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Introduction

This thesis deals with Bayesian methods for different high-dimensional applica-
tions and faces the difficult challenges of prediction and variable selection when
the number of covariates is much greater than the number of observations. Chap-
ter |1 aims to explain the usefulness of these methods in a general framework. It
introduces the main controversial topics behind high-dimensional data from both a
statistical and computational point of view and gives an overview of the statistical
methods used throughout this dissertation. The presented methods rely on differ-
ent types of shrinkage priors for sparse models: Chapter [2| discusses a new class of
fast Bayesian spike-and-slab algorithms for continuous outcome, which relies on a
group of efficient updating methods based on the thinQR decomposition; Chapter
introduces a novel multivariate shrinkage prior for modelling multiple correlated
networks; Chapter W] presents a flexible way to include prior information in the
estimation process improving prediction and variable selection. Final discussions
and comments are presented in Chapter [5]

15
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Chapter 1

Analysis of high-dimensional data

In many scientific fields where new data are collected with automated technologies,
the main interest relies on the analysis of datasets with a large number of features.
High-dimensional data are defined as data with a large number of observed vari-
ables, p, and a small number of observations, n. Note that the ratio between n
and p must be small for the data to be high-dimensional, that is, a dataset with
10000 features and 100000 observations is considered as low-dimensional. The rea-
sons behind a small sample size are mainly due to time and budget limitations or
practical restrictions (for example the study of rare diseases involving restricted
populations).

The analysis of high-dimensional data requires the application of non-standard
approaches, as common methods such as linear regression can not be estimated
when n < p. Even when the number of samples is slightly greater than the
number of variables, classical methods incur the so-called curse of dimensionality
(Bellman|, [1961)) and the quality of their estimates deteriorates. Indeed, in order
for linear regression’s results to be reliable, the needed number of observations
grows exponentially with the dimensionality of the problem (Hastie et al.l 2009).

Different statistical and computational problems arise from large amount of
observed variables and a small number of available observations:

e Two practical problems with high-dimensional data are data visualization
and exploration, as it becomes impossible to plot the response variable
against each predictor in order to to identify the factors with a more likely
significant effect on the outcome;

e Few observations are associated to low degree of information. When the
sample size is not large enough, some of the variables are falsely selected, as
the effect on the outcome happens by chance and can not be generalized to
the whole population;

17
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e When the number of covariates increases, the correlations among the predic-
tors are more likely and the interactions with the response variable become
complex and difficult to model. Under these circumstances, classical methods
fail to provide an accurate variable selection procedure;

e The high number of variables makes the exploration of all subsets compu-
tationally infeasible, as the computational time increases exponentially with
the dimensionality (Saeys et al., 2007);

e In large p / small n analysis it is easy to face the problem of owverfitting
(Raudys and Jain, |1991)), which happens when the model fits (almost) per-
fectly the training data and fails to generalize to the whole population, re-
sulting in poor prediction performances.

A common approach to overcome the statistical problems above is given by penal-
ized regression methods, which are deterministic extensions of the ordinary linear
regression. These models have been widely used due to their ability of dealing
with high correlations among the predictors. They add a constraint on the di-
mension of the regression model and minimize a loss function (usually the residual
sum of squares) which includes one or more penalty parameters, with the goal
of decreasing the collinearity between variable by penalizing the inclusion of a
predictor in the model. The penalty parameter(s) plays a key role by shrinking
the estimates towards zero and reducing the dimensionality of the problem. Such
improvements, however, come with a cost: penalized regressions introduce bias in
the estimates in order to reduce their variance. That is, it is better to be slightly
wrong all the time than to be perfectly correct sometimes and completely wrong
some others. This concept is known as the bias-variance trade-off and usually
the decrease of the variance is greater than the increase of the bias. This way the
estimated model is more generalizable and the prediction outside training data be-
comes more accurate. Some examples of penalized regression are Ridge regression
(Hoerl and Kennard, [1970) and LASSO (Tibshirani, 1996, which minimize the
squared norm of the regression parameters (I penalization) and the sum of their
absolute values (I; penalization), respectively. A compromise between these two
approaches is given by the Elastic-Net regression (Zou and Hastie, 2005)), which
attempts to overcome their limitations by combining the [y and [, penalizations.
Another common method is the LARS algorithm of [Efron et al.| (2004]).

These methods represent the golden standard techniques, but they are too sim-
plistic and often fail when the dimensionality of the problem is huge. Therefore,
modern developments focus on the extension of such methods. Within the pe-
nalization context, Bayesian inference has become a widely applied tool. As for
penalized regression, Bayesian methods introduce bias in the model in order to
improve the overall performances. On the other hand, they provide a much more
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flexible approach and a natural way to include external information. In Bayesian
statistics the parameters are treated as random variables and the inclusion of
prior knowledge in the model is allowed by assuming a prior distribution. This
approach provides a probabilistic process for the update prior beliefs in light of ob-
served data. When compared to their deterministic counterpart, Bayesian models
present several advantages. Above all, parameters become interpretable and they
are not abstract numbers anymore. Indeed, Bayesian models provide a posterior
distribution for the parameters rather than a point estimate and allow to quantify
the uncertainty in the estimates following the posterior standard deviations. In
penalized regression, the evaluation of the standard deviations, especially for the
penalty parameter, can be troublesome, with unreliable and unstable results in
the case of sandwich and bootstrap estimates (Kyung et al., 2010)). The Bayesian
posterior distribution also allows to retrieve credible intervals for each parameter,
providing a useful tool for posterior inference which can be of great interest in
many scientific fields such as biology and genomics. Other advantages concerning
Bayesian estimation methods are: first, when dealing with multiple penalty pa-
rameters, these can be evaluated jointly with the other parameters of interest, thus
avoiding the need of cross-validation procedures; second, most of these methods
rely on Markov Chain Monte Carlo (MCMC) sampling algorithms, which provide
a more flexible tool than optimization when facing non-convex penalties. The
main drawback of Bayesian inference is the computational efficiency, as the imple-
mentation of iterative sampling procedures until convergence negatively affect the
computational performances.

The following section provides a brief introduction to Bayesian inference and
an overview of Bayesian shrinkage methods for the analysis of high-dimensional
data.

1.1 Bayesian inference

As opposed to the frequentist perspective, where the model parameters are con-
sidered fixed quantities to be estimated, Bayesian methods treat the parameters
as random variables and require the specification of a prior distribution alongside
the likelihood function. The parameters of the prior distributions are called hy-
perparameters and their choice guides the amount prior knowledge to be included
in the estimation process. When no prior evidence is available, non-informative
specifications for the prior distributions, such as Uniform distributions, can be
implemented and, therefore, the estimates are guided only by the data. The fi-
nal goal is the analysis of the posterior distribution conditionally on the observed
data, which can be retrieved with Bayes’ theorem, and the parameters are usually
estimated by selecting the posterior mean or mode. The posterior distribution is



20

20

— likelihood
== prior
------ posterior

15

10

05
1

Figure 1.1: Bayes’ theorem with y | @ ~ A (2,0.2?) and 6 ~ N (3,1.3%).

a combination between the likelihood function and the prior density. When data
are low-dimensional, the choice of the hyperparameters has a small influence on
the final results. However, when dealing with high-dimensional data, the posterior
distribution becomes more sensitive to the specification of the prior. In this case,
selecting a good prior becomes particularly important. Many attempts at select-
ing the best hyperparameters have been made, however there is not a prevalent
approach and is still an open subject of research. Among others, Empirical Bayes
(Casellal, |1985)) estimates the hyperparameters from the data, whereas modern de-
velopments include external information in the estimation process and model the
hyperparameters as a function of complementary data (co-data; [Neuenschwander
et al., 2016; Van Nee et al., [2021)).

Lety = [y1,...,¥ys]" be the n-dimensional response vector and € the (possibly)
multivariate vector of parameters of interest. From Bayes’ rule, the posterior
distribution 7 (@ | y) can be evaluated as

[(y[6)7(6)

m(61y) = p(y)

where [ (y | ) is the likelihood function, 7 (@) is the prior distribution and p (y)
is the normalizing constant. The prior’s and likelihood’s effect on the posterior
density is shown in Figure (1.1}

Density p (y) usually involves multiple integrals and is unknown. For this
reason, exact posterior inference becomes intractable. One way to overcome this
issue is to assume a conjugate prior, which allows the posterior to follow the
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same distribution as the prior. Well-known distributions are usually implemented
and p (y) is available in closed form, therefore the posterior inference can be easily
achieved. However, this can only be done with the most trivial probabilistic models
and the posterior quantities generally can not be directly inferred, requiring some
form of approximation in most cases.

1.1.1 MCMC methods

Markov Chain Monte Carlo (MCMC) methods represent a class of sampling al-
gorithms for approximating intractable integrals. They combine Markov chain
methodologies to randomly sample from high-dimensional distributions and Monte
Carlo integration. A detailed overview of MCMC methods can be found in Robert
and Casella (2004).

Their main goal is to overcome Monte Carlo problems. Typically, Bayesian
inference aims at estimating a function of the parameters of the form

Exory) l9(0)] = /S 9(0)7(0]y)de, (1.1)

which usually does not admit an analytical solution. Monte Carlo integration
draws random values from the target distribution 7 (@ | y) and approximates the

integral in (1.1 as
B
1
Exoiy) l9 ()] & 5 > g (). (1.2)
b=1

where B is the number of samples. When B is sufficiently large, estimate ([1.2))
provides a consistent, unbiased and asymptotically normal estimator for g ().
This method, however, is not suited for high-dimensional problems: it assumes
the independence between the samples drawn from the target distribution and
requires techniques to easily generate these values, which is usually unrealistic
given the high dimensionality of the problem. For these reasons, MCMC methods
rely on Markov chains to randomly generate values from the target density in order
to achieve a Monte Carlo approximation of the required integral. Markov chains
provide a sampling scheme to sample from a distribution when its density is known
up to a normalizing constant. They represent a stochastic process where each value
only depends on the current state and not on the previous ones. More details
about Markov properties are discussed in Meyn and Tweedie| (1993) and Robert
and Casella (2004), where the authors establish the results for the convergence of
a Markov chain to its target density.

There exist many MCMC approaches for sampling from a distribution without
directly requiring it. The most applied are the following two methods, which
represent the baseline for modern generalizations introduced in literature:
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e Metropolis-Hasting algorithm (Hastings, 1970): a flexible approach for

constructing a Markov chain is the Metropolis-Hastings algorithm (MH).
Sampling from the target density is achieved by proposing a new state of the
chain at each iteration and evaluating the transition between states with a
MH acceptance probability. Specifically, this method requires the introduc-
tion of a proposal density ¢ (6 — 0') to sample new values 8. Let 7 (0 | y)
be the target density, new state 6’ is sampled from ¢ (6 — 60') and accepted
with the following probabilistic acceptance criterion;

a:min{l W(H’\Y)Q(H’%O)}
'm(0]y)q(@—6)

In order for the MH algorithm to converge to the target density, proposal
density ¢ must be able to generate all the values belonging to the support
of 7, that is, ¢ (0 — 6') > 0 for every 0,8 € S, (Roberts and Smith, 1994)).
A good proposal distribution leads to faster convergence of the algorithm.
The tuning of ¢, however, is not straightforward, as many different choices
can be made and each of them leads to different results. Ideally, a good pro-
posal should provide high acceptance probabilities for the proposed states
and its covariance structure should reflect that of the target density. A main
advantage of MH algorithm is its ability to avoid getting stuck at a local
mode of the target density by occasionally accepting new values with lower
acceptance probability. This method is mainly used when the conditional
distributions of the parameters are not available or are either tricky or inef-
ficient to sample from;

Gibbs sampler (Geman and Geman| 1984; Casella and George, (1992):
Gibbs sampling provides a sampling approach to construct a Markov chain
by iteratively updating one component 6 at a time. Specifically, each com-
ponent is sampled from its full-conditional distribution 7 (Gk | 01, y). This
approach can be seen as particular case of the MH algorithm, where the pro-
posal density ¢ is the full-conditional distribution. For this reason, there is
not need of tuning of the proposal density and each new state of the chain
is accepted with probability equal to 1. Contrary to the MH algorithm,
however, Gibbs sampling is more prone to being stuck at local modes and
typically suffers from low convergence rate because of the local updates of
the parameters. This method is mainly applied in a conjugated framework,
where the full-conditionals are known and easy to sample from. More details
on Gibbs sampling and its convergence properties can be found in (Casella,
and George (1992)); Roberts and Polson| (1994); Roberts and Smith! (1994)).
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1.1.2 Variational Bayes approximation

When the number of covariates is huge MCMC sampling methods become com-
putationally infeasible. Variational inference (V1) is a deterministic optimization
approach to approximate the target density 7 (6 | y) with a variational distribu-
tion ¢ (@) and considers Bayesian inference as an optimization problem (Salimans
et al., 2015; Lee, |2022). Note that this approach, contrary to MCMC methods
that provide samples from the target distribution, gives mean point estimates of
the quantity of interest. Moreover, the standard deviations are usually underes-
timated (MacKay et all 2003; [Wang and Titterington, 2005; Turner and Sahani,
2011; |Giordano et al., [2017)), leading to a trickier and less accurate posterior infer-
ence. This lack of accuracy, however, does not necessarily affect the performance
of this methodology (Blei and Jordanl 2006)).

The goal is to find ¢(@) that minimizes the Kullback-Leibler divergence (KL)
between the target density and the variational distribution. Taking the expectation
with respect to ¢, the KL divergence is

KL (¢1) = B, [tog 4]

T(0]y)
¢llogm (0 ]y)]

0
0 ¢llogm(6,y)] +logp(y), (1.3)

=E, [logq

(6)] —E
=E,[logq(0)] — E
which depends on p(y), the (usually) unknown marginal distribution of y. The
minimization problem in (1.3) is eventually reduced to the maximization of the
Variational lower bound, which is defined as £ = E, [log7 (8,y)] — E, [log ¢ (8)].
Following the non-negativity property of the KL divergence, it yields log p (y) > L.
Thus, minimizing the KL divergence between ¢ and p is equivalent to maximizing
the lower bound L.

A common factorization for ¢(@) is the so-called mean-field Variational approz-
imation (Jordan et al., 1999; Beal, 2003), which is a compromise between compu-
tational tractability and accuracy of the performances. The variational family ¢(0)
is assumed to be the product of independent marginal variational factors g (0%),

k=1,..., K, and is defined as

K

q(0) = [ a (6%) -

k=1

The Coordinate Ascent Variational Inference algorithm (CAVI) (Bishop and Nasrabadi,
2006; Blei et al., 2017) is a useful tool for efficiently solving the optimization prob-
lem explained above. Until convergence of the lower bound £, the CAVI algorithm
iteratively updates the parameters of the variational factors g (0), k =1,..., K,
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based on prior distributions” hyperparameters and the current expectations of fac-
tor q_j, (6 ), considered fixed. This way the model is able to account for non-linear
dependencies among the parameters. Formally, the variational factors are updated
as

q" (6) = argmin, KL (q 0n)- 1] a" 6n)lIm (@] Y)) ) (1.4)

htk

where the superscript = indicates that the corresponding factor has been updated
(Lee, 2022). Under the mean field approximation, where the components are
assumed to be independent, the optimal solution of (|1.4]) is

" (1) < exp {Eq_, [logm (0x | 0—1,¥)]} -

While the assumption of independence between factors is particularly strict, the
CAVT algorithm provides a flexible approach and ensures the convergence to a local
optimum (Blei et al., 2017). Note that, when working with exponential families
in a conjugated framework, variational factor ¢(fx) has the same kernel of the
full-conditional distribution 7 (6 | 0_,y).

1.2 Bayesian model selection

This thesis deals with Bayesian shrinkage models under two different frameworks:
generalized linear regression and graphical models. In this section, a brief expla-
nation is given of how variable selection with shrinkage priors is achieved under
these circumstances, alongside a short introduction to the most common prior
assumptions.

Generalized Linear Models (GLM). These models represent a generalization
of the linear regression and allow a linear model to be related to the response
variable through a link function. This way, different types of outcomes (continuous,
binary, count data) can be modelled. Let y be the n-dimensional response vector
and X the n x p design matrix. The expected value of y is related to the linear
predictor X3, where 3 is the p-dimensional regression parameter vector, through
an invertible link function h. Shrinkage is applied to vector 3 element-wise by
decomposing the prior variances in a global scale 72 and a local scale A?, 7 =
1,...,p. The goal is to find a sparse solution for vector 3. The general hypotheses
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of the model are
}/i ’ Xiu6 Zde (}/Z | Xiaﬁ) )
EYAxiﬁ [Y;] = hil (XiT,B), 1= 1,...,77,,
B | 7505 ~ N (0.724))
2 2 -
Aj ~7T()\j), j=1...,p,
Y s (7’2) :
When h is the identity function the model reduces to the ordinary linear regression.
Parameter )\3 guides the amount of shrinkage for regression parameter 3;: when

)\? — oo then no shrinkage is applied, whereas the coefficient 3; is shrunk towards
0 when A\? — 0.

Graphical Models. Graphical models are a useful tool for network analysis
and their goal is to infer the dependencies between a set of variables. A net-
work (or graph) represents a collection of variables x = [z1,...,x,]" with a set of
vertex ¥V = {1,...,p} and it encodes conditional dependencies by a set of edges
E = {(s, k)€ & xg L xy | XV\{S,;C}}. That is, if pair (s, k) does not belong to €
then x, and x; are conditionally independent with respect to the other variables.
There exist many different types of graphs, however this thesis only focuses on
undirected networks. Graphical models use graph structure to model the depen-
dencies between variables. A common class of graphical models is the so-called
Gaussian Graphical models (GGM;|Wang, 2012, 2015} [Li et al., [2019), which relies
on the multivariate Gaussian likelihood

x; | Q~ N, (0,,Q7Y), i=1,...,n,

where = {Wsk}(pxp) denotes the p X p inverse covariance matrix, also called
precision matrix. There is a one-to-one correspondence between the zero pattern
in a precision matrix and an undirected graph. This property can be exploited to
learn conditional independencies between variables. Specifically, it can be shown
that under the Gaussian assumption, it yields wg = 0 if and only if variables s
and k are conditionally independent with respect to the other variables (Dempster],
1972). Therefore, the goal is the estimation of non-zero entries in 2 under the
assumption of sparseness. Edge selection is performed by assuming a Gaussian
prior distribution for entries wy; and decomposing their prior variance in a global
scale 72 and a local scale \2.. Specifically,

wep | T2, A2 ~ N(0,7°02)
Aikww(/\gk), s<k, k=1, ...,p,

2 N7T(T2).
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As for the shrinkage in GLM, the local variances A%, guide the amount of shrink-
age imposed on edge wg,. Graphical models estimation is computationally hard,
as the number of parameters to be estimated is of order O (p?), which becomes
particularly challenging in high-dimensional settings. Moreover, the estimation of
precision matrices is particularly difficult since they are constrained to the cone
of symmetric positive-definite matrices, which implies restrictive conditions on the
sampling scheme.

1.2.1 Shrinkage and selection priors

Different types of shrinkage can be applied based on the prior assumptions on local
scale parameters )\?. Typically, most shrinkage priors share common properties
such as zero-mean and symmetry around zero. The main difference is the induced
amount of shrinkage on parameter /3;, which can be inferred by integrating out local
scale )\?Z the resulting mass probability around zero and the tails of the induced
prior distribution reflect the imposed level of shrinkage. Below an overview of the
most famous shrinkage priors is presented. See Van Erp et al.| (2019) for a detailed
list of the existing shrinkage methods.

¢ Ridge penalty
One of the first and most simplistic attempts at shrinkage variable selection
is the Ridge penalty (Hsiang, |1975), which corresponds to the [, penalization
in Hoerl and Kennard (1970). This shrinkage method was originally intro-
duced to deal with multicollinearity between variables. It assumes the same
common prior variance for all the regression parameters ;. Specifically,

Bil X ~N(0,)), j=1,....p.

Prior variance \? can be treated either as a fixed parameter or as an unknown
quantity. For this latter case, common choices for m (A\?) are the inverse-
Gamma (Tipping, 2001) and the scale inverse-x? (De los Campos et al.l
2009; Montesinos Lopez et al., [2022).

e Spike-and-slab prior
The so-called spike-and-slab prior (Mitchell and Beauchamp, (1988} |George
and McCulloch, 1993) is a mixture of two components, a spike component
with mass concentrated around zero and a slab component with high vari-
ance vi. The predictors included in the model are assigned the slab prior
component, whereas the variables excluded are assigned the spike compo-
nent. It is different from the continuous scale mixture of Normal priors,

however a formulation that connects this prior to the other shown here is
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presented in Ishwaran and Rao| (2005)). A common specification is the Dirac
spike-and-slab prior, with prior assumptions

Bi | v, vr ~ BN (0,0F) + (1 — ;) 8o (B5)
v | ¢; ~ Bern (¢;) ,
¢j ~ Beta(a,b), j=1,...,p,

where 4y () denotes a Dirac’s Delta distribution with mass probability at 0.
Integrating ~y; out yields

Bi 16507 ~ &N (0,07) + (1= 5) 00 (B) s j=1wwosp,

which is a mixture distribution with mixing probabilities ¢; and 1 — ¢;.
Another common choice for the spike component is a Normal distribution
with low variance N (0,v?), with v3 << v? (George and McCulloch, 1993;
Van Erp et all [2019). Prior variances v2 and v? can be either treated as
fixed parameters or considered unknown and assigned an Inverse-Gamma
prior distribution.

t-Student prior

An extension of the Ridge shrinkage prior is to assume a specific local vari-
ance for each regression parameter 5; (Meuwissen et al., 2001} |Griffin and
Brown, [2005). The prior assumptions are

B | 2, )\? ~N (0,72)\?) ,

vV UV
N ~TIC = = =1, ....p.
; g(2’2<)’ J=1....p

The induced prior distribution for §; after integrating /\5 out is

2
Bi| 7% v, ~t, (O,Z), ji=1,...,p,

where ¢, (0,72/¢) denotes the Student-¢ distribution with v degrees of free-

dom, centered at 0 and scale parameter 72/¢. When v = 1 the induced

prior reduces to a Cauchy distribution. Compared to Ridge penalization,

the Student-¢ distribution shows heavier tails, thus providing a sparser solu-

tion for 3.

LASSO penalty
The Bayesian version of the LASSO regression (I; penalty) was proposed
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by |[Park and Casella (2008)). The model assumes the following hierarchical
structure

Bj| 2, )\? ~ N (0,72)\?) ,

2 v? :
/\waxp(?>, j=1,...p.

Integrating )\]2. out results in the following induced prior

/8j|7—27V2NDE<07£)7 jzlv"'apa

where DE denotes the double-exponential (or Laplace) distribution. Bayesian
LASSO presents some differences when compared to its penalized counter-
part (Tibshirani, [1996): first, the latter provides a variable selection method,
whereas the former does not set coefficients to zero, requiring a posterior se-
lection process; second, penalized LASSO can not select more predictors than
observations, which can be problematic when n > p; the Bayesian version,
instead, is able to overcome this issue; third, Bayesian LASSO does not fol-
low the oracle property (Polson et al. 2011)), whereas the penalized version
follows it under some stringent conditions (Fan and Li, 2001} Zou, |2006).
Finally, both methods suffer from oversrhinkage of large effects (Polson and
Scott], 2011; [Polson et al., [2011]).

Elastic-net penalty
The Bayesian elastic-net was introduced by |Li and Lin| (2010). It relies on
the following scale mixture of Normals assumption:

oY
BJ‘TQ7>\]NN<07(T2/\]11> )7

1 87’2 .
/\j|7—277—1'\'g(1,oo) (57?>, j=1...,p,
1

where G(1 ) denotes a Gamma distribution left-truncated at 1. The induced
prior distribution on parameter j3; is

1 .
B | T2, 11 X eXP{—§ (7'1|ﬁj| +725j2)}, j=1,...,p.

Penalty parameters 7 and 75 determine the amount of LASSO and Ridge
shrinkage, respectively. Although the estimation of these parameters leads
to overshrinkage in the penalized version, the Bayesian elastic-net is able to
overcome such issue by estimating them simultaneously.
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e Horseshoe prior
A modern shrinkage prior is the Horseshoe prior proposed by [Carvalho et al.
(2010), which assumes a positive Half-Cauchy distribution for the local vari-
ances. Formally,

By | 72,0 ~ N (0,72X3)
)\j NC+(0,1), j: 1,...,p.

The induced prior distribution on 3; is not analytically tractable. The shrink-
age behaviour of this prior can be deduced by observing the posterior dis-
tribution of shrinkage coefficient x? = (1 + /\?)_1, which shows a horseshoe
form. This leads to large effects assuming values similar to their OLS es-
timates, whereas small effects are heavily shrunk towards zero. Since the
local variances )\]2 can not be easily sampled from their full-conditional dis-
tributions, a Gibbs sampler can be implemented by augmenting the model as
shown in Makalic and Schmidt| (2016)). An improved version of the Horseshoe
prior is the regularized Horseshoe in Piironen and Vehtari (2017), where the
authors give insights on the choice of the global scale prior distribution and
overcome the problem related to the amount of regularization for the largest
coefficients, which can be problematic with weakly identified parameters in
the ordinary Horseshoe setting.

1.3 Outline and contributions

The main goal of this thesis is to provide efficient and reliable Bayesian statisti-
cal methods for the analysis of high-dimensional data. Different frameworks and
hypothesis are considered, resulting in three independent projects. In order to
provide efficient tools, the algorithms are based on fast computational approaches
and are all implemented in C++ with Rcpp package for R software.

Chapter[2laddresses the problem of variable selection for sparse high-dimensional
linear regression with Gaussian errors. A new class of trans-dimensional MCMC
algorithms (Green|, 1995} [Fan et al., 2009) is introduced. In particular, a multiple-
try MH scheme ([Liu et al., 2000; Martino et al., 2012 Casarin et al., |2013) based
on adaptive mixture of proposal distributions is discussed. The model relies on
a Dirac spike-and-slab prior (George and McCulloch) [1993)) where at each iter-
ation a new model is proposed and accepted with a generalized MH step. The
target density of the algorithm is efficiently updated by exploiting a new class of
computational methods based on the thinQR decomposition.

