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Abstract
Many classic social preference (multiwinner social choice) correspondences are res-
olute only when two alternatives and an odd number of individuals are considered.
Thus, they generally admit several resolute refinements, each of them naturally inter-
preted as a tie-breaking rule. A tie-breaking rule is compulsory every time a single
final decision is needed. Unfortunately, using a tie-breaking rule on some social pref-
erence (multiwinner social choice) correspondence can dramatically compromise its
properties. In particular, very often, the arithmetic relation between the number of
alternatives and the number of voters does not allow to maintain both anonymity and
neutrality. In those cases, the only possibility is to look at suitable different forms of
symmetry that are coherent with the decision context. We find out conditions which
make a social preference (multiwinner social choice) correspondence admit a resolute
refinement fulfilling some weak versions of the anonymity and neutrality principles.
We also clear when it is possible to obtain, for those resolute refinements, the rever-
sal symmetry (immunity to the reversal bias). The theory we develop turns out to be
useful in many common applicative contexts and allows to explicitly construct those
refinements.
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1 Introduction

Consider a committee having h ≥ 2members whose purpose is to determine a ranking
ofn ≥ 2 alternatives and assume that committeemembers are supposed to express their
preferences via a ranking of the alternatives. A preference profile is a list of individual
preferences, one for each committee member. A social preference correspondence
(spc) is a procedure which associates with any preference profiles a family of rankings
of the alternatives to be interpreted as the family of the social preferences which better
fit the individual preferences. A k-multiwinner social choice correspondence (k-scc)
is instead a procedure which associates with any preference profile a family of sets
of k alternatives to be interpreted as the family of all the sets of k alternatives that
can be considered the best k alternatives for the society. While the concept of spc is
classic, the one of k-scc, which extends the well-established single-winner framework
(corresponding to the case k = 1), is more recent. Indeed, it has been explored for
about thirty years, but only for some years it has been getting a new attention. We refer
to the recent papers by Elkind et al. (2017) and Faliszewski et al. (2017) for general
information on that topic.

Many spcs and k-sccs have been proposed and studied in the literature. Most of
them satisfy two requirementswhich are considered strongly desirable by social choice
theorists, namely anonymity and neutrality. A spc (k-sccs) is said anonymous if the
identities of individuals are irrelevant to determine the social outcome, that is, it selects
the same social outcome for any pair of preference profiles such that we get one from
the other by permuting individual names; neutral if alternatives are equally treated,
that is, for every pair of preference profiles such that we get one from the other by
permuting alternative names, the social outcomes associated with them coincide up to
the considered permutation.

Since in many cases collective decision processes are required to select a unique
outcome, an important role in social choice theory is played by resolute spcs and
k-sccs, namely those spcs and k-sccs associating a single ranking or a single set of
k alternatives with any preference profile. Unfortunately, classic spcs and k-sccs are
not resolute in general. As a consequence, if the members of a committee agree to
use one of the classic spcs to aggregate their preferences and a unique outcome is
needed, then they also need to find an agreement on which tie-breaking rule to use
when two or more social rankings are selected. Similarly, if they agree to select the
best k alternatives for the society via a classic k-scc and a unique outcome is needed,
then they also need to decide which tie-breaking rule to use when two or more sets of
k alternatives are selected.

The choice of a tie-breaking rule usually has a deep impact on the properties of the
final decision rule. Consider, for instance, two special tie-breaking rules often used
in the single-winner framework. The first one, proposed by Moulin (1988), is based
on a tie-breaking agenda, that is, an exogenously given ranking of the alternatives:
In ambiguity case, it is chosen the alternative of the social outcome which is best
ranked in the agenda. The second one is instead based on the preferences of one of
the individuals appointed as tie-breaker: In ambiguity case, it is chosen the alternative
of the social outcome which is best ranked by the tie-breaker. Of course, the resolute
refinements built through a tie-breaking agenda fail to be neutral while those built
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Breaking ties in collective decision-making 413

through a tie-breaker fail to be anonymous. Our work allows to cast these two special
types of tie-breaking rules within a more general theory (Sect. 8).1 We firmly believe
that a reflection on the concept of tie-breaking rule is mandatory for social choice
scientists in order to control the effective properties of the various resolute spcs and
k-spcs in use and of those which could be used in the future. Indeed, it is clearly
useless to choose a spc or a k-scc full of desirable properties and spoil a large part of
them through an inappropriate tie-breaking rule.

On the same line of thought, Jeong and Ju (2017) observe that it is unfortunate
that tie-breaking rules are not incorporated in the definitions of the classic 1-sccs. In
the context of two alternatives and allowing individuals to express also indifference
between them, they discuss anonymous but non-neutral tie-breaking rules for the
simple majority and the majority with quorum. In the same framework, but with
profiles of variable length,McMorris et al. (2020) discussmanyvariations of the simple
majority and, among them, they consider someof its resolute versions obtained through
non-anonymous tie-breaking rules. Their scope is to characterize those variations in
terms of weak versions of classic axioms and focusing on consistency. Thus, those
authors implicitly treat also the properties which can derive by the use of different
tie-breaking rules.

In order to better explain our results and simplify the exposition, let us focus now
on spcs. The concept of tie-breaking rule can be naturally formalized in terms of
refinement of a spc. Let C and C ′ be two spcs. We say that C ′ is a refinement of
C if, for every preference profile, the set of social preferences selected by C ′ is a
subset of the set of social preferences selected by C . Thus, refinements of C can be
thought as methods to reduce the ambiguity in the choice made by C . In particular,
resolute refinements ofC completely eliminate the ambiguity leading to a unique social
outcome, so that they can be identified with the possible tie-breaking rules for C . Of
course, if C is not resolute, it admits many resolute refinements. Thus, an interesting
issue to address is to understand whether it is possible to find resolute refinements ofC
which satisfy suitable properties. In particular, since it is immediate to understand that
resolute refinements of even anonymous and neutral spcs are not generally anonymous
and neutral, one may wonder whether anonymous and neutral resolute refinements of
a given spc do exist. Unfortunately, as proved by Bubboloni and Gori (2014, Theorem
5), the existence of an anonymous, neutral and resolute spc is equivalent to the strong
arithmetical condition gcd(h, n!) = 1 which is rarely satisfied in practical situations.
As a consequence, given a spc, we cannot in general get any anonymous and neutral
resolute refinement of it. The condition gcd(h, n!) = 1 was first introduced byMoulin
(1983, Theorem 1, p.25) as a necessary and sufficient condition for the existence of
anonymous, neutral and efficient social choice functions; Bubboloni and Gori (2014,
Theorem 15) generalize Moulin’s result considering in addition the qualified majority
principle; Campbell and Kelly (2015) show that if n > h (so that gcd(h, n!) �= 1) and

1 Some remarks about the tie-breaking agenda and the role of the tie-breaker are proposed in Doğan and
Giritligil (2015) and Bubboloni and Gori (2016b), where the problem of finding resolute refinements of
1- sccs is considered.
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anonymous, neutral and resolute social choice functions exist, then those functions
not only are inefficient but exhibit even more undesirable behaviors.2

Fortunately, in many concrete cases, anonymity and neutrality are too strong
requirements. That happens, for instance, for those committees having a president
who is appointed to be more influential than the other committee members or when a
committee evaluates job candidates giving the female candidates an advantage over the
male ones. Indeed, in such situations, individual and alternative names are not imma-
terial. For such a reason, we propose generalized versions of anonymity and neutrality
which can take into account possible distinctions among individuals and among alter-
natives. Let Sh be the group of permutations of the set H = {1, . . . , h} of committee
member names and Sn be the group of permutations of the set N = {1, . . . , n} of
alternative names. Given a subgroup V of Sh , we say that a spc is V -anonymous if it
selects the same social outcome for any pair of preference profiles such that we get one
from the other by permuting individual names according to a permutation in V ; given
a subgroup W of Sn , we say that a spc is W -neutral if for every pair of preference
profiles such that we get one from the other by permuting alternative names according
to a permutation in W , it associates with them social outcomes which coincide up to
the considered permutation. The special groups of permutations V and W need to be
identified on the basis of the specific features of the situation at hand. Of course, Sh-
anonymity corresponds to anonymity and Sn-neutrality corresponds to neutrality. As
a consequence, each anonymous (neutral) spc is V -anonymous (W -neutral) for every
V (W ). It is worth noting that, depending on the particular structure of V and W , it is
possible to get V -anonymous,W -neutral and resolute spcs even when no anonymous,
neutral and resolute spc exists.3 That implies that, in a situation where suitable weak
versions of anonymity and neutrality are sensible, there may be room for finding a
resolute spc satisfying such versions of anonymity and neutrality by refining a given
anonymous and neutral spc.

In this paper, we propose conditions on V andW which are necessary and sufficient
to make a V -anonymous and W -neutral spc admit a V -anonymous and W -neutral
resolute refinement. Those conditions are summarized by an arithmetical relation
between the size |W | of W and a special number γ (V ) associated with V (defined
in (12)). Namely, given a V -anonymous and W -neutral spc C (like, for instance, the
Borda, the Copeland, the Minimax and the Kemeny spcs which are anonymous and
neutral and then V -anonymous andW -neutral for every choice of V andW ), we have
that C admits a V -anonymous and W -neutral resolute refinement if and only if4

gcd(γ (V ), |W |) = 1 (1)

2 The existence of anonymous, neutral and resolute spcs satisfying further properties is also studied by
Bubboloni and Gori (2015), who focus on the majority principle, and Doğan and Giritligil (2015), who
instead focus on monotonicity properties.
3 For instance, in the trivial case where V and W are singletons whose unique element is the identity
permutation, every resolute spc is V -anonymous and W -neutral.
4 Throughout the paper, given integers x1, . . . , xs , for some s ∈ N, we denote by gcd(x1, . . . , xs ) their
greatest common divisor and by lcm (x1, . . . , xs ) their least common multiple.
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(Theorem 17). The computation of the numbers γ (V ) and |W | is, in principle, hard.
Fortunately, it becomes easy for many subgroups of interest in the applications (see
Sect. 8). For example, consider a situation where individuals can be divided into dis-
joint subcommittees, say H1, . . . , Hr , where individuals have the same decision power
and that alternatives can be divided into disjoint subclasses, say N1, . . . , Ns , where
alternatives have the same exogenous importance. Assume first that such subcommit-
tees (subclasses) can be ranked in such a way that, for every pair of subcommittees
(subclasses), each individual (alternative) belonging to the subcommittee (subclass)
having higher rank is more influential (more important) than any individual (alter-
native) belonging to the other subcommittee (subclass).5 In this case, it is natural to
require a collective decision process not to distinguish among individuals (alterna-
tives) belonging to the same subcommittee (subclass). Thus, two groups V and W
naturally arise: V is given by those permutations of individual names mapping every
Hi into itself; W is given by those permutations of alternative names mapping every
N j into itself. Clearly |W | = ∏s

j=1 |N j |! and we show that

γ (V ) = gcd(|H1|, . . . , |Hr |), (2)

6 so that condition (1) becomes7

gcd

⎛

⎝|H1|, . . . , |Hr |,
s∏

j=1

|N j |!
⎞

⎠ = 1. (3)

Assume now that subclasses can be ranked as before while no ranking of subcommit-
tees is available. However, it is known that subcommittees having the same size must
have the same impact in the final decision. This particular situation leads to consider
a collective decision process which does not distinguish among individuals (alterna-
tives) belonging to the same subcommittee (subclass) and also does not distinguish
among subcommittees having the same size. Thus, V is now given by those permuta-
tions of individual names mapping every Hi into one of the subcommittees having its
same size (possibly itself), while W is the same as before. We prove then that

γ (V ) = gcd(|H1|t1, . . . , |Hr |tr ),
where ti counts the number of subcommittees of size |Hi |, so that condition (1)
becomes

gcd

⎛

⎝|H1|t1, . . . , |Hr |tr ,
s∏

j=1

|N j |!
⎞

⎠ = 1.

5 The presence of a president and the case of gender discrimination previously mentioned are special
instances.
6 We stress that equality in (2) along with the described results about k-sccs (Theorems 20 and 21) imply
as an immediate consequence the main result in Bubboloni and Gori (2016b), namely Theorem 8 therein.
7 Note that anonymity corresponds to have H as a unique subcommittee and neutrality corresponds to have
N as a unique subclass. In this special case, (3) reduces to the already commented condition gcd(h, n!) = 1.
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We further deepen the analysis of the resolute refinements of a given spc by consid-
ering the property of reversal symmetry, a property first introduced by Saari (1994).
Recall that the reversal of a ranking of alternatives is the ranking obtained by making
the best alternative the worst, the second best alternative the second worst, and so on,
and that a spc is said reversal symmetric if, for any pair of preference profiles such
that one is obtained by the other by reversing each individual preference, it associates
with one of them a set of social preferences if and only if it associates with the other
one the set of their reversal. We prove that the condition

gcd(γ (V ), lcm(|W |, 2)) = 1, (4)

along with other technical conditions, is necessary and sufficient to make any V -
anonymous,W -neutral and reversal symmetric spc admit a V -anonymous,W -neutral
and reversal symmetric resolute refinement (Theorem 18). In particular, from that
result, it is easily deduced that the Borda and theCopeland spcs admit a V -anonymous,
W -neutral and reversal symmetric resolute refinement if and only if (4) holds true.

Along with the described analysis of spcs, we also study the problem to deter-
mine whether a k-scc admits V -anonymous andW -neutral resolute refinements8 and
whether some of them are immune to the reversal bias too. Recall that a k-scc is
immune to the reversal bias if it never associates the same set of k alternatives with
a preference profile and its reversal (see Saari and Barney 2003; Bubboloni and Gori
2016a). We prove that if (1) holds true, then any V -anonymous and W -neutral k-scc
admits a V -anonymous and W -neutral resolute refinement (Theorem 20). Assuming
(4), we also find out conditions to make every V -anonymous, W -neutral and immune
to the reversal bias k-scc admit a resolute refinement having the same properties (The-
orem 21). Remarkably, that analysis put in evidence the role played by the number
k of selected alternatives with respect to the number n of alternatives, pointing out
that the existence of an immune to the reversal bias resolute refinement is guaranteed
when the pair (n, k) belongs to a very specific set.

We emphasize that the methods developed in the paper allow to deal with situ-
ations in which forms of symmetry conceptually different from V -anonymity and
W -neutrality are required. The idea is to give room to any possible mixture of the
anonymity and neutrality principles through the consideration of generic subgroups
U of Sh × Sn and the corresponding definition of U -symmetry and U -consistency
given for spcs and k-sccs (see (7), (8), (9)). That is done not in view of a mere and
vacuous generalization, but in order to capture every possible decision scenario. As a
concrete application, we examine, in detail, the case of a committee facing the problem
of electing a subcommittee of size k among nmembers of the committee itself who run
as candidates. In this particular situation, a collective decision process should make no
distinction among individuals who are candidates and among individuals who are not
candidates and, at the same time, it must carefully take into account the fact that the
alternatives to choose from are now a subset of the set of individuals. In Sect. 8.3, we
prove that if gcd(h, n) = 1, then any anonymous and neutral k-scc admits a resolute
refinement consistent with the above described requirements.

8 Those concepts are easily adapted to k-sccs. See Sect. 4.
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Note that some contributions dealing with weak versions of anonymity and neu-
trality are present in the literature. Assuming there are only two alternatives, Perry and
Powers (2008) calculate the number of resolute spcs that are anonymous and neutral
and the number of spcs satisfying a weak version of anonymity (that is, all individuals
but one are anonymous) and neutrality; Powers (2010) shows that a spc satisfies the
previously described weak anonymity, neutrality andMaskin monotonicity if and only
if it is close to spc obeying an absolute qualified majority; Quesada (2013) identifies
seven axioms (among which there are weak versions of anonymity and neutrality)
characterizing the rules that are either the relative majority rule or the relative major-
ity rule where a given individual can break the ties; Campbell and Kelly (2011, 2013)
show that the relativemajority is implied both by a suitableweak version of anonymity,
neutrality and monotonicity, as well as by limited neutrality, anonymity and mono-
tonicity. In the general case for the number of alternatives, some observations about
different levels of anonymity and neutrality can be found in the paper by Kelly (1991).
Bubboloni and Gori (2016b) consider, only for 1- sccs, weak versions of anonymity
and neutrality, determined by partitions of individuals and alternatives. More recently,
a wide literature about k-sccs which are representation-focused on some attributes of
the alternatives (sex, age, profession, ethnicity) has been growing. See, for instance,
Lang and Skowron (2016), Bredereck et al. (2018), Celis et al. (2018).

The techniques used in our paper are based on an algebraic approach focused on the
theory of finite permutation groups and the notion of action of a group on a set. That
approach was initially used by Eğecioğlu (2009) and Eğecioğlu and Giritligil (2013)
for analyzing the set of preference profiles and later developed by Bubboloni and Gori
(2014, 2015, 2016b) to describe, in a unified framework, profiles and functions on
them satisfying some symmetry properties.9

We emphasize that, generalizing ideas and results in Bubboloni and Gori (2015,
2016b) for managing the resolute refinements of spcs and k-scc is in no way a trivial
adaptation of the results in there. On the contrary, some proofs require complex and
tricky arguments and, in particular, a deep consideration of the concept of regular
group, first introduced in Bubboloni and Gori (2015), is needed.

