mean and variance of variable X are

E (X) ≡ µ =
γ + 1

α
√

2

D−γ−2

(
− β

α
√
2

)
D−γ−1

(
− β

α
√
2

)
V ar (X) ≡ σ2 =

(γ + 1) (γ + 2)

2α2

D−γ−3

(
− β

α
√
2

)
D−γ−1

(
− β

α
√
2

) − (γ + 1)2

2α2

D−γ−2

(
− β

α
√
2

)2
D−γ−1

(
− β

α
√
2

)2 .

The density f(x) ∼ G3p (γ, α, β) is transformed into a standardized distribution
g(t) = σf (σt+ µ) by the transformation t = (x − µ)/σ, with support on the
interval

(
−µ
σ
,∞
)
. A new value t⋆ can be drawn from g(t) using the modified

rejection sampling described below. Finally, the value x⋆ = σt⋆ + µ is returned.
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Consider the proposal distribution h(t) ∼ N (0, ω2) and the ratio

r(t⋆) =
g(t⋆)

h(t⋆)
=
σf (σt⋆ + µ)

h(t⋆)

= ωσCf
√

2π (σt⋆ + µ)γ e−α
2(σt⋆+µ)

2+β(σt⋆+µ)−
t2⋆
2ω2 · I(t⋆>−µ

σ )

= ωσCf
√

2π (σt⋆ + µ)γ e(
1

2ω2−α2σ2)t2⋆+(β−2µα2)σt⋆+βµ−α2µ2 , (3.4)

where Cf is the normalizing constant of f(x) and (β − 2µα2) < 0. The analysis
of r(t) gives insights on how to correctly choose the variance ω2 of the proposal
distribution h(t), as r(t) needs to be bounded and should go to zero as t increases.
For this reason we set the variance to w2 = 1

2α2σ2 and the ratio in (3.4) evaluated
at t⋆ can be re-written as

r(t⋆) = ωσCf
√

2π (σt⋆ + µ)γ e(β−2µα2)(σt⋆+µ)+α2µ2 ,

which is analytically tractable. In order to apply a standard rejection sampling, the
method requires that r (t⋆) ≤ 1. However, as shown in Figure 3.3.1, the proposal
density h(t) lays below the target density g(t) in the interval [t1, t2], with

t1 =
γ

σ (β − 2µα2)
W0

(β − 2µα2)

γ

(
e−α

2µ2

ωσCf
√

2π

) 1
γ

− µ

σ
,

t2 =
γ

σ (β − 2µα2)
W−1

(β − 2µα2)

γ

(
e−α

2µ2

ωσCf
√

2π

) 1
γ

− µ

σ
,

whereW denotes the Lambert function. It can be analytically shown that r(tmax) ≥
1, where tmax = − γ

σ(β−2µα2)
− µ

σ
is the global maximum of the ratio. Therefore,

a standard rejection sampling cannot be applied. Noting that in the intervals(
−µ
σ
, t1
)

and (t2,∞) it yields h(t) > g(t), the rejection sampling algorithm can be
modified as follows:

• Step 1: generate a sample t⋆ from h(t) and immediately accept x⋆ = σt⋆ +µ
if t1 ≤ t⋆ ≤ t2;

• Step 2: if t⋆ < t1 or t⋆ > t2, generate a sample u from a U (0, 1) density and
compute r (t⋆). Accept x⋆ = σt⋆ + µ if u ≤ r(t⋆). The computation of r(t⋆)
can often be avoided if an accurate lower bound for the tails of the ratio is
available;

• Step 3: if Step 2 leads to rejection, take a new sample t′⋆ from the distribution
d(t) = g(t) − h(t), in the interval [t1, t2] and return x′⋆ = σt′⋆ + µ. Sampling
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from d(t) can be achieved by means of a standard rejection sampling, as in
Ahrens and Dieter (1982), Stadlober (1982). More details about this step
can be found in Appendix 3.A.2.

The acceptance probability of each step is discussed in Appendix 3.A.1.

Proposition 3.3.1. The modified rejection sampling defined by steps 1, 2, and 3
draws a sample from a G3p distribution with probability 1.

Proof See Appendix 3.A.3.

The main computational bottleneck of the method is the evaluation of the Parabolic
Cylinder function D. This issue can be alleviated by exploiting the following
proposition and by the application of sharp approximations.

Proposition 3.3.2. The Kullback-Leibler divergence (KL) between a distribution
qx ∼ G3p (γ, α, β) and a distribution px ∼ G (d, c), where d = γ + 1 and c = −β,
goes to zero when β/α → −∞.

Proof See Appendix 3.B.

Furthermore, when β/α → ∞ or γ → ∞, the three-parameter Gamma distribution
can be conveniently approximated by a Normal distribution. We empirically show
that, in these cases, the KL divergence between a distribution qx ∼ G3p (γ, α, β)
and a distribution px ∼ N (m, s2) asymptotically goes to 0, where estimates of m
and s2 are given in Appendix 3.B. These empirical results, along with proposition
3.3.2, can be used to efficiently evaluate the mean and variance of the target
distribution without the need to compute the function D for some combinations
of the parameters’ value.

3.4 Posterior sampling

We develop an efficient MCMC algorithm to sample from the posterior distribution
of the parameters. The algorithm can be divided into three main steps: 1. a Gibbs
step for the update of parameters Ω1, . . . ,ΩK ; 2. a Gibbs step for the update of
shrinkage parameters Λ2

1, . . . ,Λ
2
K and τ 2; 3. a Metropolis-Hastings (MH) step for

the update of correlation matrix R. In step 2 we make use of the modified rejection
sampler introduced in Section 3.3. The complete algorithm is shown in Appendix
3.C.
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1. Sampling Ω1, . . . ,ΩK. The full conditional distribution of Ω1, . . . ,ΩK is

π (Ω1, . . . ,ΩK |·) ∝
K∏
k=1

∣∣Ωk

∣∣nk
2 exp

{
−1

2
tr (SkΩk)

}
·

∏
i<j

exp

{
−1

2
ω⊺
ij∆

−1
ij R

−1∆−1
ij ωij

}
· I(Ω1,...,ΩK∈MK

+ )

where Sk =
∑nk

s=1 ysky
⊺
sk and tr (·) denotes the trace. Precision matrices Ω1, . . . ,ΩK

can be updated by adapting the block Gibbs sampler proposed in Wang (2015) for
the estimation of a single precision matrix. Following Peterson et al. (2020), for
each sample group k = 1, . . . , K precision matrix Ωk is updated column-wise by
sampling from the full-conditional distribution of each column j = 1, . . . , p condi-
tionally on both the rest of the columns of group k and on the j-th column of the
reaming k − 1 sample groups. Consider the following partition of vector ωij and
matrices ∆ij and R:

ωij =

[
ω−k
ij

ωkij

]
, ∆ij =

[
∆ij,−k 0

0⊺ δij,k

]
and R =

[
R−k rk
r⊺k 1

]
. (3.5)

The full conditional of Ωk is:

π (Ωk|·) ∝ |Ωk|
nk
2 exp

{
−1

2
tr (SkΩk)

}∏
i<j

exp

{
− 1

2dkij

(
ωkij − δij,kr

⊺
kR

−1
−k∆

−1
ij,−kω

−k
ij

)2}
,

(3.6)
where dkij = δ2ij,k

(
1 − r⊺kR

−1
−krk

)
. As proposed in Wang (2015), sampling from

(3.6) can be achieved by updating one column of Ωk at the time. Without loss
of generality, consider the permutation of the columns such that the j-th column
becomes the last one. This permutation leads to the following partition:

Sk =

[
Sk−j skj(
skj
)⊺

skjj

]
and Ωk =

[
Ωk

−j ωk
j(

ωk
j

)⊺
ωkjj

]
.

The full-conditional distribution of parameters
(
ωkjj,ω

k
j

)
is

π
(
ωkjj,ω

k
j |·
)
∝
(
ωkjj −

(
ωk
j

)⊺ (
Ωk

−j
)−1

ωk
j

)nK
2 ·

e−
1
2((ωk

j−mj,k)
⊺
D−1

j,k(ωk
j−mj,k)+2(ωk

j )
⊺
skj+s

k
jjω

k
jj), (3.7)

where mj,k is the (p−1)-dimensional vector with entriesmi
j,k = δij,kr

⊺
kR

−1
−k∆

−1
ij,−kω

−k
ij

and Dj,k is diagonal with entries dkij, i = 0, . . . , p, i ̸= j. A closed form for sampling
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from (3.7) can be obtained with the transformation
(
vj,k, γ

k
jj

)
→
(
ωk
j , ω

k
jj −

(
ωk
j

)⊺ (
Ωk

−j
)−1

ωk
j

)
,

which yields

γkjj|· ∼ G

(
nk
2

+ 1,
skjj
2

)
,

vj,k|· ∼ Np−1

(
Σ−1
j,k

(
D−1
j,kmj,k − skjj

)
,Σ−1

j,k

)
where G denotes the Gamma distribution and Σj,k = D−1

j,k+skjj
(
Ωk

−j
)−1

. Therefore,

values ωkjj and ωk
j can be updated by first sampling γkjj and vj,k and then applying

the inverse transformation.

Computationally, this is the most expensive step of the algorithm due to the
need to invert the matrices Ωk

−j and Σj,k. In our implementation of the Gibbs steps

for γkjj and vj,k, we make use of Shermann-Morrison formula to update
(
Ωk

−j
)−1

with O(p2) operations, instead of O(p3).

2. Sampling Λ2
1, . . . ,Λ

2
K and τ 2. Samplers commonly used in conjunction

with Horseshoe prior cannot be implemented for the proposed model. Indeed, the
positive half-Cauchy distribution is not conjugated to the variance in a multivariate
normal means model. Our approach builds upon the data-augmentation scheme
proposed Makalic and Schmidt (2016). We introduce the auxiliary variables ηij,k
and ζk such that

• if λ2ij,k | ηij,k ∼ IG
(

1
2
, 1
ηij,k

)
and ηij,k ∼ IG

(
1
2
, 1
)
, then λij,k ∼ C+ (0, 1);

• if τ 2k | ζk ∼ IG
(

1
2
, 1
ζk

)
and ζk ∼ IG

(
1
2
, 1
)
, then τk ∼ C+ (0, 1).

After conditioning on the auxiliary variables ηij,k and ζk, the full conditional dis-
tribution of parameters Λ and τ can be written as

π (Λ, τ |·) ∝
∏
i<j

|∆ij|−1 exp

{
−1

2
ω⊺
ij (∆ijR∆ij)

−1ωij

}
·

K∏
k=1

τ−3
k exp

{
− 1

ζkτ 2k

}
·
∏
i<j

λ−3
ij,k exp

{
− 1

ηij,kλ2ij,k

}
.

Local shrinkage matrix Λk is updated column-wise alongside precision matrix Ωk.
Considering the partition of ωij, ∆ij and R in (3.5), the full-conditionals of pa-
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rameters λ2ij,k and τ 2k related to group k are

π
(
λ2ij,k | ·

)
∝ λ−4

ij,k exp

{
−
αλij,k
λ2ij,k

+
βλij,k
λij,k

}
· I(λ2ij,k>0),

αλij,k =
1

ηij,k
+

(
ωkij
)2

2τ 2kµk
and βλij,k =

ωkij
τkµk

r⊺kR
−1
−k∆

−1
ij,−kω

−k
ij , (3.8)

π
(
τ 2k | ·

)
∝ τ

− p(p−1)
2

−3

k exp

{
−ατk
τ 2k

+
βτk
τk

}
· I(τ2k>0),

ατk =
1

ζk
+

1

2

∑
i<j

(
ωkij
)2

λ2ij,kµk
and βτk =

∑
i<j

ωkij
λij,kµk

r⊺kR
−1
−k∆

−1
ij,−kω

−k
ij

(3.9)

where µk = 1 − r⊺kR
−1
−krk. Note that the full conditional distributions show a

shared amount of global and local shrinkage, as the model exploits the similarity
among groups and learns from the structures of the other graphs. Densities (3.8)
and (3.9) are a transformation of G3p random variables introduced in Section 3.3.
Specifically,

if u ∼ G3p

(
1, αλij,k , βλij,k

)
, then λ2ij,k = 1/u2,

if u ∼ G3p (p(p− 1)/2, ατk , βτk) , then τ 2k = 1/u2.

We use the sampling algorithm introduced in Section 3.3 to efficiently obtain sam-
ples from these distributions. Finally, hyper-parameters ηij,k and ζk are updated
by sampling from the inverse-Gamma distributions ηij,k ∼ IG

(
1, 1 + 1/λ2ij,k

)
and

ζk ∼ IG (1, 1 + 1/τ 2k ).

3. Sampling R. The similarity among groups is captured through correlation
matrix R ∈ CK

+ . Following Peterson et al. (2020), we implement a modified version
of the Metropolis-Hastings sampler proposed by Liu and Daniels (2006), which re-
lies on a candidate prior distribution π⋆ (R) that is used to define a proposal
distribution for correlation matrices. In the first step of this data-augmentation
approach a K×K covariance matrix Θ is sampled from an Inverse-Wishart distri-
bution; in the second step, a reduction function is applied to map the covariance
matrix to a valid correlation matrix, that is eventually accepted with an MH step.

We introduce a diagonal matrix V such that Θ = VRV; the matrix V maps
the correlation matrix R to the covariance matrix Θ. Following Peterson et al.
(2020), the transformation from the standard parameter space to the expanded
space is achieved as

ωij = V−1ϵij, R = V−1ΘV−1, (3.10)
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where
∑

i<j ϵ
2
ijk = 1, for k = 1, . . . , K and V = diag

{∑
i<j

(
ω1
ij

)2
, . . . ,

∑
i<j

(
ωKij
)2}

.

Let the candidate prior distribution be

π⋆ (R) ∝
∣∣R∣∣−K+1

2 · I(R∈CK
+ ), (3.11)

then the proposal density for matrix R is

q (R | ·) ∝ π⋆ (R) · π (Ω1, . . . ,ΩK | R)

∝ |R|−
K+1+p(p−1)/2

2 ·
∏
i<j

e−
1
2
ω⊺

ij∆
−1
ij R−1∆−1

ij ωij ,

which is conditioned on the current state of the algorithm and accounts for the
dependency with parameters Ω1, . . . ,ΩK , Λ1, . . . ,ΛK and τ 2. Note that (3.11)
concentrates its mass around zero when K increases; for this reason, a reasonably
small number of sample groups K is required. The Jacobian of the transformation

defined in (3.10) is J = |V−1|
p(p−1)

2
+K+1

, thus the proposal distribution for the MH
sampler is

q (Θ | ·) ∝ π⋆ (Θ) · π (Ω1, . . . ,ΩK | Θ)

∝ |Θ|−
K+1+p(p−1)/2

2 e−
1
2

∑
i<j ϵ

⊺
ij∆

−1
ij Θ−1∆−1

ij ϵij (3.12)

which is a IW
(
p(p−1)

2
,H
)

, where H =
∑

i<j ∆
−1
ij ϵijϵ

⊺
ij∆

−1
ij . Therefore, a candi-

date Θ⋆ is sampled from (3.12) and then mapped to R⋆ via the inverse transfor-
mation R⋆ = V−1Θ⋆V−1. New correlation matrix R⋆ is accepted with probability

α = min

{
1,
π (R⋆ | ·) · q (R | ·)
π (R | ·) · q (R⋆ | ·)

}
= min

{
1, e

K+1
2

(log |R⋆|−log |R|)
}
,

where p (R | ·) ∝ π (R) · π (Ω1, . . . ,ΩK | R) denotes the full-conditional distribu-
tion of R.

3.5 Posterior edge selection

A practical problem with continuous shrinkage priors is model selection since the
parameters are shrunk toward zero but never exactly zero. A common method
relies on posterior marginal credible intervals. However, Van der Pas et al. (2017)
have shown that under the Horseshoe prior in a Normal means problem, this
method leads to a conservative variables selection procedure where some of the zero
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parameters are falsely selected, whereas some signal is not, due to wide intervals for
non-zero parameters. To avoid such a problem, Li et al. (2019) used 50% credible
intervals to control the number of false negatives. This choice is in line with the
median probability model (MPM) of Barbieri and Berger (2004). The MPM model
is defined as the model that includes only those edges with marginal posterior
probability greater (or equal) than 1/2. In the context of linear regression models,
Barbieri and Berger (2004) have shown that this method represents the predictive
optimal model under some common but strict hypothesis, such as orthogonality of
the covariates. The result is extended to g-type spike and slab priors in Barbieri
et al. (2021). This approach is used, among many others, in Wang (2015) and
Peterson et al. (2020). A practical example of an MPM-like strategy can be found
in Carvalho et al. (2010). The authors show that the Horseshoe estimator is
βHS
j = λ2j/

(
1 + λ2j

)
βOLS
j , where λ2j and βj denote the local shrinkage parameter

and the regression parameter of variable j, respectively, and propose to set to zero
those variables for which λ2j/

(
1 + λ2j

)
< 1/2.

The cited methods present two main drawbacks. First, the optimality results
in Barbieri and Berger (2004) only hold for fixed design X̃ of prediction point or

for stochastic predictors with E
(
X̃⊺X̃

)
, which are often unrealistic assumptions;

therefore, the threshold 1/2 does not ensure the optimality of the selected model
under the considered framework, where the goal is to analyze the connections
between variables. Secondly, the considered selection procedures rely on marginal
values and do not account for any posterior correlation among the parameters.

