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Our study examines the long-run evolutionary outcome emerging in scenarios where two 
populations engage in a demand game with three potential splits. These populations differ in 
the sample sizes used when best responding to retrieved information from the past. Our findings 
reveal the existence of a threshold in the setting’s fairness (i.e., the fairness of unfair splits) such 
that, below the threshold (i.e., in an unfair setting), the emerging convention is the fair one, 
while above the threshold (i.e., in a fair setting), the emerging convention is unfair, favoring the 
agents with the longer sample size. The threshold gets lower as the difference in the sample sizes 
increases.

1. Introduction

In this paper, we address the question how fair settings relate to fair evolutionary outcomes in the demand game. In particular, we 
consider settings where, beyond the fair (50/50) split, unfair outcomes exist and we let them vary in the extent of their unfairness, 
i.e., inequality of the distribution of resources assigned to claimants. By doing so, we address unfairness on two distinct levels: the 
potential unfairness of unfair splits, and the actual unfairness of the convention arising in the long run. In particular, we focus on the 
demand game, which is a model of bargaining introduced by Nash (1953). There are several other stylized models of simultaneous 
resource sharing in game theory, including the contract game (Young, 1998), which differs from the demand game because claims 
that sum up to less than the whole amount of resources pay nothing to the claimants, the hawk-dove (Arigapudi et al., 2021; Bilancini 
et al., 2022), and the battle-of-sexes (Luce and Raiffa, 1989), also in the version with an inefficient compromise option (He and Wu, 
2020). If sequential resource sharing is taken into consideration, then the ultimatum game (Güth et al., 1982) can be considered as 
well.

We take an evolutionary perspective on the outcomes of the demand game, by following the approach of Young (1993a). At each 
time, two agents are selected from two distinct populations to play a demand game. The model incorporates a memory system of 
finite size that records the history of past plays. Each of the selected agents independently accesses this memory to review a random 
subset of these past interactions. The agents choose an action by best responding to the empirical distribution of their opponent’s 
previous decisions within their subset. Each of the two populations is distinguished by the size of the memory sample it can draw 
upon, called sample size, meaning they have access to different numbers of past plays. Within this framework, we look at resource 
allocations that remain stable over time, called conventions. Given the multiplicity of possible splits, and hence possible conventions, 
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we introduce noise in the dynamic process for the purpose of selecting among the possible conventions. By doing so, we thus obtain 
an ergodic Markov chain which allows us to find the average time spent in each convention, irrespective of the initial condition. 
By letting the amount of noise approach zero, we select the stochastically stable convention (Foster and Young, 1990), i.e., the 
convention where the dynamic system spends most of its time in the very long run in the presence of tiny perturbations.

In our model, we conceptualize the interaction among populations as global, with memory being a collective phenomenon. 
This scenario is plausible in contexts where interaction barriers are absent and information is readily accessible to the public. 
Alternatively, one could consider the scenario of local interactions, where agents are interconnected within a network structure 
(as in Abreu and Manea, 2012). Local interaction models are well developed in the stochastic evolutionary literature, with both 
theoretical analysis (Pin et al., 2017; Cui, 2014) and simulation analysis (Alós-Ferrer et al., 2021). Such a configuration lends itself 
well to the incorporation of individual memory models (Alós-Ferrer and Shi, 2012), creating a more nuanced and dynamic interaction 
landscape.

We restrict attention to demand games with only three strategies available (sometimes called mini-Nash demand games), that are 
demanding half of resources (M), more than half (H) and less than half (L), with the last two strategies being evenly spaced from 
the middle. This restriction is typical of a stake where resources are limited in number and available in indivisible units, such as in 
the case of bargaining over real estate and assets like cars or paintings. Beyond this and even more importantly, we believe that this 
restriction can capture a realistic cognitive simplification of bargaining: fractions composed of smaller numerators and denominators 
are inherently more salient than more complex fractions that include larger numbers (refer to “easy” and “hard” fractions in Young 
and Burke, 2001).

In this setting, we find that there exists a threshold in unfairness, i.e., distance of the asymmetric splits from the equal split, 
driving the result: if asymmetric splits are sufficiently unfair, i.e., their distance from the equal split exceeds the threshold, then the 
stochastically stable convention is the fair division. Conversely, if asymmetric splits are not very unfair, i.e., their distance from the 
equal split falls below the threshold, then the stochastically stable convention is the unfair division where the population with larger 
sample size takes most of the resources. We stress that, when the two populations are homogeneous in terms of sample sizes, the 
equal split is stochastically stable for any degree of unfairness of asymmetric outcomes (as already known from Young, 1993b). In 
the last part of the paper, we extend our analysis to a setting with more than three strategies by relying on the assumption of local 
mistakes (in the spirit of Young, 1993b), and we find that the degree of unfairness of the least unfair splits (the ones closest to the 
middle) determines, similarly to what obtained with three strategies only, whether the stochastically stable convention is the equal 
split or one of the unfair splits in favor of the population with larger sample size.

The take-home message of this paper is that more fairness in the possible divisions of resources may in fact lead to more unfair 
outcomes. More precisely, if unequal divisions of the resources are far from the 50/50 division, then the convention emerging in the 
long run is the fair one, while if unequal divisions are close to the 50/50 one, then the convention emerging in the long-run is unfair.

The main reference for our paper is Young (1993b), where the stochastically stable convention is found to be different from the 
fair split whenever there is heterogeneity between the two populations. The main difference in our setting concerns the number of 
possible splits: while Young (1993b) considers a fine grid of possible splits, we focus on the other extreme with only three possible 
splits, and we find results that depend on the extent of unfairness of the splits. The different setting allows us to study how stochastic 
stability results are affected by changes in the fairness of the setting, for a given level of heterogeneity between populations, in 
particular differences in the sample size. Our assumption better fits situations where the stake of bargaining has a low degree of 
divisibility. Also, to isolate the effect of heterogeneity between the two populations only in the sampling size, and differently from 
Young (1993b), we do not assume heterogeneity in the utility function. Other possible forms of heterogeneity include differences in 
the mistake rates, which capture different propensities to error-making, possibly as a function of expected or experienced payoffs 
(Mäs and Nax, 2016; Lim and Neary, 2016; Bilancini and Boncinelli, 2020; Bilancini et al., 2021).

Many other papers in the literature have studied modified versions of the demand game from an evolutionary perspective. Tröger 
(2002) and Ellingsen and Robles (2002) study the efficiency of the stochastically stable division in a setting where the value of the 
resource is determined by one party’s investment decision in a pre-stage of the game. Sawa (2021) studies the influence of reference-

dependent preferences on the stochastically stable division in a two-stage Nash bargaining game where players can exercise an 
outside option in the first stage, whose value is considered as a reference point (Kahneman and Tversky, 1979). Along this line, 
in Khan (2022) the reference point is determined endogenously and individuals do not have the outside option. Sáez-Martı and 
Weibull (1999) study stochastic stability by introducing asymmetries in the degree of sophistication of the two populations, with 
the agents in the more sophisticated population who best reply to the best reply of the others. A close body of literature is about 
the multilateral Nash demand game (Sawa, 2019; Newton, 2012; Nax, 2015; Agastya, 1999; Rozen, 2013), for which we refer to the 
detailed discussion in the review of Newton (2018). As concerns simultaneous bargaining, but departing from the demand game, 
there is a stream of literature on the evolution of conventions in the contract game (for recent contributions, see Naidu et al., 2010; 
Hwang and Newton, 2017; Hwang et al., 2018, and again Newton, 2018, for a detailed review).

There are a few contributions in the literature that focus on the demand game with a small number of available strategies 
(corresponding to different claims on the overall resources). Skyrms (1996) studies the evolution under the replicator dynamics in a 
population with three different groups, each programmed to play one of the possible strategies; in this setting, two possible outcomes 
can occur in the long run: one is the monomorphic state in which all players demand for half of the resource and second, the other 
is the polymorphic state in which two groups/strategies coexist, one demanding for more than half and the other one demanding for 
less than half. Skyrms and Zollman (2010) notes that the polymorphic state is more likely to occur when only interactions between 
agents of different groups are allowed. Axtell et al. (2007) show that the unfair division is favored by the endogenous formation of 
2

different classes based on an observable characteristic, even if unrelated to the payoff structure of the interaction. Such results have 
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Fig. 1. Payoff table of the demand game with 𝑥 ∈ (0,0.5) and three strategies: Low (L), Medium (M), and High (H).

Fig. 2. Representation of an example of transition from period 𝑇 = 𝑡 to period 𝑇 = 𝑡 + 1 with 𝑚 = 8, 𝑘1 = 2, and 𝑘2 = 3. The last 𝑚 plays of player 1 and player 2 are 
denoted with, respectively, 𝑚1 and 𝑚2 , while 𝑆1 and 𝑆2 indicate the sample extracted by, respectively, player 1 and player 2.

been extended by Poza et al. (2011) considering also a spatial structure. In both contributions the analysis is carried out through 
agent-based simulations. When bargaining happens in a setting with local interactions and agents who imitate their best performing 
neighbor, the evolutionary process almost always converges to the fair division (Alexander and Skyrms, 1999). When the population 
is divided in classes, the relative dimension of classes matters, as showed by Bruner (2019) and O’Connor and Bruner (2019), where 
minorities are disadvantaged. The evolutionary implications of fundamentalism in social struggle are investigated by Arce M and 
Sandler (2003) using a demand game with only three strategies.

