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Abstract
This paper studies groundwater management through a leader–follower differential game
between a water agency and farmers. The access to the common pool is not free and farmers
have to pay a water tax to withdraw. To save this cost, we assume that farmers may not
declare all the water pumped and face the risk of being sanctioned. The water agency, on
the other hand, knows that unauthorized water extraction may occur and chooses the water
tax that maximizes only the legal social welfare. The value of the farmers’ evasion share is
unknown ex-ante by the water agency. The game is solved using feedback Nash solution.
To understand how the water agency may counter illegal behaviors, we perform numerical
simulations based on theWestern LaMancha (Spain) aquifer data. It emerges that the optimal
path of the water table is always above the minimum level, although it is sensitive to the
level of the ecosystem costs. Moreover, increasing the administrative sanction reduces the
unauthorized water extraction and raises the social welfare.

Keywords Leader–follower differential game · Groundwater management · Unauthorized
water extraction · Feedback solution

1 Introduction

As a common-pool resource, all over the world water is pumped from beneath the ground
faster than it is being replenished through rainfall. Moreover, the problem of groundwater
exploitation is often accompanied by the phenomenon of unauthorized extraction. This occurs
in many areas of the world, especially in arid regions or in areas experiencing population
growth [10], both in developed and developing countries. For instance, inWestern LaMancha
region, according to [17], half of all firms may pump in an illegal way. A similar share of
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illegal pumping is estimated also in Chile, according to the work of [6]. Non-compliant
behaviors occur also in the USA [7]. These illegal practices could enhance the groundwater
exploitation since the water agency interventions are less efficient.

The economic rationale for groundwater management has been widely questioned since
the seminal work of [14]. They estimate that welfare gains from policy intervention are inef-
ficient compared with competitive outcomes. Gisser and Sanchez’s theoretical prediction is
that if the storage capacity of the aquifer is relatively large, then the two systemswould be very
close. These results have produced an extensive literature about groundwater management
(cf., [16]).

Among game theory approaches, the widely used is the dynamic one, in particular the
differential game. [18] determines open-loop and feedback Nash solutions showing that the
open-loop equilibrium captures only the pumping cost externality; however, in the feedback
approach, the strategic externality also emerges. Moreover, if the objective function of the
problem is concave, [23] show that the feedback solution increases in inefficiencywith respect
to the socially optimal outcome. Starting from [14] model, [25, 26] propose a differential
game and determine analytical solutions of both open-loop and feedback scenarios over an
infinite planning horizon. Their results are in line with ones of [14] and [18]. Indeed, they
show that strategic behavior increases the exploitation of the aquifer compared with the open-
loop solution, but if the groundwater storage capacity is large, then the difference between the
social optimum and private extraction is negligible. [12] introduce ecosystem damages show-
ing that these environmental externalities can change the results substantially. [3] consider
heterogeneous farmers in terms of behavior, cooperators and outsiders, in the exploitation
of the water resource. Finally, [4] determine the efficient extraction of groundwater among
overlapping generations.

However, the problem of illegal behaviors has been investigated mostly related to tradable
permits (see, among others, [1, 27, 29]) and particularly in fisheries (see, among others,
[8, 15]).1 Otherwise, to our knowledge, only few papers deal with illegal water extraction,
namely [2, 5]. In both papers the population of farmers is composed of two types, compliant
and non-compliant, and are studied in two different contexts, differential game the first,
evolutionary game the second. In this model, instead, we assume a population of identical
farmers that choose an evasion share since they can adopt illegal behaviors not declaring all
the water pumped. Moreover, here the water agency is a player of the game.

The aim of this paper is to investigate how the interaction between farmers and the water
agency may arise illegal behaviors and how to counter them. For this purpose, we present
a leader-follower differential game, where the water agency is the leader and the farmers
are the follower. The last ones maximize profits myopically without considering the effects
of their choices on the water table elevation. The water agency chooses the water tax that
maximizes the social welfare under constraint of the water table dynamics. Differently from
other papers, on the subject of groundwater management, we assume that the water agency
knows the existence of non-compliant behaviors and, therefore, it maximizes only the legal
net benefits. Related to this novelty, we assume that the farmers, to save on tax cost, may
decide not to declare all the water pumped and face the risk of being sanctioned by the
water agency. However, the water agency does not know ex-ante the value of the farmers’
evasion share and so it is exogenously given in the inter-temporal maximization problem.
The game is solved by feedback Nash solution, and we derive policy implications performing
numerical simulations using real data from Western La Mancha aquifer. It emerges that the

1 Differently from these models that are analyzed in a static context, we propose a dynamic game between
farmers and the water agency. This approach is widely used in the resource economics literature (cf., [28]).



