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A B S T R A C T

In dealing with personnel management in companies, two fundamental planning issues have to be handled:
staff rostering and activities assignment. These two problems have historically been treated separately, in a
sequential way; however, it is evident how strongly they are tied to each other and that solution quality
inevitably drops if this connection is not taken into proper account. For this reason, also taking advantage
of the massive recent advances in software and hardware technologies, the integrated task scheduling and
personnel rostering problem (TSPR) has been formalized along with suitable algorithmic approaches to tackle
both planning stages altogether. In this paper, we describe how the peculiar and complex case of airport ground
staff was handled in a scenario defined by real-world data from a large airport in Italy. Specifically, we show
that the problem can be cast into a mixed integer linear programming model. We then show that, to make the
problem computationally tractable, the introduction within the model of a set of suitable valid inequalities is
crucial. Indeed, as opposed to the base model from the literature, the novel, improved formulation allowed to
effectively obtain near-optimal solutions in reasonable time even for the considered large-scale and real-world
scenario.
1. Introduction

The staff scheduling problem, also known in the literature as Per-
sonnel Rostering problem, consists in planning suitable work shifts for
employees in (usually large) companies, e.g., hospitals, call centers,
transportation companies, or hotels, so that the demand of required
goods or services can be satisfied (Brucker et al., 2011; Cappanera et al.,
2022; Özder et al., 2020; Van den Bergh et al., 2013). The optimal plan-
ning of work shifts may be highly beneficial both to employers, who can
minimize costs, and to employees, whose preferences concerning daily
timetables or days off may be satisfied.

The basic version of the staff scheduling problem requires to cover
pre-defined shifts employing workers from a roster. The working hours
of employees are typically bound by their contracts, which induce the
main constraints in the optimization models. To complicate matters
further, the staff scheduling problem may span a multi-day planning
horizon and employees may be characterized by skills required to cover
specific shifts (De Bruecker et al., 2015).

Recently, with the specialization and diversification of occupations
in the work environment, staff scheduling problems where a worker has
to perform several activities in the same shift are increasingly common,
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leading to even more complex problems. A second issue workforce
planners have to deal with is thus that of Task Scheduling, i.e., the
assignment of each activity to be carried out by a sufficient number
of active, skilled enough workers to cover the demand (Kolen et al.,
2007).

Historically, the two aforementioned problems have been addressed
separately, in a sequential fashion, from the operations research com-
munity: first, the working shifts are constructed for each employee
and then the tasks are assigned within the shifts. Clearly, not assign-
ing tasks and shifts simultaneously eventually leads to lower-quality
solutions (Ernst et al., 2004).

Of course, this kind of approach has been motivated by com-
putational sustainability reasons. However, exploiting the increasing
computational power provided by modern hardware and the algo-
rithmic, software advances, the integrated task scheduling and personnel
rostering (TSPR) problem was finally formalized and rigorously defined
as a mixed-integer linear programming model by Smet et al. (2016).

Since then, more complex versions of TSPR have also started to be
analyzed to meet specific application needs; for example, continuous
training of employees has been considered in the context of inclusion
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of people with disabilities (Maheut et al., 2023); ordering and grouping
constraints to satisfy customers’ preferences were taken into account
when dealing with employees of a wellness center (Mansini et al.,
2023); grouping was also something to be handled in the case of
residential care under pandemic conditions to mitigate the spread of
infections (Moosavi et al., 2022).

We can thus observe that staff scheduling is a very context-specific
problem: each case study has its peculiarities and complexities. This
is of course also and particularly true for the case of ground staff in
airports, which is the focus of the present work.

The examined instance, coming from a large airport in Italy, is
indeed particularly hard to handle for several reasons. First, airports
are a working environment operating 24 h a day, 7 days a week,
where tasks repeat continuously and may even span two consecutive
days. Second, employees (i) own skills making them almost unique in
the team of workers (heterogeneous workforce), (ii) have legality and
collective agreements to be satisfied, and (iii) typically, there is a mix
of full and part-time contracts. Third, the planning horizon is made
up of multiple days (typically a week) with a (highly) time-varying
demand. Fourth, each employee can perform several different activities
– of widely varying lengths, some of them even a few minutes long –
during the same day-shift, and high flexibility is required in schedule
definition.

The main contribution of the present paper is twofold: on the
one hand, we show that Mixed-Integer Programming can be used
with large-scale real-world instances of the TSPR problem; on the
other hand, we present novel mathematical elements within the model
that allow to make computation sustainable. Findings can be of gen-
eral interest for other personnel scheduling problems involving task
assignment.

The rest of the manuscript is organized as follows: in Section 2,
the specifics of our case study are outlined; in Section 3, approaches
from the literature for analogous problems are reviewed and discussed;
in Section 4, our exact optimization model is defined in detail; in
Section 5, we address a set of valid inequalities that allows to greatly
improve the efficiency of the solution process; in Section 6, we report
the results of computational experiments carried out on the real-world
data at our disposal. Finally, in Section 7, we provide some concluding
remarks.

2. Problem statement

The problem considered in this paper originates from the research
project AIMS (Artificial Intelligence for the Management of Shifts)
financed by the Tuscany Region. The project, whose participants came
both from the academia and from industrial companies, aimed at the
development of optimization tools for personnel shift scheduling based
on activities. In particular, the partners of the project had the possibility
of working with real data from a medium-sized airport in Italy; the
objective was to build a set of optimization tools capable of taking
into account all of the complexities of real-world scenarios. Thus, in
the following, the definition of the problem, although being closely
related to other similar problems found in the scientific literature,
has been strongly influenced by the real case study on which the
whole Research and Development project was based. The project was
successfully concluded at the beginning of 2023 with a formal approval
by the sponsoring partner.

Given a weekly planning horizon, a set of skilled employees, and a
service demand to cover, the project described in this paper consists of
devising an optimization model that defines shifts and assigns them to
employees to satisfy demand. In the following, we will detail the key
elements of the problem, i.e., service demand and employees.

In airports, which are open 24/7, some activities like ‘‘check-in’’ or
‘‘vehicle cleaning ’’ must be done repeatedly depending on the arrival
and departure times of flights. For each activity, and each day in the
planning horizon, the demand for service is expressed in terms of the
2

o

Table 1
Request data.

Field Description

start Start date and time of request
end End date and time of request
qualification Necessary skill required to do the activity
section When present, denotes the area where the request takes place
demand Number of employees needed to satisfy the request

Table 2
Employee data.