Chapter |3 introduces a novel multivariate shrinkage prior for the estimation of
multiple similar networks. The model combines the approach of Peterson et al.
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(2020)) and the Horseshoe prior (Carvalho et al., 2010) with the goal of inferring
correlated (sparse) precision matrices. This approach represents an extension of
the Graphical Horseshoe (Li et al., 2019)) and scales well up to hundreds of vari-
ables. Finally, a novel approach for posterior edge selection based on model cuts
(Zigler et al., |2013; |Plummer} 2015)) is proposed.

Chapter[d] presents a flexible way to handle co-data variables in high-dimensional
regression for both binary and continuous outcome. The method relies on an in-
formative version of the Horseshoe prior (Carvalho et al) 2010) based on the
regression of the local variances on the co-data, following Van Nee et al.| (2021)).
Both Gibbs sampler and Variational approximation are implemented for the model
estimation. In particular, the former makes use of the method in Bhattacharya
et al. (2016) for sampling the regression parameters from a multivariate Gaus-
sian distribution and the latter relies on the computational methods presented in
Miinch et al.| (2019). Therefore, both provide algorithms with O(n?p) operations,
suited for high-dimensional problems.

Chapter 9| ends the thesis with several final discussions and comments. In
particular, insights on future extensions of the presented models are debated.



Chapter 2

Fast Bayesian model selection for
high-dimensional linear regression
models

2.1 Introduction

Mixture priors for Bayesian variable selection in univariate linear regression models
with Gaussian errors were originally proposed by [Leamer| (1978)) and [Mitchell and
Beauchamp, (1988) and made popular by the spike-and-slab approach of |George
and McCulloch! (1993,/1997)). Similar approaches have been proposed by |Carlin and
Chib (1995), (Clyde et al.| (1996), Geweke (1996), Smith and Kohn (1996), Raftery
et al. (1997), Liang et al.[(2001)) and Dellaportas et al. (2002). Model and variable
selection methods have seen a renewed interest nowadays due to the availability of
huge datasets. Rockova and George (2014)) propose the Expectation-Maximization
algorithm for variable selection computationally faster than the Gibbs sampler,
while Rockova and George (2018) extend the spike-and-slab approach to Laplace
mixture components, to allow variable selection and shrinkage. Computationally
efficient methods for the exploration of the space of competing models have been
introduced by the shotgun procedure of Hans et al.| (2007). [Hans| (2009, 2011)
further extend the Bayesian model selection via Dirac spike-and-slab prior to the
case of Laplace mixture components and the Elastic-net prior of |Li and Lin| (2010).
Reviews of special features of the selection priors and on computational aspects
can be found in |Chipman et al.| (2001)), |Clyde and George, (2004), Ishwaran and
Rao| (2005), (O'Hara and Sillanpaa| (2009)), [Heinze et al.| (2018)), Narisetty| (2020)),
Forte et al.| (2018) and in the recent book of [Tadesse and Vannucci| (2021)).

However, when the number of covariates is large, the complete model enumer-

31
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ation prevents the full exploration of the space of competing, Markov chain Monte
Carlo (MCMC) methods provides a viable and feasible alternative to the Gibbs
sampler. In the context of variable selection, trans-dimensional MCMC methods
(see, e.g.|Green, 1995; [Fan and Sisson, [2011; Hastie and Green, [2012]) quickly and
efficiently explore the space of competing models looking for optimal solutions, i.e.
models with high posterior probability, see George and McCulloch| (1997). A pop-
ular approach is the Metropolis scheme (MC3), proposed by Madigan et al. (1995])
in the context of model selection for discrete graphical models and subsequently
adapted to variable selection, see Raftery et al.| (1997) and Brown et al. (1998,
2002)), among others. Improved MCMC schemes have been proposed to achieve an
even faster exploration of the posterior space, see, for example, the shotgun algo-
rithm of Hans et al.| (2007) and the evolutionary Monte Carlo schemes combined
with parallel tempering proposed by Bottolo and Richardson| (2010), Bottolo et al.
(2011)).

Within the regression context, reversible jump (RJ, hereafter) algorithms have
been previously proposed, for example, by Petralias and Dellaportas| (2013)) and for
generalised linear models by [Papathomas et al. (2011). As any other Metropolis
schemes, the RJ-type proposals has the major disadvantage of performing a good
“local” exploration of the posterior distribution, thereby slowing down the con-
vergence speed as the dimension of the problem increases. Improving the mixing
and the rate of convergence of the chain can be achieved by means of multiple-
try Metropolis MCMC (MTM, hereafter) introduced by |Liu et al. (2000) as an
extended version of the classical Metropolis-Hastings scheme that allows to select
the new state of the chain among several alternatives. MTM methods have been
widely studied and generalized, with different versions based mainly on different
choices for the trial proposals. The basic approach allows to propose multiple states
of the chain independently from the same distribution Liu et al. (2000), whereas
more complex versions involve correlated trials (Craiu and Lemieux, 2007; [Bédard
et al., 2012)) or different independent proposals (Casarin et al., 2013). All of the
cited papers assume the number of trials to be fixed in advance. In |Martino and
Louzadal (2017) the authors study the mixing properties of MTM algorithm when
the proposal distribution is a random walk: they state that large values of K do
not always improve the rate of convergence of the MCMC and propose different
solutions. To this aim, |(Chang et al. (2022) try to calibrate the optimal number of
trials. For a general overview of MTM methods, we refer to Martino| (2018). A re-
versible jump MTM method for Bayesian model selection framework is proposed in
Pandolfi et al.| (2010, 2014)), where the authors rely on multiple trans-dimensional
moves to efficiently explore the space of models.

Other interesting developments have focused on adaptive methods for the op-
timization of parametric transition probabilities of MCMC algorithms, with the
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aim of improving efficiency and mixing of the Metropolis schemes. Early adapta-
tion schemes can be found in Gilks et al.| (1998) and Haario et al. (2001), where
the authors propose the tuning of the transition kernel based on the previous
states visited by the chain. However, adaptation can lead to the loss of ergod-
icity of the chain (see, e.g. |/Andrieu and Moulines, |2006; Roberts and Rosenthal,
2007; /Andrieu and Thoms)| [2008; |Craiu et al., 2015, for the theoretical properties
of adaptive MCMC algorithms). In |Andrieu and Moulines (2006) and |Andrieu
and Thoms (2008]) the authors provide a general guidances on building adaptive
MCMC schemes and discuss a Metropolis scheme where the proposal density is
a mixture of distributions that belong to the family of exponential distributions.
Other applications dealing with adaptive proposal of Gaussian mixture can be
found in |Douc et al.| (2007), Ji and Schmidler| (2013), Feng and Li (2015 and
Maire et al. (2019)). Within the MTM framework, |Yang et al. (2019) and Fontaine
and Bédard (2022) propose adaptive versions of the MTM algorithm.

Here, we introduce a novel trans-dimensional adaptive MTM algorithm that
exhaustively explores the target distribution. In particular, our approach considers
parallel jumps between models that include different predictors, while Lamnisos
et al. (2009) and [Pandolfi et al.| (2010} 2014)) only consider jump between models
that differ only by a single variable. Similarly to the shotgun stochastic algorithm
of Hans et al. (2007), our model forces the chain to explore the model space in
the neighborhood of high-probability models. We rely on a mixture of proposal
distributions, where each component is related to a different degree of divergence
from the current model, i.e. the number of included or excluded predictors. The
importance of each component is calibrated to achieve optimal jumps, that is,
the mixing probabilities of the mixture associated to the different proposals are
estimated adaptively in order to ensure that the algorithm explores models that
provide high scores of the target density.

Finally, in Appendix [2.D] we present a new class of algebraic algorithms based
on the thinQR decomposition for the efficient update of the posterior covariance
matrix under Dirac’s spike-and-slab priors. These updating algorithms, alongside
the methods discussed in Section for the efficient evaluation of the target den-
sity with O(p) operations, make our model one of the fastest Bayesian approaches
for model selection in high-dimensional linear regression with Gaussian errors.

The rest of this chapter is organized as follows. In Section we introduce
the model and prior specifications, while in Section [2.3] we outline the MCMC
algorithm and discusses the posterior sampling details. In Section [2.4] we assess
the problem of efficiently evaluating the target distribution of the algorithm. Sim-
ulation studies and applications to real datasets are presented in Section and
respectively. Final discussions and comments are in Section [2.7]
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2.2 Model specification

Let y € R” be the n-dimensional response vector and X € R™*? be the n x p design
matrix. We consider the following univariate Gaussian linear regression model for
the continuous outcome y;, 2 =1,...,n

yi =x.08 +¢,

2.1
g ~N(0,0%), i=1,...,n, 1)

where x; = (xm, e ,xi,p)T € RP, is the set of p covariates related to the i-th

observation and B = (51, . ,5p)T € RP is the p-dimensional vector of regression
parameters. To induce sparse solutions for 3, we assume a Dirac spike-and-slab
prior with the slab component’s prior variance v? > 0 considered as a fixed hy-
perparameter (George and McCulloch, [1997). This approach relies on an auxiliary
latent p-dimensional selection vector v = (71, . ,fyp)T, where v; = 1, if the j-th
regressor is included in the model, and «; = 0 otherwise. Note that the complexity
of regression model v can be retrieved as p, = Z§:1 ;- Let B, € RP be the vec-
tor consisting of all elements J3; for which v; =1, j=1,...,p,and B_, = 8\ 3,
Then the Dirac spike-and-slab hierarchical prior for the regression model in
is

/8'7‘77 02 ~ pr (5]’07 O-QEﬁ’Y)’
p
m(B,1) =]19(5,0)
j=1

WjNBer(gb)? jzla"'apa
¢ ~ Beta(¢, ¢),
o ~1G(v, \),

(2.2)

where (91;, O) = I(o)(x) denotes the Dirac function evaluated at zero and ¥z =
U%Im is the prior covariance matrix of 3., with I, denoting the identity matrix of
dimension p,. Independent Bernoulli priors on the 7;’s as specified in (2.2)) with a
Beta hyper-prior are used, for example, by Brown et al.| (1998). As argued by Scott
and Berger| (2010)), an attractive feature of these priors is that appropriate choices
of ¢, that depend on the number of covariates p, impose an a-priori multiplicity
penalty.
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2.3 Posterior inference

For the Gaussian linear regression model defined in (2.1)), under the hierarchical
Dirac spike-and-slab prior defined in (2.2)), the joint posterior distribution is:

T8, +2)

7 (8,7, 0% ¢y, X) oc o~ PR 3, 712 exp (— o=

)ww)ww), (23

where €, is the n-dimensional vector of residuals for model + defined as €, =
y — X,3,, with

> X
y = (Oy ) c R™Pr  and }(7 = (E_¥/2> c ]R(n—i-%)xpw7 (2_4)
Py B

and X, € R™"*P is the n x p, matrix whose columns correspond to the components
of B,. The set of full-conditional distributions for the update of parameters 3, o?
and ¢ is

Bily, X, v.0" ~ N, (25 XTy, 035 )

e
02!y,X,B,7~|G(V+n+2p7,A+ ) (2:5)

¢ly ~ Beta(§+ py.p+p —py),

where 3 = ()ﬁq)ﬁv{w)_l = (X;Xv—l—Zgj)_l. Integrating out 3, and ¢” from (2.3)
yields the marginal posterior distribution of model indicator 4 which is propor-
tional to

m(y]y, X) o< £(y]y, X)7(7)

ST _ SQ —(v+n/2
£y, X) ox [XIX 7235, |2 (4 4+ 2 7 (2.6)
p Py
m(y) = ( >¢’”(1—¢)p "
Dy

where 53 =y'y—-y'X, (X;X7+Egj)_1X;y. Here, the goal is the investigation of
the marginal posterior distribution m(v|y,X) defined in equation (2.6). However,
the full exploration of the space of competing models and the complete model
enumeration become infeasible when the number of covariates is moderately large.
Therefore, we rely on trans-dimensional MCMC methods (Greenl (1995; [Fan and
Sisson,, 2011)) to sample the model indicators from the target distribution. Specif-
ically, in this Section, we present different MH schemes to explore m(’y|y, X) We
rely on the thinQR updating methods introduced in Section and Appendix
to efficiently update the design matrix and the target distribution of model
indicator v when one or more predictors are included or excluded from the set
defining the current regression model.
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2.3.1 Reversible jump

The first and most straightforward trans-dimensional method is an ordinary reversible-
jump MCMC. At each iteration the transition from current model 7 to a new
model v is evaluated with a MH acceptance probability. Specifically, we consider

a new model v/ that differs from current model 4 by the inclusion/exclusion of
one covariate. This can be achieved by sampling 4’ from the following proposal
distribution (Lamnisos et al., 2009)

|
a(vlv) =2, i Sl —vl=1, (2.7)
=1

which is symmetric in v and 4’. This way all the models with dimensionality
(py — 1) or (py + 1) are taken into account with the same probability. Sampling
a new model v from ([2.7) can be done by randomly selecting a predictor ¢ from
the set {1,...,p} with uniform probabilities; variable x, is then added to + if
not included in + (i.e. 7, = 0), whereas ' is constructed by deleting x, from
the current regression model, otherwise (i.e. 7, = 1). Because of the symmetry
of proposal distribution q(’y’|’y), ie. q(’y|’y’) /q('y’]'y) = 1, the MH acceptance
probability for new model indicator 4’ is

a ,Y') = min< 1,

The transition from model 7 to 4/ means updating the target marginal posterior
distribution after the addition or deletion of a column in the design matrix. Specif-
ically, the method requires the computation of the posterior of variance-covariance
matrix 2?37/ = (XI/,}’EWI)A, with )27/ € R™Py)*Py and p, = p, £ 1, and the
quantity S, = yTy — y™X, (X;,Xy + Egj/)leI{,y. The thinQR updating meth-
ods discussed in Section can be applied to efficiently achieve this. The RJ
algorithm is shown in Algorithm [I]

The jumps to models that only differ from the current model by the inclusion
or exclusion of one predictor do not allow a fast and efficient global exploration
of the space of competing models (see, e.g. Hans et al., [2007; Lamnisos et al.,
2009). In order to overcome this issue, in the following subsections, we discuss two
generalizations of the RJ method based on multiple-try approaches (Liu et al.,
2000) to allow the transition to models that differ by more than one variable and
further improve the flexibility of the model.
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Algorithm 1: RJ algorithm

1 Input: BEN, y €eR", X e R™P (1,)\) € R%, (¢,¢) € RZ and v, € RT;

2 Initialization: sample ¢© and ~© from their prior distributions;
3 for (b=1,2,...,B) do

4 Sample ¢ ~ U({1,2,...,p});
5 Set v/ =1—-~""Y and compute m(~'ly, X);
6 Compute the MH acceptance probability:

(b=1) 1\ _ . m(7’|y,X)
O‘('Y Y ) = min {17 m(’)’(b_l)b’,X) )

where m(y® Y|y, X) is defined in 2);

7 With probability a(+®",4') set v =/, otherwise set v = ~t-1;

s Sample ¢® ~ Beta(¢ + py, ¢ +p —ps);

9 Optional: Sample 8 and (6%)" from the corresponding full-conditional
distributions defined in &3).

10 end

2.3.2 Multiple-try

Here, we present a novel method to sample from (2.6) which relies on a multiple-
try approach of Liu et al.| (2000)), which we refer to as MTM algorithm. At each
iteration, a new state of the chain ~4* is selected among K € NT independent
alternatives (Casarin et al., [2013)) and the trans-dimensional jump is evaluated
with a generalised MH step.

The k-th proposal is sampled according to the following distribution

1 T
@ (v ly) = oy it ST —l=di, k=1...K,  (28)
dy, 7j=1

which is symmetric in 4*) and ~ (see the results in Appendix for a theoretical
justification of equation ) This way, all model indicators v that differ by
the inclusion/exclusion of dj, covariates from the current model indicator ~ are
taken into account with the same probability. The MTM proposal distribution
gains flexibility when compared to the proposal distribution in , as it
allows the chain to jump to any other possible model in the space, improving the
ability of avoiding local modes. When K = 1 and dx = 1 the chain reduces to RJ
algorithm introduced in Section [2.3.1]
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Let D = {d,...,dx} denote the complete set of divergences between the
dimension of current and proposed models, the simple and straightforward MTM
extension of the RJ approach reduces to fixing d, = 1 for all k = 1,..., K. In
the same spirit of |Casarin et al.| (2013), to allow for more flexibility, we propose a
generalized MH step that accounts for multiple independent proposals. This ap-
proach allows several alternative sampling schemes that differ by the specification
of the set Dk. An example is the specification Dy = {1,..., K}, which allows the
transition to models that differ at most by K predictors. Of course, several alter-
native specifications of D are possible. Motivated by the empirical evidence that
jumps to large spaces usually have low acceptance rate, the number of proposals
K can increase with the dimension of the explored space.

Let ¢ = (tk1,---,tka,)T be an indexing vector of dimension dj, sampling
from the MTM proposal distribution g (’7(’“)|'y) defined in can be achieved
by sampling without replacement a set of d, variables from a discrete Uniform
distribution U({1,...,p}) defined over the set {1,...,p}. More specifically, the
h-th predictor of the k-th model indicator ¢, is sampled from ¢y, ~ U( {1,...,p}\
{tk1,- . ,Lk’h_l}) in such a way that P(Lk,h) =1/(p—h+1) for h =1,...,dy,
with ¢, ~ U({1,...,p}). Then, we set {Vék)}hebk = 1~ {}pe,- This way,
variables are included in the model if they were not and excluded, otherwise. The
new proposal v* is selected among the K alternatives according to the following
discrete probability density function:

wi (Y®]y)
S g (v ®)]y)

where a common choice for wy ('y(k)hf) is that of the importance weights defined

as:
m(yWly, X)
a(Y®ly)
where m('y(k) ly, X) is the marginal posterior distribution of model ¥*) defined in
and g (’y(’“)h/) is the MTM proposal defined in . Thus, new proposal is
then selected as v* = v, j € {1,..., K}. Without defying the detailed balance

condition (Liu et al., [2000), the jump between models v and v* is accepted with
the generalized MH acceptance probability equal to

1 D ks W (v™v)
e we (V)
where vI® k=1,...,j—1,5+1,..., K, are K — 1 auxiliary values sampled from

distribution g (v?[v*), i.e. v® ~ g (v¥|y*), and v = ~. See Algorithm [2| for
the implementation of the MTM algorithm.

k=1 K

wie(YW|y) = v IS

wk(')’(k)h): k:]-a"'7K7

aOMTM — min { (29)
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It is worth recognizing that the importance weights in (2.9) depend on the
evaluation of (| . for each proposed model. Therefore, as for the RJ algo-

rithm, the needed quantities E*% o (X (k)ch)) ~' with )N(Wg) e RVP,00)XP k)
and p. ) equal to the number of variables included in ~®) . and Si(’” =yly —
Yy X ) (X;(k)Xv(m + Z/Qj(k))_lX;(k)y, k=1,...,K, can be computed exploiting

the updating methods introduced in Section after the inclusion/exclusion of d,
predictors.

2.3.3 Adaptive multiple-try

At each iteration, the MTM algorithm defined in Section proposes K dif-
ferent candidate models by sampling from the proposals v ~ g, ('y(’“)h/), k =
1,2,...,K, where g, (y®|y) is defined in (2.8). The idea, however, is that larger
jumps, i.e. the transition to models that differ from the current model by a large
number of variables, are more useful at the beginning of the chain, whereas they
should be avoided once the algorithm has converged to the true model. For this
reason, here we describe a novel adaptive MTM approach which relies on a mixture
of proposal kernels and adapt the mixing probabilities in order to minimise the
Kullback-Leibler (KL) divergence from the target distribution. |Ji and Schmidler;
(2013) have proposed a closely related method for adapting a mixture of exponen-
tial proposal distributions based on the KL divergence in the context of adaptive
MCMC samplers. We refer to this type of algorithm as adaptive MTM (adaMTM)
algorithm (see Algorithm [3| for details on the implementation).

Let ¢ ~ Multin(1,8), ¢® = (¢ ... ¢)" and & = 1,... K, 6 =
(61 ... QM)T and M € N, \ {0,1}. The stochastic representation of the pro-
posal distribution for the adaptive MTM algorithm can be written as

M
4a (7(k)|7a C(k)> - Z C(k qm Z C ®) =
m=1
7(¢c®)6) = H 05 Ze —1, k=1,...,K,  (210)
m=1
with marginal density
(v*1v.6) Z Om@m (Y7 1Y), k=1,... K, (2.11)

which is a mixture of M proposals g, (v*|y) defined in (2.8), with mixing prob-
abilities @. The sampling scheme of the adaptive MTM algorithm consists to
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Algorithm 2: MTM algorithm

1 Input: BEN, y e R", X e R"™?, K €N, D = {d1,...,dx}, (,\) ERZ, (£,9) €RZ
and v, € RT;

2 Initialization: sample ¢(© and ~® from their prior distributions;
3 for (b=1,...,B) do
4 for (k=1,...,K) do

5 Let ex = [t1,...,ta,]7, sample w1 ~ u({1,...,p}) and
Lik,h ™~ U({l,...,p}\{Lk,l,...,kah_1}) for n > 1;
(k) _q_ {0 :
6 Set {% }hak =1 {% }he% and compute the weights

Wk (,y(k)h,(b*l));

7 end

8 Select v* =49 according to the probability density

() (=)
w
By = — i) . for j=1,... K
D k1 Wk (7(k)|7(b71))
9 Set v =4~V and sample vV, ... vUD v v auxiliary values:
10 for (k=1,...,7—1,j+1,...,K) do
11 Let v =[t1,...,ta,]7, sample vu1 ~U({L,...,p}) and
Lk,h ™~ U({l,...,p}\{kal,...,Lk)hfl}) for n > 1;

12 Set {v;f)} =1- {'yﬁlj) and compute the weights wi (v®|y@);

heuy h€ey,
13 end

14 Compute the MH acceptance probability:

K _
a(,y(b—nﬁ(j)) —min {1, Zk? Wi ('y(k)h'(b .1)) ;
Zk:l Wi (V(k?) |"y(J>)

15 With probability a(v®~1,~49)) set v =~Y, otherwise set v =~®*-1;

16 Sample ¢® ~ Beta(¢ + py, ¢ +p —py);

17 | Optional: Sample 8® and (¢)* from the corresponding full-conditional
distributions defined in [23).

18 end

sample k proposal indicators C(l), e ,C(K) from C(k) ~ Multin(l, 0), k=1,....K,
and then sampling the model indicator v*) from the selected proposal distribu-
tion v® |y ~ M ¢ g (¥® |7y). The approach learns which proposal is more
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reliable based on the current value of mixing probabilities vector 8. Therefore,
the goal is to adapt the vector of probabilities 8 to automatically select the most
promising degree of divergence from the current model, i.e. number of variables
to modify. In order to ensure that all the proposals are used at the early stages,
the number of proposals M should not greatly exceed the number of trials K.
Therefore, we assume M = K for the analysis in Section [2.5 and

The importance weights for the adaptive MTM algorithm with the mixture

proposal defined in (2.11)) are

m(y®y, X)
Ga(Y® |y, 0)’

where m(’y(k)]y, X) is the target density defined in (2.6). The optimal model v*
is selected among the K alternatives according to the following probabilities:

(k) g)
o (v ®) |y ) — wk('Y v,
wk(’Y ”77 ) 2521 wk('y(k)h,e)’
_ ;{"(V(k)ly’x) C k=1,... K, (2.13)
> m(Y Py, X)

where last equality holds for the symmetry of ¢, (7("3) v, 0) with respect to v*) and
~. New proposal is then selected as v* = v, j € {1,..., K}. Without defying
the detailed balance condition (see Appendix , the jump between models v
and ~* is accepted with the generalized MH acceptance probability equal to

1 Zszlm('Y(k)|an)
72:1~<;K:1m(V(k)b”X) ’

wy, (v, 0) = k=1,...,K, (2.12)

QadaMTM = 1NN {

where vI® k=1,...,j—1,7+1,..., K, are K — 1 auxiliary values sampled from
distribution g, (vI¥|v*,8), i.e. vI® ~ g,(v(?|4*,0), and v = ~.

One of the major novelties of the proposed MTM algorithm is the possibility of
automatically tuning the vector of mixture probabilities @ to adapt the proposal
to the target online. As suggested by Haario et al.| (2001)); |/Andrieu and Moulines
(2006); |Andrieu and Thoms (2008)), at iteration ¢+ 1 the update of the component
GSLH), m = 1,...,M, of the mixture proposal distribution g, ('y(k)]'y) defined in
(2.11)) can be formulated as

M
97(7?_1) = 97(72) + 77t+1H(07(7?a C(t)v 7(t))’ Z 0 = ’ (2'14)
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where 1, = 1/(ct®), with ¢ > 0 and a € (0 3, 1}, is a non-increasing sequence of
positive step-sizes that satisfies the conditions »".° 7 = oo and Zt 1771+‘5 < 00,
for some 0 > 0 (see, e.g. Haario et al., 2001). The function H( A ,C ,'y(t)) in
should be carefully selected in order to guarantee that the mixture weights
adaptation scheme forces the parameters to drive the MTM proposal closer to
the target. One possibility is to select a valid divergence metric and to adapt 6
in order to minimize that divergence. To this aim, we propose to minimize the
the Kullback-Leibler (KL, hereafter) divergence, as in Haario et al. (2001)). A
natural adaptation strategy would be to select the vector parameter 6 based on
the minimization of the KL divergence between () and the auxiliary distribution

of latent vector (, 7r(C|0) defined in (2.10)), specifically

Ke[rlr(co)] = 3 wmion (S))

o m(¢16)
x — Z () log 7 (¢|0). (2.15)
~v€{0,1}»

However, since the proposal distribution g,(y*|y) in is not tailored to
the target density 7r('y) = m(’y\y,X) defined in , the maximization of the
negative of the Shannon entropy in does not lead to a valid adaptation
strategy. Therefore we propose to adapt the mixing probabilities vector @ of the
mixture proposal distribution defined in by minimizing the KL divergence
between 7(7y) and the following distribution:

D (k)
C’O x H GZk 1Cm k ’Y |’)’79>’ (216)

with S0 M W= K, wy(v®|y) € (0,1) being the normalized importance
weight of the k-th proposal defined in ([2.13)), Zszl Wy, (’y(k)h,e) = 1 and Q(,f)
is defined in ([2.10)). W(C\H,'y) in (2.16) is a proper distribution function and
it corresponds to a weighted likelihood function as introduced by |Hu and Zidek

(2002) (see Appendix [2.A]).