998 Dynamic Games and Applications (2022) 12:996–1009

water table at the steady state is always above its minimum level and the pattern is sensitive
to the value of the ecosystem costs. Moreover, if the sanction increases, the non-complaint
water withdrawn decreases and the social welfare increases. However, the water table falls
(although it remains above the minimum level).

The paper is organized as follows. Section 2 presents the problem of the farmers and
the water agency, and Sect. 3 determines the feedback equilibrium and the evolution of
groundwater level. Section 4 proposes numerical simulations about the effects of policy
instruments and Sect. 5 concludes.

2 TheModel

Let us consider a group of N identical farmers that share a common groundwater resource.
According to [14, 25], the demand for irrigation water is a negatively sloped linear function:

W = α − β p

where W ≥ 0 is the total water pumped, α > 0 is the intercept, −β is the slope, with β > 0,
and p is the price. Assuming competitive markets and symmetry between farmers it occurs
that W = wN . Therefore, integrating the water price, we obtain the firm’s level revenues:∫

p(w) dw = α

β
w − N

2β
w2

The total cost of extraction is a function of both water pumped w and water table H :

C(w, H) = (c0 − c1H)w

where c0 > 0 is the maximum average cost of extraction and c1 > 0 is the marginal pumping
cost with respect to the level of aquifer H [25]. The ratio H = c0

c1
represents the maximum

water table elevation (the level of the groundwater in absence of exploitation). The right of
pumping water for irrigation is given by the water agency after paying a tax τ ≥ 0 (e/Mm3)
on individualwithdrawals (cf., [11, 24]). To save the tax cost, a farmer could not declare all the
water pumped, choosing an evasion share θ ∈ [0, 1] and facing the risk of being sanctioned
by the water agency. Therefore, (1 − θ)w is the amount of water pumped legally, while θw

represents the amount of water pumped illegally. The profit function is the following:

max
θ(t),w(t)

� =
∫ +∞

0
π(θ(t), w(t)) e−r t dt (1)

where

π = α

β
w(t) − N

2β
w2(t) − (c0 − c1H(t))w(t) − (1 − θ(t))τ (t)w(t) − φθ(t)τ (t)σw(t),

r ∈ (0, 1) is the discount rate, φ ∈ (0, 1] is the probability of being discovered by the water
agency, and σ > 1 is the administrative sanction.2 We assume that the probability of being

2 In the real world, an example of multiplicative sanction is given by the California Cap and Trade System, in
which σ = 4 (see https://ww2.arb.ca.gov/resources/documents/faq-cap-and-trade-program). Differently, in
the European Emission Trading System the sanction is additive, EUR 100/tCO2 (USD 114.22/ tCO2) for each
ton of CO2 emitted for which no allowance has been surrendered, in addition to buying and surrendering the
equivalent amount of allowances (see https://icapcarbonaction.com/en/?option=com_etsmap&task=export&
format=pdf&layout=list&systems%5B%5D=43).

https://ww2.arb.ca.gov/resources/documents/faq-cap-and-trade-program
https://icapcarbonaction.com/en/?option=com_etsmap&task=export&format=pdf&layout=list&systems%5B%5D=43
https://icapcarbonaction.com/en/?option=com_etsmap&task=export&format=pdf&layout=list&systems%5B%5D=43
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discovered is a function of the evasion share:

φ = ηθ(t) (2)

where η ∈ (0, 1] is a parameter that captures the monitoring effort of the water agency.
Differently from farmers, the water agency chooses the water tax in order to maximize

the social welfare (SW ), composed of net benefits (NB) and environmental damage (ED),
subject to thewater table dynamics, composed of natural recharge (R > 0), farmers’ pumping
and natural discharge3:

max
τ(t)

SW =
∫ +∞

0
[NB(t) − ED(t)]e−r t dt (3)

s.t. Ḣ = [
R − (1 − γ )Nw(t) − (H(t) − Ĥ)δ

] 1

Sa
H(0) = H0 and H(t) > Ĥ (4)

where Sa > 0 represents the aquifer area times storativity, γ ∈ (0, 1) is the return flow
coefficient, δ > 0 represents the natural discharge parameter, Ĥ refers to the minimum level
of the water table for which the natural discharge is nil, and H(0) = H0 is the initial value
of H at time t = 0. The condition H(t) > Ĥ is necessary to avoid environmental disasters.
Indeed, suppose that the natural discharge of a such aquifer is an adjacent river. If H(t) > Ĥ ,
the water goes from the aquifer to the river. However, if H(t) < Ĥ , the water goes from
the river to the aquifer, and this may have disastrous environmental consequences. For this
reason, we assume that the water agency has as a constraint H(t) > Ĥ .

