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An important aspect of large-scale structure data analysis is the presence of non-negligible theoretical
uncertainties, which become increasingly important on small scales. We show how to incorporate these
uncertainties in realistic power spectrum likelihoods by an appropriate change of the fitting model and the
covariance matrix. The inclusion of the theoretical error has several advantages over the standard practice
of using the sharp momentum cut kmax. First, the theoretical error covariance gradually suppresses the
information from the short scales as the employed theoretical model becomes less reliable. This allows one
to avoid laborious measurements of kmax, which is an essential part of the standard methods. Second, the
theoretical error likelihood gives unbiased constraints with reliable error bars that are not artificially shrunk
due to overfitting. In realistic settings, the theoretical error likelihood yields essentially the same parameter
constraints as the standard analysis with an appropriately selected kmax, thereby effectively optimizing the
choice of kmax. We demonstrate these points using the large-volume N-body data for the clustering of
matter and galaxies in real and redshift space. In passing, we validate the effective field theory description
of the redshift space distortions and show that the use of the one-parameter phenomenological Gaussian
damping model for fingers-of-God causes significant biases in parameter recovery.
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I. INTRODUCTION

Galaxy clustering on large scales becomes ever more
important in modern cosmology. The measurements of
baryon acoustic oscillations (BAO) and the power spectrum
shape in the current data allow one to determine cosmo-
logical parameters with precision that rivals the cosmic
microwave background analysis [1–7]. Even more progress
is expected in the era of the upcoming high-precision
surveys such as Euclid [8,9] and DESI [10]; see e.g.,
[11–14].
One of the crucial ingredients for measurement of cos-

mological parameters from a large-scale structure (LSS) is
an accurate covariance matrix for a given summary statistic.

The question of how to estimate covariance matrices and
how they impact cosmological constraints has stimulated a
broad line of research over the past decades. This includes
perturbative calculations [15–20], measurements from
mock catalogs (e.g., [21–23]), and studying the systematic
biases that can arise due to the uncertainties in the
covariance matrix [24–27]. While these significant efforts
focus mainly on statistical errors, it is important to note that
there is another aspect of the covariance matrix treatment
that has attracted attention only recently. This is the
theoretical error (TE) covariance, which is as important
as the statistical covariance for any realistic large-scale
structure analysis [11,12,28,29]. The TE covariance
originates from imperfect knowledge of the theory model
that is used to fit the data. The LSS observables are
sensitive to various nonlinear effects whose accurate
description is quite challenging, both in analytical
approaches to LSS clustering and in N-body or hydrody-
namical simulations. The importance of these nonlinear
effects grows on small scales and therefore impacts a large
number of Fourier modes that are important to constrain
cosmological parameters.
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Theoretical error becomes a leading source of uncertainty
when the statistical errors become sufficiently small (either
due to a large volume of a survey or the analysis being
pushed to smaller scales), at which point it has to be
included in the analysis to avoid biasing the output
cosmology. The standard approach to deal with this situ-
ation is to assume that the fitted theory model is perfect up
to a certain scale (e.g., kmax in the power spectrum case) and
perform the analysis with this data cut. This approach has a
number of disadvantages. First, it is very time consuming,
since the only way to determine the optimal kmax is to run
many Markov-chain Monte Carlo (MCMC) analyses of the
realistic mock data samples; see e.g., [1,30–33]. Moreover,
if a different model or a set of priors is used, one has to
revalidate the kmax choice because the parameter variances
and degeneracy orientations change in this case [30,34].
The second drawback of the kmax analysis is that biases for
different parameters become sizable at very different scales.
This makes the choice of kmax ambiguous. The usual
approach is to choose the cuts such that biases on all
cosmological parameters are significantly smaller than the
statistical error. On the one hand, this choice is the most
conservative as it ignores possible improvements on cos-
mological parameters that are unbiased for larger kmax. On
the other hand, it still does not guarantee the absence of bias
in nuisance parameters, which can be problematic when
doing a joint analysis of different observables (for example,
power spectrum and bispectrum) or combining different
datasets. Finally, using a sharp data cut neglects two
important properties of the power spectrum: (a) the broad-
band power spectrum is smooth, and (b) the shape of the
common features, such as BAO wiggles, can be reliably
calculated for any wave number [35–41].1 These two facts
reveal yet another important limitation of the standard kmax
analysis: it neglects all information from scales beyond
kmax, a part of which can be recovered assuming some
reasonable smoothening of the power spectrum and using
the shape information from the BAO wiggles.
In this paper we show how all these issues can be

resolved including the theoretical error covariance in the
analysis. As a first step, we rederive the theoretical error
covariance emphasizing the similarity of this procedure
with the exact marginalization over a nuisance parameter.
This example naturally suggests that the theoretical error
likelihood should include both the mean and the covariance
of the theoretical uncertainty, with identical shapes. Then,
we propose a new way of extracting these quantities
directly from the mock data and argue that this method
gives a more reliable estimate of theoretical error than the
original approach based exclusively on perturbation theory.
We apply the TE formalism to the N-body simulation

data with volume ∼100 ðGpc=hÞ3, similar to the

cumulative volume of upcoming spectroscopic galaxy
surveys. We explicitly illustrate how the TE approach
allows one to obtain accurate and optimal constraints that
are independent of the choice of kmax and that are not
affected by overfitting. Moreover, the TE guarantees that
both the principal components and their one-dimensional
(1D) projections onto the particular parameter planes are
unbiased, along with the variances of these parameters.
Finally, we show that using the TE covariance indeed
improves constraints on cosmological parameters by
including extra information from the BAO wiggles and
exploiting the smoothness of the broadband power spec-
trum.2 It is important to stress that all these results can be
obtained with a single MCMC analysis, in contrast with the
standard kmax approach.
We scrutinize the effect of TE covariance on the power

spectrum analyses in four difference setups: dark matter
and galaxies in real and redshift space. We analyze the
large-volume N-body simulation data using the power
spectra calculated in the framework of the effective field
theory of a large-scale structure (see [1,30] and references
therein) and explicitly demonstrate that the true input
cosmology is extracted in an unbiased manner in all of
these different examples. Our analyses also validate the
implementation of the effective field theory for various
tracers with the CLASS-PT code [44]. In this context, our
work can be viewed as a companion paper of Ref. [44], as it
proves that the accuracy of CLASS-PT meets the require-
ments of future high-precision surveys.
The paper is organized as follows. We give a theoretical

background on the theoretical error in Sec. II. Section III
specifies our methodology, the theoretical model, and N-
body simulations. Then, we present the TE analysis and
confront it with the standard kmax approach for dark matter
in real space in Sec. IV, dark matter in redshift space in
Sec. V, galaxies in real space in Sec. VI, and galaxies in
redshift space in Sec. VII. We conclude in Sec. VIII. Some
additional material is presented in the Appendixes. Some
details on the choice of the theoretical error are given in
Appendix A. Some details on the fingers-of-God modeling
for dark matter in redshift space are given in Appendix B.
Finally, Appendix C presents tests of the stability of our
constraints with respect to the choice of fiducial cosmology
used to calibrate the theoretical error.

II. THEORETICAL ERROR LIKELIHOOD

In this section we review the theoretical error formalism.
Let us first repeat the derivation of Ref. [28] focusing on the
power spectrum likelihood,

1This statement can be generalized to the primordial oscillating
features in the power spectrum and bispectrum [42,43].

2This approach has recently been validated in a slightly
different context of the reanalysis of the BAO data from the
BOSS survey in Ref. [5].
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−2 lnL ¼ C−1
ij ðPth

i − Pd
i ÞðPth

j − Pd
jÞ; ð2:1Þ

where the sum over ði; jÞ is implicitly assumed, Cij is the
data covariance matrix, Pth is the true theoretical model,
and Pd is the data vector. In practice, the true theoretical
model is not known and we use an approximate
model Papprox

i , e.g., the one-loop perturbation theory, which
becomes less and less accurate on small scales. Theoretical
error is the difference between the (unknown) true theory
and this approximation,

PTE
i ≡ Pth

i − Papprox
i : ð2:2Þ

Let us assume that PTE
i is drawn from a Gaussian

distribution with mean P̄TE
i and the covariance CðEÞ,

PðPTEÞ ∝ exp
�
−
1

2
ðCðEÞÞ−1ij ðPTE

i − P̄TE
i ÞðPTE

j − P̄TE
j Þ

�
:

ð2:3Þ

Marginalizing our original likelihood (2.1) over the theo-
retical error we get the following marginalized likelihood:

−2 lnLmarg ¼ ðCðtotÞÞ−1ij ðPapprox
i þ P̄TE

i − Pd
i Þ

× ðPapprox
j þ P̄TE

j − Pd
jÞ;

CðtotÞ ¼ Cþ CðEÞ: ð2:4Þ

It is instructive to consider a few illustrative examples.
First, let us assume that the theoretical error covariance is

diagonal, CðEÞ
ij ∝ E2

i δij, the mean P̄TE
i ¼ 0, and

Ei ¼
�∞; if k ≥ kmax

0; otherwise
: ð2:5Þ

With this choice the bins with k ≥ kmax are thrown away
from the likelihood and the bins with k < kmax are assumed
to have no theoretical error. This limit corresponds to the
standard analysis with fixed kmax.

A. Theoretical error from analytic nuisance
parameter marginalization

Let us now take a look at the opposite extreme, where the
theoretical error is correlated in all k bins. A simple
example is given by

PTE
i ¼ α

�
ki
kNL

�
4

PlinðkiÞ≡ αEi; ð2:6Þ

whose coefficient is expected to be Gaussian distributed as

α ∼N ðᾱ; σ2αÞ: ð2:7Þ

Such a form of the TE as well as the prior on α can be
motivated either from perturbation theory (as higher
derivative counterterms) or from N-body simulations.
Let us now marginalize over α just as one normally
marginalizes over nuisance parameters in realistic cosmo-
logical analyses. The marginalized Gaussian likelihood can
easily be obtained from (2.1),

−2 lnLα
marg ¼ ðCðtotÞÞ−1ij ðPapprox

i þ ᾱEi − Pd
i Þ

× ðPapprox
j þ ᾱEj − Pd

jÞ;
CðtotÞ
ij ¼ Cij þ σ2αEiEj; ð2:8Þ

where we have used the Sherman-Morrison identity. We
can see that in this case, since the k dependence of the TE is
entirely fixed, the new covariance is fully correlated even if
the data covariance Cij is diagonal. We stress that so far our
calculation has been exact; i.e., up to marginalization over
α, the likelihood (2.8) contains the same information as the
original likelihood (2.1).