To overcome these problems, we propose a “quasi-bayesian” approach for edge
selection that accounts for the posterior dependencies among the parameters. The
method relies on a cut function that “cuts” the relationship between the parame-
ters to prevent model feedback which could negatively affect the performances of
the model (Zigler et al., 2013; Plummer, 2015). Cuts have been used in different
contexts (Lunn et al., 2009; Bayarri et al., 2009; McCandless et al., 2010; Blangia-
rdo et al., 2011; Zigler, 2016) either to control the flow of information or to gain
a computational advantage. Bayarri et al. (2009) consider the cut function as a
“modularization” of the model. This approach breaks a bigger model into smaller
parts called modules, modifying the magnitude of the interactions between the
parameters in different modules.

3.5.1 An extended model and algorithm for edge selection

In this section, we extend the model presented in the previous sections introducing
two parameters tα and z, and an algorithm that updates these parameters with a
Metropolis-within-Gibbs step. Notation refers to a single graph and can be easily
extended to the case of multiple graphs.
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Figure 3.5.1: Graphical representation of the model. The dotted line denotes the

cut function, stopping the flows of information from z to λ.

The parameter tα ∈ (0, 1) can be interpreted as a threshold for edge selection,
and the latent variable z is a p(p−1)/2-binary vector with generic element zij = 1
if the corresponding edge ωij, i < j, is included in the model, zij = 0 otherwise.
Formally, the model is defined as

zij = 1 if κij ≥ tα, and zij = 0 otherwise,

where κij = λ2ij/
(
1 + λ2ij

)
. Here the goal is to estimate parameter tα based on

the posterior values of λ. At the same time, we want to prevent the flow of in-
formation from tα and z to λ. The cut function comes in handy to avoid such
issues. The modularization of the proposed model is shown in Figure 3.5.1, where
φ = (Ω, τ ,R) and parameters z and λ are connected through the reparametriza-
tion κij.

Different prior distributions can be assumed for tα; a natural choice is tα ∼
Beta(a, b). Parameters zij can be seen as the realization of p(p − 1)/2 Bernoulli
distributions zij | κij,φ, tα ∼ Ber

(
qαij
)
, where qαij = 1 − P (κij ≤ tα | φ). The joint

likelihood of the model can be factorized as

π (Y,λ,φ, z, tα) ∝ π (φ | Y,λ) π (z, tα | κ,φ) π (λ) ,

∝ π (λ,φ | Y) π (z, tα | κ,φ) .

The modularization of the model allows us to sample directly from the conditional
distributions π (λ,φ | Y) and π (z, tα | κ,φ), thus evaluating parameters λ and φ
without the influence of the unknown quantity z. The joint posterior distribution
of parameters tα and z is

π (z, tα | κ,φ) ∝ (tα)a−1 (1 − tα)b−1 ·
p∏
j=1

∏
i<j

(
qαij
)zij (1 − qαij

)1−zij . (3.13)
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We propose a Metropolis-within-Gibbs algorithm in order to sample from (3.13).
Parameters zij are sampled from the full-conditional distribution

zij | κij,φ, tα ∼ Ber
(
qαij
)
.

Under the framework introduced in Section 3.4, the transformation κij = λ2ij/
(
1 + λ2ij

)
with Jacobian Jκij = (1 + κij)

−2 yields

π (κij | Y,φ) ∝ κ−2
ij exp

{
−αλij

1 − κij
κij

+ βλij

√
1 − κij
κij

}
· I(κij∈(0,1)),

where the cumulative density function Fκij |Y,φ (tα) is available in closed form.
Therefore, the quantity qαij can be analytically and efficiently computed condition-
ally on the current state of φ.

The threshold tα is then updated with a MH step, where the new values tα⋆ are
sampled from the prior distribution. The acceptance probability of this step is

αMH = min

{
1,
π (z, tα⋆ | κ,φ)

π (z, tα | κ,φ)

}
.

The sampled values of tα can be used to perform graph selection; specifically, we
include in the graph all edges such that P (κij | Y,φ) > tα. Hereafter, we consider
both this approach and the MPM method (tα = 1/2; Carvalho et al., 2010) as two
alternative approaches to posterior edge selection.

3.6 Simulation studies

We perform simulation studies that cover several scenarios of interest. The per-
formances of the proposed model and competing approaches are tested in four
scenarios all comprising K = 4 groups:

• Independence set-up: the groups are simulated from multivariate Gaus-
sian distributions with a different precision matrix for each group;

• Coupled set-up: each pair of groups is simulated from a multivariate Gaus-
sian distribution with the same precision matrix;

• P2020 set-up: the groups are simulated following the scheme of Peterson
et al. (2020), where each precision matrix is created by adding (deleting)
new edges to (from) the other precision matrices;

• Full-dependence set-up: the groups are simulated from multivariate Gaus-
sian distributions with equal precision matrices.
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The precision matrices are simulated following the approach of Peterson et al.
(2020), which relies on a generalization of the method proposed by Danaher et al.
(2014). Edges are divided into independent subgroups with size either equal to
5 or 10. Diagonal entries of the precision matrices are set to 1. We test our
model against the fused and grouped Graphical LASSO (fJGL and gJGL, respec-
tively) of Danaher et al. (2014), the ordinary Graphical Horseshoe (GHS) of Li
et al. (2019) estimated for each group independently, and the group estimation of
multiple Bayesian graphical models (GemBAG) from Yang et al. (2021). Among
all competing approaches, the proposed approach is the only one that provides
uncertainty quantification through posterior inference on all model parameters.

Different combinations of n and p are evaluated, and the results are reported
in Tables 3.6.1-3.6.4, where p0 refers to the mean number of true significant edges
across groups. Edge selection is assessed based on accuracy, the Matthews correla-
tion coefficient (MCC), true and false positive rate (TPR and FPR, respectively)
and the AUC criterion. We take the mean Frobenius loss among groups matrices
to evaluate the goodness of the precision matrices estimates. Subscripts MPM and
tα indicate whether the posterior edge selection is performed based on the MPM
method or with the cut-model proposed in Section 3.5, respectively. Hyperparam-
eters a and b of the Beta prior on tα should reflect prior beliefs in graphs’ sparsity;
to control the number of false positives, we set a = 30 and b = 25. For the fused
and grouped Graphical LASSO, regulation parameters λ1 and λ2 are selected by
performing a grid search to find the combination of values that minimizes the AIC
(Danaher et al., 2014; Peterson et al., 2020). For GemBAG, hyperparameters re-
lated to the two levels of sparseness are set to p1 = 0.4 and p2 = 0.8 for all the
considered cases. Prior variances v0 and v1 are estimated by minimizing the BIC
criterion over a grid of values, as done in Yang et al. (2021).

In all scenarios, see tables 3.6.1-3.6.4, mGHS performs better than GHS applied
to each group separately when the groups are actually similar, as it provides better
selection performances in all the coupled, P2020 and full-dependence settings.
Moreover, our model is the only competitor able to approach the performances of
the GHS in the independent set-up. Indeed, in this case the latter shows better
performances than all the other competitors for all the considered values of n and
p, whereas the Graphical LASSO and GemBAG behave poorly and their selection
results worsen as p increases.

The P2020 set-up provides the most realistic scheme, where the groups have
similar but different precision matrices. Under these circumstances, the best model
is GemBAG, which gives higher values of MCC and AUC for p ≥ 100. The only
competitive model is mGHS, which has the highest AUC when p = 50 and it is the
only competitor able to approach GemBAG’s performances in the other considered
cases.
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In this simulation study, edge selection based on the cut model completely
overtakes the selection procedure based on the MPM model. Indeed, the approach
based on cuts strongly reduces the number of false discoveries, resulting in a higher
value of the MCC index. Note that the value of the estimated threshold is affected
by the choice of the prior distribution of tα. We used tα ∼ Beta(30, 25) across all
simulation scenarios and data analyses; in our experience, this is a viable option
that leads to control of the FPR even though different choices may lead to a
different level of sparsity in the estimated graphs.

Finally, the GemBAG and fJGL provide the lowest values of the Frobenius
loss. Except for the independent setting, none of the other methods gives better
performances in terms of precision matrices estimation. GemBAG is the most
efficient method, as it takes an average of only a few hours for the estimation of a
network with p = 500. On the contrary, the mGHS provides a fully Bayesian infer-
ence at the cost of a 10-fold increase in computational time. GHS and Graphical
LASSO have not been included in this case, as the computational time increases
dramatically.

n = 50, p = 50
Independent (p0 = 82.5) Coupled (p0 = 77.5)

Acc MCC TPR FPR AUC Fr Loss Acc MCC TPR FPR AUC Fr Loss

mGHSMPM
0.775

(0.018)

0.299

(0.030)

0.744

(0.040)

0.223

(0.019)

0.824

(0.027)

10.231

(1.224)

0.715

(0.039)

0.230

(0.039)

0.723

(0.048)

0.286

(0.041)

0.789

(0.037)

8.624

(1.029)

mGHStα
0.926

(0.008)

0.459

(0.038)

0.544

(0.052)

0.046

(0.009)

0.824

(0.027)

10.231

(1.224)

0.930

(0.009)

0.392

(0.055)

0.421

(0.086)

0.035

(0.012)

0.789

(0.037)

8.624

(1.209)

GHSMPM
0.786

(0.015)

0.315

(0.029)

0.754

(0.037)

0.211

(0.015)

0.840

(0.024)

10.199

(1.246)

0.702

(0.047)

0.204

(0.044)

0.684

(0.048)

0.297

(0.049)

0.760

(0.040)

8.745

(0.940)

fJGL
0.873

(0.024)

0.384

(0.037)

0.648

(0.063)

0.110

(0.029)

0.769

(0.024)

9.186

(0.709)

0.907

(0.021)

0.333

(0.044)

0.437

(0.088)

0.061

(0.026)

0.688

(0.034)

7.863

(0.535)

gJGL
0.874

(0.024)

0.383

(0.036)

0.645

(0.062)

0.109

(0.028)

0.768

(0.024)

9.232

(0.720)

0.906

(0.021)

0.328

(0.043)

0.436

(0.091)

0.062

(0.027)

0.687

(0.036)

7.998

(0.557)

GemBAGMPM
0.940

(0.002)

0.311

(0.052)

0.124

(0.041)

0.001

(0.002)

0.791

(0.057)

11.835

(1.150)

0.940

(0.002)

0.238

(0.064)

0.081

(0.036)

0.001

(0.002)

0.786

(0.050)

8.580

(0.775)

P2020 (p0 = 82.5) Full dependence (p0 = 85)

Acc MCC TPR FPR AUC Fr Loss Acc MCC TPR FPR AUC Fr Loss

mGHSMPM
0.796

(0.011)

0.358

(0.021)

0.822

(0.030)

0.206

(0.011)

0.875

(0.020)

8.498

(1.323)

0.716

(0.034)

0.247

(0.036)

0.735

(0.046)

0.285

(0.036)

0.792

(0.032)

8.349

(1.184)

mGHStα
0.925

(0.008)

0.532

(0.034)

0.698

(0.037)

0.059

(0.009)

0.875

(0.020)

8.498

(1.323)

0.923

(0.009)

0.408

(0.046)

0.446

(0.074)

0.041

(0.012)

0.792

(0.032)

8.349

(1.184

GHSMPM
0.795

(0.013)

0.321

(0.027)

0.748

(0.037)

0.202

(0.013)

0.840

(0.022)

9.371

(1.216)

0.670

(0.055)

0.165

(0.046)

0.631

(0.046)

0.327

(0.059)

0.710

(0.043)

8.616

(0.954)

fJGL
0.874

(0.023)

0.412

(0.046)

0.697

(0.050)

0.113

(0.025)

0.792

(0.025)

8.205

(0.702)

0.905

(0.021)

0.309

(0.056)

0.373

(0.100)

0.055

(0.028)

0.659

(0.040)

7.711

(0.611)

gJGL
0.864

(0.025)

0.376

(0.036)

0.660

(0.054)

0.121

(0.029)

0.770

(0.022)

8.851

(0.714)

0.902

(0.023)

0.293

(0.048)

0.358

(0.100)

0.057

(0.030)

0.650

(0.039)

7.989

(0.579)

GemBAGMPM
0.956

(0.004)

0.580

(0.049)

0.367

(0.065)

0.001

(0.001)

0.871

(0.035)

7.835

(1.043)

0.938

(0.002)

0.318

(0.049)

0.112

(0.032)

0.000

(0.000)

0.838

(0.031)

7.984

(0.651)

Table 3.6.1: Simulation results for n = 50 and p = 50 (50 replicates). Methods

mGHS and GHS are evaluated over B = 10000 post burn-in samples.
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n = 50, p = 100
Independent (p0 = 195) Coupled (p0 = 177.5)

Acc MCC TPR FPR AUC Fr Loss Acc MCC TPR FPR AUC Fr Loss

mGHSMPM
0.655

(0.024)

0.146

(0.018)

0.712

(0.030)

0.348

(0.025)

0.759

(0.023)

20.607

(1.444)

0.568

(0.028)

0.082

(0.020)

0.653

(0.036)

0.436

(0.028)

0.671

(0.037)

17.547

(1.283)

mGHStα
0.953

(0.004)

0.348

(0.032)

0.361

(0.044)

0.022

(0.005)

0.759

(0.023)

20.607

(1.444)

0.961

(0.003)

0.228

(0.050)

0.152

(0.060)

0.009

(0.005)

0.671

(0.037)

17.547

(1.283)

GHSMPM
0.669

(0.023)

0.155

(0.019)

0.715

(0.030)

0.333

(0.024)

0.769

(0.024)

20.594

(1.453)

0.563

(0.029)

0.074

(0.020)

0.638

(0.036)

0.439

(0.029)

0.655

(0.036)

17.545

(1.283)

fJGL
0.931

(0.012)

0.315

(0.028)

0.451

(0.054)

0.049

(0.014)

0.701

(0.022)

19.892

(0.988)

0.952

(0.009)

0.234

(0.033)

0.226

(0.074)

0.021

(0.012)

0.603

(0.032)

16.296

(0.694)

gJGL
0.929

(0.013)

0.312

(0.029)

0.456

(0.058)

0.051

(0.015)

0.702

(0.023)

19.921

(1.055)

0.952

(0.009)

0.229

(0.034)

0.219

(0.074)

0.021

(0.011)

0.599

(0.032)

16.689

(0.722)

GemBAGMPM
0.962

(0.001)

0.179

(0.043)

0.052

(0.026)

0.001

(0.001)

0.698

(0.069)

23.012

(2.174)

0.965

(0.001)

0.143

(0.046)

0.034

(0.016)

0.001

(0.000)

0.708

(0.044)

16.986

(0.894)

P2020 (p0 = 182.5) Full dependence (p0 = 185)

Acc MCC TPR FPR AUC Fr Loss Acc MCC TPR FPR AUC Fr Loss

mGHSMPM
0.720

(0.013)

0.215

(0.014)

0.808

(0.025)

0.284

(0.013)

0.853

(0.016)

18.878

(1.944)

0.589

(0.030)

0.107

(0.021)

0.692

(0.036)

0.415

(0.031)

0.714

(0.035)

17.127

(1.491)

mGHStα
0.948

(0.004)

0.459

(0.022)

0.625

(0.030)

0.040

(0.005)

0.853

(0.016)

18.878

(1.944)

0.958

(0.004)

0.285

(0.046)

0.230

(0.071)

0.013

(0.006)

0.714

(0.035)

17.127

(1.491)

GHSMPM
0.710

(0.016)

0.181

(0.015)

0.733

(0.026)

0.291

(0.017)

0.800

(0.016)

20.299

(1.650)

0.564

(0.029)

0.072

(0.022)

0.626

(0.040)

0.438

(0.029)

0.647

(0.039)

17.256

(1.261)

fJGL
0.935

(0.010)

0.393

(0.030)

0.588

(0.042)

0.052

(0.011)

0.768

(0.018)

18.557

(1.070)

0.955

(0.007)

0.240

(0.042)

0.201

(0.079)

0.016

(0.010)

0.593

(0.035)

16.103

(1.027)

gJGL
0.923

(0.011)

0.335

(0.024)

0.540

(0.043)

0.062

(0.013)

0.739

(0.018)

20.104

(1.107)

0.955

(0.008)

0.223

(0.038)

0.182

(0.071)

0.015

(0.010)

0.583

(0.031)

16.772

(0.924)

GemBAGMPM
0.975

(0.002)

0.550

(0.041)

0.321

(0.052)

0.000

(0.000)

0.869

(0.015)

15.676

(1.264)

0.966

(0.001)

0.277

(0.038)

0.084

(0.022)

0.000

(0.000)

0.808

(0.037)

16.411

(1.044)

Table 3.6.2: Simulation results for n = 50 and p = 100 (50 replicates). Methods

mGHS and GHS are evaluated over B = 10000 post burn-in samples.
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n = 100, p = 250
Independent (p0 = 532.5) Coupled (p0 = 477.5)

Acc MCC TPR FPR AUC Fr Loss Acc MCC TPR FPR AUC Fr Loss

mGHSMPM
0.632

(0.012)

0.115

(0.006)

0.808

(0.015)

0.371

(0.012)

0.830

(0.012)

34.766

(1.629)

0.556

(0.010)

0.077

(0.007)

0.761

(0.021)

0.447

(0.010)

0.761

(0.018)

31.934

(1.062)

mGHStα
0.976

(0.002)

0.420

(0.016)

0.524

(0.021)

0.015

(0.002)

0.830

(0.012)

34.766

(1.629)

0.983

(0.001)

0.350

(0.019)

0.308

(0.036)

0.007

(0.002)

0.761

(0.018)

31.934

(1.062)

GHSMPM
0.639

(0.007)

0.118

(0.005)

0.812

(0.015)

0.364

(0.007)

0.835

(0.011)

34.721

(1.596)

0.551

(0.010)

0.069

(0.007)

0.729

(0.023)

0.451

(0.010)

0.732

(0.019)

32.946

(1.024)

fJGL
0.956

(0.005)

