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Summary 

Spare parts are strategic assets to ensure the execution of maintenance activities in industrial plants. 

They are exchangeable parts that can be used to replace damaged components, facilitating the 

restoration of the functioning of plants and equipment (Huiskonen, 2001; Tapia-Ubeda et al., 2020). 

Due to the significant role of spare parts, the scientific literature (Frazzon et al., 2016) has emphasized 

how crucial it is for spare parts retailers to ensure efficient supply chains (SCs), where the right spare 

parts are stored and delivered in the right place (close to the damaged plant or equipment) at the 

right time (breakdown time). Aligning spare parts deployment and delivery activities with customer 

needs leads to customer satisfaction, increased sales profits, greater sustainability, and efficient 

company performance (Giannikas et al., 2019). Based on this, a well-configured spare parts SC has 

been recognised as an ever-growing crucial aspect for the success and competitiveness of spare parts 

retailers (Esmaeili et al., 2021). 

Among the decisions that impact the configuration of spare parts SCs, stock deployment is of primary 

importance (Gregersen and Hansen, 2018). Antithetical stock deployment policies can be selected, 

such as inventory centralisation, decentralisation, or hybrid stock deployment policies, which imply 

countervailing advantages in terms of SC flexibility and responsiveness, delivery time, inventory levels, 

mitigation of demand uncertainty, facility management efforts, and number of supply orders to 

replenish distribution centres (DCs). Due to the opposite advantages of inventory centralisation and 

decentralisation and the typical volatility of spare parts demand, determining optimal stock 

deployment policies has been recognised as a challenging task worldwide (Basto et al., 2019; Vlajic et 

al., 2012), where the main issue is to minimise inventory costs while guaranteeing high service levels 

(Jiang et al., 2019). In the case of spare parts, the optimisation of stock deployment policies and the 

consequent configuration of SCs are further hampered by two main issues. First, the optimal stock 

deployment policies of spare parts should not be defined only once (when the business is founded) 

but should be regularly reviewed during the business lifetime, adapting to fluctuations in customer 

needs and spare parts criticality and, consequently, reviewing the SC configuration (Alfieri et al., 2017; 

Del Prete and Primo, 2021). Second, the optimal manufacturing technology should be selected for 

each stock keeping unit (SKU), opting for conventional (CM) or additive manufacturing (AM), where 

AM is considered the next revolution in the field of spare parts, allowing to disrupt the choice between 

inventory centralisation and decentralisation (Xu et al., 2021). 

Despite the achievable benefits of optimising the configuration of spare parts SCs, the choice between 

inventory centralisation and decentralisation is not the subject of much scientific research. It is also 

unclear what the optimal manufacturing technology is for spare parts (CM or AM) and how different 
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manufacturing technologies impact the choice of optimal stock deployment policies (Frandsen et al., 

2020; Trancoso et al., 2018). Moreover, the scientific literature has recently underlined the lack of 

structured methodologies (especially heuristic ones) to review the configuration of spare parts SCs, 

aligning stock deployment policies and spare parts manufacturing technology to demand fluctuations 

(Eldem et al., 2022). In this context, the present research aims to fill this gap by supporting and creating 

new knowledge for researchers and practitioners (spare parts retailers) on how to review the 

configuration of spare parts SCs, focusing on optimising the stock deployment policies and 

manufacturing technology of spare parts. To this end, we began the current research by developing a 

systematic literature network analysis (SLNA) on the topic of spare parts deployment in SC 

configuration and the choice between inventory centralisation and decentralisation. The SLNA 

combines a typical systematic literature review (SLR) with an analysis of quantitative information 

emerging from bibliographic networks. Therefore, the SLNA allowed us to understand the extant body 

of knowledge in the analysed domain, confirming the aforementioned literature gaps, laying the 

foundation for future research investigations, and providing an answer to the following research 

question. 

• RQ1: What are the extant literature and driving research streams on the topic of stock 

deployment in spare parts SCs? 

Based on the identified literature gap and future research opportunities, two additional research 

questions were derived: 

• RQ2: What viable heuristic methodologies can be proposed to review stock deployment 

policies in spare parts SCs? 

• RQ3: What is the optimal manufacturing technology for spare parts in SCs with different stock 

deployment policies? 

To answer the above research questions, the following research methods were applied: 

• RQ1: SLNA 

• RQ2: mathematical modelling, case study research, and experimental research 

• RQ3: mathematical modelling and experimental research 

By answering each research question, the following outcomes were achieved: 

• RQ1: An SLNA of the scientific literature on the topic of inventory 

centralisation/decentralisation and stock deployment in spare parts SCs: 

o Identification of the extant literature on the analysed topic; 
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o Investigation of past and current research themes related to the considered topic, 

determining the driving research streams, which mainly concur in developing the 

literature on this field. 

• RQ2 and RQ3: Three novel heuristic methodologies for reviewing the configuration of spare 

parts SCs: 

o Proposal of a data-driven heuristic methodology (based on a multicriteria ABC 

criticality classification) to review the stock deployment policies in spare parts SCs 

without considering the spare parts manufacturing technology (answers RQ2); 

o Proposal of a DSS to compare the cost-effectiveness of centralised and decentralised 

SCs, where spare parts can be purchased from suppliers as AM or CM parts and the 

optimal manufacturing technology is selected (answers both RQ2 and RQ3); 

o Proposal of a DSS to compare the cost-effectiveness of centralised and decentralised 

SCs, where spare parts can be purchased from suppliers as CM parts or produced in-

house as AM parts and the optimal manufacturing technology is selected (answers 

both RQ2 and RQ3); 

Overall, the main goal of this research work was achieved by providing support and new knowledge 

to researchers and practitioners (spare parts retailers) on how to review the configuration of spare 

parts SCs, focusing on optimising stock deployment policies and spare parts manufacturing 

technologies. Specifically, the answer to RQ1 highlights the current body of knowledge in the analysed 

domain, remarking on possible research opportunities. Then, the answers to RQ2 and RQ3 provide 

spare parts retailers with heuristic methodologies and DSSs to recurrently review the configuration of 

spare parts SCs, defining the optimal stock deployment policies with AM or CM spare parts. 
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Preface 

Before consulting this thesis, the reader needs to be familiar with some key concepts and terms, which 

are clarified in this section. 

The fulcrum of this thesis is spare parts retailers, namely aftersales service distributors, who procure 

spare parts from suppliers and deliver them to customers based on their demand (Daskin et al., 2002). 

Spare parts demand depends on the maintenance activities to be performed by customers on plants 

or equipment. Customers (as well as suppliers) may be both internal and external, depending on 

whether they work in the same company as the spare parts retailers. For example, assuming that a 

spare parts retailer also provides a public transport service, if he delivers spare parts to carry out 

maintenance activities on his own vehicles, then he targets an internal customer; however, if he 

delivers spare parts to maintain other vehicles (not his property), then he targets an external 

customer. Since all investigations conducted in this thesis are aimed at optimising the performance of 

spare parts retailers (considering their viewpoint, not that of suppliers or customers), we refer to spare 

parts supply chains (SCs), addressing those SCs that include only logistic activities managed by spare 

parts retailers, namely spare parts procurement and delivery (Tapia-Ubeda et al., 2020). Specifically, 

two-echelon SCs are considered, where, in the first echelon, spare parts are procured from suppliers 

and stored inside distribution centres (DCs), and in the second echelon, spare parts are delivered to 

customers. No other upstream or downstream echelons were considered for two reasons. First, other 

activities, such as spare parts production, are not usually in charge of spare parts retailers (unless they 

are performed inside DCs, and in that case, they are investigated). Second, no generality is lost by 

considering two-echelon SCs, since they can easily be extended into multi-echelon SCs if the supplier 

of one echelon is considered the customer of the previous one (Ding and Kaminsky, 2018). Section 2.1 

provides detailed information on the SC structure considered. However, as mentioned above, the focal 

point of this thesis is existing spare parts SCs, for which we investigate how to review the 

configuration. This means that SCs are considered where the echelons, the DCs in each echelon, and 

the procurement/delivery modalities have been set up by spare parts retailers since they have already 

established their business. However, the aim is to review the SC configuration over time to optimise 

logistics activities and keep them aligned with customer demand. 

Lastly, it is worth reporting a semantic clarification. In this thesis, the terms ”manufacturing 

technology” and “manufacturing option” are used as synonyms, referring to how spare parts were 

produced (before being procured and delivered by retailers) and opting for additive (AM) or 

conventional (CM) manufacturing.
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1. Introduction 

This section discusses the context and motivation for the current research study. First, a general 

background is introduced to familiarise readers with the terms and topics investigated throughout the 

rest of the study. Next, the motivation for conducting the research study is explained. Subsequently, 

the scope of this research study is clarified, defining the research questions and objectives of the 

study. Finally, the outline of the whole study is described, summarising the content of each section to 

guide readers who may be interested in consulting only specific parts of this work. 

1.1. Background 

As strategic assets that ensure the execution of maintenance activities in companies, spare parts are 

exchangeable parts suitable for replacing damaged components and restoring the functioning of 

plants and equipment (Huiskonen, 2001). Hence, their availability is fundamental for reducing 

breakdown times and their consequent negative effects at both the operational and economic levels. 

Given the key role of spare parts, the scientific literature (Frazzon et al., 2016) has emphasised the 

need to optimally configure spare parts supply chains (SCs), enabling spare parts retailers to store and 

deliver the right Stock Keeping Units (SKUs) in the right place (close to the damaged plant or 

equipment) at the right time (breakdown time). However, optimally configuring spare parts SCs is not 

an easy task for four main reasons. First, many interrelated decisions have to be made (e.g., how many 

DCs to set up, where to geographically locate them, and how to replenish each DC), and changes in 

one of these decisions influence the others (Fathi et al., 2021; Jiang and Nee, 2013). Second, while an 

unavailability of spare parts (inventory stock-out) leads to customer dissatisfaction, filling distribution 

centres (DCs) with excessive inventories causes high administrative costs for spare parts retailers, as 

well as opportunity costs related to bad investments in resources (Stoll et al., 2015). Therefore, spare 

parts retailers should search for a trade-off between reduced inventories and high service levels 

(Esmaeili et al., 2021). Third, specific features hinder the configuration of spare parts SCs compared 

to other items (e.g., productive supplies, raw materials, or commodities), such as the unpredictability 

of demand and high expected service levels (Tapia-Ubeda et al., 2020). Finally, due to the variability 

of spare parts demand, if spare parts retailers want to remain competitive in the market, they cannot 

define the SC configuration only once (when the business is founded); rather, they must review the 

configuration of existing SCs during the whole business lifetime, adapting to fluctuations in customer 

needs and changes in spare parts criticality (Alfieri et al., 2017; Del Prete and Primo, 2021). 

Despite the aforementioned difficulties, optimising the configuration of a spare parts SC and reviewing 

this optimisation over time provides multiple benefits for spare parts retailers, including high 

customer satisfaction (due to the availability of spare parts in DCs), increased sales profits, greater SC 
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sustainability, and higher SC performance (Giannikas et al., 2019). For this reason, to ensure the 

success of spare parts retailers, it is essential to adopt structured methodologies for configuring and 

reviewing the configuration of spare parts SCs. However, while some literature studies have examined 

how to configure spare parts SCs for the first time (when the business is founded), the problem of 

reviewing the configuration of existing SCs has been overlooked (Del Prete and Primo, 2021; Eldem et 

al., 2022). As a result, due to the lack of structured methodologies to review the configuration of spare 

parts SCs, many spare parts retailers choose the SC configuration only one time and never question it 

(Hu et al., 2018). 

Among the decisions that affect the review of an existing spare parts SC configuration, associating 

optimal stock deployment policies with individual SKUs has been recognised as of primary importance 

(Basto et al., 2019; Gregersen and Hansen, 2018; Vlajic et al., 2012). Choosing stock deployment 

policies implies defining (each time the SC configuration is reviewed) how to allocate stocks of spare 

parts inside DCs and opting for antithetical strategies, such as inventory centralisation, 

decentralisation, or hybrid stock deployment policies (Pour et al., 2016). These alternatives differ 

based on the so-called “degree of inventory centralisation” (also known as the “degree of inventory-

pooling”), where inventory pooling is the practice of using a common pool of stocks to satisfy the 

random demand accumulated from two or more customers (Wang and Yue, 2015). In centralisation, 

the maximum degree of inventory centralisation is achieved. All SKUs are stored in a single central DC, 

which is tasked with serving the demand of all customers (Milewski, 2020). The advantages of 

centralisation include mitigating demand uncertainty and minimising inventory levels (due to the well-

known risk-pooling effect), a low number of supply orders to replenish DCs, and reduced facility 

management efforts (a single DC is set, and few or no duplications of equipment and staff are 

required), but it implies high delivery times along with reduced SC flexibility and responsiveness 

(Wanke and Saliby, 2009). Conversely, in decentralisation, a minimum degree of inventory 

centralisation is achieved. In fact, multiple independent DCs are set, each storing SKUs to meet the 

demand of a specific local customer (Alvarez and van der Heijden, 2014). This stock deployment policy 

is suggested when the SC implies delivering spare parts to many customers spread over a large area 

(Daskin et al., 2002). This SC configuration has countervailing advantages to centralisation, including 

high SC flexibility and responsiveness, as well as reduced delivery times, but it loses the advantages 

related to risk-pooling and thus entails no mitigation of demand uncertainty and high inventory levels. 

Decentralisation also faces a high number of supply orders and requires high facility management 

efforts since multiple DCs are set (Holmström et al., 2010). Finally, in hybrid stock deployment policies, 

an intermediate degree of inventory centralisation is achieved since an intermediate number of DCs 

is selected between that of centralisation (one) and that of decentralisation (one per each local 
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customer), tasking each DC with filling the demand of some customers (partial aggregation), and thus 

achieving trade-off advantages between centralisation and decentralisation (Cavalieri et al., 2008). 

Figure 1 summarises the pros and cons of different stock deployment policies. 

 

Figure 1. Advantages and disadvantages of different stock deployment policies. 

Given the contrasting advantages of inventory centralisation and decentralisation, reviewing the SC 

configuration by focusing on optimising stock deployment policies has been recognised as a 

challenging but strategic opportunity for spare parts retailers (Cohen et al., 2006; Milewski, 2020). In 

fact, it has been proven that maintaining the optimisation of stock deployment policies during the 

business lifetime enables spare parts retailers to control inventory investments (which typically 

represent 20% to 60% of the company’s balance sheet assets), cut unnecessary SC costs, obtain a 

customer-centred aftersales service, and meet pre-determined service levels, which is essential for 

building up customer loyalty and the success of spare parts retailers (Manikas et al., 2019; Singh, 

2006). Despite the benefits achievable by optimising stock deployment policies (thus reviewing the SC 

configuration), little research has focused on the choice between inventory centralisation, 

decentralisation, and hybrid stock deployment policies in spare parts SCs (Graves and Willems, 2005; 

Zijm et al., 2019). Therefore, nowadays, many spare parts retailers struggle to find structured 

methodologies to cope with this issue (Avventuroso et al., 2018; Khajavi et al., 2014). 

This literature gap has recently been exacerbated by another aspect. Additive manufacturing (AM) has 

been underlined as an emerging technology, that disrupts the choice of optimal stock deployment 

policies and the consequent review of spare parts SC configurations (Xu et al., 2021). Unlike 

conventional manufacturing (CM), AM enables more flexible and responsive SCs, where the spare 

parts production can be moved closer to the end customer (achieving an “in-house” production by 
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installing 3D printers directly into DCs), consequently reducing the dependency on suppliers, the 

procurement lead times, and the inventory levels (Mashhadi et al., 2015; Waterman and Dickens, 

1994). These AM abilities revolutionise the characteristics of inventory centralisation, 

decentralisation, and hybrid stock deployment policies. For this reason, when reviewing the 

configuration of spare parts SCs, spare parts retailers also have to decide on the manufacturing 

technology to adopt for each SKU (AM or CM), since this choice affects decisions on stock deployment 

policies (Ahmed et al., 2022; Chaudhuri et al., 2021). However, the scientific literature lacks structured 

methodologies for comparing different manufacturing technologies (Knofius et al., 2021). Therefore, 

the convenience of performing a switchover from CM to AM spare parts cannot be established, and 

the potential for success of spare parts retailers is limited. Because SKUs cannot be associated with 

preferable manufacturing technology, the selection of optimal stock deployment policies is hampered, 

which prevents an adequate review of the spare parts SC configuration (Frandsen et al., 2020; 

Trancoso et al., 2018). 

To fill the identified gaps, this study investigates the topic of reviewing the configuration of spare parts 

SCs, focusing on optimising stock deployment policies and considering different spare parts 

manufacturing technologies. In this domain area, research activities were carried out to support and 

create new knowledge for researchers and practitioners (spare parts retailers) in two main ways. First, 

by examining and reorganising the extant literature through a systematic literature network analysis 

(SLNA), we confirm the literature gaps, and we identify the driving research streams, laying the 

foundation for future research opportunities. Second, by providing novel heuristic methodologies and 

decision support systems (DSSs) that spare parts retailers can use to understand how to review and 

optimise stock deployment policies of spare parts with different manufacturing technologies. 

1.2. Research motivation 

This research project originates from a specific request for support made by two companies working 

in the field of spare parts retail (one from southern Europe and the other from northern Europe). Both 

companies identified as a key element for their success the optimisation of spare parts SC 

configurations, with a specific emphasis on optimising stock deployment policies (i.e., opting for 

inventory centralisation, decentralisation, or hybrid stock deployment policies). Due to the typical 

volatility of spare parts demand, the two companies underlined the importance of continuously 

reviewing the stock deployment policies (and the consequent SC configuration) during the business 

lifetime, aligning them with ever-changing customer needs and spare parts criticality. However, 

company managers revealed a strong difficulty in doing so, pointing out the lack of quick and easy-to-

use (but reliable and structured) literature methodologies for reviewing stock deployment policies in 

spare parts SCs. 
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This gap was first highlighted by company managers and then confirmed by consulting the scientific 

literature. Based on a preliminary literature review on the topic of spare parts deployment, we 

determined that an optimal SC configuration is essential for the success of spare parts retailers (Cohen 

et al., 2006; Yazdekhasti et al., 2022). Among the decisions that impact the configuration of spare parts 

SC, stock deployment policies are of paramount importance (Stoll et al., 2015). However, stock 

deployment policies cannot be chosen only once (when the business is founded); rather, they must 

be reviewed over time to follow changes in spare parts demand and lead to higher customer 

satisfaction and company competitiveness (Del Prete and Primo, 2021). For this reason, it is important 

to seek quick and easy-to-use (but reliable and structured) methodologies that allow for the 

continuous review of stock deployment policies in spare parts SC (Manikas et al., 2019; Sheikhar and 

Matai, 2022). In particular, to provide spare parts retailers with practical solutions applicable in real 

companies, heuristic optimisation methodologies should be developed that show the potential for 

success, converging to optimal solutions without requiring the application of high computing 

resources and advanced technologies (which are still lacking in many real companies) (Basto et al., 

2019). However, the extant scientific literature neglects not only heuristic methodologies but, more 

generally, any methodologies for reviewing stock deployment policies in spare parts SCs (Gregersen 

and Hansen, 2018; Milewski, 2020). Therefore, stemming from both industrial and theoretical 

motivations, this research project was developed to fill the identified gap and create new knowledge 

(as well as quick and easy-to-use heuristic methodologies) to review stock deployment policies in 

spare parts SCs. 

Through our investigations of how to review stock deployment policies in spare parts SCs, and 

consulting both companies and the scientific literature, another issue emerged that further motivated 

this research study. AM is an emerging manufacturing technology that shows great differences from 

CM, offering the opportunity to revolutionise the configuration of spare parts SCs (Frandsen et al., 

2020). Due to the distinct impacts of AM and CM on the characteristics of spare parts SCs, optimal 

stock deployment policies should be selected depending on many factors, including spare parts 

manufacturing technology. However, there are no clear indications (neither in the literature nor in 

industrial contexts) of the optimal manufacturing technology to adopt for spare parts or how AM and 

CM impact the configuration of spare parts SCs (Khajavi et al., 2014; Xu et al., 2021). Hence, further 

studies are required to encourage the correct introduction of AM in companies, thus reviewing the 

stock deployment policies to establish not only whether it is more convenient to opt for inventory 

centralisation, decentralisation, or hybrid stock deployment policies but also whether the selected 

alternative should be applied to CM or AM spare parts. This need additionally motivated the present 
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research study, where we explore how to review the configuration of spare parts SCs, focusing on 

optimising stock deployment policies and considering different manufacturing options. 

1.3. Research scope 

The current research study lies within the research area of reviewing the spare parts SC configuration. 

Specifically, the focus is on the domain of stock deployment optimisation (i.e., the choice of inventory 

centralisation, decentralisation, or hybrid stock deployment policies). 

As aforementioned, many decisions affect the spare parts SC configuration. Among these decisions, 

one of the fundamentals is the stock deployment policies associated with individual SKUs, opting for 

inventory centralisation, decentralisation, or hybrid stock deployment policies. Since the demand for 

spare parts is typically volatile and unpredictable, stock deployment policies should be continuously 

reviewed during the business lifetime, adapting to fluctuations in customer needs and spare parts 

criticality. Hence, seeking to improve customer satisfaction and enable the success of spare parts 

retailers, the scope of this project is to investigate how to review and optimise stock deployment 

policies in spare parts SCs. 

Given the recent development of AM as a successful manufacturing technology in the field of spare 

parts, spare parts retailers have shown a strong interest in investigating the impacts of AM on SC 

configuration and comparing its advantages over CM. Based on this interest, willing to create new 

(useful) knowledge for both researchers and practitioners (spare parts retailers), in this research 

study, we decided to investigate how to optimise stock deployment policies not only by evaluating the 

benefits of different degrees of inventory centralisation (centralisation, decentralisation, or hybrid 

stock deployment policies), but also by considering different manufacturing technologies (AM and 

CM).  

1.4. Research questions and objectives 

Motivated by the challenges and research problem explained in Section 1.2, and pursuing the research 

scope outlined in Section 1.3, the aim of the current study can be summarised as follows: 

• To support and create new knowledge for researchers and practitioners (spare parts retailers) 

on how to review the configuration of spare parts SCs, focusing on optimising stock 

deployment policies and considering different manufacturing options. 

To achieve this aim, the first goal was to understand the state-of-the-art literature on the topic of 

stock deployment in spare parts SCs, thus identifying the driving research streams that mainly concur 

in developing the literature in this field. To this end, we performed an SLNA to answer the following 

research question: 
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• RQ1: What are the extant literature and driving research streams on the topic of stock 

deployment in spare parts SCs? 

Besides understanding the current body of knowledge in the considered topic, we identified three 

driving research streams from the SLNA: the optimisation of stock deployment in SCs with AM spare 

parts, the optimisation of stock deployment in closed loop SCs, and the use of heuristic optimisation 

methodologies to review stock deployment policies in spare parts SCs. Since there was no time to 

explore all these possible research opportunities, according to the request for support received by 

real companies (already explained in Section 1.2) and considering the literature gaps highlighted by 

them, we decided to limit the objectives of this study. Specifically, we focused on providing new 

insights into the following: 

• The use of heuristic optimisation methodologies to review stock deployment policies in spare 

parts SCs. 

• The optimisation of stock deployment in SCs with AM spare parts. Here, we investigated the 

impact of AM on the configuration of spare parts SCs, comparing AM with CM, and 

determining the optimal spare parts manufacturing technology in SCs with different stock 

deployment policies. 

From these research objectives, two additional research questions were derived, that guided the next 

research process: 

• RQ2: What viable heuristic methodologies can be proposed to review stock deployment 

policies in spare parts SCs? 

Owing to the typical volatility of spare parts demand, spare parts retailers should not plan the stock 

deployment policies of individual SKUs only once (when the business is founded). Rather, they should 

review them during the business lifetime and align them (and the consequent SC configuration) with 

changes in customer needs and spare parts criticality. 

The review of stock deployment policies should not be made randomly, but should be based on 

structured methodologies that indicate the optimal alternative between inventory centralisation, 

decentralisation, or hybrid stock deployment policies, aiming to reduce logistic costs while ensuring a 

high service level. Specifically, as emerged in the SLNA, heuristic optimisation methodologies should 

be preferred to provide spare parts retailers with quick and easy-to-use methodologies applicable in 

real companies without requiring high computational resources and advanced technologies. However, 

the extant literature overlooks heuristic methodologies of this type, and the topic of reviewing stock 

deployment policies in spare parts SCs has not been sufficiently explored. Therefore, the second 
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research question aims to develop and propose novel heuristic methodologies to review and optimise 

stock deployment policies in spare parts SCs. 

• RQ3: What is the optimal manufacturing technology for spare parts in SCs with different stock 

deployment policies? 

The review of stock deployment policies in spare parts SCs is further complicated because AM is an 

emerging manufacturing technology that shows great differences from CM, thus offering the 

opportunity to revolutionise the characteristics of spare parts SCs. Because of the distinct impacts that 

AM and CM have on the characteristics of spare parts SCs, the optimal choice between inventory 

centralisation, decentralisation, and hybrid stock deployment policies should also be made a function 

of the manufacturing technology selected for spare parts. For this reason, nowadays, spare parts 

retailers are interested in comparing the impacts of AM and CM on the choice of optimal stock 

deployment policies and aim to invest in AM technologies if this produces benefits over CM. However, 

many spare parts retailers are still far from adopting AM technologies in their SCs, since the literature 

lacks structured methodologies to establish when a switchover from SCs of CM spare parts to AM ones 

is convenient. Based on this, the third research question aims to provide spare parts retailers with 

DSSs to compare AM and CM in SCs with different stock deployment policies and to select the optimal 

alternative. As a result, the two DSSs will guide the rules for choosing between inventory 

centralisation, decentralisation, or hybrid stock deployment policies and for selecting the optimal 

manufacturing technology. 

1.5. Thesis outline 

This thesis is written in the form of a collection of papers. Hence, the thesis outline is divided into two 

parts. Part I provides the main report, which is based on research that has been carried out and 

described in the following appended papers. Part II contains a compendium of scientific papers 

developed on the topic of “reviewing the configuration of spare parts SCs considering stock 

deployment and manufacturing options”. 

Part I provides an overview of the research process and synthesises the contributions of the 

independent appended publications into a coherent argument, thus clarifying their interrelations. Part 

I is organised as follows. 

Section 1 introduces the specific problems investigated and the motivations behind the developed 

research. Furthermore, Section 1 describes the research questions addressed in this study, and the 

objectives stated to answer each research question. This section concludes by summarising the scope 

and structure of the study. 
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Section 2 presents the theoretical background of the research. It starts by describing how to configure 

spare parts SCs, explaining their differences with respect to other SCs (of commodities, raw materials, 

productive supplies, etc.). Next, Section 2 underlines the importance of reviewing the spare parts SC 

configuration over time, particularly optimising stock deployment policies. Here, the main differences 

between inventory centralisation, decentralisation, and hybrid stock deployment policies are 

discussed, reporting their respective advantages and disadvantages. Finally, specific considerations 

are provided regarding the impact of AM and CM on the characteristics of spare parts SCs, explaining 

why these differences affect the optimisation of stock deployment policies and spare parts 

manufacturing technologies. 

Section 3 describes the research design by introducing the research methods used to develop this 

project and by discussing the research quality based on the four accepted requirements. 

Section 4 presents and discusses the results and findings of this work, explaining how the key 

outcomes address the research questions.  

Section 5 summarises the research study and provides the final remarks and conclusions. 

Furthermore, the research limitations are highlighted, and some recommendations for further 

research are proposed. 

Figure 2 provides a schematic representation of the outline of Part I, showing how Sections 1-5 

compose the well-known introduction, methods, results, discussion, and conclusion (IMRaD) structure 

suggested by Cargill and O’Connor (2021). 

 

Figure 2. Outline of Part I 

Part II contains the collection of papers, which were written to disseminate the results and outcomes 

of the developed research study. It consists of two published papers (Papers 1 and 3) and two papers 

that are currently under the review process (Paper 2 and 4): 
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• Paper 1: Cantini, A., Ferraro S., Leoni L., and Tucci M., 2022. Inventory centralization and 

decentralization in spare parts supply chain configuration: a bibliometric review. Proceedings 

of the Summer School Francesco Turco. 

• Paper 2: Cantini, A., Peron, M., De Carlo, F., and Sgarbossa, F., 2022. A data-driven 

methodology for the dynamic review of spare parts supply chain configuration. International 

Journal of Production Research (currently under review). 
 

This paper originates as an extended version of the paper “Cantini, A., De Carlo, F., Leoni, L., 

Tucci, M., 2021. A novel approach for spare parts dynamic deployment”, which has been 

published at the “Proceedings of the Summer School Francesco Turco” and awarded with the 

"Best Paper Award". However, the awarded paper (short version) is not appended to this 

thesis since its content is entirely included and properly extended in the above paper (extended 

version). Therefore, the authors consider redundant its consultation. 

• Paper 3: Cantini, A., Peron, M., De Carlo, F., Sgarbossa, F., 2022. A decision support system for 

configuring spare parts supply chains considering different manufacturing technologies. 

International Journal of Production Research 0, 1-21. doi: 10.1080/00207543.2022.2041757 

• Paper 4: Cantini, A., Peron, M., De Carlo, F., and Sgarbossa, F., 2022. On the impact of additive 

manufacturing on the review of spare parts supply chains configuration: a decision support 

system. International Journal of Production Research (currently under review).
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2. Theoretical background 

This section provides the theoretical background that frames and supports the current research study. 

As summarised in Figure 3, Subsection 2.1 presents the general context of the analysis, explaining how 

to configure spare parts SCs and highlighting the difficulties associated with managing spare parts SCs 

as opposed to other types of products (e.g., commodities, raw materials, and productive supplies). 

Having configured spare parts SCs, Subsection 2.2 provides specific explanations on how to review the 

configuration of existing SCs, reporting on the two main decisions to be made, and why we focus on 

one of them (i.e., optimising stock deployment policies). Finally, in Subsection 2.3, we describe the 

impacts of AM and CM on the characteristics of spare parts SCs, explaining why the manufacturing 

technology selected for spare parts affects the choice of optimal stock deployment policies (and the 

consequent SC configuration review), which must be optimised. 

 

Figure 3. Schematic representation of the content in Section 2 

2.1. Configuring spare parts supply chains 

An SC is a network of organizations, individuals, activities, information, and resources involved in 

creating a product or service and delivering it to end-customers (Larson and Rogers, 1998). As defined 

by Quinn (1997), an SC encompasses all the activities associated with moving goods (and the related 

information) from the raw materials stage through to the final consumer, including procurement, 

production scheduling, order processing, storage, inventory management, delivery (transportation), 

and customer service. Depending on the context, an SC can assume sophisticated and dynamic 

structures involving multiple suppliers, manufacturers, DCs, and customers. Moreover, the material 

flow may be in a single direction (from suppliers to customers) or in multiple directions, even including 

reverse flows, where used products re-enter the SC at any point (Martin et al., 2010). However, as 

reported by Tapia-Ubeda et al. (2020), when dealing with spare parts SCs, spare parts retailers typically 

face two-echelon SCs, whose structure (Figure 4) has been described by many authors (Daskin et al., 

2002; Huiskonen, 2001; Martin et al., 2010). One or more suppliers serve spare parts to replenish the 
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set of DCs owned by spare parts retailers (first echelon). Then (second echelon), from each DC, spare 

parts retailers deliver certain stocks to satisfy customer demand at specific consumption points 

(Alvarez and van der Heijden, 2014). Therefore, in this thesis, we focused on two-echelon spare parts 

SCs structured as shown in Figure 4, bearing in mind two main considerations. First, the choice of 

focusing on two-echelon SCs fits with Cohen et al. (1997), who reported that a high number of 

echelons rarely occur in real spare parts retail companies, indicating that two-echelon SCs are more 

frequent. Hence, focusing on two-echelon SCs provides spare parts retailers with research study 

results that are practical and applicable in real companies. Second, no generality is lost by considering 

two-echelon SCs, since they can easily be extended into multi-echelon SCs if the supplier of one 

echelon is considered the customer of the previous one (Ding and Kaminsky, 2018). 

 

Figure 4. Common structure of a spare parts SC (Tapia-Ubeda et al., 2020) 

Besides defining the number of echelons (two, as in Figure 4), configuring a spare parts SC has been 

defined as an activity to determine the type, size, number, and location of DCs where spare parts are 

temporarily stocked on their way to the end-customer and define how to procure, store, and deliver 

spare parts (Mangiaracina et al., 2015). Because of many options to choose from and the high variety 

of available network alternatives, configuring spare parts SCs is a complex mission that requires 

adopting structured methodologies for accomplishing three main tasks (Ballou, 1981). The first task is 

to select the facility design, which involves choosing the number of DCs to be set, the geographical 

location of each DC, the capacity of each facility, and the stock deployment policies, defining how to 

allocate customer demand to each DC, and which SKUs to store in each DC (Abrahamsson and Brege, 

1997). The second task involves defining the stock supply policies in each DC, which means planning 

how to replenish inventories, opting for make-to-stock (push) or order-on-demand (pull) policies, and 
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deciding how many stocks to supply and how often (Zhang et al., 2021). Finally, the third task entails 

designing the delivery mode, which involves selecting the transportation fleet and the customer 

delivery schedule while seeking to reduce delivery time and minimise transportation costs (Mourits 

and Evers, 1995). Figure 5 depicts the main decisions that affect an SC configuration. 

 

Figure 5. Decisions that impact the configuration of SCs 

On top of the difficulties related to the need to accomplish several tasks, another aspect makes the 

SC configuration process even more complicated. Specific features distinguish spare parts from other 

products (such as productive supplies, raw materials, or commodities) (Tapia-Ubeda et al., 2020). First, 

spare parts demand is typically characterised by low volumes and unpredictable behaviour, which is 

strongly volatile and sporadic (Persson and Saccani, 2007). This erratic demand for spare parts is 

dictated by customer maintenance policies related to plants or equipment failures that are not always 

easy to predict. Second, technology and assets advance over the years, and so do their spare parts. 

Hence, the demand for some SKUs is sometimes met through the cannibalism of other parts, which 

increases demand uncertainty (Kennedy et al., 2002). Third, service level requirements are usually 

high, as the effects of spare parts unavailability may be financially remarkable for customers (Cohen 

and Lee, 1990). Fourth, SKUs managed by spare parts retailers may be numerous and expensive, 

which, combined with the unpredictability of demand, makes it essential to minimise inventories 

despite the need to ensure high service levels (Huiskonen, 2001). Finally, spare parts can be produced 
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with different manufacturing technologies (AM and CM), which impact SC characteristics (as later 

discussed in Section 2.3), resulting in an additional variable to consider in the SC configuration process. 

Despite the abovementioned difficulties, optimally configuring spare parts SCs is fundamental, as 

introduced in Section 1.1. A well-configured SC helps spare parts retailers achieve customer loyalty 

(Manikas et al., 2019), along with minimising the SC total costs, which include the cost for purchasing 

spare parts from suppliers (directly related to spare parts production costs), the cost for emitting 

supply orders to replenish DCs (ordering costs), the cost for keeping stocks in inventory (holding costs), 

the transportation cost (for delivering spare parts to customers), the fixed cost of facilities, and the 

backorder cost. Given the significant impacts of a well-configured SC on the performance of spare 

parts retailers, it is strongly recommended to adopt structured methodologies for optimally 

configuring SCs (Graves and Willems, 2005; Melo et al., 2009). 

2.2. Reviewing the configuration of spare parts supply chains and the issue of optimising 

stock deployment policies 

In addition to highlighting the importance of optimally configuring an SC every time a new business is 

founded, in Section 1.1, we also pointed out the need to review the configuration of existing spare 

parts SCs during the business lifetime. According to many authors (Caron and Marchet, 1996; Eldem 

et al., 2022; Mangiaracina et al., 2015), defining an initial SC configuration with optimal performance 

is a good starting point, but it is not sufficient to face the volatility of spare parts demand and 

perpetuate SC optimisation over time. 

Therefore, considering an existing SC (where the echelons, the DCs in each echelon, and the 

transportation fleet are already set), spare parts retailers should regularly review its configuration, 

perform fine-tuning activities, and maintain an alignment between logistics activities and customer 

needs. To this end, among the decisions that affect the configuration of spare parts SCs (Figure 5), two 

are reported to be of primary importance when reviewing the configuration of existing SCs, as 

depicted in Figure 6 (Manikas et al., 2019): the stock deployment policies and the stock supply policies 

adopted for individual SKUs. By not adequately reviewing the stock deployment and supply policies 

over time, variations in spare parts demand may produce the following negative situations: (i) if the 

demand for spare parts increases (becoming higher than the average inventory levels), and no change 

is made in stock deployment and supply policies, the number of stock-outs increases, leading to high 

backorder costs and high ordering costs, customer dissatisfaction, and inadequate maintenance 

activities downstream of the SC; (ii) conversely, if the demand for spare parts decreases (becoming 

lower than the average inventory levels), and no change is made in stock deployment and supply 

policies, then spare parts are not sold, resulting in high holding costs, obsolescence of spare parts, and 
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a wrong investment of corporate economic resources; (iii) finally, if the demand for spare parts 

changes (decreasing or increasing), but spare parts retailers change the stock deployment and supply 

policies based on experience or inadequate empirical approaches, these changes may be incorrect, 

falling into one of the previous situations. 

 

Figure 6. Main decisions that impact the review of a spare parts SC configuration and the specific focus of this thesis 

To avoid these negative situations, Gregersen and Hansen (2018) strongly recommended spare parts 

retailers to adopt structured methodologies to review SC configuration, which implies performing two 

main steps. First, the optimal stock deployment policies should be outlined for each SKU, choosing 

how to allocate spare parts in DCs (which involves allocating customer demand to DCs and, 

accordingly, deciding which DC should store the inventory of each SKU). Next, the optimal supply 

policies should be established in each DC, choosing, for each SKU, how many stocks to supply and how 

often. Concerning how to review and optimise stock supply policies in a single DC, the scientific 

literature has provided several methodologies, such as those reported by Cohen et al. (1992), Gelders 

and Van Looy (1978), and Ivanov (2021). Conversely, in this project, we focus on optimising stock 

deployment policies for the following reason: structured methodologies to accomplish this task are 

overlooked by the literature, and this hampers spare parts retailers from properly reviewing their SC 

configurations (Abdul-Jalbar et al., 2003; Del Prete and Primo, 2021).  

About the existing stock deployment policies, those possible in two-echelon spare parts SCs (Figure 4) 

were first mentioned in 1931 (Taylor, 1931), resulting in inventory centralisation, decentralisation, or 
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hybrid stock deployment policies (as reported in Section 1.1). Despite the available alternatives, it is 

not yet clear how to associate the optimal ones with individual SKUs. Indeed, mainly qualitative 

discussions have been provided to compare different stock deployment policies, while quantitative 

comparisons have been neglected (Mangiaracina et al., 2015; Milewski, 2020). The qualitative 

considerations that emerged in the literature can be summarised as shown in Figure 1, translating, in 

terms of SC costs, into the following statements (Ding and Kaminsky, 2018). Lower facility costs arise 

in the case of inventory centralisation, since only one DC is managed, with few or no duplications of 

staff and equipment (Roundy, 1985). Moreover, given the same spare parts purchasing and 

production costs (which are necessary to satisfy customer demand), lower holding and ordering costs 

are achieved in inventory centralisation, since this stock deployment policy benefits from the risk-

pooling effect, mitigating demand unpredictability (Eppen, 1979). Conversely, lower transportation 

costs are achieved in inventory decentralisation since multiple DCs are set, and shorter distances arise 

between DCs and customers (Schmitt et al., 2015). Finally, conflicting considerations can be provided 

regarding backorder costs, since inventory centralisation reduces the probability of inventory stock-

outs owing to the risk-pooling effect, but inventory decentralisation increases SC flexibility and 

responsiveness, which enable higher service levels and faster deliveries in the case of emergency 

shipments (Zijm et al., 2019). As a trade-off, hybrid stock deployment policies can be exploited to 

achieve intermediate SC costs between inventory centralisation and decentralisation (Cavalieri et al., 

2008). 

Given the lack of quantitative methodologies to compare different stock deployment policies (and 

associating SKUs with the optimal one), spare parts retailers are prevented from reviewing their SC 

configuration, thus minimising SC total costs. To fill this gap, the scientific community has recently 

moved its attention towards this topic (Milewsky, 2020), identifing valuable suggestions to develop 

structured methodologies to optimise stock deployment policies in spare parts SCs. Specifically, many 

authors (Amirkolaii et al., 2017; Basto et al., 2019; Zhang et al., 2001)  have recommended developing 

heuristic optimisation methodologies, rather than simulation or exact optimisation ones, since they 

provide spare parts retailers with practical solutions applicable in real companies. In fact, according to 

the scientific literature (Huiskonen, 2001; Sheikhar and Matai, 2022), heuristic optimisation 

methodologies are usually quick and easy-to-use, which fits with the needs of spare parts retailers in 

two ways. First, a recurrent review of the SC configuration can be performed, even in SCs with 

thousands of SKUs. Second, the application of such methodologies is allowed, even in spare parts retail 

companies, where no advanced technologies and computational resources are available (which 

instead are usually required to solve simulation or exact optimisation methodologies). 
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2.3. The impact of manufacturing options in reviewing the configuration of spare parts 

supply chains 

The challenge of optimising stock deployment policies (thus reviewing the spare parts SC 

configuration) has been further complicated by the possibility of producing spare parts through two 

alternative manufacturing options: AM or CM. AM is the process of fabricating 3D objects directly 

from a computer-aided design (CAD) project, adding layers of raw material in a bottom-up process 

without needing tools or moulds (Ghadge et al., 2018). On the contrary, in CM, material is removed 

via techniques such as machining, drilling, or grinding, or being cast into moulds (Pereira et al., 2019). 

Due to their opposite nature, AM and CM have different impacts on the characteristics of spare parts 

SCs, thus influencing the SC configuration review and the selection of optimal spare parts 

manufacturing technology. Specifically, as opposed to CM, AM is reported to: (i) allow greater 

customisation of spare parts design, thus reducing the unitary production cost of SKUs with a complex 

shape (Mehrpouya et al., 2022); (ii) produce fewer scraps in the manufacturing process, with evident 

benefits in terms of SC sustainability and raw material purchasing costs (Priarone et al., 2021); and (iii) 

minimise assembly costs and times, since the component functionalities are consolidated into a single 

piece through a near-net shape production, with appreciable effects on the unitary cost of SKUs 

(Holmström et al., 2010). Additionally, as a single operator can control two or more 3D printers, the 

number of operators required and the consequent labour cost are reduced, which is a percentage of 

the overall cost of SKUs (Zijm et al., 2019). Since 3D printers can be installed directly into DCs (“in-

house production”), and production can be moved closer to the end-customers, the decentralisation 

of the spare parts manufacturing is enabled (Khajavi et al., 2014). As a result, the transportation costs 

of delivering spare parts from DCs to customers are reduced, lower carbon emissions are produced, 

and the SC is made more flexible and responsive, with positive impacts on the customer service level 

(Pérès and Noyes, 2006). Finally, at a theoretical level, AM allows on-demand production of spare 

parts, leading to reduced holding costs (no need for inventories along the SC), less risks of stock 

obsolescence, higher feasibility in the production of small batches, and service level benefits obtained 

by moving the customer order decoupling point downstream in the SC (Frandsen et al., 2020). Based 

on the aforementioned advantages, spare parts retailers believe that AM is a strategic opportunity to 

improve SC performance, which researchers have confirmed by reporting that AM is expected to 

gradually replace CM in the near future (Xu et al., 2021). 

However, AM technology has not yet reached the level of maturity of CM, and, despite its constant 

evolution, it currently suffers from the following limitations: the purchase cost of 3D printers is very 

high, AM production times can be very long (preventing not only mass production, but also the 
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practical implementation of an on-demand spare parts production), the reliability of AM spare parts 

is lower than that of CM spare parts, and many post-processing activities and quality controls are 

required to ensure the safety of critical spare parts (Liu et al., 2014; Zijm et al., 2019). Therefore, the 

limitations of AM technology and the intrinsic nature of the AM process make both researchers and 

practitioners aware that AM is not successful in all contexts. CM has the following advantages 

(Chekurov et al., 2018; Tapia-Ubeda et al., 2020): it ensures lower production times when the aim is 

to produce large batches, resulting in lower delivery times, lower production costs, and reduced time-

to-market. CM requires no investment costs for purchasing and installing 3D printers (Chaudhuri et 

al., 2021) and it faces fewer risks connected to the protection of intellectual property rights because 

of a reduced process digitalisation (Pérès and Noyes, 2006). CM also encounters fewer limitations 

related to the availability of raw materials and the manufacturability of large-size components (Li et 

al., 2017). Moreover, globally accepted standards can be followed to ensure the quality of CM spare 

parts, which have not yet been developed for AM spare parts (resulting in lower-quality AM products). 

CM allows specific elements of a broken spare part to be remanufactured without needing to change 

the whole item (as in AM), which leads to lower replacement costs and higher possibilities of reusing 

spare parts and enabling the implementation of reverse logistics (Geng and Bidanda, 2022; Xu et al., 

2021). Finally, the hourly cost of manpower that controls CM production equipment is lower, while 

AM requires highly trained operators to use digital technologies. 

In summary, AM and CM spare parts have different impacts on spare parts SCs, leading to different 

fixed costs of facilities, different purchasing costs of spare parts (which are directly linked to 

production costs), different transportation costs, different holding and ordering costs, and different 

backorder costs (related to the provided service levels). As such, since the manufacturing option 

adopted for spare parts strongly affects SC costs, it should be taken into account when optimising 

stock deployment policies and consequently reviewing spare parts SC configurations (Ahmed et al., 

2022; Yazdekhasti et al., 2022). As mentioned in Section 1, optimal stock deployment policies are 

defined by searching for a trade-off between low SC costs and high service levels. Therefore, spare 

parts retailers need structured methodologies to associate individual SKUs with optimal 

manufacturing technology, then optimise stock deployment policies, and promote the overall 

performance of the reviewed SC configuration. 

However, the existing body of knowledge comparing AM and CM spare parts is scarce and, in its 

preliminary stage, shows major gaps (Delic and Eyers, 2020; Weller et al., 2015). Most of the existing 

research on AM spare parts is on material science and manufacturing technology areas, whereas 

studies concerning how AM impacts spare parts SCs and what is the optimal manufacturing technology 

to adopt for spare parts are limited. Therefore, potential challenges arising from integrating AM 
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technologies within existing SCs are rarely discussed, and when they are, qualitative studies are 

provided (Kunovjanek et al., 2020; McDermott et al., 2021). Although few quantitative analyses have 

been developed, many of them propose exploratory studies and simulations whose results are 

strongly case-specific and concern SCs with a very simple structure (Heinen and Hoberg, 2019; Xu et 

al., 2021). Moreover, the available quantitative studies, such as Ashour Pour et al. (2019) and 

Westerweel et al. (2021), evaluate the costs of SCs with AM spare parts without comparing them to 

the respective CM ones. Finally, according to several authors (Knofius et al., 2021; Sgarbossa et al., 

2021), whenever a comparison is made between SCs with AM and CM spare parts, only single-sourced 

SCs are considered, neglecting the dual-sourced ones, which produce a mix of AM and CM spare parts, 

adopting the optimal manufacturing technology for each SKU. Given this background, a comparative 

study that quantitatively evaluates the performance of SCs with AM and CM spare parts, associating 

individual SKUs with optimal manufacturing technology, is lacking (Basto et al., 2019; Khajavi et al., 

2014). 

Consequently, spare parts retailers lack a structured methodology to associate both optimal 

manufacturing technologies and optimal stock deployment policies with individual SKUs. As a result, 

the optimal review of spare parts SC cannot be determined on the one hand, and the correct 

introduction of AM technologies in real companies is hindered on the other, since spare parts retailers 

cannot evaluate whether it is worthwhile to transform existing SCs by switching from CM to AM spare 

parts (Weller et al., 2015).
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3. Research design 

This section describes the research design used in this study and discusses its validity. One of the 

primary aspects of assessing the validity of a research study is understanding the research methods 

used to conduct the investigations (Borrego et al., 2009; Queirós et al., 2017). As such, Subsection 3.1 

presents the research methods adopted for use in and explains how these helped to answer each 

research question. Subsection 3.2 then discusses the quality of this research study, evaluating the four 

requirements recommended by Karlsson (2016): construct validity, internal validity, external validity, 

and reliability. 

3.1. Research methods 

Research methods should be carefully selected to understand a complex reality and the meaning of 

actions in a specific context, and to obtain precise and trustworthy measurements that can be used 

for statistical analyses (Queirós et al., 2017; Reswick, 1994). To address the pre-defined research 

questions, the present study adopted the following research methods. To answer RQ1, an SLNA (which 

combines an SLR with the analysis of bibliometric networks) was performed to understand the extant 

literature on the topic of spare parts deployment in SC configuration, and the choice between 

inventory centralisation and decentralisation. The SLNA highlighted driving research streams in the 

analysed topic, offering research opportunities that we used to derive the next research questions 

(RQ2 and RQ3). Then, to answer both RQ2 and RQ3, mathematical modelling was applied along with 

the development of a case study or experimental research, as depicted in Figure 7. Figure 7 

summarises the research methods adopted in this study, showing their connections with the research 

questions, the outcomes, and the collection of appended papers. The following subsections explain 

each research method in detail. 
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Figure 7. Research design of this project. Dashed rectangles indicate that research questions RQ2 and RQ3 were derived 
after answering RQ1. The colours indicate that the outcomes of papers 3-4 answered both RQ2 (blue) and RQ3 (green) 
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3.1.1. Systematic Literature Network Analysis 

The SLNA methodology, which was introduced by Colicchia and Strozzi (2012), complements a 

traditional SLR by extracting and analysing quantitative information from bibliographic networks 

(using bibliometric tools). The SLNA was selected as the first research methodology of this study 

because it was specifically developed to detect the dynamic evolution of the scientific production of a 

discipline, highlighting research directions, emerging topics, and critical areas for the development of 

new knowledge (Strozzi et al., 2017). In an SLNA, the SLR represents the initial contribution, which 

enhances the progress of scientific research by providing a historical perspective on a selected topic 

and allows for an in-depth assessment of independent research activities (Mentzer and Kahn, 1995). 

In an SLR, which is a scientific inquiry, specific research questions are clearly formulated and reviewed 

using a systematic and evidence-based approach for discovering and selecting secondary data. 

Specifically, in an SLR, clearly defined sequential steps are applied to identify a dataset of scientific 

documents concerning a specific topic and pre-defined research questions (Seuring and Gold, 2012). 