B. Theoretical error model

In reality, the exact k dependence of the theoretical error
is not known (otherwise it would be included in the theory
model), but we want to marginalize over it just as we did
with α. In other words, we want to marginalize over all
possible curves within some bounds given by the expected
size of the theoretical error and with sufficient degree of
smoothness. This can be achieved choosing an appropriate
TE covariance matrix. Following [28], we use the ansatz

CðEÞ
ij ¼ EiEje

−
ðki−kjÞ2
2Δk2 ; ð2:9Þ

where we introduced finite coherence scale Δk, whereas Ei
is some k-dependent smooth envelope for the theoretical
error. Note that we neglect the cosmology dependence of
CðEÞ in the same way as it is customarily done for the data
covariance [45] (see [46] for the justification of this practice
for the Cosmic Microwave Background (CMB) ). The
coherence scale ensures that the neighboring bins at a
distance smaller thanΔk are almost fully correlated, but the
allowed theoretical uncertainties can freely vary only on
separations larger thanΔk. Choosing the appropriate limits,
we can recover the two previous examples. In the limit
Δk → ∞ all k bins are correlated and the theoretical error
corresponds to adding the shape EðkÞ to the theory model
and marginalizing over its amplitude. In the opposite limit
Δk → 0 all bins can fluctuate independently and the
theoretical error becomes diagonal as in our first example.
Note that this limit is unphysical because it allows
theoretical uncertainty to have arbitrarily fast oscillations
and it makes the result dependent on the binning.
We will proceed with the following choice for the

coherence scale
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Δk ¼ 0.1 h=Mpc: ð2:10Þ

On the one hand, it is small enough to allow for typical
variations of nonlinear corrections within the usual range of
scales used in the data analysis. On the other hand, it is big
enough to ensure that the broadband theoretical error is
correlated on scales corresponding to the frequency of the
BAOwiggles, kBAO ∼ 0.01 h=Mpc. This can help extract the
information from the BAO even if the envelope Ei is large.
Indeed, the theoretical error with this coherence length

will effectively discard the broadband information, but will
retain the oscillatory features such as the BAO wiggles [5].
Therefore, while increasing the total covariance, the theo-
retical error can possibly improve the constraints on
cosmological parameters by taking into account the infor-
mation on the smoothness of Ei and exploiting any addi-
tional features.
Once the coherence length is fixed, the envelope and the

mean of the theoretical error have to be chosen as well. This
is the most difficult task, since it strongly depends on the
exact model being used and the observable being analyzed.
In the context of perturbation theory a reasonable guess is
P̄i ¼ 0 and the envelope can be estimated as the typical size
of higher loop corrections not included in the model [28].
This theory-inspired estimate does not use any input from
simulations or data, but, strictly speaking, it is expected to
be accurate only on the order-of-magnitude basis. Indeed,
we will see that the perturbation theory-inspired theoretical
error can overestimate the actual uncertainty in real space
by a factor of few. The perturbation theory estimate is even
less reliable in redshift space and can significantly under-
estimate the true theoretical uncertainty, particularly for
higher order multipoles. We illustrate this issue in detail in
Appendix A.
In order to avoid making some overly optimistic or

pessimistic choices in our analyses, we choose an alter-
native, simulation-driven strategy to estimate the mean and
the envelope of the theoretical error. The main idea is to
estimate the TE covariance from the difference between the
data and the best-fit model inferred from an analysis based
on large scales. We assume that the typical size of the
envelope is equal to the TE mean,

Ei ¼ P̄ðTEÞ
i ; ð2:11Þ

in which case the theoretical error is fully characterized by a
single shape P̄ðTEÞðkÞ. Equation (2.11) is motivated by the
example of the counterterm marginalization (2.8), where
the mean and the variance of the theoretical error have
identical shapes.

C. Practical realization

In practice,we suggest the following concrete algorithm to
estimate the theoretical error and construct the likelihood:

1. Choose some fiducial cosmological model. Given
the real of mock N-body data, we compute the
theory prediction for cosmological parameters fixed
to some fiducial values. This step is similar, in spirit,
to choosing a fiducial model for the statistical
covariance matrix.

2. Select some fiducial data cut kfidmax. This data cut
should be reasonably small, such that the theoretical
error is negligible for this data cut. We use the
following procedure. Having fixed some fiducial
cosmology in the first step, we minimize the usual
power spectrum likelihoods with respect to nuisance
parameters for a set of kmax and plot the best-fit
reduced χ2 statistic as a function of kmax. The
corresponding profiles are flat up to a certain scale
k2−loop, at which they start exhibiting significant
scale dependence. This is the scale at which the two-
loop corrections become important. Any choice of
kfidmax that is lower than k2−loop is suitable for our
purposes. In practice, we use kfidmax ¼ k2−loop − Δk0,
where Δk0 ¼ 0.04 hMpc−1. We have tested our
procedure by varying kfidmax and found that it does
not have any significant effect on the results. The
details about the choice of the data cuts kfidmax can be
found in Appendix A.

3. Obtain a fiducial theoretical spectrum at kfidmax. To
that end we fit the power spectrum data varying only
the nuisance parameters at our fiducial kfidmax. This
analysis is very fast, since it requires computing a
single best-fit point involving only the nuisance
parameters. As a result we obtain the best-fit
theoretical curve Pbest−fitðkÞ.

4. Take the best-fit theory curve and compute the
theoretical curve envelope:

PðTEÞ
i ¼ Pd

i − Pbest−fitðkiÞ: ð2:12Þ
This curve may have some stochastic scatter induced

by the data vector Pd
i . To remove it, one can fit PðTEÞ

i
with a smooth polynomial. We will call this smooth

curve P̄ðTEÞ
i .

5. Construct the TE likelihood using P̄ðTEÞ
i as follows:

−2 lnLðPðθ⃗ÞÞ ¼ ðCþ CðEÞÞ−1ij ðPðθ⃗Þ þ P̄ðTEÞ
i − Pd

i Þ
× ðPðθ⃗Þ þ P̄ðTEÞ

i − Pd
jÞ; ð2:13Þ

where θ⃗ is the vector of cosmological parameters
that we want to fit and

CðEÞ
ij ¼ P̄ðTEÞ

i P̄ðTEÞ
j e−

ðki−kjÞ2
2Δk2 ; with k ¼ 0.1 h=Mpc:

ð2:14Þ
An important comment is in order. The key ingredient of

our algorithm is the theoretical error envelope that depends
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on the three particular choices: the fiducial data cut kfidmax, the
fiducial cosmological model, and the mock (or real) data
points. In principle, one has to verify that the final result is
stablewith respect to these three choices. This can be done by
iterating the fiducial cosmology to match the best-fit output
spectra,3 and by varying kfidmax and simulated data points.
However, all these three choices are correlated and effec-
tively they have the same result—the change of the theo-
retical error envelope. Hence, essentially one only needs to
verify that the final results do not varymuch as the theoretical
error envelope is changed within some reasonable range.We
have performed these consistency checks focusing on the
variation of the fiducial cosmology and kfidmax. This test has
shown that constraints on some cosmological parameters are
affected by the choice of the theoretical error envelope in
the unrealistic cases of pure dark matter clustering, while the
realistic redshift space galaxy power spectrum results are
fully consistent and stable with respect to the variation of
the theoretical error envelope.
Finally, it is worth pointing out that the most robust

strategy is to calibrate the theoretical error from simulated
mock catalogs of a given survey and use it in all analyses of
the real data. Unlike the statistical uncertainty, the theo-
retical error covariance does not scale with volume or shot
noise and hence needs to be calibrated only once for a
particular tracer and redshift bin. Besides, in this case one
can include the scatter produced by variations of N-body
simulation parameters in the theoretical error budget, which
is required in order to ensure the stability of the final
cosmological constraints.

D. The choice of theoretical cross-covariance
for redshift space multipoles

So far all our formulas were written for the simplest case
of the real space power spectrum analysis. The treatment of
the theoretical error becomes slightly more complicated in
redshift space. In the plane-parallel (flat sky) approxima-
tion, the redshift space power spectrum is the function of
two variables, the wave number k and the cosine between
the wave vector k and the unit line-of-sight direction ẑ,
denoted by μ,

μ≡ ðk · ẑÞ=k: ð2:15Þ
The redshift space power spectrum can be conveniently cast
in the form of Legendre multipoles Ll,

Pðk; μÞ ¼
X
l¼0

PlðkÞLlðμÞ;

Pl ≡ 2lþ 1

2

Z
1

−1
dμLlðμÞPðk; μÞ; ð2:16Þ

where l ¼ 0, 2, 4 are monopole, quadrupole, and hex-
adecapole moments, respectively.
We need to implement the condition that the theoretical

error is a smooth function in both k and μ. If the theoretical
error curve is a single fixed function of k and μ, and only its
amplitude is unknown, an explicit marginalization over this
amplitude [similar to Eq. (2.8)] suggests that the theoretical
error covariance is fully correlated across μ and k bins. At
the level of the Legendre multipoles, this means that the
theoretical error multipoles are 100% correlated. However,
since the precise shape of the theoretical error is not known
by definition, we will impose some finite correlation
between the TE multipoles using the model similar to that
describing the correlation of k bins,

CðEÞ ðll0Þ
ij ¼ EðlÞ

i Eðl0Þ
j e−

ðki−kjÞ2
2Δk2 e−

ðl−l0Þ2
2Δl2 ; ð2:17Þ

where i, j now run only over the k bins. In what follows, we
will use the minimal nontrivial multipole coherence
length Δl ¼ 2.

The appearance of e−
ðl−l0Þ2
2Δl2 in Eq. (2.17) can be under-

stood from the following argument. If the theoretical error
in ðk; μÞ space were characterized by a single parameter,
i.e., in analogy with Eq. (2.6) it would be given by

PðTEÞðk; μÞ ¼ α

�
k
kNL

�
4

μ4PlinðkÞðb1 þ fμ2Þ2; ð2:18Þ

then the theoretical error covariance between the multi-
poles, obtained after marginalization over α, would be
100% correlated. The shape (2.18) indeed appears at the
next-to-leading order (NLO) in the Taylor expansion of the
redshift space mapping [1]. However, if the theoretical error
were characterized by an independent parameter for every
single multipole (Ll is the Legendre polynomial of order
l), i.e.,

PðTEÞðk; μÞ ¼ α0E0ðkiÞL0ðμÞ þ α2E2ðkiÞL2ðμÞ þ � � � ;
ð2:19Þ

then marginalizations over the nuisance parameters αl
would produce the effective theoretical error covariance
that is diagonal in multipole numbers. Thus, having a finite
coherence length in the multipole space represents a
sensible compromise between these two extreme situations.

III. METHODOLOGY, SIMULATIONS, AND
COVARIANCES

In this section we discuss technical details of our
analysis: the simulation data, the theoretical model, and
the covariance matrices.

3In the context of the statistical error, this is a common practice
in photometric and spectrosopic surveys; see [47] and references
therein.
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A. Theoretical model

We use one-loop cosmological perturbation theory to
compute power spectra for dark matter and galaxies in real
and redshift spaces. The details of our theoretical model can
be found in Ref. [44]; it includes IR resummation to capture
the nonlinear evolution of the BAO wiggles [35–40,48] and
UV counterterms that are required to account for the effects
of short-scale dynamics, whose description is impossible
within perturbation theory itself [49–51].

B. Data

Throughout the paper we will use a suite of LasDamas
Oriana simulations [52], which consists of 40 boxes with
L ¼ 2.4 Gpc=h on a side, totaling the volume of
553 ðGpc=hÞ3. The cosmological parameters used to gen-
erate mock catalogs are4 h ¼ 0.7, Ωm ¼ 0.25, Ωb ¼ 0.04,
σ8 ¼ 0.8 ðAs ¼ 2.22 × 10−9Þ, ns ¼ 1, and

P
mν ¼ 0. The

details of LasDamas simulation can be found [54]. To reduce
the stochastic scatter, we fit the mean of power spectra
extracted from 40 independent simulation boxes. However,
the statistical error corresponding to the total simulation
volume is so small that the two-loop corrections and
inaccuracies of N-body modeling can supersede cosmic
variance already on very large scales. In order to be more
realistic, we will use the covariance that corresponds to
V ¼ 100 ðGpc=hÞ3 and not to the actual LasDamas volume.
This reduced volume is comparable to the total volume of
future spectroscopic surveys such as DESI [10] or Euclid
[11], which allows one to interpret our results in the context
of these surveys.
We will analyze the statistics of dark matter particles and

galaxies in real and redshift space. The redshift snapshots
available to us are z ¼ 0 and z ¼ 0.974 for dark matter, and
z ¼ 0.342 for galaxies. The galaxy distribution is generated
using the HOD model that matches the luminous red galaxy
(LRG) sample of the BOSS survey [55], with the shot noise
level

n̄−1 ¼ 1.05906 × 104 ½Mpc=h�3: ð3:1Þ
The theoretical nonlinear spectra are generated with the
CLASS-PT code [44] that computes one-loop perturbation
theory integrals using the FFTLog method [56]. We run our
MCMC chains with the MontePython sampler [57,58], analyze
these chains, and produce triangle plots with the GetDist

package [59]. In all analyses of this paper, we fit the
following set of cosmological parameters:

fωcdm; h; A1=2; nsg; A≡ As=As;fid; ð3:2Þ
and also present the derived parametersΩm and σ8.We fixωb
to the fiducial value used in simulations. This is done in order

to simulate the ωb prior that can be taken from Big Bang
Nucleosynthesis or Planck in a realistic analysis [1].