The water agency knows that the farmers could not declare all the water pumped, and,
therefore, the net benefits are represented by only the legal net profits, namely the represen-
tative firm’s profits that derive from pumping legal water without taxation and sanction times
the number of firms N . Denoting with wc the compliant water withdrawn, we can define the
net benefits as:

NB(t) =
[

α

β
wc(t) − N

2β
w2
c (t) − (c0 − c1H(t))wc(t)

]
N

Since wc = (1 − θ(t))w, we can rewrite the net benefits as:

NB(t) =
[

α

β
w(t) − N

2β
(1 − θ(t))w2(t) − (c0 − c1H(t))w(t)

]
(1 − θ(t))N (5)

Finally, the environmental damage is composed of two parts: the cost of capture, namely
the ecosystem damages associated with consumptive uses [21], and the cost the ecosystem
damages associated with non-consumptive uses [13]. Formally:

ED(t) = [
R − (H(t) − Ĥ)δ

]
λ + (H − H(t))μ (6)

where λ > 0 and μ > 0. Following [22], we can rewrite the environmental damage as

ED(t) = d0 − d1H(t) (7)

where d0 = (R + �)λ + μH , d1 = δλ + μ, and � = δ Ĥ .

3 The natural discharge can be a river or a groundwater-dependent ecosystem adjacent to the aquifer [19].



1000 Dynamic Games and Applications (2022) 12:996–1009

3 The Differential Game

The interaction between the water agency and the farmers is given by a leader–follower
differential game, in which the water agency is the leader and the farmers play the role of the
follower. The dynamics of the game is the following:

(1) the water agency announces the water tax;
(2) the farmers choose the optimal share of evasion θ and the optimal pumping level w

solving the problem (1);
(3) the water agency chooses the optimal water tax τ solving the problem (3) under the

dynamics (4);
(4) adopting a feedback strategy, the water agency derives the steady-state value of the water

table H .

The farmers, as follower, behave myopically maximizing profits without considering the
impact of their decisions on the stockofwater (see, for instance, [11, 20]). Thewater agency, as
leader, solves an optimal control problem determining the water tax throughout the planning
horizon. Since the farmers hide their illegal behaviors, the water agency does not know ex-
ante the value of the evasion share θ . Therefore, it is exogenously given in the maximization
problem. The following propositions hold.

Proposition 1 Let

H̃ = max

{
0,

(
c0 − α

β

)
1

c1

}
(8)

and

τ =
α
β

− (c0 − c1H)

ησ
(9)

If H ∈ [H̃ , H ] and τ ∈ [0, τ ), then the optimal value of the water pumped is:

w̃ =
[

α

β
− (c0 − c1H(t)) − (

1 − θ + θ2ησ
)
τ(t)

]
β

N
(10)

Otherwise, if H ∈ [0, H̃) and τ ∈ [τ ,+∞), w̃ = 0.

Proof See Mathematical Appendix. ��
Proposition 2 If η ∈ [ 1

2 , 1
]
, the optimal value of the evasion share is:

θ̃ = 1

2ησ
(11)

Otherwise, if η ∈ (
0, 1

2

)
, θ̃ = 1.