Field Description

working_days Number of working days per week
shift_duration Duration in hours of a working shift
qualifications Skills of the employee
section Specific area where the employee can operate

exact number of (skilled) employees required on a given time interval
in a given working area/section. As an example, on Friday, for the check-
in activity at the stopover employee area/gate B (working area/section)
two employees, with proper skill, must be on duty from 11.25 to 11.45.
As widely used in the literature, we use the term task to refer to
these pieces of work that must be covered. So, there is a one-to-many
relationship between activities and tasks: each activity corresponds
to a set of tasks, and each task is associated with only one activity.
Specifically, in our case study, service demand is described as a set of
tasks to be covered, and each task is given by a tuple of information
describing the time and location in which the corresponding activity
must be performed, i.e., the day in the planning horizon, the time
interval in the day – starting and ending time – and the working area;
moreover, the set of skills required to perform that activity is specified.
Tasks must be grouped to form shifts. A shift is defined as a time
nterval, characterized by a start time and a length. In the following,
asks are also referred to as service requests or simply requests.

For each employee, data contains information on their skills (qual-
fications), the working area where they are qualified to work, and the
ontract. Contractual data defines the exact number of hours an em-
loyee must be available when on duty (shift duration), the maximum
umber of hours per week, and the maximum number of working days
er week.

A detailed description of the available data is given in Tables 1 and
.

Listed below, we summarize all the formal requirements specified
or the airport considered in our study; note, however, that these
pecifics are common to the majority of main airports.

1. Every service request (task) must be satisfied with the exact
number of appropriate employees.

2. Each employee can perform at most one shift per day.
3. The working hours per day of each employee must correspond

to the contractual constraints.
4. The number of working days per week of each employee cannot

be greater than a fixed number, defined in the contract.
5. For all employees, there must be a minimum number of hours

between the end of a shift and the start of a shift on the next
day.

6. Employees can perform only those activities they are qualified
to do.

7. Two or more tasks cannot be performed by the same employee
if they temporally overlap.

. Literature review

The airline industry and its activities have drawn a major focus to

perations researchers since the 1950s, giving rise to many challenging
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optimization problems. Airports constitute one of the key pieces of
this industry; their management involves the solution of many decision
problems (Brusco et al., 1995; Cappanera & Gallo, 2004; Dowling
et al., 1997; Nobert & Roy, 1998; Rong & Grunow, 2009), including
personnel scheduling problems which is the focus of this work. A
general description of the airport system was provided by Clausen and
Pisinger (2011).

Literature on personnel scheduling problems is extremely vast;
we refer the reader to the survey papers by Brucker et al. (2011),
De Bruecker et al. (2015), Van den Bergh et al. (2013) and Özder
et al. (2020) for thorough reviews of models and algorithms on this
class of problems. In the context of airline companies, and more
generally in public transport, a distinction is made between ground
staff and traveling crew workers (airline pilots, train and bus drivers,
stewards, etc.); the latter case has certainly received more attention in
the literature (Deveci & Demirel, 2018; Herbers & Hromkovic, 2005;
Kasirzadeh et al., 2017).

The problem addressed in this paper deals with the assignment of
non-preemptive tasks and shifts. As outlined by Smet et al. (2016),
few publications put the focus on this setting. Dowling et al. (1997),
who incidentally focused on airport ground staff, addressed the prob-
lem as usual in two separate, sequential phases, to minimize over/
understaffing, exploiting a simulated annealing strategy. Meisels and
Schaerf (2003) addressed a timetabling problem where both tasks and
possible shifts are known in advance; however, contrarily to general
TSPR, only one task is assigned to each shift. Krishnamoorthy et al.
(2012) proposed instead an algorithm to carry out multiple task as-
signment to multi-skilled employees, in the case where the shifts have
been assigned in advance. Alternative approaches for this same problem
have been proposed by Baatar et al. (2015) and Smet et al. (2014).

As outlined by Smet et al. (2016), the strong but yet compli-
cated bond between task and shift assignments results in an integrated
problem (TSPR) which has long been considered computationally im-
practical for realistically sized instances (see, e.g., Ernst et al., 2004).
However, in the same paper, Smet et al. (2016) finally formalized the
problem and showed it to be solvable, at least for synthetic problems,
combining heuristic and decomposition strategies. Čalnerytė et al.
2020) also address the TSPR and propose a three-phase approach in
hich time is discretized in slots and a genetic algorithm and greedy
euristics are used in cascade to manage hard and soft constraints.
ore recently, Wang et al. (2023) proposed a clique-based formulation
here, instead of assigning tasks directly to staff members as Smet et al.

2016) do, they assign tasks to shifts and shifts to staff members. In
ddition, they proposed two heuristics, respectively based on the rolling
orizon concept and the iterative shift selection to solve medium to
arge real instances.

Problems with a structure similar to TSPR or having TSPR as a
pecial case have also been studied recently. Campana et al. (2021)
ddress a task and personnel scheduling problem arising in a large
talian company that provides cleaning services inside a hospital. For
ach task, the frequency with which it should be done inside the
lanning period is known as well as its duration and the skills required
o perform it. A 3-phase approach is proposed which consists of the
ollowing steps: (i) for each task, determine the days on which it will
e done; (ii) for each day, determine the sequence with which the tasks
ill be done; (iii) for each day and each operator, determine which

equence of tasks they will perform.
A general framework to address a plurality of staff scheduling

roblems has been recently proposed by Kletzander and Musliu (2020).
simulated annealing heuristic is implemented in the framework and

he integrated TSPR problem defined by Smet et al. (2016) is used as a
enchmark to solve instances with up to 40 employees. Compared with
he results by Smet et al. (2016), the general approach seems to be able
o find feasible solutions for more instances, while solution quality is
3

ot competitive in most cases.
Table 3
Notation — sets of data.

Set Definition Index

𝐽 Set of employees 𝑗
𝐷 Set of days of the week 𝑑
𝑅 Set of requests 𝑟
𝑆 Set of shifts 𝑠

Table 4
Notation - element-specific items.