C. Statistical covariance

We use the covariance matrix in the Gaussian approxi-
mation to describe sample variance [15]. This approximation
is very accurate for the power spectrum at least for scales
kmax ≤ 0.4 hMpc−1 [47]. The Gaussian covariance for the
real space power spectrum takes the following form for the
matter-matter, galaxy-galaxy power spectra (Pmm and Pgg)
and galaxy-matter cross-spectrum (Pgm), respectively,

C½PmmðkÞ; Pmmðk0Þ� ¼
2

Nk
P2
mmðz; kÞδkk0 ;

C½PggðkÞ; Pggðk0Þ� ¼
2

Nk

�
Pggðz; kÞ þ

1

n̄ðzÞ
�

2

δkk0 ;

C½PgmðkÞ; Pgmðk0Þ� ¼
2

Nk

�
Pggðz; kÞ þ

1

2n̄ðzÞ
�

× Pmmðz; kÞδkk0 ; ð3:3Þ

where Nk ¼ V4πk2dk=ð2πÞ3 is the number of modes in a k
bin of size (dk ¼ 0.0025 h=Mpc in all our analyses) and δkk0
is the Kronecker delta. In practice, we use the measurements
Pmm and Pgm in the covariance matrix estimates (3.3).
The Gaussian covariance between the redshift space

galaxy multipoles is given by [11]

Cðl1l2Þ
kikj

¼ 2

Nk
ð2l1 þ 1Þð2l2 þ 1Þ

Z
1

0

dμLl1ðμÞLl2ðμÞ

×

�
Pðki; μÞ þ

1

n̄

�
2

δij: ð3:4Þ

Expressions (3.3) and (3.4) are valid for both dark matter
and galaxy statistics. It is worth noting that the galaxy
power spectrum should be considered along with shot
noise term (3.1) which accounts for the discrete nature of
galaxies. In practice, we evaluate (3.4) in the linear (Kaiser)
approximation [60].
All analyses for sharp data cuts are performed with the

usual statistical covariances. To run the analyses with the
theoretical error, we supplement the statistical covariances
with the theoretical ones, (2.9) in real space, and (2.17) in
redshift space.

IV. DARK MATTER IN REAL SPACE

We start by analyzing the dark matter power spectrum in
real space. To that end we use the one-loop IR-resummed
template of [38] with the addition of the effective dark
matter sound speed counterterm γ [49,50], which will be
the only nuisance parameter in our analysis,

P ¼ Ptree þ PSPT
1−loop − 2γk2PtreeðkÞ; ð4:1Þ

4We also use the CMB monopole temperature T0 ¼ 2.725 K,
which is required to set various normalizations in CLASS [53].

CHUDAYKIN, IVANOV, and SIMONOVIĆ PHYS. REV. D 103, 043525 (2021)

043525-6



where PSPT
1−loop is the one-loop correction computed in

standard perturbation theory (SPT) [61].
As a first step, we fit the data vectors with sharp cuts kmax

and pure statistical covariance. As a second step, we add the
theoretical error to the analysis. The results in this case do
not depend on kmax provided that it is reasonably high. In
practice, we cut the data vector at k ¼ kNL ≈ 0.3 h=Mpc
and 0.5 h=Mpc for z ¼ 0 and z ¼ 0.974, respectively. The
results for the marginalized 1D variances of cosmological
parameters as functions of kmax are shown in Fig. 1. Note
that we have run a complete MCMC analysis for every kmax
in this plot. The rightmost points correspond to the
theoretical error analysis. Let us begin with the z ¼ 0
case. One can see from the left panel of Fig. 1 that the
measured optimal parameters start deviating from the
fiducial ones at kmax ¼ 0.12 h=Mpc. But starting from
kmax ¼ 0.24 h=Mpc, the estimates start moving in the
opposite direction and accidentally become fully compat-
ible with the fiducial cosmology at kmax ¼ 0.3 h=Mpc.

Clearly, this behavior is caused by overfitting and the
constraints at kmax ¼ 0.3 h=Mpc cannot be trusted even
though they enclose the fiducial values within 1σ.
Importantly, the error bars obtained at kmax ¼ 0.3 h=Mpc
are much smaller than the ones we got before the fit started
deviating from the truth at kmax ¼ 0.12 h=Mpc. This
illustrates the danger of the kmax approach, which can be
significantly affected by overfitting. In what follows, we
choose kmax ¼ 0.12 to be a baseline cut at z ¼ 0 as the
estimated parameters match the fiducial cosmology within
1σ there, but σ8 becomes biased by more than 2σ for
larger kmax.
Now we focus on the z ¼ 0.974 case, whose results are

shown in the right panel of Fig. 1. We see that σ8 undergoes
an excursion beyond 1σ when kmax is varied between
0.14 hMpc−1 and 0.3 hMpc−1, but accidentally crosses the
fiducial value at kmax ¼ 0.28 hMpc−1. The error bars at
kmax ¼ 0.14 hMpc−1 and kmax ¼ 0.28 hMpc−1 are signifi-
cantly different, but both measurements enclose the fiducial

FIG. 1. Marginalized 1D limits for cosmological parameters from the matter power spectrum at z ¼ 0 (left panel) and z ¼ 0.974 (right
panel) as a function of kmax. The rightmost group of points in each panel corresponds to the TE analysis. All parameters are normalized
to their fiducial values.

TABLE I. The marginalized 1D intervals for the cosmological parameters estimated from the Las Damas real
space dark matter power spectra at z ¼ 0 and z ¼ 0.974. The table contains fitted parameters (first column), fiducial
values used in simulations (second column), and the results for two different redshifts: z ¼ 0 (third and fourth
columns) and z ¼ 0.974 (fifth and sixth columns). In either case we display the results of the baseline kmax analysis
and the outcome of the theoretical error approach. γ is quoted in units ½h−1 Mpc�2.

Par Fid

z ¼ 0 z ¼ 0.974

kmax ¼ 0.12 TE kmax ¼ 0.28 TE

ωcdm 0.1029 0.1023þ1.6×10−3

−1.8×10−3 0.1039þ1.4×10−3

−1.5×10−3 0.1033þ1.0×10−3

−1.1×10−3 0.1033þ9.4×10−4

−1.0×10−3

h 0.7 0.6983þ3.3×10−3

−3.4×10−3 0.7021þ2.4×10−3

−2.4×10−3 0.7004þ1.6×10−3

−1.8×10−3 0.7005þ1.6×10−3

−1.7×10−3

ns 1 1.008þ0.014
−0.013 0.9930þ0.011

−0.011 0.9955þ6.4×10−3

−6.1×10−3 0.9977þ6.3×10−3

−6.1×10−3

A 1 1.014þ0.020
−0.020 0.9897þ0.016

−0.016 0.9972þ9.7×10−3

−9.4×10−3 0.9977þ9.4×10−3

−9.0×10−3

Ωm 0.25 0.2499þ2.2×10−3

−2.3×10−3 0.2504þ1.6×10−3

−1.7×10−3 0.2504þ1.2×10−3

−1.2×10−3 0.2504þ1.1×10−3

−1.2×10−3

σ8 0.8003 0.8044þ4.6×10−3

−4.5×10−3 0.7992þ4.1×10−3

−4.1×10−3 0.7996þ6.8×10−4

−6.8×10−4 0.8005þ7.8×10−4

−7.7×10−3

γ � � � 1.60þ0.33
−0.31 1.19þ0.33

−0.32 0.498þ0.025
−0.024 0.535þ0.029

−0.029
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cosmology within 1σ; hence the results depend on whether
one wants to be more conservative or aggressive. In
practice, the second option is often more popular, and
thus we choose kmax ¼ 0.28 h=Mpc as a baseline data cut
at z ¼ 0.974.
Let us compare the baseline kmax results with the

theoretical error analysis, focusing first on the z ¼ 0 case.
The values of the marginalized 1D variances are displayed
in Table I. The marginalized 2D triangle plot for the kmax ¼
0.12 h=Mpc and the theoretical error (TE) analysis are
displayed in Fig. 2. The theoretical error envelope for TE
analysis was computed using a best-fit model at fiducial
kfidmax ¼ 0.10 h=Mpc (see Appendix A for more detail). We
see that the TE covariance helps us measure all cosmo-
logical parameters without any significant bias. Moreover,
there is a moderate improvement over the kmax analysis for

all cosmological parameters of interest: the errors on ωcdm,
h, ns, and σ8 reduce by 20%, 30%, 20%, and 10%,
respectively.
It is important to test whether our results depend on the

shape of the theoretical error envelope. The details on this
test can be found in Appendix C. Choosing a different
fiducial cosmology to compute the theoretical error tem-
plate, we have found that the constraints on ωcdm and h do
not change, whereas the posteriors for ns and σ8 shrink by
10% and 25%, respectively. While these changes are very
marginal, they suggest that the improvements that we have
obtained for ns and σ8 should be taken with a grain of salt
and in conjunction with our choice of the theoretical error
envelope.
Now we turn to the z ¼ 0.974 case, which is more

relevant for upcoming surveys. The values of the

FIG. 2. Triangle plot for the cosmological and nuisance parameters measured from the real space dark matter power spectrum of the
Las Damas simulations at z ¼ 0.
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marginalized 1D variances for the kmax ¼ 0.28 h=Mpc and
the TE analysis are displayed in Table I. The envelope for
TE analysis was computed with kfidmax ¼ 0.26 h=Mpc (see
Appendix A for more detail). We found that using the TE
covariance matrix leads to unbiased estimates of all
cosmological parameters. However, unlike the z ¼ 0 case,
it does not noticeably improve the error bars compared to
the baseline kmax results. This happens mainly because the
BAO wiggles are strongly suppressed for wave numbers
larger than 0.28 h=Mpc [38]; thus going to larger wave
numbers with the TE does not yield as much new
information as in the z ¼ 0 case since the baseline kmax
is larger. Moreover, our TE constraints on σ8 are somewhat
weaker (by 13%) than those from the baseline kmax
analysis, and the mean value is not shifted from the true

cosmology. From the marginalized 2D triangle plot shown
in Fig. 3 one clearly sees the source of this worsening: the
degeneracy between σ8 and the counterterm γ is broken less
efficiently when the theoretical error is taken into account.
Recall that the measurements of the effective sound speed
are very sensitive to the two-loop corrections [62]. If we
ignore these corrections, the measurement of γ will be
biased and the error bars will be underestimated. Given the
apparent degeneracy γ − σ8, this propagates into the pos-
terior of σ8, whose width is underestimated too. In contrast,
including the theoretical error allows one to marginalize
over the two-loop contributions and get a more correct
measurement of γ and σ8 with unbiased, albeit larger, error
bars. This shows that the TE covariance is imperative in
order to get accurate estimates of the parameter variances.

FIG. 3. Triangle plot for the cosmological and nuisance parameters measured from the real space dark matter power spectrum of the
Las Damas simulations at z ¼ 0.974.
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V. DARK MATTER IN REDSHIFT SPACE

In this section we study the clustering of dark matter in
redshift space. In a real survey one always observes dark
matter tracers (such as galaxies) in redshift space. In this
case, it is hard to disentangle between the nonlinear effects
of redshift space and the nonlinear galaxy bias. Thus, the
case of redshift space dark matter will clearly show us how
well perturbation theory can describe nonlinearities
induced specifically by redshift space mapping. We will
see that the theoretical error plays a crucial role in this
analysis too, and allows for noticeable improvement of the
cosmological constraints.
Normally the analysis of the redshift space power spec-

trum is limited to the first three nontrivial moments l ¼ 0,
2, 4 because only these moments exist in linear theory.
We have found that the hexadecapole signal is dominated
by a systematic leakage from lower moments due to
discreteness effects. Given this reason, we perform our
analysis only for the monopole and quadrupole moments.
We fit the IR-resummed one-loop power spectrum,

PðzÞðk; μÞ ¼ PIR−res
tree ðk; μÞ þ PSPT;IR-res

1−loop ðk; μÞ þ Pctrðk; μÞ;
ð5:1Þ

where Pctr denotes counterterms which fix the UV depend-
ence of the loops and parametrizes the ignorance about
short scale dynamics. This term also addresses the “fingers-
of-God” effect [63]. In what follows we describe this
phenomenon perturbatively along the lines of the effective
field theory.
The section has the following outline. First, we validate

the effective field theory treatment of fingers-of-God and
compare it with popular phenomenological prescriptions in
Sec. VA. Then, we present the measurements of cosmo-
logical parameters from the mock redshift space power
spectrum for the cases of the theoretical error approach and
the sharp momentum cuts in Sec. V B.