The paper is organized as follows. In Sects. 2, 3 and 4 we give the definitions, the
notation and the basic results needed to understand the model. In Sect. 5, the main
results are stated and developed. Section 6 is devoted to a careful analysis of the concept
of regular group. Section7 exploresV -anonymity andW -neutrality as an applicationof
the main results of the general theory. Section 8 is about some concrete applications of
V -anonymity and W -neutrality, as described in this introduction. Finally, appendices
A and B contain the proofs of the main results.

9 It is worthmentioning that Kelly (1991) discusses the role of symmetry in the arrovian framework through
suitable subgroups of the symmetric group. Within the topological approach to social choices developed
by Chichilnisky (1980), several algebraic concepts, in particular that of symmetric group, are crucial for
proving many results. The algebraic approach also appears in Doğan and Giritligil (2015).
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2 Preliminaries

Throughout the paper, N denotes the set of positive integers and we set N0 = N ∪ {0}.
For k ∈ N, the set {1, . . . , k} is denoted by �k�. Let X be a finite set. We denote by |X |
the size of X . A subset of X of size k is called a k-subset of X . We denote by P(X)

the set of the subsets of X and by Pk(X) the set of the k-subsets of X .
A relation on X is a subset of X2. The set of the relations on X is denoted byR(X).

Fix R ∈ R(X). Given x, y ∈ X , we usually write x �R y instead of (x, y) ∈ R and
x �R y instead of (x, y) ∈ R and (y, x) /∈ R. We say that R is complete if, for every
x, y ∈ X , x �R y or y �R x ; reflexive if, for every x ∈ X , x �R x ; irreflexive
if, for every x ∈ X , x �R x ; antisymmetric if, for every x, y ∈ X , x �R y and
y �R x imply x = y; asymmetric if, for every x, y ∈ X , x �R y implies y �R x ;
transitive if, for every x, y, z ∈ X , x �R y and y �R z imply x �R z; acyclic if, for
every sequence x1, . . . , xs of s ≥ 2 distinct elements of X such that xi �R xi+1 for
all i ∈ �s − 1�, we have that xs �R x1. It is well known that if R is transitive and
irreflexive (antisymmetric, asymmetric), then R is acyclic. Complete and transitive
relations on X are called orders on X . The set of orders on X is denoted by O(X).
Complete, transitive and antisymmetric relations on X are called linear orders on X .
The set of linear orders on X is denoted by L(X). Given R′ ∈ R(X), if R′ ⊆ R we
say that R′ refines R.

In the paper, we make use of basic finite group theory and use standard notation.
Our general reference is Jacobson (1974). For completeness, we give here the main
notions and notation we are going to use. Let G be a finite group. Given g ∈ G, we
denote by |g| the order of g. If U is a subgroup of G, we use the notation U ≤ G.
Given g, v ∈ G andU ≤ G, the conjugate of g by v is gv = vgv−1 and the conjugate
of U by v is the subgroup U v = {gv ∈ G : g ∈ U }. We say that g1, g2 ∈ G are
conjugate if there exists v ∈ G such that g2 = gv

1 . The group constituted only by the
neutral element is called the trivial group.

Let n ∈ N. We denote by Sn the group of the bijective functions from �n� to
itself with product defined, for every σ1, σ2 ∈ Sn , by the composition10 σ1σ2 ∈ Sn .
The neutral element of Sn is given by the identity function on �n�, denoted by id.
Sn is called the symmetric group on �n�, and its elements are called permutations. A
permutation σ ∈ Sn\{id} is the product of disjoint cycles of lengths greater than or
equal to 2 uniquely determined by σ , up to reordering, and called the constituents of
σ . The order reversing permutation in Sn is the permutation ρ0 ∈ Sn defined, for every
r ∈ �n�, by ρ0(r) = n − r + 1. Obviously, we have |ρ0| = 2 so that � = {id, ρ0} is a
subgroup of Sn . Note that ρ0 has exactly one fixed point when n is odd and no fixed
point when n is even. Note also that � is an abelian group which admits as unique
subgroups {id} and �.

Let σ ∈ Sn . Given W ∈ P(�n�), we denote the image of W through σ by σW
(instead of σ(W )). Moreover, given W ⊆ P(�n�), we define σW = {σW ∈ P(�n�) :
W ∈ W}. Note that, for every σ1, σ2 ∈ Sn , W ∈ P(�n�) and W ⊆ P(�n�), we have
that (σ2σ1)W = σ2(σ1W ) and (σ2σ1)W = σ2(σ1W). Thus, brackets can be omitted

10 Given A, B and C sets and f : A → B and g : B → C functions, we denote by g f the right-to-left
composition of f and g, that is, the function from A to C defined, for every a ∈ A, as g f (a) = g( f (a)).
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in this type of writings. Given R ∈ R(�n�), we set

σ R = {
(σ (x), σ (y)) ∈ �n�2 : (x, y) ∈ R

}
, Rρ0 = {

(y, x) ∈ �n�2 : (x, y) ∈ R
}
,

(5)
and R id = R. In other words, for every x, y ∈ �n�, x �R y if and only if σ(x) �σ R

σ(y); x �R y if and only if y �Rρ0 x . Given Q ⊆ R(�n�) and ρ ∈ �, we also set

σQ = {σ R ∈ R(�n�) : R ∈ Q}, Qρ = {Rρ ∈ R(�n�) : R ∈ Q}.

Note that, for every σ1, σ2 ∈ Sn , ρ1, ρ2 ∈ �, R ∈ R(�n�) and Q ⊆ R(�n�), we have
that (σ2σ1)R = σ2(σ1R), R(ρ1ρ2) = (Rρ1)ρ2, (σ1R)ρ1 = σ1(Rρ1) and (σ2σ1)Q =
σ2(σ1Q),Q(ρ1ρ2) = (Qρ1)ρ2, (σ1Q)ρ1 = σ1(Qρ1). Those properties allow to avoid
brackets when writing such kinds of products.

3 Preference relations and preference profiles

From now on, let n ∈ N with n ≥ 2 be fixed, and let N = �n� be the set of names of
alternatives.

A preference relation on N is a linear order on N . Let q ∈ L(N ) be a preference
relation. If x, y ∈ N are alternatives, we interpret the writing x �q y by saying that
x is at least as good as y (according to q), and the writing x �q y by saying that
x is preferred to y (according to q). Note that, since q is a linear order, x �q y is
equivalent to x �= y and x �q y. It is well known that there exists a unique numbering
x1, x2, . . . , xn of the distinct elements in N such that, once set R = {(xi , xi+1) ∈
N 2 : i ∈ {1, . . . , n − 1}} ∈ R(N ), we have q ⊇ R and q is the only linear order
containing the relation R. Thus, we can completely identify q with its subset R, which
we write in the form x1 �q x2 �q · · · �q xn . We refer to r as the rank of xr in q.
Since the map from �n� to �n� which associates with any r ∈ �n� the alternative xr
is a bijection and thus an element of Sn, we also have that q is completely identified
with such permutation, which we continue to call q. Explicitly, if q is interpreted in
Sn , then q(r) = xr for all r ∈ �n�. In this way, we have established a well-known
and remarkable identification of L(N ) with Sn . Note now that if ψ ∈ Sn , then the
relations ψq and qρ0, as defined in (5), are the linear orders given by ψ(x1) �ψq

ψ(x2) �ψq · · · �ψq ψ(xn) and xn �qρ0 xn−1 �qρ0 · · · �qρ0 x1. In particular, for
every ψ ∈ Sn and ρ ∈ �, ψq and qρ can be interpreted as products of permutations
in the symmetric group Sn .As a consequence, thanks to the cancellation law in Sn , we
have that, for every ψ1, ψ2 ∈ Sn and ρ1, ρ2 ∈ �, ψ1q = ψ2q implies ψ1 = ψ2 and
qρ1 = qρ2 implies ρ1 = ρ2. Moreover, by elementary properties of the symmetric
group, we have that ψL(N )ρ = L(N ) for all ψ ∈ Sn and ρ ∈ �.

From now on, let h ∈ N with h ≥ 2 be fixed, and let H = �h� be the set of names
of individuals. A preference profile is an element of L(N )h . The set L(N )h is denoted
by P . If p ∈ P and i ∈ H , the i th component pi of p represents the preferences of
individual i .
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Let us set now

G = Sh × Sn × �.

Then, G is a group through component-wise multiplication, that is, defining,
for every (ϕ1, ψ1, ρ1) ∈ G and (ϕ2, ψ2, ρ2) ∈ G, (ϕ1, ψ1, ρ1)(ϕ2, ψ2, ρ2) =
(ϕ1ϕ2, ψ1ψ2, ρ1ρ2). For every (ϕ, ψ, ρ) ∈ G and p ∈ P , define p(ϕ,ψ,ρ) ∈ P as
the preference profile such that, for every i ∈ H ,

(p(ϕ,ψ,ρ))i = ψ pϕ−1(i)ρ. (6)

Thus, the preference profile p(ϕ,ψ,ρ) is obtained by p according to the following rules
(to be applied in any order): For every i ∈ H , individual i is renamed ϕ(i); for every
x ∈ N , alternative x is renamed ψ(x); for every r ∈ �n�, alternatives whose rank is r
are moved to rank ρ(r).

For further details and examples on these issues, the reader is referred to Bubboloni
and Gori (2016b, Sects. 2.2 and 2.3).

4 Social preference and social choice correspondences

A social preference correspondence (spc) is a correspondence from P to L(N ). The
set of the spcs is denoted by P. Thus, if C ∈ P and p ∈ P , then C(p) is a subset of
L(N ).

From now on, let k ∈ �n − 1� be fixed. A k-multiwinner social choice correspon-
dence (k-scc) is a correspondence from P to Pk(N ). The set of the k-sccs is denoted
by Ck . Thus, if C ∈ Ck and p ∈ P , then C(p) is a set of k-subsets of N .

We say that C ∈ P (C ∈ Ck) is decisive if, for every p ∈ P , C(p) �= ∅; resolute
if, for every p ∈ P , |C(p)| = 1. We say that C ′ ∈ P (C ′ ∈ Ck) is a refinement of
C ∈ P (C ∈ Ck) if, for every p ∈ P , C ′(p) ⊆ C(p). Of course, C admits a resolute
refinement if and only if C is decisive; C admits a unique resolute refinement if and
only if C is resolute.

Let U be a subgroup of G. We say that C ∈ P is U -symmetric if, for every p ∈ P
and (ϕ, ψ, ρ) ∈ U , we have

C(p(ϕ,ψ,ρ)) = ψC(p)ρ. (7)

We say that C ∈ P (C ∈ Ck) is U -consistent if, for every p ∈ P and (ϕ, ψ, ρ) ∈ U ,
we have

C(p(ϕ,ψ,ρ)) = ψC(p) if ρ = id, (8)

and
C(p(ϕ,ψ,ρ)) �= ψC(p) if ρ = ρ0 and |C(p)| = 1. (9)

We stress that the writings in (7), (8) and (9) are meaningful due to the definitions
of products between permutations and sets (sets of sets, relations, sets of relations) and
their properties described in Sect. 2. The set ofU -symmetric spcs is denoted byP∗U ;
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the set ofU -consistent spcs ( k-sccs) is denoted byPU (CUk ). Observe that we do not
introduce the concept ofU -symmetry for k-sccs. Note also that, ifU ′ ≤ U ≤ G, then
P∗U ⊆ P∗U ′

, PU ⊆ PU ′
and CU

k ⊆ CU ′
k . Some basic links between the concepts of

symmetry and consistency are given by the following proposition whose proof is in
“Appendix A.”

Proposition 1 Let U ≤ G. Then, the following facts hold true:

(i) P∗U ⊆ PU .
(ii) If U ≤ Sh × Sn × {id}, then P∗U = PU .

The concepts of symmetry and consistency with respect to a subgroup U of G
include some classic requirements for spcs (k-sccs). Indeed, we have that C ∈ P
(C ∈ Ck) is anonymous if and only if it is Sh ×{id}×{id}-consistent;C ∈ P (C ∈ Ck)
is neutral if and only if it is {id} × Sn × {id}-consistent; C ∈ P (C ∈ Ck) is immune
to the reversal bias if and only if it is {id} × {id} × �-consistent; C ∈ P is reversal
symmetric if and only if it is {id} × {id} × �-symmetric. Moreover, any combination
of the properties above mentioned can be interpreted in terms of U -symmetry or U -
consistency where the subgroup U of G is naturally built as described by the next
propositions. Their proof is given in “Appendix A.” In what follows, givenU1 andU2
subgroups of G, we denote by 〈U1,U2〉 the subgroup of G generated byU1 andU2.11

Proposition 2 Let U1,U2 ≤ G. Then P∗U2 ∩ P∗U2 = P∗〈U1,U2〉.

Proposition 3 Let U1,U2 ≤ G such that, for every i ∈ {1, 2}, Ui = Zi × Ri for some
Zi ≤ Sh × Sn and Ri ≤ �. ThenPU1 ∩ PU2 = P〈U1,U2〉 and CU1

k ∩ C
U2
k = C

〈U1,U2〉
k .

In particular, C ∈ P is anonymous, neutral and reversal symmetric if and only
if C is G-symmetric; C ∈ P (C ∈ Ck) is anonymous, neutral and immune to the
reversal bias if and only if C is G-consistent. Classic spcs provide examples of spcs
which are G-symmetric or at least Sh × Sn × {id}-symmetric. For instance, the Borda
and the Copeland spcs are G-symmetric while the Minimax spc is generally only
Sh × Sn × {id}-symmetric.12 Note also that the spc associating with every p ∈ P
the whole set L(N ) is surely G-symmetric. Such a spc is called the trivial spc and,
obviously, every C ∈ P is a refinement of it. In particular, every C ∈ P can be
interpreted as a refinement.

We finally observe that there is a natural way to construct a k-scc starting from a
spc. Indeed, given C ∈ P, we consider the k-scc Ck defined, for every p ∈ P , by

Ck(p) =
{
{q(r) : 1 ≤ r ≤ k} ∈ Pk(N ) : q ∈ C(p)

}
.

Note that {q(r) : 1 ≤ r ≤ k} is the set of alternatives ranked by q in the first k positions.
Thus, Ck(p) selects the k-subsets formed by the best k alternatives in each winning
ranking selected by C(p). Ck is called the k-scc induced by C . Induced k-sccs are
commonly used in decision making when trying to adapt spcs to the k-multiwinner

11 See Jacobson (1974, Section 1.5).
12 See Bubboloni and Gori (2016b).

123



422 D. Bubboloni, M. Gori

selection setting. For instance, k-sccs induced by the Kemeny and the ranked pairs
spcs are often considered in the literature.

Of course, given C ∈ P, C is decisive if and only if Ck is decisive; if C is resolute,
then Ck is resolute. Moreover, if C ′ ∈ P is a refinement of C , then C ′

k is a refinement
ofCk . The following proposition, whose proof is in “Appendix A,” expresses the main
basic property of the induced k-scc with respect to symmetry.

Proposition 4 Let U ≤ G. If C ∈ P∗U , then Ck ∈ CU
k .

In particular, the k-sccs induced by the Borda, the Copeland and the trivial spcs are
G-consistent, while the one induced by the Minimax spc is Sh × Sn ×{id}-consistent.
Note also that the k-scc induced by the trivial spc associates, with every p ∈ P , the
set of all the possible k-subsets of N . We refer to that induced k-scc as the trivial
k-scc and, obviously, every C ∈ Ck is a refinement of it. In particular, every C ∈ Ck

can be interpreted as a refinement.

4.1 Social methods

Let us introduce now a final new concept which will be very important in the sequel.
A social method is a function from P to R(N ). The set of social methods is denoted
by M. Let R ∈ M. We say that R is acyclic (transitive, complete, etc.) if, for every
p ∈ P, the relation R(p) is acyclic (transitive, complete, etc.). The spc associated
with R, denoted by CR , is defined, for every p ∈ P , by

CR(p) = {q ∈ L(N ) : R(p) ⊆ q}.

Note that, by the well-known Szpilrajn’s extension theorem (Szpilrajn 1930), CR is
decisive if and only if R is acyclic.

GivenU ≤ G, we say that R isU -symmetric if, for every p ∈ P and (ϕ, ψ, ρ) ∈ U ,

R(p(ϕ,ψ,ρ)) = ψR(p)ρ.

We stress that the above writing is meaningful due to the definitions of products
between permutations and relations described in Sect. 2. The set of U -symmetric
social methods is denoted byM∗U .

Note that ifU ′ ≤ U and R isU -symmetric, then R is alsoU ′-symmetric.Moreover,
as proved in “Appendix A,” the next propositions hold true.

Proposition 5 Let U ≤ G. If R ∈ M∗U , then CR ∈ P∗U .

Proposition 6 Let U1,U2 ≤ G. Then M∗U1 ∩ M∗U2 = M∗〈U1,U2〉.