Given its transparency, inclusivity, and explanatory and heuristic character, the SLR stands out from 

other research methods and is considered valid, reliable, and repeatable (Tranfield et al., 2003; Xiao 

and Watson, 2019). Compared with other types of literature reviews, an SLR allows for a more 

objective overview of the search results, eliminating bias and error issues (Buchanan and Bryman, 

2009). The main purpose of an SLR is to facilitate theory development by reorganising the research 

carried out on a specific topic and then proposing a descriptive review of the collected works (Webster 

and Watson, 2002). However, according to Strozzi et al. (2017), a mere descriptive review of the works 

collected through an SLR, despite being appropriate to classify research contributions, is not 

sufficiently objective or satisfactory to identify the trends and key issues that influence the 

development of knowledge within a specific research field. Therefore, it is preferable to combine SLR 

with a subsequent bibliometric network analysis that uses objective measures and algorithms to 

perform quantitative literature-based detections of emerging topics. The joint use of SLR and 

bibliometric network analysis composes the SLNA.  

In this research study, we developed an SLNA to investigate the topic of stock deployment in spare 

parts SCs and the choice between inventory centralisation, decentralisation, and hybrid stock 

deployment policies. This topic, which is the focal point of this thesis, is not well structured and 

investigated, and an overview of the research in this field is missing. The SLNA was used to define the 

extant body of knowledge in the analysed domain, identify the literature gaps and driving research 

streams, and lay the foundation for future research activities (which inspired the next research 

questions). First, following the indications of Tranfield et al. (2003), we conducted a preliminary SLR. 

To this end, the relevant keywords for the research study were identified and combined, generating a 
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search query. The search query was then used to find relevant scientific contributions in the Scopus 

database. Next, we defined the exclusion and inclusion criteria, which were used to refine the 

investigation, excluding scientific contributions not pertinent to the subject areas of Engineering, 

Mathematics, Decision Science, and Management, and filtering out any Articles and Conference 

papers not written in English. Finally, based on a semantic clarification proposed by Melo et al. (2009), 

we manually selected the scientific contributions by consulting their title, keywords, and abstract and 

excluding the papers not related to the topic of interest. Indeed, as reported by Melo et al. (2009), 

when using keywords related to the topic of “stock deployment” and its synonyms or abbreviations, 

Scopus finds papers dealing with three issues, where only the latter is pertinent to this research study: 

(i) planning the allocation of items within a single DC, for example, placing the articles on the shelves 

of a warehouse or planning how many items to allocate in a single DC [19]; (ii) choosing the 

geographical site for building a new warehouse [20]; and (iii) determining how to allocate SKUs in 

multiple DCs, choosing from inventory centralisation, decentralisation, or hybrid stock deployment 

policies [21]. Once the SLR was performed, we achieved a database of 170 scientific contributions, 

which was submitted to the bibliometric network analysis by leveraging three software packages 

(Microsoft Excel™, the R-tool Bibliometrix, and VOSviewer). Specifically, the most productive authors, 

journals, and countries in the field were defined based on the number of publications. The most 

influential authors, journals, countries, and documents in the field were determined based on the 

number of citations and the Citations Per Publication (CPP) rate. Finally, we determined the main 

driving research streams in the field by examining the co-occurrence of authors’ keywords and 

developing a thematic map following the procedure suggested by Cobo et al. (2011). 

3.1.2. Mathematical modelling 

Mathematical modelling investigates a real-world problem by describing it in mathematical concepts 

and language (Fowler and Fowler, 1997). In mathematical modelling, equations are typically used to 

simplify a complex system, thus capturing the intrinsic essence of an investigated problem, and 

catching the main features and roles of different parameters in the system outcomes. Mathematical 

modelling comprises the following five main steps (Towers et al., 2020): (i) select and define the 

problem to be investigated; (ii) trace the problem back to a control volume that needs to be examined 

and clarify the laws of science and all the key variables affecting the system; (iii) formulate the science 

behind the system in a concise mathematical language, encoding the problem as a set of equations 

and simplifying assumptions that realistically represent the truth, but streamlining it as much as 

possible to enable analytical calculations; (iv) compute and solve the equations by gathering the 

required input data, submitting it into the formulas, and obtaining the result; (v) compare the results 
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against the input data, discuss them, and draw conclusions on the general problem and the system 

initially defined. 

Mathematical modelling was used as a research method in this study because it is particularly 

appropriate for examining and predicting behaviours in complex systems, where many variables arise, 

and accurate but concise math-based analyses could help in understanding system occurrences 

(Towers et al., 2020). Therefore, mathematical modelling was used to address the problem of 

reviewing stock deployment policies in spare parts SCs, aiming to optimise the SC configuration based 

on changes in many interrelated variables (e.g., spare parts demand, spare parts manufacturing 

technology, logistic costs, and expected service level). In Paper 2, a heuristic data-driven methodology 

was developed to continuously review the configuration of SCs with CM spare parts in a quick, easy-

to-use way. Furthermore, in Paper 2, a mathematical model was proposed to evaluate the economic 

benefits achieved through the review process. In Paper 3, a mathematical model was established to 

compare the cost-effectiveness of different SC configurations, where the purchase of both AM and 

CM spare parts was evaluated as an option to replenish DCs. The mathematical model proposed in 

Paper 3 constituted the basic pillar through which a DSS was then developed, tested, and validated. 

Finally, in Paper 4, a mathematical model was proposed (which was then leveraged to obtain another 

DSS) to compare the cost-effectiveness of different SC configurations, where DCs were replenished by 

purchasing CM spare parts from suppliers or by producing AM spare parts in-house. To compute the 

mathematical equations and apply the mathematical models, we used Python (version 3.7.4), 

developing a dedicated script for each mathematical model.  

When developing mathematical models and DSSs, heuristic optimisation methodologies were 

preferred over exact optimisation ones for the following reason. Spare parts SCs are typically 

characterised by a high variety of SKUs, for which stock deployment policies and manufacturing 

technologies should be optimised. However, as reported by Manikas et al. (2019), the computational 

cost and complexity associated with optimising the SC configuration for each individual SKU through 

exact optimisation models are practically not feasible. Many variables and constraints are involved in 

the optimisation of SC configurations. Hence, the search for an exact solution to the problem could 

result in high computational times and NP-hard operational research problems (Amirkolaii et al., 

2017). Conversely, heuristic methodologies, despite accepting approximate optimisation solutions, 

are more applicable in real companies since they require lower investments in computational 

resources and advanced technologies that many enterprises still lack (Basto et al., 2019). Therefore, 

heuristic methodologies are preferred to provide spare parts retailers with practical solutions for 

reviewing the SC configuration in real companies (Zhang et al., 2001). 
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3.1.3. Case study research 

Case study research is an established research method recommended for investigating real-life 

phenomena associated with variables and complexity that are not yet sufficiently understood 

(Creswell, 2012). Case study research can be used to explain, describe, and explore phenomena and 

events in the everyday contexts in which they occur (McCutcheon and Meredith, 1993). Hence, case 

study research allows for a more naturalistic understanding of an issue with respect to other 

experimental investigations (Barratt et al., 2011). The case study findings can have implications for 

both theory development and theory testing. They may establish, strengthen, or weaken historical 

explanations of a case (Yin, 2009). Moreover, they can demonstrate the potential of a methodology 

by applying it in real contexts. Finally, in certain circumstances, they allow theoretical considerations 

to be generalised beyond the particular case studies being investigated (George and Bennett, 2005). 

Case study research may be approached in different ways, but it usually involves the following three 

steps: (i) define the case study (or case studies) to be examined; many criteria can be used to select a 

case study (Eisenhardt and Graebner, 2007), but the mandatory prerequisite is that it should allow 

researchers to access databases, staff, organisation, processes, or whatever else constitutes the 

analysed system; (ii) collect multiple data, information, and sources of evidence about the case study 

using a range of quantitative (e.g., questionnaires and database consultation) and qualitative 

techniques (e.g., interviews, focus groups, and observations); and (iii) analyse, interpret, and report 

the case study, offering a coherent interpretation of its behaviour based on the collected sources of 

data. 

In this work, case study research was used to accomplish several tasks. First, it allowed us to formulate 

the problem to be investigated in this research study. As described in Section 1.2, the present research 

study stemmed from a specific request for support made by two companies working in the spare parts 

retail sector (one from southern Europe and the other from northern Europe). Focus groups with 

company managers and repeated inspections in companies’ DCs (together with a simultaneous 

consultation of the scientific literature) revealed difficulty for spare parts retailers to configure SCs. In 

particular, the lack of structured methodologies to review and align stock deployment policies with 

ever-changing customer needs was highlighted as the main gap. Consultating company experts from 

the two available case studies also allowed us to confirm whether, in the proposed heuristic 

optimisation methodologies, the modelled SC configuration scenarios (with varying stock deployment 

policies and manufacturing technologies) and the assumed simplifying assumptions were sufficiently 

realistic. These scenarios and hypotheses were derived by consulting the scientific literature. 

However, they were validated or appropriately integrated after subjecting them to verification by 

company experts. Finally, the case study research allowed us to answer RQ2. The two available case 
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studies were used to test and validate the data-driven methodology proposed in Paper 2 on two real 

companies. From this perspective, the advantages of the proposed data-driven methodology were 

highlighted by comparing the performance associated with the starting SC configuration (extracted 

from the available databases) and the performance obtained after reviewing the stock deployment 

policies. In addition, consulting with company experts made it possible to verify the results of the 

mathematical modelling, ensuring their reliability not only from the viewpoint of our research team 

but also for experts with decades of experience in the field of spare parts retail. Finally, the availability 

of two different case studies offered the opportunity to directly compare multiple cases and 

replications, remarking their similarities and differences (Bazeley, 2020; Dinwoodie and Xu, 2008). In 

line with the claims of several authors (Voss et al., 2002; Yin, 2009), considering two different case 

studies enabled us to generalise the findings and devise new theoretical considerations on the 

relationships between different causes and effects. 

3.1.4. Experimental research 

Experimental research (also known as hypothesis testing or deductive research method) rigidly follows 

a scientific research design to test or prove a hypothesis by way of experimentation, and uses 

advanced analytic techniques (such as machine learning, text mining, predictive modelling, data 

mining, and statistical analysis) to capture, manage, and process cause-and-effect links between many 

factors (Pollfish, 2022). Therefore, during experiments, researchers gather evidence that may be used 

to support or deny the pre-defined hypothesis. Moreover, new insights are gained on a particular 

problem, and then better and faster decisions are made to fix it (Voxco, 2022). 

In this study, experimental research was selected as the research method because, among its possible 

uses, it has been demonstrated to be a valid strategy for gaining insights into SC efficiencies and driving 

SC optimisation (Paksoy et al., 2016). Specifically, experimental research was applied to answer RQ2 

and RQ3, developing the two DSSs proposed in Papers 3 and 4, respectively. The procedural steps 

followed in this project to implement experimental research are reported in this section. Before 

describing these steps, it is worth noting that they may seem similar to the procedural steps suggested 

for big data analytics (Chen et al., 2016; Tsai et al., 2015). However, in this case, it is more appropriate 

to refer to is as experimental research rather than as big data analytics due to the definition of big 

data. In fact, big data are defined as very large and diverse (structured, semi-structured, or 

unstructured) datasets, coming from different sources (e.g., sensors, video/audio, log files, 

transactional applications, web, and social media), whose size or type is beyond the data mining ability 

of traditional analytic techniques (Shi, 2022; Tsai et al., 2015). However, despite managing “many 

data” in this research project, we did not handle “big data” since they all came from the same source, 

and were all characterised by a similar structure. 
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Concerning the experimental research procedural steps, first, a set of input data was prepared as 

follows. After defining the problem to investigate, appropriate mathematical models (with their 

respective assumptions and independent input parameters) were defined, as described in Section 

3.1.2. Then, where appropriate, an analysis of variance (ANOVA, with Main Effect Plot) was developed 

to exclude from the analysis the independent input parameters whose variation had a negligible 

impact on the results of the mathematical models. In this way, the number of input parameters was 

reduced, facilitating the subsequent training of machine learning algorithms and reducing the time 

and computational costs of this task. At this point, the Sobol quasi-random low discrepancy sequence 

(𝑆𝑚𝑛) was used to associate each remaining independent parameter (not excluded in the ANOVA) 

with quasi-random realistic values, combining them to derive thousands of different SC configuration 

scenarios (i.e., SCs characterised by different stock deployment polices, spare parts manufacturing 

technologies, spare parts demand, logistic costs, and service levels). Specifically, the value of each 

independent input parameter (𝑝𝑎𝑟) was varied according to Equation 1, where 𝑁 is the total number 

of SC configuration scenarios to be created, 𝑛 is the specific scenario considered, 𝑀 is the total number 

of input parameters, 𝑚 is the specific input parameter to which we assign a Sobol value (𝑝𝑎𝑟𝑚𝑛), and 

𝑝𝑎𝑟𝑙𝑙 and 𝑝𝑎𝑟𝑢𝑙 are the lower and upper limits admitted for the value of the considered input 

parameter.  

𝑝𝑎𝑟𝑚𝑛 = 𝑝𝑎𝑟𝑙𝑙 + 𝑆𝑚𝑛 ∙ (𝑝𝑎𝑟𝑢𝑙 − 𝑝𝑎𝑟𝑙𝑙) 𝑤𝑖𝑡ℎ 𝑚 = 1, … , 𝑀 𝑎𝑛𝑑 𝑛 = 1, … , 𝑁    (1) 

The Sobol quasi-random low discrepancy sequence was used as a sampling strategy because, when 

studying problems with numerous input parameters, it has been reported to better (more uniformly) 

cover the space of combinations of the admissible input parameter values with respect to other 

strategies (i.e., discrete sampling or Monte Carlo) (Bicchi et al., 2022; Burhenne et al., 2011). 

Therefore, once the Sobol input data were defined, each SC configuration scenario was submitted to 

the mathematical models, achieving a parametric analysis by replicating the models’ application. 

Finally, the results of the parametric analyses were used to feed and train decision tree algorithms, 

thus exploiting the capability of machine learning to understand and interpret correlations among the 

many parameters affecting a system (Arena et al., 2021). As an outcome, DSSs were obtained in the 

form of decision trees, which allowed us to extrapolate from the results of the parametric analyses 

general considerations on how to review the configuration of spare parts SCs, choosing both the 

optimal stock deployment policies and the manufacturing option. To provide spare parts retailers with 

quick and user-friendly DSSs, decision tree algorithms were selected for the experimental research, 

which are known for being intuitive and effective decision-making tools among machine learning 

algorithms (Sgarbossa et al., 2021). The Gini-diversity index was used to split the branches of the 

decision trees, following the indications by Arena et al. (2021). Moreover, to validate the performance 
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of the decision trees and avoid under- or overfitting issues, a five-fold cross-validation process was 

carried out together with the pruning of the tree, as suggested by Bradford et al. (1998) and Morgan 

et al. (2003). Finally, the following key performance indicators (KPIs) were calculated to evaluate the 

general performance of each DSS and the performance of each leaf: 

• total accuracy of the decision tree (𝐴, Equation 2), given by the ratio between the number of 

correct predictions (#𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑡𝑟𝑒𝑒) and the number of total predictions in the 

tree (#𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑡𝑟𝑒𝑒, initial dataset size); 

𝐴 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑡𝑟𝑒𝑒

#𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑡𝑟𝑒𝑒
           (2) 

• the accuracy of each leaf (𝑎, Equation 3), calculated as the ratio between the number of 

correct forecasts (#𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓) and the number of total forecast in the 

considered leaf (#𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓); 

𝑎 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓

#𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓
           (3) 

• the number of elements in each leaf (𝑝, Equation 4), calculated as the ratio between the 

number of elements classified within the considered leaf (#𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓) and the number 

of total elements to be classified (#𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓, that is the size of the starting dataset); 

𝑝 =
#𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓

#𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑡𝑟𝑒𝑒
           (4) 

• the expected percentage of cost increase (c, Equation 5) to be paid by the spare parts retailer 

in case an element is wrongly classified in a leaf (wrong tree forecast), calculated as the 

average of cost increases associated with wrong forecasts. 

𝑐 =
∑ (|

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑤𝑟𝑜𝑛𝑔 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 −𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡ℎ
𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡ℎ

|∗100)
#𝑤𝑟𝑜𝑛𝑔 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓
ℎ=1

#𝑤𝑟𝑜𝑛𝑔 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓
      (5) 

Regarding the tools and software used for experimental research, Python (version 3.7.4) was used as 

a programming environment, exploiting the open-source library “Scikit-learn” for machine learning 

purposes. Moreover, as a computational resource, the “Idun” cluster provided by NTNU was used to 

run calculations, where Idun is a high-performance computing group. Finally, Minitab software and 

Microsoft Excel were used to perform some statistical analyses (such as ANOVA). 

3.2. Research quality 

To judge the research quality of this study, according to Karlsson (2016), four requirements were 

verified (i.e., construct validity, internal validity, external validity, and reliability), which are considered 

suitable for evaluating both quantitative and qualitative investigations (Halldórsson and Aastrup, 

2003; Voss et al., 2002). For each requirement, a specific subsection is provided below to explain how 
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this was satisfied during the research process, leading to good-quality results, which can be considered 

reliable and ethical by other researchers and practitioners. 

3.3.1. Construct validity 

Construct validity assesses the extent to which correct operational definitions have been established 

for the concept under analysis (Voss et al., 2002). To account for construct validity, Yin (2009) 

proposed two fundamental aspects: (i) offer clear definitions of what is to be investigated, and (ii) 

demonstrate that the operational definitions truly represent what is intended to be investigated. 

In this thesis, Section 1 provides a clear description of the research scope. Definitions and explanations 

of the investigated topics are also presented in both the main report (Part I) and all the appended 

papers (Part II). Furthermore, in line with Yin (2009), efforts were made to maintain a clear chain of 

evidence, meaning that, starting from the input data and information collected, readers should be 

able to trace the derivation of all the findings. To achieve a clear chain of evidence, to the extent 

possible, the reasons for each research activity, the decisions made to conduct the investigations, and 

the results obtained were documented and reported in this study. Regarding the mathematical 

modelling, the case study research, and the experimental research, verification, and validation 

techniques were used to ensure that the research reflected what was intended. 

3.3.2. Internal validity 

Internal validity implies revealing the correct causal relationships among variables and avoiding 

ignoring factors that, instead, concur in explaining these correlations (Karlsson, 2016). In other words, 

if it is concluded that X has been caused by Y, overlooking the fact that X has also occurred as a result 

of Z, the internal validity is low. Internal validity is more appropriate as an evaluation criterion, 

particularly in exploratory and causal research, but not necessarily in descriptive studies (Croom, 2008; 

Yin, 2009). 

If the question of internal validity does not arise in descriptive and exploratory research, one of the 

key techniques used to ensure internal validity is theoretical replication. This strategy was used in this 

study, for example, when developing mathematical models and applying them to example case 

studies comparing different scenarios of SC configuration (with different degrees of inventory 

centralisation). The results expected in each SC configuration scenario were formulated based on the 

scientific literature (before data collection). Then, once the case study research was performed, the 

findings were compared with the predictions, confirming the homogeneity between the expected and 

achieved results. Regarding mathematical modelling and experimental research, the system’s 

behaviour and the identification of causality were the main curiosities that drove the entire research. 
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In this case, causality was established by adjusting each independent variable individually and then 

evaluating the causal effects on the dependent variables (Bertrand and Fransoo, 2016; Croom, 2008). 

3.3.3. External validity 

External validity refers to the extent to which the findings of a research study can be generalised from 

specific data and contexts to broader ones (Cook et al., 1979; Seale, 1999). To ensure the external 

validity of a research study, specific descriptions of the data and context in which the study was carried 

out should be provided. Such detailed descriptions allow readers to judge whether the research 

findings are transferable to other situations. From this perspective, the present research study aimed 

to describe the specific SC configurations investigated and report in the appended papers the 

simplifying hypotheses assumed to develop the methodologies and DSSs. Moreover, concerning the 

case studies used to perform the investigations, detailed information on the companies analysed and 

their characteristics was offered. Furthermore, to ensure the greatest generalisability of this research 

study, multiple scenarios of SC configurations were studied, strongly varying their degrees of 

centralisation and the characteristics of spare parts (demand, procurement lead time, service level, 

etc.), thus referring to as many realistic situations as possible. 

3.3.4. Reliability 

Reliability refers to the extent to which the research may be repeated and provide the same results 

(Voss et al., 2002). Therefore, in a reliable research study, bias is minimised so that the same findings 

can be achieved by other researchers who replicate the study. To ensure reliability, two main 

strategies were adopted. First, we provide a detailed description of the research design and the 

methodologies used to develop the study (Section 3). This information is also reported in the 

appended papers, further enabling other researchers to repeat the investigations. Second, to prevent 

a single researcher from perpetrating any bias, several researchers were involved analysing the data 

and the achieved results.
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4. Research results 

This section presents and discusses the results and findings of this research project. Following the 

research design (Figure 7), we began the study by performing an SLNA that addressed RQ1 (What are 

the extant literature and driving research streams on the topic of stock deployment in spare parts 

SCs?). Two outcomes were obtained: (i) identification of the extant body of literature on the topic of 

stock deployment in spare parts SCs; and (ii) identification of the driving research streams, which 

mainly concur in developing the literature in this field. Both outcomes of RQ1 are presented in 

Subsection 4.1, based on Paper 1. From these outcomes, we derived two additional research 

questions (RQ2 and RQ3), which prompted the next advancement of this project. 

Aiming to answer RQ2 (What viable heuristic methodologies can be proposed to review stock 

deployment policies in spare parts SCs?), we exploited different approaches, proposing as outcomes 

three different heuristic methodologies for optimising stock deployment policies in spare parts SCs. 

The first is a data-driven heuristic methodology, which was developed using mathematical modelling 

and case study research. This is presented in Subsection 4.2, and is based on Paper 2. The second and 

third heuristic methodologies, which allowed the development of two DSSs, were conceived to 

answer not only RQ2 but also RQ3 (What is the optimal manufacturing technology for spare parts in 

SCs with different stock deployment policies?). By exploiting mathematical modelling and 

experimental research, two complementary heuristic methodologies (and two consequent DSSs) were 

developed, which allowed us to review the configuration of spare parts SCs in the following situations: 

1. SCs where spare parts are purchased from suppliers as AM or CM finished products, and the aim 

is to select, for each SKU, the combination of the stock deployment policy and manufacturing 

option (purchase of CM or AM spare parts) that minimises the SC total cost. 

2. SCs where stocks of spare parts can be purchased from suppliers as CM finished products or 

produced in-house as AM products (by installing 3D printers in each DC), selecting, for each SKU, 

the combination of stock deployment policy and manufacturing option (purchase of CM spare 

parts or production of the AM ones) that minimises the SC total cost. 

The outcomes of both RQ2 and RQ3 are presented in Subsection 4.3, where Subsection 4.3.1 describes 

the first DSS (based on Paper 3), and Subsection 4.3.2 describes the second one (based on Paper 4). 

4.1. Extant literature on stock deployment in spare parts SCs and driving research 

streams 

When presenting the theoretical background (Section 2), we explained the importance of optimally 

configuring spare parts SCs and reviewing the configuration of existing SCs during the business’ 
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lifetime. In this context, we pointed out that structured methodologies for reviewing the configuration 

of spare parts SCs should help spare parts retailers optimise two fundamental aspects. First, optimal 

stock deployment policies should be outlined for each SKU, opting for inventory centralisation, 

decentralisation, or hybrid stock deployment policies. Next, the optimal supply policies should be 

established in each DC, choosing for each SKU how many stocks to supply and how often. However, 

as confirmed by many authors (Gregersen and Hansen, 2018; Huiskonen, 2001; Tapia-Ubeda et al., 

2020), we found that, while numerous methodologies have already been provided by the literature to 

optimise stock supply policies in a single DC, few have been provided to optimise stock deployment 

policies in multiple DCs. Therefore, we found that this literature gap hampers the optimal review of 

SC configurations and thus reduces the potential for success of spare parts retailers. To fill this gap, 

we defined the first research question (RQ1), which was then answered by developing an SLNA. The 

SLNA achieved the following two outcomes. As the first outcome, the extant body of literature on the 

topic of stock deployment in spare parts SCs was defined. This outcome allowed us to provide spare 

parts retailers (and researchers) with an overview of the body of knowledge on the investigated topic. 

We then reorganised the research carried out so far by identifying the main contributions, as well as 

the most prolific authors, journals, and countries (based on the number of publications), and the most 

influential ones (based on the number of citations). Subsequently, based on the identified body of 

literature (first outcome), we derived the second outcome, which was represented by identifying the 

driving research streams that mainly concur in developing the literature on the topic of stock 

deployment in spare parts SCs. The driving research streams were considered a solid basis on which 

to build new research studies, attracting the attention of both researchers and practitioners. Hence, 

by combining the identified driving research streams with the specific support requests received by 

companies (mentioned in Section 1.2), we selected two of them (restricting the design space for time 

reasons) to focus our attention on and derive the next research questions. The following subsections 

summarise each outcome of the SLNA. 

4.1.1. Extant literature on stock deployment in spare parts SCs 

By performing an SLNA, the existing literature on stock deployment in spare parts SCs was traced back 

to 170 documents (66% Articles and 34% Conference Papers) published by 413 authors in 109 journals 

over 91 years (1931-2022). These 170 documents represent the first outcome of the SLNA. Their 

temporal evolution of publications (blue) and citations (orange) was mapped (Figure 8), highlighting 

1931 as the year in which the importance of stock deployment policies in spare parts SCs was first 

mentioned (Taylor, 1931). Although it has been almost 100 years since the importance of stock 

deployment was first remarked upon, the SLNA demonstrated (Figure 8) that the literature in this field 
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is lacking (especially until 2008), confirming the motivation behind this research project, and revealing 

a recent interest of the scientific community towards this topic. 

 

Figure 8. Reference publication (blue) and citation (orange) year spectroscopy 

The geographical distribution of publications and citations (Figure 9) outlined the most productive and 

influential countries on the topic of stock deployment in spare parts SCs, where productivity was 

assessed based on the number of publications, and influence was assessed based on the number of 

citations. China, Germany, the Netherlands, and Italy appeared to be the most productive countries 

(138, 45, 43, and 43 publications, respectively), while Finland, the United States, and the Netherlands 

emerged as the most influential ones (779, 473, and 397 citations, respectively). The only country 

leader in both fields was the Netherlands, revealing the importance of not limiting the literature 

analysis to the most productive countries in the field but also extending the investigation to other less 

prolific ones. This consideration was also applied to authors and journals, explaining why this study 

analysed both the productivity and influence of countries/authors/journals. 

 

Figure 9. Total number of publications per country 

Concerning the journals, the most productive and influential were defined by performing three 
analyses. First, the journals mostly devoted to the considered topic were determined by applying 
Bradford’s Law (Bradford, 1934), resulting in the 11 core sources listed in Figure 10. Second, the publication trend of the top 
5 core sources (Figure 11) was used to show the journals’ persistence over time, where only the European Journal of 
Operational Research (EJOR) presented regular publications on the topic of stock deployment in spare parts SCs in the last 15 
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years. Third, the most influential journals in the field were defined by calculating their average number of CPP (Equation 6), 
highlighting Computers in Industry as the most influential journal, with the highest CPP ( 

Table 1). 

𝐶𝑃𝑃 =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
         (6) 

 

Figure 10. Most productive journals (core sources), according to Bradford’s law 

 

Figure 11. Publication trend of the top 5 core sources 

 

Table 1. Top 5 most influential journals based on CPP 

Source 

(with references) 

Number of 

publications 

Number of 

citations 
CPP 

Comput. Ind. 

(Khajavi et al., 2014) 
1 400 400 

J. Manuf. Technol. Manag. 

(Holmström et al., 2010; Meisel et al., 2016) 
2 276 138 

Rel. Eng. Syst. Saf. 

(Costantino et al., 2013) 
1 86 86 

Prod. Plan. Contr. 

(Abdallah et al., 2012; Chandima Ratnayake, 2019; Liu et al., 2014) 
3 255 85 

IIE Transactions 

(Caglar et al., 2004) 
1 81 81 
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Lastly, we reorganised the main information on authors’ productivity and influence in a graphical 

descriptive tool (Figure 12), which summarised the following notions: the most influential authors in 

descending order of CPP (y-axis), their temporal publication cadence (dot distribution), the annual 

number of publications (dot size), and the annual number of citations (dot colour). Figure 12 not only 

shows the most productive (Van Houtum) and most influential authors (Partanen, Khajavi, and 

Holmström) in the field, but it also emphasises the two most influential documents in the literature 

on stock deployment in spare parts SCs. These two documents are shown by the red and yellow dots 

in the upper part of Figure 12 (papers with the highest CPP). By consulting these documents 

(Holmström et al., 2010; Khajavi et al., 2014) an important consideration emerged: the two most 

influential publications in the field of stock deployment in spare parts SCs deal with the same research 

stream. This research stream which, as a matter of fact, is attracting the attention of the scientific 

community, investigates how to optimise stock deployment policies in SCs with AM spare parts (where 

AM is an opportunity to revolutionise the configuration of spare parts SCs). 

 

Figure 12. Qualitative Authors’ Relevance Assessment 

4.1.2. Driving research streams on stock deployment in spare parts SCs 

After defining the extant literature on stock deployment in spare parts SCs, to answer RQ1, two 

additional analyses were performed to denote the driving research streams related to the topic under 

investigation. These additional analyses took as input information the first outcome of the SLNA 

(namely, the 170 documents representing the extant literature on the topic of stock deployment in 

spare parts SCs). In the first additional analysis, we explored the authors’ keywords reported in each 
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document and their co-occurrence. Figure 13 depicts the achieved results, showing the links between 

keywords with a minimum number of co-occurrences of two. Based on the colours in Figure 13, five 

main research themes related to the topic of stock deployment in spare parts SCs were identified, 

which were confirmed by consulting the abstracts of the 170 papers: (pink) the optimal deployment 

of spare parts in SCs with single or multi-location DCs and two or multiple echelons; (red) the 

optimisation of stock deployment in SCs with AM spare parts, where AM is considered an opportunity 

to switch from centralised to decentralised SCs, revolutionising the stock deployment policies of spare 

parts; (yellow) the optimisation of spare parts deployment to improve maintenance activities in the 

specific sectors of aeronautics and military industry; (brown) the optimisation of stock deployment in 

spare parts SCs where emergency and lateral shipments are allowed; (green) sustainability and reverse 

logistics with a focus on optimising stock deployment in closed loop spare parts SCs. These five main 

themes can be used to divide the extant literature in the field into appropriate clusters. 

 

Figure 13. Co-occurrence of authors' keywords mapped through VOSviewer 
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Finally, as the second additional analysis, we built a Thematic Map of the authors’ keywords, following 

the indications by Cobo et al. (2011). Figure 14 presents the achieved Thematic Map. Based on the 

five research themes that emerged in Figure 13, Figure 14 emphasises two of them as driving (motor) 

research streams that mainly concur in developing the literature on the analysed topic:  

1. the optimisation of stock deployment in closed loop spare parts SCs; 

2. the optimisation of stock deployment in SCs with AM spare parts. 

Moreover, Figure 14 highlights a third driving research stream, which refers to the specific 

methodology used for planning stock deployment: 

3. the use of heuristic optimisation (instead of exact optimisation or simulation) to review the 

stock deployment policies in spare parts SCs. 

 

 

Figure 14. Thematic Map of the authors’ keywords built through Bibliometrix (R-tool) 

The three driving research streams listed above represent the second outcome of RQ1. Such research 

streams can hopefully inspire future research challenges, favouring the development of the literature 

on stock deployment in spare parts SCs. Accordingly, these streams were used in the present research 

project to formulate new research opportunities. However, investigating all three driving research 

streams (with all the research questions attributable to them) would have exceeded the research time 

frame. Hence, we decided to focus only on the last two driving research streams, deriving, for each of 

them, a new research question (as depicted in Figure 7 and summarised in Table 2). The derivation of 

these new research questions (RQ2 and RQ3) is not accidental, but it is justified in Section 1.2, 

explaining both the industrial and theoretical motivations behind this research project. Notably, RQ2 

and RQ3 are not the only possible research questions that can fulfil the research opportunities related 
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to the selected driving research streams. This is not to diminish the importance of the present project 

but rather to emphasise how many more research possibilities can be created through the outcomes 

of RQ1. 

Table 2. Additional research questions derived from two of the identified driving research streams 

Selected driving research stream Derived research question 

The use of heuristic optimisation to optimise 

the stock deployment in spare parts SCs 

RQ2: What viable heuristic methodologies can be proposed 

to review stock deployment policies in spare parts SCs? 

The optimisation of stock deployment in SCs 

with AM spare parts 

RQ3: What is the optimal manufacturing technology for spare 

parts in SCs with different stock deployment policies? 

Aiming to answer RQ2 and RQ3, three outcomes were achieved, where, as depicted in Figure 7, one 

of them (novel data-driven heuristic methodology) answers only RQ2, while the remaining two (two 

DSSs) answer both RQ2 and RQ3. For this reason, the results and findings of RQ and RQ3 are presented 

in the following sections. Section 4.2 presents the outcome, which answers only RQ2. Section 4.3 

describes the two outcomes, which answer both RQ2 and RQ3. 

4.2. Data-driven heuristic methodology to review stock deployment policies in spare 

parts SCs 

Despite the importance of regularly reviewing stock deployment policies (and the consequent SC 

configuration) in existing spare parts SCs, the literature lacks methodologies to accomplish this task 

(Eldem et al., 2022; Van der Auweraer and Boute, 2019). For this reason, nowadays, many spare parts 

retailers never review their starting SC configuration, and often the stock deployment policies are 

chosen only once (based on experience and arbitrary evaluations) and are never questioned (Hu et 

al., 2018). To fill this gap, multiple authors (Sheikhar and Matai, 2022; Teunter et al., 2010) have 

suggested a valuable method, which was confirmed by the outcomes of RQ1 in this study, namely, 

providing spare parts retailers with heuristic methodologies for reviewing stock deployment policies 

in existing spare parts SCs. Heuristic optimisation methodologies are usually quick and easy-to-use 

(Manikas et al., 2019). Moreover, they are more applicable in real contexts (in respect to exact 

optimisation or simulation methodologies) since they require fewer computational resources and less 

advanced technologies, which are still lacking in many companies (Basto et al., 2019; Zhang et al., 

2001). Based on this research opportunity, RQ2 was formulated. Then, aiming to answer RQ2, we 

followed two different approaches, which led to multiple outcomes (as indicated in blue in Figure 7). 

The present subsection refers to the first outcome of RQ2, which is a novel data-driven heuristic 

methodology proposed to support spare parts retailers in reviewing the configuration of existing spare 

parts SCs. The remaining outcomes of RQ2 are described in Subsection 4.3 since they answer both 

RQ2 and RQ3 at the same time. 
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As the first outcome of RQ2, a novel data-driven heuristic methodology (called “SP-LACE –Spare Parts 

suppLy chAin Configuration rEview”) was developed and proposed to review the configuration of 

existing spare parts SCs based on a multicriteria ABC criticality classification of spare parts. SP-LACE 

refers to the parameters reported in Table 3, which was developed by applying mathematical 

modelling and relying on the following simplifying assumptions: (i) DCs have an unlimited capacity 

(Tapia-Ubeda et al., 2020); (ii) no costs related to the purchase or rental of DCs are considered since 

existing SCs are evaluated where the spare parts retailer already owns DCs (Cantini et al., 2022); (iii) 

inbound and outbound transportation costs are considered negligible compared with other SC costs 

(Cohen et al., 1988); (iv) no issues related to spare parts sustainability and closed loop SCs are 

considered (Zijm et al., 2019); and (v) procurement lead times are assumed deterministic (Lolli et al., 

2022), while spare parts demand is assumed stochastic (Liu et al., 2014). Specifically, a normal 

distribution is assumed for SKUs with an average demand during the procurement lead time greater 

than 15 units, while a Poisson distribution is taken for the other SKUs (Italian Technical Commission 

for Maintenance, 2017; Syntetos and Boylan, 2006); (vi) a continuous (𝑅𝑂𝑃, 𝑄) inventory policy is used 

to manage stocks in DCs, where 𝑅𝑂𝑃 is the reorder point and 𝑄 is the optimal order quantity (Fathi et 

al., 2021; Sapna Isotupa, 2006). 

Table 3. Summary of SP-LACE parameters 

Parameter Description Unit measure 

𝑟 Considered SC configuration. 𝑟 is 0 in the starting SC configuration, 

while being 1 in the reviewed SC configuration 

- 

𝑖 Considered DC. 𝑖 assumes integer values between 1 and the total number 

of DCs (#𝐷𝐶𝑠) 

- 

𝑘 Considered SKU. 𝑘 assumes integer values between 1 and the total 

number of SKUs (#𝑆𝐾𝑈𝑠) 

- 

𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓  

𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

Time interval considered to evaluate the cost performance of the SC time 

𝑢𝑐𝑘 Unitary cost of purchasing each SKU from the supplier €/unit 

ℎ% Holding cost rate for keeping inventory of SKUs in the period of 

analysis. According to Khajavi et al. (2014), it includes the obsolescence 

rate of SKUs 

time-1 

𝑋𝑖,𝑘,𝑟  Total demand received for each SKU in each DC in the period of 

analysis. It depends on the demand distribution 𝑥𝑖,𝑘,𝑟, which can be a 

normal or a Poisson one, as already explained 

units/time 

𝑥𝑖,𝑘,𝑟̅̅ ̅̅ ̅̅ ∗ 𝐿𝑇𝑖,𝑘 Average demand received for each SKU in each DC during the 

procurement lead time 

units 
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𝜎(𝑥𝑖,𝑘,𝑟) Standard deviation of the demand for each SKU in each DC during the 

period of analysis. It is considered when the demand distribution (𝑥𝑖,𝑘,𝑟) 

is normal 

units/time 

𝐿𝑇𝑖,𝑘 Procurement lead time of each SKU in each DC time 

#𝑂𝑟𝑑𝑖,𝑘,𝑟 Number of supply orders issued by the analysed company in the period 

of analysis to replenish each SKU in each DC 

supply 

orders/time 

𝑄𝑂𝑟𝑑𝑖,𝑘,𝑟 Total quantity of each SKU ordered by the analysed company to 

replenish each DC in the period of analysis 

units/time 

𝑜𝑐𝑘 Cost of issuing one supply order for a SKU €/supply order 

𝑢𝑏𝑎𝑐𝑘𝑘 Unitary backorder cost of each SKU €/backorder 

𝑆𝐿𝑖,𝑘,𝑟  Desired service level for each SKU in each DC - 

𝑄′𝑖,𝑘,𝑟 Optimal order quantity of each SKU in each DC units 

𝑅𝑂𝑃′𝑖,𝑘,𝑟 Reorder level associated with each SKU in each DC units 

𝑆𝑆𝑖,𝑘,𝑟 Safety stocks calculated to compensate demand fluctuations of each SKU 

in each DC according with the desired service level 

units 

𝑍𝑖,𝑘,𝑟 Service factor associated with the desired service level (𝑆𝐿𝑖,𝑘,𝑟) in a 

standardised normal distribution 

- 

𝑐𝑜𝑠𝑡 𝑙𝑖𝑚𝑖𝑡𝑘 Threshold value established based on the type of spare parts retailed by 

the analysed company 

€ 

𝑡𝑐 Average time required to run the stage 1 of SP-LACE and update its 

mathematical calculations 

time 

#𝛾 𝑆𝐾𝑈𝑑𝑒𝑝𝑙 𝑖,𝑟
 Number of γ SKUs in each DC, whose deployment policy changes when 

moving from the starting SC configuration to the reviewed one 

- 

#𝑡𝑟𝑖𝑝𝑠𝑟  Number of displacements to be performed in the reviewed SC 

configuration to move stocks from decentralised DCs to the central one 

- 

#𝑆𝐾𝑈𝑠𝑢𝑝𝑝𝑙𝑦 𝑖,𝑟
 Number of SKUs in each DC, whose supply policy changes when 

moving from the starting SC configuration to the reviewed one 

- 

𝑚ℎ Cost of manpower who applies SP-LACE, updating its mathematical 

calculations and the consequent stock deployment and supply policies 

€/time 

𝑑𝑖𝑠𝑡 Average distance between the central DC and the decentralised ones in 

the analysed company 

km 

𝐶𝑎𝑝 Capacity of the vehicle used by the analysed company to displace SKUs 

between DCs and deliver them to customers 

m3 

𝑣𝑜𝑙𝑘 Volume of each SKU m3 

𝑢𝑡𝑟𝑖𝑝 Cost per kilometer of the vehicle used to displace SKUs €/km 

𝑡𝑚 Average time required to update the supply policy of one SKU in the 

company Information Technology (IT) system 

time 
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SP-LACE is composed of two stages, which were achieved by applying mathematical modelling as the 

research method. In stage 1, a data-driven analysis based on a multi-criteria ABC criticality 

classification of spare parts was performed. Hence, the results were used to review the configuration 

of spare parts SCs by optimising both the stock deployment policies in multiple DCs (which is the main 

focus of this thesis, opting for inventory centralisation, decentralisation, or hybrid stock deployment 

policies) and the supply policies associated with each SKU in each DC (indicating how many spare parts 

to supply and how often). Here, we searched for a trade-off between holding, ordering, and backorder 

costs in DCs. Then, in stage 2, for the first time in the literature, we evaluated the economic benefits 

of the reviewed SC configuration, seeking to show the achieved benefits and the importance of 

reviewing the SC configuration. To this end, a comparison is provided between the SC total cost (Table 

4) before (i.e., starting SC condition) and after the review process. 

Table 4. Cost items considered in SP-LACE 

Costs Description Unit measure 

𝐶𝑡𝑜𝑡𝑟
 Total cost of the SC €/time 

𝐶𝐻𝑟
 Holding cost €/time 

𝐶𝑜𝑟
 Ordering cost €/time 

𝐶𝐵𝑟
 Backorder cost €/time 

𝐶𝑟𝑒𝑣𝑟
 Cost incurred to review the SC configuration €/time 

𝐶𝑆𝑜𝑓 Software cost incurred, each time the SC configuration is reviewed, to run the 

mathematical calculations and apply the stage 1 of SP-LACE 

€/time 

𝐶𝐷𝑖𝑠𝑝𝑟
 Displacement cost to transport, in the central DC, the γ SKUs that in the starting 

SC configuration were decentralized and, after the SC configuration review, have 

to be centralised (changing their deployment policy) 

€/time 

𝐶𝐴𝑑𝑚𝑟
 Administrative cost to update, in the IT system, the 𝑅𝑂𝑃𝑖,𝑘,𝑟  and 𝐸𝑂𝑄𝑖,𝑘,𝑟  values 

of the SKUs whose supply policy has changed when moving from the starting SC 

configuration to the reviewed one 

€/time 

Stage 1 of SP-LACE comprises the following steps, which are schematised in Figure 15 (referring, as an 

example, to a company with 3 DCs – 𝐷𝐶1, 𝐷𝐶2, 𝐷𝐶3 – where 𝐷𝐶2 is assumed to be the central one). 

In Step 0, the initial SC configuration of the company and the available DCs are identified. 

In Step 1, a multi-criteria criticality classification of spare parts is accomplished in each peripheral DC 

(𝐷𝐶1 and 𝐷𝐶3 in Figure 15). First, the SKUs are divided into criticality classes according to their unitary 

cost (HML analysis), and the historical number of supply orders issued in the period of analysis (XYZ 

analysis). Here, the tangent method suggested by the scientific literature (Ultsch and Lötsch, 2015; 

Van Wingerden et al., 2016) is applied to define the boundaries between adjacent criticality classes. 
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Then, the results of the two criticality classifications (HML and XYZ analyses) are merged into a single 

ranking, associating each SKU with the α, β, and γ criticality classes (in accordance with Figure 15). 

In Step 2, the stock deployment policies are defined, indicating the need to centralise non-critical γ 

SKUs, while keeping the α and β ones decentralised. 

In Step 3, the demand for γ SKUs is cumulated with the demand already faced by the central DC (𝐷𝐶2), 

the multicriteria criticality classification of spare parts is carried out, and SKUs in such a DC are 

associated with the α, β, or γ criticality class. 

Finally, in Step 4, the stock supply policies are defined for each DC. Specifically, no stock is kept for γ 

SKUs in 𝐷𝐶2 (since they are non-critical in both the peripheral and central DC). Instead, optimal 

quantities are kept in stock for the remaining α and β SKUs, where Equations 7-9 initialise the reorder 

level and optimal order quantity, and Equations 10-11 update such values according to the indications 

by other authors (Alvarez and van der Heijden, 2014; Cantini et al., 2021). Equations 10-11 avoid 

reordering more than twice the units required in the period of analysis (𝑋𝑖,𝑘,𝑟) and keeping stocks of 

low-turnover, high-cost SKUs. 

𝑅𝑂𝑃𝑖,𝑘,𝑟 = (𝑥𝑖,𝑘,𝑟̅̅ ̅̅ ̅̅ ∗ 𝐿𝑇𝑖,𝑘) + 𝑆𝑆𝑖,𝑘,𝑟         (7) 

𝑄𝑖,𝑘,𝑟 = √
2∙𝑋𝑖,𝑘,𝑟∙𝑜𝑐𝑘

ℎ%∙𝑢𝑐𝑘
           (8) 

{
𝑆𝑆𝑖,𝑘,𝑟 = 𝑍𝑖,𝑘,𝑟 ∗ √𝐿𝑇𝑖,𝑘 ∗ 𝜎(𝑥𝑖,𝑘,𝑟) 𝑖𝑓 𝑘 ℎ𝑎𝑠 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑

1 − ∑ [
(𝑥𝑖,𝑘,𝑟̅̅ ̅̅ ̅̅ ̅∗𝐿𝑇𝑖,𝑘)

𝑛

𝑛!
∗ 𝑒−(𝑥𝑖,𝑘,𝑟̅̅ ̅̅ ̅̅ ̅∗𝐿𝑇𝑖,𝑘)]

𝑆𝑆𝑖,𝑘,𝑟−1

𝑛=0 ≥ (1 − 𝑆𝐿𝑖,𝑘,𝑟) 𝑖𝑓 𝑘 ℎ𝑎𝑠 𝑎 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑑𝑒𝑚𝑎𝑛𝑑
  (9) 

𝑄𝑖,𝑘,𝑟
′ = {

𝑋𝑖,𝑘,𝑟 , 𝑖𝑓 𝑄𝑖,𝑘,𝑟  > (2 ∗ 𝑋𝑖,𝑘,𝑟) 

𝑄𝑖,𝑘,𝑟, 𝑒𝑙𝑠𝑒
         (10) 

𝑅𝑂𝑃𝑖,𝑘,𝑟
′ = {

𝑜𝑛 − 𝑑𝑒𝑚𝑎𝑛𝑑 𝑠𝑢𝑝𝑝𝑙𝑦 𝑜𝑓 𝑘 𝑖𝑛 𝑖, 𝑖𝑓 #𝑂𝑟𝑑𝑖,𝑘,𝑟 ≤ 1 𝑎𝑛𝑑 𝑄𝑂𝑟𝑑𝑖,𝑘,𝑟 ≤ 1

 𝑜𝑛 − 𝑑𝑒𝑚𝑎𝑛𝑑 𝑠𝑢𝑝𝑝𝑙𝑦 𝑜𝑓 𝑘 𝑖𝑛 𝑖, 𝑖𝑓 #𝑂𝑟𝑑𝑖,𝑘,𝑟 ≤ 1 𝑎𝑛𝑑 𝑢𝑐𝑘 ≤ 𝑐𝑜𝑠𝑡 𝑙𝑖𝑚𝑖𝑡𝑘

𝑅𝑂𝑃𝑖,𝑘,𝑟 , 𝑒𝑙𝑠𝑒
    (11) 
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Figure 15. An example of the application of stage 1 of SP-LACE in a company with three DCs, where the central one is DC2 
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Once the spare parts SC configuration has been reviewed, in stage 2 of SP-LACE, a mathematical model 

(Equations 12-21) is applied to compare the total cost of the reviewed SC with that of the starting SC 

(before the review process). In this way, an economic evaluation is provided where the reviewed SC 

configuration (𝑟 = 1) is considered economically beneficial over the starting one (𝑟 = 0) if it has a 

lower total cost. 

𝐶𝑡𝑜𝑡𝑟
= 𝐶𝐻𝑟

+ 𝐶𝑜𝑟
+ 𝐶𝐵𝑟

+ 𝐶𝑟𝑒𝑣𝑟
         (12) 

{
𝑖𝑓 𝐶𝑡𝑜𝑡1

≤  𝐶𝑡𝑜𝑡0
→ 𝑟𝑒𝑣𝑖𝑒𝑤 𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑎𝑙𝑙𝑦 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙

𝑒𝑙𝑠𝑒 → 𝑟𝑒𝑣𝑖𝑒𝑤 𝑛𝑜𝑡 𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑎𝑙𝑙𝑦 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙
       (13) 

𝐶𝐻𝑟
 = ∑ ∑ ℎ% ∙ 𝑢𝑐𝑘 ∙

𝑄′
𝑖,𝑘,𝑟

2

#𝑆𝐾𝑈
𝑘=1

#𝐷𝐶𝑠
𝑖=1         (14) 

𝐶𝑜𝑟
= ∑ ∑ 𝑜𝑐𝑘 ∙

𝑋𝑖,𝑘,𝑟

𝑄′𝑖,𝑘,𝑟

#𝑆𝐾𝑈
𝑘=1

#𝐷𝐶𝑠
𝑖=1          (15) 

𝐶𝐵𝑟
= ∑ ∑ 𝑢𝑏𝑎𝑐𝑘𝑘 ∙ 𝑋𝑖,𝑘,𝑟 ∙#𝑆𝐾𝑈

𝑘=1
#𝐷𝐶𝑠
𝑖=1 (1 − 𝑆𝐿𝑖,𝑘,𝑟)       (16) 

𝐶𝑟𝑒𝑣𝑟
= {

0 𝑖𝑓 𝑟 = 0

𝐶𝑆𝑜𝑓 + 𝐶𝐷𝑖𝑠𝑝𝑟
+ 𝐶𝐴𝑑𝑚𝑟

 𝑖𝑓 𝑟 = 1
          (17) 

𝐶𝑆𝑜𝑓 = 𝑚ℎ ∙ 𝑡𝑐           (18) 

𝐶𝐷𝑖𝑠𝑝𝑟
= 𝑢𝑡𝑟𝑖𝑝 ∙ 𝑑𝑖𝑠𝑡 ∙ #𝑡𝑟𝑖𝑝𝑠𝑟          (19) 

#𝑡𝑟𝑖𝑝𝑠𝑟 =
∑ ∑ 𝑋𝑖,𝑗,𝑟∗𝑣𝑜𝑙𝑘

#𝛾 𝑆𝐾𝑈𝑑𝑒𝑝𝑙𝑖,𝑟
𝑗=1

#𝐷𝐶𝑠
𝑖=1

𝐶𝑎𝑝
        (20) 

𝐶𝐴𝑑𝑚𝑟
= ∑ #𝑆𝐾𝑈𝑠𝑢𝑝𝑝𝑙𝑦𝑖,𝑟

#𝐷𝐶𝑠
𝑖=1 ∙ 𝑡𝑚 ∙ 𝑚ℎ         (21) 

After building the data-driven methodology (SP-LACE, which is the first outcome of RQ2), it was 

applied in two real companies (case studies A and B, respectively), using case study research, as 

introduced in Section 3.1.3. This enabled us to test and validate the results of SP-LACE in different 

contexts and to demonstrate which benefits are achievable by reviewing the SC configuration (in 

terms of average inventory levels, number of supply orders, number of backorders, holding, ordering, 

backorder, and SC review costs). Case study research was also useful because the developed data-

driven heuristic methodology was explained to company experts, and they confirmed that it relies on 

a coherent set of features that properly describe the system behaviour. Finally, company experts 

considered the imposed simplifying assumptions acceptable and confirmed the availability of the 

required input parameters in the common companies’ databases. 