Proposition 2.3.1. The mixing probabilities of q, (’y(’“)h/), k=1,...,K are up-
dated as the solution of the following convex constrained mazximization problem:

arg max Z v)log 7(¢16,7)
~v€{0,1}r
y (2.17)
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1.e.

0D = 00 + e (R(60), €9, 4Y) = R(62, ¢V, 41) ), (2.18)
with

h(09, ¢, 40 = (OO g, (v Py ®)

. 1
@) O ~O) =
A(6.¢ A" = -

1 m]\;l p
B (*),
M;% ;C 50,

where n; = 1/(ct®) is the step-size of the adaptation, with a € (0.5,1].

Proof. See Appendix O

Remark 2.3.1. Note that the update in (2.18) ensures Zn]\le pI+D 1, but not

that 05 > 0. Following | Ji and Schmidlen (2015), rather than adding slack vari-
ables to satisfy the Karush-Kuhn-Tucker conditions, we project negative weights in
the interval (0,1) with the rule ity = |97(7§+1)|/ Zn]\le |97(7§+1)|.

Proposition 2.3.2. The solution of the convexr constrained optimization problem

in (2.17) is unique.

Proof. 1t follows immediately from the convexity of equation (2.17)). See the proof
of Proposition in Appendix O

Proposition 2.3.3. Let g, (’7(k)|*7, 0) be the proposal distribution defined in (2.11)),
then the Markov chain generated by adaptive M'TM algorithm satisfies the detailed
balance condition and converges to its stationary distribution.

Proof. See Appendix O

2.4 Fast evaluation of the marginal density

Let v and 4* be the current and new model indicators, respectively. In this section
we present how to efficiently sample regression parameters vector 3. . and evaluate
marginal posterior m(’y*|y, X) defined in , following the addition or deletion
of one or more predictors to/from current model . Hereafter, let Ry, € RP»*P be
the triangular matrix related to the thinQR decomposition (see Appendix[2.D.1]) of
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Algorithm 3: Adaptive MTM algorithm

1

w

10

11

12

13

14

15

16

17

18

19

20

21

Input: BEN, y eR", X e R, k€N, Dy ={d1,...,du}, ,\) €RY, (&,¢) €RY,
vi €RT, e>1and a€ (0,1];
Initialization: sample ¢ and ~@ from their prior distributions;
for (b=1,...,B) do
for (k=1,...,K) do
Sample ¢® ~ Multinom(1, 6) and set :® =M m f,’f);
Let w = [t1,. . ta_,]7, sample v ~U({1,...,p}) and

ten ~ U({L, oo pd \ trt, oy tmn—1}) for A>1;
Set {7}1’“)} =1 {—yﬁf"“} and compute the weights

h€uy hé€uy

O=1y;

wi (v

end

Select v* =49 according to the probability density

() | (B=1)
@; = Kw](v ") o for j=1....K;
D kmy We(y R [y (=)
Set v = 4D and sample vV, ... vU=D vt v auxiliary values:

for (k=1,...,7—1,j+1,...,K) do
Sample ¢® ~ Multinom(1,8) and set z* =M m¢l;
Let w = [t1,. . ta_,]7, sample v ~U({1,...,p}) and
Lk,h ™~ U({l,...,p}\{kal,...,Lk,hfl}) for h > 1;

Set {vﬁf)} =1- {75{” and compute the weights w(v® |y));
h€ey, he€ey,

end
Compute the MH acceptance probability:

. K () | (5—1)
a('Y(b_l)77(J)) =min< 1, Zkil Wy - ) ;
Dot Wk(vR) [y (D))

Update vector 8® following the adaptation rule in @.I8);

With probability a(v®1,~49)) set v =~ otherwise set v =~®*-1;
Sample ¢ ~ Beta(¢ +py, 0 +p —py);

distributions defined in [23).

end

Optional: Sample 8® and (0*)* from the corresponding full-conditional
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matrix )NCW € R("P)xPy defined in (2.4) such that the current posterior variance-

covariance matrix is 3j = ()ﬁqfiw)_l = (RIVRM)_I. The bottleneck of the
algorithms discussed in Section is the update of matrix Ry,~ € RPY*P¥ and
value S2. after the addition or deletion of one or more columns to/from the current
design matrix. Given Ry, matrix R, can be efficiently computed following the
novel thinQR updating methods presented in Appendix[2.D.2] 2.D.2, 2.D.3] 2.D.3]
and . Note that m(’y*\y, X) is invariant with respect to the ordering of the
variables. Therefore, it is assumed that new predictors are added at the end of the
design matrix, greatly improving the computational performances of the model.

The rest of this section assesses the problem of evaluating Sﬁ* given current
quantities Ri,, b, = XTIy € RP" and d, = R b, € R, where R denotes
the transpose of the inverse of Ry,, i.e. RyJ = (Rl_yl)T. Let X, € R™P and
X« € R™P»* be the current and new design matrices, respectively, the goal is the
efficient computation of

SZ =yTy -y X« (XL X, + 2571*)_1X1*y
=y'y —y'X,- (R.Ru,.) XLy
=y'y —bL.R R b,
=y'y —dl.d,,
where b, = Xg*y € R and d« = R;}bv* € RP»*. Moreover, target den-

sity m(v*|y, X) relies on the evaluation of the determinant [Xg |, which can be
efficiently computed with O(pw) operations given R+ as follows:

D>

26, = [[ Ry . 417°

J=1

Eventually, the regression parameter vector 3. . is computed as
B, =Ri.(0z+d), (2.19)

where z is a p,«-dimensional vector with entries z; ~ N(0,1), 7 =1,...,py+. The
inversion of triangular matrix Ry« in can be achieved by solving the linear
equation Ry.«B.. = 0z + d» by means of forward substitutions algorithm with
(’)(pgy*) operations.

2.4.1 Add and remove variables

Add variables B
Given current matrix X, € R(+Py)xPy after the addition of a block of m > 1
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columns X, € R"™™ at the end the updated form is

< X, X,
X, = T X = 257 0, k| € RO
OmxpY K !

Opnp, Ei '/

with X, € ROt )xm 53— diag{v?,..., 03} € R™™ and py. = p, +m. See
Appendix for the computation of updated triangular matrix Ry« € RPr**P
following the addition of a block of columns at position p, +1 (0 entries in X, can
be exploited to further reduce the computational costs). Exploiting the block-form
of new matrix R;,+, vector d,» € RP** is

-1
R, 0 b
d, = { Iy Pw“] { 7} , (2.20)

where b, = XJy € R™”, Ris» = Ryl : py, (py +1) : pyr] € R and
Roo = Ry [(py + 1) : Dy, (py +1) @ pye] € R™™. Inversion of the block
triangular matrix in (2.20)) yields

o[ mT %ﬂ m
Ry R Ry Ryl [by
L R,jb, }
—Ry Rl Rijb, + Ry)l b,
) d, }
- . (2.21)
Ry - (bs — Ri,,.d,)
Following (2.21), S2. is efficiently evaluated as
5% = yTy — did, - [|(b - dJRuz, ) R3,,.[
=52 — ||(b] — dTRi2,+)Riy . |I3. (2.22)

Therefore, new d,« and S2. are updated from current values of d,, S?, Rizq
and Rao,+. Inversion of triangular matrix Rag,» in is efficiently computed
by means of forward substitutions algorithm with O(m?) operations. Note that
when m = 1, this algorithm only involves the computation of vectors and scalars.
Quantities d,« and 53* reduce to

d, = 4,
= 7’2217* (b* — r{zvdy)
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and )
S5 =8 = (b~ rhyedy)’”
2274
where b, = xJy € R and quantities rio,» = Ry[1 : py, py, + 1] € R and
To94« = Ry« [py + 1, py + 1] € R are computed as in Appendix following the
addition of one column.

Remove last variables

Equations and provide a way to easily calculate the value of the
marginal likelihood when the last m > 1 variables, i.e. columns of the matrix
X7 € R"P)*Py are removed. Let Pyr = py —m, vector d,» and matrix Ry are
immediately computed by taking the p.»-dimensional sub-vector d,« = d, [1 : py+]T
and the (p,« X py+)-dimensional sub-matrix Ry« = Ry [1: pys, 1: pys] (see Ap-
pendix [2.D.2) and [2.D.3)), whereas quantity SZ. is efficiently evaluated as

2 _ T
S,-Y* - yTy - dv*d’y*

Remove variables
Assume that m = 1 variable needs to be removed from current model . This

;
is equal to delete column X; = [XT 0, , 1/uv OIT)_k_l] € R(+P2) at position
1 <k < pyfrom X € RM*P)*Py which is achieved by applying a set of p, — k
Givens rotations

G =Gy, (py = 1,py)"T X+ X Gppa(k, k+1)7

to triangular matrix Ry, € RP»*Pr (see Appendix . The sequence of Given
rotations can be exploited to efficiently compute new vector d.» = R;YT* b, € RP7,
with p,« = py, — 1 and b, = b, where subscript (k) denotes the deletion of the
k-th entry from b,. New vector d« is

d’Y* = Rl_,}-,r*b,y*
= ([G™Ru:], 1)) Doy
[ RE [RiZ]
0(p,—k)x (k—1) [GzRgﬂ(pka,l)

where G, = G [k : py, k : py]. Subscript (I, h) denote a matrix without row [ and
column h, whereas - indicates that no row (or column) is removed. The block form

in equation ([2.23) yields

by, (2.23)

(R) T O (p, —k+1)x (k—1)

d,. = ! - —1| by,
! [—([GZR?Q(WHLU) (RS (RE) T ([GZR%](,,W_M,D)(;M;“’)
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where ([GIRT](p,—k+1,1) T = [GLl(p,—k+1,9[(RTZ) 7] (1. Exploiting the proper-
ties of the Givens rotations, inverse of sub-matrix R%%* = [GZRg](prkH,l) is

- =T
(G, k119 (RY) "= <O(Pv"f)“ (Gl -1 [(Rﬁ) }(-,1)) ’
which implies the following equalities:

~([GIRE] ) (R3] ) (RE) oy [L: (k= 1)] =

— (Gl i1y (RE) (R, [1: (k= 1))

and

([GIRZ] o) ™o [0+ 1) 0] = [GI iy (RE) by [k 2 ).

Finally, new vector d,+ is computed by plugging these results in [2.24] which yields

(Ri}) "Dy 11 (k—1)]
(Gl ki1 (BRE) T (b7 [k :py) — (RI2)Td, [1: (k- 1)])

d, [ (k1))
[G;](prkﬂ,-) dy[k:p]|

Therefore, d is efficiently updated alongside the computation of matrix Ry«
when a variable is removed from the current design matrix. This is achieved
by pre-multiplying previous d, by the sequence of Givens rotations required to
update matrix R;,. Updating d, prevents the calculation of inverse Rfvl* needed
to evaluate Sﬁ*, which becomes computationally infeasible as p,+ increases. Given
matrix Gy, this update is linear in p,, i.e. the evaluation of d.« is achieved with
O(p,y — k:) operations.

Extension to the case m > 1 is done in the same fashion by replacing the
Givens rotations with the Householder reflections, which share similar properties.
Following Appendix , a block of columns X, € R™P)*m ig deleted from
matrix X, € RM+P2)xPy at position k =1, ... , by — m by applying a sequence of
py — k —m + 1 Householder reflections

d:

’Y*

H=H, (p, —m+1,p,) x - xHypn(k+1,k+m)

to current triangular matrix R, € RP"*P7. Relying on the same strategy for the
case m = 1, new vector d,« € RP»*, with p,« = p, —m, is updated as

d,[1: (k= 1)

d,. = :
[Hk?](p,yfkferl,-) d, [k : p,]

v
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Also in this case, given matrix Hj computed alongside the update of R, after the
deletion of m columns, vector d,« is easily updated with O(p, —k —m) operations.

Appendix [2.D.3] assesses the problem of deleting a block of m > 1 non-adjacent
columns. The solution is given by applying a combination of Givens rotations
and Householder reflections. Therefore, the methods discussed in this section are
applied to efficiently evaluate the marginal posterior distribution following the
deletion of a set of non-adjacent variables given previous values of 53, d, and Ry,.

2.5 Simulation studies

In this Section, we assess the sampling properties of the algorithms discussed in
Section with several simulation experiments. We test variable selection and
computational efficiency of RJ, MTM and adaptive MTM against the most efficient
stochastic search variable selection algorithm which is the scalable spike-and-slab
of Biswas et al.| (2022) (SSS, R package “ScaleSpikeSlab”). For variable selection,
we consider the median probability model (MPM) of Barbieri and Berger (2004)
and the mazimum a-posteriori (MAP) for RJ, MTM and adaMT, whereas only
MPM is evaluated for SSS. To assess the efficiency of the target distribution update
based on the thinQR methods explained in Section we include in the analysis
also the RJ algorithm with ordinary QR updating methods (see, e.g. |Chambers|,
1971). Eventually, we compare algorithms RJ, MTM and adaMTM and show how
the latter outperforms the other competitors in terms of acceptance probability
and exploration of the target distribution.

We consider the simulation scheme of|Johnson and Rossell| (2012) with different
settings of n, p, pg, where py denotes the real number of non-zero coefficients. The
response vector is generated following the linear model defined in with 02 = 1.
The p-dimensional vector B is defined as 8 = (8, 0}_,,)T, where

1
By = (—1)"5 (%(:) +I21), (2.25)
with z ~ N, (0,I,,) and u ~ Bin(po, 0.4).

For each simulated dataset, we perform 50000 updates of parameter v (we do
not sample 3 and ¢?) and variable selection is evaluated over a post-burnin period
of 25000 iterations. For each chain, in order to avoid the exploration of unreliable
models with huge dimension, we set the maximum number of predictors to 250.
We consider 20 replications of each simulation case. As concerns the choice of the
divergence set for MTM and adaMTM models and prior hyper-parameters setting,
previous empirical evidence suggests Dx = {1,3,5,10} and o2 ~ 1G(0.5, 5), for all
the synthetic and standardized data examples. Higher values for A, i.e. o2 ~
(0.5,10), are set when dealing with small signal to noise ratio in order to avoid
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overfitting, for example when p > 5000. We specify hyper-parameters £, ¢ and v?
following Narisetty and He (2014)). In particular, we compute £ and ¢ by fixing
the mean and standard deviation of the Beta hyper-prior in advance. In order to
force a sparse solution, we fix the prior standard deviation of ¢ to 0.01, whereas
the mean is computed such that P( Dy =1> Q|¢) = 0.1, for a default value

Q = max{40,log(n)}. Finally, we set v? = max{p*!/(100n),log(n)}.

Simulation study 1. In the first scenario, we consider independent predictors
and the design matrix X € R™*? is generated as z;; ~ N(0,1), ¢ =1,...,n, j =
1,...,p. Westudy the cases n = {100, 200,400}, p = {500, 1000, 3000, 5000, 10000}
and po = {10,20,30}. The results of variable selection are shown in Figures
and [2.2) which represent the AUC and F1 scores for each considered value of n, p
and pg. Overall, adaMTM and SSS provide the best AUC scores, with the latter
performing better in the case of lowest information, i.e. when n = 100. Indeed,
in this case adaMTM works well up to p = 3000 and p, = 20, with AUC score
around 0.7, whereas the performance dramatically worsen as p increases. On the
contrary, F1 scores are always better for adaMTM algorithm. This is due to the
fact that MPM in not the optimal model for SSS, as it provides low marginal
inclusion probabilities estimates (Figure in Appendix [2.B). Therefore, the
optimal threshold is never 0.5 and other methods (such as BIC criterion) should
be implemented for its choice. When n = 200, RJ and MTM still provide low
scores of AUC and F1 when p = 10000, and they reach good results only when
n = 400. The difference between MPM and MAP models is small when n = 200
and n = 400, with the former achieving slightly higher scores for both AUC and
F1 indexes. On the other hand, MPM regularly outperforms MAP model when
n = 100.

Figure 2.B.2 in Appendix shows the comparison between RJ, MTM and
adaMTM in terms of exploration of the target density, e.g. the Hamming distance
between the visited and true models and the acceptance rate of the MCMC algo-
rithms. Algorithm adaMTM provides the fastest convergence to the true model
(Figures 2.B.24] and [2.B.2b)) and the highest acceptance rate (Figure 2.B.2d). Fi-
nally, we analysed the efficiency of the considered competitors: thinQR updating
methods yield the most efficient approach, with a 10-fold decrease in computa-
tional time when comparing adaMTM and SSS algorithms. Therefore, to sum up,
the former is able to approach the variable selection performance of the latter with
a great improvement in terms of efficiency.

Simulation study 2. In the second simulation study, we sample the design ma-
trix with correlated predictors as x; ~ N,(0,,Xx), i = 1,...,n, where X is such
that (Xx);; = p7 and we fix p = 0.5. The considered cases are n = {200, 400},
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Figure 2.2: Average F1 score for variable selection (over 20 replications) using different algorithms in the simulation
study 1 for different values of n, p and pg. Each replication consists of 25000 post-burnin draws from the posterior
distribution of 4. The compared algorithms are: RJ, MTM, adaMTM and the Scalable Spike-and-Slab algorithm
of Biswas et al.|(2022) (“SSS”). The data are simulated as suggested by |Johnson and Rossell| (2012).
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p = {1000, 3000, 5000, 10000} and py = {10,20,30}. AUC and F1 scores are shown
in Figure [2.B.3]and 2.B.4] in Appendix [2.B] Similar considerations to those of sim-
ulation study 1 can be done, however the difference between adaMTM and SSS
in terms of AUC is smaller, whereas F1 scores are regularly better for the for-
mer method, especially in the most high dimensional case. Even with correlated
predictors, MPM model outperforms MAP in terms of variable selection.

2.6 Real data applications

In this Section, we present the application of models RJ, MTM and adaMTM
defined in Section to two real datasets. In the first application we consider a
low-dimensional case in order to assess the quality of the 3 estimates and compare
the marginal posterior inclusion probabilities against the scalable spike-and-slab
of Biswas et al.| (2022) (SSS). We then apply the methods to a high-dimensional
microarray dataset concerning gene expression from eye tissue in laboratory rats.

2.6.1 Inflation data

The first dataset, “Inflation“, is taken from Bernardi et al. (2016) and considers
predicting US inflation, measured as the changes in the US consumer price index,
using quarterly data from several macroeconomic indicators. In this example,
we consider all the observations between 1978-Q2 and 2021-Q3, for a total of
n = 147 observations and p = 14 variables. Further details on the variables
and their sources can be found in Appendix where Table provides a
complete description of the variables used as covariates in the linear regression
model. We perform 5000 iterations, with a post-burnin of period 2500. The hyper-
parameters for RJ, MTM and adaMTM are set to o ~ 1G(0.5,5), ¢ ~ Beta(1,1)
and v? = max{p>!/(100n),log(n)}.

Figure [2.4] shows the boxplot of the marginal posterior distribution of the com-
ponents 3: these are similar for all the considered competitors. The main differ-
ence concerns the estimate of the smallest effects, as SSS provides a distribution
centered around 0, while RJ, MTM and adaMTM set those coefficients exactly
to 0. The estimated marginal posterior inclusion probabilities (Figure in
Appendix shows a higher degree of shrinkage on the coefficients for algorithm
RJ, MTM and adaMTM, which regularly provide lower probabilities for the zero
coefficients than SSS.
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Figure 2.4: Boxplot of the posterior distribution of parameters 3 for dataset Infla-
tion. Fach algorithm has performed 2500 post-burnin iterations. The compared
algorithms are: RJ, MTM, adaMTM and the Scalable Spike-and-Slab algorithm
of Biswas et al.| (2022) (“SSS”).

2.6.2 Microarray data

The second dataset, “Bardet-Biedl”, is a microarray dataset consisting of gene
expression measurements from the eye tissue of 120 laboratory rats. The data was
originally studied by |Scheetz et al. (2006) to investigate mammalian eye disease,
and later analyzed by Breheny and Huang| (2015); Bai et al.| (2022) to demonstrate
the performance of their group variable selection algorithms. The goal of this
analysis is to identify genes which are associated with the gene TRIM32. TRIM32
has previously been shown to cause Bardet-Biedl syndrome (Chiang et al., 2006)),
a disease affecting multiple organs including the retina. Following the approach
in Scheetz et al| (2006]), 18976 of the 31042 probe sets on the array “exhibited
sufficient signal for reliable analysis and at least 2-fold variation in expression”.
These probe sets include TRIM32 and 18975 other genes that potentially influence
its expression. Among these, we consider a subset of most correlated predictors
with the response variable, for a total of p = 4703 selected probes.

We estimated the models from 10 different starting points, where each repli-
cation consists of a total of 50000 draws from the posterior distribution, with a
post-burnin period of 25000. As concerns the hyperparameters setting, after con-
trolling for the degree of sparsity of the estimated models, we set 0 ~ 1G(0.5, 3.5),
whereas v, £ and ¢ are estimated following Narisetty and He| (2014)), as in Section
The set of divergence for MTM and adaMTM is Dx = {1,3,5,10}, whereas
parameters of the adaptive step-size are set to ¢ = 10 and a = 0.55.

The average marginal posterior inclusion probabilities of the predictors esti-
mated by RJ, MTM, adaMTM and SSS across the 10 replications are shown in
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Figure 2.5: Average marginal posterior inclusion probabilities of predictors for
dataset Bardet-Biedl across 10 replications of the models (25000 post-burnin iter-
ations for each replication). The compared algorithms are: RJ, MTM, adaMTM
and the Scalable Spike-and-Slab algorithm of Biswas et al.| (2022) (“SSS”).

Figure 2.5 SSS does not include any gene in the model, with really low inclusion
probabilities. The probe with the highest inclusion probability is 1389907, which
is included in most of the MAP models (see Table 2.C.3)). RJ tends to include a
larger number of predictors, whereas MTM and adaMTM assign higher probabili-
ties to a smaller number of probes. The main discrepancies between these last two
methods concern probes 1390168, 1378316 and 1391096. In particular, the latter
is never included by algorithm MTM.

The trace of the log-target density for RJ, MTM and adaMTM is shown in
Figure in Appendix[2.C] All the three methods show similar behaviour across
the replications, even when starting from a low-density zone (chain 8). In this
latter case, adaM'TM converges faster to local maximum. Finally, we study the
convergence of the MCMC chains by estimating the potential scale reduction factor
(Gelman and Rubin| (1992) marginally for each f;, j = 1,...,4703 (see Table
2.C.2). These values give insights on the convergence, but they should not be
completely trusted, as the g are not always sampled at each iteration. Algorithm
adaMTM provides the best estimated values, i.e. closest to the interval (1.0,1.2).

2.7 Conclusion and discussion

With this paper we develop multiple trans-dimensional MCMC sampling methods
for model selection in high-dimensional linear regression with Gaussian errors. The
introduced methods rely on a Delta spike-and-slab prior (George and McCulloch),
1993, |1997)), with prior inclusion probability of the predictors guided by a Beta
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hyper-prior. In particular, we implement three different algorithms (RJ, MTM
and adaMTM described in Section and assess their sampling properties with
intensive simulations and the application to two real datasets. The most promising
approach is represented by the adaptive method adaMTM, which provides better
results in terms of variable selection, exploration of the target density and rate
of convergence. Moreover, by relying on the thinQR updating methods discussed
in Section [2.4] these results are achieved with a much improved computational
efficiency when compared to SSS model of Biswas et al.| (2022).

In Section and we analysed different settings for the hyperparameters
and we find that our approaches are sensitive to their choice. We rely on the
considerations of Narisetty and He (2014) in order to provide sensible values of
v?, € and . The most delicate issue concerns the specification of v and \ related
to the prior distribution of residual variance o?: different choices lead to different
degrees of sparsity in the estimated models and influence the convergence of the
algorithms. Therefore, an optimal calibration, based also on prior evidence, is
fundamental for obtaining accurate results.

Algorithm adaMTM is justified by some theoretical properties of the adap-
tive scheme in Appendix [2.A] However, additional proofs on the ergodicity of the
MCMC are needed. To this aim, the works of [Ji and Schmidler| (2013) and Fontaine
and Bédard (2022) provide promising results for the analysis of the convergence
of our approach.

The main drawback of adaMTM is the important loss of accuracy when low
information is available, i.e. when the number of observation is particularly small.
In this case, further tuning of the mixture proposal distribution is required, where
a possible extension is provided by the informed trans-dimensional transitions
(Gagnonl 2021)).

Future work will be to account for the considerations made in [Martino and
Louzada, (2017) and to calibrate the optimal number of trials. An interesting
solution could be to assume a random maximum divergence K > 1, with the goal
of adapting the MCMC jumps size as the chain proceeds. Such generalization
must come with a theoretical justification of the method, as it is not clear whether
it provides an ergodic MCMC algorithm.

Finally, the described methods can be extended to the case of binary outcome
via probit data-augmentation scheme (Albert and Chib, |1993). However, the up-
dating methods implemented for linear regression with Gaussian errors can not
be directly applied to this case, as the introduction of the probit latent variable
does not allow the update of the fixed vector d, = (Egv)_l/ *XTy (defined in Sec-
tion after the addition or deletion of a set of variables and, therefore, further
considerations are required.
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Appendix

Appendix 2.A Additional theoretical results and
proofs

Proposition 2.A.1. (Proposal distribution for the MTM algorithm) Let «y be the
current model, the number of models that differ from the current model by adding
or deleting dy, predictors in the adaptive MTM algorithm defined in Subsection

is .
()= 6) oo

j=0
where (Z) 15 the Binomial coefficient.