0.345

(0.016)

0.617

(0.025)

0.038

(0.006)

0.790

(0.011)

37.527

(1.235)

0.971

(0.004)

0.307

(0.020)

0.423

(0.030)

0.021

(0.004)

0.701

(0.014)

31.616

(0.839)

gJGL
0.956

(0.005)

0.344

(0.016)

0.618

(0.024)

0.038

(0.006)

0.790

(0.010)

37.581

(1.169)

0.970

(0.005)

0.292

(0.017)

0.407

(0.040)

0.022

(0.005)

0.693

(0.018)

32.616

(0.917)

GemBAGMPM
0.985

(0.000)

0.344

(0.018)

0.147

(0.013)

0.000

(0.000)

0.697

(0.020)

46.156

(1.840)

0.986

(0.000)

0.326

(0.022)

0.130

(0.014)

0.000

(0.000)

0.836

(0.010)

30.824

(0.927)

P2020 (p0 = 482.5) Full dependence (p0 = 485)

Acc MCC TPR FPR AUC Fr Loss Acc MCC TPR FPR AUC Fr Loss

mGHSMPM
0.654

(0.007)

0.132

(0.004)

0.863

(0.013)

0.350

(0.007)

0.885

(0.008)

26.270

(1.321)

0.575

(0.011)

0.095

(0.006)

0.811

(0.017)

0.429

(0.011)

0.815

(0.014)

30.133

(1.058)

mGHStα
0.972

(0.002)

0.460

(0.013)

0.699

(0.017)

0.024

(0.002)

0.885

(0.008)

26.270

(1.321)

0.981

(0.002)

0.406

(0.017)

0.440

(0.034)

0.011

(0.002)

0.815

(0.014)

30.133

(1.058)

GHSMPM
0.659

(0.007)

0.123

(0.005)

0.817

(0.015)

0.344

(0.007)

0.850

(0.010)

29.366

(1.298)

0.552

(0.010)

0.068

(0.007)

0.725

(0.022)

0.451

(0.010)

0.728

(0.018)

32.782

(0.948)

fJGL
0.963

(0.004)

0.416

(0.018)

0.717

(0.021)

0.033

(0.004)

0.842

(0.009)

31.347

(1.244)

0.972

(0.004)

0.395

(0.022)

0.559

(0.040)

0.021

(0.004)

0.769

(0.019)

26.937

(1.079)

gJGL
0.954

(0.006)

0.347

(0.020)

0.655

(0.023)

0.041

(0.006)

0.807

(0.010)

37.849

(1.392)

0.969

(0.005)

0.291

(0.017)

0.413

(0.042)

0.023

(0.006)

0.695

(0.019)

32.168

(0.913)

GemBAGMPM
0.992

(0.000)

0.713

(0.010)

0.516

(0.013)

0.000

(0.000)

0.893

(0.007)

18.421

(0.865)

0.989

(0.000)

0.534

(0.017)

0.293

(0.017)

0.000

(0.000)

0.893

(0.008)

26.442

(0.976)

Table 3.6.3: Simulation results for n = 100 and p = 250 (50 replicates). Methods

mGHS and GHS are evaluated over B = 10000 post burn-in samples.

n = 100, p = 500
Independent (p0 = 271.25) Coupled (p0 = 279.5)

Acc MCC TPR FPR AUC Fr Loss Acc MCC TPR FPR AUC Fr Loss

mGHSMPM
0.518

(0.003)

0.034

(0.002)

0.845

(0.023)

0.482

(0.003)

0.832

(0.018)

41.906

(1.633)

0.525

(0.004)

0.043

(0.002)

0.929

(0.014)

0.476

(0.004)

0.922

(0.010)

39.677

(1.851)

mGHStα
0.997

(0.000)

0.430

(0.021)

0.461

(0.030)

0.001

(0.000)

0.832

(0.018)

41.906

(1.633)

0.994

(0.003)

0.425

(0.064)

0.747

(0.022)

0.006

(0.003)

0.922

(0.010)

39.677

(1.851)

GemBAGMPM
0.998

(0.000)

0.379

(0.032)

0.172

(0.023)

0.000

(0.000)

0.799

(0.013)

40.747

(1.495)

0.999

(0.000)

0.740

(0.015)

0.634

(0.036)

0.000

(0.000)

0.962

(0.014)

33.100

(3.257)

P2020 (p0 = 270.5) Full Dependence (p0 = 273)

Acc MCC TPR FPR AUC Fr Loss Acc MCC TPR FPR AUC Fr Loss

mGHSMPM
0.522

(0.004)

0.041

(0.002)

0.915

(0.018)

0.479

(0.003)

0.909

(0.015)

38.121

(2.107)

0.523

(0.004)

0.043

(0.002)

0.938

(0.016)

0.478

(0.004)

0.933

(0.013)

38.741

(2.042)

mGHStα
0.979

(0.013)

0.274

(0.085)

0.770

(0.020)

0.020

(0.013)

0.909

(0.015)

38.121

(2.107)

0.979

(0.013)

0.286

(0.080)

0.819

(0.019)

0.020

(0.013)

0.933

(0.013)

38.741

(2.042)

GemBAGMPM
0.999

(0.000)

0.839

(0.012)

0.723

(0.030)

0.000

(0.000)

0.966

(0.011)

23.992

(4.506)

0.999

(0.000)

0.873

(0.014)

0.771

(0.028)

0.000

(0.000)

0.979

(0.006)

22.112

(3.407)

Table 3.6.4: Simulation results for n = 100 and p = 500 (25 replicates). Method

mGHS is evaluated over B = 10000 post burn-in samples.
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3.7 Application to a bike-sharing dataset

We perform an analysis of the Capital Bikeshare system data1, a benchmark
dataset previously analyzed in Zhu and Foygel Barber (2015) and Yang et al.
(2021). This is the first analysis of this dataset with a full Bayesian graphical
model. The dataset contains records of bike rentals in a bicycle sharing system
with more than 500 stations located in the Washington D.C. area, where each
ride is labeled as casual (paying for a single day) or member (membership pay-
ment). Data from years 2016, 2017, and 2018 are used, for a total of n = 1092
registered days. Only the p = 239 most active stations are selected. Therefore,
for i = 1, . . . , 1092 and j = 1, . . . , 239, let ycij and ymij be the number of registered
casual and member trips initiated at station j on day i, respectively. After cor-
recting for the seasonal trend, each station data is marginally standardized and
transformed with the Yeo-Johnson transformation (Yeo and Johnson, 2000) to
better approximate a Gaussian distribution. Finally, the data are divided by year
and rider membership for a total of K = 6 groups. Matrices Yk, k = 1, . . . , 6 are
marginally standardized such that µk = 0 and the standard deviations are equal
to 1 for each group.

For each class, 80% of the observations are used as training set and the re-
maining 20% as test set. For k = 1, . . . , 6, let Ω̂k be the estimated precision
matrix of the k-th training set. Here we take the posterior mean. Following Fan
et al. (2009), the observations of each test set is partitioned as yki =

(
yki,j1 ,y

k
i,j2

)
,

where yki,j1 =
(
yki,1, . . . , y

k
i,120

)
and yki,j2 =

(
yki,121, . . . , y

k
i,239

)
, i = 1, . . . , nk. The

corresponding partition for Ωk and Σk are

Ωk =

[
Ωk11 Ωk12

Ωk21 Ωk22

]
and Σk =

[
Σk11 Σk12

Σk21 Σk22

]
.

The performances of the models are evaluated by predicting yki,j2 based on yki,j1
and Ω̂k. Under the Gaussian assumption, the best linear predictor is

ŷki,j2 = E
(
yki,j2 | y

k
i,j1

)
= Σ̂k21Σ̂

−1

k11
yki,j1 .

To assess the prediction performances of the methods we rely on the average ab-
solute forecast error (AAFE), defined as

AAFEk =
1

119

1

|Tk|
∑
i∈Tk

239∑
j=121

|ykij − ŷkij|,

where Tk denotes the test set indexes for group k. We denote the mean AAFE
across groups as mAAFE.

1Data are available at http://www.capitalbikeshare.com/system-data

http://www.capitalbikeshare.com/system-data
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The multiple Graphical Horseshoe is tested against the ordinary Graphical
Horseshoe of Li et al. (2019) and the GemBAG of Yang et al. (2021). For the
estimation of the threshold in the mGHS model we set the hyperparameter to
a = 30 and b = 25, whereas in GemBAG we estimated hyperparameters v0 and v1
according to the BIC criterion as in Section 3.6. For computational reasons, the
joint Graphical LASSO of Danaher et al. (2014) is excluded from the analysis.

With mAAFE = 0.596, the best predictive model is the mGHS, whereas the
ordinary GHS shows similar predictive performance (mAAFE = 0.600). The lat-
ter, however, provides a sparser model: regardless of the method used for selecting
the edges a posteriori, the mGHS always estimates denser networks, including
connections between stations that the GHS is not able to capture. Finally, the
GemBAG provides at the same time the sparsest model and the worst predictive
performance, with mAAFE = 0.613.

To further understand how the connections between stations work among the
casual and member users, we plot the estimated networks for each group for both
GHS and mGHS (Figures 3.D.2 and 3.D.1 in Appendix 3.D), where we select
those edges with a posterior inclusion probability higher than 0.9. The estimated
networks for casual users are denser in both models, suggesting a higher activity
of casual rides. However, the number of edges shared across the years is higher for
the registered users, implying more regular activities of those who choose to pay
a seasonal ticket. The intersection of the estimated networks across three years
for the registered and casual users is shown in Figure 3.7.1 for both GHS and
mGHS, where the size of the nodes depends on the number of edges associated
with the related stations. The two models estimate similar networks for both types
of users, however, mGHS gives more importance to the stations identified by GHS
and includes some additional ones.

casual 2016 casual 2017 casual 2018 member 2016 member 2017 member 2018



1.000 0.969 0.893 0.479 0.515 0.483 casual 2016

0.969 1.000 0.958 0.518 0.562 0.526 casual 2017

0.893 0.958 1.000 0.461 0.502 0.475 casual 2018

0.479 0.518 0.461 1.000 0.984 0.971 member 2016

0.515 0.562 0.502 0.984 1.000 0.980 member 2017

0.483 0.526 0.475 0.971 0.980 1.000 member 2018

(3.14)

The hypothesis of a more regular behaviour of the registered users is supported
also by 3.14, which reports the estimated correlation matrix between groups. The
correlation is high across the years for both types of users. In particular, it remains
close to 1 even after two years for the rides with membership payment (correlation
between 2016 and 2018 is 0.971). On the contrary, the decrease is larger for the
casual rides, with a correlation of 0.893.
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(a) Casual network estimated by mGHS (b) Member network estimated by mGHS

(c) Casual network estimated by GHS (d) Member network estimated by GHS

Figure 3.7.1: Intersection of the estimated networks across three years; the size of

the nodes depends on the number of edges associated to the related station
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3.8 Conclusion

In this paper, we have introduced a novel fully Bayesian method for the analysis
of high-dimensional dependent precision matrices. In particular, we provided an
efficient approach that works up to hundreds of variables. We empirically showed
that the model is able to borrow information between groups when appropriately
supported by the data. Simulation studies empirically demonstrated that the pro-
posed approach has good performances in terms of edge selection; the proposed
joint model performs at least as well as the separate analysis of each group with
the ordinary Graphical Horseshoe (Li et al., 2019). We applied our method to a
benchmark dataset with a slight improvement in prediction performance. Com-
pared to the ordinary Graphical Horseshoe, the proposed model borrowed infor-
mation across groups and selected a higher number of common edges across the
years. Moreover, the estimation of correlation matrix R provided unique insights
about the behavior of bike-sharing users.

We proposed a new approach for posterior edge selection that accounts for
posterior dependencies between parameters λ2ij,k’s. This method can be easily ex-
tended to other common frameworks, for example, variable selection in regression
models. The simulation results of our approach are promising, however, among
other unexplored properties, it is not clear whether the proposal distribution ac-
counts for easy control of false discoveries, a desirable feature for every posterior
selection method. This can be assessed by evaluating different proposal distribu-
tions and comparing our procedure against the alternative solutions proposed by
Chandra et al. (2022) and Lee et al. (2023). Further improvements in the proposal
may concern the introduction of different thresholds tαij specific for each edge, the
application of adaptive procedures or the construction of a distribution which re-
flects the methods of Muller et al. (2007), Chandra et al. (2022) and Lee et al.
(2023). The proposed cut model provides only an approximation of the poste-
rior distribution, and, in models with cuts in general, the algorithm may fail to
converge to a well-defined distribution (Plummer, 2015). To this aim, the author
propose an approximate solution called tempered cut algorithm with the goal of
overcoming the problem of convergence. Whereas cut models can outperform fully
Bayesian models in terms of performance and computational efficiency, a careful
assessment of the output produced by models with cuts should be always per-
formed. We leave the cited improvements of our edge selection method to future
works.

Note that very recently Lingjaerde et al. (2022) have proposed an approach,
alternative to the one presented in this paper, for the analysis of multiple graphical
models with horseshoe priors, termed the joint graphical horseshoe. The approach
proposed in this paper, with respect to the joint graphical horseshoe, is charac-
terized by a few important and unique features, since it provides full Bayesian
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inference, it adapts well to setting with heterogeneous levels of network similarity,
it learns the level of network similarity across groups from the data, and it has
been successfully applied to networks with large p (up to 500 nodes).

Among possible extensions, we may consider a spike-and-slab type of prior on
the off-diagonal elements of the correlation matrix R. This approach would not
only give a deeper insight into the similarity across the groups, but it would speed
the model up when the groups are not significantly related: the G3p distribution
would reduce to an Inverse-Gamma when the k-th row of the matrix R is zero,
avoiding the need of the rejection sampling discussed in Section 3.3.

A main challenge, and still a limitation, of the proposed approach, is the com-
putational complexity of the algorithm since it becomes infeasible when the number
of covariates p is extremely large, e.g., in the thousands. Alternative computational
approaches that could be explored include the thresholding approach of Johndrow
et al. (2020) that could be adapted to sample from multivariate Normal distribu-
tions under the Horseshoe prior, and eventually lead to a significant reduction in
computational times.

The R code for mGHS model, simulations studies and application to bike-
sharing dataset is available at https://github.com/cbusatto/mGHS.

https://github.com/cbusatto/mGHS


Appendix

Appendix 3.A The three-parameter Gamma dis-

tribution

3.A.1 Technical details of the modified rejection sampling

method

The acceptance probability of each step of the algorithm is compute as follows:

• Step 1: the probability of immediate acceptance is

P (E1) = Φ0,ω2 (t2) − Φ0,ω2 (t1) ,

where Φµ,σ2 (·) denotes the cumulative density function of a Gaussian distri-
bution with mean µ and variance σ2;

• Step 2: the acceptance probability of Step 2 is

P (E2) = 1 − P (E1) − P (E3) ,

where P (E3) is the acceptance probability of Step 3.

• Step 3: the probability of acceptance this step is

P (E3) =

∫ t1

−∞
h(t)dt+

∫ ∞

t2

h(t)dt−
∫ t1

−µ
σ

g(t)dt+

∫ ∞

t2

g(t)dt

=

∫ ∞

−∞
h(t)dt−

∫ t2

t1

h(t)dt−
∫ ∞

−µ
σ

g(t)dt+

∫ t2

t1

g(t)dt

=

∫ t2

t1

g(t) − h(t)dt.
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Figure 3.A.1: distributions d(t) and s(t); dotted lines represent t1 and t2.

3.A.2 Rejection sampling for sampling from the difference

distribution d(t)

Sampling from d(t) in Step 3 can be achieved by means of a standard rejection
sampling. Let s(t) be the proposal distribution, we adapt a double-exponential
(Laplace) distribution of the form

s(t) =
c√
2π
e−

|t−b|
δ , −∞ < t <∞,

in order to minimize the area between s(t) and d(t) (Ahrens and Dieter, 1982;
Stadlober, 1982). This happens when the hat function s(t) touches d(t) at two
different points L and R, with R > L. As explained in Dieter (1981), if d(t) is
covered by a double-exponential distribution, optimal parameters c, b, and δ can
be estimated within two steps: first, points L, R and parameter δ are computed
simultaneously (for instance by Newton iteration) as

d′ (L) =
1

δ
d (L)

d′ (R) = − 1

δ
d (R)

δ =
1

2
(R− L) ,



111

whereas parameters c and b are calculated as

b =
1

2

(
L+R + δln

(
d(R)

d(L)

))
c = e

√
2πd(R)d(L).

Figure 3.A.1 shows the difference function d(t) and its optimal hat function s(t).
The algorithm can be further sped up by noting that the quantities t1, t2, b, c

and δ only depend on the ratio β/α. The computation of these parameters, which
involve iterative methods, can be avoided by tabulating the needed quantities for
a restricted grid of the parameters γ, α, and β.

3.A.3 Proof of Proposition 3.3.1

Recalling that t = (x− µ)/σ, where x > 0, the acceptance probability of the first
two steps of the algorithm can be computed as

P (Tacc) = P
(
U ≤ g(t)

h(t)

)
=

∫ ∞

−µ
σ

P
(
U ≤ g(t)

h(t)

∣∣T = t

)
h(t)dt

=

∫ t1

−µ
σ

g(t)

h(t)
h(t)dt+

∫ t2

t1

h(t)dt+

∫ ∞

t2

g(t)

h(t)
h(t)dt

=

∫ t1

−µ
σ

g(t)dt+

∫ t2

t1

h(t)dt+

∫ ∞

t2

g(t)dt.

Thus, the probability of rejection is P (Trej) = 1 − P (Tacc) =
∫ t2
t1
g(t) − h(t)dt.