A. Fingers-of-God modeling

The biggest challenge in the analytic description of
redshift space distortions is the fingers-of-God effect,
induced by virialized motions of dark matter particles
(or galaxies) in halos. The virialized velocity field is fully
nonlinear, and there is very little hope that it can be
described analytically from first principles. However, the
effect of fingers-of-God on long-wavelength fluctuations
can be captured within effective field theory by a finite set
of operators. In particular, the lowest order corrections are
given by [64,65]

P∇2δðk; μÞ ¼ −2ðc00 þ c02fμ
2 þ c04f

2μ4Þk2PlinðkÞ; ð5:2Þ
where c0, c2, and c4 are called “counterterms” and f ≡
d lnD=d ln a is the logarithmic growth factor. The values
and time dependence of counterterms are not known

a priori, and hence we treat them as free parameters and
marginalize over their amplitudes.
It is quite natural to keep three different free coefficients

since they fix the UV dependence of different loop
diagrams and capture different physical effects. Namely,
the monopole counterterm includes the contribution similar
to the higher-derivative bias ∇2δ (along with the dark
matter effective sound speed operator), which is absent for
higher order multipole moments. In contrast, the quadru-
pole counterterm captures the dispersion of the short-scale
velocity field. In what follows, we will justify that keeping
independent coefficients in every counterterm is necessary
for a proper description of dark matter clustering on large
scales.
The expansion (5.2) assumes that the dimensionful

coefficients ci are small,

cik2 ≪ 1; i ¼ 0; 2; 4: ð5:3Þ

However, the peculiar velocities can be rather large, which
can violate the condition of the applicability of perturba-
tion theory (5.3) even on large scales. For instance, the
BOSS galaxies are expected to have the velocity dispersion
∼6 Mpc=h, which gives an estimate c2 ∼ 50 ½Mpc=h�2 [1].
It implies that the characteristic momentum scale of higher
order short-scale velocity cumulants is significantly lower
than the nonlinear scale that controls gravitational non-
linearities in real space, kNL ∼ 0.5 hMpc−1 [28]. Hence, the
usual one-loop power spectrum models (5.1) and (5.2) can
become insufficient for an accurate description of the data
even on large scales. We proceed by introducing an
additional counterterm to capture the redshift space non-
linearities at next-to-leading order [1],

P∇4
zδ
¼ −b4ðμkfÞ4ðb1 þ fμ2Þ2PlinðkÞ; ð5:4Þ

where b4 denotes the next-to-leading counterterm and
b1 ¼ 1 for the dark matter. The redshift space mapping
effectively generates an expansion in powers of ∇2

zδ. From
this point of view, the extra counterterm can be viewed as
the∇4

zδ contribution in this expansion. We choose the next-
to-leading order counterterm (5.4) to be universal for all
multipole moments, as dictated by the redshift space
mapping. We assume that the contributions from other
physical effects (higher-derivative counterterms, etc.) are
subdominant since their nonlinear scale is similar to kNL for
the real space dark matter.
It is worth mentioning that in a realistic LSS data

analysis the redshift determination errors generate addi-
tional corrections to the power spectrum. For example, the
redshift smearing of quasars from the eBOSS survey is
described by a k2μ2Plin-like counterterm at leading order
in the derivative expansion [66], but a more realistic
model requires higher order corrections with at least one
additional free parameter to capture deviations from
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Gaussianity [67]. An accurate modeling of redshift errors
beyond simplistic one-parameter models will also be
important for the Euclud/DESI-type emission line galaxies;
see Ref. [41] for an extended discussion. This is another
reason why it is important to have free coefficients in front
of the various redshift space counterterms: they also capture
different systematic effects.
The full counterterm contribution is given by Pctr ¼

P∇2δ þ P∇4
zδ
. Doing the integrals with the Legendre poly-

nomials, we get5

Pctr;l¼0¼−2c0k2PlinðkÞ−b4f4
�
f2

9
þ2fb1

7
þb21

5

�
k4PlinðkÞ;

Pctr;l¼2¼−2c2
2f
3
k2PlinðkÞ−b4f4

�
40f2

99
þ20fb1

21
þ4b21

7

�

×k4PlinðkÞ; ð5:5Þ

where c0, c2, and b4 are free fitting parameters and b1 is the
linear bias term which we explicitly inserted in Eq. (5.5) for
future reference when we study redshift space galaxies. For
dark matter b1 ¼ 1. Note that, unlike galaxies, the lowest
order stochastic contribution to the dark matter redshift
space power spectrum starts with the k4 term [65], and
hence, it is a higher order correction that can be ignored.
The effects of these corrections are taken into account by
the theoretical error.
The first goal of this section is to validate the inclusion of

the next-to-leading order counterterm (5.4) into the one-
loop theoretical models (5.1) and (5.2). Along the way, we
will test the accuracy of the fingers-of-God modeling with
phenomenological fitting functions that are often used in
the literature; see e.g., [68]. These popular models approxi-
mate the fingers-of-God effect by a simple one-parameter
Gaussian or Lorentzian damping, e.g.,

PFOGðk; μÞ ¼ e−ðkμΣfÞ2PNLðk; μÞ; ð5:6Þ

where Σ can be interpreted as a short-scale velocity
dispersion. We stress that the phenomenological models
such as (5.6) are not derived from first principles and
introduce uncontrollable errors in parameter inference. To
show this, we analyze the redshift space dark matter power
spectrum data using the model (5.6) instead of the full
effective field theory (EFT) description.
In the following analyses, for simplicity, we fix all

cosmological parameters to their fiducial values except
for σ8, which is allowed to float freely. This choice is done
only for simplicity. All our conclusions hold true even if we

vary all relevant cosmological parameters. We consider
three models:
(a) the fitting function (5.6) applied to the one-loop SPT

power spectrum, i.e., PNLðk; μÞ ¼ PSPTðk; μÞ;
(b) the vanilla one-loop EFT with free c0, c2, but b4 ¼ 0;
(c) the one-loop EFT model with an additional NLO

correction with free b4.
Note that we implement the full IR resummation in case

(a). In this setup the model (a) is a nonlinear resummation
of perturbative models (b) and (c), which implies the
following relationship between the counterterms:

c0 ¼
1

210
f2Σ2ð35b21 þ 42b1f þ 15f2Þ;

c2 ¼
1

14
fΣ2ð7b21 þ 12b1f þ 5f2Þ;

b4 ¼ −Σ4=2: ð5:7Þ

Let us first discuss the z ¼ 0 snapshot. The resulting
posterior distribution for nuisance parameters and cluster-
ing amplitude for the three models at kmax ¼ 0.1 hMpc−1

are shown in Fig. 4 (see Appendix B for tables with 1D
marginalized limits). The first relevant observation is that
the approximate model (5.6) biases σ8 by more than 5σ.
However, varying c0 and c2 independently, one reduces the
bias down to the 2σ level. This illustrates that the
phenomenological model with a single parameter Σ fails
to reproduce the data because it does not have enough
freedom to describe the monopole and quadrupole simul-
taneously. Thus, keeping free coefficients in different
counterterms is a crucial part of any reliable analysis.
The residual bias in σ8 is removed by adding the next-to-
leading order counterterm (5.4), which justifies its presence
in the data analysis. This counterterm, however, does not
allow us to increase the kmax range, which may be a signal
of perturbation theory breakdown.
To demonstrate this, we perform the following exercise.

We fix all cosmological parameters to their fiducial values
and extract the best-fit parameters c0, c2, and b4 from
the data at kmax ¼ 0.1 hMpc−1, where the fit is unbiased.
Then we compare the contributions from leading and
next-to-leading order counterterms of the quadrupole
moment to the tree-level dark matter power spectrum
evaluated for the best-fit parameters. We chose the quadru-
pole because this moment is most sensitive to the fingers-
of-God. The results are shown in the left panel of Fig. 5.
One can see that the NLO contribution surpasses the LO
counterterm at k ≈ 0.13 hMpc−1, and the whole tree-level
expression at k ≈ 0.18 hMpc−1. This can be naturally
interpreted as a breakdown of the perturbative description
for the dark matter in redshift space at k ≈ 0.15 hMpc−1

for z ¼ 0.
Now let us consider the z ¼ 0.974 snapshot. The relevant

posterior distributions are shown in Fig. 6. One can observe
the same trends as before: the fitting function (5.6)

5We stress that this is a symbolic expression. Once IR
resummation is included, it becomes impossible to write explicit
close formulas for the Legendre integrals. In practice, we use the
full expressions Eq. (5.2) and Eq. (5.4) and evaluate all Legendre
integrals numerically with CLASS-PT [44].
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FIG. 5. The contribution of leading and next-to-leading order counterterm to quadrupole power spectrum for the best-fit parameters
c2 ¼ 17 ½Mpc=h�2, b4 ¼ 1.3 × 104 ½Mpc=h�4 at z ¼ 0 (left panel) and c2 ¼ 11 ½Mpc=h�2, b4 ¼ 370 ½Mpc=h�4 at z ¼ 0.974
(right panel).

FIG. 4. Triangle plot for counterterm normalizations and σ8 measured from the redshift space dark matter power spectrum of the Las
Damas simulations at z ¼ 0. c0, c2, b4 are quoted in units ½h−1 Mpc�2, ½h−1 Mpc�2, ½h−1 Mpc�4, respectively.
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[model (a)] yields a highly biased estimate of σ8 already at
kmax ¼ 0.1 h=Mpc. The naive EFT model (b) is accurate at
kmax ¼ 0.1 h=Mpc, but fails to give a good fit beyond
kmax ¼ 0.14 h=Mpc. The situation improves after the
addition of the next-to-leading order counterterm b4. We
can clearly see that the presence of b4 increases kmax
and yields constraints better than the model (b) at
kmax ¼ 0.1 hMpc−1. This illustrates the crucial importance
of fourth order short-scale velocity cumulant (5.4) for
robust parameter inference. In what follows, we always
include (5.4) in our baseline theoretical models (5.1) and
(5.2). Finally, we confirm the validity of perturbation
theory by plotting the LO and NLO quadrupole counter-
terms, normalized to the linear theory prediction, in the
right panel of Fig. 5. We can see that the typical data cuts
of our analysis kmax ¼ ð0.1–0.15Þ hMpc−1 are indeed

lower than the nonlinear scale kNL;RSD ≈ 0.25 hMpc−1

at z ¼ 0.974.
One may wonder if a better model can be obtained

by replacing PNL in Eq. (5.6) computed in SPT by the
EFT-like expression with one free counterterm,

PFOGðk; μÞ ¼ e−ðkμΣfÞ2ðPSPT;1−loopðk; μÞ − 2c00k
2PlinðkÞÞ;

ð5:8Þ

which can be referred to as the “EFTþ FoG”model. In this
case we have two free parameters and the resummed
expression for the higher-derivative fingers-of-God correc-
tions. We have found that both at kmax ¼ 0.1 hMpc−1 and
kmax ¼ 0.14 hMpc−1 this model is almost identical to the
“vanilla EFT” case (b); see Fig. 18. This shows that the

FIG. 6. Same as Fig. 4, but at redshift z ¼ 0.974.
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inclusion of the “FoG resummation” does not allow one to
improve the fit over the basic EFT model. After including
the b4k4μ4Plin term in the fit, we have found that the
counterterm b4 deviates from the prediction of the “resum-
mation” formula bresum4 ¼ −Σ4=2 (5.7) at the 5σ level.
Note that even though bresum4 has the same order of
magnitude as the actual b4 measured from the data, its
sign is wrong. This shows that the perturbative EFT
expansion with the k4μ4Plin counterterm provides a better
model than the resummed nonlinear damping function
given in Eq. (5.6). This conclusion should also hold true
for any nonlinear damping function that predicts a positive
coefficient in front of the k4μ4Plin term, e.g., the Lorentzian
damping.
Let us summarize the results of this section so far.