Proof. The Quantity (p_jp”) ( dfzj) in (2.26) denotes the total number of models
that differ from the current model v by adding j and deleting d; — j different pre-
dictors. The right hand side of ([2.26)) is obtained by applying the Vandermonde’s
convolution formula Graham et al.| (1994) as it is evident since there are ( o ) ways

to choose an (unordered) subset of dj, regressors from the set of p covariates. [

Proof. (of weighted likelihood being a valid distribution) After some simple alge-
braic operations, at the ¢-th iteration, the updating probability distribution is

29
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with Zle Zi\le (¥ = K, where 7(¢™®0) is the likelihood function of latent vec-
tor parameter ¢*) defined in and wy (v*]v,8") € (0,1) is the normalized
importance weight of the k-th proposal defined in , with Zszl W, (’y(k) v, O(t))
1. Therefore, from (2.27)), 7(¢|6, ) is the probability density function of a Multi-
nomial random variable W(C(k)|0) weighted by wy, (’y(k)|'y, B(t)) > (0. The normal-
izing constant of is

K M (9 y,60)
11 (") |

which completes the proof. O]

Proof. (of Proposition [2.3.1], theoretical justification for adaptive MTM updating
mechanism) As suggested by [Haario et al.| (2001); |Andrieu and Moulines| (2006));
Andrieu and Thoms (2008), the update of the component Hr(rtfl), m=1,...,M,
of algorithm adaMTM proposal distribution ¢,(v®|y) = M 6,0 (Y |7) at
iteration ¢ + 1 can be formulated as

M
Ot =00 4y H(0D, ¢ , > o4y (2.28)
m=1

where 7, = 1/(ct*), with ¢ > 0 and a € (0.5,1], is a non-increasing sequence of

positive step-sizes that satisfies the conditions > .~ m = co and >, 7]1+5 < 00,
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for some § > 0 (see, e.g. |[Haario et al. [2001). The function H(Gﬁ,?,c(t),'y(t))
in (2.28) is selected in order to minimize the KL divergence between m(v) and

7(¢|60,7) as defined in equation (2.16), i.c.
argmax > - 7(y)log(¢[6,7)

Under the constraint Z%zl 0,, = 1, the minimization problem above can be solved
by means of Lagrange multipliers, (see, e.g. |Nocedal and Wright|, 2006). Specifi-
cally

M
H(Hm,c,v):argrgin— > w(y)log7(¢[6,7) A(Zem )

~e{0,1} =1

M
= argmax > w(v)log7(¢10,7) +A(29m )

~ve{0,1}p m=1
9 M
=50 Z 7r(’y)10g7r(§|9,’y)+)\<2«9m—1>
" | yefo,1}r m=1

K (k) - (k) (t)
- Z ,/T(,Y)Zkzlcm wk('7 v, 6 )

A
0. A

~ve{0,1}p
where A > 0 is the Lagrange multiplier. Since H (Qm, ¢, 'y) involve the intractable

summation over the space of competing models we rely on the Monte Carlo ap-
proximation

B (k)
H(61.¢.) Z (Zk 16 w'“gy ol )> A

where v ~ 7(5), for b= 1,...,B, and B > 1 is the number of MC samples.
Taking B =1, i.e. only the quantity evaluated at the last iteration, and imposing
the property Zm 1 (Gm, ¢, 'y) = 0 in order to ensure that vector of probabilities
6 sum up to 1, it yields

1

A= ——
M

1 K

™M =1

WE

3
Il

which completes the proof. O]
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Proof. (of Proposition , detailed balance condition for the adaptive MTM
algorithm) Let w(v) = m(~v|y, X) denote the target density. To guarantee that
the Markov chain generated by the adaptive MTM algorithm converges to its
stationary distribution, we prove that the transition kernel T(-,-) generated by
algorithm (3| fulfills the property m(v)A(v,v*) = 7(v*)A(¥*, ), where v* = v\
is the selected j-th proposal among the K trials and A(7y,~*) is the transition
probability for the jump from « to v*. Specifically, let

M
Te(v'17) = T(v 1, ¢) = Y (Pam (Y1),
m=1

be the transition kernel conditional to the component indicator z() = Z%Zl m¢)

and let

M=

T(v*|7.0) = > P(z9) =m|0) g (v*]7)

1

3
I

M-

Ormm (Y |Y).
1

3
[

be the corresponding unconditional kernel to transit from ~ to 4*. Following |Liu
et al.| (2000), we define

w; (v, 8) = 7(v)T (|7, ) A (v, )

where )\(7*, 'y) is a symmetric function, i.e. )\('y*, 'y) = )\('y, ’y*). The importance
weights for the adaptive MTM algorithm discussed in Section imply the
following choice of the function )\(7*, 'y):

1

A7) = T(v* |7, 0) ' T(v]4*,0) "

Without loss of generality, assume v # ~* and that the j-th component is sampled,
the detailed balance condition states
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7T(’)’)A(7,7*>=K7T(7)Z--- Z Z ZZ Z Z Z

A AGD 4G 4D v yG-D y G ()
T(v*17,0)T(vV]y,0) x - x T(v9 V], ) T(vV+V]v, 6) x
(K) w; (v, 0)
T 6) w; (v*]v,0) + 25:1,14;&]‘ wi (Y® v, 6)
« min {1 wj (7*|'Y7 9) + ZkK:Lk;éj Wk (7(k)|'77 0) }
’ wj ('Y|'7*7 9) + ZszLk;éj Wy (V(k)l')’*a 9)
x T(viV]v*,0) x
x T(VU 4%, 0)T (VU |4*,0) x -+ x T(vF|4*,0)
w; (v, 0)w; (v, 0)

— K
A, )
DIED D IEED B DD DD DRSS
~@) ~(G=1) 4G+1) ~(E) v(1) v(i—1) v (+1) v(K)

T(v"}y,0) x -+ x T(vY V|, 0)T (v 1|7, 0) x
x T(v%)|v,0)
X min { 1
w; (v, 8) + ZkK:Lk;éj wy (YP], 0) ’

1
X
w; (Y7, 0) + Yy sy wi (V7% 6) }
T(v|y*,8) x -+ x T(vUY|4*,0) x
x T(vUT|4*,0) x - -« x T(v¥)|4*,0),
where vI® k=1,...,j—1,7+1,..., K, are K — 1 auxiliary values sampled from

distribution g, (v |v*, 0), i.e. v® ~ g¢,(vI¥|4* 0), and v\ = ~. Because of the
symmetry of A\(v*,7), we conclude that 7(v)A(y,v*) = 7(v*) A(v*, 7). O

Appendix 2.B Additional results for the simula-
tion study

In this Appendix we report some additional figures for the evaluation of variable se-
lection and the exploration of the target density concerning the simulation studies

in Section 2.5
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Figure 2.B.1: Average marginal inclusion probability of the predictors (over 20 replications) using different algorithms
in the simulation study 1 for different values of n, p and py. Each replication consists of 25000 post-burnin samples
from the posterior distribution of «y. The compared algorithms are: adaMTM and the Scalable Spike-and-Slab
algorithm of |Biswas et al.|(2022) (“SSS”). The data are simulated as suggested by |Johnson and Rossell| (2012).
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Figure 2.B.3: Average AUC score for variable selection (over 20 replications) using different algorithms in the
simulation study 2 for different values of n, p and py. Each replication consists of 25000 post-burnin draws from the
posterior distribution of 4. The compared algorithms are: RJ, MTM, adaMTM and the Scalable Spike-and-Slab
algorithm of Biswas et al.|(2022) (“SSS”). The data are simulated as suggested by [Johnson and Rossell| (2012) with
correlated predictors.
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Appendix 2.C Additional material for real data
applications

In this Appendix some additional materials on the datasets used in Section [2.6|are
reported.

2.C.1 Inflation data

Inflation prediction, measured as the changes in the consumer price index (CPI-
AUCSL, CPILFESL), using quarterly data from several macroeconomic indicators,
see Bernardi et al.| (2016). Table provides a complete description of the vari-
ables used as covariates in the linear regression model. In this example, we consider
all the observations between 1978-Q2 and 2021-Q3. Further details on the vari-
ables used and their sources can be found in the Data Appendix of Bernardi et al.
(2016).

Table 2.C.1: Inflation database, see Bernardi et al.| (2016) for further details.
All the variables are publicly available for download from the FRED database
maintained by the Federal Reserve Bank of St. Louis, https://fred.stlouisted.org.

# Variable name Variable type Variable description

1 DATE date date

Consumer Price Index for All Urban Consumers:

All Ttems in U.S. City Average

Consumer Price Index for All Urban Consumers:

All Ttems Less Food and Energy in U.S. City Average

2 CPIAUCSL numerical

3 CPILFESL numerical
4

UNRATE numerical Unemployment Rate
5 PCEC numerical Real Personal Consumption Expenditures
6 PRF numerical Private Residential Fixed Investment
7 GDPC1 numerical Real Gross Domestic Product
8 HOUST numerical New Privately-Owned Housing Units Started: Total Units
9 USPRIV numerical Employees, Total Private
10 TB3MS numerical 3-Month Treasury Bill Secondary Market Rate
11 T10Y3MM numerical 10-Year Treasury Constant Maturity Minus 3-Month Treasury Constant Maturity
12 M1SL numerical Money supply - M1
13 MICH numerical University of Michigan: Inflation Expectation
14 PPIACO numerical Producer Price Index by Commodity: All Commodities
15 DJIA numerical Dow Jones Industrial Average Index
16 PMI numerical Purchasing Manager’s composite index (Institute of Supply Management)

17 VENDOR numerical NAPM vendor deliveries index



https://fred.stlouisfed.org
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Figure 2.C.1: Estimated marginal posterior inclusion probability for each pre-

dictors of dataset Inflation. Each algorithm has performed 2500 post-burnin it-
erations. The compared algorithms are: RJ, MTM, adaMTM and the Scalable
Spike-and-Slab algorithm of Biswas et al.| (2022) (“SSS”).

2.C.2 Microarray data

Here, we provide additional details on the application of algorithms RJ, MTM and
adaMTM to the dataset Bardet-Biedl.

Table 2.C.2: Distribution of the estimated potential scale reduction factors com-
puted over a post-burning period of 25000 updates for regression parameter 3
across 10 replications. NAs are related to those predictors with marginal posterior
inclusion probability equal to 0. Optimal values of the index should lie in the
interval (1,1.2).

Algorithm Min 1st Qu. Median Mean 3rd Qu. Max NAs

RJ 1.158 1.304 1.348 1.479 1.457 5.352 3557
MTM 1.1564 1.305 1.345 1.456 1.447 5.443 3559
adaMTM 1.101 1.291 1.299 1.306 1.327 2.906 2133
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Table 2.C.3: Probes of dataset Bardet-Biedl selected more than once across 10

replications by the MAP models with RJ, MTM and adaMTM, along with the
average 3 estimate and marginal posterior inclusion probability (mip).

probe RJ MTM  adaMTM SSS

est. mip est. mip est. mip est. mip

1371109_.at ~ 0.04 0.14 0.00 0.00 0.00 0.02 0.00 0.00
1372671_.at  0.06 0.15 0.01 0.04 0.00 0.01 0.01 0.00
1378289_at  -0.02 0.14 0.00 0.00 -0.02 0.10 -0.01 0.00
1378316.at  -0.06 0.25 -0.07 0.28 -0.02 0.08 -0.02 0.05
1383783_at  0.02 0.09 0.00 0.00 0.00 0.01 0.00 0.00
1384110_at ~ 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00
1389907_at  0.15 0.41 0.20 0.51 0.27 0.64 0.03 0.08
1390168_a_at -0.07 0.19 0.00 0.00 -0.02 0.10 0.00 0.00
1391096.at  -0.04 0.11 -0.02 0.05 -0.09 0.21 -0.01 0.01
1391322_at  0.00 0.04 0.00 0.02 0.00 0.02 0.00 0.00
1391484_at  -0.04 0.22 -0.01 0.04 -0.03 0.13 -0.01 0.03
1394037_at  0.02 0.09 0.00 0.01 0.00 0.02 0.01 0.00
1368625.at  0.01 0.04 0.03 0.10 0.00 0.00 0.00 0.00
1372262_at ~ 0.02 0.09 0.00 0.00 0.00 0.00 0.00 0.00
1373777_at  0.02 0.10 0.00 0.00 0.00 0.01 0.00 0.00
1378452_at  -0.01 0.05 0.00 0.00 0.00 0.01 0.00 0.00
1383638_at ~ 0.00 0.09 0.00 0.00 0.00 0.01 0.00 0.00
1384903_.at  -0.01 0.04 0.00 0.03 0.00 0.01 0.00 0.00
1390682_at  -0.01 0.04 0.00 0.01 -0.01 0.04 0.00 0.00
1393063_at  0.02 0.09 0.01 0.05 0.00 0.04 0.01 0.00
1393360_at ~ 0.01 0.08 0.00 0.00 0.00 0.00 0.00 0.00
1395517_at  0.02 0.06 0.00 0.01 0.00 0.01 0.00 0.00
1395881_at  0.01 0.05 0.00 0.00 0.00 0.02 0.00 0.00
1398590_at  -0.01 0.10 0.00 0.00 0.00 0.04 0.00 0.00
1367874.at  0.01 0.12 0.00 0.00 0.00 0.02 0.00 0.00
1368484_at  0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
1368980-at  -0.02 0.08 0.00 0.01 0.00 0.00 0.00 0.00
1370201.at  0.00 0.04 0.00 0.00 0.00 0.00 0.01 0.00
1370411.at  0.01 0.08 0.00 0.00 0.00 0.01 0.00 0.00
1371524_at  0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
1371841_at  0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.00
1372821.at  0.00 0.04 0.00 0.02 0.00 0.01 0.00 0.00
1378438_at  0.01 0.08 0.01 0.03 0.00 0.02 0.00 0.00
1378524_.at  0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00
1383106_at  0.01 0.05 0.00 0.00 0.00 0.01 0.01 0.00
1387732_at ~ 0.00 0.10 0.00 0.00 0.00 0.01 0.00 0.00
1389618_at  0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 2.C.2: Exploration of the target density for dataset Bardet-Biedl across 10
replications of the models. The compared algorithms are: RJ, MTM and adaMTM.

Appendix 2.D ThinQR update

In Appendix we present an overview of QR and thinQR decompositions, as
well as the most common methods for their computation (see| Golub and Van Loan
(2013)) for a detailed dissertation). In Appendix [2.D.2and [2.D.3| we discuss novel
updating algorithms for the efficient update of thinQR decomposition.

2.D.1 QR and thinQR decompositions

Many statistical applications require the inversion of matrix XTX = XTX + E_j,

where X € RMHp)xpr - A way of speeding up this inversion is by exploiting the
QR decomposition. In what follows we will consider a generic N x m matrix X of
full column rank.

The QR decomposition factorises matrix X into QR, where Q is a N x N

orthogonal matrix and R is a NV x m upper trapezoidal matrix R = L)
N—-m,m

with R; being a square upper triangular matrix and
QX =R.
The two most common methods to obtain such factorisation are by exploiting

either a sequence of Householder reflections or Givens rotations. For further ref-
erences see (Golub and Van Loan| (2013) and [Bjorck (2015]).
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Following the work of |Golub and Van Loan (2013)), it can be shown that, for
ke {l,...,m} it yields

Spal {X17 s 7Xk} = Spall {q17 s 7qk}7

where q, ..., qg is the k-dimensional subspace formed by the columns of matrix
Q and span {S} refers to the smallest linear subspace of S. This result allows a
reduced QR decomposition such that

Rl]

@ Q' x- %

where Q; € RV*™ Q, € RV* (N_m) and Ry € R™*™ represents the thinQR
decomposition of X. It is straightforward to show that X = Q;R;. Hence, com-

putational costs may be lowered by applying algorithms that update only the
reduced matrix R;.

Householder reflections

The most common method of computing QR decomposition relies on multiple
Householder reflections applied to X. An Householder matrix with normal vector
v € RV is a N x N symmetric and orthogonal matrix defined as

2
H=Iy—7vv', 7= 5
Vi3

where ||v||2 = V/vTv is the ly-norm of the vector v. The Householder matrix H
for the first column of X is built so that Hx; = ae;, where e; € RY is the first
column of Iy. By setting

< [ xa[1] +sign(xu[1]) [[xul2

VT x2: N
V:W,

it can be shown that Hx; = —sign(x1[1])[|x]|2e1. Thus, the QR decomposition of
X can be computed as a sequence of m Householder reflections applied to X. This
way all elements under the diagonal of X are set to zero. The orthogonal matrix
QT is then defined as

H,H, x---xH; =QT,
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where H;, i = 1,2, ..., m, is the Householder matrix related to the i-th column of
X, with normal vectors v; = v;/v;[i] with

0,1
Vi= | x[i] +sign(x; [i] ) [Ix; [i : N2
x; [(i + 1) : N]

In general, it is possible to set to 0 the elements from j > i to k of column ¢ of
X while modifying only element x;[i] of column . This can be done by multi-
plying X by the Householder matrix H;(j, k), which has normal vector v;( ) =

ViGik)/ ViGe 1] with

0;—1,1

x; 1] + sign (x; [i] ) [1xi[] Iz
Viik) = | 0j—ic11 ;
Xl[] : ]f]

ON—k1

where x;[*] = [x;[i] x;[j : k]] is the vector obtained by stacking entry ¢ and entries
from j to k of column x;.

Givens rotation

Another method to compute QR decomposition of a matrix X € R¥*™ relies
on Givens rotations, which introduces one zero at a time under the diagonal. A
Givens matrix is a N x N orthogonal matrix defined as

U J
| P : 0%1,;’471 : 02‘71,ij
c S 7
G(z,7) = : :
(4,7) 011 : I N | PR N
—S c 7
L Oij,ifl : Oij,jfifl : Iij i

where the dots stand for vectors of 0’s of the appropriate dimension, ¢ = cos (8)
and s = sin (0), for some 6 and 7 < j with 7,7 € Z*. Let x be a N-dimensional
vector, then values ¢ and s can be computed analytically as
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and G(i,7)Tx = x, where

cx; —sxj, ifk=1

T =40, if k=7,

Ty, otherwise.

The QR decomposition can be computed by applying a sequence of Givens rota-
tions to sequentially set to zero all elements under the diagonal. In particular,
orthogonal matrix Q can be computed as

Go(m,m+1)T-- G (m, N)T---G1(1,2)T--- G1(1,N)" = QT,

where subscript j denotes the Givens rotation applied to the j-th column of X.

2.D.2 Adding and deleting one column

Here we consider the update of triangular matrix R; following the addition of
column x, € RY at the end or the deletion of column x; € RY at position
E={1,...,m}.

Adding one column

The thinQR update of the augmented matrix X+ = [X x*} e RV~ (mH) after
the addition of column x, € RY at the end of matrix X (i.e. at position m + 1) is

Q{ + Rl Zy1 -+
X = =
|:Q12- 0 Z,3 Rl ’

where z,; = Q]x, and z,, = QJx,. Matrix R} can be obtained by setting to
zero the last N — m — 1 elements of the last column of f{f, as shown in Figure
. This may be achieved by pre-multiplying f{f by the appropriate set of
Givens matrices. However, this procedure requires the evaluation of matrices Q;
and Qs. In order to avoid such computation, z,; can be determined by solving the
linear system R]z,; = XTx,, while the element R [m+ 1, m+ 1] can be computed
exploiting the relation R} T[,m + 1]R][,m + 1] = xTx,, therefore

P
Rf[m+1,m+1] = |xIx, — ZZZ1[Z]
i=1

This update takes (’)(N m) operations. The algorithm is shown in Algorithm @
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Note that the thinQR decomposition only allows the update of R; following
the addition of the column at the end. However, in our case this is not an issue, as
marginal posterior distribution m(’y\y, X) is invariant with respect to the ordering
of the variables. Therefore, it is assumed that they are added at the end of the
design matrix.

[+ + + + zall]] [+ + + 4+ zall]]

0 + + + zal2 0 + + + za[2

0o 0 4+ + Z*1[3] 0O 0 + + Z*1[3]
Ri=[0 0 0 + zaM]|—=1]0 0 0 + z.[4]| =R}

0 0 0 0 zoll] 00 0 0 Zofl

00 0 0 202 00 0 0 0

0 0 0 0 zoB8]] [0 0 0 0 0 |

Figure 2.D.1: Add one column at the end with N = 7 and m = 4; vector z,; is
computed by solving the linear system R]z,; = XTx,.

Deleting one column

Let X~ = [X[,1: (k—1)] X[(k+1):m]] € RY*("=1) be the reduced form
of X after the deletion of column k = {1,...,m}, then

R, = [Ris- R+,

where Ry~ = Ry[,1: (k—1)] and Ryp+ = Ry[, (k+ 1) : m] are upper trapezoidal.
Updated matrix R; can be obtained by setting to 0 the m — &k elements on the
sub-diagonal in R+, as shown in Figure 2.D.2] This can be achieved by pre-
multiplying matrix R; for the sequence of Given rotations given by G,,(m —
1,m)T X -+ X Ggy1(k, k + 1)7, leading to

R_ ~_
{Oi] =Gp1(m—1,m)T x - x Gg(k,k+1)TR;.

The number of operations required for this update is O((m — k:)z), which becomes
0 if & = m. The algorithm is shown in Algorithm [7]

2.D.3 Adding and deleting a block of columns

Here we consider the update of triangular matrix R; following the addition of a
block of columns X, € RV*? at the end or the deletion of a block of (adjacent and
non-adjacent) columns X;, € RV*? from position k = {1,...,m —d + 1}.
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Figure 2.D.2: Delete one column with N =7, m = 4 and k = 2; symbol ® denotes
an element set to zero with a Givens rotation.

Adding a block of columns

The thinQR update of the augmented matrix X+ = {X X*] € RNX(m+d) after
the addition of a block of columns X, € RV*? at the end of matrix X (i.e. at

position m + 1) is
QI + Rl Z*l S+
X' = =R
|:Q£ 0 Z*Q b

where Z,; = Q]X, and Z,, = QIX,. Matrix R{ can be obtained through tri-
angularization of matrix Z,,, as shown in Figure This may be achieved
by pre-multiplying R by the appropriate set of Givens matrices. However, this
procedure requires the evaluation of matrices Q; and Q. In order to avoid such
computation, Z,; can be determined by solving the linear system R]Z,; = X7X,.
Entries R} [m +i,m +j], fori = 1,...,d and j > i,...,d can be computed by
iteratively exploiting the relationship X*7X* = R;TTR; ™, see Algorithm . This
update takes O(dNm) operations.

As for the case d = 1, note that the thinQR decomposition only allows the
update of R4 following the addition of the block of columns at the end. However,
in our case this is not an issue, as marginal posterior distribution m(’y]y,X) is
invariant with respect to the ordering of the variables. Therefore, it is assumed
that they are added at the end of the design matrix.

Deleting a block of adjacent columns
Let X~ = [X[[1: (k—1)] X[(k+d):m]| € RNX(m_d) be the reduced form
of X after the deletion of a block of d < m adjacent columns starting from position
k={1,...,m —d+ 1}, then

R, = [Rir- Rup],

where Ry;- = Ry[,1: (k—1)] and Ryx+ = Ry[, (k+d) : m] are upper trapezoidal.
Updated matrix R~ can be obtained through triangularization of matrix Rq;+, as
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o+ o Za[l1] Za[L2]] [+ 4+ 4+ Za[l1] Za[L2]]
0 + + + Za2,1] Z,[2,2] 0 + + + Zu2,1] Zu[2,2]
0 0 + + Za[3,1] Z,1[3,2] 0 0 + + Zu[3,1] Z.3,2]
Ri=1[0 0 0 + Za[4,1 Za4,2| =10 0 0 + Za[4,1] Z.[4,2]| =

0 0 0 0 Zwo[l,1] Zwo[l1,2] 0 0 0 0 Zpo[l,1] Zs[1,2]
0 0 0 0 Zwo21] Z.wo[22] 0 0 0 0 0 Z,2[2,2]
0 0 0 0 Zso[3,1] Z23,2 00 0 0 0 0

I Rt 1

Figure 2.D.3: Add a block of columns at the end with N =7, m = 4 and d = 2;
matrix Z,; is computed by solving the linear system R]Z,; = XTX,.

shown in Figure This can be achieved by pre-multiplying matrix ﬁf for a
set of Householder reflections as follows

F;i] :Hm_d(m—d+1,m)><---><Hk(k+1,k:+d)f{1

where H;(l,n), j = k,...,m — d, is the Householder matrix with normal vector
v;(l,n) € R™ defined as in equation (2.D.I)). Eventually, the upper triangular
sub-matrix Ry € Rm=9x(m=d) ig gelected.

The number of operations required for this update is (’)(dmz) iftke{l,..., m—
d} and 0 if &k = m — d + 1. The algorithm is show in Algorithm |§]

R, Ry

Il
o o o o +

oo o+ +

oo+ 4+ +

o+ + + +

+ o+ + +
1

c oo o +

SO0+ +
® O+ + +
[

Figure 2.D.4: Delete a block of columns with N =7, m =5, k =2 and d = 2;
symbol ® denotes an elements set to zero with Householder reflections.

Deleting a block of non-adjacent columns

Let X~ € RV*(m=4) he the reduced form of X after the deletion of d < m non-
adjacent columns in positions ky, ..., kg, then updated matrix R can be obtained
through triangularization of matrix R, after the deletion of columns ki, ..., k.
Following the case for d adjacent columns, this can be done by applying either
Givens rotations or Householder reflections, depending on the number of elements
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below the main diagonal that are set to zero (see Figure 2.D.5)). In this case,
Givens rotations are applied to R™ when setting to zero one element below the
new diagonal of R™, whereas Householder reflections are applied when setting to
zero more than one element below the main diagonal.

R; =

o o o o+

c oo 4+ +

S o+ + +

S+ 4+ + +

+ 4+ + +
!

©c o oG +

O 660+ +
I
L

Figure 2.D.5: Delete a block of non-adjacent columns with N =7, m =5, d = 3,
ki =1, ks = 3 and k3 = 4; symbol ® denotes an elements set to zero with Givens
rotations or Householder reflections.

2.D.4 ThinQR update algorithms

Algorithm 4: Householder reflection, (7,v, u) = householder(a,x)

1 Input: a € R, x € RY;
) T
2s= x5 v=[1 x| ;
3 if (s ==0) & (e ==0) then 7 =0;
4 if (s ==0) & (a > 0) then

5 ‘ T = -2

6 else

7 p='s+a?