Since the Step 3 draws a sample from
∫ t2
t1
g(t)−h(t)dt, the acceptance probability

of the method is exactly 1.
To show that the distribution of accepted values follows the target density g(t),

the cumulative density function P
(
T ≤ u

∣∣Tacc) = P(T≤u,Tacc)
P(Tacc) = P (T ≤ u, Tacc) has

to be equal to Fg(t)(u) =
∫ u
−µ

σ
g(t)dt. Three different cases are studied:

• Case u < t1 :

P (T ≤ u, Tacc) =

∫ u

−µ
σ

P
(
U ≤ g(t)

h(t)

)
h(t)dt

=

∫ u

−µ
σ

g(t)dt

= Fg(t)(u);
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• Case u ∈ [t1, t2] :

P (T ≤ u, Tacc) = P (T ≤ t1, Tacc) + P (t1 < T ≤ u, Tacc)

= Fg(t)(t1) +

∫ u

t1

P
(
U ≤ g(t)

h(t)

)
h(t)dt+

∫ u

t1

g(t) − h(t)dt

= Fg(t)(t1) +

∫ u

t1

h(t)dt+

∫ u

t1

g(t) − h(t)dt

= Fg(t)(u);

• Case t2 < u :

P (T ≤ u, Tacc) = P (T ≤ t2, Tacc) + P (t2 < T ≤ u, Tacc)

= Fg(t)(t2) +

∫ u

t2

P
(
U ≤ g(t)

h(t)

)
h(t)dt

= Fg(t)(t2) +

∫ u

t2

g(t)dt

= Fg(t)(u).

Therefore, the method actually samples from the target distribution.

Appendix 3.B KL divergence for the three-parameter

Gamma distribution

Here the asymptotic behaviour of a G3p distribution for limit cases β/α → −∞,
β/α → ∞ and γ → ∞ is described. The analysis relies on the KL divergence. In
the first case, β/α → −∞ the G3p distribution is compared to a Gamma distri-
bution and yields a closed-form result, whereas when β/α → ∞ and γ → ∞ the
target density is approximated with a Gaussian distribution based on empirical
results.

• Proof of Proposition 3.3.2:
The KL divergence between distribution qx ∼ G3p (γ, α, β) and distribution
px ∼ Ga (d, c) is

KL (p∥q) =

∫ ∞

0

px log

(
px
qx

)
dx =

∫ ∞

0

px log (px) dx−
∫ ∞

0

px log (qx) dx.

(3.15)
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Denoting the two integrals in (3.15) as I (d, c) =
∫∞
0
px log (px) dx and I (d, c, γ, α, β) =∫∞

0
px log (qx) dx, it yields

I (d, c) =

∫ ∞

0

log

(
cd

Γ(d)
e−cxxd−1

)
cd

Γ(d)
e−cxxd−1dx

= log

(
cd

Γ (d)

)
− cd+1

Γ (d)

∫ ∞

0

e−cxxddx+
cd(d− 1)

Γ (d)

∫ ∞

0

log(x)e−cxxd−1dx

= log

(
cd

Γ (d)

)
− cd+1

Γ (d)

Γ (d+ 1)

cd+1
+
cd(d− 1)

Γ (d)

Γ(d)

cd

(
Γ′ (d)

Γ(d)
− log c

)
= log

(
cd

Γ (d)

)
− d+ (d− 1)

(
Γ′ (d)

Γ(d)
− log c

)
= log(c) + (d− 1)

Γ′ (d)

Γ(d)
− d− log (Γ(d))

and

I (d, c, γ, α, β) =

∫ ∞

0

log

 (2α2)
γ+1
2 e−

β2

8α2

γ!D−γ−1

(
− β

α
√
2

)e−α2x2+βxxγ

 cd

Γ(d)
e−cxxd−1dx

= log

 (2α2)
γ+1
2 e−

β2

8α2

γ!D−γ−1

(
− β

α
√
2

)
+

cd

Γ (d)

∫ ∞

0

(
−α2x2 + βx

)
e−cxxd−1dx

+
cdγ

Γ (d)

∫ ∞

0

log(x)e−cxxd−1dx

= log

 (2α2)
γ+1
2 e−

β2

8α2

γ!D−γ−1

(
− β

α
√
2

)
− α2cdΓ (d+ 2)

cd+2Γ (d)
+
βcdΓ (d+ 1)

cd+1Γ (d)
+

γ

(
Γ′ (d)

Γ(d)
− log (c)

)

= log

 (2α2)
γ+1
2 e−

β2

8α2

γ!D−γ−1

(
− β

α
√
2

)
− α2d(d+ 1)

c2
+
βd

c
+ γ

(
Γ′ (d)

Γ(d)
− log (c)

)
.
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Thus,

I (d, c) − I (d, c, γ, α, β) = log(c) + (d− 1)
Γ′ (d)

Γ(d)
− d− log (Γ(d))−

log

 (2α2)
γ+1
2 e−

β2

8α2

γ!D−γ−1

(
− β

α
√
2

)
+

α2d(d+ 1)

c2
− βd

c
−

γ

(
Γ′ (d)

Γ(d)
− log (c)

)
= (γ + 1) log (c) + (d− 1 − γ)

Γ′ (d)

Γ(d)
− d

(
1 +

β

c
− α2(d+ 1)

c2

)

+ log

(
Γ(γ + 1)

Γ(d)

)
− log

 (2α2)
γ+1
2 e−

β2

8α2

D−γ−1

(
− β

α
√
2

)
 .

(3.16)

Let d = µ2

σ2 and c = µ
σ2 so that the Gamma distribution has the same

mean and variance of the G3p distribution. Exploiting the properties of the
Parabolic Cylinder functions it yields

lim
β
α
→−∞

d = lim
β
α
→−∞

(γ + 1)2D−γ−2

(
− β

α
√
2

)2
D−γ−1

(
− β

α
√
2

) (
γ + 2

γ + 1
D−γ−3

(
− β

α
√

2

)
−

D−γ−2

(
− β

α
√
2

)2
D−γ−1

(
− β

α
√
2

) )−1

=
1

lim β
α
→−∞

D−γ−1

(
− β

α
√
2

)
(γ+1)D−γ−2

(
− β

α
√
2

)2

(
(γ + 2)D−γ−3

(
− β

α
√
2

)
− (γ + 1)

D−γ−2

(
− β

α
√
2

)2

D−γ−1

(
− β

α
√
2

)
)

=
1

lim β
α
→−∞

(γ+2)D−γ−3

(
− β

α
√
2

)
D−γ−1

(
− β

α
√
2

)
(γ+1)D−γ−2

(
− β

α
√
2

)2 − 1

=
1

γ+2
γ+1

− 1
= γ + 1
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and

lim
β
α
→−∞

c = lim
β
α
→−∞

d

µ

= (γ + 1) lim
β
α
→−∞

1

µ

= (γ + 1) lim
β
α
→−∞

α
√

2

γ + 1

D−γ−1

(
− β

α
√
2

)
D−γ−2

(
− β

α
√
2

)
= lim

β
α
→−∞

α
√

2
D−γ−1

(
− β

α
√
2

)
D−γ−2

(
− β

α
√
2

) (
Dv(z) = zDv−1(z) − (v − 1)Dv−2(z)

)

= lim
β
α
→−∞

α
√

2

− β

α
√

2
+ (γ + 2)

D−γ−3

(
− β

α
√
2

)
D−γ−2

(
− β

α
√
2

)


= − β.

Plugging these results into (3.16) yields

KL β
α
→−∞ (q, p) = (γ + 1) log (−β) − (γ + 1)

(
α2(d+ 1)

β2

)
− log

 (2α2)
γ+1
2 e−

β2

8α2

D−γ−1

(
− β

α
√
2

)


= log

( −β
α
√

2

)γ+1 D−γ−1

(
− β

α
√
2

)
e
− β2

4(2α2)

− (γ + 1)

(
α2(d+ 1)

β2

)
= 0,

since limz→∞
D−v(z)

z−ve
−z2
4

= 1

• Asymptotic behaviour when β
α
→ +∞ or γ → +∞:

When β
α
→ +∞ the Gamma-3p is approximated with a N (µ, σ2) distribu-

tion, with

lim
β
α
→+∞

µ = lim
β
α
→+∞

γ + 1

α
√

2

D−γ−2

(
− β

α
√
2

)
D−γ−1

(
− β

α
√
2

) (
lim

x→−∞
v
D−v−1 (z)

D−v (z)
= −z

)

=
β

2α2
(3.17)
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and

lim
β
α
→+∞

σ2 = lim
β
α
→+∞

γ + 12

2α2

D−γ−2

(
− β

α
√
2

)
D−γ−1

(
− β

α
√
2

)
γ + 2

γ + 1

D−γ−3

(
− β

α
√
2

)
D−γ−2

(
− β

α
√
2

) −
D−γ−2

(
− β

α
√
2

)
D−γ−1

(
− β

α
√
2

)


=
1

2α2
. (3.18)

Following Segura (2021), when v → ∞ a sharp approximation for the ratio

of Parabolic Cylinder functions is vD−v−1(z)
D−v(z)

≈ −z + 1
2

(
z +

√
z2 + 4v − 2

)
.

Therefore, the mean and variance of the Gaussian approximation become

lim
γ→+∞

µ = lim
γ→+∞

γ + 1

α
√

2

D−γ−2

(
− β

α
√
2

)
D−γ−1

(
− β

α
√
2

)
=

β

4α2
+

1

α
√

8

√
β2

2α2
+ 4γ + 2 (3.19)

and

lim
γ→+∞

σ2 = lim
γ→+∞

γ + 12

2α2

D−γ−2

(
− β

α
√
2

)
D−γ−1

(
− β

α
√
2

)
γ + 2

γ + 1

D−γ−3

(
− β

α
√
2

)
D−γ−2

(
− β

α
√
2

) −
D−γ−2

(
− β

α
√
2

)
D−γ−1

(
− β

α
√
2

)


=
γ + 1

4α2

(
β

α
√

2
+

√
β2

2α2
+ 4γ + 6

)
− lim

γ→+∞
µ2

=
γ + 1

4α2

(
β

α
√

2
+

√
β2

2α2
+ 4γ + 6

)
−

(
β

4α2
+

1

α
√

8

√
β2

2α2
+ 4γ + 2

)2

.

(3.20)

Tables 3.B.1 and 3.B.2 show the KL divergence for increasing values of the
ratio β/α and γ. The integral is numerically approximated with the com-
mand KLD from package LaplacesDemon for software R. The approximated
KL divergence is evaluated over the interval (µ− 5σ, µ+ 5σ). Values of the
parameters higher than those shown in the table 3.B.1 give overflow prob-
lems. The results in the tables below depend only on the values of γ and
the ratio β/α, that is, for different values of α the KL divergence between
q ∼ G3p (γ, α, β) and p ∼ N (µ, σ2) does not change. The sequence of KL di-
vergence is always decreasing in Table 3.B.2, for both KL(q∥p) and KL(p∥q).
In Table 3.B.1 the sequence is decreasing only for KL(p∥q), however the
mean between the two is decreasing.
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KL β
α

= 0.002 β
α

= 0.2 β
α

= 0.5 β
α

= 1 β
α

= 3 β
α

= 5 β
α

= 8 β
α

= 0.002 β
α

= 0.2 β
α

= 0.5 β
α

= 1 β
α

= 3 β
α

= 5 β
α

= 8

γ = 1 0.284 0.273 0.257 0.227 0.105 0.041 0.016 0.411 0.394 0.372 0.329 0.139 0.047 0.016

γ = 3 1.206 1.164 1.100 0.983 0.545 0.281 0.127 2.365 2.288 2.153 1.906 0.886 0.355 0.139

γ = 5 2.185 2.115 2.007 1.820 1.104 0.636 0.318 5.032 4.858 4.577 4.064 1.992 0.871 0.366

γ = 10 4.633 4.505 4.319 3.995 2.736 1.810 1.038 13.207 12.743 12.057 10.804 5.698 2.811 1.303

γ = 15 6.875 6.740 6.516 6.124 4.501 3.206 1.990 22.597 21.884 20.721 18.653 10.295 5.419 2.672

γ = 30 10.882 10.839 10.751 10.537 9.160 7.568 5.517 53.998 52.316 49.941 45.377 27.042 15.766 8.645

γ = 50 12.710 12.739 12.749 12.708 12.090 11.137 9.542 97.765 95.186 90.974 83.411 52.121 32.489 19.310

γ = 100 14.162 14.225 14.278 14.349 14.163 13.755 13.110 208.476 203.439 195.323 180.003 117.316 77.428 49.973

Table 3.B.1: KL divergence when β/α increases: KL(q∥p) (left) and KL(p∥q)
(right) where q ∼ G3p (γ, α, β) and p ∼ N (µ, σ2), with µ and σ2 computed as in

(3.17)-(3.18).

KL β
α

= 0.002 β
α

= 0.2 β
α

= 0.5 β
α

= 1 β
α

= 3 β
α

= 5 β
α

= 8 β
α

= 0.002 β
α

= 0.2 β
α

= 0.5 β
α

= 1 β
α

= 3 β
α

= 5 β
α

= 8

γ = 1 0.022 0.021 0.018 0.016 0.011 0.007 0.004 0.023 0.022 0.020 0.017 0.010 0.007 0.003

γ = 3 0.015 0.013 0.012 0.010 0.005 0.004 0.002 0.025 0.023 0.020 0.015 0.005 0.004 0.002

γ = 5 0.010 0.009 0.008 0.006 0.003 0.002 0.002 0.016 0.015 0.013 0.010 0004 0.002 0.002

γ = 10 0.005 0.004 0.004 0.003 0.002 0.001 0.001 0.006 0.006 0.005 0.004 0.002 0.001 0.001

γ = 15 0.003 0.003 0.003 0.002 0.001 0.001 < 0.001 0.003 0.003 0.003 0.003 0.001 0.001 < 0.001

γ = 30 0.001 0.001 0.001 0.001 < 0.001 < 0.001 < 0.001 0.002 0.001 0.001 0.001 < 0.001 < 0.001 < 0.001

γ = 50 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

γ = 100 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 3.B.2: KL divergence when γ increases: KL(q∥p) (left) and KL(p∥q) (right)

where q ∼ G3p (γ, α, β) and p ∼ N (µ, σ2), with µ and σ2 computed as in (3.19)-

(3.20).

Appendix 3.C Pseudo-code for mGHS algorithm
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Algorithm 12: Multiple Graphical Horseshoe algorithm

1 Input: S1, . . . ,SK ∈ Rp×p, K, p,B, bn ∈ N, n ∈ NK ;

2 set Ωk = Ip, Σk = Ip, Λk = 1p×p, ηk = 1p×p, τ = 1K , ζ = 1K , R = IK and

µ = 0K ;

3 for b = 1 to B do

4 for k = 1 to K do

5 for j = 1 to p do

6 compute tj,k :=
{
tij,k = r⊺kR

−1
−k∆

−1
ij,−kω

−k
ij , i = 1, . . . , p, i ̸= j

}
;

7 compute mj,k :=
{
mi
j,k = tij,k

√
τkλkij, i = 1, . . . , p, i ̸= j

}
;

8 compute Dj,k :=
{
Dii
j,k = µkτkλ

k
ij, i = 1, . . . , p, i ̸= j

}
;

9 compute Oj,k = Σk
−j − σk

j

(
σk
j/σ

k
jj

)⊺
and Wj,k = Dj,k + skjjOj,k;

10 sample γkjj ∼ IG
(
nk/2 + 1, skjj/2

)
;

11 sample vj,k ∼ Np−1

(
W−1

j,k

(
D−1
j,kmj,k − sk−j

)
,W−1

j,k

)
;

12 sample ej,k :=
{
eij,k ∼ IG

(
1, 1 + 1/lij,k

)
, i = 1, . . . , p, i ̸= j

}
;

13 sample lj,k :=
{
lij,k ∼ G3p

(
1, αλij,k , βλij,k

)−2
, i = 1, . . . , p, i ̸= j

}
,

where αλij,k =
(

v2i
2τkµk

+ 1
ηkij

)1/2
and βλij,k = vi√

τkµk
tij,k;

14 set Σk
−j = Oj,k + Oj,kvj,kv

⊺
j,kOj,k/γ

k
jj, σ

k
j = −Oj,kvj,k/γ

k
jj,

σkjj = 1/γkjj, ω
k
j = vj,k, ω

k
jj = γkjj + v⊺

j,kOj,kvj,k, λ
k
j = lj,k and

ηkj = ej,k;

15 end

16 end

17 compute

Tk :=
{
T ijk = r⊺kR

−1
−k∆

−1
ij,−kω

−k
ij , k = 1, . . . , K, j = 2, . . . , p, i < j

}
;

18 sample τ :=
{
τk ∼ G3p (p(p− 1)/2, ατk , βτk)−2 , k = 1, . . . , K

}
, where

ατk =

(
1
ζk

+
∑

i<j

(ωk
ij)

2

2λkijµk

)1/2

and βτk =
∑

i<j

ωk
ij√
λkijµk

Tij
k ;

19 sample ζ := {ζk ∼ IG (1, 1 + 1/τk) , k = 1, . . . , K};

20 sample R⋆ = diag (Ψ)−1/2Ψdiag (Ψ)−1/2, where

Ψ ∼ IW (p(p− 1)/2,H) and

H :=

{
Hij =

∑K
k=1

(∑
i<j ω

k
ij

)−1/2 ωk
ij√
τkλ

k
ij

}
;

21 if U(0, 1) < e(K+1)/2(log |R⋆|−log |R|) then set R = R⋆ and compute

µ :=
{
µk = 1 − r⊺kR

−1
−krk, k = 1, . . . , K

}
;

22 end

23 return Ω1 . . . ,ΩK ,Λ1, . . . ,ΛK , τ and R;
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Appendix 3.D Additional details for the Bike-

sharing dataset application

Here we report further features of our real data application. We provide an
overview of the the thresholds tαk estimated with the cut-model (see Table 3.D.1)
and the inferred Bikesharing networks for each group with both mGHS and GHS
in Figure 3.D.1 and 3.D.2, respectively (black edges denote those edges included
in all three years for both member and casual users). For the former problem,
we run 4 MCMC chains starting from different values. As shown in Table 3.D.1,
the posterior mean is basically equal to the prior mean of tαk , therefore suggest-
ing the need of improvements of the cut model: possible solutions are either a
new proposal distribution for the MH step or the application of the tempered cut
algorithm proposed by Plummer (2015) is required.

casual 2016 casual 2017 casual 2018 member 2016 member 2017 member 2018

chain 1 0.546 0.548 0.547 0.547 0.545 0.543

chain 2 0.546 0.543 0.542 0.544 0.546 0.546

chain 3 0.547 0.546 0.546 0.544 0.545 0.547

chain 4 0.548 0.547 0.544 0.545 0.547 0.545

Table 3.D.1: Posterior mean of tαk for 4 different MCMC chain.
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Chapter 4

Informative co-data learning for

high-dimensional Horseshoe

regression

4.1 Introduction

The analysis of high-dimensional data sets is a main interest in many scientific
fields. In particular, clinical research often deals with a huge amount of data, such
as genes expression or genome-wide methylation levels, for relatively few samples,
due to budget or practical constraints. We consider regression models to study a
clinical outcome with these data. Since the number of parameters, p, overwhelms
sample size, n, we develop an approach to improve the overall performance of
the model by incorporating (prior) external knowledge in the estimating process.
Such an external source of information is referred to as co-data (complementary
data; Neuenschwander et al., 2016), as it provides additional information about
the covariates. We consider two different types: continuous, such as p-values from
previous studies, or categorical, such as membership to a group, e.g. a chromosome.

