
Exploiting partial knowledge to evaluate the average
causal effect via an ABC perspective
L’introduzione di conoscenze parziali per valutare l’effetto
medio causale tramite una prospettiva ABC
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Abstract To evaluate the average causal effect, we propose a method to be used when the
variables required to remove confounding are not observed. We consider the case in which
the causal structure is known, and there is also some additional partial knowledge. The
evaluation is probabilistic, and the partial knowledge may consist of an ordering of some
relevant conditional probabilities and/or of the marginal distributions of some variables. A
simple way to integrate such additional information is to adopt an approximate Bayesian
computation perspective to derive an approximate posterior distribution for the average
causal effect. We experimentally evaluate our methodology through an example from the
literature, and we compare the results with the exact evaluation of the average causal effect.
Abstract Al fine di valutare l’effetto causale medio, proponiamo un metodo che possa
essere usato quando le variabili richieste per eliminare il confondimento non sono osserv-
abili. Consideriamo il caso in cui la struttura causale del modello è nota e sono disponibili
alcune informazioni aggiuntive. La valutazione fornita è probabilistica e la conoscenza
aggiuntiva può consistere in un ordinamento di alcune rilevanti probabilità condizion-
ate e/o nella conoscenza di distribuzioni marginali. Un modo semplice per incorporare
tali informazioni è quello di adottare una prospettiva di calcolo Bayesiano approssimato
per derivare una distribuzione a posteriori approssimata dell’effetto causale medio. La
metodologia proposta è stata valutata su un esempio noto in letteratura e i risultati sono
stati confrontati con una valutazione esatta.
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1 Introduction and preliminaries

In causal inference, the evaluation of the Average Causal Effect (ACE) [5], measuring
the difference between the expected values of the outcome under different scenarios, has
significant relevance. A starting point to determine ACE is to assume the knowledge of a
causal mechanism represented by a graph, more specifically a causal direct acyclic graph
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(DAG), defined by two sets {V,E}. V is the set of nodes representing the model variables,
and E is the set of direct edges connecting nodes. Two connected nodes are linked by a
direct causal relation, according to the orientation of the edge.

In a simple setting, two nodes of the causal graph are mainly of interest: X , the cause
(often a treatment), and Y , the outcome. ACE is evaluated by measuring the difference in
the expectation of Y for different interventions on X . An intervention on X , expressed by
the so-called do(·) operator, consists of assigning the same x values to quantify changes in
the system. This action is purely fictitious (observed x values correspond to past events that
cannot be modified), but it has been proved that do(X = x) corresponds to conditioning to
X = x in the model obtained as a surgery modified graph removing all the edges incident
on X [4].

In the case of boolean Y and dichotomous X , the do(·) operator can be used to calculate
the (adjusted) ACE according to:

ACE(X → Y ) = p(Y |do(X = x))− p(Y |do(X = x′)) (1)

The discrepancy between the estimation of the causal effect obtained by (1) and

p(Y |X = x)− p(Y |X = x′) (2)

is due to confounding. Its detection may be obtained by using some topological properties
of the causal graph, such as the well-known Back-door or Front-door criteria [4].

In a simple causal model with only one identified but unobserved confounder, we pro-
pose to incorporate some additional knowledge for the probabilistic evaluation of ACE
via an algorithm based on the ABC type of reasoning. We experimentally evaluate our
methodology through a running example, and we compare our results with a situation
where the confounder is observed and the intervention can be evaluated correctly.

2 The running example

As a simple running example, we refer to a well-known causal mechanism with treatment
and an outcome both influenced by a third variable, as represented in the causal graph in
Fig. 2 (left). This graph represents the causal mechanism behind Simpson’s paradox which
occurs in many applications.

Z

YX

Z

X Y

Fig. 1 (Left) Direct acyclic graph representing the causal mechanism assumed in the running example.
(Right) Surgery modified causal graph.

To be concrete, we refer to an example provided by a real-life medical study concerning
kidney stone treatments [3]. Let Y ∈ {0,1} represent the no-recovery/recovery of a patient;
X ∈ {A,B} stand for two possible treatments; Z ∈ {S,L} represent the size (Small or Large)
of the stones of the treated individuals. The study gathers data from 700 patients with
kidney stones undergoing the two treatments. Data are summarised in Table 1.

The causal story behind the graph tells us that both treatment and recovery are influ-
enced by the size of the kidney stones of the exposed individual. Actually, doctors prefer
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Treatment (X)
Outcome (Y ) X = A X = B

Size (Z)

Small Y = 1 81 234
Y = 0 6 36

Large Y = 1 192 55
Y = 0 71 25

Total Y = 1 273 289
Y = 0 77 61

Table 1 Complete data for the kidney stones example.

to assign the most effective and expensive treatment (A) to patients with the most severe
kidney large stones pathology which experienced a lower rate of recovery. The opposite
happens for patients affected by small kidney stones, which are more likely to receive
treatment B and are more prone to recover.