8 if (a <0) then

o || vil=a-p
10 else

uo || v = /et );
12 end
13 end

14 b= (V[1))?, 7=2b/(s+b), v= [1 (v2: (N + 1)}/v[1])T]T;

15 return (7,v,u);




Algorithm 5: Givens rotation, (¢, s) = givens(a, b)

1

2

3

4

10

11

12

13

14

15

16

17

18

Input: a € R, b €R;
if (b==0) then

else

if (|b] > |a|) then

r = —a/b;
s=1/V1+7r%;
c=s*r;

if (b>0) then ¢c=—¢, s = —s;

else
r=—b/a;
c=1/V/1+7r2;
S=cC*xT]

if (a <0) then c= —c¢, s = —s;

end

end

return (c,s);

Algorithm 6: ThinQR update when a column is added at position k =
m + 1, R{ = thingraddcol (R4, X, u)

1

Input: R; € R™*™ X ¢ RV*™ ucRY;
// add one column

Solve RIri» = XTu with respect to ri» with forward substitution algorithm;

R; ri2
R, = >
lem 0
// update R
Ri[m+1,m+ 1] = [[u]|3 — |ri2|3;

Rim+1,m+1]=Rim+1,m+1]];

return Rq;
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Algorithm 7: ThinQR update when a column is deleted at position
1 <k <m, R; = thinqrdelcol (R4, k)

1 Input: Ry e R™*™, ke {1,...,m};
// delete one column
2 if (k =m) then return Ry [1: (m—1),1: (m —1)];
s Ri[k:(m—1]=Ra[ (k+1):m];
4 for (i:k;i<p;i++) do
5 (c,s) = givens(R1 [i,4] ,R1 [i + 1,4 ) as In Algorithm ;

c s,
)

—-s c

// update R,

7 Ri[i,i]=cxRi[i,i] —s*«Ryi[i + 1,1];
8 Ri[i+ 1,4 = 0;

6 G =

9 if (1 <m —1) then

10 Ri[i:i4+1,(i+1):(m—-1)]=GRi[i:i4+1,(i+1): (m—1)];
11 end

12 end

13 return R1 =R [1: (m—1),1: (m—1)];
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Algorithm 8: ThinQR update when d > 2 columns are added from
position k=m+1tok+d—1, Rf = thinqraddblockcols(Rl, X, U)

1

10

11

Input: R; € R™ ™ X € RV*™ U e RV
// add d columns
// compute Ri2
Solve RTR,» = XTU with respect to R,» with forward substitution algorithm;
// compute Raa
Ra2 = 0gxad;
Rz [1,1] = /[U[ 1[5 — [Raz[, 1][I3];
Ry [1,2:d)= (U[1]"U[,2:d] —Ri2 [, 1]"R12[,2: d] ) /Ra2 [1,1];
for (i=2;i<d;i++) do
Rz [i,i] = /|[U[d] 13 — [Raz [ ][5 — [Re2 [1: (i — 1),4] [I3];
if (i <d) then Raa[i,(i+1):d] = (U[i{]"U[(i+1):d —Riz2[,4]"Raz[,(i+1):d] —
Roo[1:(i—1),4"Raz [1: (i = 1), (i + 1) : d] ) /Roz [i,d];

R: R
R; = )
Ogxm Rao

return Rq;
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Algorithm 9: ThinQR update when 2 < d < m columns are deleted from
position 1 <k <m-—-d+1tok+d—1, R] = thinqrdelblockcols(Rl, k, d)

1

10

11

Input: Ry e R™*™, ke {l,....m—d+1},de{2,...,m+1—k};
// delete d columns
if (k=m—d+1) then return Ri[1: (m —d),1: (m —d)];
// permute columns
Ri[,k:(m—d)]=Ri][,(k+d):m],
for (i=k;i<m—-d—1;i++) do
(r.v. 1) = householder(R [i,i] R [(i + 1) : (i + d).]) as in Algorithm [t}
R [i,1] = 13
R [(i+1): (i +d), 1] = 0
R fi: (i+d),(i+1): (m—d)] =
Ri[i: (i+d),(i+1):(m—d)]—(r*v)(vVRi[i: (i+d),(i+1): (m—d)]);

end

// update Ri[m —d,m —d]

Ry [m —d,m —d] = /[Ri [(m — d) : m,m] [[3;
return Ry [1: (m—d),1: (m—d)];
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Algorithm 10: Apply either Givens rotation or Householder reflection
to column i, R; = thinqrstep(Rl, 7, a)

1 Input: Ry e R™ ic{1,...,1—1}, a€{1,...,m —i};
if (a > 1) then
// Householder reflection

s | (r.v.n) = householder(Ry [i,  Ru [(i +1) : (i +a).i]) as in Algorithm [1}

N

4 R1[i,i]=/L;

5 Rifi:(i4+a),(i+1):l]=Rili:(i+a),(i+1):l]—(rxv)(vRi[i: (i+a),(i+1):1]);
6 Ri[(i4+1):({+a),i =0q;

7 else

8 (c,s) = givens(Ra [i,i] ,R1 [i + 1,4 ) as In Algorithm

c s,
)
-s ¢
// update R,
10 Ri[i,i)] =cxRq[i,i] —s*«Ryi[i + 1,1];

11 Ri[i+ 1,4 =0;
12 Ri[i:(t4+1),E+1):{]=G"Ry[i: (14+1),E+1):1];

9 G =

13 end

14 return Rq;
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Algorithm 11: ThinQR update when d non-adjacent columns are
deleted, R; = thingrdelblockcols_nonadj] (Rl, k)

1

10

11

12

13

14

15

16

17

18

19

20

Input: Ry e R™*™, ki) € {1,...,m},i=1,...,d, k[i] < k[j]Vi< j,i,5=1,...,d;

// delete d columns

if (d=1) then return thingrdelcol(R1,k[1]) In Algorithm ;

if ((k[d]—k[l]) =(d—1)) then return thingrdelblockcols(R1,k[1],d) in Algorithm @;

k = K[l : q];
Ri=Ri[1:0,,1:1];
if (q = 1) then return thinqrdelcoI(Rl,k[l]) n AlgOI‘ithm
if ((k[g] —k[1]) =(¢—1)) then return thingrdelblockcols(R1,k[1],q) In Algorithm @
// delete columns
Ri =Ry [ k];
k=k[k[1]:(-q)l;
// compute a[l]
a= 0y e all] = K[1] - k1]
// update R;
for (i=1;i<(l—q—k[1]);i++) do
R = thingrstep(Ra1, + k[1] — 1,a[i]) in Algorithm ;
ali + 1] = afi] + (k[i + 1] — k[i]) — 1
end
Rull—g—K[1]+1,1—q—k[1]+1] = /JRAT =g — K]+ s (= K] + 1,7 = ¢ = K[ + [;
return Rq[1: (I —q),];




Chapter 3

Multiple graphical horseshoe
estimator for modeling correlated
precision matrices

3.1 Introduction

Graphical models are a popular tool used in many scientific fields to analyze and in-
fer networks. In the Gaussian setting, the main challenges in graph estimation are
the positive-definiteness constraint on precision matrices (inverse-covariance ma-
trices) and the quadratic growth, with respect to the number of variables included
in the analysis, of the number of free parameters. Traditional methods, such as the
ones based on pairwise model comparisons, become computationally infeasible as
the number of considered variables increases. For exchangeable observations, a col-
lection of the existing methods for high-dimensional covariance matrix estimation
is available in [Pourahmadi (2011, in which the author proposes to reduce the prob-
lem to multiple independent (penalized) least-squares regressions. Other common
approaches, such as the Graphical LASSO of Friedman et al.| (2008) and the Graph-
ical SCAD of Fan et al.| (2009)), are based on a penalized likelihood optimization
and provide a sparse solution for the precision matrix in high-dimensional settings.
A few approaches for the estimation of high-dimensional sparse networks have also
been proposed within the Bayesian framework. In particular, the Bayesian ver-
sion of the Graphical LASSO (Wang, 2012)), the spike and slab stochastic search
method (Wang, 2015)), and the more recent Graphical Horseshoe presented in |Li
et al. (2019)); all Bayesian methods implemented a block Gibbs sampler that has
shown good computational performances up to a few hundred variables.

We are interested in settings where observations can be considered exchange-
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able only within groups; in these settings, a separate group-specific estimation will
reduce the statistical power, while an analysis of data pooled across groups will
lead to spurious findings (Peterson et al., |2015). Generalizations of the graphi-
cal models, called multiple graphical models, have been proposed with the aim
of jointly estimating multiple correlated networks. Among the penalized likeli-
hood approaches, the fused Graphical LASSO and the group Graphical LASSO of
Danaher et al.|(2014) rely on convex optimization problems and force similar edge
values and similar graph structures, respectively. Bayesian approaches have been
first proposed to encourage similar network structures across related subgroups
(Peterson et al., 2015; Shaddox et al., |2018)). More recent attempts, such as the
generalization of the Bayesian spike and slab stochastic method of |Peterson et al.
(2020)) and the GemBAG of |Yang et al.[(2021)), focus on shared sparsity structures
and precision matrix elements. See Ni et al. (2022) for a recent review of Bayesian
approaches for complex graphical models, including methods for multiple groups.

Here we propose a generalization of the Graphical Horseshoe of Li et al.| (2019)
in the presence of multiple correlated sample groups, which we refer to as the
multiple Graphical Horseshoe (mGHS). This model works under the multivariate
gaussianity assumption with multiple dependent precision matrices. The proposed
model is based on a novel prior on multiple covariance matrices that builds upon
the Horseshoe prior proposed in |Carvalho et al.| (2010) and lets the data decide
whether borrowing strength across groups and then encouraging similar precision
matrices is appropriate. The properties of the Horseshoe prior are well-studied
and include the improved Kullback-Leibler risk bound (Carvalho et al., 2010]),
minimaxity in estimation under the [, loss (Van der Pas et al| [2014)) and improved
risk properties in linear regression (Bhadra et al) 2016). Through simulation
studies, we empirically show that the model benefits from the similar structures
of the groups and provides better statistical performances than the Graphical
Horseshoe applied separately to each group. The model relies on a Metropolis-
within-Gibbs sampler where the parameters are updated by sampling from their
full-conditional distributions and, in particular, a novel method is introduced in
order to sample the local variance parameters. This method scales well with respect
to the number of variables and is the first full Bayesian approach (to our knowledge)
able to analyze multiple undirected graphs of hundreds of nodes. In Castelletti
et al. (2020)) the authors propose an efficient full Bayesian approach for multiple
networks, however they consider only directed acyclic graphs (DAGs). Finally, we
discuss a novel idea for posterior edge selection based on model cuts. The main
novelties can be summarized as follow: 1) a novel shrinkage prior for multiple
precision matrices, 2) an efficient algorithm that scales exceptionally well, and 3)
a novel approach for edge selection based on model cuts.

The paper is organized as follows. In Section the proposed sampling model
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is introduced. Section illustrates how to sample from a three-parameters
Gamma distribution (Gs,) with a modified rejection sampling approach. Section
[3.4] outlines the proposed algorithm in detail. In Section we present a novel
proposal for model selection. Section illustrates comparative simulation stud-
ies, whereas in Section we present an application to a benchmark bike-sharing
dataset. Discussions and comments are presented in Section

3.2 The model

In this section, we introduce the sampling model used to infer relationships among
variables within each of K possibly related sample groups, each represented by
a graph Gy = (V, E}), where V' corresponds to a set of vertices and Fj to a set
of group-specific edges. Let y. be the p-dimensional random vector related to
the observation s in group k, where s = 1,...,n; and £ = 1,..., K. Under the
multivariate normal distribution, the corresponding sampling model is

Ysk ~ Np (07 2k> )

where Q; = (wfj)pxp = X, ! is the precision matrix of group k. There is a one-
to-one correspondence between the zero patterns in a precision matrix and an
undirected graph G}, that, in turn, can be used to learn conditional independencies.
Specifically, it can be shown that wfj = 0 if and only if variables ¢ and j are
conditionally independent conditioning on the other variables (Dempster, 1972));
in this case, the undirected graph G will have a missing edge between nodes ¢
and j. Therefore, the goal is the joint estimation of non-zero entries in precision
matrices with the aim of capturing significant connections among variables. In
high-dimensional settings, the number of parameters to be estimated in €2 is of
order O (p?). This task is particularly challenging since these precision matrices,
in addition to being very large, are constrained to the cone of symmetric positive
definite matrices. Building upon the Graphical Horseshoe proposed by |Li et al.
(2019), we propose in Sections and model and algorithm, respectively,
that use shrinkage priors to perform full Bayesian inference of multiple related
high-dimensional undirected graphical models.

3.2.1 An horseshoe prior for multiple related precision ma-
trices

Li et al.| (2019) have successfully developed the Graphical Horseshoe prior, a shrink-
age prior for (single) precision matrices. In this section, we describe how to extend
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the Graphical Horseshoe prior to multiple related precision matrices. The pro-
posed approach will both achieve shrinkage and borrowing strength across related
subgroups; as a key modeling feature, our approach will learn from the data which
pairs of groups are related and which ones can be considered independent. With
respect to the model proposed by [Peterson et al. (2020), the only alternative full
Bayesian approach that uses a joint prior on related multiple precision matrices,
the proposed approach will result in a much more scalable algorithm, as detailed
in Section [3.4l

Let w;; = (w}j, cee wi[; )T be the vector of precision matrix entries corresponding
to edge (7,j) across K groups. Our approach builds upon the Graphical Horse-
shoe prior (Li et al., 2019)), as we shrink non-informative edges wfj with a novel
multivariate Horseshoe prior (Carvalho et al. [2010)); we assume a non-informative

k

prior for diagonal entries w};. The joint prior distribution for precision matrices

Qq,...,Qk can be written as

ﬂ(w;-“j)ocl, k=1,....K, j7=1,...,p

s (Ql, cee QK’\IIU 1 < ]) X HNK (wijIO, \IIZ]) . H(Q1,...,QK6Mﬁ)
i<j

where M denotes the space of px p positive-definite symmetric matrices. The pro-
posed prior jointly models multiple precision matrices and, specifically, accounts
for similarity between groups by imposing a K-variate normal prior distribution
for w;; with prior covariance matrix specific for each pair i5. As in Peterson et al.
(2020), the proposed prior jointly learns both the within-group and across-group
associations from the data in a single step, but it is computationally more efficient
because it is based on continuous mixtures of multivariate normal distributions.
Indeed, there is no need to sample the binary edge inclusion indicators as in [Pe-
terson et al.| (2020)).

Following the separation strategy introduced by Barnard et al| (2000), the
across-group covariance matrices W;; can be decomposed as W;; = A;;RAj,
where A;; = diag{d;j1,...,0;jx} contains the standard deviations of edge (i, )
and R = {ryy : k' < k} € M is a valid correlation matrix with diagonal entries
equal to one. As suggested by Barnard et al. (2000), we model variances §;; 5 and
correlations ry/, separately since it is generally not clear how these elements inter-
act with each other. We apply the Horseshoe prior from [Carvalho et al. (2010) by
decomposing 4, = TxAij,x and imposing the following priors:

/\ij,k ~ C+ (07 1) 3 (31)
7 ~C1(0,1), (3.2)

where C* denotes the positive half-Cauchy distribution. In (3.1) and (3.2)), pa-

rameters 7, and A control the global and local shrinkage of wfj, respectively.
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The heavy-tail distribution of \;;; allows wfj to avoid overshrinkage and lets the
coefficients free to reach larger values. The amount of common shrinkage shared
by the entries wfj is then controlled by the global scale parameter 7,. When K =1,
the proposed model reduces to the Graphical Horseshoe of |Li et al.| (2019).

The selection of the prior distribution for correlation matrix R is often more
complicated. Barnard et al.| (2000) give an overview of the most common prior for
a correlation matrix. Here we follow Peterson et al.| (2020)) and choose the prior
distribution

T (R) x1- H(RECE)’

where C denotes the space of K x K definite-positive correlation matrices with
diagonal entries equal to 1. The matrix R allows the local variances )\fj to share
information between each other when the correlations between groups are large.
On the contrary, the model reduces to the Graphical Horseshoe of |Li et al.| (2019)
applied separately to each group when R = I is the identity matrix. In Section
[3.3] we introduce a new sampling algorithm for the three-parameter Gamma dis-
tribution that will be used within the algorithm for posterior inference detailed in

Section B.4]

3.3 The three-parameter Gamma distribution and
a modified rejection sampling algorithm

In this section, we introduce a modified acceptance-rejection method designed to
generate samples from the three-parameter Gamma (Gs,,) distribution. Ahrens and
Dieter| (1982) and Stadlober| (1982) demonstrated how to apply a rejection sam-
pling for a target distribution when no valid proposal distribution is available. In
particular, they proposed a modified rejection sampling to sample from a Gamma
distribution and a t-Student distribution, respectively. Here the same situation
applies since no trivial distribution, such as Gaussian or Gamma distributions,
can be used as a valid proposal distribution. Indeed, it can be shown that these
densities do not cover the target function on the latter’s support, as required by
the standard rejection sampling method. Therefore, we propose to overcome this
problem by applying a modified rejection sampling with a Gaussian proposal dis-
tribution. The technical and theoretical aspects of this approach are detailed in
Appendix [3.A] where we also provide a proof that the method proposed in this
section draws samples from the target distribution . For the sake of clarity,
the notation used in this section does not relate to the notation used in the other
sections.
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Figure 3.3.1: density g and h with v =4, a = 2.75, § = 3.3; dotted lines represent
tl and tg.

Let X ~ Gs, (7,0, B), a, 8 # 0, v € NT| a random variable with density

L2 am
e 5 (207) et 4B |
C(y+1) Dy (—225)

fX (ZL‘ | ’yaa?ﬁ) = (z>0)> (33)

where D, (b) is the Parabolic Cylinder function with parameters a and b. The
mean and variance of variable X are

B

Var () = o2 = OHD O #2) Pt (-7) 1P )

202 202
8 R )

The density f(z) ~ Gs, (7, a, ) is transformed into a standardized distribution
g(t) = of (ot + ) by the transformation ¢ = (x — p)/o, with support on the
interval (—’;‘,oo). A new value t, can be drawn from ¢(¢) using the modified
rejection sampling described below. Finally, the value z, = ot, + pu is returned.

S

e

«
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Consider the proposal distribution h(t) ~ N (0,w?) and the ratio

g(t*) of (Ut* + NJ)
)= ) T h)

2
— (A}O'Of‘ /o7 (Ut* + u)'y e_o‘Q(Ut*'FH)Q“Fﬁ(Ut*'H‘)_QwiQ . ]I(t*>fﬁ)

= woCpV2r (ot + )’ 6(2%2_O‘2‘72)tz+(5_2”a2)”t*+ﬂ“_o‘2“2, (3.4)

where Cy is the normalizing constant of f(x) and (8 — 2pa®) < 0. The analysis
of r(t) gives insights on how to correctly choose the variance w? of the proposal
distribution h(t), as r(t) needs to be bounded and should go to zero as t increases.
For this reason we set the variance to w? = 54— and the ratio in ([3.4)) evaluated

20202
at t, can be re-written as
T(t*) = CUO'Cf V2T (Ut* + M)’Y e<5_2‘u,a2>(a’t*+#)+a2u2’

which is analytically tractable. In order to apply a standard rejection sampling, the
method requires that r (¢,) < 1. However, as shown in Figure [3.3.1] the proposal
density h(t) lays below the target density g(t) in the interval [t, t5], with

t = Ty [ B 2ue?) e\
o (8 —2una?) 0 y woCpV/2m o’
y (B—2ua?) [ e N7\ p
te=— 27— W1 -,
o (f —2pna?) v woCp/2m o

where W denotes the Lambert function. It can be analytically shown that r(¢,,4,:) >
1, where t,,q, = —m — £ is the global maximum of the ratio. Therefore,
a standard rejection sampling cannot be applied. Noting that in the intervals
(—£,¢1) and (f2,00) it yields h(t) > g(t), the rejection sampling algorithm can be
modified as follows:

e Step 1: generate a sample ¢, from h(t) and immediately accept x, = ot, + p
if ¢ <, <ty;

e Step 2: if t, < t; or t, > ty, generate a sample u from a U (0, 1) density and
compute 7 (t,). Accept z, = ot, + p if u < r(t,). The computation of r(t,)
can often be avoided if an accurate lower bound for the tails of the ratio is
available;

e Step 3: if Step 2 leads to rejection, take a new sample ¢, from the distribution
d(t) = g(t) — h(t), in the interval [¢1,t5] and return o/, = ot/ + p. Sampling
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from d(t) can be achieved by means of a standard rejection sampling, as in
Ahrens and Dieter| (1982), [Stadlober| (1982). More details about this step

can be found in Appendix [3.A.2]

The acceptance probability of each step is discussed in Appendix [3.A.T]

Proposition 3.3.1. The modified rejection sampling defined by steps 1, 2, and 3
draws a sample from a Gs, distribution with probability 1.

Proof See Appendix [3.A.3]

The main computational bottleneck of the method is the evaluation of the Parabolic
Cylinder function D. This issue can be alleviated by exploiting the following
proposition and by the application of sharp approximations.

Proposition 3.3.2. The Kullback-Leibler divergence (KL) between a distribution
qx ~ Gsp (7,0, B) and a distribution p, ~ G (d,c), where d = v+ 1 and c = —f,
goes to zero when B/a — —oo.

Proof See Appendix [3.B]

Furthermore, when 5/a — oo or v — o0, the three-parameter Gamma distribution
can be conveniently approximated by a Normal distribution. We empirically show
that, in these cases, the KL divergence between a distribution ¢, ~ Gs, (7, o, 8)
and a distribution p, ~ N (m, s?) asymptotically goes to 0, where estimates of m
and s? are given in Appendix These empirical results, along with proposition
3.3.2, can be used to efficiently evaluate the mean and variance of the target
distribution without the need to compute the function D for some combinations
of the parameters’ value.

3.4 Posterior sampling

We develop an efficient MCMC algorithm to sample from the posterior distribution
of the parameters. The algorithm can be divided into three main steps: 1. a Gibbs
step for the update of parameters €24,...,Qk; 2. a Gibbs step for the update of
shrinkage parameters A7, ..., A% and 72; 3. a Metropolis-Hastings (MH) step for
the update of correlation matrix R. In step 2 we make use of the modified rejection
sampler introduced in Section [3.3] The complete algorithm is shown in Appendix

B.d
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1. Sampling 2, ..., Q. The full conditional distribution of €24, ..., Qg is

K ng 1
(D, cl) oc [T 197 exp {—itr (Skﬂk)} :

k=1
Hexp {— W, A lR, 1A;1wl]} . H<Ql7~-7QK€Mf)
1<J
where S = >""* | yay!, and tr () denotes the trace. Precision matrices €, ..., Qg

can be updated by adapting the block Gibbs sampler proposed in |Wang (2015)) for
the estimation of a single precision matrix. Following Peterson et al.| (2020)), for
each sample group £ = 1,..., K precision matrix €2 is updated column-wise by
sampling from the full-conditional distribution of each column j =1,...,p condi-
tionally on both the rest of the columns of group k£ and on the j-th column of the
reaming k& — 1 sample groups. Consider the following partition of vector w;; and
matrices A;; and R:

—k g
Wiy = {wig ] . A= {Aw’—k 0 ] and R = {R;’f r’“} . (3.5)

The full conditional of €2y, is:

W(Qk|) X |Qk|n7k exp {-—t?" Skﬂk }Hexp{ i' _ 5” krkR_lA” L w; k;)Z} ’

(3.6)
where dfj = ‘%k (1 — FZR:irk). As proposed in [Wang (2015), sampling from
(3.6) can be achieved by updating one column of € at the time. Without loss
of generality, consider the permutation of the columns such that the j-th column
becomes the last one. This permutation leads to the following partition:

— —J J — —J J
> hsﬁf s;z] and S MT %}.

The full-conditional distribution of parameters (wf], wk) is

E o, .k k KT (ok \L .k E
7 (e whl) o (wh = (Wh)T(08) W) T

e %((“’k_mﬂ@) Dj,li(w;?_mj,’“)—i_z(w') Sj +5;€wa1) (37)

: : : : : i 5 2TR-IA-L .,k
where my, is the (p—1)-dimensional vector with entries mj , = d;,rfR7 A Wi

and D, is diagonal with entries d¥;, i = 0,...,p,i # j. A closed form for sampling

Z]’
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from (3.7)) can be obtained with the transformation (VM, Py]’?j) — (wf,wfj — (w;?)T (

which yields

where G denotes the Gamma distribution and 33; ;, = Dj_,,i—i—s;?j (Q’i j) - Therefore,
values w}“j and w;? can be updated by first sampling %’?j and v, and then applying
the inverse transformation.

Computationally, this is the most expensive step of the algorithm due to the

need to invert the matrices QF ; and 3. In our implementation of the Gibbs steps
for 'y;-“j and v, ;, we make use of Shermann-Morrison formula to update (Q'ij)_l

with O(p?) operations, instead of O(p?).