The rest of the paper is organized as follows. Section 2 introduces the model and provide results on the recurrent classes of 
the unperturbed dynamics. Section 3 considers the perturbed dynamics and gives the main results on stochastic stability. Section 4

provides data from simulations in the attempt to extend our results to a setting with more than three possible splits. Section 5

summarizes the contribution, discusses the results and sketches lines for future research.

2. Model

We consider two populations of finite size. Time is discrete, denoted with 𝑡 = 1, 2, …, and in each period one agent is drawn at 
random from each population to interact in a demand game. The agent drawn from population 1 acts as player 1 and the agent 
drawn from population 2 acts as player 2. Each player chooses a pure strategy 𝑠𝑖 from a strategy set 𝑆𝑖 = {𝐿,𝑀,𝐻}, with 𝑖 ∈ {1,2}. 
Play at time 𝑡 is defined as 𝑠(𝑡) = (𝑠1(𝑡), 𝑠2(𝑡)) and the amount of resources obtained by player 𝑖 is 𝜋𝑖(𝑠(𝑡)), according to the matrix in 
Fig. 1. We assume that 0.5 > 𝑥 > 0.

We note that as 𝑥 decreases the unfairness of the asymmetric divisions increases, ranging from almost fairness (for 𝑥 close to 
0.5) to extreme unfairness (for 𝑥 close to 0). Therefore, we consider 𝑥 ∈ (0, 0.5) as a measure of the fairness of the setting. Every 
agent has the same utility function 𝑢, defined on the amount of resources obtained, which is assumed to be (weakly) concave and 
such that 𝑢(0) = 0. Agents recall the last 𝑚 periods of play between both populations, hence 𝑚 can be interpreted as the (collective) 
long-term memory length. A history of play encompassing the last 𝑚 periods is described by ℎ(𝑡) = (𝑠(𝑡), 𝑠(𝑡 − 1), … , 𝑠(𝑡 −𝑚 + 1)), with 
𝑡 denoting the current period. Furthermore, agents adjust their choices over time according to the adaptive learning assumptions in 
Young (1993a). In general, agents select the best response to a randomly drawn sample of 𝑘 opponents’ plays in their memory, see 
Fig. 2 for a graphical representation. In case of multiple best responses, all of them have positive probability to be selected. As is 
standard in the literature, we refer to 𝑘 as sample size, and we interpret it as working memory.

The dynamic system under consideration is a Markov chain (𝑆, 𝑇 ) (see Young, 2001, for an overview of Markov chain theory), 
where 𝑆 is the state space composed of all possible histories, i.e., sequences of 𝑚 plays of the game (𝑠𝑚, … , 𝑠𝓁 , … , 𝑠1), with 𝑠𝓁 ∈
{(𝑆𝓁

1 , 𝑆
𝓁
2 )} for all 𝓁 = 1, … , 𝑚. Transition between states is defined by transition matrix 𝑇 , with 𝑇ℎℎ′ being the probability of moving 

from history ℎ to history ℎ′ in one period of time according to the above adjustment dynamics. It must hold that 𝑇ℎℎ′ > 0 only if ℎ′
3

can be obtained from ℎ by deleting the rightmost play of the game and adding a new play of the game to the left of the sequence.



Journal of Economic Dynamics and Control 165 (2024) 104899E. Bilancini, L. Boncinelli and E. Vicario

Any state ℎ consisting of 𝑚 repetitions of a strict Nash equilibrium constitutes a convention, that is inescapable given the de-

fined dynamics. The Bargaining game proposed has three strict Nash equilibria: (𝐻, 𝐿), (𝑀, 𝑀), and (𝐿, 𝐻). The corresponding 
conventions are defined by

• ℎ𝐻,𝐿 = (𝑠𝑚, … , 𝑠𝓁 , … , 𝑠1) such that 𝑠𝓁1 =𝐻 and 𝑠𝓁2 =𝐿 for all 𝓁 = 1, … , 𝑚
• ℎ𝑀,𝑀 = (𝑠𝑚, … , 𝑠𝓁 , … , 𝑠1) such that 𝑠𝓁1 =𝑀 and 𝑠𝓁2 =𝑀 for all 𝓁 = 1, … , 𝑚
• ℎ𝐿,𝐻 = (𝑠𝑚, … , 𝑠𝓁 , … , 𝑠1) such that 𝑠𝓁1 =𝐿 and 𝑠𝓁2 =𝐻 for all 𝓁 = 1, … , 𝑚

Lemma 1. If 𝑘1 ≤
1
2𝑚 and 𝑘2 ≤

1
2𝑚 then ℎ𝐻,𝐿, ℎ𝑀,𝑀 , and ℎ𝐿,𝐻 are the only recurrent classes.

A recurrent class is a set of states, possibly a singleton, that cannot be exited, where each state has probability 1 to be visited 
again once left. It is immediate to recognize that {ℎ𝐻,𝐿}, {ℎ𝑀,𝑀}, and {ℎ𝐿,𝐻} are recurrent classes, with no need of proof. In the 
proof in Appendix A we show that, starting from any other state, there is a positive probability to reach one of ℎ𝐻,𝐿 , ℎ𝑀,𝑀 , and 
ℎ𝐿,𝐻 in a finite number of periods.

3. Perturbed dynamics

With the aim of selecting a convention that is stabler than others, we introduce errors (in the spirit of Foster and Young, 1990). 
We suppose that a player does not always choose a strategy that is a best response to the sample; indeed, with a small probability 
𝜀 close to zero, the player chooses one of the three strategies (𝐻, 𝑀, 𝐿) at random. We refer to these 𝜀-probability events as errors. 
We observe that, thanks to errors, the system can move with positive probability from any history of play ℎ at time 𝑡 to any other 
history ℎ′ at time 𝑡 +𝑚. The perturbed process, 𝑃 𝜀, is an irreducible and aperiodic Markov chain, thus ergodic. We use the technique 
of rooted trees to identify the stochastically stable conventions (Young, 1993a). A rooted tree is a directed graph where conventions 
are the vertices, and specifically a tree rooted at a convention is a set of two directed edges, such that there exists one and only one 
path connecting the two other conventions to the root of the tree. There are three rooted trees for each of the three conventions 
(see Fig. 3). The resistance of a transition between two conventions is defined as the minimum number of errors necessary to obtain 
the transition. A transition is triggered when one population (call it “the triggers”) makes enough errors to make it possible for the 
other population (call it “the observers”) to extract a sample from the memory to which the observers best respond with a different 
strategy. This allows the transition to another convention with no further error. Indeed, to successfully complete the transition the 
observers need to keep extracting for long enough samples from the memory containing the errors of the triggers. This is feasible 
because the memory length is at least twice the size of the sample, which is possible because the memory length at least double the 
sample size. After many enough plays of the new strategy by the observers have accumulated in memory, it becomes possible for the 
triggers to extract a sample to which they best respond with the strategy played at the beginning by error, so that a Nash equilibrium 
is played in the last period. If the new Nash equilibrium is played for other 𝑚 − 1 periods in a row, which can happen with positive 
probability, then the transition to the new convention gets completed.

Importantly, the minimum number of errors required to move from the initial convention to the final one changes depending on 
the role of populations, i.e., who are the triggers and who the observers. The resistance of such transition is the minimum between 
the two numbers. Denote the resistance of the transition from convention 𝑖 to convention 𝑗 as 𝑟𝑖,𝑗 , with 𝑖 and 𝑗 ∈ {𝐻𝐿, 𝑀𝑀, 𝐿𝐻}
and 𝑖 ≠ 𝑗.

The resistance of a rooted tree is the sum of the resistances of the transitions along the edges composing the tree. The stochas-

tic potential of a convention, denoted with 𝛾𝑖, for 𝑖 ∈ {𝐻𝐿, 𝑀𝑀, 𝐿𝐻}, is the minimum resistance over all trees rooted at such 
convention. The convention with minimal stochastic potential is stochastically stable (Young, 1993a).

Proposition 1. For given 𝑘1 and 𝑘2, with 𝑘1 < 𝑘2, there exists a threshold 𝑥𝑇 (𝑘1, 𝑘2) ∈ (0, 0.5) such that:

• if 𝑥 < 𝑥𝑇 (𝑘1, 𝑘2) then MM is stochastically stable;

• if 𝑥 > 𝑥𝑇 (𝑘1, 𝑘2) then LH is stochastically stable.

Notice that, if 𝑘1 = 𝑘2, we already know from Young (1993a) that MM is stochastically stable. We stress that we may not have 
a unique stochastically stable convention, due to the ceiling effect yielding the same integer numbers. The proof of Proposition 1

rests on a tree-surgery argument, which counts the number of errors required for transitions along trees with the recurrent classes as 
nodes (see Appendix A).