First, we have shown that the use of overcon-
strained fitting formulas for the fingers-of-God can
generate significant bias in the inferred cosmological
parameters. Second, we have justified the inclusion of
the next-to-leading order k4μ4Plin counterterm, by show-
ing that it allows us to extend the regime of applicability
of the EFT description and improve the parameter
constraints.

B. Cosmological parameters

We present now the complete cosmological analysis of
the redshift space dark matter power spectrum in the kmax
and TE analyses.
In the previous section we have seen that the perturbative

description breaks down at z ¼ 0 already on quite large
scales k ∼ 0.1 hMpc−1, and hence this case may not be very
illustrative. We focus on the z ¼ 0.974 snapshot in what
follows.
The marginalized 1D constraints on cosmological

parameters for different momentum cuts and the theoretical
error are shown in Fig. 7. The theory prediction for TE

analysis was computed at fiducial kfidmax ¼ 0.12 h=Mpc. We
found that the momentum cutoff kmax ¼ 0.14 h=Mpc
reproduces the true parameters within the 1σ interval.
However, the clustering amplitude becomes biased by
more than 2σ starting from kmax ¼ 0.16 h=Mpc. Given
this reason, we choose kmax ¼ 0.14 h=Mpc as our baseline
data cut. The final constraints on cosmological and nui-
sance parameters for this kmax and for the theoretical error
analysis are displayed in Table II and in Fig. 8. As in
the previous section, we note three key features of the
theoretical error covariance. First, we can obtain the
cosmological constraints with a single MCMC analysis.
This can be contrasted with the standard approach that
requires running many analyses with different choices of
kmax. Second, we get unbiased estimates for cosmological
parameters and reliable error bars. Third, these error bars
happened to be smaller than those obtained in the kmax
analyses; the constraints on ωcdm, h, ns, and σ8 improve by
30%, 40%, 25%, 10%, respectively. This happens mainly
due to additional BAO wiggles, which are included beyond
kmax ¼ 0.14 hMpc−1. Indeed, we can see that the 2D
probability distribution in the ωcdm − h plane, which
reflects the BAO signal, is significantly narrower in the
TE analysis.
Given some significant improvements that we have

obtained, it is important to check whether they remain if
we alter the theoretical error envelope. The details of this
analysis are presented in Appendix C. We have found that
the parameter constraints do depend on the choice of
fiducial cosmology quite noticeably. This implies that in

FIG. 7. Same as Fig. 1 for the redshift space matter power
spectrum multipoles at z ¼ 0.974.

TABLE II. The marginalized 1D intervals for the cosmological
and nuisance parameters estimated from the monopole and
quadrupole moments of the Las Damas dark matter redshift
space power spectrum at z ¼ 0.974. We show the fitted para-
meters (first column), fiducial values used in simulations (second
column), the resulting parameter constraints for the baseline kmax
analysis (third column), and the theoretical error approach (fourth
column). c0, c2, b4 are quoted in units ½h−1 Mpc�2, ½h−1 Mpc�2,
½h−1 Mpc�4, respectively.

z ¼ 0.974

Par Fid kmax ¼ 0.14 h=Mpc TE

ωcdm 0.1029 0.1023þ1.4×10−3

−1.5×10−3 0.1026þ1.1×10−3

−1.0×10−3

h 0.7 0.6993þ2.4×10−3

−2.6×10−3 0.6995þ1.6×10−3

−1.6×10−3

ns 1 1.0083þ0.012
−0.011 1.0028þ8.5×10−3

−8.5×10−3

A 1 1.0096þ0.016
−0.016 1.0043þ0.010

−0.011
Ωm 0.25 0.2493þ1.7×10−3

−1.8×10−3 0.2498þ1.4×10−3

−1.3×10−3

σ8 0.8003 0.8033þ3.1×10−3

−3.1×10−3 0.8012þ2.8×10−3

−2.8×10−3

c0 � � � 3.66þ0.39
−0.37 3.29þ0.40

−0.39
c2 � � � 11.26þ1.32

−1.25 10.52þ1.11
−1.10

10−3b4 � � � 0.34þ0.10
−0.11 0.41þ0.08

−0.08
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the regime where the constraints are dominated by the
theoretical error one has to be careful about its accurate
modeling.

VI. GALAXIES IN REAL SPACE

In this section we focus on the galaxy clustering in real
space. Although this analysis is academic in nature, it will
allow us to assess the validity of the perturbative bias model
and clearly see the implications of the theoretical error for
biased tracers. We will use the effective field theory model
characterized by the following set of nuisance parameters
(see [44] for our notations):

fb1; b2; bG2
; R2�; bΓ3

; Pshotg; ð6:1Þ

which includes the local quadratic bias b2, the quadratic tidal
bias bG2

, the higher-derivative counterterm6 R2�, and the
constant shot noise contribution Pshot. Even though the pair-
counting shot noise prediction n̄−1 was subtracted from the
power spectrum data, we still need to keep a constant
nuisance parameter in the fit because the value of shot noise
is, in general, expected to deviate from n̄−1 due to exclusion
effects [69] (or fiber collisions in realistic surveys [70]).
These deviations can be as large as ∼30% of n̄−1 for the
BOSS-like host halos [71].Given this reason,wemarginalize
over Pshot within the following Gaussian prior:

FIG. 8. Triangle plot for the cosmological and nuisance parameters measured from the redshift space dark matter power spectrum of
the Las Damas simulations at z ¼ 0.974. c0, c2, b4 are quoted in units ½h−1 Mpc�2, ½h−1 Mpc�2, ½h−1 Mpc�4, respectively.

6Since the degeneracy between R2� and c2s (in the notation of
[44]) cannot be broken at the power spectrum level, we fix the
dark matter counterterm c2s ¼ 1 ½h−1 Mpc�2 to avoid clutter.
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Pshot ∼ ð0; ð0.3 · n̄−1Þ2Þ: ð6:2Þ
Note that the value of the residual shot noise contribution can
be negative. We do not impose any priors on the other biases
and counterterms, except for the cubic tidal bias bΓ3

, which
we found to be very degenerate with bG2

. We marginalize
over bΓ3

assuming the physical prior centered at the pre-
diction of the coevolution model [72,73],

bðCoevÞΓ3
¼ 23

42
ðb1 − 1Þ ¼ 0.66 for b1 ¼ 2.2;

and with the unit Gaussian variance,

bΓ3
∼N ðbðCoevÞΓ3

; 12Þ: ð6:3Þ

Finally, we have checked that the data do not show any
evidence for the scale-dependent stochastic contributions
a0k2 for k≲ 0.3 hMpc−1, and hence we did not use it in
our model. This is consistent with the results of N-body
simulations done in Ref. [71].
We analyzed the galaxy-galaxy power spectrum and the

galaxy-matter cross-spectrum at z ¼ 0.342 using the kmax

approach and found that the posterior distributions are
unbiased for all kmax up to kNL ≃ 0.3 hMpc−1. We do not
push to higher k’s because the perturbative expansion is
clearly not valid there. The resulting posterior distributions
for nuisance and cosmological parameters are shown in
Fig. 9 (blue contours), and the 1D marginalized parameter
limits are presented in Table III.

FIG. 9. Triangle plot for the cosmological and nuisance parameters measured from the real space galaxy power spectrum of the Las
Damas simulations at z ¼ 0.342.
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All in all, we do not see any evidence for the theoretical
error up to very high kmax for the power spectrum of galaxies
in real space.Webelieve that it is caused by the following two
reasons. First, the statistical covariance for galaxies contains
a large shot noise contribution, which slows down the
reduction of the power spectrum errors on short scales
compared to the dark matter case studied before. Thus,
unlike the dark matter case, the theoretical error for galaxies
is always smaller than the statistical one on the scales of
interest. Note that the situation can be different for another
type of galaxies, whose shot noise is lower, e.g., the DESI
bright galaxy sample [10]. The second reason is a large
number of fitting parameters: the real space galaxy power
spectrumdata alone cannot efficiently break thedegeneracies
between these parameters. An example is the strong degen-
eracy b1 − σ8, which also generates a highly not-Gaussian
posterior distribution of σ8 seen in Fig. 9.

Indeed, these two effects can be clearly assessed by
analyzing the galaxy-matter cross-spectrum Pgm. The shot
noise contribution to the covariance matrix is reduced for
Pgm [see Eq. (3.3)], and there is no constant shot noise
contribution Pshot in the fit, which narrows the posterior
distribution compared to the Pgg case for the same kmax.
The 1D marginalized limits on the cosmological para-
meters as a function of kmax are shown in Fig. 10. The
theory prediction for TE analysis was computed at fidu-
cial kfidmax ¼ 0.18 h=Mpc.
We see that the 1D posterior distributions for Pgm are

unbiased up to kmax ≈ 0.22 hMpc−1. However, a closer
inspection of the MCMC results revealed a bias in the 2D
posterior contours. This suggests that using the margin-
alized 1D distributions to select kmax can be misleading:
one has to ensure that not only the 1D marginalized
constraints are unbiased, but also the 2D contours enclose
the fiducial cosmology, e.g., within 68% C.L. Indeed, for
some data cuts the principal components of certain param-
eters can be biased, but their projections onto particular
parameter planes can accidentally fall close to the fiducial
values. Using such data cuts can lead to biases when
different probes are combined, as in this case the resulting
posterior distributions are driven by the degeneracy break-
ing between different principal components (PCs) of the
combined datasets. This motivated us to choose kmax ¼
0.2 hMpc−1 as a baseline data cut for Pgm.
Since the baseline kmax is quite low, we expect to gain

some information with the theoretical error. The posterior
distributions for the kmax and the TE cases are shown in
Fig. 9, while the parameter limits are presented in Table III.
Just as in the dark matter case, the TE covariance sharpens
the constraints on the parameters related to the power
spectrum shape and the BAO: ωcdm, h, and ns improve by
20%, 20%, and 25%, respectively. In contrast, the

TABLE III. The marginalized 1D intervals for the cosmological parameters estimated from the Las Damas real
space galaxy power spectrum and galaxy-matter cross-spectrum at z ¼ 0.342. Shown are the fitted parameters (first
column), the fiducial values used in simulations (second column), the results for Pgg at kmax ¼ 0.3 hMpc−1 (third
column), the results for Pgm at kmax ¼ 0.2 hMpc−1 (fourth column), and the results for Pgm with theoretical error
approach (fifth column).