Besides testing SP-LACE on two case studies, we also compared it with a methodology presented in 

the previous literature (Stoll et al., 2015) and assessed its positive aspects. We selected this particular 

methodology for the comparison because it was the only literature heuristic methodology based on a 

multicriteria ABC criticality classification, which allowed for planning both the stock deployment and 

supply policies in spare parts SCs. 
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By summarising the results of the two case studies (which are described in detail in Paper 2), it 

emerged that SP-LACE overcomes the limitations of the selected literature methodology. SP-LACE is a 

quick and easy-to-use data-driven heuristic methodology that relies entirely on the analysis of 

objective data usually available in companies without needing to consult maintenance experts or 

perform qualitative analyses. This produces two beneficial side effects. First, the results of SP-LACE 

are unaffected by subjectivity, and mistakes related to the criticality of SKUs are avoided, thus 

suggestions for stock amounts are more accurate. Second, the application of SP-LACE is not time-

consuming, meaning that spare parts retailers can manage thousands of SKUs and make recurrent 

reviews of the SC configuration. SP-LACE also enables, for the first time, an economic evaluation of 

the performance of the reviewed SC configuration by comparing the SC total costs before and after 

the review process. 

Additional results of the case study research prove the importance of adopting a structured 

methodology to review the configuration of spare parts SCs. This can be seen in Figure 16, where the 

literature methodology (blue), SP-LACE (orange), and the starting (historical) company performance 

(gray) are compared in terms of average inventory levels (a), the number of supply orders (b), and the 

number of backorders (c) in all DCs and for both case studies (A and B). Figure 16 shows that SP-LACE 

and the literature methodology significantly improved the starting (historical) situation of companies 

A and B, indicating that the stock deployment and supply policies associated with SKUs so far were 

not aligned with customer needs. Figure 16 also highlights the advantages of SP-LACE over the 

literature methodology, proving that it leads to a drastic reduction in the number of supply orders and 

backorders, thereby reducing the consequent SC total cost (despite higher inventory levels). These 

advantages are achieved because SP-LACE decentralises stocks more than the literature methodology 

and suggests replenishing DCs through large batches and sporadic supply orders (instead of frequent 

one-unit lots). Finally, by keeping higher inventory levels (instead of one-unit lots), SP-LACE makes the 

SC more resilient compared to the literature methodology, allowing companies to better cope with 

unexpected demand fluctuations and prevent future stock-outs. 
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Figure 16. Total average inventory levels (a), number of orders (b), and number of backorders (c) occurring in each company 
DC historically (gray) and by applying SP-LACE (orange) and the literature methodology (blue), respectively 

Figure 17 confirms the aforementioned results, where, for both case studies, the economic 

performance (𝐶𝑡𝑜𝑡𝑟
) of the reviewed SC configuration (𝑟 = 1) is compared with the one of the starting 

(historical) SC configuration (𝑟 = 0), confronting SP-LACE, the literature methodology, and the 

historical company performance. In Figure 17, the results of the two case studies are presented as 

follows. In case study A, the review of the SC configuration was carried out not only once but twice (to 

show the convenience of regularly reviewing the SC configuration). For this reason, concerning case 

study A, in Figure 17a, reports the results of the first review (moving from the starting SC configuration 

to the one performed in 2019), and Figure 17b presents the results of the second review (performed 
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after one year, moving from the SC configuration of 2019 to the one aligned with the demand of 2020). 

Concerning case study B, since the review of the SC configuration was performed only once (in 2021), 

the results of a single review are presented. Overall, Figure 17 shows that reviewing the SC 

configuration is convenient, producing economic savings in both case studies with respect to leaving 

the starting SC configuration unchanged over time. Moreover, Figure 17c shows that SP-LACE 

minimises not only the number of supply orders but also the backorders, thus reducing the SC total 

cost despite higher holding costs (due to higher inventories) than the literature methodology. Finally, 

SP-LACE results in less time-consumption than the literature methodology, requiring only one hour 

and lower review costs (𝐶𝑟𝑒𝑣𝑟
) to produce results. Therefore, SP-LACE results in a data-driven heuristic 

methodology suitable for recurrent applications in real companies (also those with thousands of SKUs 

and variable spare parts demand). 

SP-LACE represents the first outcome of RQ2, constituting the first heuristic methodologies proposed 

in this research project to review stock deployment policies (and the consequent SC configuration) in 

spare parts SCs. SP-LACE allows spare parts retailers to associate optimal stock deployment policies 

(as well as optimal supply policies) with individual SKUs and to evaluate the economic benefits of the 

reviewed SC configuration. Since SP-LACE showed successful results (in terms of SC costs, time-

consumption, and reliability of its results) in two different case studies, this outcome was considered 

to produce two major contributions to this research project. First, it demonstrated, for the first time 

in the literature, the importance of regularly reviewing the configuration of spare parts SCs. Second, 

it represented the first structured, effective, quick, and easy-to-use heuristic methodology to review 

stock deployment policies in spare parts SCs. Therefore, this outcome can hopefully encourage spare 

parts retailers to review the configuration of spare parts SCs recurrently.  
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Figure 17. Economic assessment of the SC total cost (Ctot) achieved without reviewing the SC configuration (r = 0) or by 
reviewing it (r = 1) through SP-LACE and the literature methodology, respectively 
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4.3. Decision support systems (developed through heuristic methodologies) for 

reviewing the configuration of spare parts SCs considering different manufacturing 

options 

After developing SP-LACE (Section 4.2), we investigated not only RQ2 but also RQ3. Hence, we found 

that the proposed data-driven heuristic methodology, despite bringing relevant contributions, 

provides no indication of how to match optimal stock deployment policies (centralisation, 

decentralisation, or hybrid stock deployment policies) with optimal spare parts manufacturing 

technologies (AM or CM). However, this aspect is worth investigating following claims by researchers 

and practitioners (see Section 1.2) that were confirmed by the SLNA. 

As explained in Section 2.3, AM is an emerging technology in the field of spare parts (Ahmed et al., 

2022; Frandsen et al., 2020), which has the potential to revolutionise the characteristics of SCs 

(Ghadge et al., 2018; Mehrpouya et al., 2022). Nevertheless, many spare parts retailers are far from 

adopting AM technologies in their companies, since this would imply investing capital, time, and effort 

to reorganise the SC without having any tools or methodologies to prove the convenience of doing so. 

According to Chaudhuri et al. (2021), the current literature evaluates the advantages of SCs with AM 

spare parts without comparing them with CM ones (which, instead, shows some advantages and 

constitutes the starting condition of many spare parts retailers). Therefore, there is a lack of structured 

methodologies to quantitatively compare the SC benefits of AM and CM spare parts and provide clear 

indications of when a switchover from CM to AM spare parts is cost-effective (Trancoso et al., 2018). 

Based on the above observations, our efforts moved towards developing and proposing novel 

heuristic methodologies for reviewing the stock deployment in spare parts SCs (RQ2), attempting to 

compare different manufacturing options, and selecting the optimal one (RQ3). Through 

mathematical modelling and experimental research, we proposed two additional heuristic 

methodologies with which we compared the cost-effectiveness of different SC configurations in two 

respective situations: 

• SCs where stocks of both AM and CM spare parts are assumed to be purchased from suppliers 

(in the form of finished products); 

• SCs where stocks of CM spare parts are assumed to be purchased from suppliers, while stocks 

of AM spare parts are assumed to be produced in-house (by installing 3D printers inside DCs). 

Each of these two additional heuristic methodologies was then used to develop a DSS, which was 

tasked with suggesting spare parts retailers how to review their SC configuration and selecting both 

the optimal stock deployment policies and spare parts manufacturing technologies. The two achieved 
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DSSs (as well as the heuristic methodologies followed to derive them) represent an outcome for both 

RQ2 and RQ3, which are presented in Subsections 4.3.1 and 4.3.2, respectively. 

4.3.1. DSS (developed through a heuristic methodology) to compare different stock 

deployment policies with AM and CM spare parts purchased from suppliers 

In this subsection, we propose a DSS (and the heuristic methodology used to achieve it) to compare 

the cost-effectiveness of different stock deployment policies in SCs where, according to Figure 18, 

both AM and CM spare parts are purchased from suppliers. This DSS (together with the heuristic 

methodology used to achieve it) is an outcome for both RQ2 and RQ3, and it selects, for each SKU, the 

optimal combination of stock deployment policy (centralisation, decentralisation, or hybrid stock 

deployment policies) and manufacturing option (purchase of CM or AM spare parts) that produces the 

minimum SC total cost. The DSS was obtained by developing a novel heuristic methodology, which is 

described briefly here. Paper 3 provides a more detailed explanation of both the heuristic 

methodology and the DSS. 

 

Figure 18. Control volume considered to develop the DSS in the case of both AM and CM spare parts 

According to Figure 19, the DSS provided herein  can be used to compare ten SC configurations 

obtained by considering two different manufacturing options (purchase of CM or AM spare parts from 

suppliers) and five alternatives of stock deployment (depicted in Figure 20, in the example of a 

company with six customers). Referring to the parameters reported in Table 5 and following the 

indications by Gregersen and Hansen (2018), the five stock deployment alternatives were defined by 

varying the so-called “degree of centralisation” (Equation 22), where 𝐷𝑒𝑔 = 0 means 

decentralisation, 𝐷𝑒𝑔 = 0.25; 0.50;  0.75 are hybrid stock deployment policies, and 𝐷𝑒𝑔 = 1 means 

centralisation. 

𝐷𝑒𝑔 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 = {
1   𝑓𝑢𝑙𝑙 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑠𝑒𝑑 𝑆𝐶 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛

1 −
#𝐷𝐶

#𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠
                                        𝑒𝑙𝑠𝑒

   (22) 
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Figure 19. Matrix of the spare parts SC configurations compared in this heuristic methodology. 

 

Figure 20. Schematic representation of the five stock deployment policies in the example of a company with six customers. 

The achieved DSS has to be adopted for each SKU managed by a spare parts retailer. Indeed, it aims 

to optimise stock deployment policy and manufacturing option for each individual SKU, as suggested 

by Cohen et al. (2006). This DSS was developed by applying mathematical modelling and experimental 

research and relying on the following simplifying assumptions: (i) the costs of purchasing spare parts 

to replenish DCs include all the costs that the supplier incurs (Pour et al., 2016); (ii) no capacity 

constraints are considered for the supplier’s warehouse and the DCs (Tapia-Ubeda et al., 2020); (iii) 

procurement lead times are assumed deterministic and dependent only on the product (not on the 

geographical location of DCs) (Lolli et al., 2022); (iv) spare parts demand is stochastic, following a 

Poisson distribution (Sherbrooke, 1968; Stoll et al., 2015); and (v) all DCs in an SC configuration are 

characterised by the same average transportation cost (Farahani et al., 2015). Moreover, in the case 

of decentralisation (𝐷𝑒𝑔 = 0), transportation costs are neglected due to the proximity between DCs 

and customers; (vi) no sustainability aspects are considered (Zijm et al., 2019); (vii) no lateral 

transhipments are admitted (Schwarz, 1973); (viii) only variable costs are considered (not assessing 

investment costs in facilities) since we are reviewing the configuration of existing SCs; (ix) spare parts 

transportation costs are calculated by assuming that only one spare part is delivered per trip. This 

hypothesis is considered acceptable because spare parts demand follows a Poisson distribution, also 

known as the law of rare events; (x) a continuous (𝑅𝑂𝑃, 𝑄) inventory policy is used to manage stocks 

in DCs, where 𝑅𝑂𝑃 is the reorder point and 𝑄 is the optimal order quantity (Fathi et al., 2021; Sapna 

Isotupa, 2006); and (xi) the period considered to develop the analysis is one year (Daskin et al., 2002).
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Table 5. List of parameters for the DSS. They refer to a single SKU. 

Parameter Description Unit measure 

Input parameters 

𝑖 
Considered SC design. 𝑖 can assume integer values between 1 and 10 

according to Figure 19 
- 

𝑗 Manufacturing technology of the purchased spare parts (AM or CM) - 

#𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 Number of customers served by the company - 

𝐸𝐿𝑇 𝑆𝐿 

Expected service level. It is given by the ratio between the demands for 

SKU answered on time and the overall number of demands for SKU 

answered (Ivanov, 2021) 

- 

�̅�1 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟  Average annual demand for SKU emitted by one customer units/time 

𝐷𝑒𝑔𝑖 

Degree of centralisation in SC configuration 𝑖. According to Figure 19, 

𝐷𝑒𝑔𝑖 is 0 if 𝑖 = 1 or 2, is 0.25 if 𝑖 = 3 or 4, is 0.5 if 𝑖 = 5 or 6, is 0.75 if 

𝑖 = 7 or 8, while is 1 if 𝑖 = 9 or 10 

- 

𝑒𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖  
Unitary transportation cost from the central DC to customers. It only refers 

to centralised SC configurations (𝑖 = 9 or 𝑖 = 10) 
€/transportation 

𝑢𝑏𝑎𝑐𝑘 Unitary cost of one backorder of SKU €/backorder 

𝐿𝑗 Procurement lead time needed by the supplier to deliver each SKU to DCs time 

𝑢𝑐𝑗 Unitary cost of purchasing the j-th SKU from the supplier €/unit 

𝑚ℎ Hourly labour cost €/time 

𝑜𝑡 Average time needed to send one supply order to replenish DCs time 

ℎ% Holding cost rate for keeping inventory of SKU time-1 

Cost items considered 

𝐶𝑡𝑜𝑡𝑖 Spare parts SC total costs (it is related to the considered SKU and the 

considered interval of analysis that is one year) 

€/time 

𝑃𝐶𝑖,𝑗 Cost of purchasing spare parts €/time 

𝑂𝐶𝑖,𝑗 Cost of placing supply orders €/time 

𝐻𝐶𝑖,𝑗 Cost of holding inventory €/time 

𝐸𝑇𝐶𝑖 Cost of transporting spare parts from DCs to customers €/time 

𝐵𝐶𝑖 Cost of backorders €/time 

Other parameters 

#𝐷𝐶𝑖 Number of DCs in the SC - 

𝐷𝑡𝑜𝑡𝑖
̅̅ ̅̅ ̅̅ ̅ Average annual demand in each DC units 

#𝑜𝑟𝑑𝑒𝑟𝑠𝑖,𝑗 Average number of supply orders - 

𝑄𝑖,𝑗 Economic order quantity for replenishing SKUs in DCs units 

𝐼𝑖,𝑗 Average inventory in each DC units 

𝑆𝑆𝑖,𝑗 Safety stocks in each DC, calculated to compensating demand fluctuations 

at least to ensure the desired service level. 

units 

𝐷𝑡𝑜𝑡 𝑖𝑛 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒𝑖,𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ Average demand of spare parts during the procurement lead time units/time 

𝑒𝑡𝑖 Unitary transportation costs €/transportation 

𝑒𝑡 𝑑𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖  Unitary transportation costs for decentralised and hybrid stock deployment 

policies 

€/transportation 

#𝑏𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠𝑖  Average number of backorders backorders 

To achieve the DSS, a heuristic methodology was devised, comprising four steps. In Step 1, 

mathematical modelling was applied (Equations 23-39) to compare the cost-effectiveness of different 

SC configurations with different stock deployment policies and spare parts manufacturing options, 

thus defining the combination with the minimum cost. 
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𝑚𝑖𝑛[𝐶𝑡𝑜𝑡𝑖] 𝑤𝑖𝑡ℎ 𝑖 = 1, 2, … , 10         (23) 

𝐶𝑡𝑜𝑡𝑖 = 𝑃𝐶𝑖,𝑗 + 𝑂𝐶𝑖,𝑗 + 𝐻𝐶𝑖,𝑗 + 𝐸𝑇𝐶𝑖 + 𝐵𝐶𝑖        (24) 

𝑃𝐶𝑖,𝑗 = 𝑢𝑐𝑗 ∗ 𝐷𝑡𝑜𝑡𝑖
̅̅ ̅̅ ̅̅ ̅ ∗ #𝐷𝐶𝑖           (25) 

#𝐷𝐶𝑖 = {
[(1 − 𝐷𝑒𝑔𝑖) ∗ #𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠]+ 𝑖𝑓 𝑖 = 1, 2, … ,8

1                                                𝑖𝑓 𝑖 = 9, 10 
      (26) 

𝐷𝑡𝑜𝑡𝑖
̅̅ ̅̅ ̅̅ ̅ = {

 (
�̅�1 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟∗#𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠

#𝐷𝐶𝑖
)          𝑖𝑓 𝑖 = 1, 2, … ,8

(#𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 ∗ �̅�1 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟) 𝑖𝑓 𝑖 = 9, 10 
      (27) 

𝑂𝐶𝑖,𝑗  = (𝑚ℎ ∗ 𝑜𝑡 ∗ #𝑜𝑟𝑑𝑒𝑟𝑠𝑖,𝑗) ∗ #𝐷𝐶𝑖          (28) 

#𝑜𝑟𝑑𝑒𝑟𝑠𝑖,𝑗 =
𝐷𝑡𝑜𝑡𝑖̅̅ ̅̅ ̅̅ ̅̅

𝑄𝑖,𝑗
          (29) 

𝑄𝑖,𝑗 = √
2∗𝐷𝑡𝑜𝑡𝑖̅̅ ̅̅ ̅̅ ̅̅ ∗𝑚ℎ∗𝑜𝑡

𝑢𝑐𝑗∗ℎ%
           (30) 

𝐻𝐶𝑖,𝑗  = (𝑢𝑐𝑗 ∗ ℎ% ∗ 𝐼𝑖,𝑗) ∗ #𝐷𝐶𝑖           (31) 

 𝐼𝑖,𝑗 =
𝑄𝑖,𝑗

2
+ 𝑆𝑆𝑖,𝑗            (32) 

1 − ∑ [
(𝐷𝑡𝑜𝑡 𝑖𝑛 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒𝑖,𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝑛

𝑛!
∗ 𝑒−𝐷𝑡𝑜𝑡 𝑖𝑛 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒𝑖,𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

]
𝑆𝑆𝑖,𝑗−1

𝑛=0 ≥ (1 − 𝐸𝐿𝑇 𝑆𝐿)    (33) 

𝐷𝑡𝑜𝑡 𝑖𝑛 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒𝑖,𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐷𝑡𝑜𝑡𝑖

̅̅ ̅̅ ̅̅ ̅ ∗ 𝐿𝑗           (34) 

𝐸𝑇𝐶𝑖  = (𝑒𝑡𝑖 ∗ 𝐷𝑡𝑜𝑡𝑖
̅̅ ̅̅ ̅̅ ̅) ∗ #𝐷𝐶𝑖           (35) 

𝑒𝑡𝑖 = {
  𝑒𝑡 𝑑𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖        𝑖𝑓 𝑖 = 1, 2, … ,8

 𝑒𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖        𝑖𝑓 𝑖 = 9, 10 
         (36) 

𝑒𝑡 𝑑𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖 =  𝑒𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖 ∗ (0.7644 ∗ 𝐷𝑒𝑔𝑖
2 + 0.2009 ∗ 𝐷𝑒𝑔𝑖 + 0.0161)     (37) 

𝐵𝐶𝑖  = (𝑢𝑏𝑎𝑐𝑘 ∗ #𝑏𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠𝑖) ∗ #𝐷𝐶𝑖          (38) 

#𝑏𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠𝑖 = [(1 − 𝐸𝐿𝑇 𝑆𝐿) ∗ 𝐷𝑡𝑜𝑡𝑖
̅̅ ̅̅ ̅̅ ̅]+        (39) 

Subsequently, in Steps 2-4, experimental research was leveraged. In Step 2, an ANOVA with Main 

Effect Plot was performed to determine the most relevant input parameters of the mathematical 

model, thus excluding from the next steps those with a negligible impact on the selection of the 

optimal SC configuration. To this end, a preliminary parametric analysis was carried out by associating 

the input parameters of Table 5 with a range of three realistic discrete values (Table 6) and 

differentiating the cost items according to AM or CM manufacturing. Table 6 does not refer to 𝑚ℎ, 𝑜𝑡, 

ℎ%, and 𝑖 since 𝑚ℎ, 𝑜𝑡, ℎ% were assumed fixed (30 €/h, 10 minutes, and 25%, respectively), while 𝑖 

already had predefined values. Then, the admissible values of the input parameters were combined, 

generating the so-called “SC scenarios” (a set of input values). Next, each SC scenario was given as an 

input for the mathematical model of Step 1, defining its respective optimal SC configuration. Finally, 

the results were subjected to an ANOVA using Minitab software, where the values composing the SC 

scenarios were indicated as input factors, and their associated optimal SC configurations were 

indicated as responses. Figure 21 shows the ANOVA results. It emerged that three out of nine input 

parameters (𝐿𝐴𝑀, 𝐿𝐶𝑀, and 𝐸𝐿𝑇 𝑆𝐿) have a negligible impact on the process of selecting the optimal 

spare parts SC configuration, providing a curve in the Main Effects Plots that is almost horizontal. 
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These parameters were not considered for building the DSS, while the remaining six were considered 

in the next steps of this heuristic methodology. 

Table 6. Parameters and values of the discretised parametric analysis 

Input 

parameter 
Admissible values Unit measure Source used to define admissible values 

#𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 5; 53; 100 - Authors’ experience 

𝐸𝐿𝑇 𝑆𝐿 0.85; 0.92; 0.99 - Authors’ experience 

�̅�1 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟  1; 4; 7 units/year (Knofius et al., 2021) 

𝑒𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖  100; 1,050; 2,000 €/transportation Authors’ experience 

𝑢𝑏𝑎𝑐𝑘 1,000; 50,500; 100,000 €/backorder (Peron et al., 2021) 

𝐿𝐴𝑀 1; 2.5; 4 weeks (Knofius et al., 2021) 

𝐿𝐶𝑀 4; 15; 26 weeks (Knofius et al., 2021) 

𝑢𝑐𝐴𝑀 100; 1,300; 2’500 €/unit (Knofius et al., 2021) 

𝑢𝑐𝐶𝑀 10; 1,255; 2,500 €/unit (Knofius et al., 2021) 

 

Figure 21. Results of the ANOVA (Main Effects Plots). 
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In Step 3, another parametric analysis was performed to investigate a sample of 10,000 realistic SC 

scenarios (i.e., case studies of spare parts SCs characterised by different spare parts demand, 

purchasing costs, transportation costs, backorder costs, and required service levels). The SC scenarios 

were collected by associating the relevant input parameters (emerged in Step 2) with Sobol quasi-

random values (following the procedure explained in Section 3.1.4), according to the admissible 

ranges listed in Table 7. Then, each SC scenario was submitted to the mathematical model of Step 1, 

and its related optimal SC configuration was determined. 

Table 7. Values considered in the Sobol-based parametric analysis. The range extreme values are based on Table 6 

Input parameter Range of admissible values Unit measure 

#𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 integers between 5 and 100 - 

𝐸𝐿𝑇 𝑆𝐿 floats between 0.85 and 0.99 - 

�̅�1 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟  integers between 1 and 7 units/year 

𝑒𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖  floats between 100 and 2,000 €/transportation 

𝑢𝑏𝑎𝑐𝑘 floats between 1,000 and 100,000 €/backorder 

𝐿𝐴𝑀 integers between 1 and 4 weeks 

𝐿𝐶𝑀 integers between 4 and 26 weeks 

𝑢𝑐𝐴𝑀 floats between 100 and 2,500 €/unit 

𝑢𝑐𝐶𝑀 floats between 10 and 2,500 €/unit 

In Step 4, the desired DSS was obtained by feeding and training a decision tree algorithm with the 

results of the Sobol-based parametric analysis (following the machine learning procedure explained 

in Section 3.1.4). Figure 22 depicts the achieved DSS, which was pruned (more indications are provided 

in Paper 3), searching for a trade-off between accuracy (𝐴 = 77%, Equation 2) and user-friendliness 

(i.e., few questions to be answered to get a solution). Finally, the performance of the achieved DSS 

was evaluated (Equations 3-5), which are reported in Figure 22. 

 

Figure 22. Achieved DSS in the form of a decision tree. The numbers inside each leaf refer to Figure 19 
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To conclude this subsection, we developed a heuristic model and achieved a DSS, which suggests the 

optimal (cost-effective) SC configuration among those listed in Figure 19, optimising two aspects 

simultaneously: 

• the stock deployment policies of individual SKUs, opting for centralisation (𝐷𝑒𝑔 = 1), 

decentralisation (𝐷𝑒𝑔 = 0), or hybrid stock deployment policies (𝐷𝑒𝑔 = 0.25; 0.50;  0.75); 

• the manufacturing option of each SKU, indicating whether to purchase AM or CM spare parts. 

The DSS shows that the most recommended spare parts SC configurations are those with 𝐷𝑒𝑔𝑖 = 0.25 

(SC configurations 3 and 4 in Figure 19, which are suggested in 11 out of 16 leaves of the tree). 

Conversely, the DSS never suggests SC configurations 5-9 of Figure 19, indicating as not cost-effective 

the SCs with 𝐷𝑒𝑔𝑖 of 0.50 and 0.75, as well as the total centralisation of AM spare parts. Given these 

results, this study demonstrates the importance of considering hybrid stock deployment policies in 

the analysis, and not just a comparison of the SCs with total centralisation or decentralisation. In 

particular, SC configuration 3 with AM spare parts and 𝐷𝑒𝑔𝑖 = 0.25 appears cost-effective when 𝑢𝑐𝐶𝑀 

is higher than 1,490 €/unit and 𝑢𝑏𝑎𝑐𝑘 is higher than 38,175 €/backorder. In such a case, the unitary 

cost of purchasing AM spare parts is similar to (or lower than) the CM one, making AM spare parts 

preferable. Moreover, in such a case, a hybrid stock deployment policy with a low degree of 

decentralisation (0.25%) reduces backorders, benefiting from the risk-pooling effect (the demand is 

aggregated in a few DCs), while keeping delivery times and costs lower than in a fully centralised SC 

configuration. 

The achieved DSS can be considered reliable based on its KPIs (𝐴, 𝑎, 𝑝, and 𝑐). It is characterised by 

some leaves with a very high accuracy (𝑎 > 90%), which guarantees the reliability of the predictions. 

Moreover, despite presenting some leaves with a low accuracy (𝑎 < 50%, which may seem 

insufficient to trust the DSS), the increase of cost (𝑐) that spare parts retailers should pay in the case 

of a wrong decision is always less than 10% (often even below 5%). This result means that an incorrect 

prediction of the DSS has an impact on the company’s economy, which is almost negligible with 

respect to the one that the optimal spare parts SC configuration (correct prediction) would imply. 

Hence, the low value of 𝑐 makes it easier for spare parts retailers to accept the DSS, even when the 

accuracy of its leaves is not very high. 

The DSS is the main outcome of this subsection, answering both RQ2 and RQ3. However, two 

additional contributions of this work can be identified as follows. First, a heuristic model has been 

developed where, in particular, Equations 23-39 have been provided, for the first time in the literature, 

to quantitatively compare SC configurations with different stock deployment policies and 

manufacturing options. Second, it has been proved through a parametric analysis and an ANOVA that 
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the procurement lead time of spare parts (𝐿𝑗) and the expected service level (𝐸𝐿𝑇 𝑆𝐿) have a negligible 

impact on the performance of an SC configuration. Therefore, these parameters, which are commonly 

considered when spare parts retailers make strategic decisions regarding their SC configurations, do 

not have a relevant effect on the considered decision-making process. 

4.3.2. DSS (developed through a heuristic methodology) to compare different stock 

deployment policies with CM spare parts purchased from suppliers and AM spare parts 

produced in-house 

To complement the DSS in Section 4.3.2, another DSS was proposed, which was achieved after 

developing a heuristic model. This DSS compares the cost-effectiveness of different stock deployment 

policies in SCs, where, according to Figure 23, the replenishment of DCs can be performed by 

purchasing CM spare parts from suppliers (in the form of finished products), or by producing AM spare 

parts in-house (namely, installing 3D printers in DCs). As a result, this DSS supports spare parts retailers 

in defining, for each SKU, the combination of stock deployment policy (considering the same 

alternatives of Figure 20) and manufacturing option (purchase of CM spare parts or production of AM 

ones) that produces the minimum SC total cost. The achieved DSS (together with the heuristic 

methodology used to achieve it) represents an outcome for both RQ2 and RQ3, where both the 

heuristic model and the DSS are briefly described below. Paper 4 provides a more detailed explanation 

of both the heuristic methodology and the DSS. 

 

Figure 23. Control volume (within dashed lines) considered to develop the DSS in the case of CM and AM spare parts, 
respectively 

Unlike the DSS in Subsection 4.3.1, the DSS herein provided does not consider a single SKU per time. 

Rather, it optimises the management of multiple SKUs at the same time, and it assumes a spare parts 

retailer who currently manages CM spare parts but is interested in evaluating a switchover to AM as 

a starting condition. The spare parts retailer has three possible alternatives to consider: (i) continue 
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purchasing from suppliers SKUs as CM spare parts (which we refer to as “single-sourcing CM”), (ii) 

replace the purchase of CM spare parts with AM in-house production (which we refer to as “single-

sourcing AM”), or (iii) produce some SKUs in-house using AM, while purchasing others in CM (which 

we refer to as “dual-sourcing CM/AM”). In this context, the DSS was achieved by, first, supporting 

spare parts retailers in optimising the starting stock deployment policies for CM spare parts and then, 

splitting CM SKUs into groups (from now on referred to as ''sub-sets”), which put together all SKUs 

associated with the same degree of centralisation (Equation 22). Finally, by applying mathematical 

modelling and experimental research to each sub-set, we achieved a DSS (one per sub-set), which can 

be used to compare 11 different SC configurations, as summarised in Figure 24. Figure 24 refers, as an 

example, to the sub-set of CM SKUs associated with an initial degree of centralisation equal to zero, 

but it can be easily extended to other sub-sets following the indications provided in the caption. 

We are aware of the simplifications considered by splitting SKUs into sub-sets (i.e., the SC design is 

not optimised by considering all SKUs together, but by dividing them into sub-sets and looking for the 

optimum within each sub-set). However, we consider this choice acceptable for the following reasons. 

Other authors (Daskin et al., 2002; Patriarca et al., 2016) have proposed exact optimisation models to 

optimise stock deployment policies in two-echelon SCs (focusing solely on CM spare parts without 

considering AM ones). However, the proposed exact optimisation models require Lagrangian 

relaxations, branch-and-bound algorithms, and heuristic forcing rules to be solved, leading to 

solutions that are local optimums (not necessarily absolute ones). Therefore, having to accept a local 

optimum solution in any case, we simplify the problem from the very beginning, taking advantage of 

this simplification to achieve a quick, user-friendly heuristic model. 
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Figure 24. SC configurations investigated by considering different manufacturing technologies and stock deployment 
policies. This figure refers to the sub-set of SKUs with Deg = 0. However, it can be extended to other sub-sets by moving to 

the right the SC design number zero. 

The achieved DSS (one per each sub-set) relies on the indexes, parameters, and variables listed in 

Table 8 and considers the following simplifying assumptions: (i) no capacity constraints are considered 

for the supplier’s warehouse and the DCs (Tapia-Ubeda et al., 2020); (ii) procurement lead times are 

assumed deterministic and dependent only on the product (not on the geographical location of DCs) 

(Lolli et al., 2022); (iii) spare parts demand is stochastic, following a Poisson distribution (Sherbrooke, 

1968; Stoll et al., 2015); and (iv) all DCs in an SC configuration are characterised by the same average 

transportation cost. Moreover, transportation costs are calculated by assuming that only one spare 

part is distributed in each trip since a Poisson demand is considered, which is known as the law of rare 

events; (v) a continuous (𝑅𝑂𝑃, 𝑄) inventory policy is used to manage both stocks of finished products 

and AM raw materials, where 𝑅𝑂𝑃 is the reorder point and 𝑄 is the optimal order quantity (Song and 

Zhang, 2020); (vi) the purchase of CM spare parts and the production of the AM ones are performed 

according to a make-to-stock policy, while the on-demand production of AM spare parts is precluded 

due to current AM technological limits related to high production times (Kumbhar and Mulay, 2018; 

Sgarbossa et al., 2021); (vii) no sustainability aspects and risks affecting different SC designs are 

considered, excluding reverse logistics, environmental aspects, lateral transhipments, and risks 

connected to the protection of intellectual property rights and liability of Computer-Aided Design 

(CAD) projects (Zijm et al., 2019); (viii) all AM SKUs are considered to be made of the same AM raw 

material (Mehrpouya et al., 2022; Priarone et al., 2021); and (ix) all SKUs are supposed producible with 
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both AM and CM (Chaudhuri et al., 2021); (x) fixed investment costs for purchasing/renting facilities 

are not considered since we are reviewing the configuration of existing SCs; (xi) the period considered 

to develop the analysis is one year (Daskin et al., 2002). 

Table 8. List of parameters for the DSS 

Index Description Unit of measure 

𝒊 
Identifier of the considered SC design. 𝑖 assumes integer values between 0 and 

10 according to Figure 24 
- 

𝒅 
Considered DC. Given the analysed type of SC design (CM, AM, or CM/AM), 

𝑑 assumes integer values between 1 and #𝐷𝐶𝐶𝑀 or #𝐷𝐶𝐴𝑀 
- 

𝒋 Manufacturing technology of each SKU. 𝑗 can be CM or AM - 

𝒌 Considered SKU. 𝑘 assumes integer values between 1 and 𝐾 - 

Input parameter Description Unit of measure 

𝑲 Total number of SKUs in the considered sub-set - 

#𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓𝒔 Number of customers served by the spare part retailer - 

�̅�𝟏𝒄𝒌
 Average annual demand emitted by one customer for each SKU  units/time 

𝑫𝒆𝒈𝑪𝑴 
Degree of centralisation of CM spare parts. It can assume specific values 

according to Figure 20 
- 

𝑫𝒆𝒈𝑨𝑴 
Degree of centralisation of AM spare parts. It can take specific values according 

to Figure 20 
- 

𝒕 𝒄𝒆𝒏𝒕𝒓𝒂𝒍 
Unitary transportation cost to deliver an SKU from the central DC (𝐷𝑒𝑔𝐶𝑀 = 1 

or 𝐷𝑒𝑔𝐴𝑀 = 1) to a customer 
€/transportation 

𝒄𝒃𝒌
 Unitary backorder cost of each SKU €/backorder 

𝑳𝒌 Procurement lead time required by supplier to deliver a CM SKU time 

𝒖𝒄𝒌 

Unitary purchase cost of a CM SKU. It includes all costs that the supplier incurs 

(e.g., production, quality tests, equipment, etc.) together with the desired profit 

margins (Pour et al., 2016) 

€/unit 

𝒐𝒄 
Unitary cost of a supply order. It is given by the product between the average 

time required to issue one supply order and the hourly labour cost in DCs 
€/order 

𝒉%𝒅
 

Holding cost rate for keeping SKUs in a DC during the period of analysis. 

It includes variable costs of facilities, and risks connected to opportunity costs 

and stocks obsolescence (Khajavi et al., 2014) 
time-1 

𝒏𝒌 Constant which, multiplied by the purchase cost of a CM SKU, returns the 

production cost of an equivalent AM SKU (Knofius et al., 2021) 

- 

𝑳𝒓𝒂𝒘 Procurement lead time required by supplier to deliver AM raw material time 

𝑺𝑳 

Desired spare parts service level. It is the same for all SKUs, being the ratio 

between the number of demands answered on time for each SKU and the total 

number of demands answered for that SKU (Ivanov, 2021) 

- 

𝑺𝑳𝒓𝒂𝒘 Desired service level for AM raw material - 

𝒅𝒆𝒏𝒓𝒂𝒘 Density of AM raw material Kg/m3 

𝒖𝒏𝒊𝒕𝒓𝒂𝒘  Unitary pack size according to which AM raw material is purchased (e.g., a 

metal can containing 20 kg of powder (Sandvik AB, 2022)) 

unit raw 

𝑪𝒂𝒑𝟑𝑫𝑷 

Average annual production capacity of a 3D printer. It is expressed in terms of 

production hours, being related to the opening time of DCs and the working 

hours of manpower (Basto et al., 2019) 
time 

𝑳𝒆𝒂𝒔 
Annual leasing cost of a 3D printer. It is supposed to be bought on leasing to 

allow refurbishments when AM technology advances 
€/time 

Variable Description Unit of measure 

𝑪𝒕𝒐𝒕𝒊
 Annual cost of a SC design €/time 

𝑪𝑪𝑴𝒅,𝒌
 Annual cost of a CM SKU in a DC €/time 

𝑪𝑨𝑴𝒅,𝒌 Annual cost of an AM SKU in a DC €/time 

𝑪𝑷𝒅,𝒌 Annual cost of purchasing a CM SKU (from the supplier), to replenish a DC €/time 

𝑪𝑶𝒅,𝒌
 Annual ordering cost for supplying a CM SKU in a DC €/time 

𝑪𝑯𝒅,𝒌
 Annual holding cost for keeping stocks of a SKU in a DC €/time 

𝑪𝑻𝒅,𝒌
 Annual transportation cost for delivering a SKU to customers €/time 



 

63 
 

𝑪𝑩𝒅,𝒌
 Annual backorder cost of a SKU in a DC €/time 

𝑪𝑷𝒓𝒂𝒘𝒅,𝒌
 Annual cost for purchasing the AM raw material needed to produce a specific 

AM SKU in a DC 

€/time 

𝑪𝑯𝒓𝒂𝒘𝒅,𝒌
 Annual holding cost for keeping in a DC the specific quantity of AM raw 

material required to produce a SKU 

€/time 

𝑪𝑶𝒓𝒂𝒘𝒅,𝒌
 Annual ordering cost for supplying the AM raw material which is required to 

produce a certain SKU in a DC 

€/time 

𝑪𝑷𝒓𝒐𝒅𝒅,𝒌
 Annual AM production cost in a DC. It includes costs for creating CAD projects, 

setting up 3D printers, keeping manpower, printing spare parts, and performing 

quality tests 

€/time 

#𝟑𝑫𝑷𝒅 Number of 3D printers to be installed in each DC - 

𝑪𝒑𝒓𝒊𝒏𝒕𝒅
 Annual leasing cost of 3D printer(s) installed in a DC €/time 

𝑪𝟑𝑫𝑷𝒅,𝒌
 Annual leasing cost of 3D printer(s) installed in a DC, where the cost has been 

allocated to each individual SKU 

€/time 

𝑭𝒅 Number of SKUs for which AM production is allowed at the current loop 

iteration. 𝐹 can assume integer values between 0 and 𝐾, where in the first loop 

iteration 𝐹 = 𝐾 (AM allowed for all SKUs), while in the next loop iterations 𝐹 

is reduced if, for some SKUs, AM appears not economically convenient in 

respect with CM 

- 

𝑫𝒅,𝒌
̅̅ ̅̅ ̅̅  Average annual demand of the considered SKU in each DC units 

#𝑫𝑪𝑪𝐌 Number of DCs in which SKUs should be stored if they were purchased as CM 

spare parts 

- 

#𝑫𝑪𝑨𝐌 Number of DCs in which SKUs should be stored if they were produced as AM 

spare parts 

- 

𝒐𝒄 Unitary cost of issuing one supply order €/order 

#𝒐𝒓𝒅𝒅,𝒌 Average number of supply orders for each SKU in each DC - 

𝑸𝒅,𝒌 Optimal order quantity to replenish SKUs in a DC units 

𝑺𝑺𝒅,𝒌 Safety stocks of each SKU in a DC. It corresponds to the smallest value that 

compensates demand fluctuations during the procurement lead time and ensures 

the desired service level 

units 

𝒉𝒅,𝒌 Unitary holding cost for keeping stocks of spare parts in a DC €/time 

𝑫𝒍𝒕𝒅,𝒌
̅̅ ̅̅ ̅̅ ̅̅  Demand for each SKU received during the procurement lead time units 

𝒛𝒓𝒂𝒘 

If the demand for AM raw materials follows a normal distribution, 𝑆𝐿𝑟𝑎𝑤 is 

associated with the service factor (𝑧𝑟𝑎𝑤) of the corresponding standardised 

normal distribution 

- 

𝑰𝒅,𝒌 Average inventory of each SKU in a DC units 

𝒕𝒅 Unitary transportation cost in a DC €/transportation 

𝒕 𝒅𝒆𝒄𝒆𝒏𝒕𝒓𝒂𝒍𝒅 
Unitary transportation cost to deliver an SKU from a decentralised DC 

(𝐷𝑒𝑔𝐶𝑀 > 1 or 𝐷𝑒𝑔𝐴𝑀 > 1) to a customer 
€/transportation 

#𝒃𝒂𝒄𝒌𝒐𝒓𝒅𝒆𝒓𝒔𝒅,𝒌 Average number of backorders of a SKU in a DC - 

𝒖𝒄𝒓𝒂𝒘 Unitary purchase cost of AM raw material required to produce each specific 

SKU 

€/unit raw 

𝒒𝒓𝒂𝒘𝒌
̅̅ ̅̅ ̅̅ ̅̅  Average quantity of AM raw material required to produce an AM SKU units raw 

𝒗𝒐𝒍𝒌 Volume of each SKU m3 

𝒑𝒓𝒐𝒅𝒌 Unitary AM production cost of a SKU, which is an AM spare part €/unit 

#𝒐𝒓𝒅𝒓𝒂𝒘𝒅,𝒌
 Number of supply orders issued in a DC to replenish the specific quantity of AM 

raw material required to produce a SKU 

orders 

#𝒐𝒓𝒅𝑻𝑶𝑻 𝒓𝒂𝒘𝒅
 Total number of supply orders issued for supplying AM raw material (required 

to produce all AM SKUs) in a DC 

orders 

𝑫𝒓𝒂𝒘𝒅
̅̅ ̅̅ ̅̅ ̅̅  Average amount of AM raw material required to produce all SKUs in a DC units raw 

𝑸𝒓𝒂𝒘𝒅
 Optimal order quantity adopted to replenish AM raw material in a DC units raw 

𝒉𝒓𝒂𝒘𝒅,𝒌
 Unitary holding cost for keeping stocks of AM raw material in a DC €/time 

𝑰𝒓𝒂𝒘𝒅,𝒌
 Average inventory of AM raw material determined by an AM SKU in a DC units raw 

𝑰𝑻𝑶𝑻𝒓𝒂𝒘𝒅
 Average inventory of AM raw material determined by all AM SKUs in a DC units raw 

𝑺𝑺𝒓𝒂𝒘𝒅
 Safety stocks of AM raw material required to compensate demand fluctuations 

and ensure the desired service level in a DC 

units raw 

𝑫𝒍𝒕𝒓𝒂𝒘𝒅
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ Demand for AM raw material received during the procurement lead time units raw 

𝒑. 𝒕𝒊𝒎𝒆𝒌 Number of production hours that 3D printers work to produce one unit of each 

AM SKU 

time/unit 
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𝒕𝒊𝒎𝒆𝒕𝒐𝒕𝒅
 Total number of production hours required to produce all AM SKUs time 

�̅�𝟏𝒄
̅̅ ̅̅ ̅ Arithmetic mean of the values assumed by �̅�1𝑐𝑘

 for all SKUs units/time 

𝐜𝐛̅̅ ̅ Arithmetic mean of the values assumed by 𝑐𝑏𝑘
 for all SKUs €/backorder 

�̅� Arithmetic mean of the values assumed by 𝐿𝑘  for all SKUs time 

�̅� Arithmetic mean of the values assumed by 𝑛𝑘  for all SKUs  - 

𝒖𝒄̅̅̅̅  Arithmetic mean of the values assumed by 𝑢𝑐𝑘  for all SKUs  €/unit 

As already introduced, to develop the DSS, we considered spare parts retailers who buy CM spare 

parts from suppliers and deliver them to customers (Heinen and Hoberg, 2019). Moreover, such spare 

parts retailers are considered to have already optimised the stock deployment policies of CM spare 

parts, dividing SKUs into sub-sets. However, if spare parts retailers have not yet accomplished this 

task, this is not a limitation, since they can do so by consulting Figure 25. In fact, to enable any spare 

parts retailer to achieve the required starting conditions, we applied the methodology by Cantini et 

al. (2022) (described in Section 4.3.1), focusing on CM spare parts (i.e., excluding AM variables). Hence, 

we derived Figure 25, which guides the optimisation procedure, indicating under which conditions 

(combinations of input parameters listed in Table 8) each CM SKU has to be associated with different 

stock deployment policies. Figure 25 suggest splitting CM SKUs into only three sub-sets (characterised 

by 𝐷𝑒𝑔𝐶𝑀 equal to 0, 0.25, and 0.50, respectively), underlining as not cost-effective for CM spare parts 

the other stock deployment policies of Figure 20 (with 𝐷𝑒𝑔𝐶𝑀 equal to 0.75 and 1). 



 

65 
 

 

Figure 25. Conditions suggested by Cantini et al. (2022) to divide the starting CM SKUs into three sub-sets, according to 
their optimal stock deployment policy (𝐷𝑒𝑔𝐶𝑀) 
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To develop the DSS, we used a methodological framework composed of three steps for each sub-set. 

In Step i, we developed a heuristic model to review the design of existing SCs, selecting the most cost-

effective alternative among those reported in Figure 24. In the heuristic model, the general problem 

is split into small sub-problems, nested iterative loops are built, and a specific subproblem is solved to 

optimality in each iterative loop. Specifically, after preliminary initialisation, the proposed heuristic 

model is based on three nested iterative loops: an inner loop, an intermediate loop, and an outer loop. 

In the initialisation, considering the selected sub-set, its SKUs are associated with the same stock 

deployment policy (𝐷𝑒𝑔𝐶𝑀). Therefore, 𝐷𝑒𝑔𝐶𝑀 is fixed, and the number of DCs in which SKUs should 

be stored if they were purchased as CM spare parts is calculated (Equation 40). 

#𝐷𝐶𝐶𝑀 = {
[(1 − 𝐷𝑒𝑔𝐶𝑀) ∗ #𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠]+ 𝑖𝑓 𝐷𝑒𝑔𝐶𝑀 < 1 𝑎𝑛𝑑 𝑗 = 𝐶𝑀
1                                                         𝑖𝑓 𝐷𝑒𝑔𝐶𝑀 = 1 𝑎𝑛𝑑 𝑗 = 𝐶𝑀

    (40) 

Next, to compare the purchase of CM spare parts with AM production, a certain value of 𝐷𝑒𝑔𝐴𝑀 is 

chosen and fixed (selecting one of the values allowed in Figure 20). Then, the number of DCs in which 

SKUs should be stored if they were produced in AM is calculated (Equation 41).  

#𝐷𝐶𝐴𝑀 = {
[(1 − 𝐷𝑒𝑔𝐴𝑀) ∗ #𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠]+ 𝑖𝑓 𝐷𝑒𝑔𝐴𝑀 < 1

1                                                                𝑖𝑓 𝐷𝑒𝑔𝐴𝑀 = 1 
      (41) 

At this point, the focus is put on a single DC, where the three nested iterative loops are performed, 

considering as initial values #3𝐷𝑃𝑑 = 1 and 𝐹𝑑 = 𝐾. Specifically, the inner loop selects the optimal 

manufacturing technology (CM or AM) for all SKUs in the considered sub-set. Next, the intermediate 

loop determines the number of 3D printers required to meet the production of AM spare parts. Finally, 

the outer loop suggests optimal stock deployment policies, completing the SC design review. Figure 

26 schematically represents how to apply nested iterative loops. See Paper 4 for a more detailed 

explanation of the heuristic model and its constituting equations. 
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Figure 26. Schematic representation of the heuristic model 

After developing the heuristic model, Steps ii-iii leveraged the experimental research was leveraged 

as follows. In Step ii, we performed a parametric analysis for each sub-set to investigate a sample of 

1,000,000 realistic SC scenarios (i.e., case studies of spare parts SCs with different numbers of 

customers and SKUs, where each SKU is characterised by different demand, purchasing costs, 

transportation costs, backorder costs, required service level, etc.). The SC scenarios were collected by 

associating the input parameters of the heuristic model with Sobol quasi-random values (following 

the procedure explained in Section 3.1.4), according to the admissible ranges listed in Table 9. Then, 

each SC scenario was submitted to the heuristic model of Step i, and its related optimal SC 

configuration was determined. 
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Table 9. Sobol values assumed in the parametric analysis. The upper and lower limits of each range were updated based on 
the considered sub-set. Input parameters not listed in this table were assumed to be fixed (see Paper 4) 

Input 

parameter 
Range of admissible values Unit measure Source used to define the ranges 

#𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 integers between 5 and 100 - (Cantini et al., 2022) 

𝑆𝐿 floats between 0.85 and 0.99 - (Cantini et al., 2022) 

�̅�1𝑐𝑘
 integers between 1 and 7 units/year (Knofius et al., 2021) 

𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 floats between 100 and 2,000 €/transportation (Cantini et al., 2022) 

𝑐𝑏𝑘
 floats between 1,000 and 100,000 €/backorder (Peron et al., 2021) 

𝐿𝑘 integers between 4 and 26 weeks (Knofius et al., 2021) 

𝐾 integers between 10 and 5,000 - Authors’ choice 

𝑛𝑘 floats between 1 and 3 - (Knofius et al., 2021) 

𝑢𝑐𝑘 floats between 10 and 2,500 €/unit (Knofius et al., 2021) 

Finally, in Step iii, we obtained the desired DSS (one per sub-set) by feeding and training a decision 

tree algorithm with the results of the Sobol-based parametric analysis (as explained in Section 3.1.4). 

Figure 27 depicts the DSS related to the sub-set with 𝐷𝑒𝑔𝐶𝑀 = 0 (the other DSSs are provided in Paper 

4). The DSS was pruned (see Paper 4), searching for a trade-off between accuracy (𝐴 = 86.5%, 

Equation 2) and user-friendliness (few questions to be answered to get a solution). Finally, we 

evaluated the performance of the achieved DSS with proper KPIs (Equations 3-5), which are reported 

in Figure 27. 