Several methods allow incorporating one source of auxiliary information in a re-
gression framework (Tai and Pan, 2007; Boonstra et al., 2013). A popular method
is the (sparse) group LASSO (Yuan and Lin, 2006; Simon et al., 2013), which pe-
nalizes groups of variables using one common hyperparameter for all groups. Such
a solution is attractive when the number of covariate groups is large, but lacks
flexibility and fails to adapt locally in other settings, leading to sub-optimal re-
sults (Münch et al., 2019). More recent work focuses on the estimation of adaptive
penalties with prior variances specific for each group (Van de Wiel et al., 2019;
Velten and Huber, 2019; Münch et al., 2019). These methods, however, are re-
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strictive in use as they either deal with just one (discrete) co-data source or handle
one specific type of outcome only. In Van Nee et al. (2021), instead, a Ridge re-
gression method is proposed that allows for multiple co-data sources by regressing
the local variances on the co-data. In this work the co-data regression parameters
are estimated independently for each co-data source and are eventually combined
using a vector of weights, where each parameter is related to the importance of a
single co-data source.

Here, we present a novel Bayesian method for both linear and binary regression
that accounts for multiple co-data information. In particular, we introduce a
generalization of Horseshoe regression (Carvalho et al., 2010), referred to as the
informative Horseshoe regression model (infHS). We regress the local variances on
the co-data variables, following the work of Van Nee et al. (2021). In contrast
to Kpogbezan et al. (2019), where the Horseshoe prior is used with only a single
two-group co-data source, our model is flexible with respect to the co-data type, as
it allows for both continuous and discrete co-data predictors. Moreover, it extends
to binary outcome via probit regression (Albert and Chib, 1993). Unlike Van Nee
et al. (2021), it tackles the sparse setting and co-data regression parameters related
to different sources are estimated jointly, avoiding multiple regressions for each co-
data source separately.

We first propose a Gibbs sampler for iteratively updating posterior param-
eters. We introduce a novel rejection sampling method for sampling from the
non-analytical full-conditional distribution of the local variances. When the num-
ber of variables increases, we rely on the computational methods presented in
Bhattacharya et al. (2016) to sample efficiently from a multivariate normal den-
sity. To make the method applicable to particularly large p settings, we develop
a Variational Bayes approximation to the joint posterior distribution, using tech-
niques from Münch et al. (2019) to efficiently optimize the target density of the
variational distribution, rendering an algorithm with computation time linear in
p. With simulations and two data applications, we show that both prediction
and variable selection benefit from the inclusion of co-data information, the latter
being particularly relevant under the Horseshoe setting.

The paper in organized as follows. Section 4.2 introduces the hierarchical
structure of the model and discusses the parametrizations. In Sections 4.3 and
4.4 we develop the Gibbs sampling algorithm, including the rejection sampling
method to update the local variances. In Section 4.5 we propose the Variational
Bayes approximation to the joint posterior distribution. Section 4.6 illustrates
the benefit of co-data information on variable selection with a simulation study,
whereas Section 4.7 presents applications of our model to two data sets, one from
genetics and one from cancer genomics. We conclude with discussions and possible
extensions in Section 4.8.
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4.2 The model

Let y ∈ Rn be the response vector and X ∈ Rn×(p+1) the design matrix, with the
first column of ones. We regress y on X using a generalized linear model (GLM)
with regression coefficient vector β = [β0 β1 . . . βp]

⊺.

Yi | xi,β
ind∼ p (Yi | xi,β)

EYi|xi,β (Yi) = g−1 (x⊺
iβ) , i = 1, . . . , n,

where xi = [1 xi1 . . . xip]
⊺ is the set of covariates related to observation i.

Following Carvalho et al. (2010), the Horseshoe prior locally shrinks regression
parameters toward zero and provides a sparse solution for β. We assume a normal
prior distribution for each βj, where the variance is decomposed in a global scale
parameter τ and a local shrinkage parameter λj. Formally,

β0 | σ2, τ, λ0 ∼ N
(
0, σ2τ 2λ20

)
,

λ0 ∼ C+(0, 1),

βj | σ2, τ, λj ∼ N
(
0, σ2τ 2λ2j

)
, j = 1, . . . , p.

Suppose thatD different co-data sources Zd ∈ Rp×md are available, where
∑

dmd =
M and d = 1, . . . , D. In order to capture the external information effect, Van Nee
et al. (2021) introduce parameters ωd > 0 and γd ∈ Rmd , d = 1, . . . , D, to model
covariate-specific shrinkage λj, j = 1, . . . , p, as a function of Z = [Z1, . . . ,ZD].
Parameters γd represent the regression coefficient vector related to matrix Zd and
are estimated separately for each group d, whereas co-data weights ωd > 0 model
the relative importance of group d and are introduced to combine the different
co-data sources. Here, parameter γ = [γ⊺

1 . . .γ
⊺
D]⊺ is update jointly by sampling

from its full-conditional distribution. This way the co-data sources are naturally
combined and grouping weights ωd can be excluded from the model. Therefore,
the hierarchical set of prior distributions in our model is

λj | Z,γ ∼ C

(
D∑
d=1

(
zdj
)⊺

γd, s
2
0

)
· I(λj>0), j = 1, . . . , p,

γd | Σγd ∼ Nmd
(0,Σγd) , d = 1, . . . , D,

τ ∼ C+ (0, 1) ,

σ2 ∼ IG (v, q) ,

(4.1)

where C denotes the Cauchy distribution and C+ its half-positive part. Here we
model the location parameter of the prior local variances mainly because it allows
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to sample co-data coefficients γ jointly from a multivariate normal distribution
(See Section 4.3). Note that when the co-data are not informative and γd → 0 for
each d, the model reduces to the ordinary Horseshoe prior from Carvalho et al.
(2010) with s20 = 1.

In Van de Wiel et al. (2019) the authors estimate prior covariance matrices
Σd from the data with an Empirical Bayes estimator separately for each source.
This approach, however, is computationally burdensome, as it implies the im-
plementation of multiple MCMC chains until convergence. Here we consider a
group-specific scale parameter κ2d and a ridge-like prior Σd = κ2dImd

. The Zell-
ner’s g-prior Σγd = c (Z⊺

dZd)
−1 (Zellner (1986)) would be redundant as the model

already accounts for collinearity in Z (see Section 4.3).
A main advantage of this approach is the computational efficiency, since only

prior scale parameters κ2d have to be updated. A conjugated prior distribution for
κ2d is

κ2d ∼ IG (ad, bd) . (4.2)

Parameters κ2d act deep in the model and one can argue that they should have a
small impact on the global estimation process. For this reason, a non-informative
choice for ad and bd should suffice.

4.3 Posterior inference

In this section we introduce a Gibbs sampler that iteratively updates the parame-
ters by sampling from their full-conditional distributions. We show the details of
the algorithm for the linear regression model, under the assumption

yi = x⊺
iβ + εi, εi ∼ N

(
0, σ2

)
, i = 1, . . . , n.

However, Pólya-Gamma latent variables (Polson et al., 2013) or probit GLM (Al-
bert and Chib, 1993) can be introduced to augment the model and reach a gaussian
full-conditional distribution for β in a binary regression model.

1. Sampling β and σ2. The full-conditional distributions of β and σ2 are

β | y,X, σ2, τ 2, λ20,λ ∼ Np+1

(
Σ⋆
βX

⊺y, σ2Σ⋆
β

)
, Σ⋆

β =
(
X⊺X + τ−2Λ−2

)−1
,

(4.3)

σ2 | y,X,β, τ 2, λ20,λ ∼ IG

(
v +

n+ p+ 1

2
, q +

1

2
∥y −Xβ∥22 +

β2
0

2τ 2λ20
+

1

2τ 2

p∑
j=1

β2
j

λ2j

)
,
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where Λ = diag (λ0, λ1, . . . , λp). Sampling from (4.3) requires the inversion of the
p × p covariance matrix Σ⋆

β, which becomes computationally infeasible when the
number of covariates p increases (the naive inversion is of order O (p3)). For high-
dimensional problems we rely on the strategies introduced in Bhattacharya et al.
(2016) and Johndrow et al. (2020) to reduce the computational costs of sampling
regression parameters β to O (n2p) operations.

2. Sampling λ20. The half-Cauchy prior for the local shrinkage parameter λ0 of
the intercept β0 is not conjugated to the variance in a linear regression model with
normal errors. We rely on the data-augmentation step proposed in Makalic and
Schmidt (2016) in order to easily and efficiently update parameter λ0. The authors
point out that the half-Cauchy distribution can be written as a scale mixture of
inverse-Gamma distributions, which allows conjugate updates of λ20. Therefore,
the prior distribution can be rewritten as

λ20 | ψ0 ∼ IG
(

1

2
,

1

ψ0

)
,

ψ0 ∼ IG
(

1

2
, 1

)
.

The inverse-Gamma distribution is conjugated to itself and to the local scale pa-
rameter, therefore a closed-form full-conditional is available and a Gibbs step can
be implemented. The full-conditional distributions of λ20 and ψ0 are

λ20 | β0, τ 2, σ2 ∼ IG
(

1,
1

ψ0

+
β2
0

2σ2τ 2

)
,

ψ0 | λ20 ∼ IG
(

1, 1 +
1

λ20

)
.

3. Sampling λ, γ and κ2. The prior distributions for λj and γ in (4.1) are
not conjugated. To this aim, we rely on the data-augmentation step proposed in
Geweke (1993) to reach a conjugated framework and jointly update parameter γ
by sampling from a multivariate normal distribution. Note that the distributions
C (m, s2) and tv (m, s2) are equivalent if v = 1, where tv denotes the Student-t
distribution. At this point we can rely on the result from Geweke (1993), which
states that a Student-t distribution can be formulated as a mixture of Normal and
Inverse-Gamma distributions. Formally, let

λj | Z,γ, φ2
j ∼ N

(
D∑
d=1

(
zdj
)⊺

γd, s
2
0φ

2
j

)
·I(λj>0) and φ2

j ∼ IG
(

1

2
,
1

2

)
, for j = 1, . . . , p,
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then λj | Z,γ ∼ t1
(∑D

d=1

(
zdj
)⊺

γd, s
2
0

)
. Therefore, after the introduction of a

latent factor φ2
j ∼ IG(1/2, 1/2), the prior distribution of λj can be conveniently

re-written as a normal distribution truncated at 0. This way the normal prior for
co-data regression coefficients γ is conjugated and the parameters can easily be
updated by sampling from a multivariate normal distribution. The set of prior
distributions for parameters λj, φ

2
j , γd can be re-written as

λj | Z,γ, φ2
j ∼ N

(
D∑
d=1

(
zdj
)⊺

γd, s
2
0φ

2
j

)
· I(λj>0),

φ2
j ∼ IG

(
1

2
,
1

2

)
, j = 1, . . . , p,

γd | κ2d ∼ Nmd

(
0, κ2dImd

)
,

κ2d ∼ IG (ad, bd) , d = 1, . . . , D.

Let µj =
∑D

d=1

(
zdj
)⊺

γd, λ = [λ1 . . . λp]
⊺ and Φ2 = diag (φ), with φ =

[
φ2
1, . . . , φ

2
p

]⊺
.

The full-conditional distributions of λ0, λj, γ, φ2
j and κ2d in the augmented model

are

π
(
λj | Z, βj, σ2, τ 2,γ, φ2

j

)
∝ λ−1

j e
−

β2j

2σ2τ2λ2
j

−
λ2j

2s20φ
2
j

+
µjλj

s20φ
2
j · I(λj>0),

φ2
j | Z, λj,γ ∼ IG

(
1,

1

2
+

(λj − µj)
2

2s20

)
,

γ | Z,λ,φ,κ2 ∼ NM

(
Σ⋆
γ

(
Z⊺Φ−2λ

)
, s20Σ

⋆
γ

)
,

κ2d | γd ∼ IG
(
ad +

md

2
, bd +

γ⊺
dγd
2

)
,

(4.4)

where Σ⋆
γ =

(
Z⊺Φ−2Z + s20D

−1
κ

)−1
and Dκ = diag (κ211m1 , . . . , κ

2
D1mD

). Details
for sampling parameters λj without computing the unknown normalizing constant
are given in Section 4.4.

The introduced framework presents a computational advantage: the local vari-
ances λ2j can be computed in parallel, potentially improving the efficiency of the
model.

4. Sampling τ 2. As for the scale parameter λ20, the half-Cauchy prior for the
global scale parameter τ is not conjugated to the prior variance of β. Therefore, we
rely on the strategy proposed by Makalic and Schmidt (2016) in order to update
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τ and we assume the prior distributions

τ 2 | ζ ∼ IG
(

1

2
,

1

ζ

)
,

ζ ∼ IG
(

1

2
, 1

)
The full-conditional distributions for τ 2 and ζ are available in closed-form. In
particular the parameters are updated by sampling from the following densities:

τ 2 | β, σ2, λ20,λ, ζ ∼ IG

(
p

2
+ 1,

1

ζ
+

β2
0

2σ2λ20
+

1

2σ2

p∑
j=1

β2
j

λ2j

)
,

ζ | τ 2 ∼ IG
(

1, 1 +
1

τ 2

)
.

4.4 Rejection sampling for parameters λj

In this section we propose a novel rejection sampling algorithm to sample shrinkage
parameters λj, j = 1, . . . , p, from the full-conditional distribution without knowing
the normalizing constant. The rejection sampling allows to draw a new value x⋆
from a density f by sampling it from a proposal distribution g and accepting it
with a probability proportional to the ratio r(x⋆) = f(x⋆)/g(x⋆). In particular, g
must be chosen such that the support of f is a subset of the support of g. Let

k = supx
f(x)

g(x)
<∞

and accept x⋆ with probability a = f(x⋆)/(kg(x⋆)). It can be shown that the
acceptance probability of the algorithm is 1/k. Therefore, the goal is to find a
proposal distribution g such that k is small. The rejection sampling works also if
the normalizing constant of f is unknown, as long as a sampling method for g is
available.

Consider the following density

f(x) = cfx
−1e−ψ/x

2−α2x2+βx · I(x>0),

where ψ, α2 > 0, β ∈ R and cf is the unknown normalizing constant. New val-
ues are sampled from the proposal distribution g(x) ∼ G3p (γ, α, β), with density
g(x) = cgx

γe−α
2x2+βx, where γ ∈ N+. We set parameters α and β equal in both
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Algorithm 13: Gibbs sampler for Informative Horseshoe regression

1 Input: B, bn ∈ N, y ∈ Rn, X ∈ Rn×(p+1), Z1, . . . ,ZD ∈ Rp×md , a,b ∈ RD
+ ,

s20 ∈ R+;

// Set λ0 = 1, λ = 1p, γ = 0M and σ2, τ 2 = 1 and sample

parameters φ, κ2 and ζ from their prior distributions

2 for b = 1 to B do

3 sample β | y,X, σ2, τ 2, λ20,λ ∼ Np+1

(
Σ⋆
βX

⊺y, σ2Σ⋆
β

)
, where

Σ⋆
β =

(
X⊺X + τ−2Λ−2

)−1
;

4 sample λ20 | β0, τ 2, σ2 ∼ IG
(

1, 1
ψ0

+
β2
0

2σ2τ2

)
;

5 sample ψ0 | λ20 ∼ IG
(

1, 1 + 1
λ20

)
;

6 for j = 1 to p do

7 sample λj | Z, βj, σ2, τ 2,γ, φ2
j ∝ λ−1

j e
−

β2j

2σ2τ2λ2
j

−
λ2j

2s20φ
2
j

+
µjλj

s20φ
2
j · I(λj>0)

following the procedure in Section 4.4;

8 sample φ2
j | Z, λj,γ ∼ IG

(
1, 1

2
+

(λj−µj)2
2s20

)
;

9 end

10 sample γ | Z,λ,φ,κ2 ∼ NM

(
Σ⋆
γ

(
Z⊺Φ−2λ

)
, s20Σ

⋆
γ

)
, where

Σ⋆
γ =

(
Z⊺Φ−2Z + s20D

−1
κ

)−1
and Dκ = diag (κ211m1 , . . . , κ

2
D1mD

);

11 for d = 1 to D do

12 sample κ2d | γd ∼ IG
(
ad + md

2
, bd +

γ⊺
dγd

2

)
;

13 end

14 sample τ 2 | β, σ2, λ20,λ, ζ ∼ IG
(
p
2

+ 1, 1
ζ

+
β2
0

2σ2λ20
+ 1

2σ2

∑p
j=1

β2
j

λ2j

)
;

15 sample ζ | τ 2 ∼ IG
(
1, 1 + 1

τ2

)
;

16 sample σ2 | y,X,β, τ 2, λ20,λ ∼
IG
(
v + n+p+1

2
, q + 1

2
∥y −Xβ∥22 +

β2
0

2τ2λ20
+ 1

2τ2

∑p
j=1

β2
j

λ2j

)
;

17 if b > bn then

18 save β, σ2, τ 2, λ20, λ , γ and κ2

19 end

20 end

21 return saved values;
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f and g in order for the ratio r(x) to be analytically tractable and easily maxi-
mized. Eventually, the acceptance probability is optimized through the choice of
parameter γ. This choice of α and β yields

r(x) =
cf
cg
x−γ−1e−ψ/x

2 · I(x>0),

which has one positive maximum at ẋ =
√

2ψ/(γ + 1). Details for sampling from
a G3p distribution are shown in Section 3.3.