Proof See Mathematical Appendix. ��
By Proposition 2 we can infer that the farmers are never fully compliant (θ̃ > 0 always)
and that if the monitoring effort (η) is not sufficiently high then θ̃ = 1, namely the farmers
are fully non-compliant. Moreover, θ̃ is time-invariant, since it is not a function neither of
the control variable nor of the state variable. The threshold level H̃ represents the farmers’
zero water condition. As we are interesting when farmers pump a strictly positive amount of
water and evade only a share of the water pumped, we assume from now that τ ∈ [0, τ ) and
η ∈ [ 1

2 , 1
]
.
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Substituting the value w̃ given by (10) in (3) subject to dynamics (4) and H ∈ [H , H ]
(where H = min{H̃ , Ĥ}), the Hamilton–Jacobi–Bellman (HJB) for the water agency fol-
lows:

rV (H , t) =max
τ

{
N (1 − θ)

[
α

β
w̃ − N

2β
(1 − θ)w̃2 − (c0 − c1H(t))w̃

]

− (d0 − d1H(t)) + V ′(H , t)

Sa

[
R − (1 − γ )w̃N + � − δH(t)

] } (12)

where V (H , t) and V ′(H , t) are the optimal control value function and its derivative with
respect to the state variable H , respectively. The analysis of the model can be found in
Mathematical Appendix. The following proposition holds.

Proposition 3 A unique steady state for the feedback equilibrium of the game exists:

H∗ = −Y

Ŷ
(13)

where

Y = 1

Sa

{
R + � + (1 − γ )ησ [2Sa(βc0 − α)(2ησ − 1) + 4B1(1 − γ )βησ ]

(2ησ − 1)2Sa

}
(14)

and

Ŷ = − 1

Sa

{
ησβ(1 − γ )

[
2(2ησ − 1)c1Sa − 8A1(1 − γ )ησ

]
(2ησ − 1)2Sa

+ δ

}
(15)

The feedback equilibrium water table trajectory is given by:

H(t) = H∗ + (H0 − H∗)eŶ t (16)

where H0 is the initial value of the water table.

Proof See Mathematical Appendix. ��

4 Simulations and Policy Implications

We perform now numerical simulations to derive some policy implications, in particular how
to counter illegal behaviors. Parameter values used are fromWestern La Mancha aquifer and
are shown in Table 1. These data are widely used in the literature (among others, [9, 12, 22]).

The first simulations, see Fig. 1, represent the optimal trajectories of water table H , water
taxation τ , social welfare SW and total water pumped W , divided in compliant (Wc =
(1− θ̃ )Nw∗) and non-compliant (Wb = θ̃Nw∗). In (6) we split the environmental damage in
two parts: The ecosystem costs associated with consumptive uses, [R− (H(t)− Ĥ)δ]λ, and
the ecosystem costs associated with non-consumptive uses, (H − H(t))μ. To better under-
stand the impact of these monetary environmental costs on the dynamics of the model and
considering that in the literature λ ∈ [0, 30000] and μ ∈ [0, 50000], we perform simulations
using three different values of λ and μ, low, medium and high, leaving constant the ratio
between them. The initial condition is the maximum level of the aquifer (665 m, namely
H0 = H = c0/c1) that represents a world without human activity. Conversely, the minimum
level to avoid ecosystem disasters is Ĥ = 600 m. Finally, notice in Table 1 that Ĥ > H̃ .
Therefore, the water tax is always positive and H∗ ∈ (Ĥ , H).
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Table 1 Parameter values

Parameters Description Units Value

α Intercept of the water demand e/Mm3 4400.73

β Slop of the water demand e/Mm3 0.097

c0 Intercept of the pumping cost e/Mm3 266000

c1 Slope of the pumping cost e/Mm3m 400

γ Return flow coefficient − 0.2

Sa Aquifer area Mm2 126.5

R Natural recharge Mm3 360

H Maximum water level and initial condition m 665

Ĥ Minimum water level for nil natural discharge m 600

H̃ Minimum water level for nonnegative τ m 551.5791

r Discount rate − 0.02

δ Slope of the natural drainage e/Mm3 5.53

η Monitoring effort − 0.8

σ Administrative sanction − 2

N Number of farmers − 50
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Fig. 1 Optimal trajectories of H , τ , SW , W , Wc and Wb

As one may expect, since H0 = H , the steady-state value of the water table is lower than
the initial level, H∗ < H0, namely the water table decreases as time increases (see Fig. 1a).
Notice that H∗ > Ĥ and so the natural recharge is sufficient to restore the aquifer. One of
the consequence of a lower water table is higher pumping cost (remember that C(w, H) =
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Table 2 Steady-state values

Function λ = 6250, μ = 10000 λ = 12500, μ = 20000 λ = 25000, μ = 40000

H∗ 611.1922 m 620.0834 m 637.8667 m

τ∗ 14903.2668 e/Mm3 17126.1465 e/Mm3 21571.9059 e/Mm3

SW∗ 3301227.6481 e 1582331.7164 e −46183.7949 e
W∗ 372.4941 Mm3 310.9203 Mm3 187.7729 Mm3