As an example, consider the social method R defined, for every p ∈ P , by

R(p) = {(x, y) ∈ N 2 : ∀i ∈ H , x �pi y},

and note that R ∈ M∗G . The spc associatedwith it is called the Pareto spc and, aswell-
known, it is decisive. The k-scc induced by the Pareto spc is called the Pareto k-scc.
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Note that, by Proposition 5, the Pareto spc is G-symmetric and thus, by Proposition 4,
the Pareto k-scc is G-consistent.

5 Main results

Given a spc or a k-scc, our main purpose is to find a resolute refinement of it satisfying
suitable symmetry or consistency properties. More precisely, we try to find an answer
to the next three questions:

• Given a spc C and U ≤ G, can we find a resolute refinement of C which is
U -symmetric?

• Given a spc C and U ≤ G, can we find a resolute refinement of C which is
U -consistent?

• Given a k-scc C and U ≤ G, can we find a resolute refinement of C which is
U -consistent?

Indeed, for each of the above questions, we provide conditions onC andU which allow
to give an affirmative answer. We emphasize that, assuming C to be trivial, the three
questions above are about the existence of resolute U -symmetric spcs, U -consistent
spcs and U -consistent k-sccs.

In order to describe our main results, we need to recall the crucial concept of regular
subgroup of G, introduced in Bubboloni and Gori (2015). A subgroup U of G is said
to be regular if, for every p ∈ P , there exists ψ∗ ∈ Sn conjugate to ρ0 such that

StabU (p) ⊆ (Sh × {id} × {id}) ∪ (Sh × {ψ∗} × {ρ0}) . (10)

where StabU (p) = {(ϕ, ψ, ρ) ∈ U : p(ϕ,ψ,ρ) = p}.
We also recall the fundamental result about those groups proved in Bubboloni and

Gori (2015, Theorem 7):

There exists a U -symmetric resolute spc if and only if U is regular. (11)

Thus, if we want to focus on U -symmetric resolute refinements of a given spc, we
necessarily have to assume U regular. The next result is a generalization of Theorem
11 in Bubboloni and Gori (2015). Its proof is proposed in “Appendix B.”

Theorem 7 Let U be a regular subgroup of G and C be a decisive and U-symmetric
spc. Then, the three following conditions are equivalent:

(i) C admits a U-symmetric resolute refinement;
(ii) there exists an irreflexive and acyclic U-symmetric social method R such that

C R refines C;
(iii) there exists an irreflexive and acyclic social method R such that CR refines C

and the following condition is satisfied:

(a) for every p ∈ P , x, y ∈ N and (ϕ, ψ, ρ0) ∈ StabU (p), we have that (x, y) ∈
R(p) if and only if (ψ(y), ψ(x)) ∈ R(p).
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Note that, for every U ≤ G, there exist a lot of decisive and U -symmetric spcs.
For instance, the trivial, the Pareto, the Borda and the Kemeny spcs are decisive and
G-symmetric, so that they are U -symmetric too. Theorem 7 may appear cryptic and
awkward, due to its very formal appearance. Fortunately, it immediately reveals its
concrete applicative power.

Corollary 8 Let U be a regular subgroup of G with U ≤ Sh × Sn × {id} and C be a
decisive and U-symmetric spc. Then, C admits a U-symmetric resolute refinement.

Proof For every p ∈ P , we have C(p) �= ∅. Choose then, for every p ∈ P , qp ∈
C(p). Since qp ∈ L(N ) ⊆ R(N ), we define R : P → R(N ) setting, for every
p ∈ P , R(p) = qp\�, where � = {(x, x) : x ∈ N }. Then R is an irreflexive and
acyclic social method. Moreover, CR(p) = {q ∈ L(N ) : qp\� ⊆ q} = {qp}, so that
CR refines C . Since (a) trivially holds, we have that condition (iii) in Theorem 7 is
satisfied. Therefore, by Theorem 7, C admits a U -symmetric resolute refinement. ��

The concept of regular group works properly even to analyze consistency. Theo-
rems 9 below is proved in “Appendix B” by widely extending the theory developed in
Bubboloni and Gori (2016b) to the framework here considered.

Theorem 9 Let U be a regular subgroup of G and C be a decisive and U-consistent
spc. Then, C admits a U-consistent resolute refinement.

Theorem 10 below, also proved in “Appendix B,” is a largely unexpected result.
It establishes a deep link between the number n of alternatives and the number k of
winners to be selected in order to make each decisive and U -consistent k-scc admit
a U -consistent resolute refinement. It points out that there is a substantial difference
between spcs and k-sccs with respect to the existence ofU -consistent resolute refine-
ments. Indeed, while for spcs such existence is guaranteed for every U -consistent
spc once U is regular (Theorem 9), for k-sccs one needs the fulfillment of a further
restrictive condition in addition to regularity.

Theorem 10 Let U be a regular subgroup of G. Then, the two following facts are
equivalent:

(i) every decisive andU-consistent k-scc admits a U-consistent resolute refinement;
(ii) one of the following conditions is satisfied:

(a) for every (ϕ, ψ, ρ0) ∈ U, ψ is not a conjugate of ρ0,
(b) n ≤ 3,
(c) k ∈ {1, n − 1},
(d) n is even and k is odd.

Since condition (a) in Theorem 10 certainly holds when U ≤ Sh × Sn × {id}, we
immediately obtain the following useful consequence.

Corollary 11 Let U be a regular subgroup of G, with U ≤ Sh × Sn × {id}, and C be a
decisive and U-consistent k-scc. Then C admits a U-consistent resolute refinement.
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Observe that condition (a) in Theorem 10 can be satisfied also by some regular
subgroups not included in Sh × Sn ×{id}. Consider the group {id}×{id}×� and note
that, for every p ∈ P , StabU (p) = {(id, id, id)}.13 Thus, {id} × {id} × � is regular
and, since id is not conjugate to ρ0, (a) trivially holds. We end the section by stating
two results about the induced k-sccs.

Proposition 12 Let U be a regular subgroup of G, with U ≤ Sh × Sn × {id}, and C
be a decisive and U-consistent spc. Then the induced k-scc Ck admits a U-consistent
resolute refinement.

Proof Since U ≤ Sh × Sn × {id}, we have that C is U -symmetric and thus, by
Proposition 4, Ck is a decisive U -consistent k-scc. Thus, by Corollary 11, Ck admits
a U -consistent resolute refinement. ��
Proposition 13 Let U ≤ G and C be a decisive spc. If C admits a resolute
U-symmetric refinement, then U is regular and the induced k-scc Ck admits a U-
consistent resolute refinement.

Proof Let f be a resoluteU -symmetric refinement of C . By (11),U is regular. More-
over, by Proposition 4, fk is U -consistent. On the other hand, clearly, fk is resolute
and refines Ck . ��

6 Regular groups

Because of the results presented in Sect. 5, the importance of the regular subgroups
of G is evident. In this section, we propose some theorems which provide a way to
test whether a subgroup U of G of the type V × W × {id} or V × W × �, with
V ≤ Sh andW ≤ Sn , is regular or not. These types of groups are particularly relevant
for applications. Regular groups of a different structure and still of interest in the
applications will be treated in Sect. 8.3.

We start with some preliminary definitions. Let m ∈ N be fixed in this section.
Consider σ ∈ Sm . For every x ∈ �m�, the σ -orbit x 〈σ 〉 of x is defined by x 〈σ 〉 =
{σ t (x) ∈ �m� : t ∈ N}. It is well known that |x 〈σ 〉| = s where s = min{t ∈ N :
σ t (x) = x}. If x is fixed by σ, then x 〈σ 〉 = {x}. If instead x is moved by σ and the
constituent of σ moving x is the cycle (x1 · · · xs), then x 〈σ 〉 = {x1, . . . , xs}. The set
O(σ ) = {x 〈σ 〉 : x ∈ �m�} of the σ -orbits is a partition of �m�, andwe denote its size by
r(σ ). A system of representatives of the σ -orbits is a set {x1, . . . , xr(σ )} ∈ Pr(σ )(�m�)

such that O(σ ) = {x 〈σ 〉
1 , . . . , x 〈σ 〉

r(σ )}.
Next we recall the well-known number theoretical concept of partition. A partition

of m is an unordered list T = [m1, . . . ,mr ] where r ∈ N, for every j ∈ {1, . . . , r},
m j ∈ N and m = ∑r

j=1m j . The numbers m1, . . . ,mr are called the terms of T . The
set of partitions of m is denoted by 	m .

Consider T ∈ 	m and assume that T admits s ∈ N distinct terms, say m1 <

· · · < ms , and assume that, for every j ∈ �s�, m j appears t j ≥ 1 times in T . Then,

13 Indeed p(id,id,ρ0) = p implies p1ρ0 = p1, which by cancellation law in the symmetric group, gives
the contradiction ρ0 = id.
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we use the notation T = [mt1
1 , ...,mts

s ] (where t j is omitted when it equals 1). We
say that [mt1

1 , ...,mts
s ] is the normal form of T and that t j is the multiplicity of m j .

For instance, [2, 1, 3, 1] ∈ 	7 has normal form [12, 2, 3]. We recall the well-known
surjective function

T : Sm → 	m, σ �→ T (σ ) =
[
|x 〈σ 〉

1 |, . . . , |x 〈σ 〉
r(σ )|

]
,

where {x1, . . . , xr(σ )} ∈ Pr(σ )(�m�) is a system of representatives of the σ -orbits. For
every σ ∈ Sm , T (σ ) is called the type of σ . In other words, T (σ ) is the unordered
list of the sizes of the orbits of the group generated by σ on the set �m�. Note that the
number of terms equal to 1 in T (σ ) counts the fixed points of σ while the number
of terms different from 1 counts the constituents of σ . Moreover, |σ | = lcm(T (σ )).
For instance, if σ = (123)(456)(78) ∈ S9, then r(σ ) = 4, the type of σ is T (σ ) =
[1, 2, 3, 3] ∈ 	9, |σ | = lcm[1, 2, 3, 3] = 6 and a system of representatives of the
σ -orbits is {1, 4, 7, 9} ∈ P4(�9�). The theoretical importance of the concept of type
relies on the fact that two permutations are conjugate if and only if they have the same
type.

Given U ≤ Sm , we define the type number of U by

γ (U ) = lcm{gcd(T (σ )) : σ ∈ U }. (12)

We describe some basic properties of the type number after having introduced some
arithmetic notation. Let x, y ∈ N. If x divides y, we write x | y. If π ∈ N is a prime
number we denote by xπ = max{πa : a ∈ N0, πa | x} the π -part of x .

Lemma 14 Let U , V ≤ Sm. Then, the following facts hold true.

(i) If U ≤ V , then γ (U ) | γ (V ).

(ii) γ (U ) | m.
(iii) If U contains an m-cycle, then γ (U ) = m. In particular, γ (Sm) = m.

Proof (i) The set of integers {gcd(T (σ )) : σ ∈ U } is included in the set of integers
{gcd(T (σ )) : σ ∈ V }, and thus, the least common multiple of the first divides
that of the second.

(ii) Let σ ∈ U and let T (σ ) = [m1, . . . ,mr ]. If d = gcd(T (σ )), we have that d | m j

for all j ∈ �r� and since
∑r

j=1m j = m we have d | m. Thus, m is a common
multiple for the integers in {gcd(T (σ )) : σ ∈ U }, which implies γ (U ) | m.

(iii) Let σ ∈ U be an m-cycle. Then, T (σ ) = [m] and gcd(T (σ )) = m. Thus,
m | γ (U ). Since by (ii) we also have γ (U ) | m, we conclude that γ (U ) = m. ��

Theorem 15 Let V ≤ Sh and W ≤ Sn. Then, V × W × {id} is regular if and only if

gcd(γ (V ), |W |) = 1.

Proof Let U = V × W × {id}. Assume first that gcd(γ (V ), |W |) = 1. Assume
further, by contradiction, that U is not regular. Then, by Theorem 12 in Bubboloni
and Gori (2015), there exist (ϕ, ψ, id) ∈ U and a prime π such that |ψ |π > 1 and
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|ψ |π | gcd(T (ϕ)). Then π | γ (V ) and, by Lagrange Theorem, π | |W | so that
π | gcd(γ (V ), |W |) = 1, a contradiction.

Assume next that U is regular. We show that if π is a prime dividing |W |, then π �

γ (V ). Letπ | |W |.Then, by Cauchy Theorem, there existsψ ∈ W with |ψ | = π . But,
for every ϕ ∈ V , we have (ϕ, ψ, id) ∈ U and, of course, |ψ |π = π . Thus, by Theorem
12 in Bubboloni and Gori (2015), we have that, for every ϕ ∈ V , π � gcd(T (ϕ)) so
that π � lcm{gcd(T (ϕ)) : ϕ ∈ V } = γ (V ). ��
Theorem 16 Let V ≤ Sh and W ≤ Sn. Then V × W × � is regular if and only if

gcd(γ (V ), lcm(|W |, 2)) = 1.

Proof LetU = V ×W × �. Assume first that gcd(γ (V ), lcm(|W |, 2)) = 1. Assume
further, by contradiction, that U is not regular. Then, by Theorem 12 in Bubboloni
and Gori (2015), there exist (ϕ, ψ, id) ∈ U and a prime π such that |ψ |π > 1
and |ψ |π | gcd(T (ϕ)), or there exist (ϕ, ψ, ρ0) ∈ U , with ψ2 = id and ψ not
conjugate of ρ0, such that 2 | gcd(T (ϕ)). In the first case, by Lagrange Theorem,
we have π | |W | as well as π | γ (V ) and thus π | gcd(γ (V ), lcm(|W |, 2)) = 1, a
contradiction. In the second case, we have 2 | γ (V ), which implies the contradiction
2 | gcd(γ (V ), lcm(|W |, 2)) = 1.

Assume next that U is regular. We show first that if π is a prime dividing |W |,
then π � γ (V ). Let π | |W |. Then, by Cauchy Theorem, there exists ψ ∈ W with
|ψ | = π . But, for every ϕ ∈ V , we have (ϕ, ψ, id) ∈ U and, of course, |ψ |π = π .
Thus, by Theorem 12 in Bubboloni and Gori (2015), we get π � gcd(T (ϕ)) and so also
π � lcm{gcd(T (ϕ)) : ϕ ∈ V } = γ (V ). We are then left with proving that 2 � γ (V ),
that is, that 2 � gcd(T (ϕ)) for all ϕ ∈ V . Let ϕ ∈ V and consider (ϕ, id, ρ0) ∈ U .

Since id2 = id but id is not a conjugate of ρ0, by Theorem 12 in Bubboloni and Gori
(2015), we get 2 � gcd(T (ϕ)). ��

Among other things, the above theorems show that regularity, even though in prin-
ciple a very demanding requirement, is quite largely satisfied within the family of
subgroups of G. Indeed, there are many examples of V ≤ Sh such that γ (V ) = 1 and
thus such that V ×W ×{id} and V ×W ×� are regular for any choice ofW ≤ Sn . For
instance, taking any V isomorphic to Sh1 × Sh2 with h1, h2 ∈ N such that h1+h2 = h
and gcd(h1, h2) = 1, one surely get γ (V ) = 1.

In order to let the reader understand how concrete could be the description of the
regular groups of the type V ×W ×{id} and V ×W ×� given in Theorems 15 and 16,
we find now them all in the case n = h = 3. First note that the complete list of the
subgroups of S3 is given by

G1 = {id}
G2 = {id, (12)}
G3 = {id, (13)}
G4 = {id, (23)}
G5 = {id, (123), (132)}
G6 = S3.
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Table 1 Main regular subgroups in S3 × S3 × �

V γ (V ) |V | W ≤ S3 withV × W × {id} regular W ≤ S3 withV × W × � regular

G1 1 1 G1,G2,G3,G4,G5,G6 G1,G2,G3,G4,G5,G6

V ∈ {G2,G3,G4} 1 2 G1,G2,G3,G4,G5,G6 G1,G2,G3,G4,G5,G6

G5 3 3 G1,G2,G3,G4 G1,G2,G3,G4

G6 3 6 G1,G2,G3,G4 G1,G2,G3,G4

Thus, in S3 × S3 × � we have 36 different subgroups of the form V × W × {id} and
36 different subgroups of the form V × W × �. The values of γ (Gi ) and |Gi | are
immediately computed for all i ∈ {1, . . . , 6}, and thus, by Theorem 15, we get 32
regular subgroups of type V × W × {id} and, by Theorem 16, 32 regular subgroups
of type V × W × � as shown in Table 1.

7 Generalized anonymity and neutrality

Consider V ≤ Sh andW ≤ Sn . GivenC ∈ P (C ∈ Ck), we say thatC is V -anonymous
ifC is V ×{id}×{id}-consistent;W -neutral ifC is {id}×W×{id}-consistent. Thus,C
is V -anonymous if permuting individual names according to permutations in V has no
effect on the final outcome;C isW -neutral if the unique effect of permuting alternative
names according to a permutation in W is that alternative names are accordingly per-
muted in the final outcome. Note that, the concepts of Sh-anonymity and Sn-neutrality
correspond to the classical concepts of anonymity and neutrality, respectively. Note
also that every C ∈ P (C ∈ Ck) is {id}-anonymous and {id}-neutral.