 

Figure 27. DSS related to sub-set with 𝐷𝑒𝑔𝐶𝑀 = 0. The numbers inside each leaf refer to Figure 24 



 

69 
 

To conclude this sub-section, we achieved a DSS (one per sub-set), which suggests an optimal (cost-

effective) SC configuration among those listed in Figure 24, optimising the following aspects 

simultaneously: 

• the stock deployment policies of individual SKUs, opting for centralisation (𝐷𝑒𝑔 = 1), 

decentralisation (𝐷𝑒𝑔 = 0), or hybrid stock deployment policies (𝐷𝑒𝑔 = 0.25; 0.50;  0.75); 

• the manufacturing option of each SKU, indicating whether to purchase CM spare parts or 

produce in-house AM items, and suggesting when to adopt single- or dual-sourcing. 

The main findings of this study can be summarised as follows: the DSS provided for each sub-set is 

robust since a decision tree with accurate leaves is achieved, or, at least, the DSS forecasts prevent 

spare parts retailers from paying a high percentage of cost increase (according to Equation 5, 𝑐 is 

always less than 10%, often below 5%) in the case of wrong predictions. Moreover, the DSS related to 

each sub-set proves that, despite the advantages of risk-pooling, the centralisation of spare parts (in 

SCs with 𝐷𝑒𝑔𝐶𝑀 or 𝐷𝑒𝑔𝐴𝑀 higher than 0.75) is rarely advantageous and is never suggested as cost-

effective. Conversely, decentralised and hybrid SCs are often convenient, especially with 𝐷𝑒𝑔𝐶𝑀 or 

𝐷𝑒𝑔𝐴𝑀 ≤ 0.25. Finally, the input parameter #𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 has a low impact on the decision-making 

process and did not appear in any DSS. 

The DSS (one per sub-set) is the main outcome of this subsection, answering both RQ2 and RQ3. 

However, this work makes the following two additional contributions: (i) a heuristic model (Figure 26) 

that to quantitatively compares SC configurations with different stock deployment policies and 

compares the purchase of CM spare parts with AM in-house production; (ii) the results of the DSSs 

have quantitatively demonstrated that, in the case of spare parts SCs, inventory decentralisation or 

hybrid stock deployment policies with a low degree of centralisation (𝐷𝑒𝑔 = 0.25) are usually cost-

effective, while other stock deployment policies (tending towards inventory centralisation) are 

convenient only in rare cases. 

4.4. General discussion of the results 

This section delves into the meaning and relevance of the results achieved in this project. 

Reviewing the configuration of spare parts SCs is fundamental for the success of spare parts retailers. 

However, this is not an easy task, and optimising stock deployment policies can be particularly 

problematic, as confirmed by both real companies (which prompted the development of this study) 

and recent studies (Basto et al., 2019; Eldem et al., 2022). No comprehensive literature review has 

been provided to summarise the existing research in this field. Few quantitative methodologies have 

been provided by the literature to identify the optimal alternative between inventory centralisation, 
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decentralisation, and hybrid stock deployment policies for each SKU. Finally, this optimisation problem 

is further complicated by the possibility of producing spare parts with two manufacturing technologies 

(AM and CM), which affect the characteristics of SCs, but without being able to quantify their impacts. 

Against this backdrop, we believe that the results of this research project can be useful for both 

researchers and spare parts retailers, since an answer to the following research questions was 

provided: (RQ1) What are the extant literature and driving research streams on the topic of stock 

deployment in spare parts SCs? (RQ2) What viable heuristic methodologies can spare parts retailers 

use to review their stock deployment policies? (RQ3) What is the optimal manufacturing technology 

for spare parts in SCs with different stock deployment policies? 

To answer RQ1, this study was the first to carry out an SLNA to determine the existing studies and 

driving research streams on the topic of stock deployment in spare parts SCs. The results of the SLNA 

strongly mattered because they provided an overview of the current body of knowledge, confirming 

the aforementioned literature gap and spare parts retailers’ difficulties (thus underlining the need to 

deepen this research field). The lack of a previous literature review on the topic of stock deployment 

in spare parts SCs was a clue about the scarce interest of researchers in this field, contrasting with the 

urgent request received from two real companies to address this problem. In addition, although 

different stock deployment policies were mentioned for the first time almost 100 years ago (Taylor, 

1931), the SLNA pointed out that, against expectations, only 170 papers were published on this topic, 

most of which were published in the last 10 years, resulting in qualitative discussions, as confirmed by 

several authors (Mangiaracina et al., 2015; Milewski, 2020). Given the need to deepen this research 

field, another relevant result of the SLNA was that it enabled us to envision future research 

opportunities. Five main themes and three driving research streams emerged, which constituted a 

solid basis on which to build new knowledge about the optimisation of stock deployment policies and 

the review of spare parts SC configuration. By combining the results of the SLNA with the specific 

requests for support received from two real companies, this project identified two driving research 

streams of primary importance to investigate to fill the literature gaps and alleviate spare parts 

retailers' difficulties: (i) the optimisation of stock deployment in SCs with AM spare parts; and (ii) the 

development of heuristic optimisation methodologies (instead of exact optimisations or simulations) 

to review the stock deployment policies in spare parts SCs. These results can be considered interesting 

based on the following considerations. Regarding the need to optimise stock deployment in AM spare 

parts SCs, the findings confirms that both researchers and spare parts retailers believe AM is a 

strategic opportunity to improve SC performance, replacing CM or complementing its potentialities, 

although the literature in this field is not yet sufficiently thorough (Xu et al., 2021). Regarding the need 

to develop structured heuristic methodologies, this result contrasts with the trends in the literature, 
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where only few quantitative studies have been proposed to optimise stock deployment policies in 

spare parts SCs (Costantino et al., 2013; Daskin et al., 2002; Sherbrooke, 1968). However, researchers 

and spare parts retailers both argue that heuristic optimisation methodologies are needed, being 

preferable over exact optimisation methodologies or simulations since, although they accept 

approximate solutions (achieving local optimums, and not necessarily the absolute ones), they can 

usually be applied in real companies, and where quite often advanced technologies and computational 

resources are missing, and quick and easy-to-use methodologies are needed. The lack of quick and 

easy-to-use heuristic methodologies explains why, despite the well-known importance of optimising 

stock deployment policies and reviewing the configuration of spare parts SCs, many spare parts 

retailers still choose a starting SC configuration and never question it over time, thus limiting their 

performance (Hu et al., 2018). 

Besides the SLNA, the other outcomes of this research project are three heuristic methodologies and 

two quick and easy-to-use DSSs, which support spare parts retailers in comparing different stock 

deployment policies and different spare parts manufacturing options (enabling an adequate SC 

configuration review). Going into more detail on each outcome, the following reflections on the 

achieved results can be offered. As the first outcome, we proposed a data-driven heuristic 

methodology (“SP-LACE”) to review the configuration of spare parts SCs by optimising not only the 

stock deployment policies (which are the primary focus of this study) but also the supply ones. SP-

LACE is composed of two stages. Stage 1 is based on a multicriteria ABC criticality classification of 

spare parts, which suggests how to associate individual SKUs with optimal stock deployment and 

supply policies. Stage 2 then uses an analytical model to evaluate the economic benefits obtained by 

reviewing the SC configuration (instead of keeping it unchanged over time). The developed 

methodology was tested and validated on two real case studies, leading to the following results. First, 

SP-LACE is a structured, effective, quick, and easy-to-use methodology for reviewing the configuration 

of spare parts SCs. Second, SP-LACE reduces SC costs while guaranteeing high service levels and 

improving the performance of spare parts SCs. Finally, SP-LACE is the first literature methodology 

capable of quantitatively demonstrating the importance of reviewing the configuration of spare parts 

SCs. So, what do these results tell us? Why are they relevant? First, applying SP-LACE in two real 

companies allowed us to demonstrate that the theoretical discussions on the importance of reviewing 

spare parts SC configurations find strong reflection in practice. For the first time in the literature, SP-

LACE allowed us to quantitatively demonstrate that reviewing the SC configuration by adopting 

structured methodologies improves the SC performance. Conversely, keeping the starting SC 

configuration unchanged over time implies achieving unnecessary SC costs, as well as high inventory 

levels, number of supply orders, and backorders. Furthermore, although we might think that reviewing 
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the configuration of an existing SC is a burdensome process that is difficult to repeat over time, SP-

LACE made it possible to demonstrate its practical feasibility in two real companies. In particular, in 

one case study, SP-LACE was applied twice, proving that a real company was able to update its stock 

deployment (and supply) policies and review the SC configuration on an annual basis. Moreover, 

although we might think that the ABC criticality classification of spare parts is an obsolete technique 

(superseded by more advanced optimisation methodologies), SP-LACE brought new life to it. In fact, 

SP-LACE showed that the ABC criticality classification can be used not only to manage spare parts 

stocks in a single DC (which is the application usually proposed in the literature) but also to optimise 

stock deployment policies in multiple DCs. Therefore, the results of SP-LACE were useful to show that 

although ABC criticality classification is a well-known simple heuristic technique, it is still highly 

appreciated by companies, provides valuable results, and is not sufficiently explored in the literature. 

SP-LACE represented the first heuristic methodology proposed in this thesis, but it did not address the 

problem of selecting the optimal spare parts manufacturing technology to compare the impacts of AM 

and CM on spare parts SCs. When developing SP-LACE, we focused solely on answering RQ2. 

Therefore, after developing SP-LACE, aiming to answer both RQ2 and RQ3, we proposed two DSSs 

(achieved in the form of decision trees after developing two heuristic methodologies). The two DSSs 

guide spare parts retailers in reviewing the SC configuration by answering a few sequential questions 

and optimising both the stock deployment policies and manufacturing technologies of individual SKUs. 

Both DSSs were achieved by exploiting mathematical modelling and experimental research, 

comparing the SC costs achieved by adopting different combinations of stock deployment policies and 

manufacturing options, and selecting the most cost-effective one. The two DSSs are complementary. 

The first is used to select the most cost-effective combination of stock deployment policies and 

manufacturing options in SCs, where both AM and CM spare parts are purchased from suppliers. 

Instead, the second DSS evaluates the most cost-effective combination of stock deployment policies 

and manufacturing options in SCs where CM spare parts are purchased from suppliers and AM spare 

parts are produced in-house (inside DCs). So, why are the two DSSs (and the heuristic methodologies 

used to achieve them) relevant, and what do they tell us? First, the two DSSs (and the heuristic 

methodologies) represent the first literature attempt to evaluate the impacts of different 

manufacturing technologies on spare parts SCs, selecting the optimal one for spare parts. Hence, their 

results show, for the first time, the optimal spare parts manufacturing technology to be adopted and 

how different manufacturing technologies change the selection of optimal stock deployment policies, 

representing a non-negligible variable to be considered in this decision-making process. Second, the 

two DSSs promoted our understanding of which input parameters mainly impact the SC configuration 

review and what can be neglected instead. For example, the DSS in Section 4.3.1 showed that two 
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parameters (procurement lead time and expected service level) have a negligible impact on the 

investigated decision-making process. Therefore, the DSSs reduced the SC configuration review to a 

quick and easy-to-use process, minimising the evaluation efforts to answering only a few questions 

(driven by the value of input parameters with non-negligible impact). Third, as stated by Westerweel 

et al. (2018), the majority of spare parts retailers currently manage CM spare parts but are interested 

in evaluating a switchover to AM ones. Therefore, the two DSSs constitute relevant literature results, 

since they represent the first tools capable of evaluating the convenience of performing the 

aforementioned switchover, suggesting investments in AM technologies only if they are economically 

profitable. Finally, the DSSs’ results, for the first time in the literature, suggest spare parts retailers 

preferring inventory decentralisation or hybrid stock deployment policies with a low degree of 

centralisation (𝐷𝑒𝑔𝑖 = 0.25), showing that tending towards centralisation is profitable only in rare 

cases. 

To conclude, an important result that unites all the provided heuristic methodologies and DSSs is that 

they have been developed to be quick, easy-to-use, and accessible to all companies. Therefore, we 

hope that this research project will pave the way for encouraging spare parts retailers to regularly 

review their SC configuration, improve their SC performance, and adequately spread the use of AM 

technologies in the field of aftersales (thus enhancing an industrial revolution). 

However, even with the relevance of the presented results, the current research study suffers from 

some limitations (which will be described in Section 5.4) and represents only a starting point for a 

prosperous future of research. Therefore, we hope that this research project can inspire other 

researchers to continue investigating the topic of reviewing the configuration of spare parts SCs, 

considering different stock deployment policies and manufacturing options.
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5. Conclusions 

This section provides summarises the findings and the theoretical and practical contributions provided 

by this research study and provides some concluding remarks. Moreover, the research limitations are 

discussed, and some recommendations for future research are proposed. 

5.1. Summary 

The objective of the current research project was to support and create new knowledge for 

researchers and practitioners (spare parts retailers) on how to review the configuration of spare parts 

SCs, focusing on optimising stock deployment policies and considering different manufacturing 

options. In addition, a more general aim was to propose future research opportunities related to the 

considered research areas, thus inspiring new researchers to continue investigating this topic. To 

reach these goals and develop richer and more thorough knowledge of the research area, this study 

adopted a mixed-methods approach, leveraging a combination of the following research methods: 

1. An SLNA provided in-depth knowledge about the extant literature on the topic of stock 

deployment in spare parts SCs and underlined the driving research streams, which inspired 

possible future research opportunities and new research questions for this study. 

2. Mathematical modelling was used to conceive and develop novel heuristic methodologies to 

guide the rules for reviewing stock deployment policies (and the consequent SC configuration) 

in spare parts SCs with different manufacturing options. 

3. Case study research accomplished several tasks. First, consulting two real companies enabled 

us to formulate the problem to investigate in this research and facilitated testing and 

validating one of the proposed heuristic methodologies by applying it to the two case studies. 

Second, the collaboration with two real companies allowed us to verify whether the proposed 

methodologies and their simplifying assumptions were considered realistic not only by the 

scientific community but also by industrials with decades of experience in the field of spare 

parts retail. 

4. Experimental research allowed the use of sampling strategies to develop many realistic case 

studies, testing them to attain parametric analyses. Experimental research allowed us to 

generalise the results of the parametric analyses by leveraging machine learning algorithms. 

Therefore, quick and easy-to-use DSSs were achieved in the form of decision trees, tasked 

with supporting spare parts retailers in reviewing the SC configuration by selecting not only 

the optimal stock deployment policy but also the spare parts manufacturing option. 
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By leveraging these research methods, the present research project made the following contributions 

by answering three research questions. 

RQ1: What are the extant literature and driving research streams on the topic of stock deployment in 

spare parts SCs? 

The findings of Paper 1 and the SLNA revealed the extant literature on the topic of stock deployment 

in spare parts SCs and identified five main research themes through which the literature in this field 

could be clustered. Among the five themes, two were recognised as driving research streams: (i) the 

optimisation of spare parts deployment in closed loop SCs; and (ii) and the optimisation of stock 

deployment in SCs with AM spare parts. An additional driving research stream was underlined 

regarding the specific methodology used for optimising stock deployment: (iii) the use of heuristic 

optimisation (instead of exact optimisation or simulation). Knowledge of these driving research 

streams is of considerable importance in inspiring new research opportunities and laying the 

foundations for deriving future research activities. 

Given the initial motivations behind this work, and due to time restrictions, only two out of three 

driving research streams (ii and iii) were selected for the rest of this project. This project originated 

from the request for support received by two companies that needed quick and easy-to-use 

methodologies to review stock deployment policies in spare parts SCs and more indications on how 

to introduce AM technologies in their companies. Since Paper 1 confirmed the interest of both 

industrial researchers and practitioners in further investigating research streams (ii) and (iii), we 

focused our attention on those and derived two additional research questions. 

RQ2: What viable heuristic methodologies can be proposed to review stock deployment policies in 

spare parts SCs? 

The findings of Papers 2-4 provided spare parts retailers with three heuristic methodologies with 

which to review stock deployment policies in spare parts SCs. Three different methodologies were 

proposed since they allow spare parts retailers to approach the problem from three different 

perspectives. The first methodology is based on a multicriteria ABC criticality classification of spare 

parts and the development of two procedural stages, which were defined and validated through 

mathematical modelling and case study research. This first methodology allows achieving two results: 

associating optimal stock deployment policies (as well as optimal supply policies) with individual SKUs 

and evaluating the economic benefits of the reviewed SC configuration. This heuristic methodology 

was tested on two different case studies, leading to successful results (in terms of SC costs, time 

consumption, and reliability of its results), and demonstrating, for the first time in the literature, the 
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importance of regularly reviewing the configuration of spare parts SCs. However, such a methodology 

does not provide explicit indications of how to match optimal stock deployment policies with optimal 

spare parts manufacturing options (AM or CM). Therefore, by means of mathematical modelling and 

experimental research, a second and third heuristic methodologies were provided, which implied 

defining two mathematical models, performing two parametric analyses, and training two respective 

machine learning algorithms. The second and third heuristic methodologies were finalised by the 

development of two complementary DSSs, which allowed us to deal with the following issues. The 

second heuristic methodology (with its respective DSS) compares the cost-effectiveness of different 

stock deployment policies in SCs where stocks of both AM and CM spare parts are assumed to be 

purchased from suppliers (in the form of finished products). The third heuristic methodology (with its 

respective DSS) compares the cost-effectiveness of different stock deployment policies in SCs, where 

stocks of CM spare parts are assumed to be purchased from suppliers, while stocks of AM spare parts 

are assumed to be produced in-house (by installing 3D printers inside DCs). 

RQ3: What is the optimal manufacturing technology for spare parts in SCs with different stock 

deployment policies? 

The findings of Papers 3 and 4 answered both RQ2 and RQ3. In fact, the heuristic methodologies 

proposed in the respective papers enabled the development of two DSSs, which supported spare parts 

retailers in making two decisions at the same time: how to review the stock deployment policy in spare 

parts SCs and how to choose the optimal manufacturing option between AM and CM spare parts 

(evaluating different sourcing options, including the purchase or in-house production of stocks). The 

proposed DSSs (represented by decision trees) proved to be quick and easy-to-use, providing spare 

parts retailers with optimal indications by answering only a few questions. Moreover, they suggested 

robust solutions being characterised by accurate decision tree leaves or, at least, by leaves that, in 

case of a wrong prediction, do not negatively impact the companies’ economies (implying an SC total 

cost similar to that of the correct prediction, thus leading to an average percentage of cost increase 

less than 10%, and often below 5%).
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5.2. Theoretical contributions 

The current research study has several contributions to theory, which are summarised in the main 

outcomes reported in Table 10. 

Table 10. Contributions to theory: main outcomes 

Main outcomes Papers 

 1 2 3 4 

Extant literature on stock deployment policies in spare parts SCs x    

Driving research streams related to the topic of stock deployment in spare parts SCs x    

Proposal of a data-driven heuristic methodology (based on a multicriteria ABC 

criticality classification) that can be used to review stock deployment policies in SCs 

with CM spare parts 

 x   

Proposal of a DSS (developed through a heuristic methodology) to review the SC 

configuration by optimising the stock deployment policies and choosing the optimal 

alternative between the purchase of AM or CM spare parts 

  x  

Proposal of a DSS (developed through a heuristic methodology) to review the SC 

configuration by optimising the stock deployment policies and choosing the optimal 

alternative between the purchase of CM spare parts and the in-house production of the 

AM ones. 

   x 

The first and second theoretical contributions of this project come from the findings of the SLNA. First, 

by conducting the SLNA, we defined and reorganised the extant body of knowledge on the topic of 

stock deployment in spare parts SC. We then identified three driving research streams that are useful 

for inspiring future research opportunities, allowing researchers to open new research areas and 

questions on the investigated topic. For instance, in this project, two of the driving research streams 

were used to derive two research questions (RQ2 and RQ3), which were then answered to create new 

knowledge. 

The third contribution relates to the proposal of a novel data-driven heuristic methodology that can 

be used to review the configuration of spare parts SCs, optimising both the stock deployment policies 

(which are the main focus of this study) and the stock supply policies. Since the existing literature 

overlooks the problem of reviewing the configuration of spare parts SCs, the proposed methodology 

represents an attempt to fill this literature gap. Moreover, the proposed methodology is the first one 

in the literature to quantitatively demonstrate the importance of reviewing the configuration of spare 

parts SCs, proving the importance of exploring this research topic.  

The fourth and fifth contributions relate to the proposal of two complementary DSSs (developed 

through two heuristic methodologies), which can be used to review the configuration of spare parts 
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SCs, optimising both the stock deployment policies and the spare parts manufacturing options in two 

different types of SC. The first DSS compares SCs, where AM and CM spare parts are purchased from 

suppliers, and the second DSS evaluates SCs, where CM spare parts are purchased from suppliers and 

AM spare parts are produced in-house. The proposed DSSs (together with the heuristic methodologies 

used to achieve them) represent the first effort in the literature to quantitatively compare the 

performance of SCs with AM and CM spare parts, enabling the selection of the optimal manufacturing 

option. In addition, the proposed DSSs are the first solutions provided by the literature to optimise 

the stock deployment policies and manufacturing options in spare parts SCs at the same time. 

Moreover, consulting the proposed DSSs can help identify the independent parameters that affect the 

performance of different SC configurations and understand the extent to which these parameters 

impact the selection of stock deployment policies and manufacturing options. As a complement, the 

DSSs also highlight which parameters have a negligible effect on the decision-making process. Finally, 

the proposed DSSs can be used (together with the aforementioned data-driven heuristic 

methodology) to demonstrate the importance of reviewing the spare parts SC configuration and 

achieving benefits in terms of SC costs and service levels. 

To conclude, one final theoretical contribution can be underlined, which is common to all the research 

activities conducted in this project. All the developed studies had a common goal: to investigate the 

optimisation of stock deployment policies in spare parts SCs. As this concept is disregarded by the 

literature (there is a lack of clear indications on how to compare scenarios of centralisation, 

decentralisation, and hybrid stock deployment policies), all the outcomes of this project can be 

considered a useful contribution to fill this literature gap, providing new knowledge on an overlooked 

topic. 

5.3. Implications for practice 

Since this research project was initially motivated by the requests of two real companies, all the 

achieved outcomes of Table 10 led to both theoretical contributions and strong implications for 

practice. 

First, both the considerations extracted by the literature and the results achieved by developing and 

applying novel heuristic methodologies and DSSs were useful in showing spare parts retailers the 

importance of reviewing the configuration of spare parts SCs. Many spare parts retailers currently 

choose the SC configuration only once (when the business is founded) and never question it. However, 

in this project, the following result was demonstrated: regularly reviewing the configuration of spare 

parts SCs is the only way for spare parts retailers to maintain a successful position in the market. By 

reviewing the configuration of spare parts SCs, the alignment of spare parts logistic activities with 
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customer needs is guaranteed, despite unpredictable demand fluctuations. As a result, SC costs are 

minimised, and high service levels and customer satisfaction are achieved.  

Before this research project, the existing literature overlooked the problem of reviewing the 

configuration of spare parts SCs. Therefore, we hope that the findings of this research will encourage 

spare parts retailers to start reviewing the configuration of existing spare parts SCs. To achieve this 

goal, different heuristic methodologies and DSSs were intentionally developed and proposed in this 

project to support spare parts retailers in reviewing the configuration of spare parts SC, focusing on 

optimising stock deployment policies and spare parts manufacturing options. The proposed heuristic 

methodologies and DSSs were proven to suggest cost-effective solutions that produce benefits in 

terms of average inventory levels, the number of supply orders to replenish DCs, the number of 

backorders, service levels, and SC costs. 

Specifically, spare parts retailers were provided with practical solutions applicable in real companies 

(also with thousands of SKUs and few advanced technologies and computational resources). We 

developed quick and easy-to-use heuristic methodologies and DSSs that rely on the input data and 

information commonly available in company databases.  

As an additional practical implication, the proposed heuristic methodologies and DSSs suggest which 

independent input parameters spare parts retailers should consider, the procedural steps to perform, 

and the questions to answer when aiming to review and optimise the configuration of spare parts SCs. 

Finally, the equations and the findings of the proposed heuristic methodologies and DSSs show how 

each independent input parameter affects SC performance. Therefore, the input parameters with 

major impacts on the performance of SC configurations are highlighted, enabling spare parts retailers 

to focus on their optimisation. 

5.4. Research limitations 

No research is conducted without limitations. This subsection highlights the main limitations of this 

research project. 

First, because of time constraints, not all the research opportunities related to the optimisation of 

stock deployment policies and the review of spare parts SC configurations have been investigated. The 

developed SLNA identified five main themes and three driving research streams related to the topic 

under investigation. From the three driving research streams, new research opportunities were 

identified that concerned: the optimisation of stock deployment policies in closed loop spare parts SCs 

or SCs with AM spare parts, and the use of heuristic optimisation methodologies to optimise stock 

deployment policies in spare parts SCs. In addition, for each driving research stream, many research 
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questions could be derived, generating, in turn, other research opportunities. However, a longer 

period would be necessary to study all the driving research streams and their related research 

opportunities, while the current research had only a three-year period. For this reason, in this study, 

we focused only on two (out of three) driving research streams (stock deployment of AM spare parts, 

and the use of heuristic optimisation methodologies), exploring only one research question for each 

driving research stream. 

Second, we provided spare parts retailers with heuristic methodologies to optimise stock deployment 

policies in spare parts SCs and, consequently, to review the SC configuration. However, these 

methodologies rely on simplifying assumptions, which limits the generalisation of the achieved results. 

Moreover, like all heuristic methodologies, they may lead to approximate solutions that represent a 

local (not an absolute) optimum. 

Third, we built the proposed DSSs by adopting decision tree algorithms. This particular type of 

algorithm was selected because of its quickness and user-friendliness. However, other more 

sophisticated and accurate algorithms, such as Random Forests, could have been selected among the 

machine learning algorithms. In addition, regarding the DSSs, their practical application in real 

companies could be analysed not to explain how to use the DSSs (which has already been done in 

Papers 3-4), but rather to investigate how the SC performance changes after reviewing the SC, further 

confirming the DSS effectiveness. 

Finally, in addition to the main limitations mentioned above, it is necessary to highlight that each study 

in the appended publications has its own specific limitations, which are provided in the conclusion 

sections of Papers 1-4. 

5.5. Future research developments 

In this section, we report possible future research developments for the present research project. 

First, further investigations could be developed to examine how to review the configuration of spare 

parts SCs by optimising stock deployment policies and considering different manufacturing options. 

Specifically, since not all of the driving research streams underlined in Paper 1 were explored in this 

study, they could be investigated in future works. For example, studies could be conducted on how to 

optimise stock deployment policies in closed loop spare parts SCs, which were not considered here. 

Moreover, since only one research question was derived from each of the considered driving research 

streams, additional research questions could be identified to develop new studies. 
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Second, step by step, the simplifying assumptions behind the proposed heuristic methodologies and 

DSSs could be removed or relaxed to achieve more general results and increase the application range 

of the proposed solutions. 

Third, since only heuristic methodologies were provided, researchers could try to compare them with 

exact optimisation or simulation methodologies to check their effectiveness, quickness, and user-

friendliness, thus confirming the convenience of using heuristics. Moreover, the proposed heuristic 

methodologies and DSSs (particularly DSSs) could be applied in other case studies to replicate their 

application and confirm the benefits that are achievable by reviewing the spare parts SC configuration. 

Fourth, all the provided heuristic methodologies could be applied to a common case study to compare 

their performance and underline their commonalities and differences. This research activity could also 

be useful for supporting spare parts retailers in confirming under which conditions a specific 

methodology should be preferred with respect to others. 

Finally, each of the appended publications reports specific future research opportunities to improve 

the proposed works. Therefore, if interested, we refer the reader to the conclusion sections of Papers 

1-4 to obtain additional knowledge on the considered topic. 
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Abstract: In recent decades, the scientific literature has underlined the difficulties in configuring spare parts Supply Chains 

(SCs) due to the need of minimizing inventory stocks, while facing demand unpredictability and ensuring high service levels. 

When dealing with spare parts retail companies, it is essential to establish the optimal SC configuration. Indeed, aligning spare 

parts storage and distribution activities with customer needs ensures customer satisfaction, increased sales profits, and efficient 

company performance. Configuring spare parts SCs implies performing two tasks. First, defining the deployment strategies of 

spare parts into Distribution Centers (DCs), choosing between antithetical solutions such as centralization or decentralization. 

Then, establishing inventory control policies for each item in each DC, planning how many stocks to supply and how often. 

Regarding the task of establishing the spare parts supply, several contributions have been provided by the literature, proposing 

methods and tools to control inventories in a single DC. Conversely, against expectations, the literature overlooks the task of 

planning the spare parts deployment. Indeed, although the different characteristics of centralized or decentralized SCs are 

known since the 1960s, a few studies have been provided to support spare parts retailers in choosing between centralization 

and decentralization. In this context, the present paper offers a bibliometric review carried out with a Systematic Literature 

Network Analysis (SLNA) on the topic of spare parts deployment in SC configuration and the choice between centralization 

and decentralization. The proposed bibliometric review is useful to understand the state of the art in the analyzed domain, also 

identifying the top contributing research studies. As a result, descriptive metrics on the retrieved papers are provided to give 

an overview of the current body of knowledge and lay the foundations for defining possible gaps and future research activities. 

Keywords: spare parts logistics, supply chain configuration, inventory allocation, inventory pooling, literature review.

I. INTRODUCTION 

Spare parts are strategic assets to ensure the proper 

execution of maintenance activities in industrial plants. 

Indeed, they allow restoring the functioning of 

production equipment by replacing damaged components 

[1]. Given the significant role of spare parts, the scientific 

literature [2] has emphasized how crucial it is for spare 

parts retailers to ensure efficient supply chains (SCs), 

where the right spare parts are stored and distributed in 

the right place (close to the damaged components) at the 

right time (breakdown time [3]). In fact, efficient SCs 

enable spare parts retailers to optimize business 

performance by avoiding inventory stock-outs and 

delivering high service levels, while minimizing 

purchasing, storage, and distribution costs and efforts [4]. 

Moreover, efficient spare parts SCs trigger customer 

satisfaction by providing them with the Stock Keeping 

Units (SKUs) necessary for maintenance activities, thus 

minimizing unexpected equipment downtimes and the 

related financial and operational negative effects [5]. In 

this context, one of the actions that spare parts retailers 

can take to achieve efficient SCs is to optimally configure 

their SCs [6]. An optimal configuration of spare parts 

SCs enables companies to align logistics activities with 

customer demand, thus achieving higher performance 

and competitive advantage. Indeed, a well-configured SC 

allows a customer-oriented after-sales service, which 

encourages customers’ loyalty, repurchase intentions, 

and market share [7]. However, the optimal configuration 

of spare parts SCs is hampered by specific features that 

distinguish spare parts from other items (commodities, 

raw materials, or productive supplies) [8]. Among these 

features, Huiskonen [9] mentioned the unpredictable 

demand, the prices of individual parts which can be very 

high, the high number of SKUs that spare parts retailers 

usually manage, and, finally, the expected customer 

service level which is typically very high. In addition to 

this, pursuing conflicting goals such as ensuring high 

service levels while minimizing inventory costs, another 

difficulty is faced when configuring spare parts SCs: 

choosing between SC configurations characterized by 

different degrees of inventory pooling (which are 

associated with antithetical benefits). Specifically, two 

opposite SC configurations can be selected (namely, 

centralization and decentralization) as well as any hybrid 

configuration that is a trade-off between the two above 

stated [10]. In centralization, the maximum degree of 

inventory pooling is achieved by storing all the SKUs in 

a single central distribution center (DC), which is tasked 

with serving all the customers. The advantages of 

centralization include mitigation of demand uncertainty 
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(risk-pooling effect), minimal inventory levels, low 

numbers of replenishment orders, and minimal inventory 

costs, but implying high delivery times and reduced SC 

flexibility [1]. In contrast, in decentralization, the 

minimum degree of inventory pooling is obtained by 

storing SKUs in multiple independent DCs, each serving 

nearby customers. Decentralization has countervailing 

advantages to centralization, including high SC 

flexibility and responsiveness due to short distances 

between DCs and customers, low spare parts delivery 

times, and consequent high service levels, but implying 

high inventory costs, high numbers of replenishment 

orders, low inventory turnover, and no advantages related 

to economies of scale and risk-pooling [11]. Given the 

aforementioned difficulties, structured methodologies 

should be provided to support spare parts retailers in 

overcoming issues and configuring SCs [12]. 

Specifically, such methodologies should help spare parts 

retailers in defining two aspects of an SC configuration 

[6]. First (step 1 of SC configuration), the optimal 

deployment of spare parts in DCs should be outlined, 

choosing between centralization, decentralization, and 

hybrid deployment alternatives with intermediate 

degrees of inventory pooling. Next (step 2 of SC 

configuration), optimal inventory control policies should 

be established in each DC, choosing for each SKU 

whether to supply it on replenishment or on-demand, 

when to issue supply orders and how many spare parts to 

supply. Concerning step 2 of SC configuration, many 

literature reviews [13], [14] prove that numerous 

methodologies have already been developed to select the 

optimal inventory control policy, thus optimizing spare 

parts supply in a single DC. Conversely, some authors 

[15], [16] have recently stated that step 1 of SC 

configuration (optimal deployment of SKUs in DCs) is 

overlooked by the literature. Specifically, Gregersen and 

Hansen [6] reported that the concepts of inventory 

centralization and decentralization were first introduced 

in 1960 [17], thus making known for a long time the 

impacts of different deployment strategies (with different 

degrees of inventory pooling) on a company's economies. 

Despite this, it was reported [1], [9] that few methods 

have been offered by the literature to deal with step 1 of 

SC configuration, planning the deployment of items in 

DCs and opting for centralization, decentralization, or 

hybrid configurations. Moreover, to the best of the 

authors’ knowledge, an overview of the research 

conducted on step 1 of SC configuration is still missing 

in the literature, as well as a bibliometric review on such 

a topic. Nevertheless, understanding the extant literature 

on the topic of spare parts SC configuration with a focus 

on step 1 of spare parts deployment and the choice 

between centralization and decentralization could be of 

great interest for two reasons. First, to reorganize the 

research carried out so far by identifying the main 

contributions and the most prolific authors, journals, and 

countries. Secondly, to identify current and future 

research trends in the analyzed topic, thus providing a 

solid basis on which to build new research studies. For 

this reason, based on a Systematic Literature Network 

Analysis (SLNA), this paper presents a bibliometric 

review on the topic of spare parts SC configuration with 

a focus on step 1 of planning the SKUs’ deployment in 

DCs, choosing between inventory centralization and 

decentralization. The bibliometric review is conducted 

aiming to answer two research questions: (RQ1) What 

are the most productive and influential countries, 

journals, and authors and the most influential 

contributions in the literature on inventory 

centralization/decentralization and the deployment of 

spare parts in DCs (step 1 of SC configuration)? (RQ2) 

What are the main themes and driving research streams 

that mainly concur in developing the research on the 

topic of inventory centralization/decentralization and the 

deployment of spare parts in DCs? Overall, the aims of 

this paper are three. First, to identify the extant literature 

on the analyzed topic. Secondly, to explore the top-

contributing countries, journals, and authors in the field 

(together with their main contributions) by analyzing 

their number of publications and citations, and also 

proposing a novel graphical descriptive tool. Finally, to 

analyze past and current research themes related to the 

considered topic by examining the authors’ keywords 

and their co-occurrence. As an outcome of this study, 

descriptive metrics on the retrieved research documents 

are provided to give an overview of the current body of 

knowledge. The contribution of this paper is to lay the 

foundations for possible future research activities in the 

examined domain, providing researchers with results 

useful to identify potential literature gaps and propose 

further research studies. The remainder of the present 

paper is organized as follows: in Section 2, the general 

description of the materials collected through the SLNA, 

and the methodology followed to conduct the 

bibliometric review are described. In Section 3, the 

results of the bibliometric review are shown. Finally, in 

Section 4, some conclusions on the work are provided. 

II. MATERIALS AND METHODOLOGY 

A. Materials 

The SLNA was conducted on February 28, 2022, by 

searching scientific contributions on the Scopus 

database, which is considered the best search engine in 

terms of scientific journal coverage [17]. Initially, 

contributions including (in the title, abstract, or 

keywords) keywords related to both spare parts and the 

specific step 1 of SC configuration (i.e., pooling, 

centralization, decentralization, deployment, location, 

allocation, and their synonyms or abbreviations) were 

investigated by means of the following search query: 

TITLE-ABS-KEY("spare part*") AND (TITLE-ABS-

KEY(*centrali* OR *location* OR deploy* OR pooling). 

This search query yielded 770 documents. Aiming to 

extract all existing contributions in the analyzed domain, 

no filter on the papers’ publishing date was inserted. 

Instead, subject areas not related to the topic of research 

were excluded (i.e., Material Science, Energy, Earth and 

Planetary Sciences, Social Sciences, Medicine, Physics 

and Astronomy, Chemical Engineering, Chemistry, 

Agricultural and Biological Sciences, Biochemistry 
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Genetics and Molecular Biology, Arts and Humanities, 

Neuroscience, Health Professions, Pharmacology 

Toxicology and Pharmaceutics, Nursing, Immunology 

and Microbiology, Psychology). In this way, 682 results 

were found. Then, only Articles and Conference Papers 

were filtered, achieving 621 documents. Finally, 

documents written in English were filtered, obtaining 551 

results. The number of contributions identified may seem 

high, in contrast with the remarks by the literature [1], [6] 

on the lack of studies on step 1 of SC configuration. 

However, it was considered appropriate to refine the 

search query based on the following semantic 

clarification. According to Melo et al. [18], when using 

keywords related to the topic of inventory “location” and 

its synonyms or abbreviations, Scopus finds papers 

dealing with three issues: (i) planning the allocation of 

items within a single DC, for example placing the articles 

on the shelves of a warehouse or planning how many 

items to allocate in a single DC [19]; (ii) choosing the 

geographical site for building a new warehouse [20]; (iii) 

determining how to allocate SKUs in multiple DCs, that 

is choosing inventory centralization, decentralization, or 

hybrid SC configurations [21]. Moreover, other research 

themes emerge not related to the topic of interest (e.g., 

the traceability of spare parts location using blockchains, 

the spare parts failure location, and the allocation of spare 

parts redundancies in a plant). Therefore, aiming to 

investigate only the aspect of inventory centralization 

and decentralization and the deployment of spare parts in 

DCs (step 1 of SC configuration), many of the 551 

scientific contributions were considered not pertinent to 

this study. However, it was not possible to change the 

search query, excluding not interesting topics without 

discarding relevant scientific contributions in the 

analyzed domain. For example, modifying the search 

query by removing keywords such as “*location*” or 

“deploy*” would have removed useful papers such as the 

one by Patriarca et al. [22], which instead propose a 

method for optimally deploying spare parts in the DCs of 

multi-echelon SCs. Therefore, it was considered more 

appropriate to perform a manual selection of the collected 

papers, consulting their title and abstract and removing 

the documents not concerning the topic of interest. After 

the manual selection, 170 documents remained 

(excluding 381 papers), showing a greater interest of 

researchers towards the topics of spare parts positioning 

within a single DC, the geographical location of new 

facilities, or other topics, rather than on planning the 

stocks' deployment in DCs and choosing centralization or 

decentralization. Fig. 1 summarizes the followed 

screening process based on 4 exclusion criteria (EXs). 

The achieved database (170 papers) was extracted and 

used to develop the bibliometric review. 

B. Methodology 

A bibliometric network analysis was performed to 

develop this study, investigating the state of the art in the 

selected topic. To address RQ1, analyses on the 

publications and citations of each reference were 

developed to define the most productive and influential 

countries, journals, and authors in the field [23]. The 

most productive authors, countries, and journals were 

defined since they contain most of the publications on the 

topic of interest, being the first sources to be consulted 

when studying spare parts SCs and the choice between 

centralization or decentralization. Whereas the most 

influential authors, countries, and journals were 

identified to establish the literature contributions 

considered most interesting by other authors in the field. 

Moreover, the authors’ characteristics and the most 

influential papers in the field were confirmed by 

developing and proposing for the first time a novel 

graphical tool. Instead, to address RQ2, a co-word 

network analysis was carried out [24] to investigate the 

main themes related to the analyzed topic and the driving 

research streams. Specifically, the co-occurrence of 

authors’ keywords was examined. As far as the software 

packages used to perform the bibliometric review, three 

tools were used to elaborate statistics about publications, 

and citations of countries/journals/authors (RQ1) and 

investigate the authors’ keywords (RQ2): Microsoft 

Excel™, Bibliometrix (R-tool), and VOSviewer. 

 

 

Fig. 1. SLNA performed to achieve the analyzed database 

 

III. RESULTS AND DISCUSSION 

The database is composed of 170 documents (66% 

Articles and 34% Conference Papers), published by 413 

authors in 109 journals in a time span of 91 years (1931-

2022). The average number of citations per document is 

17.8 citations/paper and the total number of citations per 

year is shown in Fig. 2 (orange line) together with the 

temporal distribution of publications (blue histograms). 

In Fig. 2, the first paper published is a technical document 

dated back to 1931 [25], where the US Military Defence 

mentioned for the first time the concept of centralizing 

spare parts inventory as an opportunity to optimize 

maintenance operations. However, Fig. 1 clearly shows 

that the effective starting date for the publication of the 

papers is 1960, which validates the developed search 

query. Indeed, 1960 is precisely the year that Das and 

Tyagi [17] indicated as the beginning of the research 

stream on the topic of stocks’ deployment and the choice 

between centralization and decentralization. Moreover, 

the evolution of publications and citations over time (Fig. 

2) proves that the concept of spare parts centralization 

has been known to researchers for over 90 years. 
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However, the literature on this topic is rather lacking, 

especially until 2008. In fact, the average annual 

publication rate is relatively low (1.9 papers/year), and 

the percentage of documents published before 2008 is 

only 15.3%. However, the publication trend is strongly 

increasing, revealing an augmented interest of the 

scientific community towards this topic. Indeed, a spike 

in the publications curve has been recorded in the last 5 

years (41.2% of papers) with a peak in 2021. Note that 

Fig. 2 shows only 2 articles published in 2022, but this is 

because the search query was conducted in February 

2022. Therefore, it is reasonable to expect a significant 

increase of publications by the end of the year. Finally, 

Fig. 2 shows a remarkable peak in the citation curve 

during 2014, suggesting that one or more significant 

contributions were published on that year. 

 

 

Fig. 2. Reference publication (blue) and citation (orange) year 

spectroscopy 

 

A. Publication and citation analysis 

To answer RQ1, first, the geographical distribution of 

publications and citations was studied, defining the most 

productive and influential countries. Fig. 3 shows the 

countries’ productivity based on their total number of 

publications on the topic of spare parts deployment and 

inventory centralization or decentralization. Darker 

colors are associated to China, Germany, Netherlands, 

and Italy, being the most productive countries with 138, 

45, 43, and 43 publications, respectively. Moreover, as a 

matter of fact, Fig. 3 shows that both Eastern and Western 

countries contribute to publishing in the analyzed field, 

while Africa does not concur significantly to the research 

development. Instead, in terms of citations, Finland, 

United States, and Netherlands are the most influential 

countries, with 779, 473, and 397 citations, respectively. 

Comparing the most productive and most influential 

countries, it emerges that the only country leader in both 

fields is the Netherlands. This proves that not always the 

countries with a high number of publications provide 

scientific contributions considered interesting by other 

researchers. Hence, it is revealed the importance of not 

limiting a literature analysis to the most productive 

countries in the field, but also extending the investigation 

to other less prolific countries. This consideration also 

applies to authors, and journals, explaining why both 

productivity and influence of countries/authors/journals 

were analyzed in this work. 

 

 

Fig. 3. Total number of publications per country 

 

Subsequently, to identify the most productive and 

influential journals, three analyzes were performed. First, 

the journals mostly devoted to the considered topic were 

determined based on Bradford’s Law [26]: if journals 

containing papers on a given topic are arranged in 

descending order of publications, then successive zones 

of journals containing the same number of papers on the 

topic will form the geometric series 1: 𝑛: 𝑛2: 𝑛3: …. Fig. 

4 shows the achieved results, indicating as the most 

productive journals (core sources) the ones situated in the 

first zone of Bradford’s ranking (grey rectangle, Fig. 4): 

Eur. J. Oper. Res. (EJOR, 14 publications), Int. J. Prod. 

Econ. (IJPE, 8 publications), Comput. Ind. Eng. (CAIE, 

5 publications), Int. J. Prod. Res. (IJPR, 5 publications), 

Proceedings of the Int. Conf. on Ind. Eng. and Oper. 

Manag. (Proceedings of IEOM, 5 publications), IEEE 

Access (4 publications), IOP Conference Series: Mater. 

Sci. Eng. (4 publications), IFAC-Papersonline (3 

publications), IFIP Adv. Inf. Commun. Technol. (IFIP 

AICT, 3 publications), Int. J. Logist. Syst. Manag. 

(IJLSM, 3 publications), and J. Oper. Res. Soc. (JORS, 3 

publications). These 11 core sources (out of 109 journals) 

globally contain 57 papers, covering one-third (34%) of 

the analyzed database. 

As a second analysis, the publication trend of the top 5 

core sources was defined (Fig. 5). EJOR showed a high 

persistence, being the only journal with regular 

publications over the time (especially in the last 15 

years). However, CAIE, IJPR, and the Proceedings of 

IEOM confirmed their significance, revealing a marked 

interest in the topic in the last decade. Conversely, IJPE 

showed declining interest, producing only 2 papers in the 

last 11 years. 

 

 

Fig. 4. Most productive journals according to Bradford’s law 
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Fig. 5. Publication trend of the top 5 core sources 

 

Since Bradford's Law highlights the most productive 

journals, but not the most influential ones, a third analysis 

was conducted, calculating the journals’ average number 

of Citations Per Publications (CPP, Eq. 1). 

𝐶𝑃𝑃 =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
 (1) 

Hence, the most influential sources were identified as the 

ones with the highest CPP (Tab. 1 lists the top 5). Based 

on Tab. 1, it is worth noting two aspects. First, the CPP 

analysis allowed identifying not only the most influential 

journals, but also the most significant papers in the field. 

For instance, the contribution by Computers in Industry 

[27] was highlighted, receiving 400 citations in 8 years, 

and confirming the peak in citations noted in Fig. 2. 

Secondly, none of the journals in Tab. 1 appears in Fig. 

4-5, pointing out that the most significant literary 

contributions were not published in the core sources and 

remarking the difference between the most productive 

and most influential journals. 

 

TABLE I 

TOP 5 MOST INFLUENTIAL JOURNALS BASED ON CPP 

Source (with references) 
Number of 

publications 

Number of 

citations 
CPP 

Comput. Ind. [27] 1 400 400 

J. Manuf. Technol. Manag. 

[28][29] 
2 276 138 

Rel. Eng. Syst. Saf. [30] 1 86 86 

Prod. Plan. Contr. 

[31][32][33] 
3 255 85 

IIE Transactions[34] 1 81 81 

 

Finally, the most productive and influential authors were 

identified considering their publications and CPPs, and 

proposing a novel graphical descriptive tool (called 

Qualitative Authors' Relevance Assessment - QARA), 

which summarizes the main information on authors’ 

productivity and influence. The QARA is shown 

considering the top 15 authors in terms of CPP (Fig. 6). 

However, it could be extended to all authors. In the 

QARA, a dot is used to describe the annual publications 

provided by each author. Specifically, the dots’ size can 

be small, medium or large according to the number of 

annual documents published by each author (1, 2, or 3, 

respectively). The dots’ color follows a chromatic scale 

based on the total number of annual citations received by 

each author (dark blue corresponds to 1 citation, while 

dark red corresponds to 10). Finally, the authors’ names 

are ranked on the y-axis in descending order of CPP. 

 

 

Fig. 6. Qualitative Authors’ Relevance Assessment 

 

From the QARA (Fig. 6), four considerations emerge that 

are useful for answering RQ1. First, the most productive 

authors in the field appear based on the total number of 

publications (number and size of dots). In particular, the 

most productive author is Van Houtum, with a total of 7 

publications. Secondly, the most influential authors are 

identified based on the highest CPPs, recognizing 

Partanen, Khajavi, and Holmström as the top 3 authors in 

the y-axis (with CPP equal to 224.3, 201.5, and 135.6, 

respectively). This result shows the difference between 

most productive and influential authors. Thirdly, looking 

at the dots’ distribution and size, it is possible to check 

the temporal publication trend of each author, also 

observing the publication cadence and the date of the first 

publication. Finally, it is possible to identify the most 

influential papers in the existing literature on the 

analyzed topic. As instance, in the upper part of Fig. 6, 

the papers characterized by the highest CPP are shown. 

Moreover, three red dots and two yellow dots both of 

small size (1 publication associated with each dot) are 

clearly visible, corresponding to the contributions with 

the highest number of citations [27], [28]. It is worth 

noting that these two most influential publications deal 

with the same topic, thus suggesting an emerging 

research stream in the analyzed field. Such emerging 

stream is to investigate the impacts of Additive 

Manufacturing (AM) on the SC configuration process, 

also considering the possibility of removing spare parts 
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inventories by setting decentralized SCs, where each DC 

owns its 3D-printer for producing items on-demand. 

B. Co-word network analysis 

To answer RQ2, first, the main themes related to the topic 

of inventory centralization/decentralization and the 

deployment of spare parts in DCs were examined by 

studying the co-occurrence of authors’ keywords in 

VOSviewer. Results are shown in Fig. 7, where keywords 

with a minimum number of co-occurrences of 2 are 

mapped together with their reciprocal links. Based on the 

colors and keywords of Fig. 7, 5 main research themes 

were identified related to the analyzed topic, which were 

confirmed by consulting the abstract of the database 

papers: (pink) the optimal deployment of spare parts in 

SCs with single or multi-location DCs and two or 

multiple echelons; (red) AM as an opportunity to switch 

from centralized to decentralized SCs, changing the spare 

parts deployment in SCs; (yellow) the optimization of 

spare parts deployment to improve maintenance activities 

in the sectors of aeronautics and military industry; 

(brown) the design of spare parts deployment in SCs 

where emergency and lateral shipments are allowed; 

(green) sustainability and reverse logistics with a focus 

on spare parts deployment in SCs. 

 

 

Fig. 7. Co-occurrence of authors' keywords 

 

Finally, the answer to RQ2 was completed by building a 

Thematic Map of authors’ keywords following Cobo et 

al. [35] and using Bibliometrix (Fig. 8). Besides 

confirming the results of Fig. 7, Fig. 8 emphasized two 

driving (motor) themes that mainly concur in developing 

the research on the analyzed topic: the design of spare 

parts deployment in closed-loop SCs and the design of 

spare parts deployment with AM spare parts. In addition 

to this, Fig. 8 can also be used to define well-established 

(basic) themes on the analyzed topic, as well as some 

niche themes and emerging or declining research 

streams. Based on this, another consideration appears 

regarding the methods used by researchers to plan the 

spare parts deployment: while exact optimization models 

are widely used in the literature, simulation models seem 

to be scarcely proposed (emerging or declining themes), 

and heuristic optimization models are still partially 

considered a driving theme for research development. 

Concerning heuristic models, Fig. 8 underlines the 

authors' interest in using genetic algorithms to optimize 

the spare parts deployment and the SC configuration. 