2. Sampling A3,... A3 and 72. Samplers commonly used in conjunction
with Horseshoe prior cannot be implemented for the proposed model. Indeed, the
positive half-Cauchy distribution is not conjugated to the variance in a multivariate
normal means model. Our approach builds upon the data-augmentation scheme
proposed |Makalic and Schmidt| (2016). We introduce the auxiliary variables n;;
and (; such that

o if A%, [ Mg ~ ZG (%, L) and ;5 ~ ZG (3,1), then Ajjx ~ C*(0,1);

Nij,k
o if 72| G~ TG (4,4 and G~ TG (3,1), then 7 ~ C*(0,1),

After conditioning on the auxiliary variables 7;;, and (j, the full conditional dis-
tribution of parameters A and 7 can be written as

_ 1 _
s (A,T|) X H |AU| ! €xXp {—EUJL (A”RAZ]> 1(4)7;]‘} .

i<j

ﬁTk?’ exp {—L} . H)Cgkexp —; .

i<j Th]vk/\l],k‘

Local shrinkage matrix Ay is updated column-wise alongside precision matrix €2.
Considering the partition of w;;, A;; and R in (3.5)), the full-conditionals of pa-
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rameters A7, and 77 related to group k are

Q.. B/\
T )\2 . O(/\-_-4 ex _ Tk TRAgk 4
(e ) o< X5l p{ Nk i Mg [ (ha>0)
2
1 (wlk]) wzk' 1 1 k
Qrp = +—— and B, ,=—2T1r R ;A" w " (38
Jk Nij k 27—13/% J.k T ks k k=Yg, —k*ij ( )
2 P(Pz_l) 3 B - @
T (Tk ) X T, exp —T]? + . H(T§>o)>
2
=—+z E ———— and f, = I pPTRTIATY Wik
Tk Ck 2 = /\fj,k#k Tk ;)\ij,kz,uk k k=i, -k g

(3.9)

where pp = 1 — rZR:,lcrk. Note that the full conditional distributions show a
shared amount of global and local shrinkage, as the model exploits the similarity
among groups and learns from the structures of the other graphs. Densities (3.8]
and are a transformation of Gs, random variables introduced in Section .
Specifically,

if w~Gsy(1,on,,,08\,,), then X, =1/u?
if w~Gs(plp—1)/2,0r,08,), then 77=1/u’

We use the sampling algorithm introduced in Section to efficiently obtain sam-
ples from these distributions. Finally, hyper-parameters 7;;,; and (, are updated
by sampling from the inverse-Gamma distributions 7, ~ ZG (1, 1+1/ /\fj’k,) and
G ~ZG(1,1+1/77).

3. Sampling R. The similarity among groups is captured through correlation
matrix R € CX. Following Peterson et al.| (2020)), we implement a modified version
of the Metropolis-Hastings sampler proposed by Liu and Daniels (2006]), which re-
lies on a candidate prior distribution 7* (R) that is used to define a proposal
distribution for correlation matrices. In the first step of this data-augmentation
approach a K x K covariance matrix © is sampled from an Inverse-Wishart distri-
bution; in the second step, a reduction function is applied to map the covariance
matrix to a valid correlation matrix, that is eventually accepted with an MH step.
We introduce a diagonal matrix V such that ® = VRV the matrix V maps
the correlation matrix R to the covariance matrix ®. Following [Peterson et al.
(2020), the transformation from the standard parameter space to the expanded

space is achieved as
wij=V'e;, R=V 'V (3.10)
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where >, ety =1, fork=1,..., Kand V = diag {Zi<j (w}j)2 s Dy (w5)2}
Let the candidate prior distribution be

K41

™ (R) o [R[ 7 Tgecrys (3.11)
then the proposal density for matrix R is

gR|) 7 (R)-7(Q,.... 0% | R)

K+1+p(p 1)/2 T 1p-1
< |RI” [ tenarRages,

1<J

which is conditioned on the current state of the algorithm and accounts for the
dependency with parameters €,...,Qx, Ai,...,Ag and 72. Note that
concentrates its mass around zero when K increases; for this reason, a reasonably
small number of sample groups K is required. The Jacobian of the transformation

defined in is J=|V~ 1| K , thus the proposal distribution for the MH

sampler is

¢(©]) 1 (@) 7 (..., 0% | O)

VA

x @ T i Ao A (3.12)
which is a ZW < (—1) H>> where H = ZK]

date ®* is sampled from and then mapped to R* via the inverse transfor-
mation R* = V-1@*V~—1, New correlation matrix R* is accepted with probability

o TR g R
o= min {1 S R )

. K+1 *|_
:mm{1,e + (log [R*| 1og\R\>}7

e” €A 1. Therefore, a candi-

where p(R|-) x 7 (R) -7 (€24,...,92k | R) denotes the full-conditional distribu-
tion of R.

3.5 Posterior edge selection

A practical problem with continuous shrinkage priors is model selection since the
parameters are shrunk toward zero but never exactly zero. A common method
relies on posterior marginal credible intervals. However, [Van der Pas et al.| (2017))
have shown that under the Horseshoe prior in a Normal means problem, this
method leads to a conservative variables selection procedure where some of the zero
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parameters are falsely selected, whereas some signal is not, due to wide intervals for
non-zero parameters. To avoid such a problem, Li et al.| (2019) used 50% credible
intervals to control the number of false negatives. This choice is in line with the
median probability model (MPM) of |[Barbieri and Berger (2004). The MPM model
is defined as the model that includes only those edges with marginal posterior
probability greater (or equal) than 1/2. In the context of linear regression models,
Barbieri and Berger| (2004) have shown that this method represents the predictive
optimal model under some common but strict hypothesis, such as orthogonality of
the covariates. The result is extended to g-type spike and slab priors in |[Barbieri
et al.| (2021). This approach is used, among many others, in [Wang| (2015) and
Peterson et al.| (2020). A practical example of an MPM-like strategy can be found
in |Carvalho et al| (2010). The authors show that the Horseshoe estimator is
B = A2/ (14 A2) 5, where A3 and §; denote the local shrinkage parameter
and the regression parameter of variable j, respectively, and propose to set to zero
those variables for which A?/ (14 X%) < 1/2.

The cited methods present two main drawbacks. First, the optimality results
in Barbieri and Berger| (2004) only hold for fixed design X of prediction point or

for stochastic predictors with E <XTX>, which are often unrealistic assumptions;

therefore, the threshold 1/2 does not ensure the optimality of the selected model
under the considered framework, where the goal is to analyze the connections
between variables. Secondly, the considered selection procedures rely on marginal
values and do not account for any posterior correlation among the parameters.

To overcome these problems, we propose a “quasi-bayesian” approach for edge
selection that accounts for the posterior dependencies among the parameters. The
method relies on a cut function that “cuts” the relationship between the parame-
ters to prevent model feedback which could negatively affect the performances of
the model (Zigler et al., 2013} [Plummer, 2015). Cuts have been used in different
contexts (Lunn et al., 2009; Bayarri et al., [2009; McCandless et al., 2010; Blangia-
rdo et al [2011} |Zigler, 2016)) either to control the flow of information or to gain
a computational advantage. Bayarri et al.| (2009) consider the cut function as a
“modularization” of the model. This approach breaks a bigger model into smaller
parts called modules, modifying the magnitude of the interactions between the
parameters in different modules.

3.5.1 An extended model and algorithm for edge selection

In this section, we extend the model presented in the previous sections introducing
two parameters t, and z, and an algorithm that updates these parameters with a
Metropolis-within-Gibbs step. Notation refers to a single graph and can be easily
extended to the case of multiple graphs.
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Figure 3.5.1: Graphical representation of the model. The dotted line denotes the
cut function, stopping the flows of information from z to A.

The parameter ¢, € (0,1) can be interpreted as a threshold for edge selection,
and the latent variable z is a p(p — 1) /2-binary vector with generic element z;; = 1
if the corresponding edge w;j;, @ < j, is included in the model, z;; = 0 otherwise.
Formally, the model is defined as

zij = 1if kj; > 14, and  z;; = 0 otherwise,

where r;; = A%/ (1+AZ). Here the goal is to estimate parameter ¢, based on
the posterior values of A. At the same time, we want to prevent the flow of in-
formation from ¢, and z to A. The cut function comes in handy to avoid such
issues. The modularization of the proposed model is shown in Figure where
¢ = (2, 7,R) and parameters z and A are connected through the reparametriza-
tion K;j.

Different prior distributions can be assumed for t,; a natural choice is t* ~
Beta(a,b). Parameters z;; can be seen as the realization of p(p — 1)/2 Bernoulli
distributions z;; | Kij, ¢, to ~ Ber (qiaj), where ¢ = 1 — P (r;; <t | ¢). The joint
likelihood of the model can be factorized as

(Y, A ¢,200) X7 (@ | Y, N) 7 (2,10 | K, 0) T (A),
xm (A | Y)m (2t | K, p).
The modularization of the model allows us to sample directly from the conditional
distributions 7 (A, ¢ | Y) and 7 (2, t, | K, ), thus evaluating parameters A and ¢

without the influence of the unknown quantity z. The joint posterior distribution
of parameters t, and z is

(2, |k, ) oc (1) (=) TTTT ()™ (1 —a2)' ™ (3.13)

J=11i<j
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We propose a Metropolis-within-Gibbs algorithm in order to sample from (3.13)).
Parameters z;; are sampled from the full-conditional distribution

Zij ’ /ﬂlij,QO,ta ~ Ber (qg) .

Under the framework introduced in Section , the transformation ;; = A7,/ (1+ )\fj)
with Jacobian J,, = (1 + kij)° yields

_ 1-— Kjq 1-— Kjq
™ (KJZJ ’ Y7 (P) X ’iij2 exp {_a/\ij P ! + /BAij P : } ’ I[(HijE(O,l))7

ij ]

where the cumulative density function Fy |y (t*) is available in closed form.
Therefore, the quantity g;; can be analytically and efficiently computed condition-
ally on the current state of ¢.

The threshold ¢“ is then updated with a MH step, where the new values t$ are
sampled from the prior distribution. The acceptance probability of this step is

W(Ziflm,cp)}

= min{ 1, — > ¥
i mm{’w(z,tw,w

The sampled values of t* can be used to perform graph selection; specifically, we
include in the graph all edges such that P(x;; | Y, ) > t*. Hereafter, we consider
both this approach and the MPM method (t* = 1/2; Carvalho et al [2010)) as two
alternative approaches to posterior edge selection.

3.6 Simulation studies

We perform simulation studies that cover several scenarios of interest. The per-
formances of the proposed model and competing approaches are tested in four
scenarios all comprising K = 4 groups:

e Independence set-up: the groups are simulated from multivariate Gaus-
sian distributions with a different precision matrix for each group;

e Coupled set-up: each pair of groups is simulated from a multivariate Gaus-
sian distribution with the same precision matrix;

e P2020 set-up: the groups are simulated following the scheme of Peterson
et al.| (2020), where each precision matrix is created by adding (deleting)
new edges to (from) the other precision matrices;

e Full-dependence set-up: the groups are simulated from multivariate Gaus-
sian distributions with equal precision matrices.
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The precision matrices are simulated following the approach of |Peterson et al.
(2020), which relies on a generalization of the method proposed by Danaher et al.
(2014). Edges are divided into independent subgroups with size either equal to
5 or 10. Diagonal entries of the precision matrices are set to 1. We test our
model against the fused and grouped Graphical LASSO (fJGL and gJGL, respec-
tively) of Danaher et al. (2014)), the ordinary Graphical Horseshoe (GHS) of |Li
et al.| (2019)) estimated for each group independently, and the group estimation of
multiple Bayesian graphical models (GemBAG) from Yang et al,| (2021)). Among
all competing approaches, the proposed approach is the only one that provides
uncertainty quantification through posterior inference on all model parameters.

Different combinations of n and p are evaluated, and the results are reported
in Tables [3.6.1 where pg refers to the mean number of true significant edges
across groups. Edge selection is assessed based on accuracy, the Matthews correla-
tion coefficient (MCC), true and false positive rate (TPR and FPR, respectively)
and the AUC criterion. We take the mean Frobenius loss among groups matrices
to evaluate the goodness of the precision matrices estimates. Subscripts MPM and
t, indicate whether the posterior edge selection is performed based on the MPM
method or with the cut-model proposed in Section respectively. Hyperparam-
eters a and b of the Beta prior on ¢, should reflect prior beliefs in graphs’ sparsity;
to control the number of false positives, we set a = 30 and b = 25. For the fused
and grouped Graphical LASSO, regulation parameters \; and Ay are selected by
performing a grid search to find the combination of values that minimizes the AIC
(Danaher et al., 2014; |Peterson et all 2020). For GemBAG, hyperparameters re-
lated to the two levels of sparseness are set to p; = 0.4 and py = 0.8 for all the
considered cases. Prior variances vy and v; are estimated by minimizing the BIC
criterion over a grid of values, as done in |Yang et al.| (2021).

In all scenarios, see tables|3.6.113.6.4) mGHS performs better than GHS applied
to each group separately when the groups are actually similar, as it provides better
selection performances in all the coupled, P2020 and full-dependence settings.
Moreover, our model is the only competitor able to approach the performances of
the GHS in the independent set-up. Indeed, in this case the latter shows better
performances than all the other competitors for all the considered values of n and
p, whereas the Graphical LASSO and GemBAG behave poorly and their selection
results worsen as p increases.

The P2020 set-up provides the most realistic scheme, where the groups have
similar but different precision matrices. Under these circumstances, the best model
is GemBAG, which gives higher values of MCC and AUC for p > 100. The only
competitive model is mGHS, which has the highest AUC when p = 50 and it is the
only competitor able to approach GemBAG’s performances in the other considered
cases.
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In this simulation study, edge selection based on the cut model completely
overtakes the selection procedure based on the MPM model. Indeed, the approach
based on cuts strongly reduces the number of false discoveries, resulting in a higher
value of the MCC index. Note that the value of the estimated threshold is affected
by the choice of the prior distribution of t*. We used t* ~ Beta(30,25) across all
simulation scenarios and data analyses; in our experience, this is a viable option
that leads to control of the FPR even though different choices may lead to a
different level of sparsity in the estimated graphs.

Finally, the GemBAG and fJGL provide the lowest values of the Frobenius
loss. Except for the independent setting, none of the other methods gives better
performances in terms of precision matrices estimation. GemBAG is the most
efficient method, as it takes an average of only a few hours for the estimation of a
network with p = 500. On the contrary, the mGHS provides a fully Bayesian infer-
ence at the cost of a 10-fold increase in computational time. GHS and Graphical
LASSO have not been included in this case, as the computational time increases
dramatically.

= 50.p = 50 Independent (py = 82.5) Coupled (py = 77.5)

’ Acc MCC TPR FPR AUC | Fr Loss Acc MCC TPR FPR AUC | Fr Loss
mGHSeu 0.775 0.299 0.744 0.223 0.824 10.231 0.715 0.230 0.723 0.286 0.789 8.624
(0.018) | (0.030) | (0.040) | (0.019) | (0.027) | (1.224) | | (0.039) | (0.039) | (0.048) | (0.041) | (0.037) | (1.029)

mGHS, 0.926 0.459 0.544 0.046 0.824 10.231 0.930 0.392 0.421 0.035 0.789 8.624

1 (0.008) | (0.038) | (0.052) | (0.009) | (0.027) | (1.224) | | (0.009) | (0.055) | (0.086) | (0.012) | (0.037) | (1.209)
GHSypu 0.786 0.315 0.754 0.211 0.840 10.199 0.702 0.204 0.684 0.297 0.760 8.745
(0.015) | (0.029) | (0.037) | (0.015) | (0.024) | (1.246) | | (0.047) | (0.044) | (0.048) | (0.049) | (0.040) | (0.940)

fIGL 0.873 0.384 0.648 0.110 0.769 9.186 0.907 0.333 0.437 0.061 0.688 7.863
(0.024) | (0.037) | (0.063) | (0.029) | (0.024) | (0.709) | | (0.021) | (0.044) | (0.088) | (0.026) | (0.034) | (0.535)

gJGL 0.874 0.383 0.645 0.109 0.768 9.232 0.906 0.328 0.436 0.062 0.687 7.998
(0.024) | (0.036) | (0.062) | (0.028) | (0.024) | (0.720) | | (0.021) | (0.043) | (0.091) | (0.027) | (0.036) | (0.557)

GemBAGypw 0.940 0.311 0.124 0.001 0.791 11.835 0.940 0.238 0.081 0.001 0.786 8.580
(0.002) | (0.052) | (0.041) | (0.002) | (0.057) | (1.150) (0.002) | (0.064) | (0.036) | (0.002) | (0.050) | (0.775)

P2020 (py = 82.5) Full dependence (py = 85)

Acc MCC TPR FPR AUC | Fr Loss Acc MCC TPR FPR AUC | Fr Loss

mGHSwpu 0.796 0.358 0.822 0.206 0.875 8.498 0.716 0.247 | 0.735 0.285 0.792 8.349
(0.011) | (0.021) | (0.030) | (0.011) | (0.020) | (1.323) | | (0.034) | (0.036) | (0.046) | (0.036) | (0.032) | (1.184)

mGHS, 0.925 0.532 0.698 0.059 0.875 8.498 0.923 0.408 0.446 0.041 0.792 8.349

1 (0.008) | (0.034) | (0.037) | (0.009) | (0.020) | (1.323) | | (0.009) | (0.046) | (0.074) | (0.012) | (0.032) | (1.184
GHSypu 0.795 0.321 0.748 0.202 0.840 9.371 0.670 0.165 0.631 0.327 0.710 8.616
(0.013) | (0.027) | (0.037) | (0.013) | (0.022) | (1.216) | | (0.055) | (0.046) | (0.046) | (0.059) | (0.043) | (0.954)

£IGL 0.874 0.412 0.697 0.113 0.792 8.205 0.905 0.309 0.373 0.055 0.659 7.711
(0.023) | (0.046) | (0.050) | (0.025) | (0.025) | (0.702) | | (0.021) | (0.056) | (0.100) | (0.028) | (0.040) | (0.611)

gJGL 0.864 0.376 0.660 0.121 0.770 8.851 0.902 0.293 0.358 0.057 0.650 7.989
(0.025) | (0.036) | (0.054) | (0.029) | (0.022) | (0.714) | | (0.023) | (0.048) | (0.100) | (0.030) | (0.039) | (0.579)

GemBAGypw 0.956 | 0.580 0.367 0.001 0.871 7.835 0.938 0.318 0.112 0.000 | 0.838 7.984
(0.004) | (0.049) | (0.065) | (0.001) | (0.035) | (1.043) | | (0.002) | (0.049) | (0.032) | (0.000) | (0.031) | (0.651)

Table 3.6.1: Simulation results for n = 50 and p = 50 (50 replicates). Methods
mGHS and GHS are evaluated over B = 10000 post burn-in samples.
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. Independent (py = 195) Coupled (py = 177.5)
n=50.p =100 RTRCC | TPR | FPR | AUC | FrLoss | | Ace | MCC | TPR | FPR | AUC | Fr Loss
mGHSypu 0.655 0.146 0.712 0.348 0.759 20.607 0.568 0.082 0.653 0.436 0.671 17.547
(0.024) | (0.018) | (0.030) | (0.025) | (0.023) | (1.444) | | (0.028) | (0.020) | (0.036) | (0.028) | (0.037) | (1.283)
mGHS, 0.953 | 0.348 0.361 0.022 0.759 | 20.607 0.961 0.228 0.152 0.009 0.671 17.547
= | (0.004) | (0.032) | (0.044) | (0.005) | (0.023) | (1.444) | | (0.003) | (0.050) | (0.060) | (0.005) | (0.037) | (1.283)
GHSypu 0.669 0.155 0.715 0.333 0.769 | 20.594 0.563 0.074 0.638 0.439 0.655 17.545
(0.023) | (0.019) | (0.030) | (0.024) | (0.024) | (1.453) | | (0.020) | (0.020) | (0.036) | (0.029) | (0.036) | (1.283)
£IGL 0.931 0.315 0.451 0.049 0.701 | 19.892 0.952 0.234 0.226 0.021 0.603 | 16.296
(0.012) | (0.028) | (0.054) | (0.014) | (0.022) | (0.988) | | (0.009) | (0.033) | (0.074) | (0.012) | (0.032) | (0.694)
2JGL 0.929 0.312 0.456 0.051 0.702 19.921 0.952 0.229 | 0.219 0.021 0.599 16.689
(0.013) | (0.020) | (0.058) | (0.015) | (0.023) | (1.055) | | (0.009) | (0.034) | (0.074) | (0.011) | (0.032) | (0.722)
GemBAGypi 0.962 0.179 0.052 0.001 0.698 | 23.012 0.965 0.143 0.034 0.001 | 0.708 | 16.986
(0.001) | (0.043) | (0.026) | (0.001) | (0.069) | (2.174) (0.001) | (0.046) | (0.016) | (0.000) | (0.044) | (0.894)

P2020 (py = 182.5) Full dependence (py = 185)

Acc MCC TPR FPR AUC | Fr Loss Acc MCC TPR FPR AUC | Fr Loss
mGHSypu 0.720 0.215 0.808 0.284 0.853 18.878 0.589 0.107 0.692 0.415 0.714 17.127
(0.013) | (0.014) | (0.025) | (0.013) | (0.016) | (1.944) | | (0.030) | (0.021) | (0.036) | (0.031) | (0.035) | (1.491)
mGHS, 0.948 0.459 0.625 0.040 0.853 18.878 0.958 0.285 0.230 0.013 0.714 17.127
= | (0.004) | (0.022) | (0.030) | (0.005) | (0.016) | (1.944) | | (0.004) | (0.046) | (0.071) | (0.006) | (0.035) | (1.491)
GHSypu 0.710 0.181 0.733 0.291 0.800 20.299 0.564 0.072 0.626 0.438 0.647 17.256
(0.016) | (0.015) | (0.026) | (0.017) | (0.016) | (1.650) | | (0.020) | (0.022) | (0.040) | (0.029) | (0.039) | (1.261)
£IGL 0.935 0.393 0.588 0.052 0.768 18.557 0.955 0.240 0.201 0.016 0.593 | 16.103
(0.010) | (0.030) | (0.042) | (0.011) | (0.018) | (1.070) | | (0.007) | (0.042) | (0.079) | (0.010) | (0.035) | (1.027)
6L 0.923 0.335 0.540 0.062 0.739 | 20.104 0.955 0.223 0.182 0.015 0.583 16.772
(0.011) | (0.024) | (0.043) | (0.013) | (0.018) | (1.107) | | (0.008) | (0.038) | (0.071) | (0.010) | (0.031) | (0.924)
GemBAGypu 0.975 | 0.550 0.321 0.000 | 0.869 | 15.676 0.966 0.277 0.084 0.000 | 0.808 | 16.411
(0.002) | (0.041) | (0.052) | (0.000) | (0.015) | (1.264) | | (0.001) | (0.038) | (0.022) | (0.000) | (0.037) | (1.044)

Table 3.6.2: Simulation results for n = 50 and p = 100 (50 replicates). Methods
mGHS and GHS are evaluated over B = 10000 post burn-in samples.
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Independent (po = 532.5)

Coupled (po = 477.5)

n=100.p =250 T TNGE | TPR | FPR | AUC | Fr Loss Acc | MCC | TPR | FPR | AUC | Fr Loss
GHS o 0632 | 0.115 | 0.808 | 0.371 | 0.830 | 34.766 0.556 | 0.077 | 0.761 | 0.447 | 0.761 | 31.934
(0.012) | (0.006) | (0.015) | (0.012) | (0.012) | (1.629) | | (0.010) | (0.007) | (0.021) | (0.010) | (0.018) | (1.062)
. 0.976 | 0.420 | 0.524 | 0.015 | 0.830 | 34.766 0.983 | 0.350 | 0.308 | 0.007 | 0.761 | 31.934
- (0.002) | (0.016) | (0.021) | (0.002) | (0.012) | (1.629) | | (0.001) | (0.019) | (0.036) | (0.002) | (0.018) | (1.062)
HSvm 0.630 | 0.118 | 0.812 | 0.364 | 0.835 | 34.721 0.551 | 0.069 | 0.729 | 0.451 | 0.732 | 32.946
(0.007) | (0.005) | (0.015) | (0.007) | (0.011) | (1.596) | | (0.010) | (0.007) | (0.023) | (0.010) | (0.019) | (1.024)
el 0.956 | 0.345 | 0.617 | 0.038 | 0.790 | 37.527 0.971 | 0.307 | 0.423 | 0.021 | 0.701 | 31.616
(0.005) | (0.016) | (0.025) | (0.006) | (0.011) | (1.235) | | (0.004) | (0.020) | (0.030) | (0.004) | (0.014) | (0.839)
coL 0.956 | 0.344 | 0.618 | 0.038 | 0.790 | 37.581 0.970 | 0.292 | 0.407 | 0.022 | 0.693 | 32.616
(0.005) | (0.016) | (0.024) | (0.006) | (0.010) | (1.169) | | (0.005) | (0.017) | (0.040) | (0.005) | (0.018) | (0.917)
CemBAGypy | 0985 | 0344 | 0147 [70.000 | 0.607 | 46.156 0.986 | 0.326 | 0.130 | 0.000 | 0.836 | 30.824
(0.000) | (0.018) | (0.013) | (0.000) | (0.020) | (1.840) | | (0.000) | (0.022) | (0.014) | (0.000) | (0.010) | (0.927)

P2020 (po = 482.5) Full dependence (py = 485)
Acc MCC TPR FPR AUC | Fr Loss Acc MCC TPR FPR AUC | Fr Loss
mGHSum 0.654 | 0.132 | 0.863 | 0.350 | 0.885 | 26.270 0.575 | 0.095 | 0.811 | 0.429 | 0.815 | 30.133
(0.007) | (0.004) | (0.013) | (0.007) | (0.008) | (1.321) | | (0.011) | (0.006) | (0.017) | (0.011) | (0.014) | (1.058)
mGHS, 0.972 | 0.460 | 0.699 | 0.024 | 0.8%5 | 26.270 0.981 | 0406 | 0.440 | 0.011 | 0.815 | 30.133
- (0.002) | (0.013) | (0.017) | (0.002) | (0.008) | (1.321) | | (0.002) | (0.017) | (0.034) | (0.002) | (0.014) | (1.058)
HSumn 0.650 | 0.123 | 0.817 | 0.344 | 0.850 | 29.366 0.552 | 0.068 | 0.725 | 0.451 | 0.728 | 32.782
(0.007) | (0.005) | (0.015) | (0.007) | (0.010) | (1.208) | | (0.010) | (0.007) | (0.022) | (0.010) | (0.018) | (0.948)
el 0.963 | 0.416 | 0.717 | 0.033 | 0.842 | 31.347 0.972 | 0.395 | 0.559 | 0.021 | 0.769 | 26.937
(0.004) | (0.018) | (0.021) | (0.004) | (0.009) | (1.244) | | (0.004) | (0.022) | (0.040) | (0.004) | (0.019) | (1.079)
oL 0.954 | 0.347 | 0.655 | 0.041 | 0.807 | 37.849 0.960 | 0201 | 0.413 | 0.023 | 0.695 | 32.168
(0.006) | (0.020) | (0.023) | (0.006) | (0.010) | (1.392) | | (0.005) | (0.017) | (0.042) | (0.006) | (0.019) | (0.913)
CemBAGypy | 0992 | 0713 | 0516 | 0.000 | 0.893 | 18.421 | | 0.989 | 0534 | 0293 | 0.000 | 0893 | 26.442
(0.000) | (0.010) | (0.013) | (0.000) | (0.007) | (0.865) | | (0.000) | (0.017) | (0.017) | (0.000) | (0.008) | (0.976)