We also stress that, by Propositions 2 and 3, C ∈ P (C ∈ Ck) is V -anonymous
and W -neutral if and only if C is V × W × {id}-consistent; C ∈ P is V -anonymous,
W -neutral and reversal symmetric if and only if C is V × W × �-symmetric; C ∈ P
(C ∈ Ck) is V -anonymous, W -neutral and immune to the reversal bias if and only if
C is V × W × �-consistent.

Below we provide some simple but very important consequences of the theory
developed in the previous sections.

Theorem 17 Let V ≤ Sh, W ≤ Sn and C be a decisive, V -anonymous and W-neutral
spc. Then, the two following conditions are equivalent:

(i) C admits a V -anonymous and W-neutral resolute refinement;
(ii) gcd(γ (V ), |W |) = 1.

Proof (i) ⇒ (ii). Assume that (i) holds true. Then, by (11), we have that the group
V × W × {id} is regular, so that, by Theorem 15, gcd(γ (V ), |W |) = 1.

(ii)⇒ (i). Assume that (ii) holds true. Then, by Theorem 15, the group V ×W×{id}
is regular. Then we can apply Theorem 9. ��

Note that condition gcd(γ (V ), |W |) = 1 above is trivially satisfied if one between
V and W is trivial. Observe also that the above theorem generalizes the classic result
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about the existence of a resolute anonymous and neutral spc. Namely, taking V = Sh ,
W = Sn and using Lemma 14 (iii), we immediately have that there exists a resolute,
anonymous and neutral spc if and only if gcd(h, n!) = 1.

Theorem 18 Let V ≤ Sh, W ≤ Sn and C be a decisive, V -anonymous, W-neutral
and reversal symmetric spc. Then, the two following conditions are equivalent:

(i) C admits a V -anonymous, W-neutral and reversal symmetric resolute refinement;
(ii) gcd(γ (V ), lcm(|W |, 2)) = 1 and there exists an irreflexive acyclic social method

R such that CR refines C and, for U = V × W × �, the following condition is
satisfied:

(a) for every p ∈ P , x, y ∈ N and (ϕ, ψ, ρ0) ∈ StabU (p), we have that (x, y) ∈
R(p) if and only if (ψ(y), ψ(x)) ∈ R(p).

Proof (i)⇒ (ii). Assume that (i) holds true. Then, by (11), we have that the groupU is
regular, so that, by Theorem 16, gcd(γ (V ), lcm(|W |, 2)) = 1. Moreover, using now
Theorem 7 we conclude the proof.

(ii) ⇒ (i). Assume that (ii) holds true. Then, by Theorem 16, we know that the
group U is regular. Therefore we can apply Theorem 7. ��

Theorem 19 Let V ≤ Sh, W ≤ Sn and C be a decisive, V -anonymous, W-neutral
and immune to the reversal bias spc. If gcd(γ (V ), lcm(|W |, 2)) = 1, then C admits
a V -anonymous, W-neutral and immune to the reversal bias resolute refinement.

Proof By Theorem 16, the groupU = V ×W ×� is regular. Then Theorem 9 applies.
��

Theorem 20 Let V ≤ Sh, W ≤ Sn and C be a decisive, V -anonymous and W-neutral
k-scc. If gcd(γ (V ), |W |) = 1, then C admits a V -anonymous and W-neutral resolute
refinement.

Proof Apply Theorem 15 and Corollary 11. ��

Theorem 21 Let V ≤ Sh, W ≤ Sn and assume that gcd(γ (V ), lcm(|W |, 2)) = 1.
Then, the two following facts are equivalent:

(i) every decisive, V -anonymous, W-neutral and immune to the reversal bias k-
scc admits a V -anonymous, W-neutral and immune to the reversal bias resolute
refinement;

(ii) one of the following conditions is satisfied:

(a) for every ψ ∈ W, ψ is not a conjugate of ρ0,
(b) n ≤ 3,
(c) k ∈ {1, n − 1},
(d) n is even and k is odd.

Proof Apply Theorem 16 and Theorem 10. ��
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8 Some applications

Consider a committee of h members facing the problem of selecting a set of k alterna-
tives within a set of n alternatives. The committee members need a suitable procedure
for determining the k alternatives from their preferences. If they agree to express their
preferences via a linear order on the set of alternatives, they are in fact looking for
a resolute k-scc. Suppose now that there is a general agreement on the fact that the
resolute k-scc to be used should obey to certain fundamental principles which can be
summarized in the requirement of being a refinement of a given decisive, anonymous,
neutral and immune to the reversal bias k-scc C .14

In what follows, we are going to discuss four particular qualifications of the above-
described situation where the theory we developed can be applied and turn out to be
useful to the committee.We stress that the proposed applications only focus on k-sccs.
Suitable adaptations to the framework of spcs are natural and left to the reader.

8.1 Grouping individuals and alternatives

Assume that the particular structure of the committee naturally allows to group com-
mittee members into subcommittees and that the typology of the alternatives allows to
group them into subclasses. Suppose that committee members also agree on the fact
that the desired resolute refinement of C should not distinguish among individuals in
the same subcommittee and should equally treat alternatives in the same subclass.

Let r , s ≥ 1 and assume that H1, . . . , Hr ⊆ H is the list of subcommittees and
that N1, . . . , Ns ⊆ N is the list of subclasses so that {H1, . . . , Hr } is a partition of
H and {N1, . . . , Ns} is a partition of N . Then, the committee needs to find a resolute
refinement of C which is V -anonymous and W -neutral, where

V = {ϕ ∈ Sh : ∀ j ∈ �r�, ϕ(Hj ) = Hj },
W = {ψ ∈ Sn : ∀ j ∈ �s�, ψ(N j ) = N j }. (13)

Let us prove now that
γ (V ) = gcd (|H1|, . . . , |Hr |) (14)

Indeed, consider σ ∈ V and its type T (σ ). Let x ∈ Hj , for some j ∈ �r�. Since
σ(Hj ) = Hj , we have that x 〈σ 〉 ⊆ Hj . Thus, the sets Hj are union of σ -orbits.
Hence, the partition T (σ ) of h induces a partition of |Hj | for all j ∈ �r�. It fol-
lows that, for every j ∈ �r�, gcd(T (σ )) divides |Hj |, and thus, gcd(T (σ )) divides
gcd (|H1|, . . . , |Hr |). Then, we also have that γ (V ) = lcm{gcd(T (σ )) : σ ∈ V }
divides gcd (|H1|, . . . , |Hr |). If gcd (|H1|, . . . , |Hr |) = 1, then we also have γ (V ) =
1 = gcd (|H1|, . . . , |Hr |). Assume then that gcd (|H1|, . . . , |Hr |) �= 1. Then, in par-
ticular, |Hj | �= 1 for all j ∈ �r� and it ismeaningful to define a cycleσ j on its elements.
Consider now σ ∈ Sh defined by σ = σ1 · · · σr . Then, T (σ ) = [|H1|, . . . , |Hr |] and
gcd(T (σ )) = gcd (|H1|, . . . , |Hr |) divides γ (V ). Thus, we obtain (14).

14 Thus, C might be, for instance, the trivial, the Pareto, the Borda or the Kemeny k-scc. Recall that, those
k-scc are U -consistent for all U ≤ G.
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Clearly, we also have

|W | =
s∏

j=1

|N j |! (15)

Thus, by (14), (15) and Theorem 20, we deduce that if

gcd

⎛

⎝|H1|, . . . , |Hr |,
s∏

j=1

|N j |!
⎞

⎠ = 1, (16)

then C admits a V -anonymous andW -neutral resolute refinement. Moreover, by (14),
(15) and Theorem 21, we deduce that if (16) holds true, not all the subclasses are
singletons and one of the following conditions is satisfied:

(a) there exist at least two subclasses of odd size,
(b) n ≤ 3,
(c) k ∈ {1, n − 1},
(d) n is even and k is odd,

then C admits a V -anonymous, W -neutral and immune to the reversal bias resolute
refinement.

8.2 A variation on groupings of individuals and alternatives

Assume that the particular structure of the committee naturally allows to group com-
mittee members into subcommittees and that the typology of the alternatives allows to
group them into subclasses as in Sect. 8.1. Suppose, this time, that committeemembers
also agree on the fact that the desired resolute refinement of C should not distinguish
among individuals in the same subcommittee, should not distinguish among subcom-
mittees having the same size and should equally treat alternatives in the same subclass.

Using the same notation used in Sect. 8.1, let H1, . . . , Hr be the list of subcommit-
tees and N1, . . . , Ns ⊆ N be the list of subclasses. Then, the committee needs to find
a resolute refinement of C which is V -anonymous and W -neutral, where

V = {ϕ ∈ Sh : ∀ j ∈ �r�, ∃k ∈ �r� such that ϕ(Hj ) = Hk}.

and W is as in (13). Defining now, for every j ∈ �r�,

t j = |{k ∈ �r� : |Hk | = |Hj |}|

we claim that
γ (V ) = gcd (|H1|t1, . . . , |Hr |tr ) (17)

Indeed, consider σ ∈ V . Note that, since σ is a bijection, for every j ∈ �r�, we
have |σ(Hj )| = |Hj |, and thus, σ maps an element x ∈ Hj into an element belong-
ing to Uj = ⋃

|Hi |=|Hj | Hi . Thus, every Uj is a union of σ -orbits and the distinct
sets Uj give a partition of H . Hence, the partition T (σ ) of h induces a partition of
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|Uj | = |Hj |t j for all j ∈ �r�. It follows that, for every j ∈ �r�, gcd(T (σ )) | |Uj |,
and thus, gcd(T (σ )) divides gcd (|U1|, . . . , |Ur |) for all σ ∈ V . Then, we also
have that γ (V ) = lcm{gcd(T (σ )) : σ ∈ V } divides gcd (|U1|, . . . , |Ur |). If
gcd (|U1|, . . . , |Ur |) = 1, then we also have γ (V ) = 1 = gcd (|U1|, . . . , |Ur |)
and we have finished. Assume then that gcd (|U1|, . . . , |Ur |) �= 1. Then, in partic-
ular, |Uj | �= 1 for all j ∈ �r� and it is meaningful to define a special cycle σ j

on its elements in the following way. Let Hi1 , . . . Hit be the distinct sets of size
|Hj | = � ≥ 1whose union isUj and order the elements inside each of them, say, Hi1 =
{h1i1, . . . , h�

i1
}, . . . , Hit = {h1it , . . . , h�

it
}. Define σ j as the |Uj |-cycle on the elements

ofUj given by σ j = (h1i1 h
1
i2

. . . h1it h
2
i1
h2i2 . . . h2it . . . h�

i1
h�
i2

. . . h�
it
). It is immediately

checked that σ j (Hik ) = Hik+1 for all k ∈ �t − 1� while σ j (Hit ) = Hi1 . Consider now
σ ∈ Sh defined by σ = σ1 · · · σr . Then, σ ∈ V and T (σ ) = [|U1|, . . . , |Ur |] and
gcd(T (σ )) = gcd (|U1|, . . . , |Ur |) divides γ (V ). Thus, we obtain (17).

Thus, by (17), (15) and Theorem 20, we deduce that if

gcd

⎛

⎝|H1|t1, . . . , |Hr |tr ,
s∏

j=1

|N j |!
⎞

⎠ = 1, (18)

then C admits a V -anonymous andW -neutral resolute refinement. Moreover, by (17),
(15) and Theorem 21, we deduce that if (18) holds true, not all the subclasses are
singletons and one of the following conditions is satisfied:

(a) there exist at least two subclasses of odd size,
(b) n ≤ 3,
(c) k ∈ {1, n − 1},
(d) n is even and k is odd,

then C admits a V -anonymous, W -neutral and immune to the reversal bias resolute
refinement.

8.3 Alternatives as a subset of individuals

Assume that the committee is facing the problem of electing a subcommittee of size
k among those members of the committee who are running for the selection. In this
particular situation, we have that the alternatives to choose from are a subset of the
set of individuals. Suppose that committee members also agree on the fact that the
desired resolute refinement of C should not distinguish among individuals who are
candidates, should not distinguish among individuals who are not candidates and
should be immune to the reversal bias.

Assume then n ≤ h and name 1, . . . , n the individuals running for the selection.
Thus, N = {1, . . . , n} ⊆ H is the set of alternatives to choose from and the procedure
the committee is looking for corresponds to a U -consistent resolute refinement of C ,
where

U = {(ϕ, ψ, ρ) ∈ G : ∀i ∈ �n�, ϕ(i) = ψ(i)}. (19)
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Note that if (ϕ, ψ, ρ) ∈ U , then ϕ(H\N ) = H \ N . Note also that the above group
U is not necessarily regular. Consider, for instance, the case h = 4 and n = 2. Then,
((1 2)(3 4), (1 2), id) ∈ U violates Theorem 12 in Bubboloni and Gori (2015). In the
next proposition, we see that, as usual, a suitable coprimality condition is equivalent
to regularity.

Proposition 22 Let n ≤ h. The group

U = {(ϕ, ψ, ρ) ∈ G : ∀i ∈ �n�, ϕ(i) = ψ(i)}

is regular if and only if gcd(h, n) = 1.

Proof We first describe in a convenient way the elements inU . Let (ϕ, ψ, ρ) ∈ U and
let

ψ =
s∏

i=1

γi , (20)

where the γ j are disjoint cycles, constituents of ψ and s ≥ 0. The case s = 0 is to
be intended as taking the product over the empty set, and by definition is equal to id.
Since ψ ∈ Sn is a permutation of the set N ⊆ H and ϕ ∈ Sh is a permutation of
the set H sharing with ψ the same behavior on N , we have that ϕ = ψν for some
permutation ν of the set H\N . Thus, there exist r ≥ 0 disjoint cycles γ j on the set
H\N , with j ∈ {s + 1, . . . , s + r}, such that

ϕ =
s+r∏

i=1

γi (21)

and the above writing expresses ϕ as product of its constituents. Note that if r = 0,
the set {s + 1, . . . , s + r} is empty and no cycle has to be added.

We claim that the following property holds true:

if (ϕ, ψ, ρ) ∈ U , then gcd(T (ϕ)) | gcd(h, gcd(T (ψ))) | gcd(h, n). (22)

Indeed, let (ϕ, ψ, ρ) ∈ U . For ψ , we have the representation (20) with s ≥ 0, and for
ϕ the representation (21) with r ≥ 0. If ψ = id ∈ Sn , then ϕ admits at least one fixed
point. Thus gcd(T (ψ)) = 1 and gcd(T (ϕ)) = 1 and (22) is obvious. If ψ �= id, we
have s ≥ 1 and

gcd(T (ϕ)) | gcd(|γi |))si=1 = gcd(T (ψ)) | n.

On the other hand, gcd(T (ϕ)) | h and thus (22) follows. Assume now that gcd(h, n) =
1. Then, by (22), we have gcd(T (ϕ)) = 1. In order to show thatU is regular, we show
that the conditions (a) and (b) inTheorem12 inBubboloni andGori (2015) are satisfied.
Let (ϕ, ψ, id) ∈ U , with ψ �= id, and π be a prime such that |ψ |π = πa , for some
a ∈ N. Then, obviously πa

� gcd(T (ϕ)) = 1.
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Let next (ϕ, ψ, ρ0) ∈ U , with ψ2 = id and ψ not a conjugate ρ0. Then, clearly
2 � gcd(T (ϕ)) = 1. Assume now that gcd(h, n) �= 1. Let π be prime dividing
gcd(h, n). Let ψ ∈ Sn be a product of n/π disjoint π -cycles and ϕ ∈ Sh be a product
of h/π disjoint π -cycles with the first n/π of them equal to those forming ψ. Then,
(ϕ, ψ, id) ∈ U and |ψ |π = π | gcd(T (ϕ)) = π. Thus, condition (a) in Theorem 12
in Bubboloni and Gori (2015) is not satisfied. Hence, U is not regular. ��

Note that the arithmetical conditions n ≤ h, gcd(h, n) = 1 are surely milder than
the condition gcd(h, n!) = 1 which guarantees the existence of a resolute, anonymous
and neutral spc. For instance, when h = 4, n = 3 the first conditions are satisfied
while the second is not.

ByTheorem10,we deduce that if gcd(h, n) = 1 and one of the following conditions
is satisfied:

(b) n ≤ 3,
(c) k ∈ {1, n − 1},
(d) n is even and k is odd,

then C admits a U -consistent resolute refinement.15

Observe that the nature of the group U defined by (19) is very different from the
groups of symmetry considered in Sects. 8.1 and 8.2. In fact, U cannot be expressed
as a direct product of subgroups in Sh and Sn . Indeed, assume by contradiction that
U = V × W × �, for suitable V ≤ Sh and W ≤ Sn . Then, for every (ϕ, ψ, ρ) ∈ U
we also have (id, ψ, ρ) ∈ U . But picking (ϕ, ψ, ρ) ∈ U , with ψ �= id, we instead
necessarily have ϕ �= id and thus (id, ψ, ρ) /∈ U .