 

 

Fig. 8. Thematic Map of authors’ keywords 

 

IV. CONCLUSIONS 

This paper explores the extant literature on the topic of 

inventory centralization or decentralization and the 

deployment of spare parts in DCs (step 1 of SC 

configuration). Based on the numbers of publications and 

citations and developing a novel graphical tool (here 

called QARA), the most productive and influential 

countries, journals, and authors, as well as the 2 most 

influential contributions in the field were identified. 

Subsequently, the main themes related to the analyzed 

domain were investigated based on the co-occurrence of 

authors’ keywords, also determining what are the driving 

research streams that mainly contribute to developing the 

literature in the considered field. Results prove that, 

despite it has been almost 100 years since the considered 

topic was first mentioned, the literature in this field is 

rather lacking (especially until 2008). However, such a 

topic is attracting the attention of researchers in the last 

10 years. Specifically, researchers are mainly interested 

in 2 driving research streams: (i) planning the 

deployment of spare parts by considering sustainability 

issues and on closed-loop SCs; (ii) evaluating the impact 

of AM in SCs, exploiting its advantages to optimize the 

spare parts deployment. Besides, concerning the methods 

used to define the spare parts' deployment, results show 

that exact optimization models are widespread among the 

documents in the analyzed domain. Conversely, 

simulation models are rarely used, while heuristic 

optimization models seem driving elements, which favor 

the development of research in the considered field. 

Finally, results underline the difference between the most 

productive and most influential countries, journals, and 

authors, underlining the importance of studying both. 
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Limitations of this research are related to having 

manually screened the sources of the dataset used for 

developing the bibliometric review. This was necessary 

since different semantic meanings were associated with 

the term "location" and its synonyms, leading to articles 

not relevant to the analyzed topic. Instead, the 

contribution of this work is to outline the characteristics 

of the current body of knowledge on the considered topic, 

enabling researchers to identify gaps in the literature, 

thus discovering future research opportunities. Future 

developments of this work could be two. First, to consult 

other databases in addition to Scopus to validate or 

deepen the bibliometric review. Secondly, to expand the 

systematic literature analysis by consulting in detail all 

the dataset papers, defining appropriate clusterization 

criteria to analyze them based on different perspectives. 
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Abstract 

An efficient supply chain (SC) configuration allows the success of spare parts retailers. Configuring spare parts 

SCs involves defining two aspects: the stock deployment into distribution centres (DCs) (i.e., inventory 

centralisation or decentralisation) and the stock supply in each DC (how many spare parts to supply and how 

often). Given the unpredictability of spare parts demand, stock deployment and supply policies should be 

regularly reviewed, adapting to fluctuations in customer needs. A viable way to do so is to adopt a multi-

criteria ABC criticality classification. However, the multi-criteria ABC criticality classification has often been 

used to plan stock supply policies in a single DC, but only once to plan spare parts deployment. Nevertheless, 

the available literature methodology presents major limitations, being not applicable in real companies. 

Therefore, this paper provides a novel methodology, called SP-LACE, which, first, reviews the configuration 

of spare parts SCs based on a multi-criteria criticality classification. Then, allows, for the first time, evaluating 

the economic benefits of the reviewed SC configuration. SP-LACE was tested on two case studies and 

compared to the literature methodology. The results show that it provides economic benefits in terms of SC 

total costs, also overcoming the limitations of the literature methodology. 
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1. Introduction 

Spare parts retailers have identified as ever-growing crucial aspects for their success the adoption of a 

customer-centric perspective and the proper management of customer needs in supply chains (SCs) (Esmaeili 

et al., 2021; Giannikas et al., 2019). As stated by Stoll et al. (2015), a good way to increase the serviceability 

of spare parts retailers is to optimally configure SCs, ensuring the alignment between stocks in distribution 

centres (DCs) and spare parts demand. However, configuring spare parts SCs is not an easy task since a typical 

challenge is to minimise inventory costs while facing demand volatility and guaranteing high service levels 

(Jiang et al., 2019). Given this challenging context, spare parts retailers should embrace structured 

methodologies for configuring SCs (Cantini et al., 2022; Ahmed et al. 2022). 

According to Manikas et al. (2019) and Gregersen and Hansen (2018), a sound SC configuration methodology 

should focus on defining two aspects of primary importance: the optimal stock deployment and the optimal 

stock supply policy to be adopted for each individual Stock Keeping Unit (SKU). Concerning the optimal stock 

deployment (first decision of SC configuration), two antithetical strategies can be distinguished, namely 

centralisation and decentralisation. A decentralised stock deployment implies storing the SKUs into multiple 

independent DCs, each meeting the demand of local customers. As a result, SC flexibility, SC responsiveness, 

and low outbound transportation costs are ensured (Milewski, 2020), but leading to high holding costs since 

many DCs are managed, each needing to guarantee high service levels. Conversely, a centralised stock 

deployment involves storing all SKUs into a single DC which serves all the customers, determining reduced 

holding and ordering costs (due to the "risk-pooling" effect), but to the detriment of SC flexibility, SC 

responsiveness, and transportation costs (Schmitt et al., 2015; Li et al., 2019). Instead, concerning the stock 

supply policies (second decision of SC configuration), in each DC, it is established which SKU to keep in stock 

and which to order on-demand, as well as how many stocks to supply and how often (Yazdekhasti et al., 

2022). 

Due to the volatility of spare parts demand, Del Prete and Primo (2021) and Van der Auweraer and Boute 

(2019) suggested that spare parts SCs should not be configured only once (when the business is born), but 

periodically. Indeed, regularly reviewing the SC configuration over time allows adapting the stock deployment 

and supply policies to changes in spare parts demand. As a result, the inventory levels in DCs are optimised 

by minimising holding and ordering costs, while ensuring high service levels, which reduce stock-outs and 

backorder costs (Eldem et al., 2022; Alfieri et al., 2017). For this reason, Cantini et al. (2021) recommended 

spare parts retailers to reject static SCs configuration methodologies, while preferring the dynamic ones (also 

called Dynamic Asset Deployment methodologies (Cohen et al., 2006)), which allow the SC configuration to 

be regularly reviewed based on spare parts demand fluctuations. Nevertheless, as reported by Hu et al. 

(2018), many spare parts retailers are far from implementing methodologies to review their starting SC 

configuration and quite often, instead, the SC configuration is chosen only one time and never questioned. 

Therefore, the stock deployment and supply policies continue to be static, arbitrary, and based on 



 

 

experience, and a quick and easy-to-use methodology for reviewing the SC configuration in spare parts retail 

companies is greatly needed (Basto et al., 2019). 

According to several authors (Sheikhar and Matai, 2022; Teunter et al., 2010), a valuable way to address this 

gap is to define heuristic methodologies for reviewing the SC configuration based on spare parts criticality 

classification techniques. Indeed, two main reasons make the spare parts criticality classification techniques 

particularly suitable for this purpose. First, Basto et al. (2019) and Zhang et al. (2001) reported that the 

criticality classification techniques require few investments in computational resources and advanced 

technologies, which are still lacking in many enterprises. Secondly, Manikas et al. (2019) and Amirkolaii et al. 

(2017) stated that spare parts SCs are typically characterised by a high variety of SKUs, but the computational 

cost and complexity associated with optimising the SC configuration for each individual SKU through exact 

optimisation techniques is practically not feasible. Hence, spare parts criticality classification techniques are 

preferable since they suggest similar stock deployment and supply policies for all SKUs belonging to the same 

criticality class, without performing individual SKUs analyses (Braglia et al., 2004). In this context, due its 

simplicity and popularity, Amirkolaii et al. (2017) and Persson and Saccani (2007) suggested the multi-criteria 

ABC criticality classification as a successful solution for reviewing the spare parts SC configuration. However, 

Mehdizadeh (2020) and Roda et al. (2014) showed that the multi-criteria ABC criticality classification has 

been widely used by spare parts retailers mainly to plan the optimal stock supply policies in a single DC. 

Contrarily, it has been barely used to plan stock deployment policies in multiple DCs. 

To the best of the authors’ knowledge, Stoll et al. (2015) were the only ones to propose a methodology based 

on a multi-criteria ABC criticality classification for planning both stock deployment and supply policies in the 

DCs of a spare parts retail company. However, as stated by Stoll et al. (2015), their methodology is 

characterised by some limitations that hinder not only its applicability in real cases, but also its suitability for 

regularly reviewing the SC configuration (which is necessary in spare parts SCs). Therefore, a quick and easy-

to-use methodology to review both the stock deployment and supply policies (i.e., SC configuration) in DCs 

based on a multi-criteria ABC criticality classification is currently missing. Moreover, Stoll et al. (2015) lack an 

economic analysis of the benefits achievable (in terms of holding, ordering, and backorder costs) by reviewing 

the spare parts SC configuration. Consequently, the effectiveness of this methodology is not demonstrated, 

as well as the importance of reviewing the spare parts SC configuration. 

To fill these gaps, this paper proposes a novel methodology, which from now on will be referred to as “SP-

LACE – Spare Parts suppLy chAin Configuration rEview”. SP-LACE represents the first methodology based on 

a multi-criteria ABC criticality classification of spare parts, which is suitable for regularly reviewing the 

configuration of spare parts SCs in a quick and easy-to-use way. SP-LACE is composed of two stages. In stage 

1, the optimal stock deployment and supply policies are suggested for each SKU, searching (through a data-

driven analysis) for a trade-off between holding, ordering, and backorder costs in DCs. Then, in stage 2, for 



 

 

the first time in the literature, the economic benefits of the reviewed spare parts SC configuration are 

evaluated, comparing the achieved SC total cost (which includes holding, ordering, backorder costs, as well 

as the costs incurred to perform the review process) with the same cost in the starting SC configuration 

(before the review process). 

The remainder of the present paper is as follows. Section 2 provides a literature review regarding the use of 

multi-criteria ABC criticality classifications to review the configuration of spare parts SCs. In Section 3, SP-

LACE is presented. In Section 4, SP-LACE is tested on two case studies, showing how the reviewed SC 

configuration improves the economic performance of DCs compared to the starting (historical) SC 

configuration. Besides, SP-LACE is also compared to the existing literature methodology by Stoll et al. (2015) 

to show how it overcomes the latter’s limitations. Finally, in Section 5, some conclusions are offered. 

2. Literature review 

According to Ding and Kaminsky (2020) and Mangiaracina et al. (2015), the methodologies for reviewing the 

configuration of spare parts SCs fall under three categories: exact optimisation, heuristic optimisation, and 

simulation methodologies. As discussed before, when looking for a quick and easy-to-use methodology for 

reviewing the spare parts SC configuration, the literature suggests adopting heuristic methodologies, 

especially those based on spare parts criticality classification techniques (Gregersen and Hansen, 2018; 

Cohen et al., 1990). More in detail, among the existing spare parts criticality classification techniques, 

Amirkolaii et al. (2017), and Persson and Saccani (2007) suggested to adopt a multi-criteria ABC criticality 

classification, which, due to its user-friendlyiness, it is still the most commonly employed technique in real 

companies (Gong et al., 2022; Xu and Xu, 2021).  According to Van Wingerden et al. (2016) and Persson and 

Saccani (2007), a methodology to review the configuration of spare parts SCs should consist of two steps. 

First, to create spare parts classification classes (A – critical SKUs, B – moderately criticals, and C – non 

criticals) by differentiating the SKUs’ criticality based on predefined criticality criteria  and relying on Pareto's 

principle. Concerning this, Xu and Xu (2021) and Kauremaa and Holmström (2017) reported that, due to the 

heterogeneous nature of spare parts, a multi-criteria ABC criticality classification should be preferred to a 

mono-criterion one, and the spare parts demand should be included among the considered criticality criteria 

(correlating it to the importance of stocking specific SKUs in DCs). Subsequently, to use the class membership 

for guiding rule-based SC configuration decisions, thus defining appropriate stock deployment and supply 

policies for each class, such as complex control methods for the most critical SKUs and simpler procedures 

for the remaining ones (Chen, 2011; Chen et al., 2008). By repeating this procedure during the business 

lifetime, the SC configuration can be reviewed, aligning it with customer needs, rationalising the use of 

economic resources, and avoiding investments in non-critical spare parts (Cohen et al., 1999). 

However, despite the potential effectiveness of a quick and easy-to-use methodology for reviewing the spare 

parts SC configuration based on a multi-criteria ABC criticality classification, Mehdizadeh (2020) and Roda et 



 

 

al. (2014) showed that the multi-criteria ABC criticality classification has been used mainly for planning the 

stock supply policies in a single DC (first decision of SC configuration), without suggesting any stock 

deployment policy (second decision of SC configuration). Indeed, concerning the stock supply policies in a 

single DC, Flores and Whybark (1986) introduced the first multi-criteria ABC criticality classification, which 

implies performing three steps. First, developing two mono-criterion ABC criticality classifications (using as 

criticality criteria the SKUs’ unitary cost and procurement lead time). Secondly, combining the results of the 

two classifications to generate a “joint-criteria matrix”, classifying SKUs into nine criticality classes. Finally, 

associating optimal stock supply policies with the SKUs belonging to each class, where non-critical SKUs are 

ordered on-demand, while critical and moderately critical SKUs are kept in stock. After Flores and Whybark, 

many other authors proposed approaches to plan the stock supply policies in a single DC based on a multi-

criteria ABC criticality classification, such as Petrović and Petrović (1992), Celebi et al. (2008), Lukinskiy et al. 

(2020), and Sheikhar and Matai (2022). In this context, not only approaches to plan the stock supply policies 

based on the sole use of ABC analyses were suggested, but also approaches based on the combined use of 

multi-criteria ABC criticality classifications with other criticality classification techniques, such as the Analytic 

Hierarchy Process (AHP) (Stoll et al., 2015), Artificial Neural Networks (ANN) (Partovi and Anandarajan, 2002), 

genetic algorithms (Durán et al., 2019; Yu, 2011), failure mode effect and criticality analysis (FMECA) (Gong 

et al., 2022), fuzzy classifications (Luluah et al., 2020; Chu et al., 2008), and Data Envelopment Analysis (DEA) 

(Ramanathan, 2006). 

On the contrary, concerning the stock deployment policy, the multi-criteria ABC criticality classification has 

rarely been used. Indeed, Cantini et al. (2021) and Huiskonen (2001) confirmed that the existing 

methodologies based on multi-criteria ABC criticality classifications focus on optimising the stock supply 

policies in a single DC, while overlooking the stock deployment policies. Manikas et al. (2019) and 

Mangiaracina et al. (2015) confirmed this by stating that, although spare parts deployment policies are key-

drivers of the overall profitability of a company, the problem of choosing between centralisation and 

decentralisation of SKUs in multiple DCs is not yet sufficiently explored and there is a lack of practical 

solutions to address it. To the best of the authors’ knowledge, only one heuristic methodology based on a 

multi-criteria ABC criticality classification has been proposed for planning both the stock deployment and 

supply policies in multiple DCs (Stoll et al., 2015). Such a methodology relies on developing a three-criteria 

criticality classification of spare parts. Specifically, two criticality criteria (unitary cost and coefficient of 

variation of demand) are used to estimate the SKUs’ value and the demand predictability (performing an 

HML and an XYZ analysis, respectively). Then, the third criticality criterion is used to classify SKUs based on 

the impact of spare parts unavailability on the maintenance and production performance of the system (using 

a VED analysis, a decision tree, and an AHP). However, Stoll et al. (2015) pointed out that their methodology 

is characterised by two major limitations, which hamper its applicability in real companies and its suitability 

for regularly reviewing the spare parts SC configuration. First, a large amount of data have to be collected, 



 

 

which are hardly available in company databases. Secondly, maintenance experts have to be consulted, 

making the methodology application time-consuming, and its SC configuration results not entirely data-

driven but rather affected by subjectivity. In addition, Stoll et al. (2015) lack an economic analysis to evaluate 

the benefits achievable by reviewing the configuration of spare parts SCs. In fact, no comparison is provided 

between the holding, ordering, and backorder costs in the reviewed SC configuration and the same costs in 

the starting SC configuration (before the review process). Besides, the costs incurred to review the SC 

configuration are completely neglected. As a result, the effectiveness of the methodology by Stoll et al. (2015) 

is not demonstrated, as well as the importance of reviewing the spare parts SC configuration. 

Aiming to fill the identified gaps, the SP-LACE methodology was developed, which will be described in the 

next Section. SP-LACE represents the first quick and easy-to-use methodology based on a multi-criteria ABC 

criticality classification of spare parts, which is suitable for reviewing the configuration of spare parts SCs. For 

each individual SKU, SP-LACE allows planning both the optimal stock deployment policies and supply policies. 

Moreover, SP-LACE is a data-driven methodology, which relies on the analysis of data usually available in 

companies. Therefore, SP-LACE provides results not affected by subjectivity and it is applicable in real 

companies. Finally, SP-LACE allows performing an economic evaluation of the reviewed SC configuration. 

Hence, it allows demonstrating the importance of regularly reviewing the spare parts SC configuration and 

the cost benefits achievable in the reviewed SC configuration over the starting SC one (in terms of SC total 

cost, which is take as the sum of holding, ordering, backorder, and review costs).  

3. SP-LACE methodology 

The SP-LACE methodology was developed to optimise stock deployment and supply policies within existing 

two-echelon SCs, where spare parts retailers already own DCs and are willing to review the starting SC 

configuration (Cantini et al. 2022). Two-echelon SCs are considered since the multi-echelon ones have been 

reported to be uncommon in the field of spare parts retail (Cantini et al., 2021; Botter and Fortuin, 2000). 

However, SP-LACE can also be applied in multi-echelon SCs by splitting them into a series of two-echelon SCs. 

SP-LACE is composed of two stages. In stage 1, the SKUs’ criticality classification is performed according to 

two criticality criteria: the SKUs’ value and the predictability of their demand, which are assessed through an 

HML and an XYZ analysis, respectively. Based on the achieved classification, each criticality class is associated 

with optimal stock deployment and supply policies. In this way, the management of multiple SKUs in multiple 

DCs is aligned with the spare parts demand, and an optimal SC configuration is found, which determines a 

trade-off between holding, ordering, and backorder costs. SP-LACE is a data-driven methodology, which relies 

entirely on the analysis of objective data usually available in companies, without needing to consult 

maintenance experts or perform qualitative analyses (e.g., VED analysis or AHP). Consequently, SP-LACE 

overcomes the limitations of the literature methodology by Stoll et al. (2015) since two beneficial side effects 

are obtained. First, SP-LACE provides results not affected by subjectivity. Secondly, the application of SP-LACE 



 

 

is not time-consuming, allowing the management of thousands of SKUs and enabling regular reviews of the 

SC configuration. In addition, SP-LACE, unlike the methodology by Stoll et al. (2015), includes an economic 

evaluation of the performance of the reviewed SC configuration. Indeed, in stage 2 of SP-LACE, the total cost 

of the reviewed SC (including holding, ordering, and backorder costs, as well as the cost incurred to carry out 

the review process) is compared with the one of the starting SC (before the review process), seeking to show 

the achieved benefits and the importance of reviewing the SC configuration. 

Before describing SP-LACE, the assumptions on which it relies are listed, reporting the scientific contributions 

on which they are based: 

• DCs are assumed to have an unlimited capacity (Tapia-Ubeda et al., 2020); 

• No costs related to the purchase or rental of DCs are considered, since spare parts retailer already 

own DCs (Cantini et al. 2022); 

• No inbound and outbound transportation costs are considered, being negligible compared with other 

SC costs (Cohen et al., 1988); 

• No issues related to spare parts sustainability and closed-loop SCs are considered (Zijm et al., 2019); 

• Lateral transshipments are treated as described in Appendix A; 

• Spare parts procurement lead times are assumed deterministic (Lolli et al., 2022), while spare parts 

demand is assumed stochastic (Liu et al., 2014). Specifically, based on Syntetos and Boylan (2006), 

and the Italian National Standard (Italian Technical Commission for Maintenance, 2017), SP-LACE 

considers a normal distribution for SKUs with an average demand during the procurement lead time 

greater than 15 units, while considering a Poisson distribution for the other SKUs. In this sense, SP-

LACE improves the methodology by Stoll et al. (2015), which imposes a normally distributed demand 

for all SKUs; 

In the following, SP-LACE is presented, showing, in Section 3.1, how to apply the methodology for reviewing 

the spare parts SC configuration (stage 1), then, in Section 3.2, how to evaluate the economic benefits of the 

reviewed SC configuration (stage 2).  The relevant parameters on which SP-LACE relies are summarised in 

Table 1. Moreover, Table 2 lists the cost items considered to evaluate the economic benefits of the reviewed 

SC and assess the performance of SP-LACE. 

Table 1. Summary of SP-LACE parameters. 

Parameter Description Unit measure 

𝑟 Considered SC configuration. 𝑟 is 0 in the starting SC configuration, 
while being 1 in the reviewed SC configuration 

[-] 

𝑖 Considered DC. 𝑖 assumes integer values between 1 and the total 
number of DCs (#𝐷𝐶𝑠) 

[-] 

𝑘 Considered SKU. 𝑘 assumes integer values between 1 and the total 
number of SKUs (#𝑆𝐾𝑈𝑠) 

[-] 



 

 

𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓  
𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

Time interval considered to evaluate the cost performance of the SC [time] 

𝑢𝑐𝑘  Unitary cost of purchasing each SKU from the supplier [€/unit] 
ℎ% Holding cost rate for keeping inventory of SKUs in the period of 

analysis. According to Khajavi et al. (2014), it includes the 
obsolescence rate of SKUs 

[€/time*unit] 

𝑋𝑖,𝑘,𝑟 Total demand received for each SKU in each DC in the period of 
analysis. It depends on the demand distribution 𝑥𝑖,𝑘,𝑟, which can be a 
normal or a Poisson one, as already explained 

[units/time] 

𝑥𝑖,𝑘,𝑟̅̅ ̅̅ ̅̅ ∗ 𝐿𝑇𝑖,𝑘 Average demand received for each SKU in each DC during the 
procurement lead time 

[units] 

𝜎(𝑥𝑖,𝑘,𝑟) Standard deviation of the demand for each SKU in each DC during the 
period of analysis. It is considered when the demand distribution 
(𝑥𝑖,𝑘,𝑟) is a normal one 

[units/time] 

𝐿𝑇𝑖,𝑘 Procurement lead time of each SKU in each DC [time] 

#𝑂𝑟𝑑𝑖,𝑘,𝑟 Number of supply orders issued by the analysied company in the 
period of analysis to replenish each SKU in each DC 

[supply 
orders/time] 

𝑄𝑂𝑟𝑑𝑖,𝑘,𝑟 Total quantity of each SKU ordered by the analysed company to 
replenish each DC in the period of analysis 

[units/time] 

𝑜𝑐𝑘  Cost of issuing one supply order for a SKU [€/supply order] 

𝑢𝑏𝑎𝑐𝑘𝑘 Unitary backorder cost of each SKU [€/backorder] 

𝑆𝐿𝑖,𝑘,𝑟 Desired service level for each SKU in each DC [-] 

𝑄′𝑖,𝑘,𝑟 Optimal order quantity of each SKU in each DC [units] 

𝑅𝑂𝑃′𝑖,𝑘,𝑟 Reorder level associated with each SKU in each DC [units] 

𝑆𝑆𝑖,𝑘,𝑟 Safety stocks of each SKU in each DC [units] 

𝑍𝑖,𝑘,𝑟 Service factor associated with the desired service level (𝑆𝐿𝑖,𝑘,𝑟) in a 
standardised normal distribution 

[-] 

𝑐𝑜𝑠𝑡_𝑙𝑖𝑚𝑖𝑡𝑘 Threshold value established based on the type of spare parts retailed 
by the analysed company 

[€] 

𝑡𝑐 Average time required to run the stage 1 of SP-LACE and update its 
mathematical calculations 

[time] 

#𝛾 𝑆𝐾𝑈𝑑𝑒𝑝𝑙𝑖,𝑟
 Number of γ SKUs in each DC, whose deployment policy changes 

when moving from the starting SC configuration to the reviewed one 
[-] 

#𝑡𝑟𝑖𝑝𝑠𝑟 Number of displacements to be performed in the reviewed SC 
configuration to move stocks from decentralised DCs to the central 
one 

[-] 

#𝑆𝐾𝑈𝑠𝑢𝑝𝑝𝑙𝑦𝑖,𝑟
 Number of SKUs in each DC, whose supply policy changes when 

moving from the starting SC configuration to the reviewed one 
[-] 

𝑚ℎ Cost of manpower who applies SP-LACE, updating its mathematical 
calculations and the consequent stock deployment and supply 
policies associated with SKUs 

[€/time] 

𝑑𝑖𝑠𝑡 Average distance between the central DC and the decentralised ones 
in the analysed company 

[km] 

𝐶𝑎𝑝 Capacity of the vehicle used by the analysed company to displace 
SKUs between DCs and deliver them to customers 

[m3] 

𝑣𝑜𝑙𝑘 Volume of each SKU [m3] 
𝑢𝑡𝑟𝑖𝑝 Cost per kilometer of the vehicle used to displace SKUs [€/km] 

𝑡𝑚 Average time required to update the supply policy of one SKU in the 
company Information Technology (IT) system 

[time] 
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Table 2. Cost items considered in SP-LACE. 

Costs Description Unit measure 

𝐶𝑡𝑜𝑡𝑟
 Total cost of the SC [€/time] 

𝐶𝐻𝑟
 Holding cost [€/time] 

𝐶𝑜𝑟
 Ordering cost [€/time] 

𝐶𝐵𝑟
 Backorder cost [€/time] 

𝐶𝑟𝑒𝑣𝑟
 Cost incurred to review the SC configuration [€/time] 

𝐶𝑆𝑜𝑓 Software cost incurred, each time the SC configuration is reviewed, to run the 
mathematical calculations and apply the stage 1 of SP-LACE 

[€/time] 

𝐶𝐷𝑖𝑠𝑝𝑟
 Displacement cost to move, in the central DC, the γ SKUs that in the starting SC 

configuration were decentralised and, after the SC configuration review, have 
to be centralised (changing their deployment policy) 

[€/time] 

𝐶𝐴𝑑𝑚𝑟
 Administrative cost to update, in the IT system, the 𝑅𝑂𝑃𝑖,𝑘,𝑟 and 𝐸𝑂𝑄𝑖,𝑘,𝑟 

values of the SKUs whose supply policy has changed when moving from the 
starting SC configuration to the reviewed one 

[€/time] 

3.1. Stage 1: reviewing the spare parts SC configuration 

To review the spare parts SC configuration, SP-LACE implies performing in each company DC a two-criteria 

criticality classification of SKUs, which is achieved through an HML and an XYZ analysis, as follows. 

The HML analysis is carried out to assess the SKUs’ value by ranking them according to their unitary cost 

(𝑢𝑐𝑖,𝑘,𝑟, which, in spare parts retail companies, is the cost of purchasing spare parts from suppliers). To this 

end, the cost of each SKU is normalised with respect to the total cost of the SKUs’ spectrum, and the 

cumulative frequency curve is developed. Then, according to the tangent method (Ultsch and Lötsch, 2015; 

Van Wingerden et al., 2016), the cumulative frequency curve is divided into three criticality classes (H, M, 

and L), thus associating each SKU with a specific class. 

The XYZ analysis is performed to evaluate the predictability of spare parts demand by ranking SKUs according 

to their historical number of supply orders (#𝑂𝑟𝑑𝑖,𝑘,𝑟) issued in the period of analysis to replenish each DC. 

Specifically, the predictability is not evaluated by considering the coefficient of variation of spare parts 

demand (as in the methodology by Stoll et al., (2015)), but rather by ranking SKUs based on #𝑂𝑟𝑑𝑖,𝑘,𝑟 for two 

reasons. First, the deviation and expected value of spare parts demand are already taken into account when 

defining the supply policy in DCs (e.g., when calculating the reorder points of SKUs). Therefore, it is not 

necessary to consider them twice. Moreover, the standard deviation and expected value are parameters 

which typically describe a normal distribution, but the demand for many SKUs follows a Poisson distribution. 

As in the HML analysis, the X, Y, and Z classes are identified based on the tangent method and the cumulative 

frequency curve. 

Combining the results of the HML and XYZ analysis, a 3x3 matrix is obtained, whose quadrants can be 

reclassified into three main criticality classes (α – critical, β – moderately critical, and γ ‒ non critical), 



 

 

achieving the mono-criterion matrix of Figure 1 (Flores and Whybark, 1987; Frandsen et al. 2020). Specifically, 

SKUs belonging to HX, HY, and MX quadrants are moved into class α. Indeed, a SKU that is critical in at least 

one of the two classifications (HML and XYZ analyses) should be critical also in the final mono-criterion 

classification. For similar reasons, SKUs belonging to LY, MZ, and LZ quadrants are placed into class γ. Finally, 

the remaining SKUs are grouped into class β. 

 

Figure 1. Transformation of the multi-criteria classification matrix (before) into a mono-criterion one (after). 

At this point, the positioning of SKUs into criticality classes (α, β, and γ) is used to plan the SC configuration 

of each SKU in each DC, defining both optimal stock deployment and supply policies. Specifically, the SC 

configuration of each SKU is selected searching for a trade-off between holding, ordering, and backorder 

costs, as follows. A decentralised stock deployment is suggested for SKUs in α and β classes. Indeed, the 

storage close to peripheral customers is suggested for critical and moderately critical SKUs to reduce delivery 

times and backorder costs, ensuring SC flexibility and SC responsiveness (Van Wingerden et al. 2016). Besides, 

according to Ivanov (2021) and Emar et al. (2021), in each DC, a continuous (𝑅𝑂𝑃, 𝑄) supply policy is indicated 

for SKUs in α and β classes, where, 𝑅𝑂𝑃 is the reorder level calculated to prevent stock-outs of critical and 

moderately critical SKUs (reducing backorder costs), while 𝑄 is the optimal order quantity which allows 

keeping optimal inventory levels and finding a trade-off between holding and ordering costs. 

Conversely, centralisation in a single DC1 is indicated for SKUs in γ class since they are non-critical and rarely 

required. Hence, their stock deployment and supply efforts should be simplified as much as possible, while 

benefiting from the risk-pooling effect (Mohammaditabar et al. 2012). For γ SKUs, no stock is kept in 

 
1 Among the DCs owned by the company, there are many ways to select the most suitable one for centralisation 
purposes (central DC). However, the investigation of these methods is beyond the scope of this study. Hence, we only 
mention that the central DC can be selected by applying techniques such as those by Farahani et al. (2015) and Fathi et 
al. (2021), or simply by identifying the facility with the largest size and centrality to customers. 



 

 

decentralised DCs, while the central DC should keep stocks based on an (𝑅𝑂𝑃, 𝑄) policy, facing the demand 

of all customers (i.e., cumulated local and peripheral requests). 

The application of the stage 1 composing SP-LACE is schematically summarised in Figure 2, which refers, as 

an example, to a company with 3 DCs (𝐷𝐶1, 𝐷𝐶2, and 𝐷𝐶3, see Step 0, Figure 2), where 𝐷𝐶2 is assumed as 

central DC. As depicted in Figure 2, to review the SC configuration, the following steps are performed: 

• In Step 1, the multi-criteria criticality classification of spare parts (HML and XYZ analyses) is 

accomplished in peripheral DCs (𝐷𝐶1 and 𝐷𝐶3), associating SKUs with α, β, or γ criticality classes; 

• In Step 2, the stock deployment policies are defined, indicating to centralise non-critical γ SKUs, while 

keeping decentralised the α and β ones; 

• In Step 3, the demand for γ SKUs is cumulated with the demand already faced by the central DC, the 

multi-criteria criticality classification of spare parts is carried out in 𝐷𝐶2, and SKUs in 𝐷𝐶2 are 

associated with α, β, or γ criticality classes; 

• Finally, in Step 4, the stock supply policies are defined in each DC. No stock is kept for γ SKUs in 𝐷𝐶2 

(since they are non-critical both in the peripherals and central DC). Instead, optimal quantities are 

kept in stock for the remaining α and β SKUs based on the (𝑅𝑂𝑃, 𝑄) supply policy, which is defined 

as reported below. 



 

 

 

Figure 2. Example application of stage 1 of SP-LACE. A detailed description of the Steps composing this figure is provided in the text. 

To calculate the optimal (𝑅𝑂𝑃, 𝑄) supply policy associated with each SKU (𝑘) in each DC (𝑖) in the considered 

SC configuration (𝑟), first, the values of reorder level (𝑅𝑂𝑃𝑖,𝑘,𝑟) and optimal order quantity (𝑄𝑖,𝑘,𝑟) are 

initialised using Equations 1 and 2, respectively. 

𝑅𝑂𝑃𝑖,𝑘,𝑟 = (𝑥𝑖,𝑘,𝑟̅̅ ̅̅ ̅̅ ∗ 𝐿𝑇𝑖,𝑘) + 𝑆𝑆𝑖,𝑘,𝑟   (1) 

𝑄𝑖,𝑘,𝑟 = √
2∙𝑋𝑖,𝑘,𝑟∙𝑜𝑐𝑘

ℎ%∙𝑢𝑐𝑘
    (2) 



 

 

Where 𝑆𝑆𝑖,𝑘,𝑟 are the safety stocks (Equation 3) calculated to compensate demand fluctuations of each SKU 

(𝑘) in each DC (𝑖) with the desired service level. 

{
𝑆𝑆𝑖,𝑘,𝑟 = 𝑍𝑖,𝑘,𝑟 ∗ √𝐿𝑇𝑖,𝑘 ∗ 𝜎(𝑥𝑖,𝑘,𝑟) 𝑖𝑓 𝑘 ℎ𝑎𝑠 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑

1 − ∑ [
(𝑥𝑖,𝑘,𝑟̅̅ ̅̅ ̅̅ ̅∗𝐿𝑇𝑖,𝑘)

𝑛

𝑛!
∗ 𝑒−(𝑥𝑖,𝑘,𝑟̅̅ ̅̅ ̅̅ ̅∗𝐿𝑇𝑖,𝑘)]

𝑆𝑆𝑖,𝑘,𝑟−1

𝑛=0 ≥ (1 − 𝑆𝐿𝑖,𝑘,𝑟) 𝑖𝑓 𝑘 ℎ𝑎𝑠 𝑎 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑑𝑒𝑚𝑎𝑛𝑑
(3) 

Next, the 𝑅𝑂𝑃𝑖,𝑘,𝑟 and 𝑄𝑖,𝑘,𝑟  values are transformed into 𝑅𝑂𝑃′𝑖,𝑘,𝑟  and 𝑄′𝑖,𝑘,𝑟 to control the stocks in each 

DC and avoid excessive inventory levels or unnecessary supply orders being issued for expensive and slow-

moving SKUs. Specifically, two constraints are introduced based on Alvarez and van der Heijden (2014) and 

Cantini et al. (2021) to achieve the final (𝑅𝑂𝑃′, 𝑄′) supply policy. The first constraint (Equation 4) updates the 

optimal order quantity (𝑄𝑖,𝑘,𝑟’) of SKUs by imposing not to reorder more than twice the units required in the 

period of analysis (𝑋𝑖,𝑘,𝑟). The second constraint (Equation 5) updates the reorder level (𝑅𝑂𝑃𝑖,𝑘,𝑟’) so that no 

stock is held for low-turnover, high-cost SKUs. 

𝑄𝑖,𝑘,𝑟
′ = {

𝑋𝑖,𝑘,𝑟, 𝑖𝑓 𝑄𝑖,𝑘,𝑟  > (2 ∗ 𝑋𝑖,𝑘,𝑟) 

𝑄𝑖,𝑘,𝑟, 𝑒𝑙𝑠𝑒
    (4) 

𝑅𝑂𝑃𝑖,𝑘,𝑟
′ = {

𝑜𝑛 − 𝑑𝑒𝑚𝑎𝑛𝑑 𝑠𝑢𝑝𝑝𝑙𝑦 𝑜𝑓 𝑘 𝑖𝑛 𝑖, 𝑖𝑓 #𝑂𝑟𝑑𝑖,𝑘,𝑟 ≤ 1 𝑎𝑛𝑑 𝑄𝑂𝑟𝑑𝑖,𝑘,𝑟 ≤ 1

 𝑜𝑛 − 𝑑𝑒𝑚𝑎𝑛𝑑 𝑠𝑢𝑝𝑝𝑙𝑦 𝑜𝑓 𝑘 𝑖𝑛 𝑖, 𝑖𝑓 #𝑂𝑟𝑑𝑖,𝑘,𝑟 ≤ 1 𝑎𝑛𝑑 𝑢𝑐𝑘 ≤ 𝑐𝑜𝑠𝑡_𝑙𝑖𝑚𝑖𝑡𝑘

𝑅𝑂𝑃𝑖,𝑘,𝑟, 𝑒𝑙𝑠𝑒
  (5) 

3.2. Stage 2: evaluating the economic benefits of the reviewed SC configuration 

Once the spare parts SC configuration has been reviewed (stage 1), an economic evaluation has to be 

performed to check the achieved cost benefits and verify the importance of reviewing the SC configuration. 

To this end, stage 2 is carried out, which provides, for the first time, a mathematical model to compare the 

total cost of the reviewed SC with the one of the starting SC (before the review process). Specifically, the SC 

total cost is determined using Equation 6 and according to the notation reported in Tables 1-2. Then, the 

reviewed SC configuration (𝑟 = 1) is considered economically beneficial in respect with the starting one (𝑟 =

0) if it has a lower total cost, according to Equation 7. 

𝐶𝑡𝑜𝑡𝑟
= 𝐶𝐻𝑟

+ 𝐶𝑜𝑟
+ 𝐶𝐵𝑟

+ 𝐶𝑟𝑒𝑣𝑟
   (6) 

{
𝑖𝑓 𝐶𝑡𝑜𝑡1

≤  𝐶𝑡𝑜𝑡0
→ 𝑟𝑒𝑣𝑖𝑒𝑤 𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑎𝑙𝑙𝑦 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙

𝑒𝑙𝑠𝑒 → 𝑟𝑒𝑣𝑖𝑒𝑤 𝑛𝑜𝑡 𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑎𝑙𝑙𝑦 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙
   (7) 

Where: 

• 𝐶𝐻𝑟
, according to Equation 8, depends on the average inventory levels of SKUs in DCs (𝐴𝑣𝑔𝐼𝑛𝑣𝑖,𝑘,𝑟), 

which, in turn, depend on 𝑄′𝑖,𝑘,𝑟. For this reason, differences between the holding cost in the 

reviewed SC configuration (𝐶𝐻1
) and the one in the starting SC configuration (𝐶𝐻0

) will only arise 



 

 

concerning those SKUs ((#𝑆𝐾𝑈𝑠𝑢𝑝𝑝𝑙𝑦𝑖,𝑟
) whose supply policy changes during the review (𝑄′𝑖,𝑘,1 ≠

𝑄′𝑖,𝑘,0), in response to demand fluctuations (𝑋𝑖,𝑘,1 ≠ 𝑋𝑖,𝑘,0). 

𝐶𝐻𝑟
 = ∑ ∑ ℎ% ∙ 𝑢𝑐𝑘 ∙

𝑄′
𝑖,𝑘,𝑟

2
#𝑆𝐾U
𝑘=1

#𝐷𝐶𝑠
𝑖=1        (8) 

• 𝐶𝑜𝑟
, according to Equation 9, depends on the number of supply orders issued for SKUs in DCs 

(#𝑂𝑟𝑑𝑖,𝑘,𝑟), which, in turn, depends on the ratio between 𝑋𝑟,𝑖,𝑘  and 𝑄′𝑖,𝑘,𝑟. Like in 𝐶𝐻𝑟
, differences 

between the ordering cost in the reviewed SC configuration (𝐶𝑂1
) and the one in the starting SC 

configuration (𝐶𝑂0
) will only arise concerning those SKUs, whose supply policy changes during the 

review (𝑄′𝑖,𝑘,1 ≠ 𝑄′𝑖,𝑘,0). 

𝐶𝑜𝑟
= ∑ ∑ 𝑜𝑐𝑘 ∙

𝑋𝑖,𝑘,𝑟

𝑄′𝑖,𝑘,𝑟

#𝑆𝐾𝑈
𝑘=1

#𝐷𝐶𝑠
𝑖=1         (9) 

• 𝐶𝐵𝑟
, according to Equation 10, depends on the stock-out probabilities allowed in the considered SC 

configuration based on the desired 𝑆𝐿𝑖,𝑘,𝑟. Again, differences between the backorder cost in the 

reviewed SC configuration (𝐶𝐵1
) and the one in the starting SC configuration (𝐶𝐵0

) will only arise 

concerning those SKUs whose supply policy changes during the review. Indeed, when the demand 

changes for some SKUs (𝑋𝑖,𝑘,1 ≠ 𝑋𝑖,𝑘,0), the reviewed SC configuration updates the related safety 

stock values (Equation 3) to ensure the desired service level and prevent stock-outs. On the contrary, 

by not revieweing the SC configuration, the safety stocks are not updated even if the demand 

increases (𝑆𝑆𝑖,𝑘,1 ≠ 𝑆𝑆𝑖,𝑘,0). Therefore, the respective customer service level is lowered (𝑆𝐿𝑖,𝑘,1 ≠

𝑆𝐿𝑖,𝑘,0). 

𝐶𝐵𝑟
= ∑ ∑ 𝑢𝑏𝑎𝑐𝑘𝑘 ∙ 𝑋𝑖,𝑘,𝑟 ∙#𝑆𝐾U

𝑘=1
#𝐷𝐶𝑠
𝑖=1 (1 − 𝑆𝐿𝑖,𝑘,𝑟)     (10) 

• 𝐶𝑟𝑒𝑣𝑟
, according to Equation 11, is null when the review of the SC configuration is not performed 

(𝑟 = 0), while being the sum of three cost items in the opposite case (𝑟 = 1). 

𝐶𝑟𝑒𝑣𝑟
= {

0 𝑖𝑓 𝑟 = 0
𝐶𝑆𝑜𝑓 + 𝐶𝐷𝑖𝑠𝑝𝑟

+ 𝐶𝐴𝑑𝑚𝑟
 𝑖𝑓 𝑟 = 1

        (11) 

Where: 𝐶𝑆𝑜𝑓 (Equation 12) is a fixed cost, being independent on 𝑟; 𝐶𝐷𝑖𝑠𝑝𝑟
 (Equations 13-14) depends 

on the vehicle used to perform displacements of SKUs; and 𝐶𝐴𝑑𝑚𝑟
 (Equation 15) can be neglected 

since 𝑡𝑚 is very small (on the order of seconds) compared to the period of analysis (on the order of 

days, months, or even years). It is worth mentioning that 𝐶𝐷𝑖𝑠𝑝𝑟
 is calculated by considering only γ 

SKUs, since they are the only SKUs for which a displacement has to be made (switching from 

decentralisation to centralisation). Conversely, α and β SKUs for which a switch is required from 

centralisation to decentralisation are not considered. Indeed, such SKUs have high/moderate 

demand and high/moderate turnover rates. Hence, it is not necessary to displace their inventories 

from the central DC to the decentralised ones, but rather 𝑅𝑂𝑃′𝑖,𝑘,𝑟 and 𝑄′𝑖,𝑘,𝑟 values can be updated 

in decentralised DCs, while waiting for customers to consume the current stocks in the central DC. 



 

 

𝐶𝑆𝑜𝑓 = 𝑚ℎ ∙ 𝑡𝑐  (12) 

𝐶𝐷𝑖𝑠𝑝𝑟
= 𝑢𝑡𝑟𝑖𝑝 ∙ 𝑑𝑖𝑠𝑡 ∙ #𝑡𝑟𝑖𝑝𝑠𝑟  (13) 

#𝑡𝑟𝑖𝑝𝑠𝑟 =
∑ ∑ 𝑋𝑖,𝑗,𝑟∗𝑣𝑜𝑙𝑘

#𝛾 𝑆𝐾𝑈𝑑𝑒𝑝𝑙𝑖,𝑟
𝑗=1

#𝐷𝐶𝑠
𝑖=1

𝐶𝑎𝑝
  (14) 

𝐶𝐴𝑑𝑚𝑟
= ∑ #𝑆𝐾𝑈𝑠𝑢𝑝𝑝𝑙𝑦𝑖,𝑟

#𝐷𝐶𝑠
𝑖=1 ∙ 𝑡𝑚 ∙ 𝑚ℎ   (15) 

Two considerations emerge based on the economic evaluation here proposed, which will be demonstrated 

in the next Section (through two case studies). On the one hand, when performing the first review of a spare 

parts SC configuration (i.e., the considered company has never performed a SC configuration review before), 

the review process is expected to be strongly economically convenient, especially if the stock deployment 

and supply policies have been planned, so far, in an empirical manner (e.g., based on personnel experience). 

In fact, in the first review, although a large review cost (𝐶𝑟𝑒𝑣𝑟
) is expected (since for many SKUs a change in 

stock deployment and supply policies is attended), 𝐶𝑟𝑒𝑣𝑟
 are likely to be much smaller than the savings 

achieved by optimising holding, ordering, and backorder costs. Therefore, 𝐶𝑡𝑜𝑡1
 is expected to be lower than 

𝐶𝑡𝑜𝑡0
. On the other hand, after the first review of the SC configuration, in the subsequent reviews a lower 

𝐶𝑟𝑒𝑣𝑟
 is expected (since only small adjustments of stock deployment and supply policies will be suggested), 

but the benefits of aligning stock with the spare parts demand will still be perceived (especially in terms of 

backorder costs 𝐶𝐵𝑟
). Specifically, economic advantages are perceived by performing regular reviews of the 

spare parts SC configuration since 𝐶𝑟𝑒𝑣𝑟
 is expected to decrease more the more frequently the review is 

repeated. Indeed, a shorter review interval is associated with fewer fluctuations in the spare parts demand, 

resulting in lower values of #𝑆𝐾𝑈𝑠𝑢𝑝𝑝𝑙𝑦𝑖,𝑟
 and #𝛾 𝑆𝐾𝑈𝑑𝑒𝑝𝑙𝑖,𝑟

. 

4. Results and discussion 

SP-LACE was applied to two case studies (A and B) with two purposes: first, to test its applicability in real 

companies. Indeed, by selecting as case studies two spare parts retailers located in different geographical 

areas, with different territorial expansions, handling different types of spare parts, and serving customers 

with different features, the general applicability of SP-LACE and its consistency are ensured. Secondly, to 

check the effectiveness of SP-LACE (also confirming the considerations reported in Section 3.2) by comparing 

its performance with both the starting (historical) economic performance of the case study companies and 

the methodology by Stoll et al. (2015). 

For applying SP-LACE (and the methodology by Stoll et al. (2015)), the following input data were collected, 

whose variable names and description have already been provided in Table 1. 

1. Input data required to apply both SP-LACE and the methodology by Stoll et al. (2015): 



 

 

a. 𝑆𝐿𝑖,𝑘,𝑟 desired by the company for each SKU in each DC; 

b. Daily inventory withdrawals performed in each DC during the period of analysis (assumed 

one year), gathering, for each withdrawal, the following information: identifier (𝐼𝐷 𝑤𝑖𝑡ℎ𝑖,𝑘,𝑟) 

of the specific SKU withdrawn, SKU description, date of withdrawal, identification of the DC 

where the withdrawal took place, quantity withdrawn to fulfil the received demand; 

c. Average 𝑢𝑐𝑘 of each SKU (which, due to a non-disclosure agreement, has been here 

modified, multiplying a coefficient 𝑚 for each SKU); 

d. 𝑋𝑖,𝑘,𝑟 received in the period of analysis for each SKU in each DC; 

e. 𝐿𝑇𝑖,𝑘 of each SKU in each DC; 

f. 𝑣𝑜𝑙𝑘  of each SKU; 

g. 𝑢𝑏𝑎𝑐𝑘𝑘  associated with each SKU; 

h. 𝑜𝑐𝑘 related to each SKU; 

i. ℎ% for keeping stocks in inventory one year; 

j. 𝑚ℎ; 

k. 𝑑𝑖𝑠𝑡; 

l. Characteristics (𝐶𝑎𝑝 and 𝑢𝑡𝑟𝑖𝑝) of the vehicle used to perform displacements. 

2. Input data required only to apply the methodology by Stoll et al. (2015): 

a. Evaluation of each SKU in terms of the six VED criticality criteria performed by maintenance 

experts; 

b. Pairwise comparison of the VED evaluations, following the standard procedure of an AHP 

(Feng et al., 2021). 

Moreover, to compare the results of SP-LACE with the historical performance of the case studies, further 

input data were collected related to the historical daily orders issued by the company to supply each SKU in 

each DC during the period of analysis. Specifically, for each supply order, the following information was 

gathered: identifier (𝐼𝐷 𝑜𝑟𝑑𝑖,𝑘,𝑟) of the specific SKU ordered, SKU description, date of order issue, 

identification of the DC where the order took place, and quantity ordered to replenish the DC. 

Below, Section 4.1 describes case study A, while Section 4.2 presents case study B. 

4.1. Case study A 

A bus spare parts retailer from southern Europe was taken as case study A, which manages more than 3,000 

SKUs. The company purchases spare parts from a single supplier (official partner of company A), stores the 

stocks into five DCs (𝐷𝐶1 − 𝐷𝐶5, managed independently without admitting lateral transshipments), and 

serves both external and internal customers. Indeed, on the one hand, company A offers after-sales services 

and warranty services to external customers, to whom it sells spare parts for maintenance activities. On the 

other hand, company A installs spare parts on its internal vehicles, owning a fleet of over 600 buses. In each 



 

 

DC, the stock deployment and supply policies are selected by warehouse managers, who plan the SC 

configuration based on experience, without adopting systematic approaches. 

In this context, SP-LACE and the methodology by Stoll et al. (2015) were applied to review the SC 

configuration of company A. In agreement with company A, DC1 was selected as the central DC, being the 

facility with the largest size and central location with respect to customers (𝑑𝑖𝑠𝑡 is around 15 km). 

Furthermore, the input data (mentioned at the beginning of Section 4) were collected, considering as the 

period of analysis the year 2019. Specifically, 𝑆𝐿𝑖,𝑘,𝑟 desired for each SKU in each DC was defined by 

consulting company managers, and they asked it to be 95% for all SKUs. The data related to inventory 

withdrawals and supply orders carried out in 2019 in each DC were extracted from company databases, as 

well as the information on 𝑢𝑐𝑘, 𝑋𝑖,𝑘,𝑟 in 2019, 𝐿𝑇𝑖,𝑘, 𝑜𝑐𝑘 (which resulted in 26.1 €/order for all SKUs), and ℎ% 

(which resulted in 9.87% according to a company evaluation). Concerning 𝐿𝑇𝑖,𝑘, based on the contract 

between company A and its supplier, the procurement lead time depends only on the DC (𝑖) and not on the 

SKU (𝑘), being equal to 10 days for SKUs stored in 𝐷𝐶2, 𝐷𝐶3 and 𝐷𝐶5, while being 4 days for SKUs in 𝐷𝐶1 and 

𝐷𝐶4. In addition to this data, to apply only the methodology by Stoll et al. (2015), ten meetings were 

organised with a panel of company maintenance experts (each lasting approximately four hours), where they 

were asked to evaluate SKUs according to the VED criticality criteria, then performing the AHP. 