The best theoretical way to choose the parameter γ is to differentiate k =
r(ẋ)cf/cg with respect to γ and find the optimal value. However, this can only be
done with iterative methods, which negatively affects the computational efficiency
of the method. An alternative solution is to set parameter γ such that distributions
f and g have the maximum at the same value xmax. That is, the maximum of f
is computed by solving a quartic equation and the parameter γ is estimated as

γ = xmax
(
2α2xmax − β

)
> −1.

Since γ ∈ N+
0 , the closest non-negative integer is chosen. An example of the

method is shown in Figure 4.4.1, where the normalizing constant cf is computed
by numerical integration.

For some settings of the parameters ψ, α and β the acceptance probability of
the proposed algorithm decreases toward 0, affecting the efficiency of the algorithm.
For this reason, and for avoiding the explicit inversion of covariance matrix Σ⋆

β, in
the next section we present a Variational Bayes algorithm which overcomes these
problems.

4.5 Variational Bayes approximation

When the number of covariates is huge the method introduced in Section 4.2
becomes computationally infeasible. In this section an efficient approximation of
the joint posterior distribution is discussed.

Variational inference (VI) is a deterministic optimization method to approx-
imate the target density π (θ | y,X,Z), with θ = (β, λ20,λ, ψ0,φ,γ,κ, τ

2, ζ, σ2),
with another variational distribution q (θ) and reduces Bayesian inference to an
optimization problem (Salimans et al., 2015; Lee, 2022). The goal is to find
q(θ) that minimizes the Kullback-Leibler divergence (KL) between the target
density and the variational distribution. The minimization problem in is even-
tually reduced to the maximization of the variational lower bound, defined as
L = Eq [log π (θ,y,X,Z)] − Eq [log q (θ)].
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Figure 4.4.1: comparison of f(x) and g(x) with ψ = 2, α2 = 2.25 and β = −2.

Estimated parameter γ = 5; the acceptance probability is a = 0.65.

A common factorization for q(θ) is the so-called mean-field Variational approx-
imation (Jordan et al., 1999; Beal, 2003), which is a compromise between compu-
tational tractability and accuracy of the performances. The variational family q(θ)
is assumed to be the product of independent marginal variational factors qk (θk),
k = 1, . . . , K. We rely on the Coordinate Ascent Variational Inference algorithm
(CAVI) (Bishop and Nasrabadi, 2006; Blei et al., 2017) to solve the optimization
problem above. Until convergence of the lower bound L, the CAVI algorithm it-
eratively updates the parameters of the variational factors qk (θk), k = 1, . . . , K,
based on prior distributions’ hyperparameters and the current expectation of factor
q−k (θ−k), considered fixed (Lee, 2022). This way the model is able to account for
non-linear dependencies among the parameters. Under the mean field approxima-
tion, where the components are assumed to be independent, the optimal solution
is given by

q⋆ (θk) ∝ exp
{
Eq−k

[log π (θk | θ−k,y,X,Z)]
}
.

While the assumption of independence between factors is particularly strict, the
CAVI algorithm provides a flexible approach and is ensured to converge to a local
optimum (Blei et al., 2017). Note that, when working with exponential families
in a conjugated framework, variational factor q(θk) has the same kernel of the
tractable distribution π (θk | θ−k,y,X,Z).

Under the assumptions of the model introduced in Section 4.2, the mean field
approximation yields

q (θ) = q (β) · q
(
λ20
)
· q (λ1) · . . . · q (λp) · q (ψ0) · q

(
φ2
1

)
· . . . · q

(
φ2
p

)
·

q (γ) · q
(
κ21
)
· . . . · q

(
κ2D
)
· q
(
τ 2
)
· q (ζ) · q

(
σ2
)
,
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where q (β) and q (γ) denote the joint variational distribution of β0, . . . , βp and
γ1, . . . , γM , respectively. At each iteration of the algorithm, the variational factors
are updated as

q⋆ (β) = Np+1

(
µ⋆
β,Eσ2

[
σ2
]
Σ⋆
β

)
,

µ⋆
β = Σ⋆

βX
⊺y, Σ⋆

β =
(
X⊺X + Eλ20·λ·τ2

[
τ−2Λ−2

])−1

,

q⋆
(
λ20
)

= IG (1, a⋆0) ,

a⋆0 = Eζ
[
ψ−1
0

]
+

1

2
Eβ0·σ2·τ2

[
β2
0

σ2τ 2

]
,

q⋆ (ψ0) = IG (1, k⋆0) ,

k⋆0 = 1 + Eλ20
[
λ−2
0

]
,

q⋆ (λj) ∝ λ−1
j exp

{
−
a⋆j
λ2j

− b⋆jλ
2
j + c⋆jλj

}
· I(λj>0), j = 1, . . . , p,

a⋆j =
1

2
Eβ·σ2·τ2

[
β2
j

σ2τ 2

]
, b⋆j =

1

2s20
Eφ2

[
φ−2
j

]
, c⋆j =

1

s20
z⊺jEγ·φ2

[
γ

φ2
j

]
,

q⋆
(
φ2
j

)
= IG

(
1, d⋆j

)
,

d⋆j =
1

2
+

1

2s20
Eλ·γ

[(
λj − z⊺jγ

)2]
,

q⋆ (γ) = NM

(
µ⋆
γ, s

2
0Σ

⋆
γ

)
,

µ⋆
γ = Σ⋆

γZ
⊺Eφ2·γ

[
Φ−2λ

]
, Σ⋆

γ =
(
Z⊺Eφ2

[
Φ−2

]
Z + s20Eκ2

[
D−1
κ

])−1
,

q⋆
(
κ2d
)

= IG (e⋆d, f
⋆
d ) , d = 1, . . . , D,

e⋆d = ad +
md

2
, f ⋆d = bd +

1

2
Eγ [γ⊺

dγd] ,

q⋆
(
τ 2
)

= IG
(p

2
+ 1, g⋆

)
,

g⋆ = Eζ
[
ζ−1
]

+
1

2
Eβ0·λ20·τ2

[
β2
0

τ 2λ20

]
+

1

2

p∑
j=1

Eβ·σ2·λ

[
β2
j

σ2λ2j

]
,

q⋆ (ζ) = IG (1, h⋆) ,

h⋆ = 1 + Eτ2
[
τ−2
]
,

q⋆
(
σ2
)

= IG
(
v +

n+ p+ 1

2
, l⋆
)
,

l⋆ = q +
1

2

(
Eβ
[
∥y −Xβ∥22

]
+ Eβ0·λ20·τ2

[
β2
0

τ 2λ20

]
+

p∑
j=1

Eβ·λ·τ2
[
β2
j

τ 2λ2j

])
,
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where the expectations are taken with respect to the updated variational fam-
ily q⋆ (θ). The variational lower bound L of the marginal distribution p (y) is
computed as

L = Eq⋆ [log π (θ,y,X,Z)] − Eq⋆ [log q⋆ (θ)]

= Eq⋆
[
log p

(
y | X,β, σ2

)]
+ Eq⋆

[
log π

(
β | σ2, τ 2, λ20,λ

)]
+ Eq⋆

[
log π

(
λ20 | ψ0

)]
+

Eq⋆ [log π (ψ0)] + Eq⋆
[
log π

(
λ | Z,γ,φ2

)]
+ Eq⋆

[
log π

(
φ2
)]

+ Eq⋆
[
log π

(
γ | κ2

)]
+

Eq⋆
[
log π

(
κ2
)]

+ Eq⋆
[
log π

(
τ 2 | ζ

)]
+ Eq⋆ [log π (ζ)] + Eq⋆

[
log π

(
σ2
)]

−
Eq⋆ [log q⋆ (β)] − Eq⋆

[
log q⋆

(
λ20
)]

− Eq⋆ [log q⋆ (ψ0)] − Eq⋆ [log q⋆ (λ)] − Eq⋆
[
log q⋆

(
φ2
)]

−
Eq⋆ [log q⋆ (γ)] − Eq⋆

[
log q⋆

(
κ2
)]

− Eq⋆
[
log q⋆

(
τ 2
)]

− Eq⋆ [log q⋆ (ζ)] − Eq⋆
[
log q⋆

(
σ2
)]

∝ 1

2

(
log |Σ⋆

β| + log |Σ⋆
γ|
)

+
p+ 1

2
Eσ2

[
log σ2

]
−
(
v +

n+ p+ 1

2

)
log l⋆+

p∑
j=1

(
log sj − log kj + a⋆jEλ

[
λ−2
j

]
+ b⋆jEλ

[
λ2j
]
− c⋆jEλ [λj] − log d⋆j

)
−

D∑
d=1

e⋆d log f ⋆d −
(p

2
+ 1
)

log g⋆ − log h⋆ − log a⋆0 − log k⋆0, (4.5)

where kj = 1−P
(
N
(
z⊺jγ, s

2
0φ

2
j

)
< 0
)

and sj is the unknown normalizing constant
of parameters λj in (4.4). Each component is derived in Appendix 4.A.1.

As opposed to the Gibbs sampler, the Variational algorithm does not require
the explicit inversion of the p × p matrix Σ⋆

β, as only the quantities Σ⋆
βX

⊺y,

diag
(
Σ⋆
β

)
and XΣ⋆

βX
⊺ are needed. These can be efficiently evaluated with com-

plexity O (n2p) following the work of Münch et al. (2019). The details are shown
in Appendix 4.B. The bottleneck of the algorithm is the computation of the terms
log sj, Eλ [λj], Eλ

[
λ2j
]

and Eλ
[
λ−2
j

]
, since no closed-form is available. These can be

evaluated by numerical integration, for example with the Gaussian quadrature rule
or its adaptive variation called Gauss-Kronrod quadrature formula. Depending on
the posterior parameters a⋆j , b

⋆
j and c⋆j , this strategy is prone to numerical insta-

bility. To avoid overflow problem, we evaluate these integrals with the following
step:

Step 0: assume we have to evaluate
∫∞
0
f(x)dx, where f(x) ∝ xν exp {−dx−2 − bx2 + cx}·

I(λj>0), where ν = {−3,−1, 0, 1};

Step 1: compute the maximum ẋ by solving a quartic equation and evaluate
f(ẋ) on the log-scale;

Step 2: evaluate i0 =
∫∞
0

exp {log f(x) − log f(ẋ)} dx numerically;
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Algorithm 14: Variational Bayes approximation for informative Horse-

shoe regression

1 Input: y ∈ Rn, X ∈ Rn×(p+1), Z1, . . . ,ZD ∈ Rp×md , v, q ∈ R+, a,b ∈ RD
+ ,

s20 ∈ R+;

// Set b = 1, ϵ = 10−3, L(0) = −∞ and initialize all the needed

moments

2 while L(b) − L(b−1) > ϵ do

3 Update parameter µ⋆
β and compute the quantities diag

(
Σ⋆
β

)
, |Σ⋆

β| and

XΣ⋆
βX

⊺ as in Appendix 4.B;

4 Update parameters a⋆0 and k⋆0;

5 Update parameters a⋆j , b
⋆
j , c

⋆
j and d⋆j and evaluate the normalizing

constant sj, Eλ [λj], Eλ
[
λ2j
]

and Eλ
[
λ−2
j

]
with numerical integration,

for j = 1, . . . , p;

6 Update parameters µ⋆
γ and Σ⋆

γ;

7 Update parameters e⋆d and f ⋆d , for d = 1, . . . , D;

8 Update parameters g⋆ and h⋆;

9 Update parameter l⋆;

10 Compute L(b) and set b = b+ 1;

11 end

12 return µ⋆
β, Σ⋆

β, a⋆0, a
⋆, b⋆, c⋆, µ⋆

γ, Σ
⋆
γ, e

⋆, f⋆, g⋆ and l⋆;

Step 3: return exp {log i0 + log f(ẋ)}.

As for the Gibbs sampler in Section 4.3, the efficiency of the model can be improved
by evaluating these quantities in parallel.

4.6 Simulation study

In this section we empirically show the quality of the Variational approximation
to the joint posterior distribution and that variable selection benefits from the
co-data sources with a model-based simulation study. In particular, we assess
the effectiveness of the approximation on low to moderate p problems, whereas
variable selection is evaluated with the Variational algorithm on higher dimensional
frameworks.

For all the considered cases we rely on the following simulation scheme. Let β0

be the true (p+1)-dimensional regression parameter vector. We set the number of
true non-zero coefficients to p0 (intercept excluded). The entries of design matrices
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are sampled independently as xij ∼ N (0, 1), i = 1, . . . , n, j = 1, . . . , p, whereas
the response variable y and the (p + 1)-dimensional true regression coefficient
vector are sampled following a modified version of the scheme in Johnson (2013).
Specifically

yi = x⊺
iβ

0 + εi, εi ∼ N (0, 1), i = 1, . . . , n,

β0
j =


v0|t| if j = 0,

(−1)u (v2 log(n)/
√
n+ v|t|) if j = 1, . . . , p0,

0 otherwise,

where v20 = 0.5, v2 = 0.75, u ∼ B(0.4) and t ∼ N (0, 1). In order to study how
the model borrows information from the co-data, we simulated co-data sources
representing different degrees of information.

Variable selection is evaluated with the average area under the ROC curve
(AUC) of the selected variable, where the posterior inclusion probability of the
generic covariate j is evaluated with the quantity Eλj

[
λ2j/

(
1 + λ2j

)]
(Carvalho

et al., 2010).
The hyperparameters for σ2 and κ21 are set to (v, q) = (1, 10) and (a1, b1) =

(1, 10), respectively. The Gibbs sampler is run for B = 5000 iterations with a
burn-in period of bn = 2500 iterations, while the Variational algorithm is stopped
either if the increase of the lower bound is less than ϵ = 0.001 or if the maximum
number of iteration B = 1000 is reached.

1. Performance of variable selection.
Here we analyse how the model behave as the degree of prior information varies.
We study the cases n = (50, 100, 150) and p = (500, 1000, 1500) and we set the
number of true non-zero coefficients to p0 = 30. We consider five degrees of prior
information:

G0
)
no co-data set-up: we include in the co-data matrix only the intercept,

therefore Z = 1p;

G1
)
non-informative set-up: a binary co-data source is included in the

model by randomly selecting 100 regressors, therefore the co-data matrix Z
is created from the binary vector z ∈ {0, 1}p, where zj = 1 if the j-th variable
is selected, zj = 0 otherwise;

G2
)
weakly informative set-up: a binary co-data source is included in the

model by randomly selecting 20 of the true non-zero regressors and 80 of
the true zero regressors, therefore the co-data matrix Z is created from the
binary vector z ∈ {0, 1}p, where zj = 1 if the j-th variable is selected, zj = 0
otherwise;
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Figure 4.6.1: variable selection with Variational algorithm; the AUC is evaluated

over 25 replicates of the experiments.

G3
)
informative set-up: a binary co-data source is included in the model by

randomly selecting 20 of the true non-zero regressors and 10 of the true zero
regressors, therefore the co-data matrix Z is created from the binary vector
z ∈ {0, 1}p, where zj = 1 if the j-th variable is selected, zj = 0 otherwise;

G4
)
perfect co-data information set-up: the co-data matrix Z is created

from the binary vector z ∈ {0, 1}p, where zj = 1 if β0
j ̸= 0, zj = 0 otherwise.

The results are shown in Figure 4.6.1. The model is able to learn from the auxiliary
information and the variable selection performance improves when the co-data is
actually informative. The AUC, indeed, increases alongside the magnitude of prior
information and the variables are perfectly selected when the co-data provides per-
fect information (case G4). On the other hand, random co-data is associated with
a loss of performance and leads to lower scores of AUC. In particular, if we com-
pare the case with random co-data (G1) and no co-data (G0), the latter performs
slightly better. This difference, however, vanishes as the number of covariates in-
creases. Finally, the smallest increase in AUC, as expected, is between G2 and
G3, since these cases represent the most similar degree of co-data information.