The fact that different typologies of subgroups of G could be of interest in the
applications make our theoretical approach much more concrete than one could in
principle imagine.

8.4 Committeemembers with diverse decision power

Assume that committee members have different decision power described by an order
on the set of individuals. Orders model those situations in which it is reasonable to
divide individuals into disjoint groups where all individuals have the same decision
power and to rank such groups. Consider, for instance, a faculty committee composed
by full and associate professors which is going to select some applicants for an aca-
demic position. There are in this case two well distinguished groups in the committee
and a natural hierarchy between them ranking first the full professors and second the
associate professors. Assume then that committee members agree to use a resolute
refinement of C consistent with the decision power of individuals and which equally
treat all the alternatives.

Consider then the relation R ∈ O(H) defined as follows: For every x, y ∈ H , we
define x �R y if and only if individual x has a decision power which is at least as great
as the one of individual y. The procedure the committee is looking for is a resolute
refinement of C which is Aut(R)-anonymous and neutral, where Aut(R) is the group

15 Note that condition (a) in Theorem 10 cannot be satisfied because (ϕ, ρ0, ρ0) ∈ U , for any ϕ ∈ Sh such
that ϕ(i) = ρ0(i) for all i ∈ �n�.
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Aut(R) = {σ ∈ Sh : ∀x, y ∈ H , σ (x) �R σ(y) if and only if x �R y},

called the group of automorphisms of R.
It is well known that the relation

I (R) = {(x, y) ∈ H2 : (x, y) ∈ R and (y, x) ∈ R}

is an equivalence relation in H . Denote by H1, . . . , Hr , where r ≥ 1, the equivalence
classes of I (R). We claim that

Aut(R) = {ϕ ∈ Sh : ∀ j ∈ �r�, ϕ(Hj ) = Hj }. (23)

Indeed, first order the sets H1, . . . , Hr so that x ∈ Hi and y ∈ Hj with i < j if
and only if x �R y. The permutations in K = {ϕ ∈ Sh : ∀ j ∈ �r�, ϕ(Hj ) = Hj }
clearly form a subgroup of Sh . We show that K ≤ Aut(R). Pick ϕ ∈ K and let
x, y ∈ H with x �R y. If we also have y �R x , then x and y belong to the same Hj

and thus, by definition of K , ϕ(x) and ϕ(y) belong to Hj too. Thus ϕ(x) �R ϕ(y).
If instead y �R x , then x �R y. Thus, we have x ∈ Hi and y ∈ Hj for some
i, j ∈ �r� with i < j . Thus, we have ϕ(x) ∈ ϕ(Hi ) = Hi and ϕ(y) ∈ ϕ(Hj ) = Hj

so that, ϕ(x) �R ϕ(y) and then, in particular, ϕ(x) �R ϕ(y). Let now x, y ∈ H with
ϕ(x) �R ϕ(y). Then, the same argument applies to ϕ−1, giving x �R y.

We next show that Aut(R) ≤ K . Let ϕ ∈ Aut(R) and j ∈ �r�. We need to see
that ϕ(Hj ) = Hj . To that purpose, since ϕ is a bijection, it is enough to show that
ϕ(Hj ) ⊆ Hj . Pick x ∈ Hj . Since H1, . . . , Hr are a partition of H , there exists i ∈ �r�,
such that y = ϕ(x) ∈ Hi . Assume, by contradiction, that i �= j . Then, we have that
x �R y or y �R x . Assume that x �R y = ϕ(x). Since ϕ ∈ Aut(R), applying ϕ to
that relation, we get ϕ(x) �R ϕ2(x), and thus, by transitivity x �R ϕ2(x). Iterating
this argument, we then find x �R ϕm(x), for every m ∈ N. Considering now m such
that ϕm(x) = x, we get the contradiction x �R x . A similar argument shows the
impossibility of y �R x .

As a consequence, by (14), γ (Aut(R)) = gcd (|H1|, . . . , |Hr |). Thus, by Theo-
rem 20, we deduce that if

gcd (|H1|, . . . , |Hr |, |N |!) = 1, (24)

then C admits an Aut(R)-anonymous, neutral and resolute refinement. Moreover, by
Theorem 21, we deduce that if (24) holds true and one of the following conditions is
satisfied:

(b) n ≤ 3,
(c) k ∈ {1, n − 1},
(d) n is even and k is odd,

thenC admits an Aut(R)-anonymous, neutral and immune to the reversal bias resolute
refinement.16

16 Note that condition (a) in Theorem 21 cannot be satisfied because obviously Sn contains permutations
which are conjugate of ρ0.

123



436 D. Bubboloni, M. Gori

Assume now that the conditions for the existence ofAut(R)-anonymous and neutral
resolute refinements ofC are satisfied. In general, such refinements ofC are more than
one. However, the information we get from R goes further the mere knowledge of the
indifference sets of R and we can use this information for better selecting the resolute
refinement. In order to explain this point, assume that the committee has a president, say
individual 1, and assume that the president has a decision power which is greater than
the one of all the other members of the committee. Assume further that all individuals
but the president have the same decision power. Such a situation can be modeled by
the order R ∈ O(H) defined by

R = {(1, y) ∈ H2 : y ∈ H} ∪ {(x, y) ∈ H2 : x, y ∈ H\{1}}.

In this case, the indifference classes of I (R) are H1 = {1} and H2 = {2, . . . , h} so
that (24) holds and C admits a resolute refinement which is Aut(R)-anonymous and
neutral. Note that

Aut(R) = {ϕ ∈ Sh : ϕ(1) = 1}.

As already emphasized, resolute refinements can bemany and the problemof select-
ing one of them is certainly crucial. The special characteristics of the situation under
consideration can be used to make this selection. Assume that k = 1. Then, among
those resolute refinements it is natural to choose the one obtained by letting the pres-
ident break the ties by choosing his/her best alternative. This is exactly the classic
tie-breaker method widely used in practical situations. Another Aut(R)-anonymous
and neutral resolute refinement can be obtained, for instance, by selecting the alter-
native which is the worst one for the president. Of course, this option is not in line
with the decision power among individuals and the role of the president, and it is
reasonably discarded. Anyway it is important to observe that it arises as one of the
possible Aut(R)-anonymous and neutral resolute refinements.

Assuming now k ≥ 2, there is no standard and intuitive way to select a resolute
refinement. However, looking at the particular characteristics of the decision problem
some resolute refinements can be easily discarded and others can be reasonably taken
into consideration.

Next consider a planner who wants to organize a committee made up of h members
to judge some candidates applying for k job positions, using some well-established k-
sccC . The planner reasonably desires to dispose of a resolute refinement ofC in order
to produce an actual decision. Preserving neutrality, he can get that goal by renouncing
the full anonymity in the collective decision. To that purpose, he can simply fix two
numbers h1 and h2 with gcd(h1, h2) = 1 and h1 + h2 = h, split the committee into
two subcommittees H1 and H2 with |H1| = h1 and |H2| = h2, and let the decision
power relation among the committee members be described by a suitable R ∈ O(H)

with indifference sets H1 and H2. The planner can generally choose the most suitable
partition [h1, h2] among many. For instance, if h = 7, he can choose [h1, h2] among
[1, 6], [2, 5] and [3, 4]; if h = 8, he can choose [h1, h2] between [1, 7] and [3, 5].
Note that those choices work whatever the number n of candidates could be. Knowing
the number n of candidates can lead to other possibilities. For instance, if h = 7
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and n = 4, we have gcd(h, n!) = 1, and thus, the planner is not obliged to split the
committee to reach the goal. In that case, he can reach full anonymity.

8.5 Final considerations

The applications described in this section indicate some strategies to identify, in a
decision process, the group U ≤ Sh × Sn × � consistent with the specific situation
under examination. The group U is in no way arbitrary but must reflect the typology
of the committee called to make a decision and the aim of the decision itself. Once U
is determined, our theorems establish whether U -consistent (U -symmetric) resolute
refinements of a given k-scc (spc) exist. When such resolute refinements exist, their
use strengthen the social acceptability of the decision and sounds as a basic and
necessary fulfillment of fairness.

9 Building tie breaking rules

Up to now, wemainly focused on the existence of resolute refinements of given spcs or
k-sccswith special properties. All the results stated in the previous sections originated,
however, by quite technical results that allow in fact to get a complete information about
all the possible refinements (especially Propositions 27, 30 and 32 andTheorems 28, 31
and 33 in “Appendix B”). More precisely, they allow to potentially build and count
all the resolute refinements having the desired properties and give rise to a precise
algorithm which we are going to make explicit in this section.

9.1 The general construction

Let C be a decisive spc or a decisive k-scc and let U be a regular subgroup of G.
Due to the fact that the group U acts on the set P of preference profiles (Bubboloni
and Gori 2015, Proposition 2; see also Appendix A), we have that the set of prefer-
ence profiles can be partitioned into subsets calledU -orbits. EachU -orbit is obtained
by considering all the preference profiles of the type p(ϕ,ψ,ρ), where p is fixed and
(ϕ, ψ, ρ) varies on U . Picking an element from each U -orbit, we build what is called
a system of representatives of the U -orbits. Note that the concept of system of rep-
resentatives has nothing to do with C but only depends on the set P and the group
U (“Appendix B.1”). Of course, finding explicitly a system of representatives is in
general a complex problem. However, that can be managed for small values of h and
n, that is, when the size n!h of P is not too large.

We explain now how the systems of representatives turn out to be fundamental for
building the desired resolute refinements of C .

Case 1.Assume thatC isU -consistent andU ≤ Sh×Sn×{id}. Thus, by Theorem 9
or Corollary 11, we know that C admits a U -consistent resolute refinement. Once a
system of representatives (p j )mj=1 is found, a U -consistent resolute refinement f of
C can be build as follows:
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(1) for every j ∈ {1, . . . ,m}, pick x j ∈ C(p j ),17

(2) for every p ∈ P , set f (p) = {ψx j }, where j ∈ {1, . . . ,m} and (ϕ, ψ, id) ∈ U
are such that p = p j(ϕ,ψ,id).

By Proposition 30 and its proof and Theorem 31, f is well defined and all the U -
consistent resolute refinements of C can be built in this way.

Case 2. Assume that C is U -consistent and U �≤ Sh × Sn × {id} (if C is a k-
scc also assume that one of the conditions (a), (b), (c) and (d) of Theorem 10 is
satisfied). Thus, by Theorem 9 or Theorem 10, we know that C admits aU -consistent
resolute refinement. This time to explicitly construct those refinements, once a system
of representatives (p j )mj=1 is found, we have to divide the set of indexes {1, . . . ,m}
in two sets. The first one, denoted by PU

1 , is the set of indexes j such that if there
exists (ϕ, ψ, ρ) ∈ U such that p j = p j(ϕ,ψ,ρ), then necessarily ρ = id; the second
one, denoted byPU

2 , is the set containing the other indexes (one of these sets might be
empty).18 By the regularity of U , for every j ∈ PU

2 , there exists (a unique) ψ j ∈ Sn
such that if p j = p j(ϕ,ψ,ρ0) for a certain (ϕ, ψ, ρ0) ∈ U , then necessarily ψ = ψ j .
Moreover, for every j ∈ PU

2 , there exists σ j ∈ Sn such that ψ j = σ jρ0σ
−1
j .

Fixed now an element (ϕ∗, ψ∗, ρ0) ∈ U , compute, for every j ∈ PC
1 , the set

AC
1 (p j ) = {(y, z) ∈ C(p j ) × C(p j(ϕ∗,ψ∗,ρ0)) : y �= z}

and, for every j ∈ PC
2 , the set

AC
2 (p j ) = {x ∈ C(p j ) : ψ j x �= x}.

Thus, a U -consistent resolute refinement f of C can be built as follows:

(1) for every j ∈ PU
1 , pick (y j , z j ) ∈ AC

1 (p j );
(2) for every j ∈ PU

2 , pick x j ∈ AC
2 (p j )

(3) for every p ∈ P ,

(i) if there exists j ∈ PU
1 and (ϕ, ψ, id) ∈ U such that p = p j(ϕ,ψ,id), then

f (p) = {ψ y j },
(ii) if there exists j ∈ PU

1 and (ϕ, ψ, ρ0) ∈ U such that p = p j(ϕ,ψ,ρ0), then
f (p) = {ψψ−1∗ z j },

(iii) if there exists j ∈ PU
2 and (ϕ, ψ, ρ) ∈ U such that p = p j(ϕ,ψ,ρ), then

f (p) = {ψσ jρσ−1
j x j }.

By Proposition 32 and its proof and Theorem 33, f is well defined and all the U -
consistent resolute refinements of C can be built in this way.

Case 3.Assume thatC is aU -symmetric spc and assume that one of the conditions
(ii) and (iii) of Theorem 7 is satisfied. Thus, by Theorem 7, we know that C admits a
U -symmetric resolute refinement. In order to build a refinement, we do not need now
to distinguish the two cases U ≤ Sh × Sn × {id} and U �≤ Sh × Sn × {id}. Indeed,
17 Recall that x j is a linear order when C is a spc and a set of size k when C is a k-scc.
18 See “Appendix B.1”.
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given a system of representatives (p j )mj=1, aU -symmetric resolute refinement f of C
can be build as follows:

(1) for every j ∈ {1, . . . ,m}, pick q j ∈ C(p j ) ∩ S(p j ), where

S(p j ) = {q ∈ L(N ) : ∀(ϕ, ψ, ρ) ∈ U , if p j(ϕ,ψ,ρ) = p j then ψqρ = q},

(2) for every p ∈ P , set f (p) = {ψq j }, where j ∈ {1, . . . ,m} and (ϕ, ψ, id) ∈ U
are such that p = p j(ϕ,ψ,id).

By Proposition 27 and its proof and Theorem 28, f is well defined and all the U -
symmetric resolute refinements of C can be built in this way.

9.2 A concrete example

Let h = 5 and n = 3. Thus N = {1, 2, 3} and, by Theorem 16, G is regular, so that
we can choose U = G. Note also that ρ0 = (13). Consider now the Borda 2-sccs
denoted by BOR2 and defined, for every p ∈ P , by

BOR2(p) =
{
W ⊆ N : |W | = 2,∀x ∈ N , y ∈ N\W sborp (x) ≥ sborp (y)

}
,

where, sborp : N → R is the well-known Borda score function associated with p. Note
that BOR2 is decisive and G-consistent. However, BOR2 is not resolute.

Since condition (b) of Theorem 10 is satisfied, we get that BOR2 admits a G-
consistent resolute refinement. Let us apply then what described in Case 2 of Sect. 9.1.

A system of representatives of the G-orbits for this particular situation is available
in Bubboloni and Gori (2015, p. 83). We refer here to that system and use the same
notation. As proved in Bubboloni and Gori (2016b), we have

PG
1 = {2, 4, 5, 7, 8, 10, 11, 12, 14, 15, 16, 18, 21, 22, 23, 24} and

PG
2 = {1, 3, 6, 9, 13, 17, 19, 20, 25, 26}.

Choose (ϕ∗, ψ∗, ρ0) = (id, id, ρ0), the simplest element in G having a not trivial
third component. Then, an easy computation, carried out just using the definition of
ABOR2
1 (p j ) and ABOR2

2 (p j ), leads to Tables 2 and 3. In order to let the reader be aware
of the work done, we comment in detail a couple of interesting cases. Consider first

p10 =
⎡

⎣
1 1 1 2 2
2 2 2 1 3
3 3 3 3 1

⎤

⎦

and note that 10 ∈ PG
1 . We have sbor

p10
(1) = sbor

p10
(2) = 7 and sbor

p10
(3) = 1. Thus,

BOR2(p
10) = {{1, 2}} and BOR2

(
p10 (id,id,ρ0)

)
= {{1, 3}, {2, 3}}.
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Table 2 Computation of

A
BOR2
1 (p j ) for j ∈ PG

1
A
BOR2
1 (p j )

p2 ({1,2}, {2,3})

p4 ({1,2}, {2,3})

p5 ({1,2}, {2,3})

p7 ({1,2}, {1,3})

p8 ({1,2}, {2,3})

p10 ({1,2}, {1,3}), ({1,2}, {2,3})

p11 ({1,2}, {2,3})

p12 ({1,2}, {1,3}), ({1,2}, {2,3})

p14 ({1,2}, {1,3})

p15 ({1,2}, {2,3})

p16 ({1,2}, {1,3})

p18 ({1,2}, {1,3}), ({2,3}, {1,3})

p21 ({1,2}, {1,3})

p22 ({1,2}, {2,3})

p23 ({1,2}, {2,3})

p24 ({1,2}, {1,3}), ({1,2}, {2,3})

Since {1, 2} �= {1, 3} and {1, 2} �= {2, 3}, we then get

ABOR2
1 (p10) = {

({1, 2}, {1, 3}), ({1, 2}, {2, 3})}.

Consider now

p25 =
⎡

⎣
1 1 3 2 3
2 2 2 3 1
3 3 1 1 2

⎤

⎦

and note that 25 ∈ PG
2 and p25 = p25 ((45),(13),ρ0). Thus, ψ25 = (13). Moreover,

sbor
p25

(1) = sbor
p25

(2) = sbor
p25

(3) = 5 so that

BOR2(p
25) = {{1, 2}, {1, 3}, {2, 3}}.