If the leftmost graph in Fig. 2 correctly represents the causal mechanism, Z acts as a
confounder, and the average causal effect can be evaluated as the difference in the proba-
bility of recovery under the two treatment regimes evaluated by using propagation of ev-
idence in the surgery modified causal graph in Fig. 2 (right) or, directly and equivalently,
by the so-called Adjustment formula [2]:

p(Y = 1|do(X = i)) = ∑
j∈{S,L}

p(Y = 1|X = i,Z = j)p(Z = j) i ∈ {A,B}. (3)

This can be used to calculate ACE according to (1):

ACE = ∑
j∈{S,L}

(
p(Y = 1|X = A,Z = j)− p(Y = 1|X = B,Z = j)

)
p(Z = j). (4)

To estimate the components of (3) we need to observe the triplet (x,y,z) over a set of
n observations; for the case at hand, the availability of the triplets, including observations
on Z, is also the condition established by the Back-door criterion to remove confounding.

3 Dealing with unobserved confounders

Consider the causal graph in Fig. 2 again and assume that we are convinced of the validity
of the depicted causal relations, but observations on Z are not accessible to us so that only
the totals of Table 1 are available. The empirical joint distribution of X and Y leads to the
conclusion that recovery is more likely undergoing treatment B (0.82) than undergoing
treatment A (0.78), and the difference in predictions (2) amounts to -0.04.

Actually, the correct evaluation of ACE according to (4) amounts at 0.05, showing that
treatment A is better than treatment B. This means that evaluating the causal effect relying
on the probability of Y conditionally to X would be misleading.

A way to mitigate the effect of our lack of knowledge on Z is to exploit some addi-
tional pieces of information we are willing to assume. The main issue is finding a way to
incorporate the available information in estimating the adjustment formula. In our running
example we considered a set of three available pieces of information, I = {I1,I2,I3},
defined as follows:
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• I1 is the marginal distribution of Z, corresponding to assume that the distribution of
small and large kidney stones among people affected by the disease is known in the
population of interest;

• I2 is an ordering of p(X |Z), in particular p(X = A|Z = L) > p(X = B|Z = L) and
p(X = B|Z = S) > p(X = A|Z = S), corresponding to assume that Treatment A is
more likely assigned to people with large kidney stones, while treatment B is assigned
preferentially to people with small kidney stones;

• I3 is an ordering of p(Y |X ,Z), in particular

p(Y = 1|Z = S,X = A)> p(Y = 1|Z = S,X = B)> p(Y = 1|Z = L,X = A)> p(Y = 1|Z = L,X = B),
(5)

corresponding to assume that Treatment A is better than treatment B in both small and
large kidney stones groups, and that the recovery with small stones is more probable
than the recovery with large stones. Notice that this assumption implies a positive
ACE.

In principle, a possible solution to estimate (4) is to build a complete database which
require to impute Z values by sampling from the predictive

p(Z|X ,Y ) ∝ p(Z)p(X ,Y |Z) (6)

which is based on the unavailable p(X ,Y |Z) in (3).
To deal with this issue and to incorporate I in the estimation, we adopt the same type

of reasoning as ABC methods [6]. In particular, we consider the following distribution
defined on an augmented space where X ′ and Y ′ are two auxiliary random variables:

p(Z,X ′,Y ′|X ,Y ) ∝ p(Z)p(X ′,Y ′|Z)p(X ,Y |X ′,Y ′,Z). (7)

Generally speaking, samples from the above distribution can be obtained by implement-
ing an ABC sampling scheme: 1) sample Z from its marginal p(Z); 2) sample pairs
(X ′,Y ′) from p(X ′,Y ′|Z); 3) approximate p(X ,Y |X ′,Y ′,Z) ≈ {(X ,Y ) = (X ′,Y ′)}. In
practice, a two-fold approximation is usually introduced relying on p(X ,Y |X ′,Y ′,Z) ≈
{d

(
s(X ,Y ),s(X ′,Y ′)

)
≤ ε}, where d(·, ·) is a proper distance function, s(·) are summary

statistics reducing the size of the data, and ε is a positive tolerance threshold.
Note that in the case at hand, the tuple (X ′,Y ′) represents pseudo-data to be gen-

erated from a simulator. The simulator would be a computer program producing sam-
ples from p(X ′,Y ′|Z) in the ABC framework. Here, due to the unavailability of such a
generative mechanism, we consider an approximation p̂I (X ′,Y ′|Z) that complies with
I2 and I3. Such a mechanism may be based on the decomposition p̂I (X ′,Y ′|Z) =
p̂I2(X

′|Z) p̂I3(Y
′|X ′,Z) and the fact that X ′|Z and Y ′|X ′,Z are Bernoulli random variables

whose parameters, denoted as θX=A|Z and θY=1|X ,Z for X ∈ {A,B} and Z ∈ {S,L}, satisfy
constraints implied by I2 and I3. More precisely, we get samples from p̂I (X ′,Y ′|Z) as
detailed in Algorithm 1.