2. Gibbs sampler vs Variational inference.
The accuracy of the Variational approximation is evaluated by comparing it to
the Gibbs sampler in terms of variable selection and mean squared error (MSE)
between β estimates and the true vector β0. We analysed the cases n = (50, 100)
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MSEβ = ∥β − β0∥22
p = 75 p = 125 p = 200

FB VB FB VB FB VB

G0 0.165 0.168 0.473 0.246 0.236 0.208

n = 50
G1 0.162 0.164 0.302 0.242 0.206 0.207

G2 0.147 0.139 0.238 0.191 0.231 0.149

G3 0.043 0.037 0.188 0.025 0.165 0.029

G0 0.025 0.025 0.055 0.030 0.045 0.040

n = 100
G1 0.025 0.025 0.026 0.029 0.045 0.039

G2 0.020 0.020 0.020 0.013 0.013 0.014

G3 0.008 0.008 0.012 0.005 0.003 0.003

Table 4.6.1: Mean of MSEβ evaluated over 10 replicates of the experiments.

and p = (75, 125, 200) and we set p0 = 30. We considered four degrees of prior
information and we refer to Appendix 4.C for the simulation scheme of the co-data.

The results of the variable selection are shown in Figure 4.C.1 in Appendix 4.C.
The two methods behave similarly in all the considered cases. In particular, the
results are equal for the lowest dimensional case, whereas the Variational approxi-
mation approaches the performance of the Gibbs sampler when p increases. Table
4.6.1 reports the details of the comparison between the two methods in terms of
β estimate. By evaluating the mean of the MSE between the estimated β and
the true regressor coefficients vector β0, we see that the Variational estimate does
not deteriorate as p increases and it provides a equal or better solution compared
to the Gibbs sampler. In particular, when n is large and the co-data are strongly
informative the two methods provide almost the same estimate.

The Gibbs sampler, however, presents one main drawback: for some settings of
n and p, the sampling method presented in Section 4.4 suffers from low acceptance
probability. Therefore, the efficiency of the Gibbs sampler is heavily affected in
a negative way as shown in Figure 4.C.2 in Appendix 4.C: even if the Gibbs is
fairly efficient overall, there are some extreme points, suggesting that the sampling
algorithm got stuck for some settings. Given the good results of the Variational
approximation and the poor performance in terms of computational efficiency of
the Gibbs sampler, we rely on the former for the following applications.
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4.7 Application to real data

In this section we present two genomics applications. The first allows to evaluate
our method for binary co-data in a multiple linear regression context. The second
involves multiple co-data sources in a classification setting with a large number of
variables.

In Section 4.6 we show that the thresholding variable selection works well when
the covariates are sampled independently. However, the posterior probabilities are
treated separately and the optimal threshold is (almost) never 0.5. For this reason
in this section we also consider the more recent selection procedure called decou-
pling shrinkage and selection (DSS) proposed by Hahn and Carvalho (2015). This
method was introduced to deal with potentially very strong correlations, as they
are present in many genomics datasets. The authors propose a posterior variable
selection summary based on the posterior mean of the predictors which results in a
sequence of sparse models. Shrinkage can be achieved with any prior distribution
and is ‘decoupled’ from the selection approach based on the posterior distribution.
DSS method relies on the optimization of a loss function which balances the pre-
diction error and the sparseness of the solution. Given an estimate β̂, the solution
is obtained via adaptive LASSO by solving the following optimization problem,

θDSS = argminθ

1

n
∥Xβ̂ −Xθ∥22 + λ

p∑
j=0

|θj|
|β̂j|

,

where the smoothing parameter λ operates as a thresholding parameter and can
be estimated with cross-validation over a set of values (grid search). The authors
advocate this method over thresholding mainly because it naturally handles multi-
collinearity.

4.7.1 Case study 1: p38MAPK pathway

Following Kpogbezan et al. (2019), the model is tested on the p38MAPK pathway
dataset. We investigate the effect of single nucleotide polymorphisms (SNPs) on
the genes in the pathway. A subset of the data collected in the GEUVADIS project
(Lappalainen et al., 2013) is considered. For each of the 99 genes we collect a
different number pt of SNPs, t = 1, . . . , 99, with minimum pt = 56 and maximum
pt = 1169. After a first sub-selection, n = 373 RNA-Seq samples are obtained
from the 1000 Genomes Project. Since it is believed that SNPs within the gene’s
range have stronger influence on the gene’s expression, a binary co-data source
zt ∈ {0, 1}pt is included in the analysis, where zt,j = 1 if the j-th SNP related to
gene t is located inside the gene’s range and zt,j = 0 otherwise.
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Figure 4.7.1: relative reduction of MSE (rrMSE) of LASSO (black dots), infHS re-

gression with DSS selection procedure (red dots) and infHS regression with thresh-

olding selection procedure (blue dots) for all the 99 genes. For each panel, the

maximum number of selected SNPs is fixed to 1, 3, 5, and 10.

The hyperparameters for σ2 and κ21 are set to (v, q) = (1, 10) and (a1, b1) =
(1, 10). The algorithm is stopped either if the increase of the variational lower
bound is less than ϵ = 0.001 or if the maximum number of iteration B = 1000 is
reached.

To evaluate the prediction performance of the model, the data are divided in
training-set (n1 = 249) and test-set (n2 = 124). We rely on the relative reduction
of the mean squared error (rrMSE) for all the 99 genes. The rrMSE for the t-th
regression model is defined as

rrMSEt = 1 − MSEt

MSE0

,

where MSE0 and MSEt are the mean squared error of the null model and the mean
squared error of the t-th linear model, respectively. The mean of y is centered
around zero, therefore we do not include the intercept in the null model. Note
that larger values of rrMSEt are associated with better predictive performance.
On the contrary, negative values denote worse predictive performance than the
null model.

We test our method against LASSO regression (Tibshirani, 1996). The results
are shown is Figure 4.7.1 for different degrees of sparseness. For the infHS regres-
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sion, the SNPs are selected with both the thresholding procedure used in Section
4.6 (blue dots) and the DSS method (red dots). The latter provides a better pre-
diction for all genes when compared with the thresholding variable selection. This
is justified by the strong correlations among the SNPs. When comparing infHS and
LASSO regressions, instead, the considerations made in Kpogbezan et al. (2019)
hold. The results of the LASSO are more noisy, likely due to less shrinkage of the
near-zero coefficients, whereas most of the rrMSEt are concentrated around zero
for the infHS model. The effect of the SNPs are relevant only for a small number
of genes: the largest values of rrMSEt are associated to genes 50, 61 and 93. Both
infHS and LASSO are able to capture these effects, however the latter is more
prone to negative values of rrMSEt. The LASSO gives better results for gene 98.
Note that the method by Kpogbezan et al. (2019) gives fairly similar results to
ours, as it is also based on the Horseshoe. That method, however, is much more
limited in use, as it only handles one discrete co-data source and only continuous
outcomes.

Our method take 68 minutes to estimate all the 99 regressions and to evaluate
the different variable selection approaches. The algorithm is run on a x64 Windows
11 operating system.

4.7.2 Case study 2: methylation data

Let y ∈ {0, 1}n be a binary vector and X ∈ Rn×(p+1) be the design matrix.
Following Albert and Chib (1993) we introduce the latent variable w ∈ Rn to
reach a conjugated framework for updating regression coefficient vector β. The
assumptions of the probit model are

yi | w =

{
1 if wi > 0

0 if wi ≤ 0,

wi | X,β ∼ N (x⊺
iβ, 1) , i = 1, . . . , n,

β0 | τ 2, λ20 ∼ N
(
0, τ 2λ20

)
βj | τ, λj ∼ N

(
0, τ 2λ2j

)
, j = 1, . . . , p.

The prior distributions for parameters λ,γ and τ are the same of Section 4.2 and
the algorithm follows the same steps of Section 4.3. The introduction of the latent
variable w allows to formulate the problem as a normal regression model on the
latent variables wi. The normal prior distribution for the regression parameters
vector β is conjugated to the the normal distribution of w. The joint posterior
distribution of the model is

π (θ,w,y,X,Z) ∝ p (y | w) · π (w | X,θ) · π (θ | Z) ,
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where θ = (β, λ20,λ, ψ0,φ,γ,κ, τ
2, ζ). Under the mean field approximation, the

variational factors for parameters w and β are updated as

q⋆ (wi) =

{
N+ (µ⋆i , 1) if yi = 0

N− (µ⋆i , 1) if yi = 0,

q⋆ (β) = Np

(
µ⋆
β,Σ

⋆
β

)
,

µ⋆
β = Σ⋆

βX
⊺Ew [w] , Σ⋆

β =
(
X⊺X + Eλ20·λ·τ2

[
τ−2Λ−2

])−1

,

where µ⋆i = x⊺
iEβ [β] and N+ and N− denote a normal distribution left and right

truncated at 0, respectively. The expectation of latent variables wi is

Ew [wi] =

{
µ⋆i + ϕi

1−Φi
if yi = 0

µ⋆i −
ϕi
Φi

if yi = 0,

where ϕi = ϕ (−µ⋆i ) and Φi = Φ (−µ⋆i ) are the normal density and the normal cu-
mulative density functions, respectively. The variational lower bound is computed
as

L = Eq⋆ [log π (θ,w,y,X,Z)] − Eq⋆ [log q⋆ (θ,w)]

= Eq⋆ [log p (y | w)] + Eq⋆ [log π (w | X,β)] + Eq⋆
[
log π

(
β | τ 2, λ20,λ

)]
+

Eq⋆
[
log π

(
λ20 | ψ0

)]
+ Eq⋆ [log π (ψ0)] + Eq⋆

[
log π

(
λ | Z,γ,φ2

)]
+ Eq⋆

[
log π

(
φ2
)]

+

Eq⋆
[
log π

(
γ | κ2

)]
+ Eq⋆

[
log π

(
κ2
)]

+ Eq⋆
[
log π

(
τ 2 | ζ

)]
+ Eq⋆ [log π (ζ)]−

Eq⋆ [log q⋆ (w)] − Eq⋆ [log q⋆ (β)] − Eq⋆
[
log q⋆

(
λ20
)]

− Eq⋆ [log q⋆ (ψ0)] − Eq⋆ [log q⋆ (λ)]−
Eq⋆
[
log q⋆

(
φ2
)]

− Eq⋆ [log q⋆ (γ)] − Eq⋆
[
log q⋆

(
κ2
)]

− Eq⋆
[
log q⋆

(
τ 2
)]

− Eq⋆ [log q⋆ (ζ)]

∝
n∑
i=1

(yi log (1 − Φi) + (1 − yi) log (Φi)) +
1

2

(
log |Σ⋆

β| + log |Σ⋆
γ|
)

+

p∑
j=1

(log sj − log kj) +

p∑
j=1

(
a⋆jEλ

[
λ−2
j

]
+ b⋆jEλ

[
λ2j
]
− c⋆jEλ [λj] − log d⋆j

)
−

D∑
d=1

e⋆d log f ⋆d −
(p

2
+ 1
)

log g⋆ − log h⋆ − log a⋆0 − log k⋆0, (4.6)

where all the quantities are defined in Appendix 4.A.2. The method requires the
computation of Σ⋆

βX
⊺Ew [w] and diag

(
Σ⋆
β

)
, which can efficiently be evaluated by

applying the strategy in Appendix 4.B.
The model is tested on the methylation dataset of Verlaat et al. (2018), which

contains methylation profiles of self-collected cervicovaginal lavages corresponding
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Algorithm 15: Variational Bayes approximation for probit informative

Horseshoe regression

1 Input: y ∈ {0, 1}n, X ∈ Rn×(p+1), Z1, . . . ,ZD ∈ Rp×md , a,b ∈ RD
+ ,

s20 ∈ R+;

// Set b = 1, ϵ = 10−3, L(0) = −∞ and initialize all the needed

moments

2 while L(b) − L(b−1) > ϵ do

3 Update parameter µ⋆i , for i = 1, . . . , n;

4 Update parameter µ⋆
β and compute the quantities diag

(
Σ⋆
β

)
and |Σ⋆

β|
as in Appendix 4.B;

5 Update parameters a⋆0 and k⋆0;

6 Update parameters a⋆j , b
⋆
j , c

⋆
j and d⋆j and evaluate the normalizing

constant sj, Eλ [λj], Eλ
[
λ2j
]

and Eλ
[
λ−2
j

]
with numerical integration,

for j = 1, . . . , p;

7 Update parameters µ⋆
γ and Σ⋆

γ;

8 Update parameters e⋆d and f ⋆d , for d = 1, . . . , D;

9 Update parameters g⋆ and h⋆;

10 Compute L(b) and set b = b+ 1;

11 end

12 return µ⋆
β, a⋆0, a

⋆, b⋆, c⋆, µ⋆
γ, Σ

⋆
γ, e

⋆, f⋆, g⋆;

to 28 women with normal cervix and 36 women with high-grade precursor lesions
(CIN3), for a total of n = 64 samples. In order to improve the diagnostic classifi-
cation we include in the analysis D = 5 co-data sources: the standard deviations
of the probes, p-values from the previous study, a binary variable differentiating
the hypo-methylated and hyper-methylated probes, a categorical variable with 6
categories denoting the genomic region of each probe and the probes’ means in
cancer cells. Based on the previous results, we consider the probes with an exter-
nal p-value pα < 0.005, resulting in a total of p = 11251 probes, where each probe
measures the methylation of a unique location on the genome.

We test our model against the ordinary Ridge regression and the LASSO. We
include in the analysis also the thresholding and the DSS versions of infHS model.
The former do not exclude any of the covariates from the model, since all the
posterior inclusion probabilities were greater than 0.5. Therefore the results of
this approach are not shown. The hyperparameters are set to (ad, bd) = (1, 10) for
d = 1, . . . , 5 and the predictive performances are evaluated by leave-one-out cross-
validation (LOOCV). As for case study 1, the algorithm is stopped either if the
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Figure 4.7.2: Results of the LOOCV. Left panel: ROC curves for Ridge regression

(blue), LASSO (black), the informative Horseshoe regression (red) and the infor-

mative Horseshoe with DSS variable selection procedure (dotted-red); right panel:

a and b. predicted probabilities for cases (yi = 1) and controls (yi = 0) with

infHS-DSS (red) and LASSO (black) in decreasing order of LASSO prediction; c

and d. predicted probabilities for cases and controls with infHS-DSS (red) and

ordinary infHS (black) in decreasing order of infHS prediction.

increase of the variational lower bound is less than ϵ = 0.001 or if the maximum
number of iteration B = 1000 is reached.

The left panel of Figure 4.7.2 shows the ROC curves for the considered com-
petitors, where the predicted probabilities for infHS are computed as pi = Φ (x⊺

iβ).
InfHS-DSS gives the best forecasting results with AUC = 0.903, greatly improving
compared to its ordinary version with AUC = 0.752; the LASSO performs better
than infHS with AUC = 0.773 and provides the sparsest model, with an average of
8 variables included as opposed to the 49 estimated by infHS-DSS. Among these
49 probes, 37 of them are selected in more than 70% of the folds, whereas only
10 appear in all. The ordinary Ridge does not compete in terms of predictive
performance (AUC = 0.671). Note that GRridge co-data method by Van de Wiel
et al. (2016) was previously reported to achieve an AUC = 0.77 (Verlaat et al.,
2018).

The right panel of Figure 4.7.2 shows the predicted probabilities of infHS-DSS
model against the LASSO and the ordinary infHS. When compared to the LASSO
(figures a and b, values in decreasing order of LASSO prediction), infHS-DSS gives
similar predictions for the cases (yi = 1), with some of the observations achieving
higher predictive scores and other assuming lower ones; on the other hand, it pro-
vides significantly lower scores for the controls (yi = 0), reducing the false positive



145

rate and improving the overall performance. The impact of the DSS procedure
on the prediction can be assessed by analyzing figures c and d, which compares
infHS-DSS to infHS model (values in decreasing order of infHS prediction). The
former completely overwhelms the latter, as it gives higher probabilities for almost
all cases and reduces the predicted probabilities for the highest scores of the con-
trols. To sum up these results we compute the mean absolute difference between
the true labels and the predicted probabilities. The results are shown in Table
4.7.1, where infHS-DSS provides the best performance.

Ridge LASSO infHS infHS-DSS∑64
i=1

|yi−pi|
64

0.466 0.410 0.444 0.299

Table 4.7.1: Mean absolute difference between true labels (yi = 0 or yi = 1) and

the predicted probabilities (pi = Φ (x⊺
iβ)).

We summarize the co-data information in table 4.7.2, which shows the distri-
bution of the overall co-data sources and the distribution of the psel = 37 most
selected probes. The co-data related to the the probes’ means in cancer cells
show the strongest difference in distribution between the original and the selected
features, suggesting that this source is the most informative in terms of prior
information. No evident differences are found in the other co-data sources.

The computational time is around 5 minutes for the estimation of infHS. The
method is tested on a x64 Windows 11 operating system and the local variances
are evaluated in parallel with 4 cores.

4.8 Discussion

We introduced a novel Bayesian regression approach for high-dimensional data
able to learn from auxiliary prior information, i.e. co-data. We showed that
both prediction and variable selection benefit from the inclusion of co-data, when
these are actually informative. The model allows for both continuous and binary
outcome, as well as both continuous and discrete co-data sources. In particular,
we provided a flexible method that estimates multiple co-data coefficients jointly,
contrary to the previous method of Van Nee et al. (2021) that models each source
separately.