In order to compute ABOR2
2 (p25), we need to exclude the sets in BOR2(p25) which

are fixed by the permutation ψ25, and thus, we get

ABOR2
2 (p25) = {{1, 2}, {2, 3}}.

Looking at Tables 2 and 3, we can understand, in particular, that in the case of 5
individuals and 3 alternatives there exists 25 anonymous, neutral and immune to the
reversal bias resolute refinements of BOR2. In order to select one of them, one just
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Table 3 Computation of

A
BOR2
2 (p j ) for j ∈ PG

2
A
BOR2
2 (p j )

p1 {1,2}

p3 {1,2}

p6 {1,2}

p9 {1,2}

p13 {1,2}

p17 {1,2}

p19 {1,3}

p20 {1,2}

p25 {1,2},{2,3}

p26 {1,2}

Table 4 Particular breaking tie
f (p j ) f (p j (id,id,ρ0))

p10 {1,2} {2,3}

p12 {1,2} {2,3}

p18 {2,3} {1,3}

p24 {1,2} {2,3}

p25 {2,3}

needs to look at the preference profiles p10, p12, p18, p24, p25 and ask which of the
two possibilities in the tables is the one that best fits the decision problem for which
the refinement of the Borda 2-scc is required.19 Once this choice is made, one can
write down automatically the values f (p) for all p ∈ P.

Assume, for instance, that the refinement f identified by the choices expressed in
Table 4 is chosen. Let us compute then f (p), where

p =
⎡

⎣
2 1 3 1 1
1 3 2 3 2
3 2 1 2 3

⎤

⎦ .

We have that p = p24 (ϕ,ψ,ρ0), where ϕ = (14)(35) and ψ = (123). Notice that
24 ∈ PG

1 so that, according to Case 2 discussed in Sect. 9.1, we get

f (p) = {
ψψ−1∗ z j

} = {
(123)id{2, 3}} = {{1, 3}}.

19 In Table 2, if (y, z) appears in A
BOR2
1 (p j ), then we have a resolute refinement f with f (p j ) = y and

f (p j (id,id,ρ0)) = z; in Table 3, if x appears in A
BOR2
2 (p j ), then we have a resolute refinement f with

f (p j ) = x . Recall that in this last case, the value of f (p j (id,id,ρ0)) is induced from the choice for f (p j ).
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Appendix

A Symmetry and consistency

First of all, let us note that, for every σ ∈ Sn , ρ ∈ �, W1,W2 ∈ P(N ), W1, W2 ⊆
P(N ), R1, R2 ∈ R(N ) and Q1,Q2 ⊆ R(N ), we have that

σW1 ⊆ σW2 ⇔ W1 ⊆ W2, σW1 ⊆ σW2 ⇔ W1 ⊆ W2,

R1 ⊆ R2 ⇔ σ R1 ⊆ σ R2 ⇔ R1ρ ⊆ R2ρ,

Q1 ⊆ Q2 ⇔ σQ1 ⊆ σQ2 ⇔ Q1ρ ⊆ Q2ρ.

(25)

From those inclusions, analogous relations for equalities hold true. We freely use
those properties in the rest of the paper. We emphasize their use when particularly
remarkable.

Let U ≤ G. In Bubboloni and Gori (2015, Proposition 2), it is shown that the
definition (6) determines an action ofU on the set of preference profiles. In particular,
for every p ∈ P and (ϕ1, ψ1, ρ1), (ϕ2, ψ2, ρ2) ∈ U , we have

p (ϕ1ϕ2,ψ1ψ2,ρ1ρ2) = (p (ϕ2,ψ2,ρ2))(ϕ1,ψ1,ρ1). (26)

The above equality is a main tool throughout the paper. To begin with, it allows to
prove the basic results on symmetry and consistency stated in Sect. 4.

Proof of Proposition 1 (i) Let C ∈ P∗U and p ∈ P . Consider first (ϕ, ψ, id) ∈ U .
Since C is U -symmetric, then C(p(ϕ,ψ,id)) = ψC(p)id = ψC(p) and (8) is
satisfied. In order to prove (9) assume, by contradiction, that |C(p)| = 1 and that
there exists (ϕ, ψ, ρ0) ∈ G such that C(p(ϕ,ψ,ρ0)) = ψC(p). Then, C(p) = {q}
for some q ∈ L(N ) and, by the U -symmetry of C , we get ψC(p)ρ0 = ψC(p).
Thus, C(p)ρ0 = C(p), that is, qρ0 = q, which gives the contradiction ρ0 = id.

(ii) From (i) we know that P∗U ⊆ PU . On the other hand, if C ∈ PU we have that
condition (8) is satisfied and, sinceU ≤ Sh × Sn × {id}, that equals condition (7)
so that C ∈ P∗U . ��
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Proof of Proposition 2 The fact thatP〈U1,U2〉 ⊆ P∗U1 ∩P∗U2 is obvious. We show the
other inclusion. Let C ∈ P∗U1 ∩ P∗U2 . Consider the set

W = {(ϕ, ψ, ρ) ∈ G : ∀p ∈ P,C(p(ϕ,ψ,ρ)) = ψC(p)ρ}.

We show that W is a subgroup of G. Let (ϕ1, ψ1, ρ1), (ϕ2, ψ2, ρ2) ∈ W and show
that (ϕ1ϕ2, ψ1ψ2, ρ1ρ2) ∈ W . Given p ∈ P , by (26) and recalling that � is abelian,
we have

C(p(ϕ1ϕ2,ψ1ψ2,ρ1ρ2)) = C
(
(p (ϕ2,ψ2,ρ2))(ϕ1,ψ1,ρ1)

)
= ψ1C(p (ϕ2,ψ2,ρ2))ρ1

= ψ1ψ2C(p)ρ2ρ1 = ψ1ψ2C(p)ρ1ρ2.

Since W is a group and contains both U1 and U2, then we necessarily have W ≥
〈U1,U2〉. But , by definition of W , C ∈ P∗W and thus also C ∈ P∗〈U1,U2〉. ��
Proof of Proposition 3 The proof is formally the same of Proposition 10 in Bubboloni
and Gori (2016b), simply taking into account (25). ��
Proof of Proposition 4 Let C ∈ P∗U and p ∈ P . Consider at first (ϕ, ψ, id) ∈ U .
Since C is U -symmetric then C(p(ϕ,ψ,id)) = ψC(p), that is, C(p(ϕ,ψ,id)) = {ψq ∈
L(N ) : q ∈ C(p)}. Then,

Ck(p
(ϕ,ψ,id)) =

{
{(ψq)(r) : 1 ≤ r ≤ k} ∈ Pk(N ) : q ∈ C(p)

}

=
{
ψ{q(r) : 1 ≤ r ≤ k} ∈ Pk(N ) : q ∈ C(p)

}

= ψ
{
{q(r) : 1 ≤ r ≤ k} ∈ Pk(N ) : q ∈ C(p)

}
= ψCk(p),

so thatCk satisfies (8). In order to show thatCk satisfies (9) too, assumebycontradiction
that |Ck(p)| = 1 and that there exists (ϕ, ψ, ρ0) ∈ G such that Ck(p(ϕ,ψ,ρ0)) =
ψCk(p). Then, there are k distinct elements x1, . . . , xk of N such that Ck(p) =
{{x1, . . . , xk}} and

Ck(p
(ϕ,ψ,ρ0)) = {{ψ(x1), . . . , ψ(xk)}}. (27)

In particular, for every q ∈ C(p), we have {q(1), . . . , q(k)} = {x1, . . . , xk}. By the
U -symmetry of C , we have C(p(ϕ,ψ,ρ0)) = ψC(p)ρ0, and thus,

Ck(p
(ϕ,ψ,ρ0)) = {{q ′(1), . . . , q ′(k)} ∈ Pk(N ) : q ′ ∈ ψC(p)ρ0}.

Now if q ′ ∈ ψC(p)ρ0 there exists q ∈ C(p) such that q ′ = ψqρ0 and therefore
q ′(1) = ψqρ0(1) = ψq(n). Since n > k and q is a bijection, we have that q(n) /∈
{q(1), . . . , q(k)} = {x1, . . . , xk}. Thus, since also ψ is a bijection, we also have
q ′(1) = ψq(n) /∈ {ψ(x1), . . . , ψ(xk)}. It follows that no element of Ck(p(ϕ,ψ,ρ0))

can coincide with {ψ(x1), . . . , ψ(xk)}, against (27). ��
Proof of Proposition 5 We show that, for every p ∈ P and (ϕ, ψ, ρ) ∈ U ,
CR(p(ϕ,ψ,ρ)) = ψCR(p)ρ. Fix p ∈ P and (ϕ, ψ, ρ) ∈ U and prove first that
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ψCR(p)ρ ⊆ CR(p(ϕ,ψ,ρ)). Pick q ∈ CR(p) and show that ψqρ ∈ CR(p(ϕ,ψ,ρ)).

We have q ⊇ R(p), which implies ψqρ ⊇ ψR(p)ρ. Since R is U -symmetric, we
then have ψqρ ⊇ R(p(ϕ,ψ,ρ)) and therefore ψqρ ∈ CR(p(ϕ,ψ,ρ)).

Let us prove now the other inclusion CR(p(ϕ,ψ,ρ)) ⊆ ψCR(p)ρ. Let p = p(ϕ,ψ,ρ)

and note that p = p(ϕ−1,ψ−1,ρ). Observe that, since U is a group and (ϕ, ψ, ρ) ∈ U
also its inverse (ϕ, ψ, ρ)−1 = (ϕ−1, ψ−1, ρ) ∈ U . Thus, by the inclusion just proved,
we get ψ−1CR(p)ρ ⊆ CR(p(ϕ−1,ψ−1,ρ)), that is, ψ−1CR(p(ϕ,ψ,ρ))ρ ⊆ CR(p) and
we conclude applying ψ on the left and ρ on the right to both sides of that inclusion.

��
Proof of Proposition 6 Repeat word by word the proof of Proposition 2 writing M
instead of P and R instead of C . ��

B Proof of Theorems 7, 9 and 10

The proofs of Theorems 7, 9 and 10 are definitely technical and require some prelim-
inary work. We underline that the results we are going to prove are more general as
they provide a method to potentially build and count all the resolute refinements.

B.1 The role of the orbit representatives

LetU ≤ G and p ∈ P . The set pU = {pg ∈ P : g ∈ U } is called theU -orbit of p and
StabU (p) = {g ∈ U : pg = p} ≤ U is called the stabilizer of p in U . Recall that, for
every g ∈ U , we have StabU (pg) = StabU (p)g . The set PU = {pU : p ∈ P} of the
U -orbits is a partition of P . We use PU as set of indexes and denote its elements with
j . A vector (p j ) j∈PU ∈ × j∈PUP is called a system of representatives of theU -orbits
if, for every j ∈ PU , p j ∈ j . The set of the systems of representatives of theU -orbits
is denoted byS(U ). If (p j ) j∈PU ∈ S(U ), then, for every p ∈ P , there exist j ∈ PU

and (ϕ, ψ, ρ) ∈ U such that p = p j (ϕ,ψ,ρ). Note that if p j1 (ϕ1,ψ1,ρ1) = p j2 (ϕ2,ψ2,ρ2)

for some j1, j2 ∈ PU and some (ϕ1, ψ1, ρ1), (ϕ2, ψ2, ρ2) ∈ U , then j1 = j2 and, by
(26), (ϕ−1

2 ϕ1, ψ
−1
2 ψ1, ρ

−1
2 ρ1) ∈ StabU (p j1).

In this section, we present some results explaining how a correspondence C ∈
P∗U ∪PU ∪CU

k is determined by the values it assumes on a system of representatives
of the U -orbits in P. To that purpose, the first step is to split PU into two parts PU

1
and PU

2 , where

PU
1 =

{
j ∈ PU : ∀p ∈ j, StabU (p) ≤ Sh × Sn × {id}

}
,

PU
2 =

{
j ∈ PU : ∀p ∈ j, StabU (p) �≤ Sh × Sn × {id}

}
.

Note that those sets are well defined because U ∩ (Sh × Sn × {id}) is normal in U .
Moreover, PU

1 ∪PU
2 = PU and PU

1 ∩PU
2 = ∅. In particular, PU

1 and PU
2 cannot

be both empty. Obviously, ifU ≤ Sh × Sn ×{id}, then PU
2 = ∅ and PU = PU

1 �= ∅.
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Werecall a part of Proposition24 inBubboloni andGori (2016b)which is interesting
for our scope20:

PU
2 �= ∅ if and only if there exists (ϕ, ψ, ρ0) ∈ U such that ψ is a conjugate of ρ0.

(28)

Proposition 23 Let U ≤ G and C,C ′ ∈ P∗U . Assume that there exists (p j ) j∈PU ∈
S(U ) such that, for every j ∈ PU , C(p j ) = C ′(p j ). Then, C = C ′.

Proof Let p ∈ P and show that C(p) = C ′(p). We know there exist j ∈ PU and
(ϕ, ψ, ρ) ∈ U such that p = p j (ϕ,ψ,ρ). Then, C(p) = C(p j (ϕ,ψ,ρ)) = ψC(p j )ρ =
ψC ′(p j )ρ = C ′(p j (ϕ,ψ,ρ)) = C ′(p).

Proposition 24 Let U ≤ Sh × Sn × {id} and C,C ′ ∈ PU (C,C ′ ∈ CU
k ). Assume that

there exists (p j ) j∈PU ∈ S(U ) such that C(p j ) = C ′(p j ) for all j ∈ PU . Then,
C = C ′.

The proof of the above result is the same as the one of Proposition 12 in Bubboloni
and Gori (2016b) and so is omitted.

Proposition 25 Let U ≤ G such that U �≤ Sh × Sn ×{id}, C,C ′ ∈ PU (C,C ′ ∈ CU
k ).

Assume that there exist (p j ) j∈PU ∈ S(U ) and (ϕ∗, ψ∗, ρ0) ∈ U such that C(p j ) =
C ′(p j ) for all j ∈ PU and C(p j (ϕ∗,ψ∗,ρ0)) = C ′(p j (ϕ∗,ψ∗,ρ0)) for all j ∈ PU

1 . Then,
C = C ′.

The proof of the above result is formally the same as the one of Proposition 13 in
Bubboloni and Gori (2016b) and so is omitted.

B.2 Resolute spcs and k-sccs

We have defined C ∈ P (C ∈ Ck) resolute if, for every p ∈ P , |C(p)| = 1. We
now denote by F (Fk) the set of resolute spc (k-scc). Obviously, we have F ⊆ P and
Fk ⊆ Ck and, for every U ≤ G, we can consider the following sets

F∗U = F ∩ P∗U , FU = F ∩ PU , FUk = Fk ∩ CU
k .

They describe, respectively, the set of the U -symmetric resolute spc, the set of the
U -consistent resolute spc, the set of the U -consistent resolute k-scc.

Given C ∈ F, for every p ∈ P , there exists a unique q ∈ L(N ) such that C(p) =
{q}. Thus, C can be naturally identified with the social preference function (spf) f
from P to L(N ) defined, for every p ∈ P , by f (p) = q. Similarly, given C ∈ Fk ,
for every p ∈ P , there exists a unique W ∈ Pk(N ) such that C(p) = {W }. Thus,
C can be naturally identified with the k-multiwinner social choice function (k-scf)
f from P to Pk(N ) defined, for every p ∈ P , by f (p) = W . We will freely adopt
those identifications and the language of functions in what follows. For that reason,

20 Further details can be found in Section 5.2 of Bubboloni and Gori (2016b).
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we will refer to F∗U also as the set of the U -symmetric spfs; to FU also as the set of
the U -consistent spfs; to FUk also as the set of the U -consistent k-scfs.

LetC ∈ P (C ∈ Ck). Denote the refinements ofC byPC (Ck,C ). Then, the resolute
refinements of C are the functions in the set FC (Fk,C ) defined by FC = F ∩ PC
(Fk,C = Fk ∩ Ck,C ).

Let now U ≤ G. Given C ∈ P, we consider the following sets

F∗U
C = F∗U ∩ FC , FUC = FU ∩ FC .

They describe, respectively, the set of theU -symmetric spfs which are refinements of
C and the set of theU -consistent spfs which are refinements of C . Given C ∈ Ck , we
finally consider the set

FUk,C = FUk ∩ Fk,C

describing the set of U -consistent k-scfs which are refinements of C .

B.3 Proof of Theorem 7

In order to approach the proof of Theorem 7, we need some preliminary facts. Let
U ≤ G and S ∈ P be defined, for every p ∈ P , by

S(p) = {
q ∈ L(N ) : ∀(ϕ, ψ, ρ) ∈ StabU (p), ψqρ = q

}
.

21

Proposition 26 Let U ≤ G. Then, the following facts hold:

(i) S is decisive if and only if U is regular.
(ii) S ∈ P∗U .

(iii) If f ∈ F∗U , then f ∈ FS.