Algorithm 1 SIMULATOR

Draw θX=A|L ∼Uni f orm(0.5,1); θX=A|S ∼Uni f orm(0,0.5) and θY=1|B,L ∼Uni f orm(0,1)
Draw θY=1|A,L ∼Uni f orm(θY=1|B,L,1)
Draw θY=1|B,S ∼Uni f orm(θY=1|A,L,1)
Draw θY=1|A,S ∼Uni f orm(θY=1|B,S,1)

Once defined a simulator, we can exploit the knowledge deriving from observed data
and get samples from an approximate distribution p̂I (Z,X ′,Y ′|X ,Y ) following the ABC
scheme in Algorithm 2.
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Algorithm 2 ABC SCHEME

Draw Z(t) ∼ p(Z) according to I1 ∀t ∈ {1, ...,T}
Generate (X ′,Y ′)(t) ∼ p̂(t)I (X ′,Y ′|Z) simulated according to Alg.1 ∀t ∈ {1, ...,T}
Accept ((X ′,Y ′)(t),Z(t)) if d( p̂(t)X ′,Y ′ , p̂X ,Y )≤ ε ∀t ∈ {1, ...,T}

Note that here observed and simulated data are compared by means of sufficient sum-
mary statistics, the empirical distributions p̂X ,Y and p̂X ′,Y ′ .

Looking at Alg. 2, it is apparent that the outlined sampling scheme can incorporate
whatever state of knowledge simply by replacing Alg. 1 with a proper simulator based
on different information I . In any case, the output of the algorithm is a sample from
an approximate posterior distribution p̂I (X ′,Y ′,Z|X ,Y ) which can be used to evaluate
p(Y = 1|do(X = i)) as

∑
j∈{S,L}

p̂I (Y ′(t) = 1|X ′(t) = i,Z(t) = j)p(Z(t) = j)= ∑
j∈{S,L}

θ (t)
Y=1|i, j · p(Z

(t) = j) i∈ {A,B}

for each retained sample t. It follows that we came up with a posterior distribution of ACE
based on the accepted triplets ((X ′,Y ′)(t),Z(t)).

4 Experiments

We consider the example described in the previous section. Using the frequencies of Tab.
1, and formula (4) we obtain an ACE equal to 0.05.
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Fig. 2 Posterior distribution of the six θ parameters corresponding to the conditional probabilities of
Algorithm 1.

To evaluate the performance of our method, we pretend that the values of Z are not
observable and compute a posterior distribution for ACE by using 800,000 samples from
p̂I (Z,X ′,Y ′|X ,Y ), obtained with the procedure described in Alg. 1 and Alg. 2.

Figure 2 shows the posterior distributions for θX=A|S, θX=A|L, θY=1|A,S, θY=1|B,S, θY=1|A,L
and θY=1|B,L, ε = 0.076, corresponding to the 1% quantile of the distance empirical dis-
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tribution. Considering that before the analysis we had a uniform prior belief about their
values, we can conclude that the procedure allows to learn appreciably about the six pa-
rameters. Figure 3 shows the ACE posterior distributions obtained using three different
values of the ABC threshold, ε , selected through the quantile method [1].

Note that the three posterior modes are almost coincident with the true ACE, and they
get closer and closer as the threshold ε decreases.
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ε = q(10%)
ε = q(5%)
ε = q(1%)
ACE adjusted
ACE not adjusted

quantile epsilon HPD MAP
1% 0.076 (0.000, 0.299) 0.057
5% 0.128 (0.004, 0.293) 0.059
10% 0.164 (0.005, 0.297) 0.062

Fig. 3 Posterior distributions for the adjusted ACE obtained using three different values of ε , along with
the corresponding 90% HPD intervals. Table contains the specification of the ε values along with corre-
sponding 90% HPD intervals and MAP.

5 Conclusions

In causal inference, this work provides a flexible method to evaluate ACE when obser-
vations of the variable(s) required to remove confounding are not available. The research
stage is at its infancy, and we plan to consider more complex causal stories to verify the
ability of the method to exploit qualitative information about the conditional probabili-
ties beyond the causal DAG to provide useful probabilistic information about the required
ACE. As a final remark, we want to stress that the method measures the confounding only
under the assumption of its existence.
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