Name Definition

𝐿𝑠 Duration of shift 𝑠
𝑡𝑠 Starting time of shift 𝑠
𝑆𝑗 Set of shifts assignable to employee 𝑗
𝐻𝑗 Maximum hours per week for employee 𝑗
𝐺𝑗 Maximum days per week for employee 𝑗
𝑑𝑟 Number of employees required for request 𝑟
𝐽𝑟 Set of employees qualified for request 𝑟

Summarizing, we can conclude that few studies have focused on
the peculiar TSPR problem even after the formalization of the problem
by Smet et al. (2016). Most of them are heuristics. When TSPR is
dealt with using frameworks defined for more general problems, the
performance obtained may not be satisfactory in terms of solution
quality. This shortcoming therefore motivates the interest in studying
approaches that exploit the particular structure of the problem. It is
precisely into this literature gap that our work fits, proposing to enrich
the clique-based mathematical models provided in the literature with
crucial elements to make the problem computationally tractable even
for large-scale real-world instances.

4. Problem formalization

In this section, we present the key elements of the approach we
propose to address our case study.

4.1. Notation and basic concepts

As a first modeling element, we need to define a shift. A shift 𝑠
s a time interval, characterized by a start time 𝑡𝑠 and a duration 𝐿𝑠.

e define a finite set 𝑆 of possible shifts that employees can do. We
iscuss the choice of the possible starting times and shift durations,
hich strongly depend on the problem at hand, in Section 4.3. In the
eantime, we assume that the set 𝑆 is given.

In Tables 3 and 4 the notation for the considered problem is
escribed, assuming the time horizon is one workweek.

In what follows, we describe the mathematical program, inspired by
he TSPR model by Smet et al. (2016), used in this work to model our
roblem.

For ease of notation, we introduce two matrices: 𝐴 ∈ R|𝑅|×|𝑆| and
𝐵 ∈ R|𝑅|×|𝑅|.

Matrix 𝐴 is an incidence matrix, encoding the information about
compatibility between request 𝑟 ∈ 𝑅 and shift 𝑠 ∈ 𝑆; each element 𝑎𝑟,𝑠
is defined as follows

𝑎𝑟,𝑠 =

{

1 if request 𝑟 is time-wise contained in shift 𝑠,
0 otherwise.

atrix 𝐵 is an incompatibility matrix, encoding the information about
he incompatibility between two requests 𝑟𝑖 ∈ 𝑅, 𝑟𝑗 ∈ 𝑅; each element
𝑏𝑖,𝑗 is defined as follows

𝑏𝑖,𝑗 =

{

1 if request 𝑟𝑖 is time-wise overlapped with request 𝑟𝑗 ,
0 otherwise.

atrix 𝐵 can also be seen as an adjacency matrix of a graph where
odes represent requests and edges indicate incompatibility among
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Fig. 1. Example of (part of) input data.

them. Cliques within this graph constitute sets of requests such that at
most one of them can be assigned to a single employee. In the following,
we will denote the set of maximal cliques in 𝐵 as (𝐵). An efficient algo-
rithm to find all maximal cliques in 𝐵 was proposed by Krishnamoorthy
et al. (2012); we provide details about this procedure in Appendix.

The introduction of the above two matrices allows us to encapsulate
the temporal element of the problem, reducing it to a static assignment
task. Of course, the concept of incompatibility between two requests
can be extended to further modeling requirements, such as spacial in-
compatibility (two requests cannot be performed by the same employee
on the same day if their location is one far away from the other).

Example 4.1. To make it easier to understand the notation defined
above and all the elements of the problem, we provide a toy example.
In Fig. 1, a pictorial representation of a small set of requests to be
satisfied and the set of possible shifts for a given day of the planning
period are shown. Specifically, we are given 5 requests, i.e., 𝑅 =
{𝑟8, 𝑟12, 𝑟37, 𝑟44, 𝑟56} and each request is represented as a horizontal
rectangular box of length equal to its duration. For instance, request
𝑟8 begins at 8.00 and has a duration of 2 h and a half. For that specific
day, there are 3 possible shifts, i.e., 𝑆 = {𝑠7, 𝑠13, 𝑠16}, and each shift
is represented as a horizontal rectangular box of length equal to its
duration. Shift 𝑠7 begins, e.g., at 8.00 and has a duration of 4 h.

Fig. 2 shows respectively the compatibility matrix between requests
and shifts (matrix 𝐴) and the incompatibility matrix between requests
(matrix 𝐵). For example, request 𝑟8 is time-wise contained in shift 𝑠7,
whereas it is not fully contained in shifts 𝑠13 and 𝑠16, thus motivating
the first row in matrix 𝐴 (Fig. 2(a)). In addition, request 𝑟8 is time-
overlapped to all the other requests but request 𝑟56, thus motivating
the first row in matrix 𝐵 (Fig. 2(b)).

We can now define the binary decision variables of the model:

𝑋𝑗 =

⎧

⎪

⎨

⎪

⎩

1 if employee 𝑗 takes at least one shift,

0 otherwise,
∀𝑗 ∈ 𝐽 ,

𝑌𝑗𝑠𝑑 =

⎧

⎪

⎨

⎪

⎩

1 if employee 𝑗 takes shift 𝑠 in day 𝑑,

0 otherwise,
∀𝑗 ∈ 𝐽 , ∀𝑠 ∈ 𝑆𝑗 , ∀𝑑 ∈ 𝐷,

𝑍𝑗𝑟 =

⎧

⎪

⎨

⎪

⎩

1 if employee 𝑗 performs request 𝑟,

0 otherwise.
∀𝑟 ∈ 𝑅, ∀𝑗 ∈ 𝐽𝑟.

Before turning to the optimization model, we finally have to intro-
duce for each shift 𝑠, the set 𝐼𝑠 of shifts that are incompatible on the
following day:

𝐼𝑠 = {𝑠2 ∈ 𝑆 ∣ 𝑡𝑠2 + 24ℎ − (𝑡𝑠 + 𝐿𝑠) ≤ 𝛿},

where 𝛿 is an appropriate value, usually defined in the industry collec-
4

tive agreements. This set is needed to take into account that, usually,
a minimum number 𝛿 of resting hours has to pass between two shifts
taken consecutively by an employee.