Proposition 2. 𝑥𝑇 (𝑘1, 𝑘2) is weakly decreasing in 𝑘2 and weakly increasing in 𝑘1.

In words, the threshold value 𝑥𝑇 decreases as the difference 𝑘2 − 𝑘1 grows larger. This reduction in the threshold leads to an 
increase in the level of unfairness necessary to achieve an equal split as the stochastically stable outcome.

To better understand the novelty of our contribution with respect to the previous literature, we note that our result cannot 
4

be explained through the maximization of the function 𝐹 (𝑥) = 𝑢(𝑥)𝑘1𝑢(1 − 𝑥)𝑘2 , which identifies the asymmetric Nash bargaining 
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Fig. 3. Each convention has three rooted trees: on the left, the trees rooted in ℎ𝑀𝑀 in red; on the center, the trees rooted in ℎ𝐿𝐻 in blue; on the right, the trees rooted 
in ℎ𝐻𝐿 in green. Below each tree, there are indicated the resistances of the transitions of its edges, along with their sum, which represents the resistance of the tree. 
The stochastic potential of each convention is highlighted in yellow. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 4. The above plots depict functions from which the stochastic potentials of the conventions can be computed by taking the ceiling. The plots are drawn for 
𝑢(𝑥) = 𝑥1−𝛾

1−𝛾
with 𝛾 = 0.5 and, from left to right, 𝑘1 = 15, 𝑘1 = 50, and 𝑘1 = 85, while 𝑘2 is kept fixed at 100. The red color in the background represents the area in 

which 𝐹 (𝑥) < 𝐹 (0.5), the blue color in the background represents the area in which 𝐹 (𝑥) >𝐹 (0.5).

solution that emerges in the evolutionary model of Young (1993b). The function 𝐹 (𝑥) exhibits a threshold, denoted with 𝑥𝑁 , such 
that 𝐹 (𝑥) < 𝐹 (0.5) when 𝑥 < 𝑥𝑁 , and conversely 𝐹 (𝑥) > 𝐹 (0.5) when 𝑥 > 𝑥𝑁 . We observe that the 𝑥𝑁 threshold is not the same as 
the 𝑥𝑇 threshold identified in Proposition 1. We show in Fig. 4 three numerical examples in which the utility function is the root 
square, 𝑢(𝑥) = 𝑥1−𝛾

1−𝛾 with 𝛾 = 0.5, 𝑘2 = 100, and 𝑘1 is equal to 15, 50, and 85. In the subplot on the right, with 𝑘1 = 85, 𝑥𝑇 and 𝑥𝑁
are close and the Nash bargaining solution is in the area in which the unfair convention is stochastically stable. In the subplot in 
5

the center, with 𝑘1 = 50, 𝑥𝑇 is significantly lower than 𝑥𝑁 , i.e., there is a large area in which the unfair convention is stochastically 
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Fig. 5. 𝑘1 is set at 10 while 𝑘2 , which is represented in the 𝑥-axis, ranges from 10 to 25600. 𝑦-axis represents the unfairness of the setting, with minimum unfairness 
occurring when all possible splits are permitted, and maximum unfairness arising when only the fair split and the most extreme unfair splits are allowed. The red 
solid line indicates that the fair convention is stochastically stable; the blue dashed line indicated that an unfair convention is stochastically stable.

stable while instead the fair convention maximizes the function 𝐹 (𝑥). In the subplots on the left, with 𝑘1 = 15, 𝑥𝑇 is significantly 
larger than 𝑥𝑁 , i.e., there is a large area in which the fair convention is stochastically stable while the unfair convention maximizes 
the function 𝐹 (𝑥). In addition, the Nash bargaining solution falls within the region where the fair condition is stochastically stable. 
This indicates that even if one of the three conventions coincides with the Nash bargaining solution, such convention would not be 
stochastically stable.

In analyzing transitions with minimum resistance, it is important to highlight a key distinction between Young (1993b)’s model 
and our own. In Young’s model, where the grid for potential splits is sufficiently refined, the transitions with minimum resistance 
are always triggered by a player demanding slightly more than the quantity demanded in the existing convention. In contrast, our 
model allows for transitions with minimum resistance that are triggered by a player who, by mistake, demands less. We also note 
that this latter type of transitions are those with minimum resistance in evolutionary models of bargaining based on contract games 
(Young, 1998), unless specific error models are considered (Naidu et al., 2010).

4. Extension

In this section we explore the robustness of our results relaxing the assumption of only three possible splits. We adopt Young 
(1993b)’s model with a large but finite grid of possible splits. We know that the recurrent classes are all possible pairs of demands 
where their sum amounts exactly to the whole resource. Starting from it, we gradually consider the cases in which we remove all 
splits that are close enough to the fair split. By doing so, we are increasing the degree of unfairness of the setting, in that we are 
eliminating potential conventions that are only moderately unfair while maintaining more unfair splits. Given the very large number 
of possible conventions, for simplicity we restrict attention to the case with local mistakes (Young, 2001), i.e., mistakes can lead only 
to choose a split that is adjacent to the current one, in that it occupies an adjacent position in the grid. We note that, in our model, 
moving from the fair split to an adjacent one requires a larger deviation as the unfairness of the setting increases. We say that two 
conventions are adjacent if their splits are adjacent. Under the assumption of local mistakes, there exists a unique tree rooted at each 
convention, with all conventions that are linked to the adjacent conventions.

We tackle the question of which convention is stochastically stable as we gradually remove splits around the fair one by numerical 
calculation. As the setting becomes more and more unfair, i.e., splits around the fair one are gradually removed, the stochastically 
stable convention remains unfair for a while, with a larger split for the agents with a longer sample size. After a certain threshold is 
passed, i.e., many enough splits around the fair one have been removed, the fair convention becomes stochastically stable. We note 
that the threshold value depends on the degree of heterogeneity of sample sizes between the two populations: the larger the distance 
in the sample sizes, the farther the threshold to the fair one. Fig. 5 illustrates these findings.

5. Conclusion

In this paper we have considered an evolutionary model of the demand game, in which we study heterogeneities in the cognitive 
abilities between the two populations in relation with the degree of unfairness of the setting. In particular, we have assumed that 
the agents in one population have a larger working memory, meaning that they draw a larger sample when retrieving information 
from past plays of the game. Also, we define unfairness of the setting as unfairness of the unfair divisions, i.e., the distance between 
the fair (50/50) division and the unfair divisions. For our results we focus on the long-run convention emerging in the model, as 
captured by stochastic stability analysis.

We have found that, starting from extremely low unfairness of the setting, the long-run convention is unfair (in favor of the 
population with larger sampling size) and exhibits an increasing degree of unfairness as the unfairness of the setting increases, and 
then it jumps to the 50/50 division when the unfairness of the setting exceeds a certain threshold.

When the unfairness of the setting is high and the convention is unfair, the agents receiving fewer resources are very reactive to 
mistakes made by the other population. Indeed, such mistakes create past plays in memory allowing for an increase in the resources 
obtained, which is confronted with a potential loss that is very low due to the initially extremely unfair allocation of resources. 
6

Conversely, starting from the fair convention there is a higher potential loss in the case that total demands become excessive, which 
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makes a change in the best response harder to occur. Overall, the transition from the unfair to the fair convention turns out to 
be relatively easier, when the unfairness of the setting is high enough. This result shows the role played by the grid of possible 
allocations in determining the long-run convention of a demand game.

The non-monotonicity that results in our model between the unfairness of the setting and the unfairness of the long-run convention 
calls our attention on the long-run effects of interventions that reduce the unfairness of the setting, and that may not reduce the 
unfairness of the emerging convention. Furthermore, we confirm previous findings from the literature that reducing the gap in the 
working memory between the two populations either decreases or leaves unaffected the unfairness of the long-run convention.

Broadly speaking, understanding how heterogeneities between groups can lead to unequal allocation of resources helps explain-

ing, and possibly contrast, the high degree of inequality characterizing many societies.
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Appendix A. Proofs

In this appendix we provide the proofs of the formal results stated in the main text (Lemma 1, Proposition 1 and Proposition 2). 
To favor the presentation of the proofs, we also state and prove other intermediate results (Lemma 2, Lemma 3, Lemma 4, Lemma 5, 
and Lemma 6).

Proof of Lemma 1. The proof follows the proof of Theorem 1 in Young (1993b). Consider a generic state ℎ. If there is a positive 
probability that extracted samples of previous plays are such that (𝐿, 𝐻), or (𝐻, 𝐿), or (𝑀, 𝑀) are best responses, then the two 
players can play those strategies at the current time, which makes the same strategies be playable with positive probability the next 
time and all following times, thus reaching one of the three recurrent classes within 𝑚 periods.