The results achieved by reviewing the SC configuration through the stage 1 of SP-LACE and the methodology 

by Stoll et al. (2015) are expressed in Table 3, reporting, for a sample of ten SKUs in 𝐷𝐶2, the suggested 

criticality classification (𝐶𝑟𝐶𝑖,𝑘,𝑟), stock deployment policies (𝐷𝑃𝑖,𝑘,𝑟), and stock supply policies (𝑆𝑃𝑖,𝑘,𝑟), 

where the latter are calculated with Equations 4-5 (𝑅𝑂𝑃′𝑖,𝑘,𝑟, 𝑄′𝑖,𝑘,𝑟) in the case of SP-LACE, while being 

calculated with Equations 1-2 (𝑅𝑂𝑃𝑖,𝑘,𝑟, 𝑄𝑖,𝑘,𝑟) in the methodology by Stoll et al. (2015). In addition to this 

information, Table 3 reports the identifier (𝐼𝐷𝑘) and description of each SKU, its total demand (𝑋𝑖,𝑘,𝑟) in 2019 

in 𝐷𝐶2, the unitary cost (𝑢𝑐𝑘), the coefficient of variation of demand (𝜃(𝑥𝑖,𝑘,𝑟)), and the number of supply 

orders (#𝑂𝑟𝑑𝑖,𝑘,𝑟) issued in 2019 in 𝐷𝐶2. 
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Table 3 shows that SP-LACE leads to a different criticality classifications (𝐶𝑟𝐶) of spare parts than the 

methodology by Stoll et al. (2015), resulting in the same stock deployment and supply policies only for four 

out of ten SKUs. Regarding the stock deployment policies, SP-LACE keeps all SKUs decentralised except one, 

promoting decentralisation for more SKUs than Stoll et al. (2015). Concerning the stock supply policies, SP-

LACE favours higher reorder levels and optimal order quantities, preferring large supply batches and sporadic 

supply orders, while the methodology by Stoll et al. (2015) often recommends the opposite (one-unit lots 

and frequent supply orders). The aforementioned considerations are confirmed in Figure 3, which provides 

an aggregated view of the results obtained for all SKUs (not just a sample of ten) in all DCs (not only 𝐷𝐶2), 

comparing the performance of SP-LACE (orange), the methodology by Stoll et al. (2015) (blue), and the 

historical situation of company A in 2019 (grey). 

 

Figure 3. Total average inventory levels (a), number of orders (b), and number of backorders (c) occurred in each DC historically in 

2019 (grey), by applying the stage 1 of SP-LACE (orange), and the methodology by Stoll et al. (2015) (blue), respectively. 

Specifically, Figure 3.a shows the sum of the average inventory levels (𝐴𝑣𝑔𝐼𝑛𝑣𝑖,𝑘,𝑟) of all SKUs in each DC, 

highlighting that SP-LACE decentralises stocks more than the methodology by Stoll et al. (2015). Indeed, by 

comparing the orange and blue histograms of Figure 3.a, it appears that the methodology by Stoll et al. (2015) 

stores 55% of the total stocks in the central DC, while holding only small amounts of spare parts in peripheral 

DCs (12% in 𝐷𝐶2, 17% in 𝐷𝐶3, 7% in 𝐷𝐶4, and 9% in 𝐷𝐶5). Instead, SP-LACE centralises fewer spare parts 

(47% of the total stocks are in 𝐷𝐶1), while holding in the other DCs 14%, 19%, 9%, and 11% of stocks, 

respectively. Moreover, Figure 3.a illustrates that, in terms of average inventory levels, both SP-LACE and the 

methodology by Stoll et al. (2015) perform better than the historical situation of company A, showing that 

the review of the SC configuration reduces the DCs’ filling. However, SP-LACE results in higher average 

inventory levels than the methodology by Stoll et al. (2015), due to a stronger tendency to decentralisation 

and the adoption of higher reorder levels and optimal order quantities for many SKUs. Concurrently, Figure 

3.b depicts the sum of the number of supply orders (#𝑂𝑟𝑑𝑖,𝑘,𝑟) issued for all SKUs in each DC, highlighting 

that SP-LACE strongly reduces the number of supply orders by suggesting large replenishment batches and 

sporadic supply orders. On the contrary, the methodology by Stoll et al. (2015) worsens the historical 

situation by recommending frequent supplies of one-unit lots. Finally, Figure 3.c reports the sum of the 



 

 

number of annual backorders that occurred for all SKUs in each DC. Taking into account Figure 3.c, it appears 

that both SP-LACE and the methodology by Stoll et al. (2015) reduce the number of backorders with respect 

to the historical situation of company A. However, SP-LACE achieves fewer backorders since it is a data-driven 

methodology. Indeed, SP-LACE classifies the criticality of SKUs based on the analysis of objective data (not 

on the consultation of maintenance experts). Therefore, no subjectivity affects the criticality classification 

results, and mistakes are avoided (unlike in the methodology by Stoll et al. (2015)), in which critical SKUs are 

identified as non-critical, suggesting to keep few items in stock. Finally, by keeping higher inventory levels 

(instead of one-unit lots), SP-LACE makes the stocks in DCs more resilient compared to the methodology by 

Stoll et al. (2015). Indeed, SP-LACE allows company A to better cope with unexpected demand fluctuations 

(typical of spare parts) preventing future stock-outs and backorder costs in case of demand variations. 

The economic impact of reviewing the SC configuration of company A was, then, evaluated (in terms of SC 

total costs - 𝐶𝑡𝑜𝑡𝑟
, Equation 6) following the stage 2 of SP-LACE. Hence, the economic performance of the 

reviewed SC configuration (𝑟 = 1) was compared with the starting (historical) one (𝑟 = 0). Figure 4 depicts 

the achieved results in terms of holding (𝐶𝐻𝑟
, Equation 8), ordering (𝐶𝑂𝑟

, Equation 9), and backorder costs 

(𝐶𝐵𝑟
, Equation 10), which are expressed in Euros (€) and obtained by applying SP-LACE, the methodology by 

Stoll et al. (2015), and the historical company performance (starting SC configuration), respectively. 

Moreover, Figure 4 shows the cost incurred to review the SC configuration (𝐶𝑟𝑒𝑣𝑟
, Equation 11), where trucks 

with a capacity of 13 m3 (𝐶𝑎𝑝) and a cost of 0.6 €/km (𝑢𝑡𝑟𝑖𝑝) were considered to perform spare parts 

displacements. To show the benefits of a regular review of the SC configuration in company A, the review of 

the SC configuration was not carried out only once, but twice. Indeed, as shown in Figure 4.a, a first review 

was conducted to move from the starting (historical) SC configuration to a reviewed one, which was more 

aligned with the spare parts demand of 2019. Then, as depicted in Figure 4.b, after one year, a second review 

was performed by repeating the application of SP-LACE in 2020 and moving to another SC configuration 

aligned with the demand of 2020. Both Figures (4.a and 4.b) depict the economic evaluation of the reviewed 

SC configuration (𝑟 = 1, in 2019 and 2020, respectively), comparing it with the economic performance that 

company A would have had by not reviewing the SC configuration (i.e., maintaining the starting SC 

configuration, 𝑟 = 0). 



 

 

 

Figure 4. Economic assessment of SC total cost (Ctot) achieved without performing SC configuration reviews (r=0) or by performing 

a first (a, in 2019) and a second (b, in 2020) review (r=1) through SP-LACE and the methodology by Stoll et al. (2015), respectively. 

Figure 4 proves that both the first (Figure 4.a) and the second (Figure 4.b) review (𝑟 = 1) of the SC 

configuration were economically convenient for company A in respect with keeping the starting SC 

configuration unchanged over time (𝑟 = 0). Indeed, company A had never performed a structured SC 

configuration review before 2019. Therefore, major holding, ordering, and backorder cost savings were 

achieved by aligning the SC configuration with spare parts demand, leading to a drastic reduction in 𝐶𝑡𝑜𝑡𝑟
 

with both SP-LACE and the methodology by Stoll et al. (2015). Specifically, SP-LACE appeared more 

economically advantageous, resulting in a lower SC total cost compared with both Stoll et al. (2015) (-39% in 

2019 and -61% in 2020) and the historical situation (-68% in 2019 and -87% in 2020). Indeed, Figure 4 shows 

that, in both the reviews, SP-LACE determined less ordering and backorder costs than the methodology by 

Stoll et al. (2015), while implying higher holding costs. Lower ordering costs and higher holding costs were 

obtained since SP-LACE prefers larger supply batches and sporadic supply orders compared with the 

methodology by Stoll et al. (2015). Instead, lower backorder costs were obtained since SP-LACE is a data-



 

 

driven methodology, which classifies the criticality of SKUs based on objective input data. On the contrary, 

the methodology by Stoll et al. (2015) implies consulting maintenance experts, and this leads to SC 

configuration reviews affected by subjectivity, causing backorders when critical SKUs are wrongly classified 

as moderately criticals or non criticals, suggesting for them wrong stock deployment and supply policies. 

Finally, Figure 4 shows that reviewing the SC configuration implied incurring in a review cost (𝐶𝑟𝑒𝑣𝑟
), which 

was higher in the first review of the SC configuration (since the stock deployment and supply policies of 99.2% 

of SKUs were changed), while being lower in the second one (since only small adjustments of stock 

deployment and supply policies were suggested, updating the management of 31% of SKUs). Specifically, 

𝐶𝑟𝑒𝑣𝑟
 was lower in SP-LACE than in the methodology by Stoll et al. (2015) and this economic benefit was 

mainly related to the time consumption (𝐶𝑆𝑜𝑓𝑟
) required to collect the input data and perform the SC 

configuration review. In fact, in SP-LACE the input data related to the 3,000 SKUs was collected by executing 

a single search query on company databases, which provided results in less than an hour. Consequently, the 

reviewed SC configuration was achieved in one hour (𝑡𝑐), leading to a review cost equal to 403 € in the first 

review of the SC configuration and 151 € in the second one. In contrast, the collection of input data for the 

methodology by Stoll et al. (2015) not only required to perform the same search query in the company 

databases, but also to consult maintenance experts for developing the VED analysis and the AHP. This, as 

aforementioned, involved organising ten meetings of around four hours each, obtaining the results of stock 

deployment and supply policies only after forty working hours, and leading to a review cost of 1,378 € in the 

first review and 1,126 € in the second one. The lower time consumption of SP-LACE resulted in a greater 

applicability of this methodology in company A, encouraging regular reviews of spare parts SC configurations.  

4.2. Case study B 

A spare parts retailer from northern Europe was selected as case study B, which manages almost 8,000 SKUs 

falling into three categories: spare parts for trams (24% out of the total 8,000 SKUs), spare parts for subways 

(64%), and spare parts for repairing or replacing railway and subway infrastructure (the remaining 12%). The 

company purchases spare parts from several suppliers, stocking them into eight DCs (𝐷𝐶1 − 𝐷𝐶8) based on 

the experience of warehouse staff. Finally, spare parts are installed on company’s internal vehicles or 

infrastructures. 

Both SP-LACE and the methodology by Stoll et al. (2015) were applied in company B, where the input data 

mentioned at the beginning of Section 4 were gathered as follows. The required 𝑆𝐿𝑖,𝑘,𝑟  for each SKU in each 

DC was defined by consulting company managers. As in case study A, it was requested to be 95% for all SKUs. 

Then, considering as period of analysis the year 2021, the data related to inventory withdrawals and supply 

orders carried out in 2021 in each DC were extracted from company databases, as well as the information on 

𝑢𝑐𝑘, 𝑋𝑖,𝑘,𝑟  in 2021, 𝐿𝑇𝑖,𝑘, 𝑜𝑐𝑘  (which resulted in 5 €/order for all SKUs), and ℎ% (which resulted in 10% 

according to a company evaluation). In addition to these data, to apply the methodology by Stoll et al. (2015), 



 

 

fifteen online meetings (each lasting three hours) were organised, where a panel of maintenance experts 

was asked to evaluate SKUs according to the VED criticality criteria, then performing the AHP. 

However, it is worth mentioning three aspects that distinguish data extraction and SP-LACE application in 

case study B from case study A. First, in case study B, a specific average procurement lead time (𝐿𝑇𝑖,𝑘) was 

collected for each individual SKU (𝑘) in each DC (𝑖), not being the same for all SKUs, but varying according to 

the suppliers, DCs, and the specific SKU ordered. Second, in case study B, the DC chosen as central DC varies 

depending on the spare parts typology (while, in case study A, a single central DC - 𝐷𝐶1 - was identified for 

the SC configuration related to all SKUs). In particular, company B asked to impose 𝐷𝐶6 as the central DC for 

the management of tram SKUs, 𝐷𝐶1 for subways SKUs, and 𝐷𝐶2 for infrastructure SKUs. Finally, in terms of 

the daily quantities withdrawn from DCs, lateral transshipments were allowed and treated according to 

Appendix A. Below, the case study results are shown. Table 4 compares the criticality classification (𝐶𝑟𝐶𝑖,𝑘,𝑟), 

the stock deployment policies (𝐷𝑃𝑖,𝑘,𝑟), and the stock supply policies (𝑆𝑃𝑖,𝑘,𝑟) suggested by the stage 1 of SP-

LACE and the methodology by Stoll et al. (2015) for a sample of ten SKUs in 𝐷𝐶1, reporting the average 

procurement lead time (𝐿𝑇𝑖,𝑘, expressed in days) and the SKUs’ typology together with the same information 

already discussed in Table 3.
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Table 4 confirms the considerations already reported for case study A (Table 3), showing that only for two 

out of ten SKUs SP-LACE suggested the same stock deployment and supply policies than the methodology by 

Stoll et al. (2015). In the remaining cases, concerning stock deployment policies, SP-LACE preferred 

decentralisation for a higher number of SKUs. On the other hand, concerning stock supply policies, a visible 

inclination of SP-LACE towards more sporadic and voluminous reordering batches was seen, while the 

methodology by Stoll et al. (2015) preferred one-unit lots. In addition, Table 4 proves the importance of 

considering not only normal demand distributions, but also Poisson distributions for spare parts, thus 

validating SP-LACE results. Indeed, all SKUs except 821302 and 215112 showed an average demand during 

the procurement lead time lower than 15 units, demonstrating that not all SKUs have a normally distributed 

demand, but rather some of them follow a Poisson distribution. Therefore, the coefficient of variation of 

demand (𝜃(𝑥1,𝑘,𝑟)) is not an adequate parameter to delineate the SKUs’ criticality, while it is preferable to 

rely on #𝑂𝑟𝑑𝑖,𝑘,𝑟. 

Like in case study A, the aforementioned considerations were confirmed in Figure 5, showing that similar 

results of criticality classification (𝐶𝑟𝐶𝑖,𝑘,𝑟), stock deployment (𝐷𝑃𝑖,𝑘,𝑟), and supply policies (𝑆𝑃𝑖,𝑘,𝑟) were 

obtained in the other DCs (not only in 𝐷𝐶1) and considering all SKUs (not just a sample). Figure 5 depicts, for 

each DC and for each SKUs typology (tram, subway, and infrastructure SKUs), the same information already 

described in Figure 3, comparing SP-LACE (orange), the methodology by Stoll et al. (2015) (blue), and the 

historical performance of company B in 2021 (grey). 



 

 

 

Figure 5. Total average inventory levels (a), number of orders (b), and number of backorders (c) occurred in each DC historically in 

2021 (grey), by applying the stage 1 of SP-LACE (orange), or the methodology by Stoll et al. (2015) (blue), and considering tram (top), 

subway (middle), and infrastructure (bottom) SKUs. 

Figure 5 shows the importance of adopting a structured methodology to review the configuration of spare 

parts SCs. Indeed, by reviewing the SC configuration, company B achieved a significant decrease in the 

average inventory levels, number of supply orders, and number of backorders, improving the economic 

investments in resources both with SP-LACE and the methodology by Stoll et al. (2015). Furthermore, Figure 

5 confirms the results of case study A (Figure 3), showing that the stock deployment and supply policies 

suggested by SP-LACE, despite leading to higher inventory levels (Figure 3.a), determined a drastic reduction 

in the number of supply orders (Figure 3.b) due to higher values of reorder levels and optimal order 

quantities. Conversely, in terms of supply orders, the methodology by Stoll et al. (2015) worsen the historical 

situation. Finally, a reduction in the number of backorders (Figure 3.c) was achieved in SP-LACE, not only 

improving the company’s historical situation but also showing advantages over the methodology by Stoll et 

al. (2015) since a data-driven criticality classification of SKUs was performed. Whereas, due to the 

consultation of maintenance experts, the methodology by Stoll et al. (2015) produced subjective results of 

SC configuration review, sometimes associating SKUs with the wrong criticality class and adopting unoptimal 

stock deployment and supply policies. 



 

 

Like in case study A, the economic impact of the stage 1 of SP-LACE on company B was evaluated in terms of 

SC total costs (𝐶𝑡𝑜𝑡𝑟
, Equation 6). To this end, the stage 2 of SP-LACE was applied, comparing holding (𝐶𝐻𝑟

, 

Equation 8), ordering (𝐶𝑂𝑟
, Equation 9), backorder (𝐶𝐵𝑟

, Equation 10), and review costs (𝐶𝑟𝑒𝑣𝑟
, Equation 11) 

of the reviewed SC configuration (𝑟 = 1) with the ones of the starting (historical) SC configuration (𝑟 = 0). 

Figure 6 depicts the results achieved through SP-LACE, the methodology by Stoll et al. (2015), and the 

historical company performance in 2021, respectively. Since the SC configuration review was performed at 

the same time for tram, subway, and infrastructure SKUs (applying SP-LACE to all SKUs), the cost values in 

Figure 6 are shown in an aggregated form. 𝐶𝑟𝑒𝑣𝑟
 was calculated by considering (for the displacement of SKUs) 

vehicles with a capacity of 16 m3 (𝐶𝑎𝑝) and a cost of 0.7 €/km (𝑢𝑡𝑟𝑖𝑝). 

 

Figure 6. Economic assessment of SC total cost (Ctot) achieved historically (in 2021, without performing reviews of the SC, r=0) or by 

reviewing the SC configuration (r=1) through SP-LACE and the methodology by Stoll et al. (2015), respectively. 

Figure 6 shows that reviewing the SC configuration was economically convenient for company B in respect 

with the starting SC configuration. Indeed, a reduction in 𝐶𝑡𝑜𝑡𝑟
 was achieved both with SP-LACE and the 

methodology by Stoll et al. (2015). Like in case study A, SP-LACE determined less ordering and backorder 

costs than Stoll et al. (2015), while implying higher holding costs. However, in case study B, contrarily to case 

study A, SP-LACE led to a higher SC total cost (+3%) than the methodology by Stoll et al. (2015) and this result 

was due to the reduced cost of issuing one supply order in company B (𝑜𝑐𝑘  =  5 €/𝑜𝑟𝑑𝑒𝑟, different from 

26.10 €/order of company A). In fact, given the reduced value of 𝑜𝑐𝑘 , the small number of supply orders 

achieved in SP-LACE (Figure 5) does not compensate for the increase in holding costs compared to the 

methodology by Stoll et al. (2015). However, it is worth mentioning that SP-LACE would have become cost-

effective compared to Stoll et al. 2015 if the cost of issuing an order would have been 6 €/order (instead of 

5 €/order), downplaying the advantage of the methodology by Stoll et al. (2015) over SP-LACE. Moreover, 

SP-LACE still conserves strong advantages in terms of time-savings and review cost. Indeed, only one search 

query was performed in company databases, collecting the input data related to 8,000 SKUs and applying SP-

LACE in approximately one hour (𝑡𝑐) with a 𝐶𝑟𝑒𝑣𝑟
 of 300 €. Instead, in the methodology by Stoll et al. (2015), 

besides consulting company databases, fifteen meetings were required to consult maintenance experts and 



 

 

conduct the VED analysis and the AHP, thus obtaining the input data and the results of stock deployment and 

supply policy in fortyfive working hours (with a 𝐶𝑟𝑒𝑣𝑟
 of 1,499 €). Based on this, despite the higher total cost, 

SP-LACE appeared more applicable in real companies than the methodology by Stoll et al. (2015), being less 

time-consuming and allowing regular reviews of the spare parts SC configuration. Moreover, not needing to 

consult company maintenance experts and requiring less input data (usually available in company 

databases), SP-LACE showed not only higher applicability in real companies, but also higher reliability than 

the methodology by Stoll et al. (2015) providing results not affected by subjectivity and reducing backorder 

costs. 

Since, the review of the SC configuration was only performed once in company B (in 2021), a second review 

of the SC configuration will be performed at the end of 2022 to further confirm the previous considerations 

and the importance of reviewing the SC configuration. 

5. Conclusions 

This paper proposes the novel SP-LACE methodology to review the configuration of spare parts SCs based on 

a multi-criteria criticality classification. In fact, regularly reviewing the SC configuration is important for spare 

parts retailers to align stock deployment and supply policies with customer needs. Furthermore, the use of a 

multi-criteria ABC criticality classification to review the SC configuration is reported to be beneficial, allowing 

spare parts retailers to quickly and easily handle thousands of SKUs simultaneously, and establishing for each 

of them the most appropriate stock deployment and supply policies. However, the literature is lacking in this 

perspective since only one methodology (Stoll et al., 2015) based on a multi-criteria ABC criticality 

classification has been proposed, which presents some limitations, being not applicable in real companies: it 

requires collecting input data hardly available in real companies and consulting company experts. Therefore, 

it is subjective and time-consuming, preventing regular reviews of the SC configuration. In addition, it 

represents the demand for spare parts with a normal distribution, although the demand for spare parts often 

follows a Poisson distribution. Finally, it does not provide any economic analysis of the cost benefits 

achievable by reviewing the configuration of spare parts SC, thus missing a demonstration of its effectiveness. 

Due to these limitations, companies are currently lacking a reliable and applicable methodology to regularly 

review the spare parts SC configuration based on a multi-criteria ABC criticality classification. To fill this gap, 

as the main contribution of this work, SP-LACE was developed to overcome the identified drawbacks and 

provide spare parts retailers with a quick, repeatable, and data-driven methodology to review the 

configuration of spare parts SCs. In SP-LACE, two stages are carried out. In stage 1, the optimal stock 

deployment and supply policies are suggested for each SKU, searching (through a multi-criteria criticality 

classification) for a trade-off between holding, ordering, and backorder costs in DCs. In stage 2, a 

mathematical model is proposed to evaluate the economic benefits of the reviewed SC configuration (in 

terms of SC total costs) in respect with the starting one (before the review process). 



 

 

To test and validate SP-LACE, it was applied to two case studies. The achieved results were compared (in 

terms of average inventory levels, number of supply orders, number of backorders, holding, ordering, 

backorder, and review costs) with the historical company performance (starting SC configuration) and also 

with the methodology by Stoll et al. (2015). The two case studies proved the importance of adopting a 

structured methodology to regularly review the configuration of spare parts SCs. In fact, SP-LACE significantly 

improved the starting (historical) economic situation of companies, indicating that the stock deployment and 

supply policies associated so far with SKUs were not aligned with customer needs. Moreover, the results of 

the two case studies highlighted the advantages of SP-LACE over the methodology by Stoll et al. (2015), 

proving that SP-LACE leads to lower ordering and backorder costs, reducing the SC total cost despite higher 

holding costs (especially when the unitary cost of issuing one supply order - 𝑜𝑐𝑘 - is high or the unitary cost 

of inventory - ℎ% - is low). These advantages are achieved since SP-LACE decentralises stocks more than the 

methodology by Stoll et al. (2015), also suggesting the replenishment of DCs through large batches and 

sporadic supply orders. Moreover, SP-LACE showed great time savings than the methodology by Stoll et al. 

(2015) and higher applicability in companies with thousands of SKUs and variable spare parts demand since 

only one hour and lower review costs (𝐶𝑟𝑒𝑣𝑟
) were needed to produce objective results, allowing the regular 

review of SCs configuration and ensuring the desired service level.  

Since SP-LACE has been demonstrated to be easily and quickly applicable, this paper allows for the first time 

adopting (in real companies) a multi-criteria ABC criticality classification of spare parts not only as a technique 

for planning the stock supply policies in a single DC, but also for planning stock deployment policies in 

multiple DCs. Moreover, this paper shows, for the first time, the economic benefits of regularly reviewing a 

spare parts SC configuration. Hence, this work could encourage spare parts retailers to update their starting 

SC configuration, leading to greater customer satisfaction (due to a better ability to follow demand 

fluctuations), as well as reduced SC total costs. 

The authors envision two future developments of this study: first, to remove some simplifying assumptions 

of SP-LACE, for example including in the investigation the transportation costs, which are not considered 

here. Second, to determine (based on the economic evaluation herein provided) the optimal time interval 

for reviewing the SC configuration, finding a trade-off between review costs and holding, ordering, and 

backorder costs. 

Appendix A 

Lateral transshipments are usually performed when the stocks in a DC are not sufficient to meet the customer 

needs, so it is necessary to procure stocks from another DC (Cohen et al., 1988). Considering as an example 

two DCs (𝐷𝐶1 and 𝐷𝐶2), if 𝐷𝐶1 receives a demand for spare parts but it is unable to satisfy it, it can order the 

required stocks from 𝐷𝐶2. Consequently, the stocks are first withdrawn from 𝐷𝐶2 (first type of withdrawal, 

that is the lateral transshipment) and delivered to 𝐷𝐶1 to satisfy its request. Then, the stocks are withdrawn 



 

 

from 𝐷𝐶1 (second type of withdrawal) to satisfy the customer need. Based on this, in this work, we have 

considered as withdrawals (spare parts demand) only the second type of withdrawals, while the lateral 

transshipments (first type of withdrawal) are not considered for the following reason. In the first instance, it 

is reasonable to assume that, by applying SP-LACE in each DC, the suggested stock deployment and supply 

policies and the consequent inventory levels (calculated to compensate both ordinary demands and the 

demands related to the second type of withdrawals) are sufficient to meet the needs of local customers 

(Tapia-Ubeda et al., 2020). Subsequently, since SP-LACE can be applied more than one time, by recursively 

reviewing the spare parts SC configuration, a better alignment of stocks with customer needs is expected in 

the company's future and, in a long-term evaluation, it is reasonable to expect a reduction or even the 

removal of lateral transshipments. 

Data availability statement 
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ABSTRACT
A well-configured spare parts supply chain (SC) can reduce costs and increase the competitive-
ness of spare parts retailers. A structured method for configuring spare parts SCs should be used
to determine whether to centralise or decentralise inventory management, also considering hybrid
configurations. Moreover, such a method should define whether or not to switch the production
of spare parts from Conventional Manufacturing (CM) technologies to Additive Manufacturing (AM)
ones. Indeed, AM is considered the next revolution in the field of spare parts, and the adoption of AM
technologies strongly affects the characteristics of SCs. However, the choice between centralisation
and decentralisation is not the subject of much scientific research, and it is also not clear when AM
would be the preferable manufacturing technology for spare parts. This paper aims to assist man-
agers and practitioners in determining how to design their spare parts SCs, thus defining both the
spare parts SC configuration and themanufacturing technology to adopt through the development
of a decision support system (DSS). The proposedDSS is a user-friendly decision tree, and, for the first
time, it allows comparisonof the total costs of SCs characterisedbydifferent degrees of centralisation
with both AM and CM spare parts.
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1. Introduction

Over the last decade, factors like globalisation, competi-
tion, reduced time-to-market, and high productivity have
made the impact of logistics on supply chain (SC) prof-
its greater than in the past (Dominguez, Cannella, and
Framinan 2021). Consequently, researchers have started
investigating how to improve logistics activities, and act-
ing on the SC configuration has proved to be an effective
way to do so. However, changes in the SC configuration
profoundly influence not only the logistics activities, but
also other aspects such as capital investments (Jiang and
Nee 2013), sustainability (Tsao et al. 2021), and customer
service (Fathi et al. 2021). For this reason, optimising the
SC configuration represents a challenging task (Vlajic,
Van Der Vorst, and Haijema 2012).

When dealing with spare parts, it becomes even
more challenging to optimise the SC configuration. In
fact, in spare parts SCs, a high customer service level
is required as the effects of inventory stock-outs on
spare parts SC performance can be financially signifi-
cant (Stoll et al. 2015; Tapia-Ubeda et al. 2020). Hence, a
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customer-centred perspective should be adopted (Gian-
nikas, McFarlane, and Strachan 2019), and spare parts
retailers should configure their SCs to locate distribution
centres (DCs) close to the end customers and align stocks
to meet their demand (a.k.a. decentralised SC configura-
tion) (Cohen, Agrawal, and Agrawal 2006). Decentrali-
sation usually ensures a rapid response to demand, fast
deliveries (which result in reduced maintenance time),
low transportation costs, and high flexibility (Alvarez and
van der Heijden 2014). However, the demand for spare
parts is usually unpredictable, sporadic, and slow-moving
(Van der Auweraer and Boute 2019). Therefore, having
many decentralised DCs and expecting to guarantee a
high service level implies keeping a large amount of stock,
thus experiencing high holding costs and reduced inven-
tory turnover. In this sense, adopting a centralised SC
configuration with a single warehouse that serves the
entire customer population could help benefit from the
risk-pooling effect (Milewski 2020). A single DC will be
more profitable than several DCs also in terms of facility
costs (e.g. lighting and heating) (Wanke and Saliby 2009).

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
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built upon in any way.
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However, a centralised SC configuration loses the bene-
fits of the rapid response to demand, fast deliveries, and
low transportation costs of decentralised SCs. Accord-
ing to Cavalieri et al. (2008), the advantages of the two
basic SC configurations (centralisation and decentralisa-
tion) could be balanced by building hybrid SCs, where
spare parts are stocked at different holding points, and the
number ofDCs serving customers represents an interme-
diate solution between centralisation and decentralisa-
tion. Given the wide range of possible configurations and
the contrasting advantages of different degrees of central-
isation, it is becoming both a strategic opportunity and a
challenge to find methodologies for configuring optimal
spare parts SCs. In this perspective, as stated byAvventur-
oso et al. (2018) and Khajavi, Partanen, and Holmström
(2014), a cost–benefit analysis should be performed to
identify a solution that ensures high-quality responses to
customers and improved asset utilisation while reducing
expenses.

As stated by Milewski (2020) and Tapia-Ubeda et al.
(2020), although it has been known for a long time that
efficient spare parts SC configuration strongly impacts
the SC’s economy, the choice between centralisation and
decentralisation is still overlooked in the literature. As
better described in Section 2, in fact, many scientific
studies focus on topics such as optimising inventory con-
trol policies in a single DC, maximising the performance
of a specific SC configuration (that is initially chosen
and not compared with others), or performing qualita-
tive comparisons between SC configurations, but quan-
titative methods to compare different SC configurations
are not yet the subject of much scientific research. As
things stand today, many spare parts retailers are hence
far from a proper implementation of structured meth-
ods to optimise their SC configurations and the choice
between centralisation and decentralisation continues to
be arbitrary and based on experience. In this context, a
quick and easy-to-use tool that supports managers and
practitioners in optimising spare parts SC configurations
is highly claimed (Cohen, Agrawal, and Agrawal 2006;
Graves andWillems 2005). This work aims to address this
need by developing a decision support system (DSS) that
will answer the following research question:

RQ1) Under which conditions is it economically prof-
itable to have a centralised, decentralised, or hybrid spare
parts SC configuration?

In addition to this, the world of spare parts has recently
investigated the possibility of producing spare parts via
Additive Manufacturing (AM), since this technology
offers the opportunity to fundamentally revolutionise
spare parts SC configurations (Heinen and Hoberg
2019). Indeed, AM allows the production of spare parts

on-demand, thus enabling the configuration of spare
parts SCs with no inventories (Knofius, van der Heijden,
and Zijm 2016). Moreover, AM enables product delivery
and repair times to be reduced by allowing the installa-
tion of AM printers close to (or even inside) customers’
facilities (Pour et al. 2016). In light of this, spare parts
SCs where items are produced via AM (in the following
referred to as ‘AMspare parts SCs’) have started to be con-
sidered a valid substitute for the traditional spare parts
SC where items are produced with Conventional Man-
ufacturing (CM) technologies (in the following referred
to as ‘CM spare parts SCs’) (Kilpi, Töyli, and Vepsäläinen
2009; Zijm, Knofius, and van der Heijden 2019). Hence,
managers andpractitioners need to understandwhenone
is more economically profitable than the other (Baines
et al. 2007; Davies 2004), considering also that AM spare
parts SCs have some drawbacks with respect to the CM
counterparts (e.g. higher costs of spare parts). As better
described in Section 2, so far, this topic has been dis-
cussed only qualitatively (Holmström et al. 2010), and
managers and practitioners are left alone in this deci-
sion. In fact, the available quantitative works dealing with
AM spare parts focus either just on the production phase,
trying to understand when it is convenient to switch
from CM to AM technologies for producing items (Sgar-
bossa et al. 2021), or on the optimal configuration of
the SCs considering only AM as the production technol-
ogy (Khajavi, Partanen, and Holmström 2014) and not
evaluating its benefits or drawbacks with respect to CM.
As reported by Ghadge et al. (2018), the extant litera-
ture lacks methods to quantitative capture the differences
between CM and AM SCs, also providing more robust
evidence on when the adoption of AM SCs could ensure
higher performance compared to a CM one. Therefore, a
comparison between AM and CM spare parts SCs, trying
to understand when one is more economically profitable
than the other, is still missing. In this work, we aim to
fill this gap, thus supporting managers and practition-
ers in deciding which spare parts SCs (AM or CM) to
adopt. Since the decision of whether to embrace an AM
spare parts SC or a CM one influences the spare parts SC
configuration to adopt, this choice will be integrated into
the DSS mentioned above. Therefore, the DSS developed
hereinwill not only answer RQ1 (underwhich conditions
is it economically profitable to have a centralised, decen-
tralised, or hybrid spare parts SC configuration?) but also
the following research question:

RQ2) For the same case study, is it better to procure spare
parts made with AM or CM?

Specifically, the proposed DSS is a decision tree devel-
oped by feeding and training a machine learning
algorithm (decision tree algorithm) with the results of
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a parametric analysis where 10,000 different spare parts
SC scenarios were considered (see Section 3 for more
details). Specifically, we have limited the scenarios anal-
ysis to already existing SCs, where investments in new
assets and facilities are not necessary, and only variable
costs can be considered to optimally reconfigure the SC.
Besides, we have investigated SCs of spare parts retailers,
where only the storage and distribution of Stock-Keeping
Units (SKUs) are owned by the company, while items pro-
duction is entrusted to an external firm. This choice is
made because, as stated by Zijm, Knofius, and van der
Heijden (2019), most components in service companies
are usually purchased from external suppliers and not
produced internally. Finally, we have referred to the opti-
misation of two-echelon spare parts SC configurations,
where spare parts replenishment comes from the external
supplier to one ormoreDCs (first echelon). Then (second
echelon), the DCs satisfy customer demand by deliver-
ing spare parts (Alvarez and van der Heijden 2014). This
choice fits with Cohen, Zheng, and Agrawal (1997), in
whose work a high number of echelons is reported to
rarely occur in practice, rather indicating two-level SCs as
more frequent. Anyway, no generality is lost by consider-
ing two-echelon SCs because they can easily be extended
into multi-level ones if the depot of one layer is consid-
ered the base of the previous one (Ding and Kaminsky
2018).

The remainder of the present paper is as follows. In
Section 2, a literature review is provided regarding mod-
els for configuring an SC (Section 2.1) and the impact
of AM technologies on spare parts SCs (Section 2.2). In
Section 3, the methodology followed to obtain the DSS
is described. In Section 4, the DSS achieved is presented,
and a discussion on the results is given, also showing its
application to two case studies. Finally, in Section 5, some
conclusions on this study are offered.

2. Literature review

In Section 2.1, existing methods for configuring an SC
will be summarised. Due to the volatility and uncertainty
of spare parts demand, we will focus on methods that
are flexible against demand fluctuations, i.e. the so-called
Dynamic Asset Deployment (DAD) methods (Cohen,
Agrawal, andAgrawal 2006). Then, in Section 2.2, studies
on AM deployment in spare parts SCs will be reviewed,
showing advantages and disadvantages over CM.

2.1. Dadmethods for SC configuration

DAD methods for configuring SCs are structured tech-
niques to define what stocks to allocate throughout
the geographical hierarchy of companies’ DCs (Cohen,

Agrawal, and Agrawal 2006), thus leading to centralised,
decentralised, or hybrid SC configurations (Pyke and
Cohen 1993). They differ from static methods in being
flexible against demand fluctuations; hence they lead to
a more effective SC configuration in the case of SKUs
whose demand is difficult to forecast (Persson and Sac-
cani 2007). As a result of applying DAD methods, the
optimal distribution of each individual SKU is ensured,
thus keeping near the customers the most critical articles
while benefiting from risk pooling for the remaining ones
(Stoll et al. 2015). Existing DAD methods for configur-
ing SCs can be ranked into three categories: optimisation,
simulation, and heuristic methods (Abdul-Jalbar et al.
2003; Muckstadt 2004). In DAD optimisation methods,
an objective function is usually solved respecting some
constraints by means of either exact or approximate ana-
lytical models, or algorithms (Roundy 1985). Initially,
DAD optimisation methods were based on exact analyti-
cal models. An example of these is the METRIC method
proposed by Sherbrooke (1968), which was also the first
DAD optimisation method developed (Cavalieri et al.
2008; Muckstadt 2004). METRIC optimises stock levels
of recoverable items in multi-item and multi-warehouse
systems by minimising the sum of expected backorders.
Several extensions and modifications of METRIC have
been proposed over the years (e.g. (Muckstadt 1973;
Muckstadt and Thomas 1980; Alfredsson and Verrijdt
1999)), as well as other DAD optimisation methods to
configure SCs with null or non-null lead time (Feder-
gruen and Zipkin 1984; Sherbrooke 1968), with or with-
out backlogs (Alvarez and van derHeijden 2014), with an
infinite or finite horizon of analysis (Zangwill 1966), with
or without lateral transshipments (Patriarca et al. 2016),
and nested or non-nested (Veinott 1969). An extended
review of DAD optimisation methods is offered by Ding
and Kaminsky (2019). Although accurate, DAD opti-
misation methods based on exact analytical models are
difficult to solve since they are usually formulated as non-
linear, integer, combinatorial, stochastic, non-stationary
models (Cohen, Agrawal, and Agrawal 2006). Over the
years, managers and practitioners have pointed out the
need formore user-friendly and time-savingways of con-
figuring SCs (Cohen et al. 1990; Mintzberg 1989; Xie
et al. 2008). For this reason, DAD optimisation methods
based on approximate analytical models or algorithms
were developed, allowing near-optimal solutions to be
provided in a time-efficient way (Cohen, Kleindorfer, and
Lee 1988;Daskin, Coullard, and Shen 2002;Graves 1985).

However, DAD optimisation methods based on algo-
rithms or approximate analytical models were reported
to not always lead to the optimal solution (Alvarez and
van der Heijden 2014). To overcome this weakness, the
second (simulation) and the third (heuristics) categories
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of DAD methods were developed. In DAD simulation
methods, simulative models are developed, then carry-
ing out ‘what if’ scenarios analyses (Xie et al. 2008). First,
different SCs configurations are hypothesised (i.e. cen-
tralised, decentralised, or hybrid configurations). Then,
the costs and benefits of each configuration are evalu-
ated. Finally, the optimal case is selected among those
considered based on simulation results. Some resolutions
of DAD simulation methods are shown in Confessore,
Giordani, and Stecca (2003) andMofidi, Pazour, and Roy
(2018). Xie et al. (2008) report that building a simula-
tion model is often time-consuming and computation-
ally challenging. Therefore, the use of simulation models
should be reserved mainly to design complex SCs, such
as those with many levels, where it is strictly necessary
to reproduce and emulate all the control conditions and
the variables impacting the real-life system (Lee, Pad-
manabhan, andWhang 1997). For the other SCs, instead,
the last category of DAD methods (heuristic methods)
can be used. Here, a near-optimal SC configuration solu-
tion (trade-off between costs, revenues, and service level)
is achieved (Schwarz 1973) by using spare parts classifi-
cation (Persson and Saccani 2007; Roda et al. 2014) or
big data analytics (Cohen and Lee 1990). DAD heuristic
methods based on spare parts classification use a range
of criticality criteria to rank and group items (Teunter,
Babai, and Syntetos 2010). Then, group membership is
exploited to guide rules for asset deployment and inven-
tory replenishment, as shown by Lee et al. (2014) and
Stoll et al. (2015). Conversely, DAD heuristic methods
based on big data analytics typically use machine learn-
ing techniques to predict the performance of different SC
configurations and identify the most profitable solution,
as shown by Xie et al. (2008).

According to Gregersen and Hansen (2018), what-
ever category of DADmethods is chosen, DADmethods
for configuring SCs are usually composed of two steps.
First (Step 1), the asset deployment policy is defined,
determining for each SKU whether to opt for a cen-
tralised, decentralised, or hybrid SC configuration (Can-
tini et al. 2021). Then (Step 2), the inventory control
policy is decided, planning which spare part to supply
and which to order on-demand, and also establishing
how many items to replenish and how often (Caron and
Marchet 1996). The existing literature on SC configura-
tion is mainly focused on optimising Step 2, determining
optimal (or near-optimal) reordering policies for each
SKU byminimising operational costs (Abdul-Jalbar et al.
2003; Cohen, Zheng, andWang 1999; Roundy 1985). On
the contrary, fewer investigations were carried out con-
cerning Step 1, especially when dealing with spare parts
SCs. Indeed, Milewski (2020) reports that, although it
has been known for a long time that efficient spare parts

logistics strongly affects the SC’s economy, the choice
between centralised, decentralised or hybrid SC configu-
rations is still overlooked in the literature. Farahani et al.
(2015) state that the first paper to deal with this topic
was by Eppen (1979). However, this study focuses only on
centralised and decentralised SC configurations, neglect-
ing hybrid SC configurations. Moreover, it cannot be
applied in the case of spare parts SCs since it addresses
products whose demand has a normal distribution, while
spare parts demand follows a Poisson distribution. Other
recent efforts to compare spare parts SC configurations
(Holmström et al. 2010; Liu et al. 2014) are also affected
by some shortcomings. In fact, Holmström et al. (2010)
give a qualitative discussion, while, according to Khajavi,
Partanen, and Holmström (2014), the analysis should be
quantitative and based on the minimisation of SC costs.
On the other hand, the study by Liu et al. (2014) consid-
ers only centralised and decentralised SC configurations,
neglecting hybrid configurations. Moreover, the compar-
ison among the two configurations is carried out only
in terms of theinventory level, neglecting, for example,
inventory and transportation costs.

As confirmed byTapia-Ubeda et al. (2020), the topic of
choosing between centralised, decentralised, and hybrid
SC configurations is not the subject of much scientific
research, and there is potential for further studies. This
literature gap is the starting point of the present study,
in which a heuristic DSS is proposed to assist in the
process of configuring spare parts SCs. The presented
DSS compares different SC configurations, choosing the
optimal solution between centralisation, decentralisa-
tion, or hybrid configurations, and including in the analy-
sis the costs of purchasing spare parts, inventory costs, the
costs of sending out replenishment orders, transportation
costs, and backorder costs.

2.2. AM deployment in spare parts SCs

The deployment of AM technologies for manufactur-
ing spare parts has recently attracted great interest, get-
ting the spotlight in scientific research (Li et al. 2019).
In fact, according to several authors (Holmström et al.
2010; Pérès and Noyes 2006; Silva and Rezende 2013;
Zijm, Knofius, and van der Heijden 2019), AM has the
potential to revolutionise spare parts SCs thanks to two
main benefits over CM technologies. The first is that
spare parts manufacturing is allowed to be on-demand
(Berman 2012). Hence, there is no need for downstream
stocks across the SC, and the holding costs incurred are
low, thus enabling AM spare parts SCs to be more cost-
effective thanCMones (especially decentralised CMSCs,
where there would be several DCs, each with high inven-
tory levels). The second benefit is that transportation lead
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times can be reduced since production is enabled to be
near consumers (moving AM printers near or inside cus-
tomers’ facilities). As a result, shorter lead times could be
ensured, thus obtaining a decentralised SC where design
and production are closely intertwined. This characteris-
tic reduces the time-to-market, transportation costs, and
downtime costs for broken machines, providing benefits
over CM, especially for configuring SCs in geographically
or temporally isolated systems (Westerweel et al. 2021).

However, according to Pour et al. (2016) and Zijm,
Knofius, and van der Heijden (2019), AM spare parts SCs
are characterised by twomain disadvantages compared to
CM counterparts. The former is that high initial invest-
ment costs need to be paid to buy AM printers (although
these are decreasing due to the development of AM tech-
nology). This aspect could make AM spare parts SCs less
cost-effective than the CM ones, especially in the case of
decentralised SC configurations, since at least one AM
printer should be installed in each DC. The second dis-
advantage is that production costs are often higher than
the CM ones, and the production time is longer. Indeed,
the speed of AM technologies is slower compared to CM,
while longer post-processing and inspection times are
required to ensure the reliability and quality of the spare
parts. Consequently, SC costs and lead times could be
higher, especially in centralised SC configurations where
the central DC is not very close to customers’ facilities.

Besides, when considering the labour cost in the eco-
nomic analysis to decide the most cost-effective man-
ufacturing technology, it is not yet clear whether AM
would lead to benefits over CM or not. On the one hand,
when deploying AM technologies, one operator can con-
trol more AM printers. Therefore, fewer operators are
needed, and a reduction of the manual labour cost as a
percentage of the overall product price is ensured. On
the other hand, highly trained operators are required to
use digital AM technologies, thus increasing the average
labour cost per hour.

Up to now, when evaluating the possibility of adopt-
ing AM spare parts SCs, many studies have focused only
on the production phase, investigating the convenience
of manufacturing AM rather than CM items (Costabile
et al. 2017; Knofius, van der Heijden, and Zijm 2016;
Sgarbossa et al. 2021) and which AM technologies to use
(Khajavi et al. 2018; Zhang, Zhang, andHan 2017). Other
activities, such as logistics, have so far been neglected,
while the impacts of AM in all areas of spare parts
SCs should be considered before deciding whether to
adopt it or not. This becomes even more important if we
include in the analysis different SC configurations (cen-
tralised, decentralised, and hybrid), since the choice of
a specific spare parts SC configuration might be affected
by the costs and characteristics of the manufacturing

technology considered (Li et al. 2019). To date, however,
only two works have tried to integrate the choice of the
manufacturing technology with the selection of the spare
parts SC configuration (Li et al. 2017; Liu et al. 2014).
These works only consider centralised or decentralised
configurations without focusing on hybrid spare parts SC
configurations. Moreover, they select the optimal spare
parts SC design (fromnowon, wewill refer to ‘spare parts
SC design’ as the activity to decide the optimal spare parts
SC configuration together with the choice of the manu-
facturing technology) based on the results of simulation
models. Therefore, their considerations refer to a spe-
cific case study and cannot be generalised. To the best of
our knowledge, there is no structured method to support
managers and practitioners in the process of designing
spare parts SCs. This problem is overcome in this paper,
where a DSS is developed to solve the literature gap iden-
tified in Section 2.1 (assistingmanagers and practitioners
in the process of configuring spare parts supply chains),
also including the choice of the optimal manufacturing
technique (AM or CM).

3. Methodological framework

The main objective of this paper is to develop a DSS to
assistmanagers and practitioners in designing spare parts
SCs (which means deciding both the spare parts SC con-
figuration and the manufacturing technology). The pro-
posed DSS is a decision tree that is derived from a cost-
based comparison of over 10,000 different spare parts
SCs scenarios (i.e. spare parts SCs characterised by differ-
ent spare parts demand, purchasing costs, transportation
costs, backorder costs, and required service level) of ten
different supply chain designs. To this end, four main
steps were performed. However, before describing these
steps, it is useful to clarify some key characteristics of the
DSS and some assumptions made.

Dealing with the key characteristics, the DSS is devel-
oped for managers and practitioners interested in two-
echelon SCs, where spare parts are bought from an exter-
nal supplier (not produced internally), stored in one or
more DCs, and distributed to fulfil the product demand
at multiple customer locations. Hence, the control vol-
ume underlying this study is shown in Figure 1, where
the final customer may also be a subsequent retailer, as
reported by Fathi et al. (2021).

The proposed DSS supports managers and practi-
tioners in choosing between ten spare parts SC designs,
derived by combining two manufacturing technologies
(AM and CM) with five spare parts SC configurations
(ranging from centralisation to decentralisation passing
through three hybrid configurations). A schematic rep-
resentation of the five SC configurations considered is
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Figure 1. Control volume considered to develop this study
(within the dashed rectangle).

depicted in Figure 2, considering the example of a com-
pany purchasing spare parts from a supplier and serving
six customers. The different spare parts SC configura-
tions are identified through a parameter called ‘degree of
centralisation’ (Deg). Such parameter, based on the paper
by Gregersen and Hansen (2018), is equal to one in the
case of full centralisation, while it is the ratio between the
number of DCs (#DC) able to answer customers’ demand
and the number of customers to be served (#customers)
in hybrid and decentralised SC configurations (Equation
(1)).

Deg = degree of centralisation

=
{

1 full centralised SC configuration
1 − #DC

#customers else
(1)

As can be seen from Figure 2, the five different spare
parts SC configurations considered in this work are those
with Deg equal to 0 (decentralised configuration), 0.25
(hybrid configuration), 0.50 (hybrid configuration), 0.75
(hybrid configuration), and 1 (centralised configuration),
and this choice was made to cover the range of possible
SC configurations well. As an example, Figure 2 pro-
vides a schematic representation of the SC configurations
considered in the case of a two-echelon SC serving six
customers. In Figure 2, different locations are analysed
for spare partsDCs. Instead, the supplier of theDCs is not
shown, being represented by dashed arrows to indicate
that it is out of control volume, and that we are not inter-
ested in its geographical location, but only in its average
lead time.

Figure 3, then, summarises the ten different spare
parts SC designs considered by the DSS.

Concerning the assumptions made in the develop-
ment of the DSS, these are listed below.