4.2. The integrated TSPR model

We formulate our integrated TSPR as the following integer linear
programming problem:

arg min
𝑋,𝑌 ,𝑍

∑

𝑗∈𝐽

∑

𝑑∈𝐷

∑

𝑠∈𝑆𝑗

𝐿𝑠𝑌𝑗𝑠𝑑 + 𝛾
∑

𝑗∈𝐽
𝑋𝑗 (1a)

s.t.
∑

𝑗∈𝐽𝑟

𝑍𝑗𝑟 ≥ 𝑑𝑟 ∀𝑟 ∈ 𝑅, (1b)

∑

𝑠∈𝑆𝑗

𝑌𝑗𝑠𝑑 ≤ 1 ∀𝑗 ∈ 𝐽 , ∀𝑑 ∈ 𝐷, (1c)

𝑍𝑗𝑟 ≤
∑

𝑠∈𝑆𝑗

𝑎𝑟,𝑠𝑌𝑗𝑠𝑑 ∀𝑗 ∈ 𝐽 , ∀𝑟 ∈ 𝑅, ∀𝑑 ∈ 𝐷, (1d)

∑

𝑟∈𝑐∶𝑗∈𝐽𝑟

𝑍𝑗𝑟 ≤ 1 ∀𝑗 ∈ 𝐽 , ∀𝑐 ∈ (𝐵), (1e)

∑

𝑑∈𝐷

∑

𝑠∈𝑆𝑗

𝑌𝑗𝑠𝑑 ≤ 𝐺𝑗𝑋𝑗 ∀𝑗 ∈ 𝐽 , (1f)

∑

𝑑∈𝐷

∑

𝑠∈𝑆𝑗

𝐿𝑠𝑌𝑗𝑠𝑑 ≤ 𝐻𝑗𝑋𝑗 ∀𝑗 ∈ 𝐽 , (1g)

𝑌𝑗,𝑠1 ,𝑑 + 𝑌𝑗,𝑠2 ,𝑑+1 ≤ 1 ∀𝑗 ∈ 𝐽 ,∀𝑠1, 𝑠2 ∈ 𝑆𝑗

s.t. 𝑠2 ∈ 𝐼𝑠1 ,∀𝑑 ∈ 𝐷, (1h)

𝑌𝑗𝑠𝑑 ≤ 𝑋𝑗 ∀𝑗 ∈ 𝐽 ,∀𝑠 ∈ 𝑆𝑗 ,∀𝑑 ∈ 𝐷, (1i)

𝑋𝑗 ∈ {0, 1} ∀𝑗 ∈ 𝐽 , (1j)

𝑌𝑗𝑠𝑑 ∈ {0, 1} ∀𝑗 ∈ 𝐽 ,∀𝑠 ∈ 𝑆𝑗 ,∀𝑑 ∈ 𝐷, (1k)

𝑍𝑗𝑟 ∈ {0, 1} ∀𝑟 ∈ 𝑅,∀𝑗 ∈ 𝐽𝑟, (1l)

where 𝛾 > 0 is a suitably defined constant.
Constraint (1b) forces requests covering: each request 𝑟 has to be

assigned to 𝑑𝑟 workers. Constraint (1c) prevents employees from taking
more than one shift per day. Moreover, by (1d) an employee is allowed
to perform a request only if they are working at that moment. The
assignment of incompatible requests to the same employee is avoided
thanks to (1e). The contractual constraints of employees are enforced
by (1f) and (1g). Constraint (1h) imposes the incompatibility condition
between close shifts on consecutive days. By (1i), we model the fact
that an employee can take a shift only if it is activated for the week.
Finally, the (binary) domain of the variables is specified in (1j), (1k)
and (1l).

As for the objective function, we minimize the idle time of the
employees, i.e., the difference between the length of their shifts and
the hours actually worked. To avoid unrealistic solutions where some
employees work just one or two days throughout the week, we also
add a penalty on the total number of active employees. The value of 𝛾
defines the trade-off between the two partly contrasting goals.

4.3. Identifying the shift set

The choice of the shift set 𝑆 is crucial for the proposed solution.
Indeed, a wide set of possible choices for the shifts may result in a
too large number of binary variables to be handled with reasonable
computational resources by software solvers. On the other hand, an
excessively limited set of shifts may lead to the problem described in
Section 4.3 having poor quality solutions and even being infeasible.

The possible length(s) of shifts usually depends on employees’ con-
tracts. Thus, the margin for choice mostly lies in the moments when
shifts can be started. A reasonable option is to allow shifts to start every
hour. Of course, with problems of moderate size, a denser set of possible
shifts could be considered, to obtain solutions of better quality. On the
other side, with particularly large problems a coarser grid might be

necessary to reduce the computational effort up to sustainable levels.
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Fig. 2. Matrices associated with data from Fig. 1.
Fig. 3. Example of ‘‘unfeasible’’ fractional solution.

In any case, after the base selection of the shifts set, a further
analysis has to be done based on the problem data. In particular,
issues may arise with long-lasting tasks. Assume we let shifts start
every hour (o’clock), and that the maximum duration of a shift is 8 h.
Then, let 𝑟 be a request of length 7 h 30 m starting at 9.40 and thus
ending at 17.10. There is no shift of length 8 h starting at a time in
{00.00, 01.00,… , 23.00} that fully contains the interval [9.40, 17.10]: the
shift starting at 9.00 has to end at 17.00, before the request has been
completed, whereas the following one starts at 10.00, when the request
has already begun.

In general, starting times for shifts should be added so that all
‘‘long’’ requests can be covered.

5. Valid inequalities

To decrease computational solution times, valid inequalities can be
introduced into the optimization model to improve the quality of the
solution of the continuous relaxations.

Indeed, in the fractional solution situations occur that are impossi-
ble in feasible, binary, ones. The idea of valid inequalities is to try to
add constraints that are satisfied by every feasible integer solution, and
thus, redundant, but that are not satisfied at some vertices of the linear
relaxation.

We begin this discussion by showing a situation that might be
observed (and indeed it has been observed in our experiments) in the
continuous relaxation of model (1). Consider the toy example shown
in Fig. 1 and observe the situation depicted in Fig. 3.

In this example, worker 𝑗 = 23 has been ‘‘partially’’ assigned to shift
𝑠 = 16 in the fractional relaxation with a value of 1

3 . During this shift,
this worker is also partially performing three tasks, 𝑟 = 12, 37, 44, that
are partly overlapping. It is evident that this is not possible and, indeed,
in the optimal, binary-valued, solution this situation cannot happen.
But in the relaxed problem, this is a feasible solution, as constraints
(1d) and (1e) are satisfied.
5

Fig. 4. Example of ‘‘unfeasible’’ fractional solution.