Let an agent from population 1 selects the 𝑘1 most recent plays of population 2, call that sample 𝛼, and let 𝑆1 be the best reply 
to 𝛼. Analogously, let an agent from population 2 selects the 𝑘2 most recent plays of population 1, call that sample 𝛽, and let 𝑆2 be 
the best reply to 𝛽. Since both 𝑘1 and 𝑘2 are smaller or equal to 𝑚∕2, there is a positive probability that both 𝛼 and 𝛽 are selected 
for 𝑚∕2 periods. Thus there is a positive probability that after 𝑚∕2 periods the first half of the memory is made of 𝑚∕2 repetitions 
of (𝑆1, 𝑆2). At this stage there is a positive probability that player 1 selects a sample of 𝑘1 repetitions of 𝑆2, call that sample 𝛼′, and 
thus plays 1 −𝑆2 as best reply, where 1 is the value of the resource. Analogously, there is a positive probability that player 2 selects 
a sample of 𝑘2 repetitions of 𝑆1, call that sample 𝛽′ and thus plays 1 −𝑆1 as best reply. Since 𝑘1 and 𝑘2 are smaller or equal to 𝑚∕2, 
there is a positive probability that the two samples, 𝛼′ and 𝛽′ are selected for 𝑚∕2 consecutive periods. Thus, after 𝑚 periods from 
the beginning there is a positive probability that the memory is made of 𝑚∕2 consecutive repetitions of (1 − 𝑆2, 1 − 𝑆1) followed by 
𝑚∕2 consecutive repetitions of (𝑆1, 𝑆2). At this stage there is a positive probability that player 1 selects a sample of 𝑘1 repetitions of 
1 −𝑆1 and player 2 selects a sample of 𝑘2 repetitions of 𝑆1. In this case the best reply is (𝑆1, 1 −𝑆1), that is a Nash equilibrium. Nash 
equilibria are (𝐿, 𝐻), (𝐻, 𝐿), and (𝑀, 𝑀). Thus, from any state, in 𝑚 periods, there is a positive probability to extract a sample of 
previous plays such that the best reply is (𝐿, 𝐻), or (𝐻, 𝐿), or (𝑀, 𝑀). □

Lemma 2. The resistance of transitions are:

• 𝑟𝐻𝐿,𝑀𝑀 =min
{⌈

𝑢(𝑥)
𝑢(0.5)𝑘2

⌉
,
⌈
𝑢(1−𝑥)−𝑢(0.5)

𝑢(1−𝑥) 𝑘1

⌉}
• 𝑟𝑀𝑀,𝐻𝐿 =min

{⌈
𝑢(0.5)−𝑢(𝑥)

𝑢(0.5) 𝑘2

⌉
,
⌈

𝑢(0.5)
𝑢(1−𝑥)𝑘1

⌉}
• 𝑟𝐿𝐻,𝑀𝑀 =min

{⌈
𝑢(1−𝑥)−𝑢(0.5)

𝑢(1−𝑥) 𝑘2

⌉
,
⌈

𝑢(𝑥)
𝑢(0.5)𝑘1

⌉}
• 𝑟𝐻𝐿,𝐿𝐻 =min

{⌈
𝑢(𝑥)

𝑢(1−𝑥)𝑘2

⌉
,
⌈
𝑢(1−𝑥)−𝑢(𝑥)

𝑢(1−𝑥) 𝑘1

⌉}
• 𝑟𝑀𝑀,𝐿𝐻 =min

{⌈
𝑢(0.5)
𝑢(1−𝑥)𝑘2

⌉
,
⌈
𝑢(0.5)−𝑢(𝑥)

𝑢(0.5) 𝑘1

⌉}
• 𝑟𝐿𝐻,𝐻𝐿 =min

{⌈
𝑢(1−𝑥)−𝑢(𝑥)

𝑢(1−𝑥) 𝑘2

⌉
,
⌈

𝑢(𝑥)
𝑢(1−𝑥)𝑘1

⌉}
Proof of Lemma 2. We show how to obtain 𝑟𝐻𝐿,𝑀𝑀 , i.e., the resistance of the transition from ℎ𝐻𝐿 to ℎ𝑀𝑀 . There are two possible 
7

paths, the first one triggered by mistakes made by player 1, the second by mistakes of player 2.
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In the first path, player 1 plays by mistake 𝑀 instead of 𝐻 . We have to identify the minimal number of mistakes that, once 
sampled by player 2, makes 𝑀 best reply for player 2. Let 𝛼 be the fraction of 𝑀 sampled by player 2, and, as a consequence, 1 − 𝛼

is the fraction of 𝐻 sampled by player 2. Then the expected utility of player 2 of choosing 𝐿 and 𝑀 against such a sample is:

• 𝐸2[𝐿] = 𝑢(𝑥)
• 𝐸2[𝑀] = 𝑢(0.5)𝛼

Then the fraction of 𝑀 sampled that makes player 2 indifferent between 𝑀 and 𝐿 is:

𝛼∗ = 𝑢(𝑥)
𝑢(0.5)

Thus the minimal number of mistakes by player 1 that are necessary to trigger the transition are:

𝑟1
𝐻𝐿,𝑀𝑀

=
⌈

𝑢(𝑥)
𝑢(0.5)

𝑘2

⌉
(1)

In the second path, player 2 plays by mistake 𝑀 instead of 𝐿. We have to identify the minimal number of mistakes that, once 
sampled by player 1, makes 𝑀 best reply for player 1. Let 𝛽 be the fraction of 𝑀 sampled by player 1, and, as a consequence, 1 − 𝛽

is the fraction of 𝐿 sampled by player 1. Then the expected utility of player 1 of choosing 𝐻 and 𝑀 against such a sample is:

• 𝐸1[𝐻] = 𝑢(1 − 𝑥)(1 − 𝛽)
• 𝐸1[𝑀] = 𝑢(0.5)

Then the fraction of 𝑀 sampled that makes player 1 indifferent between 𝑀 and 𝐻 is:

𝛽∗ = 𝑢(1 − 𝑥) − 𝑢(0.5)
𝑢(1 − 𝑥)

Thus the minimal number of mistakes by player 2 that are necessary to trigger the transition are:

𝑟2
𝐻𝐿,𝑀𝑀

=
⌈
𝑢(1 − 𝑥) − 𝑢(0.5)

𝑢(1 − 𝑥)
𝑘1

⌉
(2)

In conclusion, the resistance of the transition from ℎ𝐻𝐿 to ℎ𝑀𝑀 , i.e., 𝑟𝐻𝐿,𝑀𝑀 , is the minimum between the values in equations 
(1) and (2):

𝑟𝐻𝐿,𝑀𝑀 =min
{⌈

𝑢(𝑥)
𝑢(0.5)

𝑘2

⌉
,

⌈
𝑢(1 − 𝑥) − 𝑢(0.5)

𝑢(1 − 𝑥)
𝑘1

⌉}
The same process can be applied to obtain the resistance of all the other transitions. □

Lemma 3. When 𝑘2 ≥ 𝑘1, 𝛾𝐻𝐿 ≥ 𝛾𝑀𝑀 .

Proof of Lemma 3. We show that the resistance of each tree rooted at ℎ𝐻𝐿 is always greater or equal than the resistance of at least 
a tree rooted at ℎ𝑀𝑀 .

• First step: 𝑟𝐿𝐻,𝐻𝐿 + 𝑟𝑀𝑀,𝐻𝐿 ≥ 𝑟𝐿𝐻,𝐻𝐿 + 𝑟𝐻𝐿,𝑀𝑀 , therefore we show that 𝑟𝑀𝑀,𝐻𝐿 ≥ 𝑟𝐻𝐿,𝑀𝑀 .

– 𝑟𝑀𝑀,𝐻𝐿 =min
{⌈

𝑢(0.5)−𝑢(𝑥)
𝑢(0.5) 𝑘2

⌉
,
⌈

𝑢(0.5)
𝑢(1−𝑥)𝑘1

⌉}
– 𝑟𝐻𝐿,𝑀𝑀 =min

{⌈
𝑢(𝑥)
𝑢(0.5)𝑘2

⌉
,
⌈
𝑢(1−𝑥)−𝑢(0.5)

𝑢(1−𝑥) 𝑘1

⌉}
We notice that 𝑢(1−𝑥)−𝑢(0.5)

𝑢(1−𝑥) 𝑘1 <
𝑢(0.5)
𝑢(1−𝑥)𝑘1 is always true, while instead 𝑢(1−𝑥)−𝑢(0.5)

𝑢(1−𝑥) 𝑘1 <
𝑢(0.5)−𝑢(𝑥)

𝑢(0.5) 𝑘2 when 𝑘1 < 𝑘2. Therefore, 
𝑟𝑀𝑀,𝐻𝐿 ≥ 𝑟𝐻𝐿,𝑀𝑀 .

• Second step: 𝑟𝑀𝑀,𝐿𝐻 + 𝑟𝐿𝐻,𝐻𝐿 ≥ 𝑟𝐿𝐻,𝐻𝐿 + 𝑟𝐻𝐿,𝑀𝑀 , therefore we show that 𝑟𝑀𝑀,𝐿𝐻 ≥ 𝑟𝐻𝐿,𝑀𝑀 .