Proof (i) LetU be regular. Proving (11), in Bubboloni and Gori (2015), the authors
showed that

S(p) =
⎧
⎨

⎩

L(N ) if StabU (p) ≤ Sh × {id} × {id}

uCSn (ρ0) if StabU (p) � Sh × {id} × {id},
where CSn (ρ0) denotes the centralizer of ρ0 in Sn and u ∈ Sn is such that
ψ∗ = uρ0u−1, with ψ∗ ∈ Sn the permutation appearing in the definition (10) of
regularity. In particular,

|S(p)| =
⎧
⎨

⎩

n! if StabU (p) ≤ Sh × {id} × {id}

2� n
2 �� n

2 �! if StabU (p) � Sh × {id} × {id}.
(29)

21 The spc S was first considered in Bubboloni and Gori (2015, Section 4.1) and there denoted by SU1 .
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Thus, the fact that S is decisive immediately follows from (29).
Assume now that S is decisive. We need to show that, for every p ∈ P ,
(ϕ, ψ, id) ∈ StabU (p) implies ψ = id, and (ϕ, ψ, ρ0) ∈ StabU (p) implies
ψ = ψ∗ for a suitable unique conjugateψ∗ of ρ0. Let p ∈ P and pick q0 ∈ S(p).
If (ϕ, ψ, id) ∈ StabU (p), then we have ψq0 = q0, and thus, by cancellation,
ψ = id. If (ϕ, ψ, ρ0) ∈ StabU (p), then we have ψq0ρ0 = q0, which implies
ψ = q0ρ0q

−1
0 . Thus, ψ∗ = q0ρ0q

−1
0 works.

(ii) In order to show that S is U -symmetric, we pick (ϕ1, ψ1, ρ1) ∈ U and see that
S(p(ϕ1,ψ1,ρ1)) = ψ1S(p)ρ1.Recall that StabU (p(ϕ1,ψ1,ρ1)) = StabU (p)(ϕ1,ψ1,ρ1).

Thus, q ∈ S(p(ϕ1,ψ1,ρ1)) if and only if, for every (ϕ, ψ, ρ) ∈ StabU (p),
ψ1ψψ−1

1 qρ1ρρ−1
1 = q, which is equivalent to ψ(ψ−1

1 qρ1)ρ = ψ−1
1 qρ1, that

is, to ψ−1
1 qρ1 ∈ S(p) and thus to q ∈ ψ1S(p)ρ1.

(iii) This is just Lemma 4 in Bubboloni and Gori (2015). ��
By the above proposition, anyU -symmetric spfmaps the profile p into an element

of S(p). The next result shows that, conversely, one can construct f ∈ F∗U just fixing
a system (p j ) j∈PU of representatives and assigning within S(p j ) the value to be
assumed on each p j . Its proof is formally equal to Proposition 5 in Bubboloni and
Gori (2015).

Proposition 27 Let U ≤ G be regular and (p j ) j∈PU ∈ S(U ). For every j ∈ PU ,

let q j ∈ S(p j ). Then there exists a unique f ∈ F∗U such that, for every j ∈ PU ,
f (p j ) = q j .

Proof Given p ∈ P, there exist a unique j ∈ PU such that p = p j (ϕ,ψ,ρ)

for some (ϕ, ψ, ρ) ∈ U . We claim that, if for some j ∈ PU there exist
(ϕ1, ψ1, ρ1), (ϕ2, ψ2, ρ2) ∈ U such that p j (ϕ1,ψ1,ρ1) = p j (ϕ2,ψ2,ρ2), then ψ1q jρ1 =
ψ2q jρ2. Indeed, by (26), we have that p j (ϕ1,ψ1,ρ1) = p j (ϕ2,ψ2,ρ2) implies
(ϕ−1

2 ϕ1, ψ
−1
2 ψ1, ρ

−1
2 ρ1) ∈ StabU (p j ). Since q j ∈ S(p j ) and � is abelian, we have

that q j = ψ−1
2 ψ1q jρ

−1
2 ρ1 = ψ−1

2 ψ1q jρ1ρ
−1
2 , and thus ψ1q jρ1 = ψ2q jρ2.

As a consequence, the resolute spc f defined, for every p ∈ P , by f (p) = ψq jρ,
where j ∈ PU and (ϕ, ψ, ρ) ∈ U are such that p = p j (ϕ,ψ,ρ), is consistent.Moreover,
for every j ∈ PU , f (p j ) = q j . Let us prove that f ∈ P∗U . Consider p ∈ P and
(ϕ, ψ, ρ) ∈ U . Let p = p j (ϕ1,ψ1,ρ1), for some j ∈ PU and (ϕ1, ψ1, ρ1) ∈ U . By the
definition of f and by (26) and using again the fact that � is abelian, we have

f (p(ϕ,ψ,ρ)) = f

((
p j (ϕ1,ψ1,ρ1)

)(ϕ,ψ,ρ)
)

= f (p j (ϕϕ1,ψψ1,ρρ1)) = (ψψ1)q j (ρρ1)

= (ψψ1)q j (ρ1ρ) = ψ(ψ1q jρ1)ρ = ψ f (p j (ϕ1,ψ1,ρ1))ρ = ψ f (p)ρ.

In order to prove the uniqueness of f , it suffices to note that if f ′ ∈ F∗U is such that,
for every j ∈ PU , f ′(p j ) = q j , then we have f = f ′ by Proposition 23. ��

Given now (p j ) j∈PU ∈ S(U ), let

 : × j∈PU S(p j ) → F∗U
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be the function which associates with every (q j ) j∈PU ∈ × j∈PU S(p j ) the unique

f ∈ F∗U defined in Proposition 27. Of course,  depends on (p j ) j∈PU but we do not
emphasize that dependence in the notation. Note that  is injective.

Theorem 28 Let U ≤ G be regular, (p j ) j∈PU ∈ S(U ) and C ∈ P∗U . Then

F∗U
C = 

(
× j∈PU S(p j ) ∩ C(p j )

)

and

|F∗U
C | =

∏

j∈PU

|S(p j ) ∩ C(p j )|.

Proof We first prove that 
(× j∈PU S(p j ) ∩ C(p j )

) ⊆ F∗U
C . Let (q j ) j∈PU ∈

× j∈PU S(p j ) ∩ C(p j ) and f = 
(
(q j ) j∈PU

)
. We show that f ∈ F∗U

C . We know

that f ∈ F∗U , so that have are left with showing that f ∈ FC . Given p ∈ P ,
there exist j ∈ PU and (ϕ, ψ, ρ) ∈ U such that p = p j (ϕ,ψ,ρ). As we know that
q j = f (p j ) ∈ C(p j ), by U -symmetry of f and C , we have

f (p) = f (p j (ϕ,ψ,ρ)) = ψq jρ ∈ ψC(p j )ρ = C(p j (ϕ,ψ,ρ)) = C(p)

as desired.
Let us next prove that F∗U

C ⊆ 
(× j∈PU S(p j ) ∩ C(p j )

)
. Consider then f ∈

F∗U
C and note that, by Proposition 26(iii), for every j ∈ PU , f (p j ) ∈ S(p j ) ∩

C(p j ). Then ( f (p j )) j∈PU ∈ × j∈PU S(p j ) ∩ C(p j ). Thus, the function f and the
function 

(
( f (p j )) j∈PU

)
areU -symmetric functions which coincide on a system of

representatives. Hence, by Proposition 23, we obtain f = 
(
( f (p j )) j∈PU

)
.

The last part of the statement is an immediate consequence of the fact that  is
injective. ��

In order to write down the proof of Theorem 7, we need a final technical lemma.

Lemma 29 Let R ∈ M∗U and p ∈ P . Then, for every x, y ∈ N and (ϕ, ψ, ρ0) ∈
StabU (p), (x, y) ∈ R(p) if and only if (ψ(y), ψ(x)) ∈ R(p).

Proof Let x, y ∈ N and (ϕ, ψ, ρ0) ∈ StabU (p). Then, by the U -symmetry of R, we
have R(p) = R(p(ϕ,ψ,ρ0)) = ψR(p)ρ0. On the other hand, x �R(p) y is equivalent
to ψ(y) �ψR(p)ρ0 ψ(x) and thus to ψ(y) �R(p) ψ(x).

Proof of Theorem 7 (i) ⇒ (ii). The fact that C ∈ P∗U admits a U -symmetric resolute
refinement means that F∗U

C �= ∅. Let then f ∈ F∗U
C and define the social method

R : P → R(N ), by R(p) = f (p)\� for all p ∈ P , where � = {(x, x) : x ∈ N }.
Note that� is a relation on N and that for everyψ ∈ Sn andρ ∈ �, we haveψ�ρ = �,
accordingly to the definitions given in Sect. 2. We show that R is irreflexive, acyclic,
U -symmetric and that CR refines C .
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Let p ∈ P. R(p) is irreflexive by definition and surely acyclic since it refines the
linear order f (p). Let (ϕ, ψ, ρ) ∈ U . Then, by the U -symmetry of f , we have

R(p(ϕ,ψ,ρ)) = f (p(ϕ,ψ,ρ))\� = (ψ f (p)ρ)\(ψ�ρ) = ψ( f (p)\�)ρ = ψR(p)ρ.

Thus, R ∈ M∗U . Finally, observe that

CR(p) = {q ∈ L(N ) : R(p) ⊆ q} = {q ∈ L(N ) : f (p)\� ⊆ q} = { f (p)} ⊆ C(p).

Thus CR refines C .

(ii) ⇒ (iii) Let R be an irreflexive, acyclic, U -symmetric social method such that
CR refines C . Then, by Lemma 29, condition (a) in (iii) is fulfilled.

(iii) ⇒ (i) The proof is a remake of Bubboloni and Gori (2015, Section 8), which is
essentially obtained replacing the minimal majority relation Rν(p)(p) there, with the
present relation R(p). ��

B.4 Analysis of FU
C and F

U
k,C when U ≤ Sh × Sn × {id}

The next result, whose proof is similar to the one of Proposition 17 in Bubboloni and
Gori (2016b), is very important.

Proposition 30 Let U ≤ Sh × Sn × {id} be regular, (p j ) j∈PU ∈ S(U ) and C ∈ PU

(C ∈ CU
k ). For every j ∈ PU , let x j ∈ C(p j ). Then there exists a unique f ∈ FUC

( f ∈ FUk,C) such that, for every j ∈ PU , f (p j ) = x j .

Proof Let C ∈ PU . Consider f ∈ F defined as follows. Given p ∈ P , consider the
unique j ∈ PU such that p ∈ j and the nonempty set Up = {(ϕ, ψ, id) ∈ U :
p = p j (ϕ,ψ,id)}. Pick (ϕ, ψ, id) ∈ Up and let f (p) = ψx j . We need to prove that
the value of f (p) does not depend on the particular element chosen in Up. Indeed,
let (ϕ1, ψ1, id), (ϕ2, ψ2, id) ∈ Up and note that (ϕ−1

2 ϕ1, ψ
−1
2 ψ1, id) ∈ StabU (p j ).

Since U is regular, that gives ψ1 = ψ2 and then ψ1x j = ψ2x j .
We show that f satisfies all the desired properties. Since U ≤ G, we have

(id, id, id) ∈ U and thus the definition of f immediately implies f (p j ) = x j . Let us
prove that f ∈ FU . Consider p ∈ P and (ϕ, ψ, id) ∈ U and show that f (p(ϕ,ψ,id)) =
ψ f (p). Let p = p j (ϕ1,ψ1,id) for suitable j ∈ PU and (ϕ1, ψ1, id) ∈ U . Thus,
f (p) = ψ1x j and, by (26), f (p(ϕ,ψ,id)) = f (p j (ϕϕ1,ψψ1,id)) = ψψ1x j = ψ f (p).
Let us next prove that f ∈ FC . Consider then p ∈ P and show that f (p) ∈ C(p).

Let p = p j (ϕ1,ψ1,id) for suitable j ∈ PU and (ϕ1, ψ1, id) ∈ U . Thus, f (p) = ψ1x j
and, since C is U -consistent, ψ1x j ∈ ψ1C(p j ) = C(p j (ϕ1,ψ1,id)) = C(p). Finally,
in order to prove uniqueness, let f ′ ∈ FUC such that f ′(p j ) = x j for all j ∈ PU . Then
f ′ and f coincides on (p j ) j∈PU ∈ S(U ) and Proposition 24 applies giving f ′ = f .

Let now C ∈ CU
k . The proposition can be proved using the same argument. ��
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Let U ≤ Sh × Sn × {id} be regular, (p j ) j∈PU ∈ S(U ) and C ∈ PU (C ∈ CU
k ).

Consider the function

 : × j∈PUC(p j ) → FUC ,
(
 : × j∈PUC(p j ) → FUk,C

)

which associates with every (x j ) j∈PU ∈ × j∈PUC(p j ) the unique f ∈ FUC ( f ∈ FUk,C )
defined in Proposition 30. Of course,  depends on U , (p j ) j∈PU and C but we do
not emphasize that dependence in the notation. Note that we used the same letter 

to treat both spfs and k-scfs. Note also that  is injective.

Theorem 31 Let U ≤ Sh × Sn × {id} be regular, (p j ) j∈PU ∈ S(U ) and C ∈ PU

(C ∈ CU
k ). Then

FUC = 
(
× j∈PUC(p j )

) (
FUk,C = 

(
× j∈PUC(p j )

) )

and

|FUC | =
∏

j∈PU

∣
∣
∣C(p j )

∣
∣
∣

(
|FUk,C | =

∏

j∈PU

∣
∣
∣C(p j )

∣
∣
∣
)
.

In particular, if C is decisive, then FUC �= ∅ (FUk,C �= ∅).

The proof of the above result is similar to the one of Theorem 18 in Bubboloni and
Gori (2016b) and thus omitted.

B.5 Analysis of FU
C and F

U
k,C when U � Sh × Sn × {id}

Let U ≤ G be regular such that U � Sh × Sn × {id}, C ∈ PU (C ∈ CU
k ). Recall that

if p ∈ P and y ∈ C(p), then y ∈ L(N ) (y ∈ Pk(N )). Moreover, given ψ ∈ Sn , the
meaning of the writing ψ y is carefully explained in Sect. 2.

Fix (p j ) j∈PU ∈ S(U ) and (ϕ∗, ψ∗, ρ0) ∈ U . Define, for every j ∈ PU
1 , the set

A1
C (p j ) = {(y, z) ∈ C(p j ) × C(p j (ϕ∗,ψ∗,ρ0)) : z �= ψ∗y},

and, for every j ∈ PU
2 , the set

A2
C (p j ) =

{
x ∈ C(p j ) : ψ j x �= x

}
,

where ψ j is the unique element in Sn such that

StabU (p j ) ⊆ (Sh × {id} × {id}) ∪ (Sh × {ψ j } × {ρ0}). (30)

Note that the uniqueness of ψ j is guaranteed by Lemma 16 (ii) in Bubboloni and Gori
(2016b).
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Next if PU
1 �= ∅, then define

A1
C = × j∈PU

1
A1
C (p j ),

and if PU
2 �= ∅, then define

A2
C = × j∈PU

2
A2
C (p j ).

Recall that PU
1 and PU

2 cannot be both empty. Thus, at least one of the above sets is
always defined. Of course, A1

C and A2
C depend also onU , (p j ) j∈PU and (ϕ∗, ψ∗, ρ0)

but we do not emphasize that dependence in the notation.
The proof of the next important result is similar to Proposition 19 in Bubboloni and

Gori (2016b).

Proposition 32 Let U ≤ G be regular such that U �≤ Sh × Sn × {id}, (p j ) j∈PU ∈
S(U ), (ϕ∗, ψ∗, ρ0) ∈ U and C ∈ PU (C ∈ CU

k ). For every j ∈ PU
1 , let (y j , z j ) ∈

A1
C (p j ) and, for every j ∈ PU

2 , let x j ∈ A2
C (p j ). Then, there exists a unique f ∈ FUC

( f ∈ FUk,C) such that f (p j ) = y j and f (p j (ϕ∗,ψ∗,ρ0)) = z j for all j ∈ PU
1 , and

f (p j ) = x j for all j ∈ PU
2 .

Proof Let C ∈ PU . Given j ∈ PU
2 , consider the set KU (p j ) =

{
σ ∈ Sn : ψ j =

σρ0σ
−1

}
, where ψ j is defined in (30). Since U is regular, KU (p j ) is nonempty so

that we can choose an element σ j in KU (p j ). Note that, for every j ∈ PU
2 and

(ϕ, ψ, ρ) ∈ StabU (p j ), we have ψ = σ jρσ−1
j .

Let us consider then f ∈ F defined, for every p ∈ P , as follows. Given p ∈ P ,
consider the unique j ∈ PU such that p ∈ j and the nonempty setUp = {(ϕ, ψ, ρ) ∈
U : p = p j (ϕ,ψ,ρ)}. Pick (ϕ, ψ, ρ) ∈ Up and let

f (p) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ y j if j ∈ PU
1 and ρ = id

ψψ−1∗ z j if j ∈ PU
1 and ρ = ρ0

ψσ jρσ−1
j x j if j ∈ PU

2

(31)

We need to prove that the value of f (p) does not depend on the particular element
chosen inUp and that f satisfies all the desired properties. That can be done following
the same reasoning used in the proof of Proposition 19 in Bubboloni and Gori (2016b).