Par Fid Pgg kmax ¼ 0.3 h=Mpc Pgm kmax ¼ 0.2 h=Mpc Pgm TE

ωcdm 0.1029 0.099þ3.0×10−3

−2.9×10−3 0.1043þ2.1×10−3

−2.4×10−3 0.1030þ1.8×10−3

−1.9×10−3

h 0.7 0.6942þ4.6×10−3

−4.3×10−3 0.7031þ3.1×10−3

−3.3×10−3 0.7015þ2.7×10−3

−2.7×10−3

ns 1 1.0160þ0.024
−0.026 0.9973þ0.026

−0.024 1.0104þ0.019
−0.019

A 1 0.8570þ0.1085
−0.2509 0.8919þ0.092

−0.184 1.0157þ0.167
−0.157

Ωm 0.25 0.2462þ3.6×10−3

−3.3×10−3 0.2506þ2.6×10−3

−2.8×10−3 0.2490þ2.2×10−3

−2.3×10−3

σ8 0.8003 0.7208þ0.057
−0.108 0.7600þ0.043

−0.076 0.8080þ0.072
−0.052

R2� � � � 3.46þ4.97
−3.93 −1.09þ6.02

−7.21 −0.03þ3.60
−5.54

b1 � � � 2.44þ0.32
−0.26 2.54þ0.41

−0.51 2.26þ0.24
−0.48

b2 � � � 0.17þ0.81
−1.34 1.74þ2.03

−3.79 1.04þ1.27
−2.96

bG2
� � � −0.326þ0.376

−0.397 −0.309þ0.425
−0.457 −0.315þ0.415

−0.423

FIG. 10. Marginalized 1D limits on cosmological parameters
inferred from the real-space galaxy-matter cross-spectrum as a
function of kmax. The rightmost points result from the TE
analysis. All parameters are normalized to their fiducial values.
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constraint on σ8 is not significantly affected. Note also that
the mean σ8 shifts toward the true fiducial value. The
constraint on σ8 does not improve due to the notorious
degeneracy b1 − σ8. Indeed, the linear-theory degeneracy
b1 − σ8 can be broken only by the one-loop corrections.
This makes the result very sensitive to the largest wave
number bins used in the analysis, because for these bins the
amplitude of the loop corrections is large. However, when
the one-loop correction becomes large, the two-loop con-
tribution becomes non-negligible as well. The theoretical
error covariance is exactly introduced to alleviate this
problem and marginalize over all possible two-loop shapes.
It does not sharpen the constraints on σ8, but yields some
improvement for other parameters related to the shape and
the BAO.
One possible way to shrink the posterior distribution in

the galaxy power- and cross-spectra cases is to fix some
bias parameters to the predictions of some phenomeno-
logical models, i.e., the coevolution model for the dark
matter halos [72]. However, this can result in overfitting
and wrong estimation of the parameter error bars. We
believe that a more appropriate approach is to vary all
relevant nuisance parameters in the fit within physical
priors, as we do in this paper. In a realistic survey one
always observes galaxies in redshift space, which allows
for breaking of the b1 − σ8 degeneracy through the redshift
space distortions. Let us now consider the latter case.

VII. GALAXIES IN REDSHIFT SPACE

In this section we scrutinize the galaxy clustering in
redshift space in the context of the theoretical error
covariance. We will analyze the monopole and quadrupole
moments of the redshift space galaxy power spectrum at
z ¼ 0.342. The redshift of this sample is somewhat lower
than the effective redshifts of future surveys; hence this
represents the stringent test of our approach.
The EFT model with NLO fingers-of-God corrections is

characterized by the following set of nuisance parameters
(see Ref. [11] for our conventions):

fb1; b2; bG2
; bΓ3

; Pshot; c0; c2; b4g: ð7:1Þ
We use the same priors on bΓ3

and Pshot as in the previous
section, as well as infinitely large flat priors for other
parameters. Note that on general grounds one can expect
the presence of the additional stochastic contribution
Pstochðk; μÞ ¼ a2μ2k2. However, we have found that this
contribution is completely degeneratewithb4 for theP0 þ P2

data vector, which motivated us to fix a2 ¼ 0 as in
Refs. [31,44].
As a first step, we run a sequence of analyses varying the

data cut kmax. The 1D marginalized constraints on the
cosmological parameters as functions of kmax are presented
in Fig. 11. The rightmost points correspond to the theoretical
error analysis with the cutoff kmax ¼ 0.32 h=Mpc. One may
observe that the standard analyses yields a biased estimate for

σ8 for kmax > 0.20 h=Mpc. Shortly after, ωcdm and h start
deviating from the true values at kmax ≈ 0.23 h=Mpc.
This motivates us to choose kmax ¼ 0.18 h=Mpc as our

baseline analysis with the sharp momentum cutoff as in this
case all marginalized posteriors contain the true values well
within 1σ.
The values of the marginalized 1D constraints for

the baseline kmax and the TE analyses are shown in
Table IV. The 2D posteriors are presented in Fig. 12.
The theory prediction for TE analysis was computed at
fiducial kfidmax ¼ 0.16 h=Mpc.
Overall, we see that for the realistic example of redshift

space galaxies the theoretical error approach improves the
parameter constraints over the kmax case quite modestly

FIG. 11. Same as Fig. 10, but for the redshift space galaxy
multipoles.

TABLE IV. The marginalized 1D intervals for the cosmological
parameters estimated from the Las Damas redshift space galaxy
power spectra at z ¼ 0.342. The table contains fitted parameters
(first column), the fiducial values used in simulations (second
column), the results of the baseline kmax analysis (third column),
and the outcome of the theoretical error approach (fourth
column). c0, c2, b4 are quoted in units ½h−1 Mpc�2,
½h−1 Mpc�2, ½h−1 Mpc�4, respectively.
Par Fid kmax ¼ 0.18 h=Mpc TE

ωcdm 0.1029 0.1037þ3.5×10−3

−4.1×10−3 0.1009þ3.5×10−3

−3.5×10−3

h 0.7 0.7002þ5.1×10−3

−5.3×10−3 0.6973þ5.0×10−3

−5.0×10−3

ns 1 0.9909þ0.028
−0.026 1.0031þ0.025

−0.025
A 1 1.0169þ0.073

−0.079 1.0571þ0.069
−0.081

Ωm 0.25 0.2513þ4.6×10−3

−5.2×10−3 0.2479þ4.3×10−3

−4.7×10−3

σ8 0.8003 0.8069þ0.022
−0.022 0.8044þ0.021

−0.021
c0 � � � 0.77þ17.93

−11.48 9.40þ12.45
−9.68

c2 � � � 36.22þ28.01
−20.61 29.61þ23.11

−18.30
10−3b4 � � � 1.40þ0.21

−0.26 1.73þ0.25
−0.28

b1 � � � 2.17þ0.07
−0.07 2.16þ0.07

−0.07
b2 � � � −0.96þ0.64

−0.87 −0.92þ0.57
−0.78

bG2
� � � −0.350þ0.364

−0.388 −0.330þ0.351
−0.368
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(≲10%), unlike the previous case of the galaxy-matter
cross-spectrum. This happens because the BAO wiggles at
k > 0.18 hMpc−1, neglected in the kmax analysis, are
strongly suppressed due to redshift space displacements
[40] and the large shot noise covariance [cf. Eq. (3.3)
and Eq. (3.4)]. There is, however, some non-negligible
improvement for the nuisance parameters, whose values
are quite sensitive to the large-k modes. As far as the
cosmological parameters are concerned, qualitatively, we
can conclude that the TE covariance, if properly chosen,
automatically optimizes the choice of kmax and guarantees
that parameter limits are unbiased, but does not noticeably
improve them. This implies that the application of the
theoretical error approach most likely will not sharpen
the cosmological constraints from the current surveys like
BOSS, where kmax has already been measured for various
analysis settings [1,30].

Comparing the cases of redshift space dark matter and
redshift space galaxies, we can understand the reason why
the gain from the theoretical error is so modest in the latter
case. The main difference between these two cases is the
presence of four additional shapes in the nonlinear bias
model, which also act like theoretical error; see Sec. II.
Hence, the addition of an extra theoretical error shape does
not have a large impact on the likelihood because it already
contains the theoretical error due to marginalization over
the nonlinear bias parameters.
Finally, it is important to point out that we have checked

that our results for galaxies in redshift space are invariant
with respect to the choice of the theoretical error template;
see Appendix C. This is an important consistency check
which validates the theoretical error approach for realistic
analyses.

FIG. 12. Triangle plot for the cosmological and nuisance parameters measured from the redshift space galaxy power spectrum of the
Las Damas simulations at z ¼ 0.342. c0, c2, b4 are quoted in units ½h−1 Mpc�2, ½h−1 Mpc�2, ½h−1 Mpc�4, respectively.
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VIII. CONCLUSIONS

We have validated the theoretical error approach on
large-volume N-body simulations data for the clustering
of dark matter and galaxies in real and redshift space. First,
we introduced a new mock-based approach to extract the
theoretical error covariance from the data. This approach
allowed us to avoid uncertainties in the theoretical esti-
mates of higher-order nonlinearities. We have argued that
the calibration of the theoretical error from the N-body
mock simulations can be the optimal strategy to build the
theoretical error likelihood.
We have demonstrated that the use of the TE covariance in

the power spectrum likelihoods allows us to recover the input
cosmological parameters used in the simulations of dark
matter and galaxies in real and redshift spaces. Crucially,
using the TE approach we can avoid lengthy measurements
of kmax and perform the full parameter inferencewith a single
MCMC run. To put this result in context, let us consider the
case of the recent analysis of the BOSS data from Ref. [30].
Thiswork calibrated their baselinekmax by analyzingN-body
simulation data for four different choices of the data cut.
Achieving good convergence for nuisance and cosmological
parameters for these chains requires 184000 CPU hours on
our cluster, which can be saved if the theoretical error
approach is implemented. We stress that all this CPU time
is required for only one particular choice of priors and fitted
parameters. If a different set of priors ormodel parameters are
used, the data cut kmax needs to be remeasured, as explained
in detail in Ref. [30]. Hence, the actual computational saving
from the theoretical error likelihood can be even larger.
We have also performed a detailed comparison of the TE

results with the kmax analyses. For dark matter in real and
redshift space, cosmological constraints actually improve
with the theoretical error covariance. This happens because
it allows us to extract the information encoded in the BAO
wiggles at wave numbers larger than kmax, while margin-
alizing over the broadband uncertainties.
For galaxies, the presence of the large shot noise term in

the covariance and proliferation of nuisance parameters
inflate the error bars and force us to use more aggressive
data cuts, where the BAO information is saturated. Due to
this reason, the TE approach does not significantly improve
the parameter limits unlike in the dark matter case. For the
galaxy autospectrum in real space, we have not found any
evidence for theoretical error up to the nonlinear scale, and
hence the TE approach is fully identical to the standard kmax

analysis. Finally, for galaxies in redshift space, the theo-
retical error is nonvanishing and its inclusion in the
covariance matrix effectively optimizes the choice of
kmax at which the inferred parameters are unbiased. The
cosmological parameter constraints improve quite margin-
ally in this case, unlike the nuisance parameters, whose
posterior volume shrinks appreciably.
As a by-product, we have validated the effective field

theory implementation of the CLASS-PT code [44] by showing
that it can accurately reproduce the true fiducial parameters

from various power spectrum data vectors used in this paper.
In passing, we have shown that the use of overconstrained
nonlinear fingers-of-Godmodels leads to biases in parameter
inferences. Besides, we have advocated the inclusion of the
higher-order counterterm in the description of nonlinear
redshift space distortions. Indeed, it allows us to extend the
range of scaleswhere themodeling is accurate and eventually
to improve the cosmological constraints as compared to the
standard one-loop effective field theory model without the
higher-order corrections. This justifies the analyses of
Refs. [1,5,31] that included the higher derivative fingers-
of-God correction.
It is worth pointing out that in this paper we have studied

the mock galaxies that simulate the BOSS LRG sample [55].
This sample exhibits large fingers-of-God features, which do
not allow us to extend the perturbative treatment to suffi-
ciently short scales. The situation will be different for
emission line galaxies (ELG), which are the main targets
for the upcoming surveys such as DESI [10] or Euclid [9].
The clustering properties of ELGs have recently been
measured for the first time by the eBOSS survey [74].
Crucially, these measurements already show that the ELG
sample is less affected by the fingers-of-God, and hence one
can expect some improvements in cosmological constraints
over the LRG-based analysis, due to larger effective kmax.
Our analysis can be extended in various ways. First, the

theoretical error approach can be applied to the bispectrum
data [28]. Second, it would be curious to check to what
extent it can be useful for the ELG sample. Third, our
formalism can be extended to the case of the projected
statistics such as weak lensing, where it could play an
important role to minimize systematic biases due to
imperfect theoretical modeling; see e.g., [75]. We leave
these research directions for future work.
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APPENDIX A: THEORETICAL ERROR
ENVELOPE

1. Comparison to perturbation theory

The key ingredients of the theoretical error approach are
the envelope for the theoretical error covarianceEðkÞ and the
theoretical error mean P̄ðTEÞðkÞ. By definition the theoretical
error is the difference between the full model describing the
data and an analytic approximation to that model. This
suggests that a reasonable choice for the mean should be a
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FIG. 13. Theoretical error envelopes for dark matter in real space, normalized to the tree-level spectra. We show the envelope
suggested by Ref. [28] (envelope 1) and the envelope P̄ðTEÞ measured directly from the data.