W∗
c 256.0897 Mm3 213.7577 Mm3 129.0938 Mm3

W∗
b 116.4044 Mm3 97.1626 Mm3 58.6790 Mm3
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Fig. 2 Comparative statics of H , τ , SW , W , Wc and Wb at increasing values of the sanction σ in the steady
state

(c0 − c1H)w)) which can lead to a decrease of the total water pumped (see Fig. 1c).4 Since
the water table level does not affect the optimal evasion share θ̃ (see (11)), then both the total
compliantwaterWc and the total non-compliantwaterWb fall (see Fig. 1d and e, respectively).
Moreover, from the numerical simulations it emerges that τ decreases as time increases (see
Fig. 1b). Finally, lowerwaterwithdrawn reduces both net benefits and environmental damage.
However, the first effect prevails over the second one, and so the social welfare falls (see Fig.
1c).

Figure 1 shows also the importance of the monetary ecosystem costs λ and μ in the
computation of function values in the steady state (see also Table 2). If the ecosystem costs
increases, then also the water tax increases, since τ reduces water pumping and hence the
environmental damage preserving the water table. As consequence, the net benefits falls
and the environmental damage increases, so the social welfare decreases. Notice that if the
ecosystem costs are high, the social welfare can be even negative. Moreover, a higher tax

4 The relationship between τ and H can be positive or negative depending on parameter values, especially
on the magnitude of the marginal pumping cost c1 (a relatively lower c1 causes a positive relation).
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means a higher water table that reduces the pumping costs. Taxes and level of the water
table go in the same direction. A possible explanation of this phenomenon is that a drop in
the water table increases pumping costs making water pumping less profitable. Therefore,
the agency can soften the regulation by not imposing a large tax to control water pumping.
Finally, lower pumping costs imply that the total water pumped increases, both compliant
and non-compliant one.

We focus now on the contrast of illegal behaviors, performing a numerical comparative
statics analysis in the steady state by changing the sanction σ . Obviously, if σ increases,
the optimal evasion share θ̃ decreases, and so W ∗

c raises while W ∗
b falls (see Fig. 2e and f,

respectively). An increase of W ∗
c leads to an increase of net benefits (see (5)) and so social

welfare raises (see Fig. 2c). Interestingly, from simulations it emerges that an increase of σ

causes a decrease of τ (see Fig. 2b). This leads to a rise of the total water pumped (see Fig.
2d) and, as consequence, a drop of the water table (see Fig. 2a).

Also in the comparative statics analysis, the increase of the monetary ecosystem costs
causes an increase of the water tax τ ∗ and of the water table H∗. A higher tax means lower
net benefits (and so, lower social welfare) but also lower water pumped. Since θ̃ is not a
function of λ and μ, then the ecosystem costs have no effects on illegal behaviors. Finally,
notice that if the sanction is low and the ecosystem costs are high, the social welfare is
negative. This means that environmental damage outweighs legal profits and so to ensure
a positive social welfare is necessary a relatively high sanction. Moreover, it is outlined a
non-monotonically shape between sanction and social welfare as well as sanction and non-
compliant water (always for relative low values of the sanction). This is particularly the
case when monetary ecosystem costs are high and when social welfare is negative. Probably
it happens because the sanction is not sufficiently high to ensure a positive social welfare
(remember that it is composed of only legal profits). Such limit case may present incentives
to be non-compliant also for increasing values of the sanction (but up to a certain point).

Summarizing, the sanction can reduce non-compliant behaviors and increase the social
welfare. However, it has negative effects on the water table (higher sanction leads to lower
aquifer level), although it remains above the minimum level.

5 Conclusions

Unauthorized water extraction is a phenomenon not yet satisfactorily investigated, in particu-
lar from a theoretical point of view. To fill this gap in the literature, we built a model in which
the farmers, in order to save a tax on withdrawals, can evade a share of the water pumped
facing the risk of being sanctioned. The water agency knows that non-compliant behaviors
may arise and so its objective function is composed of only legal social welfare. (Profits
derived from illegal water pumped are not maximized.) However, the water agency does not
know ex-ante the value of the water evasion share, hidden by the farmers. The sequence of
the game is the following: (1) the water agency announces the water taxation, (2) farmers
choose the level of pumping and the share of evasion, (3) the water agency chooses the water
taxation that maximizes the social welfare, (4) adopting a feedback strategy, the steady-state
value of the water table is derived.