– 𝑟𝑀𝑀,𝐿𝐻 =min
{⌈

𝑢(0.5)
𝑢(1−𝑥)𝑘2

⌉
,
⌈
𝑢(0.5)−𝑢(𝑥)

𝑢(0.5) 𝑘1

⌉}
– 𝑟𝐻𝐿,𝑀𝑀 =min

{⌈
𝑢(𝑥)
𝑢(0.5)𝑘2

⌉
,
⌈
𝑢(1−𝑥)−𝑢(0.5)

𝑢(1−𝑥) 𝑘1

⌉}
By the fact that the utility function is concave, the following inequality is always true: 𝑢(0.5)

𝑢(1−𝑥)𝑘2 >
𝑢(1−𝑥)−𝑢(0.5)

𝑢(1−𝑥) 𝑘1. Indeed, we have 
𝑘2 > 𝑘1 by assumption and 𝑢(1 − 𝑥) < 𝑢(1) ≤ 2𝑢(0.5) since 𝑢 is strictly increasing and concave. Moreover, this other inequality is 
always true: 𝑢(0.5)−𝑢(𝑥)

𝑢(0.5) 𝑘1 >
𝑢(1−𝑥)−𝑢(0.5)

𝑢(1−𝑥) 𝑘1. Indeed, 𝑢(1 − 𝑥) > 𝑢(0.5) because 𝑢 is strictly increasing and 𝑢(0.5) − 𝑢(𝑥) ≥ 𝑢(1 − 𝑥) −
𝑢(0.5) because 𝑢 is concave.

• Third step: 𝑟𝐿𝐻,𝑀𝑀 + 𝑟𝑀𝑀,𝐻𝐿 ≥ 𝑟𝐻𝐿,𝑀𝑀 + 𝑟𝐿𝐻,𝑀𝑀 , therefore we show that 𝑟𝑀𝑀,𝐻𝐿 ≥ 𝑟𝐻𝐿,𝑀𝑀 . The proof of the third step is 
8

analogous to the proof of the first step. □
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Lemma 4. There exists unique �̃� ∈ (0, 0.5) such that:

⎧⎪⎨⎪⎩
𝑟𝐿𝐻,𝐻𝐿 < 𝑟𝐿𝐻,𝑀𝑀 𝑖𝑓 𝑥 < �̃�

𝑟𝐿𝐻,𝐻𝐿 = 𝑟𝐿𝐻,𝑀𝑀 𝑖𝑓 𝑥 = �̃�

𝑟𝐿𝐻,𝐻𝐿 > 𝑟𝐿𝐻,𝑀𝑀 𝑖𝑓 𝑥 > �̃�

Proof of Lemma 4. From Lemma 2:

• 𝑟𝐿𝐻,𝑀𝑀 =min
{⌈

𝑢(1−𝑥)−𝑢(0.5)
𝑢(1−𝑥) 𝑘2

⌉
,
⌈

𝑢(𝑥)
𝑢(0.5)𝑘1

⌉}
• 𝑟𝐿𝐻,𝐻𝐿 =min

{⌈
𝑢(1−𝑥)−𝑢(𝑥)

𝑢(1−𝑥) 𝑘2

⌉
,
⌈

𝑢(𝑥)
𝑢(1−𝑥)𝑘1

⌉}
We observe that:

𝑢(1 − 𝑥) − 𝑢(0.5)
𝑢(1 − 𝑥)

𝑘2 <
𝑢(1 − 𝑥) − 𝑢(𝑥)

𝑢(1 − 𝑥)
𝑘2 (3)

and

𝑢(𝑥)
𝑢(1 − 𝑥)

𝑘1 <
𝑢(𝑥)
𝑢(0.5)

𝑘1 (4)

then

𝑟𝐿𝐻,𝑀𝑀 ≷ 𝑟𝐿𝐻,𝐻𝐿 ⇔
𝑢(1 − 𝑥) − 𝑢(0.5)

𝑢(1 − 𝑥)
𝑘2 ≷

𝑢(𝑥)
𝑢(1 − 𝑥)

𝑘1

Let �̃�(𝑥; 𝑘1, 𝑘2) = [𝑢(1 − 𝑥) − 𝑢(0.5)]𝑘2 − 𝑢(𝑥)𝑘1. We observe that

�̃�(0;𝑘1, 𝑘2) > 0
�̃�(0.5;𝑘1, 𝑘2) < 0
�̃� ′(𝑥;𝑘1, 𝑘2) < 0

and then ∃!�̃� s.t. �̃�(�̃�; 𝑘1, 𝑘2) = 0. □

Lemma 5. There exists unique 𝑥∗ ∈ (0, 0.5) such that:

⎧⎪⎨⎪⎩
𝑟𝐿𝐻,𝐻𝐿 < 𝑟𝑀𝑀,𝐿𝐻 𝑖𝑓 𝑥 < 𝑥∗

𝑟𝐿𝐻,𝐻𝐿 = 𝑟𝑀𝑀,𝐿𝐻 𝑖𝑓 𝑥 = 𝑥∗

𝑟𝐿𝐻,𝐻𝐿 > 𝑟𝑀𝑀,𝐿𝐻 𝑖𝑓 𝑥 > 𝑥∗

Proof of Lemma 5. From Lemma 2:

• 𝑟𝑀𝑀,𝐿𝐻 =min
{⌈

𝑢(0.5)
𝑢(1−𝑥)𝑘2

⌉
,
⌈
𝑢(0.5)−𝑢(𝑥)

𝑢(0.5) 𝑘1

⌉}
• 𝑟𝐿𝐻,𝐻𝐿 =min

{⌈
𝑢(1−𝑥)−𝑢(𝑥)

𝑢(1−𝑥) 𝑘2

⌉
,
⌈

𝑢(𝑥)
𝑢(1−𝑥)𝑘1

⌉}
We observe that:

𝑢(0.5) − 𝑢(𝑥)
𝑢(0.5)

𝑘1 <
𝑢(1 − 𝑥) − 𝑢(𝑥)

𝑢(1 − 𝑥)
𝑘2 (5)

and

𝑢(𝑥)
𝑢(1 − 𝑥)

𝑘1 <
𝑢(0.5)
𝑢(1 − 𝑥)

𝑘2 (6)

then

𝑟𝐿𝐻,𝐻𝐿 ≷ 𝑟𝑀𝑀,𝐿𝐻 ⇔
𝑢(0.5) − 𝑢(𝑥)

𝑢(0.5)
≷

𝑢(𝑥)
𝑢(1 − 𝑥)

Let 𝐻∗(𝑥) = 𝑢(𝑥)
𝑢(1−𝑥) +

𝑢(𝑥)
𝑢(0.5) − 1. We observe that

𝐻∗(0) < 0
𝐻∗(0.5) > 0
𝐻∗′ (𝑥) > 0
9

and then ∃!𝑥∗ ∈ (0, 1) s.t. 𝐻∗(𝑥∗) = 0. □
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Lemma 6. If 𝑟𝑀𝑀,𝐿𝐻 ≤ 𝑟𝐿𝐻,𝑀𝑀 for 𝑥 = �̃�, then

• 𝑟𝑀𝑀,𝐿𝐻 < 𝑟𝐿𝐻,𝑀𝑀 for 𝑥 ∈ [�̃�, 0.5)

If 𝑟𝑀𝑀,𝐿𝐻 > 𝑟𝐿𝐻,𝑀𝑀 for 𝑥 = �̃�, then there exists 𝑥 ∈ (0, 0.5) such that:

• 𝑟𝑀𝑀,𝐿𝐻 > 𝑟𝐿𝐻,𝑀𝑀 for 𝑥 ∈ [�̃�, 𝑥)
• 𝑟𝑀𝑀,𝐿𝐻 = 𝑟𝐿𝐻,𝑀𝑀 for 𝑥 = 𝑥

• 𝑟𝑀𝑀,𝐿𝐻 < 𝑟𝐿𝐻,𝑀𝑀 for 𝑥 ∈ [𝑥, 0.5)

Proof of Lemma 6. From Lemma 2 we have:

• 𝑟𝐿𝐻,𝑀𝑀 =min
{⌈

𝑢(1−𝑥)−𝑢(0.5)
𝑢(1−𝑥) 𝑘2

⌉
,
⌈

𝑢(𝑥)
𝑢(0.5)𝑘1

⌉}
• 𝑟𝑀𝑀,𝐿𝐻 =min

{⌈
𝑢(0.5)
𝑢(1−𝑥)𝑘2

⌉
,
⌈
𝑢(0.5)−𝑢(𝑥)

𝑢(0.5) 𝑘1

⌉}
When 𝑥 > �̃�, for Lemma 4, we have 𝑟𝐿𝐻,𝐻𝐿 > 𝑟𝐿𝐻,𝑀𝑀 and thus:

[𝑢(1 − 𝑥) − 𝑢(0.5)]𝑘2 ≤ 𝑢(𝑥)𝑘1 (7)

from this follows that 𝑢(1−𝑥)−𝑢(0.5)
𝑢(1−𝑥) 𝑘2 <

𝑢(𝑥)
𝑢(0.5)𝑘1. Moreover, from the previous condition we also have:

[𝑢(1 − 𝑥) − 𝑢(0.5)]𝑘2 ≤ 𝑢(𝑥)𝑘1 < 𝑢(0.5)𝑘2 (8)

from this follows that 𝑢(1−𝑥)−𝑢(0.5)
𝑢(1−𝑥) 𝑘2 <

𝑢(0.5)
𝑢(1−𝑥)𝑘2. Thus when 𝑥 > �̃� we have that 𝑟𝐿𝐻,𝑀𝑀 ≷ 𝑟𝑀𝑀,𝐿𝐻 for 

⌈
𝑢(1−𝑥)−𝑢(0.5)

𝑢(1−𝑥) 𝑘2

⌉
≷⌈

𝑢(0.5)−𝑢(𝑥)
𝑢(0.5) 𝑘1

⌉
.