FIG. 14. Triangle plot with cosmological constraints from the real space dark matter power spectrum at z ¼ 0 for two choices of the
theoretical error likelihood.
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residual between some simulation result (or the data) and the
approximate model fitted to some sufficiently low kfidmax. The
theoretical error covariance is then used for k > kfidmax.
As a second step, we must define the relationship

between E and P̄ðTEÞ. The toy model of the theoretical
error entirely given by a higher-order counterterm suggests
that the mean and the envelope should have the same order
of magnitude. We impose an even stronger relation

Eðk; zÞ ¼ P̄ðTEÞðk; zÞ; ðA1Þ

such that the theoretical error likelihood is characterized by
a single shape. The original work [28] assumed the zero
mean and the following envelope:

envelope 1∶ Eðk:zÞ ¼ D6ðzÞ
�

k
0.45 hMpc−1

�
3.3

× Plinðk; z ¼ 0Þ; ðA2Þ

where DðzÞ is the linear growth factor. This envelope is a
smooth fit to the two-loop dark matter power spectrum
computed in SPT [61], after subtracting the leading UV
part. It should be stressed that this two-loop SPT correction
still has a strong residual unphysical sensitivity to the
ultraviolet modes at the subleading order [77–79], and
hence the actual effective field theory result is smaller than
the SPT prediction. Nevertheless, we expect Eq. (A2) to be
order-of-magnitude accurate. In Fig. 13 we compare the
prediction of Eq. (A2) to the envelope that we extracted
from the data. We used kfidmax ¼ 0.1 hMpc−1 for z ¼ 0 and
kfidmax ¼ 0.26 hMpc−1 for z ¼ 0.974. Indeed, as expected,
we can see that Eq. (A2) and our envelope (A1) agree by
order of magnitude, but Eq. (A2) systematically over-
estimates the difference between the data and the prediction
of one-loop perturbation theory by a factor of ∼3.
It is instructive to compare the two different theoretical

error prescriptions at the level of the cosmological

constraints. To that end we have run the cosmological
analysis of the real space dark matter power spectrum at
z ¼ 0 with P̄ðTEÞ ¼ 0 and the envelope Eq. (A2). The
resulting 2D posteriors are shown in Fig. 14, whereas 1D
marginalized constraints are listed in Table V. One can see
that only the measurements of σ8 and the effective sound
speed are significantly affected. This shows that the use of
the perturbation theory-inspired templates can overestimate
the actual error bars on the amplitude parameters. However,
the shape and distance parameters ωcdm, ns, h are expected
to be less affected by this choice. A similar situation was
found in Ref. [5], which showed that the BAO measure-
ments using the theoretical error covariance do not depend
on the exact shape of the theoretical error envelope.
The situation becomes more complicated for redshift

space multipoles, where the complete two-loop calculation
has not yet been done. Thus, even the perturbation theory
estimates can be very uncertain. One can consider two
possible estimates,

TABLE V. The marginalized 1D intervals for the cosmological
parameters estimated from the Las Damas real space dark matter
power spectra at z ¼ 0 for two different theoretical error
prescriptions. The table contains fitted parameters (first column),
fiducial values used in simulations (second column), the results
for the envelope 1 template with P̄ðTEÞ ¼ 0 (third column), and
that for the baseline theoretical error analysis TE (fourth column).
γ is quoted in units ½h−1 Mpc�2.
Par Fid Envelope 1 TE

ωcdm 0.1029 0.1040þ1.4×10−3

−1.4×10−3 0.1039þ1.4×10−3

−1.5×10−3

h 0.7 0.7025þ2.4×10−3

−2.3×10−3 0.7021þ2.4×10−3

−2.4×10−3

ns 1 0.9998þ0.011
−0.011 0.9930þ0.011

−0.011
A 1 0.9950þ0.015

−0.016 0.9897þ0.016
−0.016

Ωm 0.25 0.2504þ1.7×10−3

−1.7×10−3 0.2504þ1.6×10−3

−1.7×10−3

σ8 0.8003 0.8041þ4.5×10−3

−4.5×10−3 0.7992þ4.1×10−3

−4.1×10−3

γ � � � 1.85þ0.56
−0.53 1.19þ0.33

−0.32

FIG. 15. Theoretical error envelopes for the monopole (left panel) and quadrupole (right panel) moments of the power spectrum of
dark matter in redshift space, normalized to the tree-level spectra. See Eq. (A3) for the description of the estimates.
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envelope1∶Elðk;zÞ¼D6ðzÞ
�

k
0.45hMpc−1

�
3.3
Pl;treeðk;zÞ;

envelope2∶Elðk;zÞ¼
P2
l;1−loopðk;zÞ
Pl;treeðk;zÞ

: ðA3Þ

The envelope 2 is based on the disconnected two-loop
diagram which involves a product of two one-loop dia-
grams, but without an extra propagator Pl; tree.
Comparing these two estimates with our baseline

choice (at kfidmax ¼ 0.12 hMpc−1) in Fig. 15, one sees that
“envelope 2” describes the actual difference between
the one-loop PT model and the data surprisingly well. In
contrast, “envelope 1” underestimates the theoretical error
quite significantly, by more than 1 order of magnitude.
Finally, Fig. 16 shows the envelopes for the redshift

space galaxies. Our envelope is computed using kfidmax ¼
0.16 hMpc−1. We can see that envelope 1 agrees well
with our theoretical error for the monopole, while envelope
2 largely overestimates it on short scales. In contrast,
envelope 1 significantly underestimates the theoretical error
for the quadrupole, whereas envelope 1 still overestimates
it; our envelope lies in between these two perturbation
theory estimates. All in all, we conclude that the redshift
space theoretical error envelopes that we use in this paper
roughly agree with the perturbation theory estimates, but
the latter are quite uncertain.

2. Choice of kfidmax

In this section we argue our choice of kfidmax in the
theoretical error analyses. For that, we fix the cosmological
parameters to their fiducial values and find the best-fitting
values of nuisance parameters varying kmax. Then, we extract
the best-fit reduced statistic χ2=Ndof (Ndof ¼Nbins −Nparams)
for each kmax. The results for the real space dark matter are
shown in the upper left panel of Fig. 17. Note that the typical
values of χ2=Ndof are around 0.2, which is a result of using
the reduced volume V ¼ 100 ðGpc=hÞ3 in the covariance
instead of the true cumulative volume of the Las Damas

Oriana simulation V ¼ 553 ðGpc=hÞ3. We see that the χ2

profile blows up at kmax ¼ 0.14 hMpc−1 for z ¼ 0 and at
kmax ¼ 0.30 hMpc−1 for z ¼ 0.974. This is an indication
that the one-loop perturbation theory model becomes invalid
at these scales. Thus, we choose smaller fiducial cuts kfidmax,
where the χ2 profile is still flat: kfidmax ¼ 0.10 hMpc−1 for
z ¼ 0 and kfidmax ¼ 0.26 hMpc−1 for z ¼ 0.974. Opera-
tionally, it is suggestive to use

kfidmax ¼ k2−loop − Δk0; Δk0 ¼ 0.04 hMpc−1: ðA4Þ

The fiducial kmax for other cases are chosen in a
completely similar fashion. The results for dark matter
in redshfit space are shown in the upper right panel of
Fig. 17. We found that the reduced χ2=Ndof statistics
remains flat up to kmax ¼ 0.16 hMpc−1. However, in order
to be conservative, we choose kfidmax ¼ 0.12 hMpc−1 in our
analysis.
The results for the real space galaxies are shown in the

lower left panel of Fig. 17. In this case, the picture is not so
obvious due to the large shot noise contribution in the
covariance, which can be larger than the theoretical error
covariance. For this reason, one-loop perturbation theory
provides an accurate description of the galaxy power
spectrum up to nonlinear scale kmax ≈ 0.3 hMpc−1.
Since we do not see any sign of the bias up to
kmax ¼ 0.3 hMpc−1, we conclude that the theoretical error
is negligibly smaller than the statistical covariance domi-
nated by shot noise. The situation is somewhat different for
the galaxy-matter cross-spectrum for which the χ2 profile
shows some scale dependence for kmax > 0.22 hMpc−1. In
this case, we choose kfidmax ¼ 0.18 hMpc−1 in our theoretical
error analysis of Pgm.
Finally, we display the best fit χ2=Ndof profile for galaxies

in redshift space in the lower right panel of Fig. 17. One can
see that the χ2 profile blows up at kmax > 0.2 hMpc−1. Given
this reason, we choose kfidmax ¼ 0.16 hMpc−1.

FIG. 16. Same as Fig. 15 but for galaxies in redshift space.
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It should be stressed that using the χ2ðkmaxÞ profile is
inappropriate for defining the baseline cut of the kmax

analysis because the fit can be biased at kmax lower than
k2−loop when the cosmological parameters are varied.
Indeed, we see that k2−loop is typically larger than the
baseline cuts kmax in our main analyses. Hence, using the χ2

profile is appropriate only for the theoretical error and not
to fix the baseline kmax.

APPENDIX B: SUPPLEMENTARY MATERIAL
ON THE FINGERS-OF-GOD MODELING

We show the 1Dmarginalized limits on the parameters of
different FoG models from the redshift space spectrum
analyses for z ¼ 0 in Table VI and for z ¼ 0.974 in
Table VII.
Figure 18 displays the parameter constraints for dif-

ferent FoG models including “EFTþ FoG,” which are

TABLE VI. The marginalized 1D intervals for the amplitude and nuisance parameters estimated from the
monopole and quadrupole moments of the Las Damas dark matter redshift space power spectrum at z ¼ 0 for fixed
fiducial cosmology. We show the fitted parameters (first column), the fiducial values used in simulations (second
column), and the resulting parameter constraints in different models: (Σ) (third column), ðc0; c2Þ (fourth column),
and ðc0; c2; b4Þ (fifth column) at kmax ¼ 0.1 h=Mpc. c0, c2, b4 are quoted in units ½h−1 Mpc�2, ½h−1 Mpc�2,
½h−1 Mpc�4, respectively.

z ¼ 0

Par Fid (Σ) ðc0; c2Þ ðc0; c2; b4Þ
A 1 0.9873þ1.5×10−3

−1.5×10−3 1.0063þ2.9×10−3

−2.9×10−3 1.0031þ3.3×10−3

−3.3×10−3

σ8 0.8003 0.7952þ6.0×10−4

−6.0×10−4 0.8028þ1.2×10−3

−1.2×10−3 0.8015þ1.3×10−3

−1.3×10−3

Σ � � � 7.75þ0.15
−0.15 � � � � � �

c0 � � � � � � 5.30þ0.28
−0.27 4.19þ0.60

−0.60
c2 � � � � � � 25.71þ0.94

−0.95 17.12þ4.30
−4.21

10−3b4 � � � � � � � � � 12.63þ5.99
−6.14

FIG. 17. Best-fit reduced χ2=Ndof as a function of kmax for various likelihoods considered in this paper.
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TABLE VII. The marginalized 1D intervals for the amplitude and nuisance parameters estimated from the
monopole and quadrupole moments of the Las Damas dark matter redshift space power spectrum at z ¼ 0.974 for
fixed fiducial cosmology. We show the fitted parameters (first column), and the resulting parameter constraints in
different models: (Σ) (second column), ðc0; c2Þ (third column) at kmax ¼ 0.1 h=Mpc and ðΣ; c0Þ (fourth column),
ðc0; c2Þ (fifth column), ðc0; c2; b4Þ (sixth column) at kmax ¼ 0.14 h=Mpc. c0, c2, b4 are quoted in units ½h−1 Mpc�2,
½h−1 Mpc�2, ½h−1 Mpc�4, respectively.