Numerical simulations, using Western La Mancha data, show that all the key functions
of the model, such as water table, social welfare, taxation, and total water pumped (both
compliant and non-compliant), are all decreasing over time.Moreover, the quantitative results
are very sensitive to themonetary ecosystem costs associatedwith both consumptive and non-
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consumptive uses. Indeed, these costs increase the water table and the taxation while reduces
the water pumped (both compliant and non-compliant) and so the social welfare (that could
be negative if these costs are high and the sanction is relatively low).

In addition, to counter non-complaint behaviors, we perform a comparative statics analysis
in the steady state changing the sanction level. It emerges that the sanction can reduce these
unauthorized water extraction at the expense of lower water table (although it remains above
the minimum level).
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Mathematical Appendix

Proof of Proposition 1

Substituting (2) in (1) and given the value of τ and H , the first order conditions with respect
to water pumped are:

∂π

∂w
= α

β
− N

β
w − c0 + c1H − (1 − θ)τ − θ2ητσ = 0

Solving, we get:

w = w̃ :=
[

α

β
− (c0 − c1H(t)) − (

1 − θ + θ2ησ
)
τ(t)

]
β

N

Notice that w̃ > 0 if and only if

τ <

α
β

− (c0 − c1H)

1 − θ + θ2ησ

Since τ(θ) is a continuous function over a closed and bounded interval [0, 1], then the extreme
value theorem occurs. Differentiating, we obtain:

τ ′(θ) =
(

α
β

− c0 + c1H
)

(1 − 2θησ)

(1 − θ + θ2ησ)2

http://creativecommons.org/licenses/by/4.0/
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Equaling to zero, we get θ = 1
2ησ

. It occurs τ ′(θ) > 0 for θ ∈
[
0, 1

2ησ

)
and τ ′(θ) < 0 for

θ ∈
(

1
2ησ

, 1
]
. Therefore, θ = 1

2ησ
is a maximum point. Moreover,

τ(0) = α

β
− (c0 − c1H) and τ(1) =

α
β

− (c0 − c1H)

ησ

and so, τ(0) > τ(1). Therefore, w̃ > 0 ∀ θ ∈ [0, 1] if and only if

τ < τ :=
α
β

− (c0 − c1H)

ησ

Moreover, notice that τ ≥ 0 if and only if:

H ≥ H̃ :=
(
c0 − α

β

)
1

c1

Therefore, τ ∈ [0, τ ) is a sufficient condition to ensure a strictly positive water pumped. If
the condition τ < τ is not satisfied, thenw could be equal to zero, and so no water is pumped
by the farmers.

Proof of Proposition 2

Substituting (2) in (1) and given the value of τ and H , the first order conditions with respect
to evasion share are:

∂π

∂θ
= τw − 2θητσw = 0

Solving, for w 
= 0 and τ 
= 0, we obtain:

θ̃ = 1

2ησ

Notice that θ̃ > 0 always, while θ̃ ≤ 1 if

η ≥ 1

2σ

Since σ > 1, then η ∈ [ 1
2 , 1

]
is a sufficient condition to ensure θ̃ ∈ (0, 1). ��

Hamilton–Jacobi–Bellman System

Assuming an interior solution and differentiating the right-side of equation (12) with respect
to τ , we lead:

τ = θ [(c0 − c1H(t))β − α]
β(1 − θ)(1 − θ + θ2ησ)

+ V ′(H , t)(1 − γ )

Sa(1 − θ)2(1 − θ + θ2ησ)
(17)

Replacing θ̃ given by (11) in τ given by (17), we obtain:

τ = ησ

{
4[(c0 − c1H(t))β − α]
(4ησ − 1)β(2ησ − 1)

+ 16V ′(H , t)(1 − γ )σ 2η2

(4ησ − 1)Sa(2ησ − 1)2

}
(18)
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Substituting τ given by (18) in w̃ given by (10) and θ̃ given by (11), we have:

w = −ησ

{
2[(c0 − c1H(t))β − α]

N (2ησ − 1)
+ 4V ′(H , t)(1 − γ )βησ

N (2ησ − 1)2Sa

}
(19)