We now make two observations. The first one is that 𝑢(1−𝑥)−𝑢(0.5)
𝑢(1−𝑥) 𝑘2 =

𝑢(0.5)−𝑢(𝑥)
𝑢(0.5) 𝑘1 when 𝑥 = 0.5. The second one is that the 

derivative of 𝑢(1−𝑥)−𝑢(0.5)
𝑢(1−𝑥) 𝑘2 is negative and increasing in absolute value, while the derivative of 𝑢(0.5)−𝑢(𝑥)

𝑢(0.5) 𝑘1 is negative and non-

increasing in absolute value:

𝐷𝑥

[
𝑢(1 − 𝑥) − 𝑢(0.5)

𝑢(1 − 𝑥)
𝑘2

]
= −

𝑢(0.5)𝑢′(1 − 𝑥)𝑘2
𝑢2(1 − 𝑥)

and

𝐷𝑥

[
𝑢(0.5) − 𝑢(𝑥)

𝑢(0.5)
𝑘1

]
= −

𝑢′(𝑥)𝑘1
𝑢(0.5)

From the two previous points we argue that, when 𝑟𝑀𝑀,𝐿𝐻 ≤ 𝑟𝐿𝐻,𝑀𝑀 for 𝑥 = �̃�, then

𝑢(0.5) − 𝑢(𝑥)
𝑢(0.5)

𝑘1 ≤
𝑢(1 − 𝑥) − 𝑢(0.5)

𝑢(1 − 𝑥)
𝑘2 for 𝑥 ∈ (�̃�,0.5)

and thus

𝑟𝑀𝑀,𝐿𝐻 ≤ 𝑟𝐿𝐻,𝑀𝑀 for 𝑥 ∈ (�̃�,0.5) (9)

On the contrary when 𝑟𝑀𝑀,𝐿𝐻 > 𝑟𝐿𝐻,𝑀𝑀 for 𝑥 = �̃�, then there exists unique 𝑥 ∈ (�̃�, 0.5) such that 𝑢(0.5)−𝑢(𝑥)
𝑢(0.5) 𝑘1 =

𝑢(1−𝑥)−𝑢(0.5)
𝑢(1−𝑥) 𝑘2. 

Moreover, 𝑢(0.5)−𝑢(𝑥)
𝑢(0.5) 𝑘1 >

𝑢(1−𝑥)−𝑢(0.5)
𝑢(1−𝑥) 𝑘2 for 𝑥 ∈ (�̃�, 𝑥) and 𝑢(0.5)−𝑢(𝑥)

𝑢(0.5) 𝑘1 <
𝑢(1−𝑥)−𝑢(0.5)

𝑢(1−𝑥) 𝑘2 for 𝑥 ∈ (𝑥, 0.5). In conclusion

𝑟𝑀𝑀,𝐿𝐻 ≥ 𝑟𝐿𝐻,𝑀𝑀 for 𝑥 ∈ (�̃�, 𝑥) (10)

and

𝑟𝑀𝑀,𝐿𝐻 ≤ 𝑟𝐿𝐻,𝑀𝑀 for 𝑥 ∈ (𝑥,0.5) □ (11)

Proof of Proposition 1. Define 𝐻(𝑥) as:

𝐻(𝑥) = 𝑢(1 − 𝑥) − 𝑢(0.5) − 𝑢(𝑥)

Let 𝑥 be the value of 𝑥 such that 𝐻(𝑥) = 0. To prove the existence and uniqueness of 𝑥 we notice that 𝐻(0) > 0, 𝐻(0.5) < 0, and 
𝐻 ′(𝑥) < 0.

The proof is made of two steps:
10

• In the first step we study the case in which 𝑥 < 𝑥, call it case I.



Journal of Economic Dynamics and Control 165 (2024) 104899E. Bilancini, L. Boncinelli and E. Vicario

Every tree rooted at ℎ𝐿𝐻 has resistance greater or equal than at least a tree rooted at ℎ𝐻𝐿.

(1) 𝑟𝑀𝑀,𝐻𝐿 + 𝑟𝐻𝐿,𝐿𝐻 ≥ 𝑟𝑀𝑀,𝐻𝐿 + 𝑟𝐿𝐻,𝐻𝐿, that is true when 𝑟𝐻𝐿,𝐿𝐻 ≥ 𝑟𝐿𝐻,𝐻𝐿, where:

– 𝑟𝐻𝐿,𝐿𝐻 =min
{⌈

𝑢(𝑥)
𝑢(1−𝑥)𝑘2

⌉
,
⌈
𝑢(1−𝑥)−𝑢(𝑥)

𝑢(1−𝑥) 𝑘1

⌉}
– 𝑟𝐿𝐻,𝐻𝐿 =min

{⌈
𝑢(1−𝑥)−𝑢(𝑥)

𝑢(1−𝑥) 𝑘2

⌉
,
⌈

𝑢(𝑥)
𝑢(1−𝑥)𝑘1

⌉}
We observe that, since 𝑘2 ≥ 𝑘1, 𝑢(𝑥)

𝑢(1−𝑥)𝑘2 ≥
𝑢(𝑥)

𝑢(1−𝑥)𝑘1 and 𝑢(1−𝑥)−𝑢(𝑥)
𝑢(1−𝑥) 𝑘2 ≥

𝑢(1−𝑥)−𝑢(𝑥)
𝑢(1−𝑥) 𝑘1, moreover we observe that 

𝑢(1−𝑥)−𝑢(𝑥)
𝑢(1−𝑥) 𝑘1 ≥

𝑢(𝑥)
𝑢(1−𝑥)𝑘1 in case I, indeed, 𝑢(1 − 𝑥) − 𝑢(𝑥) ≥ 𝑢(𝑥) when 𝑢(1 − 𝑥) > 𝑢(0.5) + 𝑢(𝑥). Thus, 𝑟𝐻𝐿,𝐿𝐻 ≥ 𝑟𝐿𝐻,𝐻𝐿.

(2) 𝑟𝑀𝑀,𝐿𝐻 + 𝑟𝐻𝐿,𝐿𝐻 ≥ 𝑟𝑀𝑀,𝐿𝐻 + 𝑟𝐿𝐻,𝐻𝐿, that is true when 𝑟𝐻𝐿,𝐿𝐻 ≥ 𝑟𝐿𝐻,𝐻𝐿. The condition is satisfied in case I as showed 
in the previous bullet.

(3) 𝑟𝐻𝐿,𝑀𝑀 + 𝑟𝑀𝑀,𝐿𝐻 ≥ 𝑟𝑀𝑀,𝐿𝐻 + 𝑟𝐿𝐻,𝐻𝐿, that is true when 𝑟𝐻𝐿,𝑀𝑀 ≥ 𝑟𝐿𝐻,𝐻𝐿, where:

– 𝑟𝐻𝐿,𝑀𝑀 =min
{⌈

𝑢(𝑥)
𝑢(0.5)𝑘2

⌉
,
⌈
𝑢(1−𝑥)−𝑢(0.5)

𝑢(1−𝑥) 𝑘1

⌉}
– 𝑟𝐿𝐻,𝐻𝐿 =min

{⌈
𝑢(1−𝑥)−𝑢(𝑥)

𝑢(1−𝑥) 𝑘2

⌉
,
⌈

𝑢(𝑥)
𝑢(1−𝑥)𝑘1

⌉}
We observe that 𝑢(𝑥)

𝑢(0.5)𝑘2 >
𝑢(𝑥)

𝑢(1−𝑥)𝑘1 because 𝑘2 ≥ 𝑘1 and 𝑢(0.5) < 𝑢(1 − 𝑥), moreover 𝑢(1−𝑥)−𝑢(𝑥)
𝑢(1−𝑥) 𝑘2 >

𝑢(1−𝑥)−𝑢(0.5)
𝑢(1−𝑥) 𝑘1 because 

𝑘2 ≥ 𝑘1 and 𝑢(𝑥) < 𝑢(0.5), furthermore 𝑢(1−𝑥)−𝑢(0.5)
𝑢(1−𝑥) 𝑘1 ≥

𝑢(𝑥)
𝑢(1−𝑥)𝑘1 in case I, where 𝑢(1 − 𝑥) > 𝑢(0.5) + 𝑢(𝑥). Thus 𝑟𝐻𝐿,𝑀𝑀 ≥

𝑟𝐿𝐻,𝐻𝐿.