In fact, constraint (1e) forbids assigning incompatible tasks to the
same worker. But the constraint just asks that the sum of binary
variables is no larger than 1 and this, as we can see, is satisfied in this
case. What is lacking in the model is a constraint that links 𝑌 and 𝑍
variables for incompatible requests. In this example, we would like to
add a constraint like

𝑍23,12 +𝑍23,37 +𝑍23,44 ≤
∑

𝑠∶𝑎12,𝑠+𝑎37,𝑠+𝑎44,𝑠≥1
𝑌23,𝑠,1,

where the sum concerns all shifts that cover at least one of the requests
12, 37, 44. Generalizing:

∑

𝑟∈𝑐∶𝑗∈𝐽𝑟

𝑍𝑗𝑟 ≤
∑

𝑠∈𝑆(𝑗,𝑐)
𝑌𝑗𝑠𝑑 (2)

where 𝑐 is a (maximal) clique of incompatible requests.
Given a clique 𝑐, the left-hand side sums, similarly as in constraint

(1e), all of the assignments of those tasks to the same employee 𝑗. In
the example, this sum is 1

3 + 1
3 + 1

3 = 1. The right-hand side considers,
for the day in which the tasks have to be performed, all of the possible
shift assignments of employee 𝑗 to a shift which covers any of the tasks
in the clique; the set of shifts covering at least one of the tasks in 𝑐 is
denoted by 𝑆(𝑗, 𝑐), i.e.,

𝑆(𝑗, 𝑐) =

{

𝑠 ∈ 𝑆𝑗 ∣
∑

𝑟∈𝑐
𝑎𝑟,𝑠 ≥ 1

}

.

In our case, this sum is 1
3 . Changing the constraint (1e) into (2), the

above solution is immediately cut off.
Another case of ‘‘unfeasible’’ fractional solution can be observed in

the example in Fig. 4, again referred to the toy example instance in
Fig. 1.

Here, the assignment of worker 𝑗 = 14 on day 𝑑 = 1 has been split
among two shifts, 𝑠 = 7 and 𝑠 = 13. Then, requests 8 and 56 can both
be (partly) assigned to worker 𝑗 without breaking constraint (1d) nor
(1e). Note that the addition of constraint (2) does not cut this solution
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Fig. 5. An optimal solution for the toy problem from Fig. 1. The assignment of tasks
o shifts and the staff rostering is color-coded. Worker 𝑤23 has been assigned to shift
13 and covers requests 𝑟12 and 𝑟56 (color-coded in green). The other three workers,
amely 𝑤14 (blue), 𝑤30 (red), and 𝑤35 (brown) cover a request each and they have
een assigned respectively to shifts 𝑠7, 𝑠16, and 𝑠7.

ff, as 1 = 𝑍14,8 +𝑍14,56 = 𝑌14,7,1 + 𝑌14,13,1 = 1. However, the relaxation
ound can be strengthened. Since the overlapping requests 8 and 56
annot be performed by the same worker, we notice that at least two
ully active shifts (from different employees) need to be active to cover
oth. Hence, we should include in the model a constraint like
∑

∈𝐽8∪𝐽56

∑

𝑠∈𝑆𝑗
𝑎8,𝑠+𝑎56,𝑠≥1

𝑌𝑗,𝑠,1 ≥ 2.

Generalizing, we can insert into model (1), for any (maximal) clique
∈ (𝐵) of incompatible requests, the constraint
∑

𝑗∈
⋃

𝑟∈𝑐 𝐽𝑟

∑

𝑠∈𝑆𝑗
∑

𝑟∈𝐶 𝑎𝑟,𝑠≥1

𝑌𝑗𝑠𝑑 ≥
∑

𝑟∈𝐶
𝑑𝑟, (3)

where we are also taking into account the number of operators required
to satisfy each request.

We conclude the section reporting, for the toy problem shown in
Fig. 1, an optimal solution of the corresponding mathematical model.
Fig. 5 shows that 4 workers are needed to cover the 5 requirements in
𝑅.

6. Experimental results

In this section, we describe the insights gathered dealing with our
real-world case study, presenting and discussing the obtained results.

6.1. Case study

Our case study concerns a major international airport in Northern
Italy for which we collected 10 instances, corresponding to different
weeks spanning from 2022 to 2023.

The relevant information available for each request and each em-
ployee corresponds to that reported in Tables 1 and 2 respectively. Each
employee is associated with a set of skills, and each request specifies
one or more skills for any employee to be assigned to the corresponding
task. Three instances include requests associated with a specific section
within the department; in these cases, employees are also associated
with (possibly multiple) sections; to handle this kind of specification,
the combinations of skill and section can be considered as a whole
specific skill. Overall, 58 possible skills can be associated with the
employees.
6

t

We report some statistics for the 10 instances in our benchmark
in Table 5. Specifically, for each instance we can find: the number of
employees, the average number of skills for each employee, the number
of requests, descriptive statistics (average, minimum, and maximum
values) about the number of employees skilled for a request, same
descriptive statistics about number of requests that employees own the
skill to perform, and minimum and maximum number of daily requests.

For all employees in each test instance, the maximum number
of working days per week is 5. Employees are associated, by their
contracts, with shifts of length 4, 6, or 8 h; aggregate information about
this data is reported in Table 6.

6.2. Experimental setup and evaluation metrics

Each problem instance is modeled and implemented according to
formulation (1). The values of 𝐺𝑗 and 𝐻𝑗 for the 𝑗th employee, 𝐿𝑠 and
𝑡𝑠 for shift 𝑠, and 𝑑𝑟 and the set 𝐽𝑟 for request 𝑟 are directly determined
by instance data. The value of the trade-off parameter is set to 𝛾 = 50.

As for the set 𝑆𝑗 of feasible shifts for employee 𝑗, we followed the
methodology described in Section 4.3: first, we define shifts starting
every hour o’clock. Then, it can occasionally happen that a request
cannot be covered by any of the already available shifts; in those
cases, a new shift option, starting exactly at the request start time, is
generated.

For each instance, we solve 4 variants of model (1) (hereafter called
configurations). Specifically, model (1) is run:

(i) without the addition of any valid inequality,
(ii) adding to the model only the set of inequalities (2),

(iii) adding to the model only the set of inequalities (3),
(iv) adding both sets of valid inequalities.

The solver is enabled to carry out its presolve phase. For each model
variant, however, we also solve the pure continuous relaxation, to
assess the effect of the presolve in terms of performance.