��
Let U ≤ G be regular such that U �≤ Sh × Sn × {id}, (p j ) j∈PU ∈ S(U ),

(ϕ∗, ψ∗, ρ0) ∈ U and C ∈ PU (C ∈ CU
k ).

– If PU
2 = ∅, then let �1 : A1

C → FUC (�1 : A1
C → FUk,C ) be the function which

associates with every (y j , z j ) j∈PU
1

∈ A1
C , the unique f ∈ FUC ( f ∈ FUk,C ) defined

in Proposition 32.
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– If PU
1 = ∅, then let �2 : A2

C → FUC (�2 : A2
C → FUk,C ) be the function which

associates with every (x j ) j∈PU
2

∈ A2
C , the unique f ∈ FUC ( f ∈ FUk,C ) defined in

Proposition 32.
– IfPU

1 �= ∅ andPU
2 �= ∅, then let�3 : A1

C × A2
C → FUC (�3 : A1

C × A2
C → FUk,C )

be the functionwhich associateswith every ((y j , z j ) j∈PU
1
, (x j ) j∈PU

2
) ∈ A1

C×A2
C ,

the unique f ∈ FUC ( f ∈ FUk,C ) defined in Proposition 32.

Of course, �1, �2 and �3 depend onU , (p j ) j∈PU , (ϕ∗, ψ∗, ρ0) and C but we do not
emphasize that dependence in the notation. Note also that�1,�2 and�3 are injective.

Theorem 33 Let U ≤ G be regular such that U �≤ Sh × Sn ×{id}, (p j ) j∈PU ∈ S(U ),

(ϕ∗, ψ∗, ρ0) ∈ U and C ∈ PU (C ∈ CU
k ). Then

FUC
(
FUk,C

) =
⎧
⎨

⎩

�1(A1
C ) if PU

2 = ∅

�2(A2
C ) if PU

1 = ∅

�3(A1
C × A2

C ) if PU
1 �= ∅ and PU

2 �= ∅

and

|FUC | (|FUk,C |) =
⎧
⎨

⎩

|A1
C | if PU

2 = ∅

|A2
C | if PU

1 = ∅

|A1
C | · |A2

C | if PU
1 �= ∅ and PU

2 �= ∅

Moreover, if C is decisive, then we have that:

• for every j ∈ PU
1 , A1

C (p j ) �= ∅,
• FUC �= ∅ (FUk,C �= ∅) if and only if, for every j ∈ PU

2 , A2
C (p j ) �= ∅.

Proof Let C ∈ PU . Assume first that PU
1 and PU

2 are both nonempty. Consider
f ∈ FUC and note that

(
( f (p j ), f (p j (ϕ∗,ψ∗,ρ0))) j∈PU

1
, ( f (p j )) j∈PU

2

)
∈ A1

C × A2
C ,

and

�3

(
( f (p j ), f (p j (ϕ∗,ψ∗,ρ0))) j∈PU

1
, ( f (p j )) j∈PU

2

)
= f .

Thus,�3 is bijective andwe have |FUC | = |A1
C ×A2

C | = |A1
C |·|A2

C |. The casePU
1 = ∅

and the case PU
2 = ∅ are similar and then omitted.

Assume now that C is decisive. Assume, by contradiction, that there exists j ∈ PU
1

such that A1
C (p j ) = ∅. Thus, for every y ∈ C(p j ) and z ∈ C(p j (ϕ∗,ψ∗,ρ0)) we have

z = ψ∗y. Using decisiveness, fix z ∈ C(p j (ϕ∗,ψ∗,ρ0)). If y1, y2 ∈ C(p j ), we then have
z = ψ∗y1 = ψ∗y2 so that y1 = y2. It follows that |C(p j )| = 1 = |C(p j (ϕ∗,ψ∗,ρ0))|
and that C(p j (ϕ∗,ψ∗,ρ0)) = ψ∗C(p j ), against U -consistency. The last part of the
theorem is trivial.
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Let now consider C ∈ CU
k . The theorem can be proved using formally the same

argument. ��

B.6 Proof of Theorem 9

Proof of Theorem 9 Let first U ≤ Sh × Sn × {id}. Then, by Theorem 31, we have that
FUC �= ∅. Let nextU � Sh × Sn ×{id}. In order to show that also in this case we have
FUC �= ∅, by Theorem 33, we need to prove that, for every j ∈ PU

2 , A2
C (p j ) �= ∅.

Assume, by contradiction, that there exists j ∈ PU
2 such that A2

C (p j ) = ∅ and
consider ψ j ∈ Sn as defined in (30). Then, for every x ∈ C(p j ), we have ψ j x = x .
Recall thatψ j is a conjugate of ρ0, and thus, in particular,ψ j �= id. SinceC is decisive,
we can pick x ∈ C(p j ). Thus, x ∈ Sn and, using the cancellation law in Sn , we get
the contradiction ψ j = id. ��

B.7 Proof of Theorem 10

Theorem 33 says that to guarantee the existence of aU -consistent resolute refinement
for some C ∈ CU

k ∪ PU , we need to satisfy the condition A2
C (p j ) �= ∅ for every

j ∈ PU
2 , where (p j ) j∈PU ∈ S(U ). We have seen in the proof of Theorem 9, that that

condition always holds if C ∈ PU . On the other hand, there is no reason for having
it satisfied when C ∈ CU

k . Indeed, in that context, A2
C (p j ) = ∅ for some j ∈ PU

2
means that for ψ j ∈ Sn defined by (30) we have

for every x ∈ C(p j ), ψ j x = x . (32)

In other words,ψ j fixes all the k-subsets of N appearing inC(p j ). Thus, the elements
of C(p j ) need to be union of ψ j -orbits and this does not constitute, in principle, a
contradictory fact.

The situation is then more variegated with respect to the case of the spcs and, in
order to manage it, we need some preliminary work. The next lemma is an easy but
very useful starting point.

Lemma 34 Let U ≤ G be regular such that U �≤ Sh × Sn × {id}, (p j ) j∈PU ∈ S(U )

and C ∈ CU
k . If j ∈ PU

2 is such that |C(p j )| = 1, then A2
C (p j ) �= ∅.

Proof Let C(p j ) = {x1} where x1 is a k-subset of N and assume, by contradiction,
that A2

C (p j ) = ∅. Thus, by (32), we have ψ j x1 = x1, with ψ j ∈ Sn defined in (30).
Since j ∈ PU

2 , there exists (ϕ1, ψ1, ρ0) ∈ StabU (p j ) and, by the regularity of U , we
have ψ1 = ψ j . Thus, ψ1x1 = x1. It follows that ψ−1

1 C(p j ) = C(p j ). On the other
hand, since U �≤ Sh × Sn × {id}, there exists (ϕ∗, ψ∗, ρ0) ∈ U and, by (26) and (8),
we deduce that

C(p j (ϕ∗,ψ∗,ρ0)) = C
(
(p j (ϕ1,ψ1,ρ0))(ϕ∗ϕ−1

1 ,ψ∗ψ−1
1 ,id)

)

= C(p j (ϕ∗ϕ−1
1 ,ψ∗ψ−1

1 ,id)) = ψ∗ψ−1
1 C(p j ) = ψ∗C(p j ),
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which contradicts (9). ��
Proof of the implication (ii) ⇒ (i) of Theorem 10 Assume that one among (a)–(d)
holds and let C ∈ CU

k be decisive. We will prove that FUk,C �= ∅.

If (a) holds then, by (28), we havePU
2 = ∅. Hence, byTheorem33,we immediately

deduce FUk,C �= ∅. Assume then that (a) does not hold but one among (b)–(d) holds.

Then, using the other implication in (28), we have PU
2 �= ∅ and, by Theorem 33, we

need to show that, for every j ∈ PU
2 , A2

C (p j ) �= ∅.
Assume by contradiction that for some j ∈ PU

2 , we have A2
C (p j ) = ∅. Thus (32)

holds true, for ψ j ∈ Sn defined by(30). Recall now that ψ j is a conjugate of ρ0. Thus,
if n is even all its orbits have size 2; if n is odd we have a unique orbit of size 1 given
by the only fixed point of ψ j and all the other orbits have size 2.

Assume first that k = 1. Then, for every x ∈ C(p j ), x is a singleton and the unique
element in x is a fixed point forψ j . Since, for n even,ψ j has no fixed point we deduce
that n is odd and C(p j ) = {{x1}} where x1 is the only fixed point of ψ j . Thus, by
Lemma 34, we get the contradiction A2

C (p j ) �= ∅.

Assume now that n ≤ 3. Because of the previous step, we need to consider only
the case n = 3 and k = 2. Thus, every x ∈ C(p j ) is a 2-subset of N fixed by ψ j . But
Tψ j = [1, 2], that is,ψ j = (a b) for some distinct a, b ∈ N . Thus, the only possibility
is x = {a, b} and hence C(p j ) = {{a, b}} is a singleton. Again Lemma 34 gives the
internal contradiction A2

C (p j ) �= ∅.

Assume next that n is even and k is odd. Every x ∈ C(p j ) is a k-subset of N fixed
by ψ j . But since every orbit of ψ j has size 2, any subset of N fixed by ψ j has even
size. Thus C(p j ) = ∅ against decisiveness.

Finally, assume that k = n − 1. If n is even, then k is odd and we conclude by the
previous step. If n is odd, we have that every x ∈ C(p j ) is a (n − 1)-subset of N
fixed by ψ j . But the unique subset of N of size n − 1 fixed by ψ j is the union of the
orbits of ψ j of size 2, that is N\{x1}, where x1 is the unique fixed point of ψ j . Thus,
|C(p j )| = 1 and Lemma 34 gives the contradiction A2

C (p j ) �= ∅. ��
We are now left with proving the implication (i) ⇒ (i i) of Theorem 10. To that

purpose, we need to introduce and study a special family of k-sccs.
Let U ≤ G be regular. For every p ∈ P , denote by ψp the unique permutation in

Sn such that

StabU (p) ⊆ (Sh × {id} × {id}) ∪ (
Sh × {ψp} × {ρ0}

)
.

The k-scc Uk associated with U is defined, for every p ∈ P , by

Uk(p) =
⎧
⎨

⎩

Pk(N ) if StabU (p) ≤ Sh × {id} × {id}

{x ∈ Pk(N ) : ψp x = x} if StabU (p) � Sh × {id} × {id}

The next two propositions show some important properties of Uk .

Proposition 35 Let U ≤ G be regular. The following facts are equivalent:
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(i) Uk is decisive.
(ii) One of the following condition is satisfied:

(a) PU
2 = ∅;

(b) n is odd;
(c) n is even with n ≥ 4 and k is even.

Proof (i)⇒ (ii) LetUk be decisive,PU
2 �= ∅ and n even. We show that n ≥ 4 and that

k is even. Since PU
2 �= ∅, there exists p ∈ P such that StabU (p) � Sh × {id} × {id}

and thus there exists (ϕ, ψp, ρ0) ∈ StabU (p). By Uk(p) �= ∅, we deduce that there
exists at least one k-subset x of N fixed by ψp. Since 1 ≤ k ≤ n − 1, x is a proper
nonempty subset of N which is union ofψp-orbits. Since n is even, we have n/2 orbits
all of size 2. If n = 2, then we have just one orbit and thus the only subsets of N which
are union of orbits are ∅ and N . It follows that n ≥ 4 and that k = |x | is even.

(ii) ⇒ (i) Let Q = {p ∈ P : StabU (p) � Sh × {id} × {id}}. Since Pk(N ) �= ∅, in
order to show that Uk is decisive, it is enough to see that for every p ∈ Q, we have
{x ∈ Pk(N ) : ψp x = x} �= ∅. If PU

2 = ∅, this is clear because necessarily we also
haveQ = ∅. Let n be odd and pick p ∈ Q. Then ψp has n−1

2 ≥ 1 orbits of size 2 and
one orbit of size 1. Assembling some of those orbits we can surely build a k-subset of
N fixed by ψp, whatever k is. Thus, {x ∈ Pk(N ) : ψp x = x} �= ∅. Let finally n be
even with n ≥ 4 and k be even. Then, we have 2 ≤ k ≤ n − 2. Pick p ∈ Q. Then,
ψp has n

2 ≥ 2 orbits of size 2. Assembling some of those orbits we can surely build a
k-subset of N fixed by ψp. Thus, {x ∈ Pk(N ) : ψp x = x} �= ∅. ��

In order to state the next result, let us first define the set

T = {(n, k) ∈ N
2 : n ≤ 3} ∪ {(n, k) ∈ N

2 : k ∈ {1, n − 1}}
∪{(n, k) ∈ N

2 : n is even, k is odd}. (33)

Proposition 36 Let U ≤ G be regular. Then, the following facts hold:

(i) If (ϕ, ψ, ρ) ∈ U and p ∈ P , then Uk(p(ϕ,ψ,ρ)) = ψUk(p).
(ii) If (n, k) /∈ T then, for every p ∈ P , |Uk(p)| ≥ 2. In particular Uk is decisive.
(iii) If (n, k) /∈ T then Uk ∈ CU

k .

Proof (i) Let first p be such that StabU (p) ≤ Sh × {id} × {id}. Then, also
StabU (p(ϕ,ψ,ρ)) ≤ Sh × {id} × {id} and thus Uk(p(ϕ,ψ,ρ)) = Uk(p) = Pk(N ) =
ψPk(N ) = ψUk(p).
Let next p be such that StabU (p) � Sh×{id}×{id}. Then also StabU (p(ϕ,ψ,ρ)) �

Sh × {id} × {id}. We find the link between ψp and ψp(ϕ,ψ,ρ) . Let (ϕ1, ψp, ρ0) ∈
StabU (p). Then, using the fact that � is abelian, we have

(ϕ1, ψp, ρ0)
(ϕ,ψ,ρ) = (ϕ

ϕ
1 , ψψ

p , ρ
ρ
0 ) = (ϕ

ϕ
1 , ψψ

p , ρ0) ∈ StabU (p)(ϕ,ψ,ρ)

= StabU (p(ϕ,ψ,ρ)).
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Thus, ψp(ϕ,ψ,ρ) = (ψp)
ψ . Using Pk(N ) = ψPk(N ) and (25), it follows that

Uk(p
(ϕ,ψ,ρ)) = {x ∈ Pk(N ) : ψp(ϕ,ψ,ρ) x = x}

= {ψx ∈ Pk(N ) : x ∈ Pk(N ), ψψpψ
−1ψ x = ψx}

= {ψx ∈ Pk(N ) : x ∈ Pk(N ), ψp x = x} = ψUk(p).

(ii) Let (n, k) /∈ T . Then, we have k /∈ {1, n−1} and n ≥ 4. Moreover, n is odd or n is
even and k is even. Thus, by Lemma 35,Uk is decisive. Fix now p ∈ P . We show
that |Uk(p)| ≥ 2. IfUk(p) = Pk(N ), we have |Uk(p)| = (n

k

) ≥ n ≥ 2. If instead
Uk(p) = {x ∈ Pk(N ) : ψp x = x}, then Uk(p) is made up by all the k-subsets
of N which can be formed as union of ψp-orbits. Since |Uk(p)| ≥ 1 we have at
least one of them, say x1 ∈ Uk(p). Let first n be odd. Then, n ≥ 5 and there are
n−1
2 ≥ 2 orbits of ψp of size 2 and one orbit of size 1. Since k ≥ 2, there is at

least one orbit of size 2 included in x1. On the other hand, not all the orbits of size
2 are included in x1, otherwise k = |x1| = n− 1. Now exchange one orbit of size
2 included in x1 with one orbit of size 2 left out. This builds another k-subset x2
of N belonging to Uk(p). Let next n be even and k be even. Here, n ≥ 4 and we
have n

2 ≥ 2 orbits of ψp all of size 2. Obviously, we have used at least one orbit
to build x1 but not all and we can exchange one orbit included in x1 with one left
out building another k-subset x2 of N belonging to Uk(p).

(iii) By (i) we have that condition (8) for U -consistency is satisfied; by (ii) we also
have that, trivially, condition (9) forU -consistency is satisfied because it is never
the case to have Uk(p) a singleton for any p ∈ P . Thus, Uk ∈ CU

k . ��
Proof of the implication (i) ⇒ (ii) of Theorem 10 By (28), we get the desired result
proving that ifPU

2 �= ∅ and (n, k) /∈ T , thenFUk,Uk
= ∅. Indeed, assume thatPU

2 �= ∅

and (n, k) /∈ T and consider Uk . By Proposition 36, we have that Uk ∈ CU
k . Consider

(p j ) j∈PU ∈ S(U ) and pick j ∈ PU
2 so that StabU (p j ) � Sh × {id} × {id}. Then, by

definition of Uk , we have

Uk(p
j ) = {x ∈ Pk(N ) : ψp j x = x} = {x ∈ Pk(N ) : ψ j x = x}.

Therefore we surely have that, for every x ∈ Uk(p), ψ j x = x and (32) is satisfied,
so that A2

Uk
(p j ) = ∅ and, by Theorem 33, FUk,Uk

= ∅. ��
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