Therefore 𝛾𝐿𝐻 ≥ 𝛾𝐻𝐿. Moreover, by Lemma 3, 𝛾𝐻𝐿 ≥ 𝛾𝑀𝑀 and thus ℎ𝑀𝑀 is stochastically stable under the condition 𝑢(1 −𝑥) >
𝑢(0.5) + 𝑢(𝑥).

• In the second step we study the case in which 𝑥 > 𝑥, call it case II. In this step we need some preliminary result. First, 𝑇𝐿𝐻 [𝐻𝐿 →
𝑀𝑀 +𝑀𝑀 →𝐿𝐻] has minimal resistance between the trees rooted at ℎ𝐿𝐻 :

(a) 𝑟𝐻𝐿,𝑀𝑀 + 𝑟𝑀𝑀,𝐿𝐻 ≤ 𝑟𝐻𝐿,𝐿𝐻 + 𝑟𝑀𝑀,𝐿𝐻 , that is true when 𝑟𝐻𝐿,𝑀𝑀 ≤ 𝑟𝐻𝐿,𝐿𝐻 , where:

– 𝑟𝐻𝐿,𝑀𝑀 =min
{⌈

𝑢(𝑥)
𝑢(0.5)𝑘2

⌉
,
⌈
𝑢(1−𝑥)−𝑢(0.5)

𝑢(1−𝑥) 𝑘1

⌉}
– 𝑟𝐻𝐿,𝐿𝐻 =min

{⌈
𝑢(𝑥)

𝑢(1−𝑥)𝑘2

⌉
,
⌈
𝑢(1−𝑥)−𝑢(𝑥)

𝑢(1−𝑥) 𝑘1

⌉}
We observe that 𝑢(1−𝑥)−𝑢(0.5)

𝑢(1−𝑥) 𝑘1 <
𝑢(1−𝑥)−𝑢(𝑥)

𝑢(1−𝑥) 𝑘1, by the fact that 𝑢 is an increasing function. Moreover 𝑢(1−𝑥)−𝑢(0.5)
𝑢(1−𝑥) 𝑘1 <

𝑢(𝑥)
𝑢(1−𝑥)𝑘2

because 𝑢(1 − 𝑥) < 𝑢(0.5) + 𝑢(𝑥) in case II and also 𝑘2 > 𝑘1. Thus 𝑟𝐻𝐿,𝑀𝑀 ≤ 𝑟𝐻𝐿,𝐿𝐻 .

(b) 𝑟𝐻𝐿,𝐿𝐻 + 𝑟𝑀𝑀,𝐿𝐻 ≤ 𝑟𝑀𝑀,𝐻𝐿 + 𝑟𝐻𝐿,𝐿𝐻 , that is true when 𝑟𝑀𝑀,𝐿𝐻 ≤ 𝑟𝑀𝑀,𝐻𝐿, where:

– 𝑟𝑀𝑀,𝐿𝐻 =min
{⌈

𝑢(0.5)
𝑢(1−𝑥)𝑘2

⌉
,
⌈
𝑢(0.5)−𝑢(𝑥)

𝑢(0.5) 𝑘1

⌉}
– 𝑟𝑀𝑀,𝐻𝐿 =min

{⌈
𝑢(0.5)−𝑢(𝑥)

𝑢(0.5) 𝑘2

⌉
,
⌈

𝑢(0.5)
𝑢(1−𝑥)𝑘1

⌉}
We observe that 𝑢(0.5)

𝑢(1−𝑥)𝑘2 ≥
𝑢(0.5)
𝑢(1−𝑥)𝑘1 and 𝑢(0.5)−𝑢(𝑥)

𝑢(0.5) 𝑘2 ≥
𝑢(0.5)−𝑢(𝑥)

𝑢(0.5) 𝑘1, by the fact that 𝑘2 ≥ 𝑘1. To show that 𝑢(0.5)
𝑢(1−𝑥) >

𝑢(0.5)−𝑢(𝑥)
𝑢(0.5)

we initially observe that in case II, 𝑢(0.5)
𝑢(1−𝑥) >

𝑢(0.5)
𝑢(𝑥)+𝑢(0.5) . Thus we show that 𝑢(0.5)

𝑢(𝑥)+𝑢(0.5) >
𝑢(0.5)−𝑢(𝑥)

𝑢(0.5) which implies 𝑢(0.5)
𝑢(1−𝑥) >

𝑢(0.5)−𝑢(𝑥)
𝑢(0.5) . The result follows from the fact that 𝑢2(0.5) > 𝑢2(0.5) − 𝑢2(𝑥) is always true. Thus 𝑟𝑀𝑀,𝐿𝐻 ≤ 𝑟𝑀𝑀,𝐻𝐿.

Given (a) and (b), we conclude that 𝑇𝐿𝐻 [𝐻𝐿 →𝑀𝑀 +𝑀𝑀 →𝐿𝐻] has minimal resistance between the trees rooted at 𝐿𝐻 .

Second, the tree 𝑇𝑀𝑀 [𝐻𝐿 → 𝐿𝐻 + 𝐿𝐻 →𝑀𝑀] has always resistance greater or equal than at least another tree rooted at 
𝑀𝑀 : 𝑟𝐻𝐿,𝑀𝑀 + 𝑟𝐿𝐻,𝑀𝑀 ≤ 𝑟𝐻𝐿,𝐿𝐻 + 𝑟𝐿𝐻,𝑀𝑀 , that is true when 𝑟𝐻𝐿,𝑀𝑀 ≤ 𝑟𝐻𝐿,𝐿𝐻 , where:

– 𝑟𝐻𝐿,𝑀𝑀 =min
{⌈

𝑢(𝑥)
𝑢(0.5)𝑘2

⌉
,
⌈
𝑢(1−𝑥)−𝑢(0.5)

𝑢(1−𝑥) 𝑘1

⌉}
– 𝑟𝐻𝐿,𝐿𝐻 =min

{⌈
𝑢(𝑥)

𝑢(1−𝑥)𝑘2

⌉
,
⌈
𝑢(1−𝑥)−𝑢(𝑥)

𝑢(1−𝑥) 𝑘1

⌉}
We already show for condition (a), that 𝑟𝐻𝐿,𝑀𝑀 ≤ 𝑟𝐻𝐿,𝐿𝐻 in case II.
Third, given Lemma 4, if 𝑥 < �̃� then 𝛾𝑀𝑀 = 𝑟𝐿𝐻,𝐻𝐿 + 𝑟𝐻𝐿,𝑀𝑀 , and vice versa 𝛾𝑀𝑀 = 𝑟𝐻𝐿,𝑀𝑀 + 𝑟𝐿𝐻,𝑀𝑀 when 𝑥 > �̃�.

We summarize the preliminary results: in the case studied in the second step, case II, 𝑢(1 − 𝑥) < 𝑢(0.5) + 𝑢(𝑥), the stochastic 
potential of the convention 𝐿𝐻 is always given by the resistance of the tree 𝑇𝐿𝐻 [𝐻𝐿 →𝑀𝑀 +𝑀𝑀 →𝐿𝐻], while instead the 
stochastic potential of the convention 𝑀𝑀 is given by the resistance of the tree 𝑇𝑀𝑀 [𝐿𝐻 →𝐻𝐿 +𝐻𝐿 →𝑀𝑀] when 𝑥 < �̃�, 
and by the resistance of the tree 𝑇𝑀𝑀 [𝐻𝐿 →𝑀𝑀 +𝐿𝐻 →𝑀𝑀] when 𝑥 > �̃�.

Depending on whether 𝑥∗ (Lemma 5) is smaller or greater than �̃� (Lemma 4) we obtain different results. See Fig. 6 for a graphical 
representation. Firstly, we analyze the case in which 𝑥∗ ≤ �̃�.

– When 𝑥 < 𝑥 < �̃�.

𝛾𝑀𝑀 < 𝛾𝐿𝐻 if 𝑥 < 𝑥 < 𝑥∗

and

𝛾𝑀𝑀 > 𝛾𝐿𝐻 if 𝑥∗ < 𝑥 < �̃�

The result follows from Lemma 5.

– When �̃� < 𝑥 < 0.5.
11

𝛾𝑀𝑀 > 𝛾𝐿𝐻
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Fig. 6. The above plots depict functions from which the stochastic potentials of the conventions can be computed by taking the ceiling.

The result follows from Lemma 6.

Secondly, we analyze the case in which 𝑥∗ > �̃�.

– When 𝑥 < 𝑥 < �̃� < 𝑥∗.

𝛾𝑀𝑀 < 𝛾𝐿𝐻

The result follows from Lemma 5.

– When �̃� < 𝑥 < 0.5.