To provide a condensed view of the results, in the following we are
making use of performance profiles (Dolan & Moré, 2002). Performance
profiles provide a unified view of the relative performance of the
solvers on a suite of test problems. Formally, consider a benchmark of
 problem instances and a set of solvers . For each solver 𝜎 ∈  and
problem 𝜋 ∈  , we define

𝑐𝜋,𝜎 = the cost for solver 𝜎 to solve problem 𝜋,

where cost is the performance metric we are interested in. In particular,
we will be interested in CPU time. We then consider the ratio

𝜂𝜋,𝜎 =
𝑐𝜋,𝜎

min𝜎∈{𝑐𝜋,𝜎}
,

which expresses a relative measure of the performance on problem 𝜋
of solver 𝜎 against the performance of the best solver for this problem.
If a solver fails to solve a problem, we shall put 𝜂𝜋,𝜎 = 𝜂𝑀 , with
𝜂𝑀 ≥ max{𝜂𝜋,𝜎 ∣ 𝜋 ∈  , 𝜎 ∈ }.

Finally, the performance profile for a solver 𝜎 is given by the
function

𝜌𝜎 (𝜏) =
1
||

⋅ ||
|

{

𝜋 ∈  ∣ 𝜂𝜋,𝜎 ≤ 𝜏
}

|

|

|

,

which represents the estimated probability for solver 𝜎 that the per-
formance ratio 𝜂𝜋,𝜎 on an arbitrary instance 𝜋 is at most 𝜏 ∈ R. The
function 𝜌𝜎 (𝜏) ∶ [1,+∞] → [0, 1] is, in fact, the cumulative distribution
of the performance ratio.

Note that the value of 𝜌𝜎 (1) is the fraction of problems where solver
attained the best performance; on the other hand, lim𝜏→𝜂−𝑀

𝜌𝜎 (𝜏)
enotes the fraction of problems solved from the given benchmark.

In addition to performance profiles, we will also make use of
he cumulative distribution of absolute gaps for a given metric 𝑣; in
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Table 5
Statistics for the 10 instances.

#emp #skills #req #emp/req #req/emp Daily #req

avg avg min max avg min max min max

1 170 11.4 2045 137.9 17 163 1658.4 7 2003 253 325
2 83 9.0 1292 75.2 51 83 1170.6 266 1292 179 190
3 87 8.8 1243 76.6 52 87 1094.2 212 1243 174 182
4 88 8.7 1248 77.5 52 88 1098.6 212 1248 149 193
5 88 8.7 1297 77.4 52 88 1141.2 212 1297 182 189
6 88 8.7 1274 77.5 52 88 1121.9 212 1274 175 190
7 88 8.7 1268 77.5 52 88 1116.7 212 1268 170 192
8 184 10.6 2116 129.4 18 177 1488.0 7 2074 266 367
9 108 6.9 1217 83.1 9 98 936.9 0 1217 154 197

10 169 11.3 2053 131.0 16 162 1591.6 21 1922 240 332
b
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Table 6
Percentage of employees associated with a given shift length for each
problem instance.
Shift length

4 h (%) 6 h (%) 8 h (%)

1 0 0 100
2 17 22 61
3 14 17 69
4 17 17 66
5 17 17 66
6 17 17 66
7 17 17 66
8 0 0 100
9 6 0 94

10 0 0 100

particular, this tool has a similar concept as performance profiles and
is obtainable setting

𝜂𝜋,𝜎 =
|𝑣𝜋,𝜎 − opt𝜎∈{𝑣𝜋,𝜎}|

opt𝜎∈{𝑣𝜋,𝜎}
,

here the opt operator denotes the minimum or the maximum accord-
ng to the metric 𝑣 selected. Distribution of relative gap is particularly
seful when evaluating results in terms of objective values. Of course,
n this case, we have 𝜌𝜎 (𝜏) ∶ [0,+∞] → [0, 1].

As performance metrics of our experiments, we are interested in the
ollowing values:

• the optimal value of the problem continuous relaxation, denoted
by 𝑓rel;

• the optimal value at root relaxation (when the presolve step is
enabled), denoted by 𝑓root;

• the objective value of the first feasible solution encountered
during the optimization process, denoted by 𝑓𝑓 ;

• the objective value of the best feasible solution encountered
during the optimization process, denoted by 𝑓best;

• the runtime required to solve the relaxation, find a feasible solu-
tion, and find the best solution, denoted respectively by 𝑡rel, 𝑡𝑓 ,
𝑡best.

he notation is entirely summarized in Table 7.

.3. Results

Figs. 6, 7 and 9 respectively show the cumulative distributions of the
elative gaps for the metrics 𝑓best, 𝑓𝑓 , and 𝑓root and 𝑓rel; the two latter
etrics are coupled in the same plot, sharing the reference optimal

alues, to appreciate the impact of the presolve step. Fig. 8 shows the
erformance profile for the 𝑡𝑓 metric.

Table 8 provides an overview of the experimental results. For each
nstance, we compare the numerical results concerning the objective
alues 𝑓rel, 𝑓root, 𝑓𝑓 , and 𝑓best, the best lower bound value 𝑙𝐵 and
omputation times 𝑡 , 𝑡 and 𝑡 related to the four configurations of
7

rel 𝑓 best t
Table 7
Summary of symbols.

VI Valid Inequalities
(P) Presolve used
𝑓rel Optimal objective value of relaxed model
𝑓root Objective value of root relaxation
𝑓𝑓 Objective value at first feasible solution encountered
𝑓best Objective value at best solution encountered
𝑡rel Time to solve continuous relaxation
𝑡𝑓 Time to find a feasible solution
𝑡best Time to reach best solution
𝑙𝐵 Best lower bound value when solver stops
%gap Optimality gap when solver stops

the model obtained by including or not the proposed valid inequalities.
Times are expressed in CPU seconds. In addition, for each instance and
each configuration, Table 8 reports the percentage relative gap (%gap)
etween 𝑓best and 𝑙𝐵 .

It can be noticed that the introduction of valid inequalities allows
o obtain relatively small gaps. Instance 9 was solved to optimality
%gap = 0) by the model that includes VI (3); in this case, the running
ime was 30 026.05 s. In all the other cases, the model returned either
suboptimal solution with a (usually small) gap or no feasible solution
ithin the time limit (a ‘–’ in Table 8 indicates the absence of the
alue).