Table 3.6.3: Simulation results for n = 100 and p =
mGHS and GHS are evaluated over B = 10000 post

250 (50 replicates). Methods
burn-in samples.

n = 100, p = 500

Independent (py = 271.25)

Coupled (py = 279.5)

Acc MCC | TPR FPR AUC | Fr Loss Acc MCC | TPR FPR AUC | Fr Loss
mGHS v 0.518 | 0.034 | 0.845 | 0.482 | 0.832 | 41.906 0.525 | 0.043 | 0.929 | 0476 | 0.922 | 39.677
(0.003) | (0.002) | (0.023) | (0.003) | (0.018) | (1.633) (0.004) | (0.002) | (0.014) | (0.004) | (0.010) | (1.851)
mGHS, 0.997 | 0.430 | 0.461 | 0.001 | 0.832 | 41.906 0.994 | 0425 | 0.747 | 0.006 | 0.922 | 39.677
- (0.000) | (0.021) | (0.030) | (0.000) | (0.018) | (1.633) (0.003) | (0.064) | (0.022) | (0.003) | (0.010) | (1.851)
GemBAGyup 0.998 | 0.379 0.172 | 0.000 | 0.799 | 40.747 0.999 | 0.740 | 0.634 | 0.000 | 0.962 | 33.100
(0.000) | (0.032) | (0.023) | (0.000) | (0.013) | (1.495) (0.000) | (0.015) | (0.036) | (0.000) | (0.014) | (3.257)

P2020 (py = 270.5) Full Dependence (py = 273)
Acc MCC | TPR | FPR | AUC | Fr Loss Acc MCC | TPR | FPR | AUC | Fr Loss
mGHSypu 0.522 0.041 0915 | 0479 0.909 | 38.121 0.523 0.043 | 0.938 | 0.478 0.933 | 38.741
(0.004) | (0.002) | (0.018) | (0.003) | (0.015) | (2.107) | | (0.004) | (0.002) | (0.016) | (0.004) | (0.013) | (2.042)
mGHS, 0.979 0.274 0.770 0.020 0.909 | 38.121 0.979 0.286 0.819 0.020 0.933 | 38.741
- (0.013) | (0.085) | (0.020) | (0.013) | (0.015) | (2.107) | | (0.013) | (0.080) | (0.019) | (0.013) | (0.013) | (2.042)
GemBAGypu 0.999 | 0.839 | 0.723 | 0.000 | 0.966 | 23.992 0999 | 0873 | 0.771 0.000 | 0.979 | 22.112
(0.000) | (0.012) | (0.030) | (0.000) | (0.011) | (4.506) | | (0.000) | (0.014) | (0.028) | (0.000) | (0.006) | (3.407)

Table 3.6.4: Simulation results for n = 100 and p = 500 (25 replicates). Method
mGHS is evaluated over B = 10000 post burn-in samples.
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3.7 Application to a bike-sharing dataset

We perform an analysis of the Capital Bikeshare system dataEL a benchmark
dataset previously analyzed in |Zhu and Foygel Barber (2015) and |Yang et al.
(2021). This is the first analysis of this dataset with a full Bayesian graphical
model. The dataset contains records of bike rentals in a bicycle sharing system
with more than 500 stations located in the Washington D.C. area, where each
ride is labeled as casual (paying for a single day) or member (membership pay-
ment). Data from years 2016, 2017, and 2018 are used, for a total of n = 1092
registered days. Only the p = 239 most active stations are selected. Therefore,
fori=1,...,1092 and j = 1,...,239, let y; and ;7 be the number of registered
casual and member trips initiated at station j on day i, respectively. After cor-
recting for the seasonal trend, each station data is marginally standardized and
transformed with the Yeo-Johnson transformation (Yeo and Johnson, [2000) to
better approximate a Gaussian distribution. Finally, the data are divided by year
and rider membership for a total of K = 6 groups. Matrices Y, k= 1,...,6 are
marginally standardized such that g, = 0 and the standard deviations are equal
to 1 for each group.

For each class, 80% of the observations are used as training set and the re-
maining 20% as test set. For & = 1,...,6, let ), be the estimated precision
matrix of the k-th training set. Here we take the posterior mean. Following |Fan
et al. (2009), the observations of each test set is partitioned as y* = (yﬁjl,yﬁj2),
where yﬁjl = (yﬁl, o ,yﬁm) and yf,jQ = (951217 o ,yﬁ%g), 1t =1,...,ng. The
corresponding partition for €2, and 3, are

an Qku

Q p—
’ |:Q/€21 Qk22

] and Ek:{zk“ Z’m}.

Ekm Ekm

The performances of the models are evaluated by predicting yf»fj2 based on yﬁ i
and Q.. Under the Gaussian assumption, the best linear predictor is

g k k Sk

Vi =E i | ¥ij) = Bka Xy, i,

To assess the prediction performances of the methods we rely on the average ab-
solute forecast error (AAFE), defined as

239
AAFE; = lyE — k|
iy 2 2 i

where T} denotes the test set indexes for group k. We denote the mean AAFE
across groups as mAAFE.

'Data are available at http://www.capitalbikeshare.com/system-data


http://www.capitalbikeshare.com/system-data
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The multiple Graphical Horseshoe is tested against the ordinary Graphical
Horseshoe of |Li et al. (2019) and the GemBAG of |Yang et al| (2021). For the
estimation of the threshold in the mGHS model we set the hyperparameter to
a = 30 and b = 25, whereas in GemBAG we estimated hyperparameters vy and v,
according to the BIC criterion as in Section 3.6, For computational reasons, the
joint Graphical LASSO of Danaher et al.| (2014) is excluded from the analysis.

With mAAFE = 0.596, the best predictive model is the mGHS, whereas the
ordinary GHS shows similar predictive performance (mAAFE = 0.600). The lat-
ter, however, provides a sparser model: regardless of the method used for selecting
the edges a posteriori, the mGHS always estimates denser networks, including
connections between stations that the GHS is not able to capture. Finally, the
GemBAG provides at the same time the sparsest model and the worst predictive
performance, with mAAFE = 0.613.

To further understand how the connections between stations work among the
casual and member users, we plot the estimated networks for each group for both
GHS and mGHS (Figures and in Appendix [3.D)), where we select
those edges with a posterior inclusion probability higher than 0.9. The estimated
networks for casual users are denser in both models, suggesting a higher activity
of casual rides. However, the number of edges shared across the years is higher for
the registered users, implying more regular activities of those who choose to pay
a seasonal ticket. The intersection of the estimated networks across three years
for the registered and casual users is shown in Figure for both GHS and
mGHS, where the size of the nodes depends on the number of edges associated
with the related stations. The two models estimate similar networks for both types
of users, however, mGHS gives more importance to the stations identified by GHS
and includes some additional ones.

casual 2016 casual 2017  casual 2018 member 2016 member 2017 member 2018

1.000 0.969 0.893 0.479 0.515 0.483 casual 2016
0.969 1.000 0.958 0.518 0.562 0.526 casual 2017
0.893 0.958 1.000 0.461 0.502 0.475 casual 2018
0.479 0.518 0.461 1.000 0.984 0.971 member 2016
0.515 0.562 0.502 0.984 1.000 0.980 member 2017
0.483 0.526 0.475 0.971 0.980 1.000 member 2018
(3.14)

The hypothesis of a more regular behaviour of the registered users is supported
also by which reports the estimated correlation matrix between groups. The
correlation is high across the years for both types of users. In particular, it remains
close to 1 even after two years for the rides with membership payment (correlation
between 2016 and 2018 is 0.971). On the contrary, the decrease is larger for the
casual rides, with a correlation of 0.893.
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Figure 3.7.1: Intersection of the estimated networks across three years; the size of
the nodes depends on the number of edges associated to the related station
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3.8 Conclusion

In this paper, we have introduced a novel fully Bayesian method for the analysis
of high-dimensional dependent precision matrices. In particular, we provided an
efficient approach that works up to hundreds of variables. We empirically showed
that the model is able to borrow information between groups when appropriately
supported by the data. Simulation studies empirically demonstrated that the pro-
posed approach has good performances in terms of edge selection; the proposed
joint model performs at least as well as the separate analysis of each group with
the ordinary Graphical Horseshoe (Li et al.,; 2019). We applied our method to a
benchmark dataset with a slight improvement in prediction performance. Com-
pared to the ordinary Graphical Horseshoe, the proposed model borrowed infor-
mation across groups and selected a higher number of common edges across the
years. Moreover, the estimation of correlation matrix R provided unique insights
about the behavior of bike-sharing users.

We proposed a new approach for posterior edge selection that accounts for
posterior dependencies between parameters )\?M’s. This method can be easily ex-
tended to other common frameworks, for example, variable selection in regression
models. The simulation results of our approach are promising, however, among
other unexplored properties, it is not clear whether the proposal distribution ac-
counts for easy control of false discoveries, a desirable feature for every posterior
selection method. This can be assessed by evaluating different proposal distribu-
tions and comparing our procedure against the alternative solutions proposed by
Chandra et al.| (2022) and |Lee et al.| (2023)). Further improvements in the proposal
may concern the introduction of different thresholds ¢f; specific for each edge, the
application of adaptive procedures or the construction of a distribution which re-
flects the methods of Muller et al. (2007), Chandra et al.| (2022) and Lee et al.
(2023). The proposed cut model provides only an approximation of the poste-
rior distribution, and, in models with cuts in general, the algorithm may fail to
converge to a well-defined distribution (Plummer, |2015). To this aim, the author
propose an approximate solution called tempered cut algorithm with the goal of
overcoming the problem of convergence. Whereas cut models can outperform fully
Bayesian models in terms of performance and computational efficiency, a careful
assessment of the output produced by models with cuts should be always per-
formed. We leave the cited improvements of our edge selection method to future
works.

Note that very recently Lingjaerde et al. (2022)) have proposed an approach,
alternative to the one presented in this paper, for the analysis of multiple graphical
models with horseshoe priors, termed the joint graphical horseshoe. The approach
proposed in this paper, with respect to the joint graphical horseshoe, is charac-
terized by a few important and unique features, since it provides full Bayesian
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inference, it adapts well to setting with heterogeneous levels of network similarity,
it learns the level of network similarity across groups from the data, and it has
been successfully applied to networks with large p (up to 500 nodes).

Among possible extensions, we may consider a spike-and-slab type of prior on
the off-diagonal elements of the correlation matrix R. This approach would not
only give a deeper insight into the similarity across the groups, but it would speed
the model up when the groups are not significantly related: the Gs, distribution
would reduce to an Inverse-Gamma when the k-th row of the matrix R is zero,
avoiding the need of the rejection sampling discussed in Section

A main challenge, and still a limitation, of the proposed approach, is the com-
putational complexity of the algorithm since it becomes infeasible when the number
of covariates p is extremely large, e.g., in the thousands. Alternative computational
approaches that could be explored include the thresholding approach of |Johndrow
et al.| (2020) that could be adapted to sample from multivariate Normal distribu-
tions under the Horseshoe prior, and eventually lead to a significant reduction in
computational times.

The R code for mGHS model, simulations studies and application to bike-
sharing dataset is available at https://github.com/cbusatto/mGHS.


https://github.com/cbusatto/mGHS

Appendix

Appendix 3.A The three-parameter Gamma dis-

tribution

3.A.1 Technical details of the modified rejection sampling
method

The acceptance probability of each step of the algorithm is compute as follows:
e Step 1: the probability of immediate acceptance is
P (Ey) = P2 (t2) — Powe (1),

where ®,, ;2 (-) denotes the cumulative density function of a Gaussian distri-
bution with mean p and variance o?;

e Step 2: the acceptance probability of Step 2 is
P(Ez)zl—P<E1>—P(E3),
where P (E3) is the acceptance probability of Step 3.

e Step 3: the probability of acceptance this step is

P(Ey) = / " hydt + /: h(t)dt — /_ " gt / ot

oo B
(e}

- /: h(t)dt_/tltz h(t)dt—/_oog(t)dt+/tlt2 g(t)dt

- / ; gt) — h(t)dt.

t1

+

am
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Figure 3.A.1: distributions d(¢) and s(t); dotted lines represent ¢, and to.

3.A.2 Rejection sampling for sampling from the difference
distribution d(t)

Sampling from d(¢) in Step 3 can be achieved by means of a standard rejection
sampling. Let s(t) be the proposal distribution, we adapt a double-exponential
(Laplace) distribution of the form

in order to minimize the area between s(¢) and d(t) (Ahrens and Dieter, [1982;
Stadlober, 1982). This happens when the hat function s(t) touches d(t) at two
different points L and R, with R > L. As explained in [Dieter| (1981)), if d(¢) is
covered by a double-exponential distribution, optimal parameters ¢, b, and § can
be estimated within two steps: first, points L, R and parameter ¢ are computed
simultaneously (for instance by Newton iteration) as

tungam
Ju@:—%am

5=-(R-1L),

N | —
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whereas parameters ¢ and b are calculated as

bz%(L+R+5ln (%))
¢ = e\/2nd(R)d(L).

Figure shows the difference function d(t) and its optimal hat function s(t).

The algorithm can be further sped up by noting that the quantities ¢y, to, b, ¢
and 0 only depend on the ratio 3/«. The computation of these parameters, which
involve iterative methods, can be avoided by tabulating the needed quantities for
a restricted grid of the parameters v, o, and .

3.A.3 Proof of Proposition (3.3.1

Recalling that t = (z — u) /o, where = > 0, the acceptance probability of the first
two steps of the algorithm can be computed as

P (Tyee) :IP’(US %)

— /mp<Ug %\T: )h(t)dt

— /_5 %h(t)dt—i—/tQh(t)dt-i-/too %h(t)dt

1 2

= /t: g(t)dt+/t:2 h(t)dt+/: g(t)dt.

Thus, the probability of rejection is P (Thej) = 1 — P (Thee) = :12 g(t) — h(t)dt.
Since the Step 3 draws a sample from fff g(t) — h(t)dt, the acceptance probability
of the method is exactly 1.

To show that the distribution of accepted values follows the target density g(t),

the cumulative density function P (T < u}Tacc) = % =P (T < u,Ty) has

to be equal to Fyy(u) = [, g(t)dt. Three different cases are studied:

ae

—

e Case u <t;:
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e Case u € [ty,1s] :
P(T <, Thee) = P(T < t1, Toee) + P(ty < T < 11, Toee)

= Fp(t) + /U]P’ (U < %) h(t)dt + /ug(t) — h(t)dt

t1 t1

= Fyp(t) + / Ch(t)d + / " g(t) = h(t)dt

t1 t1

= Fy(u);

e Casety <u:

]P) (T S u, Tacc) - ]P) (T S t27Tacc) + P(t2 < T S U7Tacc)

— Fy(ts) + /:]P (U < %) h(t)dt
— Fyota)+ [ sl
= Fyp (u)

Therefore, the method actually samples from the target distribution.

Appendix 3.B KL divergence for the three-parameter
Gamma distribution

Here the asymptotic behaviour of a Gs, distribution for limit cases 3/a — —oo,
f/a — oo and v — oo is described. The analysis relies on the KL divergence. In
the first case, f/a — —oo the Gs, distribution is compared to a Gamma distri-
bution and yields a closed-form result, whereas when /a — oo and v — oo the
target density is approximated with a Gaussian distribution based on empirical
results.

e Proof of Proposition [3.3.2}
The KL divergence between distribution g, ~ Gs, (7, o, §) and distribution
pe ~ Ga(d,c) is

KL(qu):/O p. log <%) dx:/o pmlog(pm)dx—/o Pz log (q,) dz.
(3.15)
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Denoting the two integrals in (3.15)) as I (d, c) = fOOO pelog (py)drand I (d,c,7v,, ) =
fooo Dz log (q:c) de", it yields

I (d C) = /oo 1Og Cd 6—cmxd—1 Cd 6_med_1dx
’ 0 r(d) ()

Cd+1 /oo p Cd<d . 1) /oo
_ efc:rx dl‘ I S A log T efcacxd—ldaj
T (d) Jo T ), e

= log (ch ; M r(d+1)  c(d—1)I(d) (r' (d) logc>
)

r (d) cd+1 + T (d) cd F(d)

—d+(d—1) (FF/(SZ)) — 10gc>

" (d)

= log(c) + (d — 1) )

—d —log (I'(d))

and

( 042)%1 67%22 Cd e
s Y T / (—a2® + fr) e~ 2" lda
’Y'D—"/ 1 _m> 0

20,2 n f% 2.4 (492 a0 (d+ 1
= log (2a%) 2 e s _ a’c (—i—)_l_ﬁc (—|—)+
) cd+2T (d) 1T ( d)

= log ( (2a7) 7 e&ﬂ)) _oddd+D) %d +7 (Fr/(ij)) — log (c)) :
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Thus,
_ (d> _ _
i 2
sa? a’d(d+1)  Bd
'Y'D—y— 2) 02 C
(g e ’)
I (d) B a(d+1)
= d—1- —dl1+=—
(4 Dlog(e) 4 (@ =1 =) ) —a (142 =
(v +1) (202)% ¢z
+ log (%) — log r
Doy (~35)
(3.16)
Let d = g‘—z and ¢ = % so that the Gamma distribution has the same

mean and variance of the Gs, distribution. Exploiting the properties of the
Parabolic Cylinder functions it yields

R e <_%> v+1 V2
2
-1
D2 (~3) )
b (o)
B 1
D_ 71<,L 7772(,
lim ! av2 +2)D__ (— )— +1
g0 (’H—l)D—v—Q(_ai\/E) <(,y ) i v (,Y ) P 1<
B 1
liméﬁfoo (7+2)D7773( \/E)D’”’lg_aiﬁ) -1
« (7+1)D—w—2<*%¢5)
- y+2 =7 +1
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and
Iim ¢c= lim -
85— B0 4
(v+1) I L
= im —
7 B0 f

D .. <_L)
2 1 o
= (y+1) lim o2 7 v2
B0y +1 D_, (——6 )

Plugging these results into (3.16]) yields

atl B
2(d+1 202) 2 ¢ sa
KLgﬁ,oo@,p): (v+ Dlog (=) — (v+1) (%)—log (2a%) e;
Dori (225
B
5\ Dot (~) a*(d + 1)
= log 2 —(v+1 5 =0,
av/2 e 4(22) B
since lim,_, DLEZZ)Q =
Ve A

Asymptotic behaviour when g — 400 or v — 4o00:
When g — +oo the Gamma-3p is approximated with a N (i, 0?) distribu-
tion, with

5 I y+1D-—2 (_a

im pu= lim

ol g aVZpo (-
B

PES

z——oco  D_, (z)

g [ Do)

S

[0}
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and
B 8 B
- 2 g+ D (_Wi) y+2D--s (_a_ﬂ) Dy <—m)
ma c° = lim 507 ; _
8 to0 Byt 2C D, <_§§> v+ D_,_, (_ﬁ) D,y (_ﬁ)
1
- (3.18)

_ﬁ.

Following [Segura| (2021), when v — oo a sharp approximation for the ratio
D_,_1(z2)

of Parabolic Cylinder functions is v=7" o~ At % (Z +Vz22+4v — 2).
Therefore, the mean and variance of the Gaussian approximation become

B
lim g = lim v+ 1092 <_a_ﬂ>
’y—>+oo'u Y—>+00 a\/§ D_—y_l (_%ﬁ)

B 1 /B2
= + + 4y + 2 3.19
402 /8 V 202 v ( )

and
Je] B B
: 2 .oyt 17 Dy <_W§> v+ 2 D <_W§> Dy <_W§>
hr}rq o° = 1151_1 50 ; | R .
—+00 —+00
' e 208 D () VT D (—3) D (3)
y+1( B 32 o
= — —+4 6] — 1
42 (a 2 + 202 Tt 'y—1>I-iI-loo'u
2
y+1( B | B2 6 1 /B2
= —= — +47+6) — dv+2| .
4o (aﬂ - 202 T 402 * a8V 2a? Tt

(3.20)

Tables [3.B.1] and [3.B.2| show the KL divergence for increasing values of the
ratio #/a and 7. The integral is numerically approximated with the com-
mand KLD from package LaplacesDemon for software R. The approximated
KL divergence is evaluated over the interval (u — 50, u 4 50). Values of the
parameters higher than those shown in the table give overflow prob-
lems. The results in the tables below depend only on the values of v and
the ratio §/a, that is, for different values of o the KL divergence between
q~ Gsp (7,0, 8) and p ~ N (u,0%) does not change. The sequence of KL di-
vergence is always decreasing in Table for both KL(q||p) and KL(p||q).
In Table the sequence is decreasing only for KL(pl||q), however the
mean between the two is decreasing.
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T=0002[f=02[Z=05][Ef=1]8=3]2=5]Z2=8][C2=0002]2=02][2=05] Z2=1[8=3[2=5]2=3
0284 | 0273 | 0.257 ] 0.227 | 0.105 [ 0.041 | 0.016 0411 | 0.304 | 0372 [ 0320 [ 0139 [ 0.047 | 0.016
1206 | 1164 | 1.100 | 0.983 | 0545 | 0.281 | 0.127 2365 | 2.288 | 2153 | 1.906 | 0.886 | 0.355 | 0.139
2185 | 2115 | 2.007 | 1.820 | 1.104 | 0.636 | 0.318 5032 | 4.858 | 4577 | 4.064 | 1.992 | 0.871 | 0.366
4633 | 4505 | 4.319 | 3995 | 2.736 | 1.810 | 1.038 13207 | 12743 | 12.057 | 10.804 | 5.698 | 2.811 | 1.303
6875 | 6.740 | 6.516 | 6.124 | 4.501 | 3.206 | 1.990 22.507 | 21.884 | 20.721 | 18.653 | 10.205 | 5419 | 2.672
10.882 | 10.839 | 10.751 | 10.537 | 9.160 | 7.568 | 5,517 53.998 | 52316 | 49.941 | 45.377 | 27.042 | 15.766 | 8.645
12710 | 12.739 | 12.749 | 12.708 | 12.000 | 11.137 | 9.542 97.765 | 95186 | 90.974 | 83.411 | 52.121 | 32.489 | 19.310
14162 | 14.225 | 14.278 | 14.349 | 14.163 | 13.755 | 13110 | | 208.476 | 203.439 | 195.323 | 180.003 | 117.316 | 77.428 | 49.973

Table 3.B.1: KL divergence when 5/« increases: KL(q||p) (left) and KL(p||q)
(right) where ¢ ~ Gs, (v, a, ) and p ~ N (p1, 0?), with p and o2 computed as in

B.17-B.18).

KL [Z=0002]2=02]8=05] Z=1] 2=3] £=5] 2=38 T=0002]2=02]Z=05] 2=1] Z=3 [ Z=5] 2=38
0022 [ 0021 [ 0018 | 0016 | 0.011 | 0.007 | 0.004 0023 [ 0022 ][ 002 [ 0017 | 0.010 | 0.007 [ 0.003
0015 | 0013 | 0012 | 0010 | 0.005 | 0.004 | 0.002 0025 | 0023 | 002 | 0015 | 0.005 | 0.004 | 0.002
0.010 | 0.009 | 0.008 | 0.006 | 0.003 | 0.002 | 0.002 0016 | 0015 | 0013 | 0010 | 0004 | 0.002 | 0.002
0.005 | 0.004 | 0.004 | 0.003 | 0.002 | 0.001 | 0.001 0.006_ | 0.006 | 0.005 | 0.004 | 0.002 | 0.001 | 0.001
0.003 | 0.003 | 0.003 [ 0.002 | 0.001 | 0.001 |<0.00L 0.003 | 0.003 | 0.003 | 0.003 | 0.00L | 0.001 |<0.00L
0.001 | 0.001 | 0001 | 0.001 |<0.001|<0.001|<0.001 0.002 | 0001 | 0001 | 0.001 |<0.001|<0.001] <0.001

< 0.001 | <0.001 | <0.001 | <0.001| <0.001 | <0.001 | <0.001 < 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001
< 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 < 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | < 0.001

Table 3.B.2: KL divergence when ~ increases: KL(g||p) (left) and KL(pl||¢q) (right)
where ¢ ~ Gs, (7, @, 8) and p ~ N (u, 0?), with u and o2 computed as in (3.19)-
(3.20).

Appendix 3.C Pseudo-code for mGHS algorithm
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Algorithm 12: Multiple Graphical Horseshoe algorithm

1 Input: Sy,...,Sx € R, K p, B,bn € N, n € NX;
2set Qp =1, X, =1, Apb = 1, M, = Lpxp, T =1k, ( = 1, R = I and
= 0g;

3 forb=1to B do
4 for k=1 to K do
5 for j =1 topdo
6 compute t; := {t p = rzR_lAw ,sz]k, i=1,...,p,1# j};
7 computemjk':{ ml g = thn TN, :1,...,p,i7éj};
8 compute D —{Djk—,uka)\U, Z=17-~~,p7i7éj}§
9 compute OJ p = Ek — ol (o /o) and W, = D, + 55,0
10 sample 75, ~ IG (nk/2—|—1,s /2)
11 sample v ~ Np_1 (W]_;i (Dj,kmmk —st)) ’Wj_/i)’
12 sample e, 5 1= {e;k ~IG(L14+1/U,), i=1,...,pi#j};
13 sample L, = {l;k ~ Gsp (1’0(’\“*’6)\“,19)72 yi=1,...,p,1# j},
.2 1/2
where oy, = (2%”% + %) and By, = \ﬁuk J,lw
14 set E’ij =0, + Oj,ij,kV}:koj,k/’}/jja O'j = _Oj,kvjvk/%kj’
ok =1/7K, wh = vy, Wk =% +v1,056v ik, AY =1 and
n; = eju;
15 end
16 end
17 compute

Ty, .= {T =rJRA;  wiF k=1, K,j:2,...,p,i<j};

ij

18 sample T := {Tk Gsp (p(p —1)/2,0@,&,@) , k:zl,...,K},Where
()7 5

O (Ck + ZZ<] 2/\’“ ) and f, = Zi<j /\guk Ty ;

19 sample ¢ := {(, ~ZG (1,14 1/7), k=1,...,K};

20 sample R, = diag (¥)""/* Wdiag (¥) /2, where
¥ ~7IW (p(p—1)/2,H) and
k

K A
21 if 24(0,1) < e(K+1)/200[Ru|-log[R]) then set R = R, and compute

22 end
23 return ..., Qg Aq,..., A, 7 and R;
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Appendix 3.D Additional details for the Bike-
sharing dataset application

Here we report further features of our real data application. We provide an
overview of the the thresholds ¢ estimated with the cut-model (see Table
and the inferred Bikesharing networks for each group with both mGHS and GHS
in Figure 3.D.1] and [3.D.2] respectively (black edges denote those edges included
in all three years for both member and casual users). For the former problem,
we run 4 MCMC chains starting from different values. As shown in Table 3.D.1]
the posterior mean is basically equal to the prior mean of t7, therefore suggest-
ing the need of improvements of the cut model: possible solutions are either a
new proposal distribution for the MH step or the application of the tempered cut
algorithm proposed by [Plummer (2015)) is required.