𝛾𝑀𝑀 < 𝛾𝐿𝐻 if �̃� < 𝑥 < 𝑥

and

𝛾𝑀𝑀 > 𝛾𝐿𝐻 if 𝑥 < 𝑥 < 0.5

In conclusion, when 𝑥∗ ≤ �̃�,

𝑥𝑇 (𝑘1, 𝑘2) = 𝑥∗

instead, when 𝑥∗ > �̃�,

𝑥𝑇 (𝑘1, 𝑘2) = 𝑥 □

Proof of Proposition 2. In the conclusion of the proof of Proposition 1 we have that when 𝑥∗ ≤ �̃�,

𝑥𝑇 (𝑘1, 𝑘2) = 𝑥∗

instead, when 𝑥∗ > �̃�,

𝑥𝑇 (𝑘1, 𝑘2) = 𝑥

Where 𝑥∗ is the value of 𝑥 at which 𝑢(𝑥)
𝑢(1−𝑥) +

𝑢(𝑥)
𝑢(0.5) − 1 = 0, �̃� is the value of 𝑥 at which [𝑢(1 − 𝑥) − 𝑢(0.5)]𝑘2 − 𝑢(𝑥)𝑘1 = 0, and 𝑥 is the 

value of 𝑥 at which 𝑢(1−𝑥)−𝑢(0.5)
𝑢(1−𝑥) 𝑘2 −

𝑢(0.5)−𝑢(𝑥)
𝑢(0.5) 𝑘1 = 0. We notice that 𝑥∗ does not depend on 𝑘1 and 𝑘2. Instead, �̃� is decreasing in 𝑘1

and increasing in 𝑘2. Conversely, 𝑥 is increasing in 𝑘1 and decreasing in 𝑘2. Indeed, 𝑥 ∈ [�̃�, 0.5) is the value of 𝑥 for which 𝑟𝑀𝑀,𝐿𝐻 =
𝑟𝐿𝐻,𝑀𝑀 given that 𝑥∗ > �̃�. As showed in the proof of Lemma 6, 𝑟𝑀𝑀,𝐿𝐻 and 𝑟𝐿𝐻,𝑀𝑀 are both decreasing in 𝑥, and they are equal 
when 𝑥 = 0.5. Moreover, 𝑟𝐿𝐻,𝑀𝑀 becomes relatively steeper than 𝑟𝑀𝑀,𝐿𝐻 as 𝑥 increases. Since, 𝑟𝐿𝐻,𝑀𝑀 =

⌈
𝑢(1−𝑥)−𝑢(0.5)

𝑢(1−𝑥) 𝑘2

⌉
and 

𝑟𝑀𝑀,𝐿𝐻 =
⌈
𝑢(0.5)−𝑢(𝑥)

𝑢(0.5) 𝑘1

⌉
, an increase in 𝑘2 moves 𝑥 to the left as a decrease in 𝑘1, vice versa an increase in 𝑘1 or a decrease in 𝑘2

move 𝑥 to the right. □

Appendix B. Shape of the utility function

In this appendix, we further explore the role of concavity of the utility function, which is known to play a fundamental role for 
the selection of stochastically stable conventions, at least in 2x2 coordination games (Sawa and Wu, 2018 and Nax and Newton, 
2019). In order to obtain the results of Proposition 1 and Proposition 2, it is necessary to assume that the utility function is (weakly) 
concave. We emphasize that the results are therefore guaranteed even in the case of linearity of the utility function. In Fig. 7, we 
12

show the numerical results obtained by computing the functions from which the stochastic potentials of the conventions can be 
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Fig. 7. The above plots depict the functions from which the stochastic potentials of the conventions can be computed by taking the ceiling. The plots are drawn, from 
top to bottom, for 𝑢(𝑥) = 𝑙𝑛(1 + 𝑥), 𝑢(𝑥) = 𝑥, and 𝑢(𝑥) = 𝑥2 and, from left to right, 𝑘1 = 5, 𝑘1 = 25, and 𝑘1 = 45, while 𝑘2 is kept fixed at 50. The threshold 𝑥𝑇 , as it 
results from Proposition 1, is not identified for 𝑢(𝑥) = 𝑥2 , due to the strict convexity of the utility function.

computed by taking the ceiling. In the first row, a case with a strictly concave function where 𝑢(𝑥) = 𝑙𝑛(1 + 𝑥), and in the second 
row, the linear case with 𝑢(𝑥) = 𝑥. Observing the subplots in the first two rows, from left to right, 𝑘1 = 5, 𝑘1 = 25, and 𝑘1 = 45, while 
𝑘2 is kept fixed at 50, one can notice that there exists a value 𝑥𝑇 for which if 𝑥 < 𝑥𝑇 then ℎ𝑀𝑀 is stochastically stable, whereas if 
𝑥 > 𝑥𝑇 then ℎ𝐿𝐻 is stochastically stable. Furthermore, we observe that in the case where 𝑘1 = 5, the Nash bargaining solution falls 
within a region where ℎ𝑀𝑀 is stochastically stable. Observing the third row of Fig. 7, where the utility function is convex, with the 
functional form 𝑢(𝑥) = 𝑥2, it can be noted that, in the case where 𝑘1 = 5, for an intermediate range of 𝑥 values, the green line lies 
below the other lines, showing that convexity is indeed essential for Proposition 1.

However, without the assumption of (weak) concavity we can still obtain the result in Proposition 3, where we show that, if the 
setting is unfair enough, then the fair convention is stochastically stable.

Proposition 3. Let 𝑢(𝑥) be such that 𝑢′(𝑥) > 0 and 𝑢(0) = 0. When 𝑥 is sufficiently close to 0, ℎ𝑀𝑀 is stochastically stable.

Proof of Proposition 3. We consider the resistance of transitions indicated in Lemma 2. By assumption, when 𝑥 approaches 0, 𝑢(𝑥)
also approaches 0. This implies that, when 𝑥 is sufficiently close to 0, some of the resistances indicated in Lemma 2 are equal to 1, 
due to the ceiling operator. In particular, we note that 𝑟𝐿𝐻,𝑀𝑀 = 𝑟𝐻𝐿,𝑀𝑀 = 1. In turn, this means that 𝛾𝑀𝑀 = 2. Because there are 
only three recurrent classes, and hence two links in rooted trees with each link having a resistance of at least 1, the sum of resistances 
over any rooted tree cannot be lower than 2. This allows us to conclude that, when 𝑥 is sufficiently close to 0, ℎ𝑀𝑀 has minimum 
stochastic potential and, hence, is stochastically stable. □

Appendix C. Example of transitions

In this appendix, we illustrate how transitions between conventions occur using two simple examples with a linear utility function: 
13

𝑢(𝑥) = 𝑥. In particular, we consider 𝑥 = 0.2, 𝑘1 = 2, 𝑘2 = 3, and 𝑚 = 6. The first example, depicted in Fig. 8, explores the transition 
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Fig. 8. Example of a transition from convention ℎ𝐻𝐿 to convention ℎ𝑀𝑀 triggered by the minimal number of mistakes made by player 1, assuming 𝑢(𝑥) = 𝑥, 𝑥 = 0.2, 
𝑘1 = 2, 𝑘2 = 3, and 𝑚 = 6.

Fig. 9. Example of a transition from convention ℎ𝐻𝐿 to convention ℎ𝑀𝑀 triggered by the minimal number of mistakes made by player 2, assuming 𝑢(𝑥) = 𝑥, 𝑥 = 0.2, 
𝑘1 = 2, 𝑘2 = 3, and 𝑚 = 6.

from the convention ℎ𝐻𝐿 to ℎ𝑀𝑀 , triggered by mistakes made by player 1. At period 0 (𝑇 = 0 in Fig. 8), the system is at rest in the 
ℎ𝐻𝐿 convention, with no change occurring in the best reply dynamics. In period 1, player 1 mistakenly plays 𝑀 instead of 𝐻 . By 
period 2, this error is incorporated into 𝑚1, representing the memory of player 1’s last 𝑚 moves. Despite this mistake being included 
in player 2’s sample, it is not enough to trigger a change in the best reply of player 2 under the given utility function, value of 𝑥, and 
sample size. Consequently, another error by player 1 is necessary for the transition to proceed. In period 3, with two accumulated 
mistakes in 𝑚1, if both of them are selected in the sample of player 2, player 2’s best reply shifts from 𝐿 to 𝑀 . In period 4, there is a 
positive probability that the two players select samples such that the best reply is 𝑀 for both players. In this period the two players 
coordinate on the Nash equilibrium (𝑀, 𝑀). From period 5 to period 9, there is a positive probability that the two players select 
samples such that the best reply is 𝑀 for both payers. By period 10, the transition to the ℎ𝑀𝑀 convention is complete.

In Fig. 9, we describe the same transition from ℎ𝐻𝐿 to ℎ𝑀𝑀 triggered in this case by mistakes of player 2. As shown in the figure, 
one mistake by player 2 is enough to trigger the transition.

From Lemma 2 we know that the resistance of the transition from ℎ𝐻𝐿 to ℎ𝑀𝑀 is:

𝑟𝐻𝐿,𝑀𝑀 =min
{⌈

𝑢(𝑥)
𝑢(0.5)

𝑘2

⌉
,

⌈
𝑢(1 − 𝑥) − 𝑢(0.5)

𝑢(1 − 𝑥)
𝑘1

⌉}
Substituting the values chosen for the example, 𝑢(𝑥) = 𝑥, 𝑥 = 0.2, 𝑘1 = 2, 𝑘2 = 3, and 𝑚 = 6, we obtain:
14

𝑟𝐻𝐿,𝑀𝑀 =min{⌈1.2⌉ ,⌈0.75⌉} = min{2,1} = 1
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