(1) A single external supplier is assumed based on the
work by Farahani et al. (2015), who, based on the fact
that several suppliers offer similar products, indi-
cated that it is more efficient to consider a single
supplier to serve subsequent DCs;

(2) Spare parts are assumed to be purchased from
an external supplier (not produced in-house); this
means that the costs of purchasing spare parts
include all the costs that the supplier incurs. These
costs include the costs of producing spare parts (also
considering quality control activities), the fixed costs
of AM/CM equipment, the costs of digitalising AM
items, thus converting 2D drawings into 3D designs,
and the profit margins that suppliers want to achieve
(Pour et al. 2016);

(3) Based on Tapia-Ubeda et al. (2020), no capacity con-
straints are considered for the supplier’s warehouse
and the DCs. Hence, it is assumed that each facility
is able to keep inventories without space limitations;

(4) Lead times are deterministic, as suggested by
Schwarz (1973) and Cohen, Kleindorfer, and Lee
(1988), while spare parts demand is stochastic, fol-
lowing a Poisson distribution as suggested, e.g. by
Stoll et al. (2015) and Sherbrooke (1968);

(5) Decentralised DCs are considered to be geograph-
ically equidistant from the customer: in such a way
that theDCs are characterised by the same lead times
and transportation costs. Moreover, the transporta-
tion costs in decentralised SC designs are considered
negligible since each decentralised DC is supposed
to be positioned close to the specific customer that it
serves;

(6) No reverse logistics (possibility of repairing and
reusing broken spare parts) is considered, as sug-
gested by Zijm, Knofius, and van derHeijden (2019),
since the focus of this study is not the problem of
sustainability in the SCs, but rather the SC design;

(7) No lateral transhipments are admitted, as shown by
Schwarz (1973);

Figure 2. Schematic representation of the five SC configurations considered.Deg equal to 0 corresponds to a decentralised SC config-
uration,Deg equal to 1 is a centralised configuration, and the values in between are hybrid SC configurations. The picture considers an
example of a two-echelon SC serving six customers.
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Figure 3. Matrix of the spare parts SC designs considered in the DSS.

(8) Since the focus of this study is not the problem of
sustainability in the SCs, but rather the SC design,
no environmental effects of different SC designs are
assessed. For example, CO2 emitted during trans-
portations is neglected;

(9) Only variable costs are considered (see Section 1),
not assessing initial investment costs in facilities, or
assets;

(10) Spare parts transportation costs are calculated by
assuming that only one spare part is distributed
per trip. This hypothesis is considered acceptable
because spare parts demand follows a Poisson dis-
tribution, also known as the law of rare events.

In addition, to develop the DSS, some modelling and
spare parts management choices were taken, which are
listed in the following remarks.

(1) Warehouses are managed according to a continuous
inventory control policy. Given the nature of lead
times and demand, the selected inventory policy is
(s,Q), where s is the reorder level and Q is the eco-
nomic order quantity. Indeed, Fathi et al. (2021),
Ivanov (2021), and Sapna Isotupa (2006) suggest
such an inventory control policy as the optimal one
in the case of stochastic demand and deterministic
lead time;

(2) The average annual demand of one customer is
known, as well as the number of customers to be
served, as shown by Cohen, Kleindorfer, and Lee
(1988);

(3) The duration of the period considered to develop the
analysis is one year, as done byDaskin, Coullard, and
Shen (2002). It is worth mentioning that this infor-
mation is not a simplifying assumption, but it is here
listed to underline that the total costs of SCs are cal-
culated over a time horizon of one year, as well as
the values of (s, Q) needed to control the inventory
replenishment of DCs. Themathematical model and
the analysis provided below could also be repeated
by considering smaller or larger time horizons;

(4) The risk of obsolescence is considered included
within the holding cost rate. This choice is in
line with what reported by Khajavi, Partanen, and

Holmström (2014), who showed that the inventory
obsolescence cost in a DC can be calculated as a
function of the inventory level and of an annual part
obsolescence rate. Therefore, in the present study,
the annual part obsolescence rate is considered con-
tained within the holding cost rate;

(5) SKUs are supposed to be producible with both AM
and CM. This assumption is introduced to allow
the comparison between SCs where the distributed
spare parts are of AM or CM type, thus answering
the second research question (RQ2). However, in the
case that some parts are not producible with AM
technologies (as shown by Zijm, Knofius, and van
der Heijden (2019)), it is possible to use the math-
ematical model here proposed only by comparing
SC designs with CM items (numbers 2, 4, 6, 8, and
10 in Figure 3). Viable method for selecting spare
parts suitable for AM are offered by Chaudhuri et al.
(2021) and (Frandsen et al. 2020);

(6) A single-itemapproach is adopted, choosing for each
individual SKU the optimal SC design. This derives
from the works by Stoll et al. (2015) and Cohen,
Agrawal, and Agrawal (2006), who suggested that
an effective SC configuration should adopt a single-
item approach to ensure the optimal distribution of
each individual SKU.

Now that the key characteristics of the proposed DSS
and the assumptions made have been described, the four
main steps followed to develop the DSS can be discussed.
In Step 1, a mathematical model to compare the cost-
effectiveness of the ten spare parts SC designs was devel-
oped. Then, in Step 2, an analysis of variance (ANOVA)
was performed to determine the most relevant input
parameters of the mathematical model, thus checking if
any of them have a negligible impact on the selection of
the optimal SC design. In Step 3, a parametric analysis
was performed to investigate a sample of 10,000 realistic
spare parts SC scenarios (i.e. spare parts SCs charac-
terised by different spare parts demand, purchasing costs,
transportation costs, backorder costs, and required ser-
vice level) collected by varying the most relevant input
parameters of the mathematical model (emerging from
Step 2). Finally, in Step 4, the DSS was obtained in the
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Table 1. Input parameters for the mathematical model.

Input parameter Description Unit measure

i Considered SC design. i can assume
integer values between 1 and 10
according to Figure 3

[–]

j Manufacturing technology of the
purchased spare parts. j can be AM
or CM

[–]

#customers Number of customers served by the
company

[–]

ELTSL Desired expected lead time service
levelELTSL

[–]

D̄1customer Average annual demand for SKU
emitted by one customer

[units/time]

Degi Degree of centralisation in SC
configuration i. It assumes a specific
value according to Figure 3a

[–]

etcentrali Unitary external transportation cost
from the central DC to customers.
It only refers to centralised SC
configurations (i = 9 ori = 10)

[e/transportation]

uback Unitary cost of one backorder of SKU [e/backorder]
Lj Lead time needed by the supplier to

deliver the j-th SKU to DCs
[time]

ucj Unitary cost of purchasing the j-th SKU
from the supplier

[e/unit]

mh Hourly labour cost [e/time]
ot Average time needed to send one

replenishment order
[time]

h% Holding cost rate for keeping inventory
of SKU

[e/time∗unit]

aDegi is 0 if i is equal to 1 or 2, is 0.25 if i is equal to 3 or 4, is 0.5 if i is equal to 5
or 6, is 0.75 if i is equal to 7 or 8, while is 1 if i is equal to 9 or 10.

form of a decision tree by leveraging a machine learn-
ing algorithm (specifically a decision tree algorithm) fed
with the results of the parametric analysis. Each step is
described in detail below in a specific section.

3.1. Mathematical model

In Step 1 of the development of the DSS, a mathemat-
ical model was established to compare the costs of the
considered spare parts SC designs, thus allowing the opti-
mal design to be identified. Table 1 lists the model input
parameters.

According to the assumption, the costs are related to
a single item, and therefore the optimal spare parts SC
design is the one that minimises the spare parts SC total
costs (Ctoti) for a single SKU (Equation (2)).

min[Ctoti] with i = 1, 2, . . . , 10 (2)

where Ctoti is calculated according to Equation (3) as the
sum of the costs of purchasing spare parts (PCi,j), placing
supply orders (OCi,j), holding inventory (HCi,j), trans-
porting spare parts from DCs to customers (ETCi), and
backorders (BCi).

Ctoti = PCi,j + OCi,j + HCi,j + ETCi + BCi (3)

Specifically:

PCi,j (the total cost of purchasing spare parts from the
external supplier for a specific SC design i), according to
Equation (4), is given by the product between the unitary
cost of the spare part (ucj), the number of DCs in the SC
(#DCi, Equation (5)), and the average annual demand in
each DC (Dtoti, Equation (6)).

PCi,j = ucj∗Dtoti∗#DCi (4)

#DCi =
{

[(1 − Degi)∗#customers]+ if i = 1, 2, . . . , 8
1 if i = 9, 10

(5)

Dtoti =
{ (

D̄1 customer∗#customers
#DCi

)
if i = 1, 2, . . . , 8

(#customers∗D̄1 customer)if i = 9, 10
(6)

OCi,j (the total cost of placing orders for replenishing
DCs’ inventories), according to Equation (7), is given
by the product between the unitary cost of placing one
order (oc, Equation (8)), the average number of orders
(#ordersi,j, Equation (9)), and the number of DCs (#DCi).

OCi,j = (oc∗#ordersi,j)∗#DCi (7)

oc = mh∗ot (8)

#ordersi,j = Dtoti
Qi,j

(9)

where Qi,j is the economic order quantity for replenish-
ing SKUs in DCs calculated usingWilson’s formula (Stoll
et al. 2015) (Equation (10)), and hj is the unitary holding
cost in each DC (Equation (11)).

Qi,j =
√
2∗Dtoti∗oc

hj
(10)

hj = ucj∗h% (11)

HCi,j (the total holding cost), according to Equation (12),
is given by the product between the unitary holding cost,
the average inventory in eachDC (Ii,j, Equation (13)), and
the number of DCs (#DCi).

HCi,j = (hj∗Ii,j)∗#DCi (12)

Ii,j = Qi,j

2
+ SSi,j (13)

Where SSi,j are the safety stocks in each DC, correspond-
ing to the smallest value that satisfies Equation (14), thus
compensating demand fluctuations (Equation (15)) and
avoiding stock-outs at least to ensure the desired service
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level.

1 −
SSi,j−1∑
n=0

[
(Dtot in lead timei,j)

n

n!
∗e−Dtot in lead timei,j

]

≥ (1 − ELT SL) (14)

Dtot in lead timei,j = Dtoti∗Lj (15)

ETCi (the total transportation cost to deliver spare parts
from DCs to customers), according to Equation (16), is
given by the product between the unitary external trans-
portation costs (eti, Equation (17)), the average demand
(Dtoti), and the number of DCs (#DCi).

ETCi = (eti∗Dtoti)∗#DCi (16)

eti =
{

et decentrali if i = 1, 2, . . . , 8
et centrali if i = 9, 10 (17)

where the unitary external transportation costs for
decentralised and hybrid configurations (etdecentrali) is
defined according to Equation (18) (for more informa-
tion on Equation (18) see Appendix A).

et decentrali = et centrali∗f (Degi) (18)

Finally, BCi (the total cost of backorders), according to
Equation (19), is given by the product between the uni-
tary backorder cost (uback), the average number of back-
orders (#backordersi,Equation (20)), and the number of
DCs (#DCi).

BCi = (uback∗#backordersi)∗#DCi (19)

#backordersi = [(1 − ELT SL)∗Dtoti]+ (20)

3.2. ANOVA analysis

In Step 2 of the development of the DSS, an analysis of
variance (ANOVA) was used to define if all the input
parameters (Table 1) strongly impact the selection of the
optimal SC design or if any of them have a negligible
effect. To this end, a preliminary parametric analysis was
first carried out. In the preliminary parametric analy-
sis, the parameters mhmh, ot, and h% in Table 1 were
assumed fixed and equal to 30 e/h, 10min, and 25%
respectively, while the remaining independent variables
of Table 1 (excluding i, which already had predefined val-
ues, and differentiating cost items in the case of AM or
CMmanufacturing) were associated with a range of real-
istic discrete admissible values (Table 2). As shown in
Table 2, three values were considered for each parameter,
where two of them (the extremes) were defined by con-
sulting the sources in the last column of Table 2, while the
third value was taken as the intermediate number. This

resulted in a total of 729 different combinations of the
input parameters (each combination of input parameters
is what we refer to as ‘scenario’), which were then used in
the mathematical model of Step 1 to determine the opti-
mal spare parts SC design for each scenario. Finally, the
results were subjected to an ANOVA using Minitab soft-
ware, where the parameters listed in the first column of
Table 2 were indicated as input factors, while the opti-
mal SC design outcomes were indicated as responses. It
is worth mentioning that the ANOVA was performed
allowing variables to assume only three discrete values to
obtain easily understandable graphs in which the trend of
the curves could be immediately recognised, thus reveal-
ing the impact of the parameters on the decision.

3.3. Parametric analysis

After performing the ANOVA, parameters whose impact
is negligible concerning the suggestion of the optimal
SC design were excluded from the study. Conversely,
the input parameters with a significant influence on the
results were considered in Step 3 of the development of
the DSS.

Aiming to obtain a DSS in the form of a decision tree,
a dataset was required to feed and train the decision tree
algorithm. For this reason, in Step 3, another parametric
analysis was developed to collect and investigate a sample
of 10,000 realistic spare parts SC scenarios (with different
demands, costs, and service levels). Overall, the process
of obtaining the data used to conduct this parametric
analysis can be summarised as follows. First, the param-
eters mh, ot and h% in Table 1 were again assumed fixed
(considering the same values mentioned in Section 3.2),
while the independent non-negligible parameters result-
ing from Step 2 were associated with a range of realistic
admissible values defined within upper and lower lim-
its. As upper and lower limits, the same extreme values
of the ranges in Table 2 were chosen. However, unlike
the parametric analysis of Step 2, here the parameters
were not allowed to take on only three values, but rather
intermediate values were assigned using the Sobol quasi-
random low discrepancy sequence (Burhenne, Jacob, and
Henze 2011). Hence, each parameter (par) was repre-
sented as a set of values uniformly distributed over a
range determined according to Equation (21).

par = parlower limit + Sobol · (parupper limit − parlower limit)

(21)
Table 3 reports the range of admissible values for the
Sobol-based parametric analysis.

Then, by randomly mixing the values of the input
parameters, a sample of 10,000 scenarios was collected,
where, for each scenario, the mathematical model of Step
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Table 2. Parameters and values of discretised parametric analysis.

Input parameter Admissible values Unit measure

Source used to
define the

admissible values

#customers 5; 53; 100 [–] Authors’ experiencea

ELTSL 0.85; 0.92; 0.99 [–] Authors’ experience
D̄1customer 1; 4; 7 [units/year] (Knofius et al. 2021)
etcentrali 100; 1,050; 2,000 [e/transportation] Authors’ experience
uback 1,000; 50,500; 100,000 [e/backorder] (Peron et al. 2021)
LAM 1; 2.5; 4 [weeks] (Knofius et al. 2021)
LCM 4; 15; 26 [weeks] (Knofius et al. 2021)
ucAM 100; 1,300; 2’500 [e/unit] (Knofius et al. 2021)b

ucCM 10; 1,255; 2,500 [e/unit] (Knofius et al. 2021)c

aThe over twenty years’ experience of some of the authors in the field of logistics and spare parts man-
agement combinedwith the consultationof expert staff fromspareparts distribution companiesmake
these assumptions reliable.
bKnofius et al. (2021) considered 1197e/unit. We have assumed a wider range.
cKnofius et al. (2021) reported that the cost of CM parts is typically lower than AM ones, but this does
not always hold true (it depends on the part complexity). Hence, we assumed aminimum value lower
than AM, but the same upper limit.

Table 3. Values considered in the Sobol-based parametric analy-
sis. The range extreme values are based on Table 2.

Input parameter Range of admissible values Unit measure

#customers integers between 5 and 100 [–]
ELTSL floats between 0.85 and 0.99 [–]
D̄1customer integers between 1 and 7 [units/year]
etcentrali floats between 100 and 2,000 [e/transportation]
uback floats between 1,000 and 100,000 [e/backorder]
LAM integers between 1 and 4 [weeks]
LCM integers between 4 and 26 [weeks]
ucAM floats between 100 and 2,500 [e/unit]
ucCM floats between 10 and 2,500 [e/unit]

1 (Section 3.1) was applied, determining the optimal SC
design.

It should be noted that the Sobol quasi-random low
discrepancy sequence was chosen based on the study
by Burhenne, Jacob, and Henze (2011), who report that,
when studying problems with a large number of input
variables, the Sobol sequence is expected to be more
effective in exploring the input variable space in compar-
ison to other sampling strategies (i.e. discrete sampling,
Monte Carlo, or Latin Hypercube).

3.4. Decision tree

Finally, in Step 4, the DSS in the form of a decision
tree was generated, constituting a guideline for managers
and practitioners to understand which spare parts SC
design is the optimal (more cost-effective) for them. To
develop such DSS, a decision tree algorithm was used. A
decision tree algorithm is a supervised classification tech-
nique, and it predicts the class to which an item belongs
based on a given set of attributes (Nugroho, Adji, and
Fauziati 2015).Here, the results of the parametric analysis
(Step 3) were used as the dataset for training the decision
tree algorithm (using Python’s Sklearn library), where for
each scenario:

• The values of the non-negligible input parameters
were given as input attributes.

• The optimal spare parts SC design determined by
applying the mathematical model was indicated as the
final class label that the decision tree algorithm should
learn to predict.

Therefore, the decision tree was obtained as follows.
Starting at a root node, the dataset was recursively split
into binary subsets (branches) based on the Gini diver-
sity index (gdi, Equation (22)), where K is the number
of class labels (the ten spare parts SC designs defined
in Figure 3), and p(k) is the probability of picking the
data point with the classk (Shaheen, Zafar, and Ali Khan
2020). gdimeasures the probability of a given data point
from the dataset being wrongly classified when it is ran-
domly chosen (Arena et al. 2022). Hence, gdi = 0 means
that all data points of the dataset belong to a certain class,
while gdi = 1 implies that the data points are randomly
distributed across different classes.

gdi = 1 −
K∑

k=1

p(k)2 (22)

At each node of the tree, an attribute and its cut point
were chosen to generate two branches with the aim
of minimising Equation (23), thus identifying the split
which provided the maximum purity.

min
(nleft

n
gdileft + nright

n
gdiright

)
(23)

In Equation (23), n is the number of data points in the
original node, nleft is the number of data points in the
new node on the left branch, nright is the number of data
points in the new node on the right branch, gdileft is the
Gini diversity index in the new node on the left branch,
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and, finally, gdiright is the Gini diversity index in the new
node on the right branch (Sgarbossa et al. 2021). The
elements at the end of the tree, obtained after the last
branch split, are called leaves, and the number of splits
performed coincides with the number of levels (depth)
of the tree.

Seeking to generate a user-friendly DSS, the decision
tree was pruned by imposing a maximum depth (Dmax,
maximum number of splits of the starting dataset into
sub-branches before reaching a leaf). This pruning activ-
ity was also useful to avoid the over-fitting problemwhen
generating the tree (Morgan et al. 2003). For the prun-
ing purpose, a sensitivity analysis of the total accuracy
(A) of the decision tree was performed by imposing dif-
ferent values for Dmax, and determining the resulting
A calculated as the ratio between the number of cor-
rect predictions (#correctpredictionstree) and the number
of total predictions (#predictionstree, initial dataset size)
(Equation (24)).

A = #correct predictionstree
#predictionstree

(24)

The decision tree representing a trade-off between the
accuracy of predictions and user-friendliness was then
proposed as a DSS. Finally, the effectiveness of the
selected decision tree was evaluated based on three key
performance indicators (KPIs) related to the leaves of
the tree. The first KPI is the accuracy of each leaf (a,
Equation (25)), given by the ratio between the num-
ber of correct predictions (#correctpredictionsleaf ) and the
number of total predictions in the leaf (#predictionsleaf ).
The second KPI is the number of elements reach-
ing each leaf (p, Equation (26)), given by the ratio
between the number of elements classified within that
leaf (#predictionsleaf ) and the number of total elements to
be classified (#predictionsleaf ). The last KPI is the average
percentage increase in cost that occurs when the wrong
option is selected in the leaf (c, Equation (27)), obtained
as the arithmetic mean of the cost increase generated by
each wrong prediction.

a = #correct predictionsleaf
#predictionsleaf

(25)

p = #predictionsleaf
#predictionstree

(26)

c =

∑#wrong predicionsleaf
k=1(∣∣∣ costof wrong prediction −cost of correct predictionk

cost of correct predictionk

∣∣∣ ∗100)
#uncorrect predictionsleaf

(27)

4. Results and discussion

As mentioned in Section 3, having developed the math-
ematical model to compare the costs of different SC
designs (Step 1, Section 3.1), the next step conducted
was the development of an ANOVA (Step 2, Section 3.2),
whose results are shown in Figure 4.

Figure 4 proves that three out of the nine input param-
eters considered (Table 2) have a negligible impact on the
process of selecting the optimal spare parts SC design.
In fact, when varying the three discrete values assumed
by LAM , LCM , and ELTSL, the curve obtained in the
Main Effects Plots relative to the mean of the optimal SC
designs is almost horizontal. Therefore, the effect of the
parameters LAM , LCM , and ELTSL on the selected spare
parts SC design can be considered null. On the contrary,
the remaining parameters show a non-negligible impact
on this decision-making process.

Given the ANOVA results, the LAM , LCM , and ELTSL
parameters were not considered for building the DSS,
being excluded from the implementation of the paramet-
ric analysis (Step 3 in Section 3.3). Instead, the remaining
six parameters were associated with Sobol values as indi-
cated in Table 3. Then, such values were randomly joined
together to create a sample of 10,000 realistic spare parts
SC scenarios, and for each scenario the optimal spare
parts SC design was determined through the mathemati-
cal model of Section 3.1. As described in Section 3.4, the
results were then used to feed a decision tree algorithm,
where the values assumed by the input variables in the
different scenarios were used as input attributes, while
the identifier of the optimal spare parts SC designs was
indicated as the final class label.

Aiming to obtain a DSS that is both easy-to-use (that
corresponds to an easy-to-read decision tree) and accu-
rate, we carried out a sensitivity analysis of the total
accuracy A of the decision to determine how to prune
the branches (Figure 5). Based on the results depicted
in Figure 5, we decided to use as DSS the decision tree
with Dmax = 4 (red circle in Figure 5) since it repre-
sents a trade-off between user-friendliness and accuracy.
Figure 6 shows the decision tree with Dmax = 4.

It is interesting noting that not all the six non-
negligible parameters identified from the ANOVA anal-
ysis are used in the decision tree (D̄1customer is missing),
suggesting that some parameters are more important on
the optimal SC design choice than others. This is con-
firmed by Figure 7, that shows the relative importance of
the independent parameters on the choice of the optimal
SCdesign (the relative importance is calculated first com-
bining the changes in the Gini Diversity Index weighted
by the node probability due to splits at each parameter,
then dividing the sum by the number of branch nodes
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Figure 4. Results of the ANOVA (Main Effects Plots) for the optimal SC design.

(Lolli et al. 2022)). From the relative importance, in fact, it
emerges that ucCM and ucAM are the two parameters that
influence the most the choice of the optimal SC design
(the first decision on the decision tree is in fact made
on ucCM), followed by uback and etcentrali. The relative
importance of D̄1customer is instead low, meaning that this
parameter has aweaker impact on the SCdesign decision,
and for this reason, when pruning the tree, D̄1customer
does not appear in Figure 6.

Moreover, the decision tree in Figure 6, shows that the
most recommended spare parts SC designs in the DSS

are those with AM/CM and Degi = 0.25 (spare parts SC
designs 3–4), which are suggested in eleven out of sixteen
leaves of the tree. Given the frequent cost-effectiveness of
such spare parts SC designs, this study demonstrates the
importance of considering hybrid spare parts SC config-
urations in the analysis, not only comparing centralised
and decentralised spare parts SC configurations. In par-
ticular, spare parts SC design 3 with AM andDegi = 0.25
is more cost-effective than the others whenever ucCM
is higher than 1,490 e/unit and the cost of one backo-
rder (uback) is higher than 38,175 e/backorder. In fact,
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Figure 5. Sensitivity analysis on the accuracy (A) of the decision
tree.

in such a case, the unitary cost of purchasing AM spare
parts is similar to or lower than the CM one, so an AM
spare part SC design is usually preferable. In addition, in

such a case, a hybrid spare parts SC configuration with
a low degree of decentralisation (0.25%) reduces back-
orders by benefiting from the risk-pooling effect (the
demand is aggregated in a few DCs) while keeping deliv-
ery times and costs lower than in fully centralised SC
configurations.

Conversely, the leaves of the decision tree in Figure 6
donot include spare parts SCdesigns 5–9, indicating that,
generally, SCs with Degi of 0.50 and 0.75 are not cost-
effective, as well as the total centralisation of AM spare
parts. Moreover, Figure 6 shows the KPIs (a, p, and c,
Section 3.4) of the decision tree withDmax = 4, demon-
strating that some leaves have very high accuracy (a >

90%), which guarantees the reliability of the predictions,
while others have low accuracy (a < 50%), which seems
insufficient to trust theDSS.However, the increase of cost
(c) thatmanagers and practitioners should pay in the case
of a wrong decision is always less than 10% (often even
below 5%) and this means that an incorrect prediction of

Figure 6. Decision tree with a maximum depth of 4 levels (Dmax = 4).

Figure 7. Relative importance of the independent parameters on the decision of the optimal SC design.
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the decision tree has an impact on the company’s econ-
omy which is almost negligible in respect to the one that
the optimal spare parts SC design (correct prediction)
would imply. Hence, the low value of c makes it easier
for managers and practitioners to accept the decisions
suggested by the decision tree with Dmax = 4, even if
the accuracy of the leaves is not very high. Meanwhile,
in the Supplemental Material attached to this study, we
also provide a second decision tree (with Dmax = 15),
which guarantees more accurate predictions (A = 97%),
thus being useful formanagers and practitioners to check
the results of the DSS in Figure 6. We do not provide the
decision tree with 100% accuracy (withDmax = 26), but
rather the tree on fifteen levels because, as reported by
Morgan et al. (2003), a pruning reduces the overfitting
problem, even if a slight reduction in the accuracy of the
decision tree should be accepted.

The tree with Dmax = 15is less easy-to-use than the
one with Dmax = 4, since fifteen concatenated ques-
tions should be answered before reaching a leaf, and
the decision tree is split into several branches, making
it difficult to identify the one relating to some specific
input parameter conditions. For this reason, the Supple-
mental Material shows the decision tree with Dmax =
15 not in graphical form but rather as a Python code.
In this way, managers and practitioners can incorporate
the script into their company systems, thus automating
the process of answering questions and quickly achiev-
ing the optimal spare parts SC design. In the Supple-
mental Material, spare parts SC designs 1, 2, 3, 4, and
10 are the most frequently suggested, confirming the
accuracy of the decision tree with Dmax = 4. Moreover,
the decision tree with Dmax = 15 finds some specific
cases where designs 5, 6, 7, 8, and 9 are economically
profitable.

Overall, aiming to providemanagers and practitioners
with an easy-to-use and reliable DSS, the decision tree
with Dmax = 4 is selected as the main tool to support
the choice process. However, the benefits of the two alter-
natives (both the decision tree with Dmax = 4 and the
one withDmax = 15) can be reaped as follows, using the
decision treewithDmax = 15 onlywhen the reliability of
the tree withDmax = 4 is not sufficient. At first, the DSS
constituted by the decision tree with Dmax = 4 can be
consulted to receive an initial suggestion on the optimal
spare parts SC design. Then, managers and practitioners
can check the accuracy of the leaf in which the SKUman-
aged by their company falls. Hence, two circumstances
can occur:

• If the accuracy of the considered leaf is high, the result
of the easy-to-use decision tree withDmax = 4 can be
trusted.

• Conversely, if the accuracy of the leaf is low, thenman-
agers and practitioners can proceed as follows. First,
they should check the KPI c and evaluate the increase
of cost that they would have to pay in the case of a
wrong decision. If they consider the increase of cost
acceptable (it is often very low), then they can accept
the decision tree prediction even if the accuracy is not
very high. If, instead, they do not consider the increase
of cost acceptable, they can then consult the decision
tree with Dmax = 15 to get a more reliable result and
be sure about the optimal spare parts SC design.

4.1. DSS application

The following case studies show the DSS application
on the data provided by an Italian company which dis-
tributes bus spare parts to fivemain customers. Four DCs
are currently available to stock more than 3,000 types
of SKUs, and warehouse managers are in charge of the
supply of items in each DC, for which they define the
inventory control policies based on their algorithms and
experience. The service level required by the company
to meet customer requests for each spare part is equal
to 95%. The company is an official partner of a well-
known manufacturer of bus components, from whom it
purchases all the stocks in the form of CM finished prod-
ucts (i.e. a single supplier serves all DCs). The company is
recently considering performing a reconfiguration of its
SC design, thus optimising the management of each SKU
and the economic performance. Moreover, the company
is interested in evaluating the possibility of buying AM
spare parts instead of CM ones.

Here two case studies (A and B) are provided to illus-
trate different use cases of the DSS, referring to two dif-
ferent SKUs. For the selected SKUs, the lead-time (LAM)
and unitary cost (ucAM) that the respective items would
have if they were manufactured with AM were estimated
by consulting AM experts from a company skilled in 3D
printing. The results of both case studies are described
below, showing: (i) the current SC design adopted by
the company for the analysed SKU (AS-IS situation); (ii)
the SC design recommended by the DSS; (iii) the SC
design suggested by applying the mathematical model;
(iv) the comparison of the previous information (i-iii)
and a discussion on the results.

4.1.1. Case study A
Spare part A is an anti-particulate filter that is managed
according to a hybrid SC design, where we can consider
Deg = 0.25. Indeed, A-stocks are currently contained in
three out of four DCs, since the remaining DC is small
in size, and it is used to store only a few selected spare
parts. The average demand of a customer for SKU A is 3
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units/year and the cost of transporting one item from the
DCs to a customer was estimated to be etcentral = 225
e/trip (based on the average distance between the DCs
and the customers and the type of vehicle used for the
deliveries, i.e. truck). Any stock-out of the warehouse for
this SKU causes problems of unavailability to the cus-
tomer’s buses, which by law cannot travel without this
filter. Therefore, the cost of a backorder was estimated at
around 35,000e/backorder in accordance with the com-
pany’s staff. The average lead time (LCM) guaranteed by
the supplier for this SKU is 5 weeks, while the unitary
purchase cost of this SKU (uCM) is 1,057e. On the other
hand, LAM and uAM , were estimated to be 1.5 weeks and
1,370 e/unit, respectively.

Applying the decision tree with Dmax = 4 (DSS), the
optimal SC design was identified as the number 4, cor-
responding to a hybrid configuration with Deg = 0.25
and CM spare parts. This choice was also confirmed by
the mathematical model, which suggested as optimal the
SC design characterised by Deg = 0.25, CM spares, and
a total cost of around 37,000 e/year. Therefore, regard-
ing the analysis of A-SKU, both the accuracy of the
DSS (whose results matched those of the mathematical
model), and the company choices (AS-IS situation) were
validated.

4.1.2. Case study B
Spare part B is a specific type of connecting rod, currently
managed according to an SC design of full centralisa-
tion (Deg = 1). Indeed, only one DC stocks inventory
of B-items, serving the demand of all the customers.
For SKU B, the average demand in the DC is equal
to 5 units/year and the external transportation cost is
still assumed equal to 225 e/trip. A stock-out of B-
inventory causes problems of unavailability of the cus-
tomer’s vehicles. Hence, the cost of a backorder was esti-
mated according to the know-how of the company’s staff
equal to uback = 50,500 e/backorder. The average lead
time (LCM) guaranteed by the supplier for this SKU is 4.5
weeks, while the unitary purchase cost of B (uCM) is 594
e. Finally, LAM and uAM were estimated to be 2.5 weeks
and 1,052 e/unit, respectively.

The decision tree with Dmax = 4 suggests as opti-
mal the SC design 1 (that is Deg = 0 and AM spares).
Such a prediction is characterised by a risk percentage
of cost increase due to an incorrect prediction equal to
6%, which is considered too high by the company. There-
fore, to obtain a more accurate result, the decision tree
with Dmax = 15 was also consulted. This decision tree
suggests 4 as the optimal SC design (hybrid centralisa-
tion of CM spare parts and Deg = 0.25). Applying the
mathematical model, the same result was achieved, rec-
ommending the SC design with Deg = 0.25 and CM

items, which has a total cost of 77,942e/year. Hence, the
mathematical model gave the same result as the decision
tree with Dmax = 15 and the DSS was validated. Ulti-
mately, the company’s AS-IS policy was not confirmed by
the results of the case study, showing that the firm should
consider adopting a hybrid SC configuration (instead of a
centralised one), thus allocating B-stocks in three out of
four DCs. However, the analysis revealed that the com-
pany is justified in sourcing CMB-parts because, for such
a SKU, AM technology is less cost-effective than the CM
one.

5. Conclusions

This paper proposes a DSS to support managers and
practitioners in deciding on the optimal spare parts SC
design (i.e. the decision about the optimal spare parts
SC configuration combined with the choice of the man-
ufacturing technology). The developed DSS guides the
decision between five different spare parts SC configu-
rations (centralisation, decentralisation, and three hybrid
configurations) where spare parts could bemanufactured
either in AMor in CM, thus considering a total of ten dif-
ferent spare parts SC designs. To develop such aDSS, four
main steps were followed: (i) a novelmathematicalmodel
was developed for determining and comparing the total
costs of the different spare parts SC designs (including
the cost of purchasing spare parts from external suppli-
ers, cost of placing replenishment orders, holding costs,
outbound transportation costs, and backorder costs); (ii)
the most relevant input parameters for the mathemati-
cal model were determined through the development of
an ANOVA; (iii) an extensive parametric analysis was
performed where 10,000 different spare parts SC scenar-
ios were developed, assigning values to the most relevant
input parameters of the mathematical model (through
the Sobol quasi-random low discrepancy sequence) and,
for each scenario, the optimal spare parts SC design was
identified using the mathematical model mentioned in
(i); (iv) the parametric analysis was used to feed a deci-
sion tree algorithm to obtain the aforementioned DSS.
Based on a sensitivity analysis, the decision tree was
pruned by imposing a maximum depth of four levels to
ensure a trade-off between user-friendliness and accu-
racy of predictions and avoid overfitting. The results of
the decision tree show that some leaves have high accu-
racy, while others not. However, the results prove that
even when the accuracy of the leaves is low, the average
percentage of cost increase that managers and practi-
tioners should pay in the case of incorrect prediction is
always less than 10% (often below 5%). Therefore, the
DSS leads to a robust choice since it selects the opti-
mal spare parts SC design or, in the case of a wrong
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prediction, it always ensures opting for a spare parts SC
design that does not have a negative impact on business
economies (implying a total cost similar to that of the
correct prediction). Meanwhile, as an additional tool for
improving the accuracy of the decision-making process,
this study also provides a supplementary decision tree
with a maximum depth of fifteen levels (Supplemental
Material), which is less easy-to-use than the four-level
tree but has higher accuracy (A = 97%), allowing man-
agers and practitioners to verify the DSS results when
needed.

The DSS developed herein represents the main con-
tribution of this study, since nothing similar has been
done before. In fact, to the best of our knowledge, no
tool supporting managers and practitioners in deciding
the optimal spare part SC design (i.e. spare parts SC
configuration and manufacturing technology) has been
developed so far. A decision tree algorithm is chosen
here to build the DSS since it is renowned as a rapid and
easy-to-use tool (Arena et al. 2022; Sgarbossa et al. 2021)
and it allows the robustness of decisions to be measured
with proper KPIs. Moreover, we have chosen to develop
the DSS by exploiting a machine learning algorithm and
data mining techniques since these are particularly use-
ful when there are many variables impacting the system
(Morgan et al. 2003; Orrù et al. 2020).

The main findings of the present study can be sum-
marised as follows:

• The developed DSS is based on six input parameters
(#customers, D̄1customer, etcentrali, uback, ucAM , and
ucCM), whose strong impact on the selection of the
optimal spare parts SC design is demonstrated by the
ANOVA. In contrast, the parameters LAM , LCM , and
ELTSL were found to be negligible concerning the
decision process investigated.

• The DSS is provided in the form of a decision tree
with a maximum depth of four levels. Given the large
number of parameters (six) impacting the choice of
the optimal spare parts SC design, such a tree has a
total accuracy of 77%. However, it guarantees to iden-
tify the spare parts SC design with the minimum cost
or, in the case of a wrong prediction, a solution that
deviates from the minimum cost by less than 10%
(often less than 5%).Meanwhile, if this four-level deci-
sion tree is not considered sufficiently reliable as a
DSS, the use of such a tree can be combined with
that of a more complex and more reliable one (with
fifteen levels), consulting this second tree only when
the KPIs a (leaf accuracy) and c (cost increase due
to incorrect prediction) of the four-level tree are low
and high, respectively. The fifteen-level decision tree
is provided here in the form of a Python code instead

of a graphical diagram representation so that man-
agers and practitioners can easily implement it in their
company systems, thus automating its consultation.

• The spare parts SC designs most frequently suggested
by the DSS are those with Degi = 0.25 (designs 3 and
4), proving the importance of considering hybrid SC
configurations in the analysis instead of focusing only
on centralised and decentralised spare parts SC con-
figurations. On the contrary, spare parts SC designs
5–9 are profitable only in very specific cases that the
four-level tree does not consider.

It is worth noting that the results achieved are strictly
related to spare parts SCs where the following assump-
tions can be considered valid: the spare parts demand fol-
lows a Poisson distribution, lead times are deterministic,
warehouses have unlimited capacities, DCs are managed
with (s,Q) inventory policy, and lateral transhipments,
environmental impacts, reverse logistics, and spare parts
obsolescence can be neglected. Besides, it is important
to remember that the proposed DSS aims at optimis-
ing the allocation of individual SKUs considering only
the variable costs of two-echelon SCs. However, all the
mathematical formulas used to calculate the total costs
of SC designs are reported in the present study. For this
reason, if managers and practitioners do not consider
the aforementioned simplifying assumptions compatible
with the reality of their company, this problem can be
overcome. In fact, although managers and practition-
ers cannot exploit the results of the DSS, they can be
supported in their decisions by using the mathemat-
ical model herein provided and introduce or remove
proper constraints, thus evaluating the real situation of
their companies. For example, the assumption of decen-
tralised DCs equidistant to the end customers can be
easily removed by using the mathematical formulas of
Section 3.1 and associating each DC with the specific
transport cost calculated based on the exact distance that
separates that DC from its end customer.

5.1. Theoretical and practical contributions

An efficient spare parts SC configuration improves the
performance of a company in terms of economy, sus-
tainability, and service level. Despite the importance of
optimising the SC configuration, up to now, the prob-
lem of choosing between centralisation, decentralisation,
and hybrid configurations has been overlooked in the lit-
erature. Specifically, the lack of quantitative methods to
compare different SC configurations has led many spare
parts dealers to optimise their SCs configurations based
on their experience rather than on structured methods.
Besides, recently, consideration has been given to the
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possibility of producing spare parts via AM, rather than
CM, since AM technology can bemore convenient under
specific conditions. However, the decision on the opti-
mal spare parts manufacturing technology has been hard
to take for managers and practitioners since the existing
literature lacks methods to quantitatively capture the dif-
ferences between CM and AM SCs, providing evidence
on when the adoption of AM spare parts can guarantee
higher performance than the CM ones. In this context,
the theoretical contribution of this paper is to overcome
both these issues by providing a DSS and a mathemat-
ical model to understand under which conditions it is
economically advantageous to have a centralised, decen-
tralised, or hybrid SC configuration, also selecting the
optimal manufacturing technology (AM or CM spare
parts). As a corollary, the present work also lays the foun-
dation for deeper scientific research regarding both the
choice of the most cost-effective spare parts SC con-
figuration (among centralisation, decentralisation, and
hybrid SCs) and the choice between AM and CM spare
parts.

At a practical level, the contribution of this study is
to provide companies with a quick and user-friendly sys-
tem (the DSS) for determining how to design spare parts
SCs. The results of this study will help managers and
practitioners in optimising for each SKU two aspects at
the same time: the allocation of stocks inside company
warehouses (choosing between centralisation, decentral-
isation, and hybrid configuration) and the items’ manu-
facturing technology (AM or CM).

An example of how managers and practitioners can
benefit from the results of this study is the following.
Considering the company’s most critical SKUs, by estab-
lishing their optimal SC design through the proposed
DSS (consulting the 4-depth decision tree once for each
SKU), managers and practitioners can rapidly compare
their actual SC management policy with the ideal situa-
tion recommended by the DSS. In case of discrepancies
between the current policies and the optimal situation
suggested by the DSS, managers and practitioners can
change the management of spare parts within the SC.
Hence, immediate economic benefits with a limited effort
can be obtained, since the company can first check only
its critical spare parts (for example those in class A of an
ABC analysis), and then verify the other SKUs in a sec-
ond moment. Moreover, only four questions need to be
answered to compare the current company situation with
the optimal SC design suggested by the decision tree.

5.2. Future research developments

Future developments of this research could be three-
fold: first, to repeat the study considering companies

which produce spare parts internally, instead of purchas-
ing them from external suppliers. Second, to optimise
SC designs considering multiple SKUs instead of indi-
vidual SKUs, thus introducing fixed costs (i.e. economic
investments in facilities and assets such as AM printers)
in the analysis. Finally, to consider using Random Forest
instead of a decision tree algorithm to interpret the results
of the Sobol-based parametric analysis, thus making the
machine learning trainingmore accurate andminimising
overfitting issues.

In addition to this, some assumptions underlying the
mathematical model could be relaxed or eliminated in
future works. For instance, lead times could be con-
sidered stochastic instead of deterministic, obsolescence
costs of spare parts could be considered as separate
costs instead of being included in the holding cost rate,
and sustainability issues could be included in the analy-
sis. Moreover, the possibility to distribute multiple spare
parts during each transportation could be considered, as
well as the facilities capacity constraints.
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Appendix A

The unitary transportation cost in hybrid or decentralised SC
configurations (etdecentral in Equation (17)) depends on the
unitary transportation cost in centralised SC configurations
(etcentral). Indeed, in centralised configurations, the only DC
is typically in a central location concerning the population of

customers to be served. On the contrary, in hybrid or decen-
tralised configurations, each of the several DCs is positioned
close to its specific customers. Consequently (as aforemen-
tioned in Section 1), hybrid and decentralised SC configu-
rations imply travelling shorter distances to distribute spare
parts, thus leading to lower transportation costs than in cen-
tralised configurations. Therefore, the relationship between the
unitary transportation cost in hybrid or decentralised SC con-
figurations (etdecentral) and the unitary transportation cost in
centralised SC configurations (etcentral) follows Equation A1.

et decentral = et central∗f (Deg) (A1)

To determine the function f (Deg) the following procedure was
followed. Eight case studies related to eight different SCs with
eight different SKUs were selected from the literature (Ivanov
2021; Liu et al. 2014). For each case study, the data on demand,
the number of customers, and geographical location of cus-
tomers were collected and entered into the Anylogistix sim-
ulation software. Based on these data, Green Field Analyses
(GFAs) were conducted to determine how transportation costs
decrease when reducing the degree of centralisation. Specif-
ically, several GFAs were run for each case study, gradually
increasing the number of DCs imposed (starting from one and
covering the whole range of possible SC configurations, from
centralised to decentralised and passing by hybrid SC config-
urations), and the respective transportation costs were then
calculated. For example, in a case study with ten customers, the
number of DCs was varied from one to ten (with increments
of one) and the respective transportation costs were identified.
The results of all case studies were graphed (Figure A1), putting
on the x-axis Deg, while on the y-axis the normalised trans-
portation cost (that is, for each case study, the ratio et

etcentral ).
Finally, interpolating the curve, it was possible to determine

f (Deg) (Equation A2).

f (Deg) = 0.7644∗Deg2 + 0.2009∗Deg + 0.0161 (A2)

Figure A1. Relationship between centralised and decentralised transportation costs.



On the impact of additive manufacturing on the review of spare parts supply 

chains configuration: a decision support system 

Alessandra Cantinia,b*, Mirco Peron b, Filippo De Carloa, and Fabio Sgarbossab 

a Department of Industrial Engineering (DIEF), University of Florence, Viale Morgagni, 40, 50134 

Florence, Italy (alessandra.cantini@unifi.it, filippo.decarlo@unifi.it); 

b Department of Mechanical and Industrial Engineering, Norwegian University of Science and 

Technology, Richard Birkelands vei 2B, Trondheim, 7031, Norway (mirco.peron@ntnu.no; 

fabio.sgarbossa@ntnu.no) 

*Correspondence: alessandra.cantini@unifi.it, Tel.: +39 3495551492 

Abstract: A well-configured spare parts supply chain (SC) improves the performance of 

spare parts retailers. Due to spare parts’ demand volatility, the SC configuration should not 

be optimised only once, but reviewed during time. Particularly, reviewing the stock 

deployment policies associated with spare parts is fundamental. Therefore, structured 

methodologies should be adopted to choose between centralised, decentralised, or hybrid 

stock deployment policies. These methodologies should also determine the optimal spare 

parts manufacturing technology, since producing in-house additive manufactured (AM) 

spare parts (installing 3D printers inside distribution centres) rather than purchasing 

conventionally manufactured (CM) spare parts from suppliers affects the convenience of 

different stock deployment policies. However, literature overlooks structured methodologies 

to optimise stock deployment policies, and it is also unclear when a switchover from CM to 

AM spare parts is beneficial for spare parts retailers. To fill this gap, this paper provides a 

decision support system (DSS) to define the optimal stock deployment policies and 

manufacturing technologies to be adopted for spare parts. The DSS is a user-friendly 

decision tree, which allows evaluating the total costs of SCs characterised by different 

degrees of inventory centralisation, comparing, for the first time, the purchase of CM spare 

parts with the AM in-house production. 

Keywords: supply chain configuration review; spare parts; additive manufacturing; 

decision support system (DSS). 

1. Introduction 

A well-configured spare parts supply chain (SC) reduces costs and enhances the competitiveness of 

spare parts retailers, resulting in a key factor to be pursued (Esmaeili et al., 2021). However, due to 



the intrinsic characteristics of spare parts (e.g., demand unpredictability and high expected service 

level), optimally configuring spare parts SCs is a tough task, where two challenges arise. First, the SC 

total costs should be minimised by reducing spare parts inventories inside distribution centres (DCs), 

while ensuring high service levels, but this is not straightforward since many cost items with opposite 

behaviour have to be balanced (e.g., holding, ordering, transporting, backorder costs, etc.) (Jiang et al., 

2019; Mehrpouya et al., 2022). Second, to face demand volatility, the SC configuration cannot be 

optimised only once (when the business is born), but it should be reviewed during the business lifetime, 

perpetuating the SC optimisation, and maintaining an alignment between logistic activities and 

customer needs (Eldem et al., 2022; Mangiaracina et al., 2015). 

Among the decisions to be made when reviewing a spare parts SC configuration, defining the optimal 

stock deployment policy for each individual Stock Keeping Unit (SKU) is of primary importance 

(Manikas et al., 2019). This activity implies choosing how to allocate each SKU to different DCs, 

opting for centralised, decentralised, or hybrid stock deployment policies (Pour et al., 2016). In 

decentralised stock deployment policies, spare parts are stored in multiple DCs, each serving a local 

customer, thus achieving SC flexibility, responsiveness, and reduced delivery times, but entailing high 

holding and facility costs since multiple DCs are managed (Holmström et al., 2010). Conversely, in 

centralised stock deployment policies, spare parts are stored in a single central DC which serves all 

the customers, thus reducing holding and facility costs (because of the risk-pooling effect), but 

implying longer delivery times, less SC flexibility, and less responsiveness (Frandsen et al., 2020). 

Finally, hybrid stock deployment policies can be selected, opting for intermediate solutions between 

centralised and decentralised stock deployment policies, thus achieving trade-off advantages (Cantini 

et al., 2021). Given the antithetical benefits of different stock deployment policies, choosing the 

optimal one for each SKU has been recognised as both a challenge and a strategic opportunity for 

spare parts retailers (Milewski, 2020; Daskin et al., 2022). 

This challenge has been further complicated by the advent of additive manufacturing (AM) (Ahmed 

et al., 2022; Li et al., 2019). Such an emerging technology, in fact, has highly attracted the interest of 

spare parts retailers due to the possibility of producing spare parts close to the point of use (even inside 

DCs in the so-called “in-house production”). The in-house production, in fact, allows reducing the 

dependency on suppliers, procurement lead times, and inventory levels, disrupting the characteristics 

of SCs with respect to Conventional Manufacturing (CM) (Mashhadi et al., 2015; Waterman and 

Dickens, 1994). Therefore, when reviewing the configuration of existing spare parts SCs, spare parts 

retailers have also to decide on the manufacturing technology to be adopted for each SKU (AM or 

CM) since this choice affects the decisions on stock deployment policies (Ahmed et al., 2022). 

However, this is not straightforward: if on the one hand, spare parts retailers would want to fully exploit 

the benefits of AM by decentralising their stock deployment and producing spare parts directly within 

DCs (in-house production), on the other hand, this would entail huge investments due to the high costs 

of AM machines (a.k.a. 3D printers). Due to the complexity of this task, spare parts retailers require a 



structured methodology that supports them in reviewing what we will refer to as "SC design", namely 

the combination of both manufacturing technologies and stock deployment policies adopted for 

individual SKUs (Trancoso et al., 2018). More in detail, as stated by Basto et al. (2019), the 

aforementioned structured methodology needs to consider all available SKUs, adopting a multi-item 

perspective, and minimising the SC total costs (which includes the costs of producing or purchasing 

spare parts, the inventory holding costs, the ordering costs for replenishing DCs, the transportation 

costs for delivering spare parts, the backorder costs, and the costs of installing 3D printers). Moreover, 

according to the same authors (Basto et al., 2019), the structured methodology has to be quick-to-use 

and user-friendly for two reasons. First, to enable spare parts retailers to regularly review their SC 

design in an easy and fast way, without resulting time-consuming. Second, to allow the adoption of 

the proposed methodology in real companies, where advanced IT systems and highly skilled 

employees may lack. 

Nevertheless, despite its importance, to the best of the authors' knowledge, such a structured 

methodology is currently missing. Indeed, the methodology by Cantini et al. (2022) is the only one 

that provides a quick and user-friendly decision support system (DSS) to help spare parts retailers in 

reviewing the design of existing SCs, but it presents some limitations. For instance, it does not consider 

the possibility to adopt AM in-house production of spare parts, which instead holds the true potential 

of AM technologies. Moreover, it adopts a single-item perspective and not a multi-item one (since the 

manufacturing technology and stock deployment policy of a single SKU per time is reviewed). 

However, this hampers spare parts retailers with many SKUs from understanding whether the reviewed 

SC design is single-sourced (with all CM or all AM spare parts), or dual-sourced with a mix of CM 

and AM spare parts. Finally, it does not consider investment costs, which are not negligible, especially 

considering the high costs of 3D printers. To fill this gap, this work aims at overcoming the limitations 

of Cantini et al. (2022) by developing a structured methodology (specifically a DSS in the form of a 

decision tree) that supports spare parts retailers in reviewing the design of existing SCs. Specifically, 

the proposed DSS considers the AM in-house production of spare parts, adopts a multi-item 

perspective, and includes the investment costs for purchasing 3D printers. Hence, considering multiple 

SKUs at the same time, it will suggest both their optimal stock deployment policies (i.e., centralised, 

decentralised, or hybrid stock deployment policies), and their optimal manufacturing technologies, 

determining whether to produce all SKUs in-house with AM, to purchase all of them as CM finished 

products from suppliers, or to adopt a dual-sourcing strategy, where some SKUs are produced in-house 

with AM and some are purchased as CM from suppliers. 