We discussed a full Bayesian approach, where we developed a Gibbs sampler
to update each parameter iteratively by sampling from their full-conditional dis-
tributions. To do so, we introduced a novel rejection sampling method to sample
the local variances, which showed a non-closed form target density. Eventually,
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Co-data
Selected probes distribution

(psel = 37)

Original distribution

(p = 11251)

external p-value

mean: 0.0016

sd: 0.0014

range: (2.4 · 10−6, 0.005)

mean: 0.0019

sd: 0.0015

range: (9.9 · 10−11, 0.005}

probes sd

mean: 0.035

sd: 0.022

range: (0.014, 0.129)

mean: 0.038

sd: 0.019

range: (0.009, 0.320)

genomic region

Distant: 35.1%

Island: 43.2%

N shelf: 5.4%

N shore 10.8%

S shelf: 0%

S shore: 5.4%

Distant: 31.7%

Island: 37.3%

N shelf: 4.6%

N shore: 12.4%

S shelf: 4%

S shore: 10%

degree of methylation
Hypo-methylated: 57%

Hyper-methylated: 43%

Hypo-methylated: 56%

Hyper-methylated: 44%

probes’ mean in

cancer cells

mean: 0.150

sd: 1.116

range: (−1.28, 3.34)

mean: −0.099

sd: 1.137

range: (−4.89, 8.10)

Table 4.7.2: Summary of the co-data estimates and the co-data distribution in the

psel = 37 most selected probes and in the original population.

we proposed a Variational approximation to the joint posterior distribution and
applied the CAVI algorithm to optimize the target density. This latter method is
suited for high-dimensional problems, as it does not require the explicit inversion
of the p × p posterior covariance matrix Σ⋆

β. In particular, only its diagonal is
required and we implemented the methods proposed in Münch et al. (2019) to
efficiently achieve this. Beside this, another computational advantage is the paral-
lel evaluation of the local variances. However, the evaluation of these parameters
represents the computational bottleneck of the method: the acceptance probabil-
ity of the rejection sampling is small for some settings of the parameters, whereas
the numerical integration required in the Variational approximation is the most
expensive step of the algorithm.

The Variational inference is less useful than the Gibbs sampler for posterior
inference, as it provides posterior means point estimates and underestimates the
posterior variances (MacKay et al., 2003; Wang and Titterington, 2005; Turner
and Sahani, 2011; Giordano et al., 2017). This lack of accuracy, on the other
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hand, does not necessarily affect the performance of the model (Blei and Jordan,
2006). Therefore, the Variational algorithm should be used for large p datasets,
whereas the Gibbs sampling could be useful when the interest is in the posterior
inference (credible intervals) and the number of covariates is moderate.

A possible limitation of infHS for some applications occurs when a categorical
co-data source contains one very strong, relatively small co-data group. Under
this circumstance, the sparsity assumption may not be realistic for this particular
group of variables. For such applications, an interesting extension of infHS would
be to allow a dense prior for a small group of variables, for which one expects a
particularly relevant prior evidence.

Another extension to allow more flexibility would be the specification of the
prior λj ∼ Half-t(v), with v > 1. Here v = 1 since the purpose is to apply the
Horseshoe prior. In Biswas et al. (2021) the authors develop coupling techniques
for high-dimensional regression with this particular prior and argue that larger
values of v can affect the statistical and computational performance of the model.

To conclude, we provided one of the fastest implementation of Horseshoe re-
gression able to learn from auxiliary information. The R code for package infHS

is available at https://github.com/cbusatto/infHS.

https://github.com/cbusatto/infHS


Appendix

Appendix 4.A Details of the Variational lower

bound

Here we report the components for the evaluation of the lower bound L in (4.5)
and (4.6). The results below rely on the property Ex [x⊺Ax] = Ex(x)⊺AEx(x) +
tr (AV), where V is the correlation matrix of generical random variable x.

4.A.1 Linear regression

The variational lower bound L in (4.5) is computed with the following components:
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4.A.2 Probit regression

The variational lower bound L in (4.5) is computed with the following components:
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where Φi = Φ (−x⊺
iEβ [β]).

Appendix 4.B Computational aspects of the Vari-

ational algorithm

The Variational algorithm has the advantage of not requiring the explicit inversion
of covariance matrix Σ⋆

β = (X⊺X + ∆)−1, where ∆ = Eλ·τ2 [τ−2Λ−2] is diagonal,
which becomes computationally infeasible when the number of covariates p in-
creases. The quantities needed are the diagonal entries of Σ⋆

β, the posterior mean

µ⋆
β = Σ⋆

β (X⊺y) and tr
(
X⊺XΣ⋆

β

)
. By means of the Woodbury identity, the needed
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quantities can be efficiently computed as

diag
(
Σ⋆
β

)
= diag

(
∆−1

)
− diag

(
∆−1X⊺

(
In + X∆−1X⊺

)−1
X∆−1

)
(4.7)

= diag
(
∆−1

)
−
[(
∆−1X⊺

) (
In + X∆−1X⊺

)−1 ◦
(
∆−1X⊺

)]
· 1n×1,

µ⋆
β =

(
Σ⋆
βX

⊺
)
y (4.8)

=
[(
∆−1X⊺

)
−
(
∆−1X⊺

) (
In + X∆−1X⊺

)−1 (
X∆−1X⊺

)]
y,

tr
(
XΣ⋆

βX
⊺
)

=
n∑
i=1

x⊺
iΣ

⋆
βxi =

n∑
i=1

x⊺
i

(
Σ⋆
βxi
)
, (4.9)

where ◦ denotes the Hadamard product, In is the n× n identity matrix and 1n×1

denotes the n-dimensional vector of ones. In (4.9) the quantity Σ⋆
βxi has already

been computed when evaluating vector µ⋆
β and all the matrix products in (4.7)-

(4.9) can be evaluated with O (n2p) operations, which is linear in p. Note that in
the probit regression the last quantity (4.9) is not needed, thus the posterior mean
can be efficiently computed as

µ⋆
β = ∆−1 (X⊺Ew [w]) −

(
∆−1X⊺

) (
In + X∆−1X⊺

)−1 (
X∆−1

)
(X⊺Ew [w]) ,

which only involves matrix-vector products, further improving the computational
efficiency of the algorithm. Finally, the determinant can be efficiently evaluated
as ∣∣Σ⋆

β

∣∣ = |∆| /
∣∣In + X∆−1X⊺

∣∣ .
Appendix 4.C Simulation study: Gibbs sampler

vs Variational inference

Here we give insights on how co-data information is simulated for the assessment
of the Variational approximation accuracy with respect to the Gibbs sampler in
Section 4.6. Moreover we provide the graphical representation of the AUC for
variable selection and of the computational time for both methods.

The four degrees of co-data information are simulated as:

G0
)
no co-data set-up: we include in the co-data matrix only the intercept,

therefore Z = 1p;

G1
)
non-informative set-up: a binary co-data source is included in the

model by randomly selecting 30 regressors, therefore the co-data matrix Z is
created from the binary vector z ∈ {0, 1}p, where zj = 1 if the j-th variable
is selected, zj = 0 otherwise;
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G2
)
informative set-up: a binary co-data source is included in the model by

randomly selecting 20 of the true non-zero regressors and 10 of the true zero
regressors, therefore the co-data matrix Z is created from the binary vector
z ∈ {0, 1}p, where zj = 1 if the j-th variable is selected, zj = 0 otherwise;

G3
)
perfect co-data information set-up: the co-data matrix Z is created

from the binary vector z ∈ {0, 1}p, where zj = 1 if β0
j ̸= 0, zj = 0 otherwise.

Figure 4.C.1: variable selection with the Gibbs sampler and the Variational algo-

rithm; the AUC is evaluated over 10 replicates of the experiments.

Figure 4.C.2: time in seconds for Gibbs sampler and Variational algorithm for

different values of p and n.



Chapter 5

Conclusions and future extensions

This thesis introduces three novel Bayesian approaches for different high-dimensional
applications. The main goal of the presented methods is to provide an accurate and
efficient way for variable/model selection and prediction when the number of pre-
dictors is much higher than the number of observations available, a peculiar feature
of modern data. Different applications of MCMC sampling algorithms and Varia-
tional approximations for both Bayesian generalized linear models and graphical
models have been considered considered. The validity of the introduced methods
has been assessed with simulation studies and applications to real datasets, leaving
space for additional comments and future extensions. In particular:

• Chapter 2 deals with model selection in high-dimensional linear regression
with Gaussian errors and is part of a larger ongoing project. The intro-
duced methods rely on a Delta spike-and-slab prior (George and McCul-
loch, 1993, 1997). Multiple MCMC schemes for sampling model indicators
from the target distribution are discussed, with the final introduction of
an adaptive multiple-try algorithm suited for particularly high-dimensional
problems. This approach reveals promising results in both simulation studies
and real application analysis, with a much improved computational efficiency
when compared to other existing full-Bayesian competitors for variable selec-
tion. The main drawback is the accuracy when low information is available,
i.e. when the number of observation is particularly small. In this case fur-
ther tuning of the proposal distribution is required, with a possible future
application of informed trans-dimensional jumps between models, following
Gagnon (2021). At the moment, the main focus is on the analysis of the
convergence properties of the described adaptive scheme and the extension
of the sampling methods to the case of binary data, which presents a more
difficult task in terms of both accuracy of the estimates and computational ef-
ficiency. For the latter problem, the updating methods based on the thinQR
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can be extended to the update of the inverse matrix L = R−1, avoiding
the explicit inversion of the p × p covariance matrix when sampling regres-
sor parameter β. Another consideration to be made concern the important
choice of the prior distribution of σ2, as the analyses show that the results
are sensitive with respect to it. To this aim, our project involves the in-
troduction of an auxiliary variable in order to avoid such choice and let the
data guide the prior specification. Of course, other prior distributions can
be assumed for the residual variance in order to overcome this issue, such as
the positive Cauchy distribution that only involves the specification of the
scale parameter. A final extension of these approaches could be the inclusion
of co-data information by assuming a specific prior inclusion probability for
each predictor and regressing these hyperparameters on the co-data follow-
ing the methodology of Chapter 4, with the goal of improving the overall
performances.

• Chapter 3 presents a full-Bayesian approach, called multiple Graphical Horse-
shoe (mGHS), for the joint analysis of multiple correlated networks, with
the goal of improving estimation of similar precision matrices by borrow-
ing strength and sharing sparsity patterns across groups. The proposed
method is a direct extension of the graphical Horseshoe of Li et al. (2019)
and follows the methodology introduced in Peterson et al. (2020) for mul-
tiple precision matrices estimation. The method relies on a novel multi-
variate shrinkage prior based on the Horseshoe prior (Carvalho et al., 2010)
and provides improved edge selection and interpretation of the results as
demonstrated through intensive simulation studies and the application to
the bike-sharing dataset. The method shows good computational efficiency
and scales well with respect to the number of variables, providing one of
the fastest full-Bayesian approaches for the estimation of multiple precision
matrices. Graphs structure up to a few hundreds of nodes are estimated
within few hours. For higher dimensions, a Variational approximation to the
joint posterior distribution needs to be implemented. Finally, a novel idea
for edge selection based on model cuts (Zigler et al., 2013; Plummer, 2015)
is discussed. This represents a basic idea for the estimation of the optimal
threshold and is open for further extensions, with additional studies of the
convergence properties required.

• Chapter 4 addresses the problem of variable selection and prediction in high-
dimensional regression problems when prior information on the covariates is
available. Co-data learning guides the estimation process by favoring those
predictors that are more informative a-priori. The introduced method relies
on an informative version of the Horseshoe regression (Carvalho et al., 2010)
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for both continuous and binary outcomes. The model provides a general
framework for the flexible inclusion of multiple co-data sources by regressing
the hyper-variances on the co-data variables following Van Nee et al. (2021),
with the final goal of improving the global performances. A novelty of the
method is the joint estimation of the different co-data effects, contrary to
the existing method that only admit one (discrete) co-data source and/or
estimate the effects separately for each co-data. Both Gibbs sampler and
Variational approximation are implemented, with the latter being suited for
high-dimensional regression, as the analysis of variable selection and compu-
tational efficiency reveals good results when p increases. Future extensions
could deal with the inclusion of a dense prior for co-data sources with par-
ticularly relevant small groups, forcing the model to learn from such strong
prior information.
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probability model and correlated variables. Bayesian Analysis, 16(4):1085–1112.

Barnard, J., McCulloch, R., and Meng, X.-L. (2000). Modeling covariance matrices
in terms of standard deviations and correlations, with application to shrinkage.
Statistica Sinica, 10(4):1281–1311.

Bayarri, M. J., Berger, J. O., and Liu, F. (2009). Modularization in Bayesian
analysis, with emphasis on analysis of computer models. Bayesian Analysis,
4(1):119–150.

Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference.
University of London, University College London (United Kingdom).

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton Uni-
versity Press.

157



158

Bernardi, M., Casarin, R., Maillet, B., and Petrella, L. (2016). Dynamic model
averaging for Bayesian quantile regression.

Bhadra, A., Datta, J., Li, Y., Polson, N., and Willard, B. (2016). Prediction risk
for global-local shrinkage regression.

Bhattacharya, A., Chakraborty, A., and Mallick, B. K. (2016). Fast sampling
with Gaussian scale-mixture priors in high-dimensional regression. Biometrika,
103(4):985–991.

Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recognition and Machine
Learning, volume 4. Springer.

Biswas, N., Bhattacharya, A., Jacob, P. E., and Johndrow, J. E. (2021). Coupling-
based convergence assessment of some Gibbs samplers for high-dimensional
Bayesian regression with shrinkage priors. Journal of the Royal Statistical Soci-
ety. Series B (Statistical Methodology).

Biswas, N., Mackey, L., and Meng, X.-L. (2022). Scalable spike-and-slab.

Björck, A. (2015). Numerical methods in matrix computations, volume 59 of Texts
in Applied Mathematics. Springer, Cham.

Blangiardo, M., Hansell, A., and Richardson, S. (2011). A Bayesian model of time
activity data to investigate health effect of air pollution in time series studies.
Atmospheric Environment - ATMOS ENVIRON, 45:379–386.

Blei, D. M. and Jordan, M. I. (2006). Variational inference for Dirichlet process
mixtures. Bayesian Analysis, 1(1):121–143.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational infer-
ence: a review for statisticians. Journal of the American Statistical Association,
112(518):859–877.

Boonstra, P. S., Taylor, J. M. G., and Mukherjee, B. (2013). Incorporating aux-
iliary information for improved prediction in high-dimensional datasets: an en-
semble of shrinkage approaches. Biostatistics (Oxford, England), 14(2):259–272.

Bottolo, L., Chadeau-Hyam, M., Hastie, D. I., Langley, S. R., Petretto, E., Tiret,
L., Tregouet, D., and Richardson, S. (2011). ESS++: a C++ objected-oriented
algorithm for Bayesian stochastic search model exploration. Bioinformatics,
27(4):587–588.

Bottolo, L. and Richardson, S. (2010). Evolutionary stochastic search for Bayesian
model exploration. Bayesian Anal., 5(3):583–618.



159

Breheny, P. and Huang, J. (2015). Group descent algorithms for nonconvex pe-
nalized linear and logistic regression models with grouped predictors. Statistics
and Computing, 25(2):173–187.

Brown, P. J., Vannucci, M., and Fearn, T. (1998). Bayesian wavelength selection
in multicomponent analysis. Journal of Chemometrics, 12(3):173–182.

Brown, P. J., Vannucci, M., and Fearn, T. (2002). Bayes model averaging with
selection of regressors. J. R. Stat. Soc. Ser. B Stat. Methodol., 64(3):519–536.

Bédard, M., Douc, R., and Moulines, E. (2012). Scaling analysis of multiple-try
MCMC methods. Stochastic Processes and their Applications, 122(3):758–786.

Carlin, B. P. and Chib, S. (1995). Bayesian model choice via Markov Chain Monte
Carlo methods. Journal of the Royal Statistical Society. Series B (Methodologi-
cal), 57(3):473–484.

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). The Horseshoe estimator
for sparse signals. Biometrika, 97:465–480.

Casarin, R., Craiu, R., and Leisen, F. (2013). Interacting multiple-try algorithms
with different proposal distributions. Statistics and Computing, 23:185–200.

Casella, G. (1985). An introduction to Empirical Bayes data analysis. The Amer-
ican Statistician, 39(2):83–87.

Casella, G. and George, E. (1992). Explaining the Gibbs sampler. The American
Statistician, 46:167–174.

Castelletti, F., La Rocca, L., Peluso, S., Stingo, F. C., and Consonni, G. (2020).
Bayesian learning of multiple directed networks from observational data. Statis-
tics in Medicine, 39(30):4745–4766.

Chambers, J. M. (1971). Regression updating. Journal of the American Statistical
Association, 66(336):744–748.

Chandra, N. K., Mueller, P., and Sarkar, A. (2022). Bayesian scalable precision
factor analysis for massive sparse Gaussian graphical models.

Chang, H., Lee, C. J., Luo, Z. T., Sang, H., and Zhou, Q. (2022). Rapidly mixing
Multiple-try Metropolis algorithms for model selection problems.

Chiang, A. P., Beck, J. S., Yen, H.-J., Tayeh, M. K., Scheetz, T. E., Swiderski,
R. E., Nishimura, D. Y., Braun, T. A., Kim, K.-Y. A., Huang, J., Elbedour,
K., Carmi, R., Slusarski, D. C., Casavant, T. L., Stone, E. M., and Sheffield,



160

V. C. (2006). Homozygosity mapping with SNP arrays identifies TRIM32, an
E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proceedings of
the National Academy of Sciences, 103(16):6287–6292.

Chipman, H., George, E. I., and McCulloch, R. E. (2001). The practical imple-
mentation of Bayesian model selection. In Model selection, volume 38 of IMS
Lecture Notes Monogr. Ser., pages 65–134.

Clyde, M., Desimone, H., and Parmigiani, G. (1996). Prediction via orthogonalized
model mixing. Journal of the American Statistical Association, 91(435):1197–
1208.

Clyde, M. and George, E. I. (2004). Model uncertainty. Statist. Sci., 19(1):81–94.

Craiu, R. and Lemieux, C. (2007). Acceleration of the multiple-try Metropolis
algorithm using antithetic and stratified sampling. Statistics and Computing,
17:109–120.
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