Sustituting (11) and (19) in HJB, and rearranging the terms, it follows:

rV (H , t) =2η2σ 2β(1 − γ )2

S2a (2ησ − 1)2
· (V ′(H , t))2+

+ 2ησ(1 − γ )[β(c0 − c1H(t)) − α] − (2ησ − 1)(δH(t) − R − �)

Sa(2ησ − 1)
· (V ′(H , t))

+ [β(c0 − c1H(t)) − α]2
2β

− d0 + d1H(t)

As the game is of the linear-quadratic variety, we postulate a quadratic function of the form:

V (H , t) = AH2(t) + BH(t) + C

with first derivative:

V ′(H , t) = 2AH(t) + B

where A, B and C are constant parameters of the unknown value function which are to be
determined. Substituting the equations V (H , t) and V ′(H , t) in the HJB, we obtain a system
of three Riccati equations for the coefficients of the value function:

r A = 8η2σ 2β(1 − γ )2

(2ησ − 1)S2a
A2 − 2[δ(2ησ − 1) + 2ησc1β(1 − γ )]

Sa(2ησ − 1)
A + βc21

2
(20)

r B = 8η2σ 2β(1 − γ )2

S2a (2ησ − 1)2
AB + 2(R + �)(2ησ − 1) + 4ησ(1 − γ )(c0β − α)

Sa(2ησ − 1)
A

−δ(2ησ − 1) + 2βc1ησ(1 − γ )

Sa(2ησ − 1)
B − c1(βc0 − α) + d1 (21)

rC = 2η2σ 2β(1 − γ )2

S2a (2ησ − 1)2
B2 + (R + �)(2ησ − 1) − 2c0βησ(1 − γ )

Sa(2ησ − 1)
B + (βc0 − α)2

2β
− d0

(22)

Equation (20) admits two real and distinct solutions:

A1,2 = (2ησ − 1)Sa[(r Sa + 2δ)(2ησ − 1) + 4c1ηβσ(1 − γ ) ± √
D]

16βσ 2η2(1 − γ )2

where

D = (2ησ − 1)(Sar + 2δ)[8ησβc1(1 − γ ) + (r Sa + 2δ)(2ησ − 1)]

is always positive. Moreover, the solution has to satisfy the stability condition
d Ḣ

dH
< 0.

Substituting (19) in the dynamics of the water table (4), and considering that V ′(H , t) =
2AH(t) + B, the stability condition becomes:

d Ḣ

dH
< 0 ⇐⇒ − 1

Sa

{
σβη(1 − γ )[2c1Sa(2ησ − 1) − 8A(1 − γ )ησ ]

Sa(2ησ − 1)2
+ δ

}
< 0 (23)
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that is satisfied by the solution

A1 = (2ησ − 1)Sa[(r Sa + 2δ)(2ησ − 1) + 4c1ηβσ(1 − γ ) − √
D]

16βσ 2η2(1 − γ )2

which is a positive constant.Moreover, from equation (21), we determine the value of B = B1

as:

B1= (2ησ − 1)Sa {2(2ησ − 1)A1(R + �) + 4A1(1 − γ )(βc0 − α)ησ − (2ησ − 1)Sa [c1(βc0 − α) − d1]}
Sa(2ησ − 1)2(δ + r Sa) + βησ(1 − γ )[2c1Sa(2ησ − 1) − 8A1(1 − γ )ησ ]

Finally,

τ ∗ = 8ησ

(4ησ − 1)Sa(2ησ − 1)2

{
4

[
A1(1 − γ )σ 2η2 −

(
2ησ − 1

8

)
c1Sa

]
H(t)

+2B1(1 − γ )σ 2η2 + (βc0 − α)Sa
(2ησ − 1)

2β

} (24)

and

w∗ = 4ησ

N (2ησ − 1)2 Sa

{
β[c1(2ησ − 1)

Sa
2

− 2ησ A1(1 − γ )]H(t) − [ησβB1(1 − γ )

+ Sa
2

(βc0 − α)(2ησ − 1)]
}

(25)

Proof of Proposition 3

Substituting the value of w∗ given by (25) in the water table dynamics (4) we get:

Ḣ = Ŷ H + Y (26)

that is a linear differential equation in which the constants Y and Ŷ are given by Eqs. (14) and
(15), respectively, and depend on the parameters of the model. In particular, Ŷ is negative
since it coincides with the stability condition d Ḣ

dH < 0 (see (23)). Solving Eq. (26) we obtain
the trajectory (16) where H∗ is the steady-state value. ��
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