From the results it clearly emerges that the proposed valid inequal-
ties are significantly effective. In fact, the model with none of them
ever returned a feasible solution within the time limit, while the
ddition of any of the proposed sets of inequalities allowed the model
o return at least a feasible solution for all the instances except one case

instance 8 using VI (3).
Table 9 shows for each configuration the number of instances for

hich a specific configuration is ranked first (best), second, third, or
ourth (worst) in terms of both objective value 𝑓best and best-bound
alue 𝑙𝐵 yielded. It can be noticed that, if we consider just the objective
alue, configuration (2) dominates the others, performing slightly bet-
er than (2)–(3). The cumulative distribution presented in Fig. 6 shows
hat configuration (3) is dominated by these other ones. Moreover, we
an observe that each time configuration (3) found the best solution, it
as always equaled by configuration (2). These considerations suggest

hat VI (2) is more effective than VI (3) to get the best objective value.
Instead, if we consider the best-bound value 𝑙𝐵 reported in Table 9,

onfiguration (3) dominates all the others; we can also observe the
ame behavior in Fig. 9, where the cumulative distribution corre-
ponding to configuration (3) dominates that referred to configuration
2).

Considering the objective value of the first feasible solution 𝑓𝑓
ound by each configuration, the cumulative distributions plotted in
ig. 7 show that (2) dominates the others; also (2)–(3) has a better
erformance than (3), confirming that set of inequalities (2) leads the
olver to reach a good quality solution even when solving the instance
o the optimum is not possible.
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Table 8
Results of the computational experiments on the 10 problem instances.
 VI Objective value 𝑙𝐵 %gap Time (s)

𝑓rel 𝑓root 𝑓𝑓 𝑓best 𝑡rel 𝑡𝑓 𝑓best

1

No 1535.67 1 842.8 – – 2 038 – 689.1 – –
(2) 13 122 13 122.0 13 680 13 680 13 122 4.1 996.4 80 542 80 542
(3) 13 176 13 176.0 14 720 13 680 13 194 3.6 1 058.1 18 731 59 860
(2)–(3) 13 218 13 218.0 15 210 13 738 13 248 3.6 2 062.8 61 660 66 942

2

No 910 1 387.0 – – 3 620 – 61.7 – –
(2) 4791 4 794.0 6 976 4 902 4 814 1.8 106.2 5687 77 915
(3) 4786 4 802.0 6 992 5 024 4 806 4.3 116.8 2208 99 669
(2)–(3) 4791 4 794.0 6 990 4 894 4 814 1.6 210.1 6229 79 108

3

No 1554 1 558.4 – – 2 310 – 83.5 – –
(2) 5028 5 028.0 5 862 5 106 5 032 1.4 229.3 8847 79 797
(3) 5028 5 028.0 7 368 5 128 5 068 1.2 176.0 4504 63 182
(2)–(3) 5028 5 028.0 7 330 5 106 5 032 1.4 344.2 9107 81 904

4

No 1554 1 567.1 – – 2 520 – 84.6 – –
(2) 5018 5 018.0 6 016 5 128 5 022 2.1 194.8 14 183 70 914
(3) 5018 5 018.2 7 424 5 146 5 108 0.7 179.9 6267 53 227
(2)–(3) 5018 5 018.0 7 370 5 130 5 020 2.1 327.8 8726 66 433

5

No 1570 1 584.0 – – 2 334 – 86.8 – –
(2) 5154 5 154.0 6 112 5 218 5 172 0.9 195.8 14 855 83 639
(3) 5154 5 155.6 7 462 5 232 5 202 0.6 197.3 6512 96 570
(2)–(3) 5154 5 154.0 5 914 5 218 5 170 0.9 333.8 8885 76 228

6

No 1554 1 564.3 – – 2 230 – 81.7 – –
(2) 5061.25 5 061.3 5 808 5 226 5 096 2.5 200.1 24 856 100 000
(3) 5060 5 060.0 7 324 5 310 5 138 3.2 214.2 4936 28 785
(2)–(3) 5061.25 5 061.3 5 736 5 166 5 092 1.4 386.5 19 849 58 931

7

No 1554 1 566.3 – – 2 270 – 83.5 – –
(2) 5110 5 110.0 5 826 5 246 5 162 1.6 207.8 27 259 96 643
(3) 5110 5 110.0 7 458 5 246 5 214 0.6 212.8 8383 80 930
(2)–(3) 5110 5 110.0 5 984 5 230 5 146 1.6 368.6 19 714 97 345

8

No 1524.53 2 220.7 – – 3 338 – 826.5 – –
(2) 12 852 12 852.0 15 718 13 108 12 852 2.0 13 820.7 63 288 77 174
(3) 12 852 12 852.0 – – 12 852 – 1 509.4 – –
(2)–(3) 12 852 12 852.0 16 374 14 816 12 852 13.3 2 243.0 46 028 63 262

9

No 1610 2 058.0 – – 3 060 – 65.3 – –
(2) 5748 5 748.0 8 422 5 788 5 748 0.7 231.1 2592 12 964
(3) 5748 5 748.0 8 770 5 788 5 788 0 165.8 1973 11 024
(2)–(3) 5748 5 748.0 6 344 5 788 5 748 0.7 354.2 519 1802

10

No 1719.18 2 362.5 – – 4 188 – 560.1 – –
(2) 11 862 11 862.0 12 208 12 208 11 862 2.8 870.6 34 556 34 556
(3) 11 862 11 862.0 12 674 12 208 11 898 2.5 732.1 17 937 25 429
(2)–(3) 11 862 11 862.0 13 122 12 208 12 070 1.1 1 846.1 14 006 17 864
Table 9
Ranking of the models based on the objective value and the best bound: for each
configuration of the model the number of instances for which it placed first, second,
third, and fourth is reported.

VI 𝑓best 𝑙𝐵
1st 2nd 3rd 4th 1st 2nd 3rd 4th

No 0 0 0 10 0 0 0 10
(2) 7 3 0 0 0 6 4 0
(3) 3 1 5 0 6 2 2 0
(2)–(3) 7 2 1 0 3 0 7 0

On the contrary, it can be observed in Fig. 8 that the configuration
hat uses the set of inequalities (3) yields feasible solutions of reason-
ble quality (the gap is relatively small anyway) faster than the other
ethods except one case where it does not find any. Moreover, we

bserve that adding this set of inequalities to the model together with
2) seems to speed up the return of the first solution. In any case, using
oth valid inequalities proves to have a balanced performance between
he quality of the solution, its best bound, and the computation time to
btain the first feasible solution.