\ \casual 2016 casual 2017 casual 2018 member 2016 member 2017 member 2018\

chain 1 0.546 0.548 0.547 0.547 0.545 0.543
chain 2 0.546 0.543 0.542 0.544 0.546 0.546
chain 3 0.547 0.546 0.546 0.544 0.545 0.547
chain 4 0.548 0.547 0.544 0.545 0.547 0.545

Table 3.D.1: Posterior mean of ¢{ for 4 different MCMC chain.



120

casual 2016 casual 2017 casual 2018

member 2016 member 2017 member 2018

Figure 3.D.1: Estimated graph by mGHS for each group; Black edges denote those edges included in all three years
for both member and casual users and the size of the nodes depends on the number of edges associated to the related
station.
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Chapter 4

Informative co-data learning for
high-dimensional Horseshoe
regression

4.1 Introduction

The analysis of high-dimensional data sets is a main interest in many scientific
fields. In particular, clinical research often deals with a huge amount of data, such
as genes expression or genome-wide methylation levels, for relatively few samples,
due to budget or practical constraints. We consider regression models to study a
clinical outcome with these data. Since the number of parameters, p, overwhelms
sample size, n, we develop an approach to improve the overall performance of
the model by incorporating (prior) external knowledge in the estimating process.
Such an external source of information is referred to as co-data (complementary
data; Neuenschwander et al 2016]), as it provides additional information about
the covariates. We consider two different types: continuous, such as p-values from
previous studies, or categorical, such as membership to a group, e.g. a chromosome.

Several methods allow incorporating one source of auxiliary information in a re-
gression framework (Tai and Pan| 2007, Boonstra et al., 2013). A popular method
is the (sparse) group LASSO (Yuan and Lin| 2006; Simon et al., |2013]), which pe-
nalizes groups of variables using one common hyperparameter for all groups. Such
a solution is attractive when the number of covariate groups is large, but lacks
flexibility and fails to adapt locally in other settings, leading to sub-optimal re-
sults (Miinch et al.;2019). More recent work focuses on the estimation of adaptive
penalties with prior variances specific for each group (Van de Wiel et al., [2019;
Velten and Huber, [2019; [Miinch et al., [2019). These methods, however, are re-
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strictive in use as they either deal with just one (discrete) co-data source or handle
one specific type of outcome only. In Van Nee et al.| (2021)), instead, a Ridge re-
gression method is proposed that allows for multiple co-data sources by regressing
the local variances on the co-data. In this work the co-data regression parameters
are estimated independently for each co-data source and are eventually combined
using a vector of weights, where each parameter is related to the importance of a
single co-data source.

Here, we present a novel Bayesian method for both linear and binary regression
that accounts for multiple co-data information. In particular, we introduce a
generalization of Horseshoe regression (Carvalho et al., [2010)), referred to as the
informative Horseshoe regression model (infHS). We regress the local variances on
the co-data variables, following the work of Van Nee et al.| (2021). In contrast
to [Kpogbezan et al.| (2019), where the Horseshoe prior is used with only a single
two-group co-data source, our model is flexible with respect to the co-data type, as
it allows for both continuous and discrete co-data predictors. Moreover, it extends
to binary outcome via probit regression (Albert and Chib; 1993)). Unlike Van Nee
et al.| (2021), it tackles the sparse setting and co-data regression parameters related
to different sources are estimated jointly, avoiding multiple regressions for each co-
data source separately.

We first propose a Gibbs sampler for iteratively updating posterior param-
eters. We introduce a novel rejection sampling method for sampling from the
non-analytical full-conditional distribution of the local variances. When the num-
ber of variables increases, we rely on the computational methods presented in
Bhattacharya et al. (2016) to sample efficiently from a multivariate normal den-
sity. To make the method applicable to particularly large p settings, we develop
a Variational Bayes approximation to the joint posterior distribution, using tech-
niques from Miinch et al.| (2019) to efficiently optimize the target density of the
variational distribution, rendering an algorithm with computation time linear in
p. With simulations and two data applications, we show that both prediction
and variable selection benefit from the inclusion of co-data information, the latter
being particularly relevant under the Horseshoe setting.

The paper in organized as follows. Section introduces the hierarchical
structure of the model and discusses the parametrizations. In Sections |4.3] and
[4.4] we develop the Gibbs sampling algorithm, including the rejection sampling
method to update the local variances. In Section 4.5 we propose the Variational
Bayes approximation to the joint posterior distribution. Section illustrates
the benefit of co-data information on variable selection with a simulation study,
whereas Section presents applications of our model to two data sets, one from
genetics and one from cancer genomics. We conclude with discussions and possible
extensions in Section [4.8]
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4.2 The model

Let y € R™ be the response vector and X € R™*®+1) the design matrix, with the
first column of ones. We regress y on X using a generalized linear model (GLM)
with regression coefficient vector 8 = [y b1 ... 5]

mnd
EYi|Xi,5 (Yi):g_l (XzTﬁ>7 t=1,...,n,
where x; = [1 21 ... 24" is the set of covariates related to observation i.
Following (Carvalho et al. (2010), the Horseshoe prior locally shrinks regression
parameters toward zero and provides a sparse solution for 3. We assume a normal

prior distribution for each j3;, where the variance is decomposed in a global scale
parameter 7 and a local shrinkage parameter \;. Formally,

Bol o T, o~ N (0,0272)\3) ,
)\0 NC+(O,1),
Bj ‘0_277_7)‘]'NN(07027_2)‘]2’)7 J=1....p

Suppose that D different co-data sources Z; € RP*™d are available, where ), my =

M and d=1,...,D. In order to capture the external information effect, |Van Nee
et al. (2021) introduce parameters wy > 0 and v, € R™, d = 1,..., D, to model
covariate-specific shrinkage A;, j = 1,...,p, as a function of Z = [Zy,...,Zp].

Parameters 7y, represent the regression coefficient vector related to matrix Z, and
are estimated separately for each group d, whereas co-data weights wy; > 0 model
the relative importance of group d and are introduced to combine the different
co-data sources. Here, parameter v = [y]...~L]" is update jointly by sampling
from its full-conditional distribution. This way the co-data sources are naturally
combined and grouping weights wy can be excluded from the model. Therefore,
the hierarchical set of prior distributions in our model is

D
)\J | Z7FY ~C (Z (Z?)T7d753> ‘]I()\].>0), j: 17"'7p7
d=1
7d’2’YdNde(O7E’Yd>7 d:1>"'7D7 (41)
T~C"(0,1),
o? ~IG (v,q),

where C denotes the Cauchy distribution and C* its half-positive part. Here we
model the location parameter of the prior local variances mainly because it allows
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to sample co-data coefficients 4 jointly from a multivariate normal distribution
(See Section [£.3)). Note that when the co-data are not informative and ~, — 0 for
each d, the model reduces to the ordinary Horseshoe prior from |Carvalho et al.
(2010) with s2 = 1.

In [Van de Wiel et al. (2019) the authors estimate prior covariance matrices
34 from the data with an Empirical Bayes estimator separately for each source.
This approach, however, is computationally burdensome, as it implies the im-
plementation of multiple MCMC chains until convergence. Here we consider a
group specific scale parameter k2 and a ridge-like prior ¥y = £2IL, .- The Zell-
ner’s g-prior X, = ¢(Z1Z4)~" (Zellner (1986)) would be redundant as the model
already accounts for collinearity in Z (see Section [4.3)).

A main advantage of this approach is the computational efficiency, since only
prior scale parameters x2 have to be updated. A conjugated prior distribution for
K2 is

K3~ IG (ag,by) . (4.2)

Parameters k3 act deep in the model and one can argue that they should have a
small impact on the global estimation process. For this reason, a non-informative
choice for ag and b; should suffice.

4.3 Posterior inference

In this section we introduce a Gibbs sampler that iteratively updates the parame-
ters by sampling from their full-conditional distributions. We show the details of
the algorithm for the linear regression model, under the assumption

yi=x]B+e, e~N(00%), i=1...n

However, Pélya-Gamma latent variables (Polson et al., 2013) or probit GLM (Al-
bert and Chib, (1993)) can be introduced to augment the model and reach a gaussian
full-conditional distribution for B in a binary regression model.

1. Sampling B and o*. The full-conditional distributions of 3 and o2 are

1

6 | Yy, X7 027 7-27 >\(2)7 A~ -/V;H-l (EEXTy, 0222) s };) = (XTX + 7_2A72)7 ,
(4.3)

n+p+1 32 1 &8
Ea— —Hy XA + 2)\2 Q—Z—g

02|y,X,B,72,)\3,)\NIQ <v+

)
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where A = diag (Ao, A1, ..., Ap). Sampling from requires the inversion of the
p X p covariance matrix 3%, which becomes computationally infeasible when the
number of covariates p increases (the naive inversion is of order O (p*)). For high-
dimensional problems we rely on the strategies introduced in |Bhattacharya et al.
(2016) and Johndrow et al.| (2020)) to reduce the computational costs of sampling
regression parameters 3 to O (n?p) operations.

2. Sampling ). The half-Cauchy prior for the local shrinkage parameter Ay of
the intercept [y is not conjugated to the variance in a linear regression model with
normal errors. We rely on the data-augmentation step proposed in Makalic and
Schmidt| (2016]) in order to easily and efficiently update parameter Ag. The authors
point out that the half-Cauchy distribution can be written as a scale mixture of
inverse-Gamma distributions, which allows conjugate updates of A2. Therefore,
the prior distribution can be rewritten as

1 1
Agywo’\‘l—g (57%)7

1
The inverse-Gamma distribution is conjugated to itself and to the local scale pa-

rameter, therefore a closed-form full-conditional is available and a Gibbs step can
be implemented. The full-conditional distributions of A2 and v are

1 2
>\(2)|5077—270-2N1Zg(1a_+ BO )7

Vg 20%7?

1
w0|>\§~IQ<1,1+—2).
>‘0

3. Sampling X\, v and k*. The prior distributions for \; and v in are
not conjugated. To this aim, we rely on the data-augmentation step proposed in
Geweke| (1993) to reach a conjugated framework and jointly update parameter ~
by sampling from a multivariate normal distribution. Note that the distributions
C (m,s?) and t, (m, s?) are equivalent if v = 1, where ¢, denotes the Student-¢
distribution. At this point we can rely on the result from |Geweke| (1993)), which
states that a Student-¢ distribution can be formulated as a mixture of Normal and
Inverse-Gamma distributions. Formally, let

D
11 ,
)\J | Z7 s Spi ~ N <Z (Z?)T Y 53‘:05) 'H(/\j>0) and 902 ~ Ig (57 5) ) for J=4.--D

d=1
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then \; | Z,v ~ t; (Zé):l (z?)T'yd,sg). Therefore, after the introduction of a

latent factor ¢? ~ ZG(1/2,1/2), the prior distribution of \; can be conveniently
re-written as a normal distribution truncated at 0. This way the normal prior for
co-data regression coefficients v is conjugated and the parameters can easily be
updated by sampling from a multivariate normal distribution. The set of prior
distributions for parameters \;, gp?, 7, can be re-written as

D
Al Z,7, @? ~N (Z (Z?)T’Ydasg@?) Iia>0)
d=1
11 )
@3Nzg(§7§)7 ]:17"'7]97

Yq Ii?l ~ N, (O, mfllmd),
K?INIg(ad,bd), dzl,,D

Let p; = S0, (z9)"vg, A =[A1... \))" and ®% = diag (¢), with o = [¢F,...,¢2]".
The full-conditional distributions of Ao, A;, 7, @? and 2 in the augmented model
are

. ]I()\j >0) )

Y Z X o, k> ~ Ny (33 (Z7®2N) 5557

m T
l{?l|7dNIg (ad—f—?d)bd—'—%)?

where £% = (Z7®2Z + s2D;') "' and D, = diag (k21yn,, .., k51,,). Details
for sampling parameters \; without computing the unknown normalizing constant
are given in Section

The introduced framework presents a computational advantage: the local vari-
ances /\? can be computed in parallel, potentially improving the efficiency of the
model.

4. Sampling 2. As for the scale parameter A2, the half-Cauchy prior for the
global scale parameter 7 is not conjugated to the prior variance of 3. Therefore, we
rely on the strategy proposed by Makalic and Schmidt| (2016) in order to update
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7 and we assume the prior distributions

11
?le-a8(5q)

(~ TG <%1>
2

The full-conditional distributions for 7= and ( are available in closed-form. In
particular the parameters are updated by sampling from the following densities:

2 2 42 p 1 B{% 1< 12
B,0% NN, (~T —+1—+—+—§ 2
T 1B 0% A A C~ TG 2 (¢ 202\ 20 — A2

<|72~Ig<1,1+i2).
T

4.4 Rejection sampling for parameters )\;

In this section we propose a novel rejection sampling algorithm to sample shrinkage
parameters \;, j = 1,...,p, from the full-conditional distribution without knowing
the normalizing constant. The rejection sampling allows to draw a new value x,
from a density f by sampling it from a proposal distribution g and accepting it
with a probability proportional to the ratio r(z,) = f(z.)/g(z.). In particular, g
must be chosen such that the support of f is a subset of the support of g. Let

f(z)

k =sup,—— < 00

g9()

and accept x, with probability a = f(z,)/(kg(z,)). It can be shown that the
acceptance probability of the algorithm is 1/k. Therefore, the goal is to find a
proposal distribution g such that k& is small. The rejection sampling works also if
the normalizing constant of f is unknown, as long as a sampling method for g is
available.

Consider the following density

—1 _—1p/z?2—a?z? x
fla) = cpate Do),

where ¥, a* > 0, 8 € R and ¢ is the unknown normalizing constant. New val-
ues are sample(l Erom the proposal distribution g(x) ~ Gs, (7, a, ), with density
g(z) = cgale™ ™" 5% where v € N*. We set parameters o and 3 equal in both
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Algorithm 13: Gibbs sampler for Informative Horseshoe regression

1 Input: B,bn € N,y e R", X e R™*WPHD  Z, . [ Zp € RP*™a a b e RD,
s5 € Ry;
// Set \y=1, A=1,, v=0) and 0%, 72 =1 and sample
parameters ¢, k> and ( from their prior distributions
for b=1 to B do
3 sample 3 |y, X, 02, 72, )\%,1)\ ~ Npi1 (B5XTy, 0?%%), where
= (XTX + 7'_2A_2)7 ;
4 | sample A3 | By, 7%, 0% ~ IG ( -+ 0272>'
5 sample g | A3 ~ ZG (1, 1+ p>;
0

6 for j =1 topdo

N

,L,iJF”JAJ
7 sample \; | Z, B;,0%, 72,7, 03 < A 'e 20207 2ol sG] Ty >0)
following the procedure in Section ;
8 sample gp? | Z,\j,v ~IG (1,%—#%);
9 end

10 sample v | Z, X, @, k* ~ Ny (E5 (Z7@?N) , s3%7), where

S = (2@ ?Z + 2D;') " and D, = diag (K21, -+, KLy );
11 for d=1to D do

12 ‘ sample k2 | v, ~ ZG <ad+%,bd+%>;

13 end

14 sample 72 | 3,0, N2\, ~ IG (g +1, % + 202/\2 + 55 > Aé);
15 sample ¢ | 72 ~ ZG (1,1 + %);

16 | sample 0 |y, X, 3,73\, A ~

g (U + n+§+17q + %Hy - XBH% 272,\2 + 272 Z] 1 ,\2)

17 if b > bn then

18 ‘ save 3, 0%, 72, A3, A, v and K?
19 end
20 end

21 return saved values;
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f and g in order for the ratio r(z) to be analytically tractable and easily maxi-
mized. Eventually, the acceptance probability is optimized through the choice of
parameter . This choice of o and f yields

c
7“(1') = _fx_7—16—¢/z2 . H(x>0)7
Cg

which has one positive maximum at & = /2¢/(y + 1). Details for sampling from
a Gy, distribution are shown in Section [3.3]

The best theoretical way to choose the parameter ~ is to differentiate k =
r(&)cg/c, with respect to v and find the optimal value. However, this can only be
done with iterative methods, which negatively affects the computational efficiency
of the method. An alternative solution is to set parameter v such that distributions
f and g have the maximum at the same value x,,,,. That is, the maximum of f
is computed by solving a quartic equation and the parameter 7 is estimated as

Y = Tiaz (2a2xmm — ﬂ) > —1.

Since v € N{, the closest non-negative integer is chosen. An example of the
method is shown in Figure [£.4.1} where the normalizing constant ¢y is computed
by numerical integration.

For some settings of the parameters ¢, o and (8 the acceptance probability of
the proposed algorithm decreases toward 0, affecting the efficiency of the algorithm.
For this reason, and for avoiding the explicit inversion of covariance matrix 22, in
the next section we present a Variational Bayes algorithm which overcomes these
problems.

4.5 Variational Bayes approximation

When the number of covariates is huge the method introduced in Section
becomes computationally infeasible. In this section an efficient approximation of
the joint posterior distribution is discussed.

Variational inference (V1) is a deterministic optimization method to approx-
imate the target density 7 (6 |y, X,Z), with @ = (8, 2, X\, ¢, p,7, Kk, 7%, ¢, 0?),
with another variational distribution ¢ (0) and reduces Bayesian inference to an
optimization problem (Salimans et al.) 2015; |Lee, 2022)). The goal is to find
q(0) that minimizes the Kullback-Leibler divergence (KL) between the target
density and the variational distribution. The minimization problem in is even-
tually reduced to the maximization of the variational lower bound, defined as

L=E,[logm(0,y,X,Z)] — E, [logq (6)].
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1.0
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Figure 4.4.1: comparison of f(z) and g(x) with v = 2, o? = 2.25 and 8 = —2.
Estimated parameter v = 5; the acceptance probability is a = 0.65.

A common factorization for ¢(@) is the so-called mean-field Variational approz-
imation (Jordan et al [1999: |Beal, |2003), which is a compromise between compu-
tational tractability and accuracy of the performances. The variational family ¢(0)
is assumed to be the product of independent marginal variational factors gy (0%),
k=1,..., K. We rely on the Coordinate Ascent Variational Inference algorithm
(CAVI) (Bishop and Nasrabadi, 2006; Blei et al., [2017)) to solve the optimization
problem above. Until convergence of the lower bound £, the CAVI algorithm it-
eratively updates the parameters of the variational factors gy (6x), k = 1,..., K,
based on prior distributions’ hyperparameters and the current expectation of factor
q—r (0_1), considered fixed (Lee| |2022)). This way the model is able to account for
non-linear dependencies among the parameters. Under the mean field approxima-
tion, where the components are assumed to be independent, the optimal solution
is given by

q" (6k) < exp {E,_, [log7 (6) | 6-1,y, X, Z)]} .

While the assumption of independence between factors is particularly strict, the
CAVT algorithm provides a flexible approach and is ensured to converge to a local
optimum (Blei et al., 2017). Note that, when working with exponential families
in a conjugated framework, variational factor ¢(fx) has the same kernel of the
tractable distribution 7 (0 | 0_x,y, X, Z).

Under the assumptions of the model introduced in Section [4.2] the mean field
approximation yields

q0)=q(B)-q(A)-a(M)--..-qa(Np)-q(wo)-q(el) .- q(e)-
q(v)-q(s3) .- q (kD) -a(r?) - a(¢)-q(c?),
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where ¢ (8) and ¢ () denote the joint variational distribution of fy, ..., S, and
Y1, - -+, YM, respectively. At each iteration of the algorithm, the variational factors
are updated as

7" (8) = Np1 (15, Eq2 [0%] 25)
ph =Xy, = <XTX + Egre [7—2A—2})_1 ,
¢ (\) =ZG (1,a5),
* —1 ]' Bg
CLO = Eg [¢0 ] —+ 5E50.02.T2 2— s

o272
q" (o) = ZG (1,kg),
ko =1+E); (A7,

*

a/' .
7 (Aj) x )\;1 exp {—/\—72 — b;)\? + c;)\j} Iony>0, J=1,...,p,
J

1 62 * 1 -2 * 1 7
a; = SEp g2z [02—;2] , by = 2—53]%2 [0;°], €= 5Z]E, [—g ;

So
¢ (v7) =26 (L. d;),
d; = % + %EM [()\j — z}’yﬂ ;
¢ () = N (15, 56%3)
W =S1ZEp, (872X, £%=(Z'E: (@2 Z+sE: [D,']) ",

q*(/ﬁzﬁ) =7G ey ), d=1,...,D,

d N 1
e; = aq + 5 fi="baq+ §E7 (Yiva)
¢ (r*) =16 (g + 1,g*> :
1 32 1< 5
* -1 0 J
g = EC [C ] + §]E,30'>\3‘7'2 [_T2A3:| + 5 ZEﬂ.gQ.)\ |:0_2)\2 )

7j=1 J

q () =ZG (1,h),
B =1+E. [,

¢ (o) =16 <U n %p“z) ,

=gtz (E X823 +E %143 E i
—Q+§ s [lly — XBl135] + Bo-AZ-72 7T)\3 + BT —)\? ;

; 72
J=1
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where the expectations are taken with respect to the updated variational fam-
ily ¢*(0). The variational lower bound £ of the marginal distribution p (y) is
computed as
L =Eg [logr(0,y,X,Z)] - Eg [log g* (0)]
=E, [logp (y | X B, 2)} + E [logﬂ (,8 | 02,72,)\3,)\)] +E, [logﬂ ()\g ] wg)] +
Eg [log 7 (¢0)] + Eg« [logm (A | Z,7y,9%)] + Eqg [logm (@?)] + Eg [logm (v | £%)] +

] +
[log m (k?)] + Eg [logm (72 | ¢)] + Ege [log 7 (¢)] + Ege [log 7 (02)] —
¢ Log ¢* (8)] — Eg [log " (A])] — Eqs [log ¢* (tho)] — Egs [log ¢* (A)] — Eq- [log ¢* (#%)] —
o log ¢* (7)] — Eg [log ¢ (k%)] — Eq [log ¢* (7°)] — Eq [log ¢* (¢)] — Eg+ [log ¢* (0%)]

+1 1
(log |3%] + log \E*]) + TEUz [log 02} — (v + %) log I*+

Mﬁw

(log s; —log kj + aSEx [A;?] + bIEx [A]] — B [A] — logd}) —

J=1

NE

e;log fi— (g + 1) log g* — log h* — log aj — log kg, (4.5)
d=1

where k; = 1—P (N (2], s3¢?) < 0) and s; is the unknown normalizing constant
of parameters \; in . Each component is derived in Appendix 4.A.1]

As opposed to the Gibbs sampler, the Variational algorithm does not require
the explicit inversion of the p X p matrix 3%, as only the quantities 33XTy,
diag (Eg) and X33XT are needed. These can be efficiently evaluated with com-
plexity O (n?p) following the work of Miinch et al.| (2019). The details are shown
in Appendix The bottleneck of the algorithm is the computation of the terms
log s, Ex [Aj], EA [/\2} and E, [)\ ] since no closed-form is available. These can be
evaluated by numerical integration, for example with the Gaussian quadrature rule
or its adaptive variation called Gauss-Kronrod quadrature formula. Depending on
the posterior parameters aj, b7 and ¢}, this strategy is prone to numerical insta-
bility. To avoid overflow problem, we evaluate these integrals with the following
step:

Step 0: assume we have to evaluate fooo f(x)dz, where f(x) o< x¥ exp {—dz™% — bx? + cx}-
I(x;>0), where v = {—3,—1,0,1};

Step 1: compute the maximum & by solving a quartic equation and evaluate
f(&) on the log-scale;

Step 2: evaluate ig = [ exp {log f(z) — log f (&)} dz numerically;
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Algorithm 14: Variational Bayes approximation for informative Horse-
shoe regression
1 Input: y € R", X € R0+ 7, [ Zp e RP*™ v g€ RY a,b e RD,
s5 € Ry
// Set b=1, e=10"3, £© = —00 and initialize all the needed
moments
2 while £® — £0=D > ¢ do
3 Update parameter p and compute the quantities diag (Eg), |3%] and
X3%XT as in Appendix ;
4 Update parameters aj and kj;

5 Update parameters aj, b7, ¢; and dj and evaluate the normalizing
constant s;, Ey [A;], Ex [A2] and E, [A;?] with numerical integration,
forg=1,...,p;

Update parameters p and E;;

Update parameters e and fj, ford =1,...,D;

Update parameters g* and h*;

Update parameter [*;

10 Compute £® and set b= b+ 1;

11 end

© 00 N o

12 return pj, 35, ag, a*, b*, ¢, i, X7, e, ¥, g* and I*;

Step 3: return exp {logio + log f()}.

As for the Gibbs sampler in Section[4.3] the efficiency of the model can be improved
by evaluating these quantities in parallel.

4.6 Simulation study

In this section we empirically show the quality of the Variational approximation
to the joint posterior distribution and that variable selection benefits from the
co-data sources with a model-based simulation study. In particular, we assess
the effectiveness of the approximation on low to moderate p problems, whereas
variable selection is evaluated with the Variational algorithm on higher dimensional
frameworks.

For all the considered cases we rely on the following simulation scheme. Let 3"
be the true (p+ 1)-dimensional regression parameter vector. We set 