z ¼ 0.974

Par kmax ¼ 0.1 h=Mpc kmax ¼ 0.14 h=Mpc

(Σ) ðc0; c2Þ ðΣ; c0Þ ðc0; c2Þ ðc0; c2; b4Þ
A 0.9936þ1.5×10−3

−1.5×10−3 1.0021þ2.8×10−3

−2.8×10−3 1.0046þ1.7×10−3

−1.7×10−3 1.0052þ1.8×10−3

−1.8×10−3 1.0017þ1.9×10−3

−2.0×10−3

σ8 0.7977þ6.2×10−4

−6.1×10−4 0.8011þ1.1×10−3

−1.1×10−3 0.8021þ6.9×10−4

−6.9×10−4 0.8024þ7.0×10−4

−7.0×10−4 0.8010þ7.8×10−4

−7.9×10−4

Σ 3.30þ0.11
−0.11 � � � 3.60þ0.03

−0.03 � � � � � �
c0 � � � 3.82þ0.34

−0.34 0.94þ0.08
−0.08 4.31þ0.11

−0.11 3.41þ0.26
−0.26

c2 � � � 13.14þ0.83
−0.82 � � � 15.19þ0.30

−0.30 10.88þ1.15
−1.13

10−3b4 � � � � � � � � � � � � 0.37þ0.09
−0.10

FIG. 18. Same as Fig. 6, but with the additional EFTþ FoG model (5.8), characterized by the parameters ðc0;ΣÞ.
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TABLE VIII. The marginalized 1D intervals for the cosmological parameters estimated from the Las Damas real
space dark matter power spectra at z ¼ 0. The table contains fitted parameters (first column), fiducial values used in
simulations (second column), the results of the baseline kmax analysis (third column), and outcomes of TE approaches
with default (fourth column) and new fiducial cosmology (fifth column) termed TE 2. γ is quoted in units ½h−1 Mpc�2.

z ¼ 0

Par Fid kmax ¼ 0.12 TE TE 2

ωcdm 0.1029 0.1023þ1.6×10−3

−1.8×10−3 0.1039þ1.4×10−3

−1.5×10−3 0.1036þ1.4×10−3

−1.4×10−3

h 0.7 0.6983þ3.3×10−3

−3.4×10−3 0.7021þ2.4×10−3

−2.4×10−3 0.7018þ2.3×10−3

−2.3×10−3

ns 1 1.008þ0.014
−0.013 0.9930þ0.011

−0.011 0.9981þ0.010
−0.010

A 1 1.014þ0.020
−0.020 0.9897þ0.016

−0.016 0.9952þ0.015
−0.015

Ωm 0.25 0.2499þ2.2×10−3

−2.3×10−3 0.2504þ1.6×10−3

−1.7×10−3 0.2502þ1.6×10−3

−1.7×10−3

σ8 0.8003 0.8044þ4.6×10−3

−4.5×10−3 0.7992þ4.1×10−3

−4.1×10−3 0.8018þ3.2×10−4

−3.2×10−4

γ � � � 1.60þ0.33
−0.31 1.19þ0.33

−0.32 1.41þ0.22
−0.22

FIG. 19. Triangle plot for the cosmological and nuisance parameters measured from the real space dark matter power spectrum of the
Las Damas simulations at z ¼ 0 for the kmax analysis and two choices of the fiducial cosmology in the TE approach. The dashed orange
lines mark the fiducial cosmological parameters used in the TE 2 analysis, whereas the gray dashed lines mark the fiducial cosmology
used in the baseline analysis. It coincides with the true mock cosmology.
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extracted from the matter redshift space power spectrum
at z ¼ 0.974.

APPENDIX C: DEPENDENCE ON FIDUCIAL
COSMOLOGY

In our algorithm, the theory prediction for the TE mean
has been calculated using the true cosmology of mock
catalogs. As the actual cosmological parameters are a priori
unknown, we need to check whether our results depend on
the choice of the fiducial cosmology. To estimate the
corresponding uncertainty we repeat the TE analysis with
a different fiducial cosmology. To that end we use a set of
cosmological parameters from a randomly chosen step
from MCMC chains of the baseline kmax analyses for dark
matter and galaxies in real and redshift spaces. In each of
these cases, we require that this new parameter set deviates
noticeably from the true mock cosmology, but still stays
within the 95% C.L. Then, for this chosen cosmology we
calculate the TE mean following the algorithm described in

the main text. We will fit the real space dark matter (z ¼ 0),
redshift space dark matter (z ¼ 0.974), and redshift space
galaxies (z ¼ 0.342) mock data and compare the resulting
posterior distribution with the results of Secs. IV, V,
and VII.
Let us begin with the real space dark matter (z ¼ 0). The

marginalized 1D parameter constraints are listed in
Table VIII (fifth column). The 2D posterior distributions
are shown in Fig. 19 (green contours). We have found that
posterior distributions for all parameters except for σ8, ns,
and γ are not altered by the different choice of the fiducial
cosmology. However, the error bars on σ8, ns, and γ
decrease by 20%, 10%, and 30%, respectively, compared
to the baseline TE analysis. These changes can be readily
understood. First, σ8 and ns control the amplitude of the
theoretical error envelope E. It implies that the uncertainty
in the choice of fiducial cosmology for E propagates into
uncertainty for σ8 and ns measurements. Second, σ8 and γ
are strongly degenerate, and hence the aforementioned

TABLE IX. The marginalized 1D intervals for the cosmological and nuisance parameters estimated from the
monopole and quadrupole moments of the Las Damas dark matter redshift space power spectrum at z ¼ 0.974. We
show the fitted parameters (first column), fiducial values used in simulations (second column), and the resulting
parameter constraints for the baseline kmax analysis (third column) and the theoretical error approach with default
(fourth column) and new fiducial cosmology (fifth column) termed TE 2. c0, c2, b4 are quoted in units ½h−1 Mpc�2,
½h−1 Mpc�2, ½h−1 Mpc�4, respectively.

z ¼ 0.974

Par Fid kmax ¼ 0.14 h=Mpc TE TE 2

ωcdm 0.1029 0.1023þ1.4×10−3

−1.5×10−3 0.1026þ1.1×10−3

−1.0×10−3 0.1011þ1.1×10−3

−1.0×10−3

h 0.7 0.6993þ2.4×10−3

−2.6×10−3 0.6995þ1.6×10−3

−1.6×10−3 0.6969þ1.6×10−3

−1.6×10−3

ns 1 1.0083þ0.012
−0.011 1.0028þ8.5×10−3

−8.5×10−3 1.0149þ7.6×10−3

−7.7×10−3

A 1 1.0096þ0.016
−0.016 1.0043þ0.010

−0.011 1.0221þ0.010
−0.011

Ωm 0.25 0.2493þ1.7×10−3

−1.8×10−3 0.2498þ1.4×10−3

−1.3×10−3 0.2486þ1.3×10−3

−1.3×10−3

σ8 0.8003 0.8033þ3.1×10−3

−3.1×10−3 0.8012þ2.8×10−3

−2.8×10−3 0.8036þ2.1×10−3

−2.1×10−3

c0 � � � 3.66þ0.39
−0.37 3.29þ0.40

−0.39 3.51þ0.19
−0.19

c2 � � � 11.26þ1.32
−1.25 10.52þ1.11

−1.10 10.62þ0.50
−0.50

10−3b4 � � � 0.34þ0.10
−0.11 0.41þ0.08

−0.08 0.40þ0.03
−0.03
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FIG. 20. Triangle plot for the cosmological and nuisance parameters measured from the redshift space dark matter power spectrum of
the Las Damas simulations at z ¼ 0.974 for the kmax analysis and two choices of the fiducial cosmology in the TE approach. c0, c2, b4
are quoted in units ½h−1 Mpc�2, ½h−1 Mpc�2, ½h−1 Mpc�4, respectively. Crossing of the dashed orange lines outlines the fiducial
cosmological parameters used in the TE 2 analysis.
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uncertainty propagates into the γ constraint and worsens it
as well.
Now let us consider the case of redshift space dark matter

(z ¼ 0.974). The marginalized 1D parameter constraints
are listed in Table IX (fifth column). The 2D posterior
distributions are shown in Fig. 20 (green contours). Just as
in real space, changing the fiducial cosmology does not
impact uncertainties on ωcdm and h. However, the error bars
on σ8 and ns decrease by 25% and 10%. The impact on the
counterterms is even stronger. Namely, the constraints on
c0, c2, b4 become twice weaker compared to those which
we have obtained in the baseline TE analysis. We have also
found that the posterior distributions are shifted toward the
new fiducial cosmology. Nevertheless, the new 2D poste-
riors enclose the true mock parameters within 95% C.L. as
shown in Fig. 20.
Finally, we discuss redshift space galaxies (z ¼ 0.342).

The marginalized 1D parameter constraints are listed in

Table X (fifth column). The 2D posterior distributions are
shown in Fig. 21 (green contours). In this case, we do not
find any significant difference in posterior distributions of
the cosmological parameters due to the change of the
fiducial cosmology.
Our analysis suggests the following conclusions. The

improvement that we have found for dark matter in real
space and redshift space on σ8 and ns parameters may
be artificially caused by the specific choice of the
fiducial cosmology. However, in the realistic analysis,
the TE approach yields robust cosmological constraints
which do not depend on the choice of the fiducial
cosmology. In this case the TE approach does not provide
any information gain in comparison with the analysis with
the sharp momentum cut and only serves to optimize the
choice of kmax. Finally, we would like to point out that we
have also studied the convergence of the results with
respect to variations of kfidmax and found statistically indis-
tinguishable results for all considered cases.

TABLE X. The marginalized 1D intervals for the cosmological parameters estimated from the Las Damas redshift
space galaxy power spectra at z ¼ 0.342. The table contains fitted parameters (first column), fiducial values used in
simulations (second column), and the results of the baseline kmax analysis (third column) and the outcome of the
theoretical error approach with default (fourth column) and new (fifth column) fiducial cosmology. c0, c2, b4 are
quoted in units ½h−1 Mpc�2, ½h−1 Mpc�2, ½h−1 Mpc�4, respectively.
Par Fid kmax ¼ 0.18 h=Mpc TE TE 2

ωcdm 0.1029 0.1037þ3.5×10−3

−4.1×10−3 0.1009þ3.5×10−3

−3.5×10−3 0.1013þ3.4×10−3

−3.4×10−3

h 0.7 0.7002þ5.1×10−3

−5.3×10−3 0.6973þ5.0×10−3

−5.0×10−3 0.6981þ4.9×10−3

−4.9×10−3

ns 1 0.9909þ0.028
−0.026 1.0031þ0.025

−0.025 1.0021þ0.025
−0.025

A 1 1.0169þ0.073
−0.079 1.0571þ0.069

−0.081 1.0174þ0.066
−0.079

Ωm 0.25 0.2513þ4.6×10−3

−5.2×10−3 0.2479þ4.3×10−3

−4.7×10−3 0.2480þ4.1×10−3

−4.4×10−3

σ8 0.8003 0.8069þ0.022
−0.022 0.8044þ0.021

−0.021 0.7980þ0.021
−0.020

c0 � � � 0.77þ17.93
−11.48 9.40þ12.45

−9.68 12.88þ12.56
−9.41

c2 � � � 36.22þ28.01
−20.61 29.61þ23.11

−18.30 38.76þ25.64
−20.78

10−3b4 � � � 1.40þ0.21
−0.26 1.73þ0.25

−0.28 1.85þ0.31
−0.34

b1 � � � 2.17þ0.07
−0.07 2.16þ0.07

−0.07 2.19þ0.07
−0.07

b2 � � � −0.96þ0.64
−0.87 −0.92þ0.57

−0.78 −0.57þ0.65
−1.03

bG2
� � � −0.350þ0.364

−0.388 −0.330þ0.351
−0.368 −0.377þ0.372

−0.395
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