It is also worth analyzing the effectiveness of the presolve phase
arried out by the solver. In Fig. 9 we plot the cumulative distributions
f both the root relaxation produced by setting the presolve option
8

to the default and solving the linear relaxation of the models with-
out a presolve phase. It can be observed that although the presolve
phase increased the performance of all the models (indeed, for both
configurations (2) and (2)–(3) the number of times they reached the
highest relaxation value increased of 1), it is especially effective for
configuration (3). The increase has such an extent that it went from
being dominated by the other two to almost dominating them both.
Fig. 9 also shows that without performing this presolve phase, the use
of both sets of valid inequalities (2) and (3) had the best performance.
This evidence remarks the positive effect of the proposed inequalities,
which may be even greater in those contexts where the solver cannot
rely on such an effective presolve stage.

7. Conclusions

This study faced a complex staff scheduling problem arising at a
major international airport in Northern Italy and involving ground staff.
Specifically, we addressed the integrated task scheduling and personnel
rostering problem, jointly coping with two problems that are commonly
solved in cascade. Inspired by an integrated model from the literature,
we proposed two families of valid inequalities.

Computational results showed that jointly solving the task schedul-
ing and the staff rostering problems can be particularly challenging
at least for instances coming from the case-study addressed. Even
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Fig. 6. Cumulative distribution of the relative gap for the best objective value (𝑓best) found by each method.
Fig. 7. Cumulative distribution of the relative gap for the objective values at the first feasible solution encountered (𝑓𝑓 ) found by each method.
finding feasible solutions becomes critical if the model is not equipped
with valid inequalities that significantly improve the performance of
the solver used. Indeed, a basic model run without the addition of
any valid inequalities fails to provide a feasible solution within the
time limit imposed (about 28 h) for all 10 instances. On the con-
trary, introducing inequalities (2) and (3) may be crucial for finding
high-quality solutions in reasonable computation times. Summing up,
configuration (2) proved to be a good choice when interested in high-
quality solutions; configuration (3) instead proved to be able to find
good feasible solutions in the shortest time and a narrow gap to the
9

optimum value; configuration (2)–(3) is a reasonable middle ground
between them, able to balance the quality of the best solution and the
computation time to get a feasible solution.

We conclude by briefly outlining what future lines of research
may be. The proposed approaches have proven successful in solving
medium to large instances of the problem, but as the number of requests
and employees increases, their performance may degrade. To evaluate
the robustness of our methodology, experiments on different problem
benchmarks would certainly be of interest. Moreover, it will be in-
teresting to investigate decomposition methods, as well as alternative
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Fig. 8. Performance profiles of the time to retrieve a feasible solution (𝑡𝑓 ) required by each method.
Fig. 9. Cumulative distributions of the relative gap from best objective values; for each model we consider both the root relaxation value after presolve (𝑓root) and the optimal
alue of pure continuous relaxation (𝑓rel). Note that the reference value for each problem is the overall best, so that we can observe the impact of the presolve operations in
ncreasing the root relaxation bound.
i

ormulations of the problem, e.g., network-based formulations. Further-
ore, in such a complex environment as airports, it is crucial to be

ble to deal with disruptions that may occur as a consequence of flight
elays or other events that make planned solutions infeasible. Prelimi-
ary results have shown that the proposed approaches are particularly
fficient if, as a result of parameter changes, it becomes necessary to
eassign tasks to employees on a given day while maintaining planned
ssignments on other days of the time horizon. Disruption management
10

c

surely identifies an interesting future development and deserves further
study.
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ppendix. Finding maximal cliques of incompatible activities

Following the ideas by Krishnamoorthy et al. (2012), to efficiently
ind all maximal cliques of incompatible tasks, Algorithm 1 can be em-
loyed, which exploits the temporal ordering information of requests.

Algorithm 1 Incompatible Cliques of Requests Identification
Require: 𝑅 set of requests
1: 𝑇 = ∅
2: for 𝑟 ∈ 𝑅 do
3: Let (𝑏𝑟, 𝑒𝑟) the starting and ending times of request 𝑟
4: 𝑇 = 𝑇 ∪ {(𝑏𝑟, 𝑟)} ∪ {(𝑒𝑟, 𝑟)}
5: end for
6: Cast the set of pairs 𝑇 into a list non-decreasingly order based on

the first element of each item (order by times).
7: 𝐶 = ∅
8: 𝑐 = ∅
9: for 𝑖 = 1,… , 2|𝑅|: do

10: (𝑡, 𝑟) = 𝑇 [𝑖]
11: if 𝑡 == 𝑏𝑟 then
12: 𝑐 = 𝑐 ∪ {𝑟}
13: else
14: 𝐶 = 𝐶 ∪ 𝑐
5: 𝑐 = 𝑐 ⧵ {𝑟}
6: end if
7: end for
8: return 𝐶

The algorithm performs the following instructions: first, a sorted list
is created, in non-decreasing order, of all beginning and ending times

f all requests. In the list, the identifier 𝑟 of the corresponding task is
also stored. The set of identified cliques 𝐶 and a ‘‘running’’ clique set
11
𝑐 are initialized as empty. Then, the list is iteratively examined; if the
current value of 𝑡 is a starting time, the corresponding request 𝑟 is added
to the running clique 𝑐. Otherwise, 𝑐 is established as a clique, being
dded to the set of cliques 𝐶, and then the request 𝑟 is removed from

it.
We can immediately realize that, at any time, the running clique

𝑐 indeed contains incompatible requests: all jobs in 𝑐 have started at
a time before 𝑡 and are finishing at a moment after 𝑡. It is also easy
to figure out that all maximal cliques are detected by the algorithm.
In particular, a maximal clique of incompatible requests is added to 𝐶
as soon as 𝑡 represents the end time of the request of the clique that
finishes earliest. At that moment, all the requests of the clique have
already started and thus have been inserted (and not yet removed) into
the running clique 𝑐.

We shall also note that, for the algorithm to be correct, if two
requests 𝑟1 and 𝑟2 are such that 𝑏𝑟1 = 𝑒𝑟2 , then the pair (𝑏𝑟1 , 𝑟1) should
appear later in the ordered list than the pair (𝑒𝑟2 , 𝑟2). Otherwise, 𝑟1
and 𝑟2, that are not incompatible, would be placed together into an
incompatibility clique.

Finally, we shall note that the algorithm is computationally cheap:
running time is dominated by the sorting operation, thus the computa-
tional complexity is (|𝑅| log(|𝑅|)).
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