The reminder of the present paper is as follows. Section 2 presents the relevant background literature 

on the design of SCs with AM spare parts (to deepen and confirm the aforementioned literature gaps). 

Section 3 describes the problem addressed in this work together with its simplifying assumptions. 

Section 4 presents the methodological framework followed to develop the DSS. Section 5 discusses 



the DSS results, also showing its application on a case study. Finally, Section 6 provides some 

conclusions, proposing future work developments. 

2. Literature review 

As mentioned in the introduction, spare parts retailers are lacking a quick and user-friendly structured 

methodology that supports them in reviewing the design of existing SCs, especially when AM is 

involved (Yazdekhasti et al., 2022). Literature, in fact, is lacking in this perspective since research on 

AM in spare parts SCs is still scarce and in its preliminary stage (Xu et al., 2021). According to 

Kunovjanek et al. (2020), most of the existing research on AM is on material science and mechanical 

engineering areas, while studies on how the adoption of AM impacts spare parts SCs and, particularly, 

the optimal stock deployment policies are very limited and mainly qualitative. For instance, Pour et al. 

(2016) have proposed a comparative study to describe the benefits achieved by producing AM spare 

parts in specific cases of centralised and decentralised stock deployment policies, while Holmström et 

al. (2010) have proposed a conceptual approach to introduce AM in spare parts SCs. However, 

according to Khajavi et al. (2014), quantitative analyses are of paramount importance to encourage 

spare parts retailers in reviewing the design of existing SCs, and an economic evaluation of the SC 

total cost is necessary to identify the optimal stock deployment policies and manufacturing 

technologies. In this perspective, some quantitative analyses have been developed to select the most 

cost-effective stock deployment policies of AM spare parts, but they only focus on AM, without 

comparing it with CM (Knofius et al., 2021). For example, Liu et al. (2014) have proposed a SCOR 

model to measure the performance of an aircraft’s spare parts SC in terms of reliability, responsiveness, 

agility, costs, and asset management, but they have focused only on AM. Similarly, also Ghadge et al. 

(2018) and Li et al. (2017) have considered only AM spare parts, adopting system dynamics 

simulations to compare the performance of centralised and decentralised stock deployment policies. 

However, these works propose exploratory studies and simulations, whose results are strongly case 

specific and concern SCs with a very simple structure (Xu et al., 2021). Whereas only a handful of 

quantitative studies can be found that are not case specific and quantitatively assess the impacts of AM 

in terms of SC total costs (Zhang et al., 2017), but again they do not offer a comparison with CM. For 

example, Emelogu et al. (2016) have proposed a stochastic cost model to quantify the cost-

effectiveness of different stock deployment policies considering only AM spare parts, while Ashour 

Pour et al. (2019) have proposed an analytic approach based on Joint Economic Lot Sizing model to 

accomplish a similar task. 

Nevertheless, a comparison between SCs with AM and CM spare parts is needed to determine how to 

review the SC design (Delic and Eyers, 2020), especially considering that most of SCs currently adopt 

CM as manufacturing technology, being interested in evaluating a switchover to AM (Westerweel et 

al., 2018). To the best of the authors’ knowledge, however, there is only one study doing this (Cantini 

et al., 2022). This work provides a DSS based on a machine learning algorithm that supports spare 



parts retailers in reviewing the SC design by optimising, at the same time, the manufacturing 

technology, and the stock deployment policy of a single SKU. However, this work presents some 

limitations. First, it compares SCs where both AM and CM spare parts are purchased as finished 

products from suppliers, without investigating SCs where 3D printers are installed inside DCs (i.e., 

neglecting the AM in-house production). Consequently, no installation costs and capacity constraints 

of 3D printers are considered in the analysis, preventing spare parts retailers from defining the optimal 

number of 3D printers to be installed in each DC. Moreover, a single-item perspective is adopted, 

while instead a multi-item one is needed (Khajavi et al., 2014). Indeed, by focusing on a single SKU 

per time, spare parts retailers with many SKUs lose the overall SC picture, being hampered in 

understanding whether the reviewed SC design (obtained following the DSS suggestions) is single-

sourced (whether with CM or AM spare parts), or dual-sourced with a mix of CM and AM spare parts. 

This work aims to overcome the aforementioned limitations and fill the identified literature gap by 

developing a multi-item DSS that supports spare parts retailers in reviewing the design of existing 

SCs, evaluating the optimal manufacturing technologies and stock deployment policies associated with 

multiple SKUs. More details on the different manufacturing technologies and stock deployment 

policies considered in the DSS are provided in the next section. 

3. Problem description and assumptions 

3.1. Problem description   

As discussed before, spare parts retailers predominantly adopt CM spare parts, purchasing them from 

suppliers, deciding their stock deployment policies, and delivering them from DC(s) to customers 

(Westerweel et al., 2018). However, due to the potentialities of AM, spare parts retailers are currently 

investigating the possibility of producing spare parts via AM, switching the manufacturing technology 

of either all or some SKUs, considering the effects of this change on the optimal stock deployment 

policies, and hence on the design of existing SCs. Based on this, we have decided to focus on the 

following problem. 

We consider the case of a two-echelon SC, as suggested by Tapia-Ubeda et al. (2020), where spare 

parts retailers are currently purchasing multiple CM SKUs from suppliers, storing them into DC(s) 

based on their selected stock deployment policies, and delivering to multiple customers (to meet their 

demand). Concerning the stock deployment policies selected for CM spare parts, we assume that they 

have already been optimised, for instance by applying the methodology by Cantini et al. (2022). As 

we will better describe later (Section 4.1.1), this assumption does not represent a limitation. Given this 

starting condition (i.e., optimised stock deployment policies of CM spare parts), following Cantini et 

al. (2022), this means that spare parts can be managed according to five different stock deployment 

policies. These are distinguished based on the parameter “degree of centralisation” (𝐷𝑒𝑔, Equation 1), 

which depends on the number of DCs (#𝐷𝐶) set to fulfil the demand of customers (whose number is 



expressed as 𝑁). Specifically, these five different stock deployment policies range from centralised 

(𝐷𝑒𝑔 = 1) to decentralised (𝐷𝑒𝑔 = 0), crossing through three hybrid stock deployment policies (𝐷𝑒𝑔 

equal to 0.25, 0.50, or 0.75), as depicted in Figure 1 considering an example company which serves 

six customers. 

𝐷𝑒𝑔 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 = {
1   𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑠𝑒𝑑 𝑆𝐶 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛

1 −
#𝐷𝐶

N
                              𝑒𝑙𝑠𝑒

  (1) 

 

Figure 1. Investigated stock deployment policies in the example of a two-echelon SC with six customers. 𝐷𝑒𝑔 = 0 means 

decentralisation, 𝐷𝑒𝑔 = 1 is centralisation, while the values in between are hybrid stock deployment policies. 

After having optimised the stock deployment policies of CM SKUs, spare parts retailers are able to 

divide them into different groups (which we will refer to as "sub-sets") based on their optimal 𝐷𝑒𝑔 

(0, 0.25, 0.50, 0.75, 1). Therefore, each sub-set contains all CM SKUs characterised by the same 𝐷𝑒𝑔, 

as shown in Figure 2 (which considers the example of a company with five SKUs associated with three 

stock deployment policies). In this context, spare parts retailers are considered to perform the SC 

design review. Specifically, dividing SKUs into sub-sets, they are allowed to compare the sole optimal 

stock deployment policy associated with CM SKUs (characterising each sub-set) with different 

alternatives of stock deployment policies for AM SKUs. In this way, when reviewing the SC design, 

evaluation efforts are reduced since un-optimal stock deployment policies for CM SKUs are not 

considered. We are aware of the simplifications behind this choice (i.e., the SC design is not optimised 

by considering all SKUs together, but dividing them into sub-sets and looking for the optimum within 

each sub-set). However, we consider this choice acceptable for the following reason. Other authors 

(Daskin et al., 2002; Patriarca et al. 2016) have proposed exact optimisation models to optimise stock 

deployment policies in two-echelon SCs (focusing only on CM spare parts, without considering AM). 

However, the proposed exact optimisation models require Lagrangian relaxations, branch-and-bound 

algorithms, and heuristic forcing rules to be solved, leading to solutions which are local optimums (not 

necessarily absolute ones). Therefore, having to accept a local optimum solution in any case, we 

decided to simplify the problem from the very beginning, taking advantage of this simplification to 

achieve a quick and user-friendly SC design review. 



 

Figure 2. Example of how to split the initial CM SKUs into sub-sets. 

At the time of the SC design review, we consider that spare parts retailers are interested in investigating 

the introduction of AM technologies in SCs. This means that, when reviewing the SC design, for each 

sub-set, spare parts retailers are considering substituting the purchase of CM spare parts from suppliers 

with the AM in-house production, as depicted in Figure 3. According to Figure 3, CM SKUs are 

considered to be purchased by suppliers, stored inside DC(s), and delivered to customers. Instead, after 

purchasing AM raw material and storing it inside DC(s), AM SKUs are considered produced via 3D 

printers (which are installed inside DC(s)), kept in stock, and delivered to customers. Customers may 

also be subsequent retailers, (Fathi et al., 2021). 

 

Figure 3. Control volumes (within dashed rectangles) considered according to the selected manufacturing technology. SKUs 

can be purchased as CM by suppliers (up) or produced in-house with AM (down). 

In this context, per each sub-set, three options are available concerning the spare parts manufacturing 

technology, among which spare parts retailers have to choose: (i) to keep on purchasing from suppliers 

all SKUs as CM spare parts (to which we will refer as “single-sourcing CM”), (ii) to replace the 

purchase of CM spare parts with the AM in-house production (to which we will refer as “single-



sourcing AM”), and (iii) to produce in-house with AM some SKUs, while purchasing in CM the others 

(to which we will refer as “dual-sourcing CM/AM”). 

 The choice about the spare parts manufacturing technologies is highly interconnected with the other 

main choice that spare parts retailers have to make when reviewing the SC design: the stock 

deployment policies (Li et al., 2017). In this regard, we consider that spare parts retailers can choose 

between the five stock deployment policies already described in Figure 1. This means that, for each 

sub-set of SKUs, spare parts retailers have now to choose between eleven SC designs, which result 

from the combination of five different stock deployment policies and three manufacturing 

technologies. The eleven SC designs are summarised in Figure 4 considering, as an example, the sub-

set of CM SKUs with 𝐷𝑒𝑔 = 0. Figure 4 can easily be extended to other sub-sets by considering 

different values of 𝐷𝑒𝑔 for CM SKUs. 

 

Figure 4. SC designs investigated by considering different manufacturing technologies and stock deployment policies. This 

figure refers to sub-set of SKUs with Deg = 0. However, it can be extended to other sub-sets moving to the right the SC design 

number zero. 

In this work, we will focus on developing a structured methodology to support spare parts retailers in 

addressing the problem described above. Specifically, we will develop a DSS (in the form of a decision 

tree) that will guide spare parts retailers in defining, in a quick and user-friendly way, the most cost-

effective SC design to adopt (among those described in Figure 4). The DSS has been developed 

following a three-steps methodological framework, which is described in Section 4. However, before 

describing the methodological framework, the assumptions on which it relies are listed in the following 

sub-section. 



3.2. Assumptions 

The simplifying assumptions underlying this study are described below, reporting the scientific 

contributions on which they are based. These assumptions are considered valid since this study aims 

to support spare parts retailers in making strategic (not tactical or operational) decisions on the optimal 

SC design. 

1. No capacity constraints are considered for supplier’s warehouse and DCs (Tapia-Ubeda et al., 

2020). 

2. Customer demand for spare parts is assumed stochastic with a Poisson distribution, while the 

supplier procurement lead time is assumed deterministic and dependant only on the product (SKU 

or AM raw material), not on the geographical location of DCs (Lolli et al., 2022). 

3. All DCs in an SC design are considered characterised by the same average transportation costs 

(Cantini et al., 2022). Moreover, transportation costs are calculated by assuming that only one 

spare part is distributed in each trip since a Poisson demand is considered, which is known as law 

of rare events. 

4. The period considered to develop this analysis is one year (Daskin et al., 2002). 

5. A continuous (𝑅𝑂𝑃,𝑄) inventory policy is used to manage stocks of spare parts (Fathi et al., 2021; 

Ivanov, 2021; Sapna Isotupa, 2006) and AM raw materials (Song and Zhang, 2020), where 𝑅𝑂𝑃 

is the reorder point and 𝑄 is the optimal order quantity. 

6. Both the purchase of CM spare parts and the production of AM ones are performed according to 

a make-to-stock policy (Jiang et al., 2017; Kumbhar and Mulay, 2018). Conversely, the on-

demand production of AM spare parts is precluded, being theoretically advantageous but not 

applicable in real companies due to current AM technological limits (high production times) (Liu 

and Shin, 2019; Sgarbossa et al., 2021). 

7. No sustainability aspects and risks affecting different SC designs are considered, excluding 

reverse logistics, environmental impacts of SC designs, lateral transhipments, and risks connected 

to the protection of intellectual property rights and liability of CAD projects (Zijm et al., 2019). 

8. All AM SKUs are considered made of the same AM raw material (Mehrpouya et al., 2022; 

Priarone et al., 2021). 

9. SKUs are supposed producible with both AM and CM (Chaudhuri et al., 2021). 

10. Finally, since we are focusing on reviewing the design of existing SCs, fixed investment costs for 

purchasing/renting facilities are not considered since we assume that the DCs are already owned 

by spare parts retailers. Therefore, we only consider facilities variable costs. 

4. Methodological framework 

Considering spare parts retailers who manage CM SKUs as described before (having already optimised 

their stock deployment policies and having divided SKUs into sub-sets), in this work, for each sub-

set, we propose a DSS to support spare parts retailers in reviewing the SC design. Specifically, to 



develop the DSS (one for each sub-set) a methodological framework composed of three steps was 

followed. In Step i, we developed a heuristic model that was used to determine the most cost-effective 

SC design among the eleven alternatives in Figure 4, considering a multi-item perspective, which 

means reviewing, at the same time, the SC design of all SKUs in the sub-set. In Step ii, we carried out 

a parametric analysis to investigate the use of the heuristic model on a sample of 1,000,000 realistic 

scenarios (i.e., spare parts SCs with different numbers of customers and SKUs, where each SKU is 

characterised by different demand, purchasing costs, transportation costs, backorder costs, required 

service level, etc.). Finally, in Step iii, the DSS was obtained by leveraging a machine learning 

algorithm (specifically a decision tree algorithm) fed with the results of the parametric analysis. Each 

step is described below in a specific section. 

4.1. Step i – Heuristic model 

In Step i, a heuristic model was developed to review the design of existing SCs, selecting the most 

cost-effective alternative among those reported in Figure 4, and adopting a multi-item perspective. The 

heuristic model depends on the indexes, input parameters, and variables listed in Table 1. Moreover, 

it follows a similar logic of the relax and fix optimisation method by Friske et al. (2022), where the 

general problem is split into small sub-problems, nested iterative loops are built, and a specific 

subproblem is solved to optimality in each iterative loop. Specifically, after a preliminary 

initialisation, the proposed heuristic model is based on three nested iterative loops: an inner loop, an 

intermediate loop, and an outer loop. The initialisation involves setting adequate starting conditions, 

which implies ensuring that the initial stock deployment policies of CM spare parts are optimised, 

splitting the CM SKUs into sub-sets, and focusing on a specific sub-set, where proper initial values 

are assigned to some parameters to begin the loop iterations. Subsequently, for each SKU in the 

considered sub-set, the inner loop selects, the optimal manufacturing technology (CM or AM). Next, 

the intermediate loop determines the number of 3D printers required to meet the production of AM 

spare parts. Finally, the outer loop suggests the optimal stock deployment policies, completing the SC 

design review. 

Table 1. Indexes, input parameters, and variables of the heuristic model. 

Index Description Unit of measure 

𝒊 
Identifier of the considered SC design. 𝑖 assumes integer values 

between 0 and 10 according to Figure 4 
- 

𝒅 
Considered DC. Given the analysed type of SC design (CM, AM, or 

CM/AM), 𝑑 assumes integer values between 1 and #𝐷𝐶𝐶𝑀 or #𝐷𝐶𝐴𝑀 
- 

𝒋 Manufacturing technology of each SKU. 𝑗 can be CM or AM - 

𝒌 Considered SKU. 𝑘 assumes integer values between 1 and 𝐾 - 

Input parameter Description Unit of measure 

𝑲 Total number of SKUs in the considered sub-set - 

𝑵 Number of customers served by the spare part retailer - 

�̅�𝟏𝒄𝒌  Average annual demand emitted by one customer for each SKU  units/time 

𝑫𝒆𝒈𝑪𝑴 
Degree of centralisation of CM spare parts. It can assume specific 

values according to Figure 1 
- 



𝑫𝒆𝒈𝑨𝑴 
Degree of centralisation of AM spare parts. It can take specific values 

according to Figure 1 
- 

𝒕 𝒄𝒆𝒏𝒕𝒓𝒂𝒍 
Unitary transportation cost to deliver an SKU from the central DC 

(𝐷𝑒𝑔𝐶𝑀 = 1 or 𝐷𝑒𝑔𝐴𝑀 = 1) to a customer 
€/transportation 

𝒄𝒃𝒌  Unitary backorder cost of each SKU €/backorder 

𝑳𝒌 Procurement lead time required by supplier to deliver a CM SKU time 

𝒖𝒄𝒌 

Unitary purchase cost of a CM SKU. It includes all costs that the 

supplier incurs (e.g., production, quality tests, equipment, etc.) together 

with the desired profit margins (Pour et al., 2016) 

€/unit 

𝒐𝒄 

Unitary cost of a supply order. It is given by the product between the 

average time required to issue one supply order and the hourly labour 

cost in DCs 

€/order 

𝒉%𝒅 
Holding cost rate for keeping SKUs in a DC during the period of 

analysis. It includes variable costs of facilities, and risks connected to 

opportunity costs and stocks obsolescence (Khajavi et al., 2014) 

€/time/unit 

𝒏𝒌 Constant which, multiplied by the purchase cost of a CM SKU, returns 

the production cost of an equivalent AM SKU (Knofius et al., 2021) 

- 

𝑳𝒓𝒂𝒘 Procurement lead time required by supplier to deliver AM raw material time 

𝑺𝑳 

Desired spare parts service level. It is the same for all SKUs, being the 

ratio between the number of demands answered on time for each SKU 

and the total number of demands answered for that SKU (Ivanov, 2021) 

- 

𝑺𝑳𝒓𝒂𝒘 Desired service level for AM raw material - 

𝒅𝒆𝒏𝒓𝒂𝒘 Density of AM raw material Kg/m3 

𝒖𝒏𝒊𝒕𝒓𝒂𝒘  Unitary pack size according to which AM raw material is purchased 

(e.g., a metal can containing 20 kg of powder (Sandvik AB, 2022)) 

unit raw 

𝑪𝒂𝒑𝟑𝑫𝑷 

Average annual production capacity of a 3D printer. It is expressed in 

terms of production hours, being related to the opening time of DCs 

and the working hours of manpower (Basto et al., 2019) 

time 

𝑳𝒆𝒂𝒔 
Annual leasing cost of a 3D printer. It is supposed to be bought on 

leasing to allow refurbishments when AM technology advances 
€/time 

Variable Description Unit of measure 

𝑪𝒕𝒐𝒕𝒊  Annual cost of a SC design €/time 

𝑪𝑪𝑴𝒅,𝒌 Annual cost of a CM SKU in a DC €/time 

𝑪𝑨𝑴𝒅,𝒌 Annual cost of an AM SKU in a DC €/time 

𝑪𝑷𝒅,𝒌 Annual cost of purchasing a CM SKU (from the supplier), to replenish 

a DC 

€/time 

𝑪𝑶𝒅,𝒌 Annual ordering cost for supplying a CM SKU in a DC €/time 

𝑪𝑯𝒅,𝒌 Annual holding cost for keeping stocks of a SKU in a DC €/time 

𝑪𝑻𝒅,𝒌  Annual transportation cost for delivering a SKU to customers €/time 

𝑪𝑩𝒅,𝒌 Annual backorder cost of a SKU in a DC €/time 

𝑪𝑷𝒓𝒂𝒘𝒅,𝒌  Annual cost for purchasing the AM raw material needed to produce a 

specific AM SKU in a DC 

€/time 

𝑪𝑯𝒓𝒂𝒘𝒅,𝒌  Annual holding cost for keeping in a DC the specific quantity of AM 

raw material required to produce a SKU 

€/time 

𝑪𝑶𝒓𝒂𝒘𝒅,𝒌 Annual ordering cost for supplying the AM raw material which is 

required to produce a certain SKU in a DC 

€/time 

𝑪𝑷𝒓𝒐𝒅𝒅,𝒌 Annual AM production cost in a DC. It includes costs for creating CAD 

projects, setting up 3D printers, keeping manpower, printing spare 

parts, and performing quality tests 

€/time 

#𝟑𝑫𝑷𝒅 Number of 3D printers to be installed in each DC - 

𝑪𝒑𝒓𝒊𝒏𝒕𝒅 Annual leasing cost of 3D printer(s) installed in a DC €/time 

𝑪𝟑𝑫𝑷𝒅,𝒌 Annual leasing cost of 3D printer(s) installed in a DC, where the cost 

has been allocated to each individual SKU 

€/time 

𝑭𝒅 Number of SKUs for which AM production is allowed at the current 

loop iteration. 𝐹 can assume integer values between 0 and 𝐾, where in 

the first loop iteration 𝐹 = 𝐾 (AM allowed for all SKUs), while in the 

next loop iterations 𝐹 is reduced if, for some SKUs, AM appears not 

economically convenient in respect with CM 

- 

𝑫𝒅,𝒌̅̅ ̅̅ ̅̅  Average annual demand of the considered SKU in each DC units 

User
Rectangle


User
Typewriter
time-1



#𝑫𝑪𝑪𝐌 Number of DCs in which SKUs should be stored if they were 

purchased as CM spare parts 

- 

#𝑫𝑪𝑨𝐌 Number of DCs in which SKUs should be stored if they were produced 

as AM spare parts 

- 

𝒐𝒄 Unitary cost of issuing one supply order €/order 

#𝒐𝒓𝒅𝒅,𝒌 Average number of supply orders for each SKU in each DC - 

𝑸𝒅,𝒌 Optimal order quantity to replenish SKUs in a DC units 

𝑺𝑺𝒅,𝒌 Safety stocks of each SKU in a DC. It corresponds to the smallest value 

that compensates demand fluctuations during the procurement lead 

time and ensures the desired service level 

units 

𝒉𝒅,𝒌 Unitary holding cost for keeping stocks of spare parts in a DC €/time 

𝑫𝒍𝒕𝒅,𝒌̅̅ ̅̅ ̅̅ ̅̅  Demand for each SKU received during the procurement lead time units 

𝒛𝒓𝒂𝒘 

If the demand for AM raw materials follows a normal distribution, 

𝑆𝐿𝑟𝑎𝑤 is associated with the service factor (𝑧𝑟𝑎𝑤) of the corresponding 

standardised normal distribution 

- 

𝑰𝒅,𝒌 Average inventory of each SKU in a DC units 

𝒕𝒅 Unitary transportation cost in a DC €/transportation 

𝒕 𝒅𝒆𝒄𝒆𝒏𝒕𝒓𝒂𝒍𝒅 
Unitary transportation cost to deliver an SKU from a decentralised DC 

(𝐷𝑒𝑔𝐶𝑀 > 1 or 𝐷𝑒𝑔𝐴𝑀 > 1) to a customer 
€/transportation 

#𝒃𝒂𝒄𝒌𝒐𝒓𝒅𝒆𝒓𝒔𝒅,𝒌 Average number of backorders of a SKU in a DC - 

𝒖𝒄𝒓𝒂𝒘 Unitary purchase cost of AM raw material required to produce each 

specific SKU 

€/unit raw 

𝒒𝒓𝒂𝒘𝒌̅̅ ̅̅ ̅̅ ̅̅  Average quantity of AM raw material required to produce an AM SKU units raw 

𝒗𝒐𝒍𝒌 Volume of each SKU m3 

𝒑𝒓𝒐𝒅𝒌 Unitary AM production cost of a SKU, which is an AM spare part €/unit 

#𝒐𝒓𝒅𝒓𝒂𝒘𝒅,𝒌 Number of supply orders issued in a DC to replenish the specific 

quantity of AM raw material required to produce a SKU 

orders 

#𝒐𝒓𝒅𝑻𝑶𝑻 𝒓𝒂𝒘𝒅  Total number of supply orders issued for supplying AM raw material 

(required to produce all AM SKUs) in a DC 

orders 

𝑫𝒓𝒂𝒘𝒅
̅̅ ̅̅ ̅̅ ̅̅  Average amount of AM raw material required to produce all SKUs in 

a DC 

units raw 

𝑸𝒓𝒂𝒘𝒅 Optimal order quantity adopted to replenish AM raw material in a DC units raw 

𝒉𝒓𝒂𝒘𝒅,𝒌 Unitary holding cost for keeping stocks of AM raw material in a DC €/time 

𝑰𝒓𝒂𝒘𝒅,𝒌 Average inventory of AM raw material determined by an AM SKU in 

a DC 

units raw 

𝑰𝑻𝑶𝑻𝒓𝒂𝒘𝒅 Average inventory of AM raw material determined by all AM SKUs in 

a DC 

units raw 

𝑺𝑺𝒓𝒂𝒘𝒅 Safety stocks of AM raw material required to compensate demand 

fluctuations and ensure the desired service level in a DC 

units raw 

𝑫𝒍𝒕𝒓𝒂𝒘𝒅
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ Demand for AM raw material received during the procurement lead 

time 

units raw 

𝒑. 𝒕𝒊𝒎𝒆𝒌 Number of production hours that 3D printers work to produce one unit 

of each AM SKU 

time/unit 

𝒕𝒊𝒎𝒆𝒕𝒐𝒕𝒅 Total number of production hours required to produce all AM SKUs time 

�̅�𝟏𝒄
̅̅ ̅̅ ̅ Arithmetic mean of the values assumed by �̅�1𝑐𝑘 for all SKUs units/time 

𝐜𝐛̅̅̅ Arithmetic mean of the values assumed by 𝑐𝑏𝑘  for all SKUs €/backorder 

�̅� Arithmetic mean of the values assumed by 𝐿𝑘  for all SKUs time 

�̅� Arithmetic mean of the values assumed by 𝑛𝑘 for all SKUs  - 

𝒖𝒄̅̅̅̅  Arithmetic mean of the values assumed by 𝑢𝑐𝑘 for all SKUs  €/unit 

Figure 5 schematically represents the heuristic model, whose nested iterative loops (i.e., inner loop, 

intermediate loop, and outer loop) will be described in detail in the next sub-sections. 



 

Figure 5. Schematic representation of the heuristic model. 

4.1.1. Initialisation 

To initialise the heuristic model, as already said, we consider spare parts retailers who have optimised 

stock deployment policies associated with CM spare parts, then dividing SKUs into sub-sets. However, 

if spare parts retailers have not yet accomplished this task, this is not a limitation since they can do so 

by consulting Appendix A. In fact, to enable any spare parts retailer achieving the required starting 

conditions, we applied the methodology by Cantini et al. (2022) focusing on CM spare parts (i.e., 

excluding AM variables). Hence, we derived Figure A.1, which guides the optimisation procedure, 



indicating under which conditions (combinations of input parameters listed in Table 1) each CM SKU 

has to be associated with different stock deployment policies. 

Once optimised the stock deployment policies of CM spare parts, SKUs can be split into sub-sets, 

grouping together the SKUs associated with the same degree of centralisation 𝐷𝑒𝑔 (from now on called 

𝐷𝑒𝑔𝐶𝑀, according to Table 1). At this point, a specific sub-set is considered, where the starting SC 

design of the related CM SKUs is known, and their common degree of centralisation (𝐷𝑒𝑔𝐶𝑀) is fixed. 

Based on this, using Equation 2, the number of DCs in which SKUs should be stored if they were 

purchased as CM spare parts (#𝐷𝐶𝐶𝑀) is determined. 

#𝐷𝐶𝐶𝑀 = {
[(1 − 𝐷𝑒𝑔𝐶𝑀) ∗ 𝑁]

+ 𝑖𝑓 𝐷𝑒𝑔𝐶𝑀 < 1
1                                   𝑖𝑓𝐷𝑒𝑔𝐶𝑀 = 1

  (2) 

Next, to compare the purchase of CM spare parts with the AM production, a certain value of 𝐷𝑒𝑔𝐴𝑀 

is chosen and fixed (selecting one of the values allowed in Figure 1). Then, using Equation 3, the 

number of DCs (#𝐷𝐶𝐴𝑀) in which SKUs should be stored if they were produced in-house as AM spare 

parts is calculated. 

#𝐷𝐶𝐴M = {
[(1 − 𝐷𝑒𝑔𝐴𝑀) ∗ 𝑁]

+ 𝑖𝑓 𝐷𝑒𝑔𝐴𝑀 < 1
1                                      𝑖𝑓 𝐷𝑒𝑔𝐴𝑀 = 1 

   (3) 

At this point, the focus is put on a single DC, where, at the first inner loop iteration, a single 3D printer 

is considered installed (#3𝐷𝑃𝑑 = 1), and AM production is allowed for all SKUs (𝐹𝑑 = 𝐾). 

4.1.2. Inner loop 

In the inner loop, for each SKU falling into the considered sub-set, the optimal manufacturing 

technology (CM or AM) is selected. Specifically, in the first iteration of the inner loop, for each SKU 

we calculate and compare the total costs associated with the CM purchase in the considered DC 

(𝐶𝐶𝑀𝑑,𝑘) and the AM production (𝐶𝐴𝑀𝑑,𝑘), using Equations 4 and 5, respectively. 

𝐶𝐶𝑀𝑑,𝑘 = (𝐶𝑃𝑑,𝑘 + 𝐶𝑂𝑑,𝑘 + 𝐶𝐻𝑑,𝑘 + 𝐶𝑇𝑑,𝑘 + 𝐶𝐵𝑑,𝑘)   (4) 

𝐶𝐴𝑀𝑑,𝑘 = (𝐶𝑃𝑟𝑎𝑤𝑑,𝑘 + 𝐶𝑂𝑟𝑎𝑤𝑑,𝑘 + 𝐶𝐻𝑟𝑎𝑤𝑑,𝑘 + 𝐶𝑃𝑟𝑜𝑑𝑑,𝑘 + 𝐶𝐻𝑑,𝑘 + 𝐶𝑇𝑑,𝑘 + 𝐶𝐵𝑑,𝑘 + 𝐶3𝐷𝑃𝑑,𝑘) 

  (5) 

More in detail, considering a SKU which is purchased by a supplier as a CM finished product, its total 

cost in a DC (𝐶𝐶𝑀𝑑,𝑘) is calculated by determining the cost items reported in Equation 4, where 𝐷𝑒𝑔𝐶𝑀 

(characterising the investigated sub-set) is considered. Specifically, Equation 6 defines the total cost 

for purchasing CM spare parts, which depends on the customer demand for such a SKU (Equation 7).  

Equations 8-9 determine the total ordering cost to supply stocks of the considered SKU in the DC, 



which, in turn, depends on the (𝑅𝑂𝑃,𝑄) supply policy (Equation 10) and the unitary holding cost of 

DCs (Equation 11). Equation 12 calculates the total holding cost for the considered SKU, which is 

related to the average inventory in each DC (Equation 13) and the safety stocks (Equations 14-15). 

Equation 16 defines the total transportation cost for delivering the considered SKU, which varies based 

on 𝐷𝑒𝑔𝐶𝑀, as suggested by Cantini et al. (2022) in Equations 17-18. Finally, Equations 19-20 

determine the total backorder cost related to the considered SKU. 

𝐶𝑃𝑑,𝑘 = 𝑢𝑐𝑘 ∗ 𝐷𝑑,𝑘
̅̅ ̅̅ ̅̅     (6) 

𝐷𝑑,𝑘̅̅ ̅̅ ̅̅ = (
�̅�1𝑐𝑘∗𝑁

#𝐷𝐶𝐶M
)   (7) 

𝐶𝑂𝑑,𝑘 = (𝑜𝑐 ∗ #𝑜𝑟𝑑𝑑,𝑘)    (8) 

#𝑜𝑟𝑑𝑑,𝑘 =
𝐷𝑑,𝑘̅̅ ̅̅ ̅̅

𝑄𝑑,𝑘
   (9) 

𝑄𝑑,𝑘 = √
2∗𝐷𝑑,𝑘̅̅ ̅̅ ̅̅ ∗𝑜𝑐

ℎ𝑑,𝑘
    (10) 

ℎ𝑑,𝑘 = 𝑢𝑐𝑘 ∗ ℎ%𝑑
    (11) 

𝐶𝐻𝑑,𝑘 = ℎ𝑑,𝑘 ∗ 𝐼𝑑,𝑘     (12) 

𝐼𝑑,𝑘 =
𝑄𝑑,𝑘

2
+ 𝑆𝑆𝑑,𝑘    (13) 

1 − ∑ [
(𝐷𝑙𝑡𝑑,𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑛

𝑛!
∗ 𝑒−𝐷𝑙𝑡𝑑,𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅
]

𝑆𝑆𝑑,𝑘−1

𝑛=0 ≥ (1 − 𝑆𝐿)   (14) 

𝐷𝑙𝑡𝑑,𝑘̅̅ ̅̅ ̅̅ ̅̅ = 𝐷𝑑,𝑘̅̅ ̅̅ ̅̅ ∗ 𝐿𝑘    (15) 

𝐶𝑇𝑑,𝑘  = (𝑡𝑑 ∗ 𝐷𝑑,𝑘
̅̅ ̅̅ ̅̅ )   (16) 

𝑡𝑑 = {
  𝑡 𝑑𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑑    𝑖𝑓 𝐷𝑒𝑔𝐶𝑀 < 1
𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙           𝑖𝑓 𝐷𝑒𝑔𝐶𝑀 = 1

    (17) 

𝑡 𝑑𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑑 =  𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 ∗ (0.7644 ∗ 𝐷𝑒𝑔CM
2 + 0.2009 ∗ 𝐷𝑒𝑔𝐶𝑀 + 0.0161)   (18) 

𝐶𝐵𝑑,𝑘 = (𝑐𝑏𝑘 ∗ #𝑏𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠𝑑,𝑘)   (19) 

#𝑏𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠𝑑,𝑘 = [(1 − 𝑆𝐿) ∗ 𝐷𝑑,𝑘̅̅ ̅̅ ̅̅ ]
+

   (20) 



Instead, concerning an individual AM SKU, the cost items composing its total cost in a single DC 

(𝐶𝐴𝑀𝑑,𝑘, Equation 5) are calculated based on the fixed value of 𝐷𝑒𝑔𝐴𝑀 selected above. Specifically, 

Equation 21 defines the total cost for purchasing stocks of AM raw material, which is required to 

produce the specific SKU under analysis. Equation 21, in turn, depends on the customer demand for 

the SKU (Equation 22, which is like Equation 7, but for AM spare parts), the unitary purchase cost of 

AM raw material (Equation 23, suggested by Choudhury and Hashmi (2020) and Li et al. (2017)), and 

the average quantity of AM raw material needed to produce the considered SKU (Equation 24), which 

has the volume and the production cost determined by Equations 25 and 26, respectively, according to 

Sgarbossa (2021). Then, Equation 27 determines the total ordering cost for supplying the quantity of 

AM raw material which is required to produce the SKU under analysis. Equation 27, in turn, depends 

on the unitary cost of issuing one supply order, and the number of supply orders of AM raw material 

which are required to produce the considered SKU (Equation 28). Indeed, according to Song and 

Zhang (2020), the total raw material ordering cost (incurred to produce all AM SKUs in a DC) is 

assumed allocable to each SKU through weighted averages based on their respective raw material 

demand (Equations 29-30). It is worth mentioning that, as shown in Equation 29, the total ordering 

cost of AM raw material is calculated based on the quantities of AM raw material required to produce 

the only SKUs allowed to be produced with AM at the current loop iteration (𝑓 = 1,2, … , 𝐹𝑑). 

Moreover, the total ordering cost of AM raw material depends on the (𝑅𝑂𝑃, 𝑄) supply policy adopted 

for AM raw material (Equation 31, which is like Equation 10, but considering AM raw materials 

instead of CM finished products) and its unitary holding cost (Equation 32). Then, Equation 33 

calculates the total holding cost for keeping stocks of AM raw materials, again allocating such a cost 

to each specific SKU (Equation 34) and considering the average inventory of AM raw material 

(Equation 35) and the safety stocks (Equations 36-37). Since the demand for AM raw materials does 

not necessarily follows a Poisson distribution, according to Syntetos and Boylan (2006) and the Italian 

National Standard (Italian Technical Commission for Maintenance, 2017), in Equations 36-37, safety 

stocks are calculated assuming a normal demand distribution when the total demand for AM raw 

materials received in the procurement lead time is higher than 15 units (𝐷𝑙𝑡𝑟𝑎𝑤𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≥ 15), while being 

a Poisson distribution in the opposite case (𝐷𝑙𝑡𝑟𝑎𝑤𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ < 15). Next, Equation 38 defines the total cost 

for producing the considered AM SKU. Equations 12-13 are leveraged to define the total holding cost, 

like for CM SKU, but focusing on AM spare parts (using 𝐷𝑒𝑔𝐴𝑀 instead of 𝐷𝑒𝑔𝐶𝑀). Equations 16, 39 

and 40 determine the total transportation cost for delivering the considered SKU, which is calculated 

like in Equations 16-18, but using 𝐷𝑒𝑔𝐴𝑀. Equations 19-20 are used to determine the total backorder 

cost related to the considered SKU, calculating such cost like for CM SKU, but using 𝐷𝑒𝑔𝐴𝑀. Finally, 

Equations 41-42 define the total leasing cost of 3D printer(s) installed in the DC, allocating such a cost 

to the individual SKU through a weighted average based on the number of production hours that 3D 

printers work to produce the considered SKU (Equation 43, (Sgarbossa et al., 2021)) compared to the 

total number of production hours required to produce all AM SKUs (Equation 44). 



𝐶𝑃𝑟𝑎𝑤𝑑,𝑘 = 𝑢𝑐𝑟𝑎𝑤𝑘 ∗ 𝑞𝑟𝑎𝑤𝑘̅̅ ̅̅ ̅̅ ̅̅ ∗ 𝐷𝑑,𝑘̅̅ ̅̅ ̅̅    (21) 

𝐷𝑑,𝑘̅̅ ̅̅ ̅̅ = (
�̅�1𝑐𝑘∗𝑁

#𝐷𝐶𝐴M
)   (22) 

𝑢𝑐𝑟𝑎𝑤 = (∑ 𝑣𝑜𝑙𝑘
𝐾
𝑘=1 ∗ 103) ∗ 20   (23) 

𝑞𝑟𝑎𝑤𝑘̅̅ ̅̅ ̅̅ ̅̅ =
𝑣𝑜𝑙𝑘 ∗ 𝑑𝑒𝑛𝑟𝑎𝑤

𝑢𝑛𝑖𝑡𝑟𝑎𝑤
   (24) 

𝑣𝑜𝑙𝑘 = (
𝑝𝑟𝑜𝑑𝑘

1.30
) ∗ 10−6   (25) 

𝑝𝑟𝑜𝑑𝑘 = 𝑛𝑘 ∗ 𝑢𝑐𝑘    (26) 

𝐶𝑂𝑟𝑎𝑤𝑑,𝑘 = 𝑜𝑐 ∗ #𝑜𝑟𝑑𝑟𝑎𝑤𝑑,𝑘     (27) 

#𝑜𝑟𝑑𝑟𝑎𝑤𝑑,𝑘 =
#𝑜𝑟𝑑𝑇𝑂𝑇𝑟𝑎𝑤𝑑∗(𝑞𝑟𝑎𝑤𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅∗𝐷𝑑,𝑘̅̅ ̅̅ ̅̅ )

𝐷𝑟𝑎𝑤𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅

   (28) 

𝐷𝑟𝑎𝑤𝑑
̅̅ ̅̅ ̅̅ ̅̅ = ∑ (𝑞𝑟𝑎𝑤𝑓̅̅ ̅̅ ̅̅ ̅̅ ∗ 𝐷𝑖,𝑑,𝑓̅̅ ̅̅ ̅̅ ̅)

𝐹𝑑,𝑗
𝑓=1

   (29) 

#𝑜𝑟𝑑𝑇𝑂𝑇𝑟𝑎𝑤𝑑 =
𝐷𝑟𝑎𝑤𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑄𝑟𝑎𝑤𝑑
    (30) 

𝑄𝑟𝑎𝑤𝑑 = √
2∗𝐷𝑟𝑎𝑤𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅∗𝑜𝑐

ℎ𝑟𝑎𝑤𝑑
    (31) 

ℎ𝑟𝑎𝑤𝑑 = 𝑢𝑐𝑟𝑎𝑤 ∗ ℎ%𝑑
    (32) 

𝐶𝐻𝑟𝑎𝑤𝑑,𝑘  = ℎ𝑟𝑎𝑤𝑑 ∗ 𝐼𝑟𝑎𝑤𝑑,𝑘    (33) 

𝐼𝑟𝑎𝑤𝑑,𝑘 =
𝐼𝑇𝑂𝑇𝑟𝑎𝑤𝑑∗(𝑞𝑟𝑎𝑤𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅∗𝐷𝑑,𝑘̅̅ ̅̅ ̅̅ )

𝐷𝑟𝑎𝑤𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅

    (34) 

𝐼𝑇𝑂𝑇𝑟𝑎𝑤𝑑 = (
𝑄𝑟𝑎𝑤𝑑
2

+ 𝑆𝑆𝑟𝑎𝑤𝑑)   (35) 

{
 
 

 
 1 − ∑ [

(𝐷𝑙𝑡𝑟𝑎𝑤𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝑛

𝑛!
∗ 𝑒−𝐷𝑙𝑡𝑟𝑎𝑤𝑑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
]

𝑆𝑆𝑟𝑎𝑤𝑑−1

𝑛=0 ≥ (1 − 𝑆𝐿𝑟𝑎𝑤) 𝑖𝑓 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑑𝑒𝑚𝑎𝑛𝑑

(𝑧𝑟𝑎𝑤 ∗ √𝐷𝑙𝑡𝑟𝑎𝑤𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∗ 𝐿𝑟𝑎𝑤) 𝑖𝑓 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑

  (36) 

𝐷𝑙𝑡𝑟𝑎𝑤𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐷𝑟𝑎𝑤𝑑

̅̅ ̅̅ ̅̅ ̅̅ ∗ 𝐿𝑟𝑎𝑤    (37) 

𝐶𝑃𝑟𝑜𝑑𝑑,𝑘 = 𝑝𝑟𝑜𝑑𝑘 ∗ 𝐷𝑑,𝑘
̅̅ ̅̅ ̅̅    (38) 



𝑡𝑑 = {
  𝑡 𝑑𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑑    𝑖𝑓 𝐷𝑒𝑔𝐴𝑀 < 1
 𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙        𝑖𝑓 𝐷𝑒𝑔𝐴𝑀 = 1

   (39) 

𝑡 𝑑𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑑 =  𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 ∗ (0.7644 ∗ 𝐷𝑒𝑔𝐴𝑀
2 + 0.2009 ∗ 𝐷𝑒𝑔𝐴𝑀 + 0.0161)   (40) 

𝐶3𝐷𝑃𝑑,𝑘 = 𝐶𝑝𝑟𝑖𝑛𝑡𝑑 ∗
𝐷𝑑,𝑘̅̅ ̅̅ ̅̅ ∗𝑝.𝑡𝑖𝑚𝑒𝑘

𝑡𝑖𝑚𝑒𝑇𝑂𝑇𝑑
    (41) 

𝐶𝑝𝑟𝑖𝑛𝑡𝑑 = 𝐿𝑒𝑎𝑠 ∗ #3𝐷𝑃𝑑    (42) 

𝑝. 𝑡𝑖𝑚𝑒𝑘 =
𝑝𝑟𝑜𝑑𝑘

1.30∗0.00525∗3600
   (43) 

𝑡𝑖𝑚𝑒𝑇𝑂𝑇𝑑  =  ∑ (𝑝. 𝑡𝑖𝑚𝑒𝑓 ∗ 𝐷𝑑,𝑓̅̅ ̅̅ ̅̅ )
𝐹𝑑
𝑓=1     (44) 

At the end of the first iteration of the inner loop, for each SKU, 𝐶𝐴𝑀𝑑,𝑘  is compared with 𝐶𝐶𝑀𝑑,𝑘. 

Hence, the AM production is forbidden (being not economically convenient in respect with the 

purchase of CM finished products) if 𝐶𝐴𝑀𝑑,𝑘   is higher than 𝐶𝐶𝑀𝑑,𝑘. As a result, a value of the 𝑗-index 

is assigned to each SKU according to Equation 45, recommending the purchase of CM finished 

products for some SKUs, while allowing the AM production for the others. 

𝑗𝑑,𝑘 = {
𝐶𝑀 𝑓𝑖𝑥𝑒𝑑 (𝐴𝑀 𝑓𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛)  𝑖𝑓 𝐶𝐶𝑀𝑑,𝑘  ≤ 𝐶𝐴𝑀𝑑,𝑘  

𝐴𝑀 𝑎𝑙𝑙𝑜𝑤𝑒𝑑   𝑒𝑙𝑠𝑒
  (45) 

Based on this, the number of SKUs for which AM is allowed in the next loop iteration is recalculated 

according to Equation 46 (moving from 𝐹𝑑 to 𝐹’𝑑, where the apostrophe indicates the update of the 

variable in the transition from a loop iteration to the next one). 

𝐹𝑑
′ = ∑ 𝑓′𝑑,𝑘

𝐾
𝑘=1  𝑤ℎ𝑒𝑟𝑒 {

𝑓′𝑑,𝑘 = 1 𝑖𝑓 𝑗𝑑,𝑘 = 𝐴𝑀

𝑓′𝑑,𝑗,𝑘 = 0 𝑖𝑓 𝑗𝑑,𝑘 = 𝐶𝑀
  (46) 

Consequently, if the number of SKUs for which AM is allowed in the DC at the current loop iteration 

(𝐹′𝑑) is lower than the same number at the previous iteration (𝐹𝑑), this means that for some SKUs the 

CM purchase has been selected as the optimal manufacturing technology. In fact, by reducing the 

number of SKUs producible with AM, the cost of 3D printers allocated to each SKU (𝐶3𝐷𝑃𝑑,𝑘) 

increases, as well as 𝐶𝑂𝑟𝑎𝑤𝑑,𝑘 and 𝐶𝐻𝑟𝑎𝑤𝑑,𝑘. Therefore, 𝐶𝐴𝑀𝑑,𝑘 can only increase over 𝐶𝐶𝑀𝑑,𝑘 (which 

instead remains unchanged by not including fixed costs of 3D printers nor raw material costs). Hence, 

if 𝐹′𝑑 < 𝐹𝑑, the cost-effectiveness of purchasing CM finished products over the AM production is 

confirmed. Meanwhile, unless 𝐹’𝑑 = 0, for some SKUs the AM production is still allowed, requiring 

evaluating what is more convenient between AM and CM. Under these conditions (𝐹’𝑑 ≠ 𝐹𝑑 and 

𝐹’𝑑 ≠ 0), it is necessary to perform a new inner loop iteration, where, for each SKU, 𝐶′𝐶𝑀𝑑,𝑘 is the 

same cost of the previous iteration (𝐶′𝐶𝑀𝑑,𝑘 = 𝐶𝐶𝑀𝑑,𝑘), while 𝐶′𝐴𝑀𝑑,𝑘 is recalculated by applying 



Equations 21-44 with the updated value of 𝐹’𝑑. In the new inner loop iteration, 𝐶′𝐶𝑀𝑑,𝑘 and 𝐶′A𝑀𝑑,𝑘 

are compared only for those SKUs for which 𝑗𝑑,𝑘 ≠ 𝐶𝑀. Indeed, if  𝑗𝑑,𝑘 = 𝐶𝑀, only the cost 𝐶′𝐶𝑀𝑑,𝑘 

(which is equal to 𝐶𝐶𝑀𝑑,𝑘) is considered, having fixed CM as the optimal manufacturing technology. 

When the current loop iteration is characterised by 𝐹’𝑑 = 𝐹𝑑 or 𝐹’𝑑 = 0, this means that, for each 

SKU, the optimal manufacturing technology (𝑗𝑑,𝑘) has been selected. Indeed, the solution of the current 

loop iteration is equal to the solution of the previous one (𝑗′𝑑,𝑘 = 𝑗𝑑,𝑘) and the convergence of the inner 

loop to the optimal solution is achieved (or the AM production has been forbidden for all SKUs, 

recommending to maintain the single-sourced SC design with CM spare parts with 𝐷𝑒𝑔𝐶𝑀). Under 

these conditions, the inner loop is exited, moving to the intermediate one. 

4.1.3. Intermediate loop 

Once associated each SKU with the optimal manufacturing technology, the intermediate loop is used 

to assess if the production capacity of 3D printer(s) is sufficient to meet the demand of AM spare parts 

in the considered DC. To this end, the total production hours (𝑡𝑖𝑚𝑒𝑇𝑂𝑇𝑑) to be worked by 3D printers 

in the DC is determined, being the value assumed by Equation 44 in the last inner loop iteration. Then, 

knowing the number of 3D printers installed in the DC (#3𝐷𝑃𝑑) and the capacity of each 3D printer 

(𝐶𝑎𝑝3𝐷𝑃), according to Equation 47, it is established whether the number of 3D printers is sufficient, 

or it has to be increased. 

#3𝐷𝑃′𝑑 = {
#3𝐷𝑃𝑑   𝑖𝑓 𝑡𝑖𝑚𝑒𝑇𝑂𝑇𝑑 < (𝐶𝑎𝑝3𝐷𝑃 ∗ #3𝐷𝑃𝑑)

#3𝐷𝑃𝑑 + 1 𝑒𝑙𝑠𝑒 
   (47) 

Finally, if #3𝐷𝑃′𝑑 results higher than #3𝐷𝑃𝑑 (#3𝐷𝑃′𝑑 > #3𝐷𝑃𝑑), the whole inner loop must be 

executed again, but taking as the number of 3D printers the updated value #3𝐷𝑃′𝑑 (instead of #3𝐷𝑃𝑑). 

On the contrary, if #3𝐷𝑃′𝑑 is equal to #3𝐷𝑃𝑑 (#3𝐷𝑃′𝑑 = #3𝐷𝑃𝑑), then the 3D printers installed in 

the DC are sufficient to satisfy the AM production. Therefore, the intermediate loop is exited, moving 

to the outer one. 

4.1.4. Outer loop 

Once the optimal production technology of each SKU is confirmed and the optimal number of 3D 

printers in each DC is known, the outer loop is used to calculate the total cost (𝐶𝑡𝑜𝑡𝑖) of the achieved 

SC design. To this end, first, the achieved SC design (𝑖) is identified, assuming one of the values (0-

10) reported in Figure 4. Specifically, 𝑖 is equal to 0 if all SKUs are purchased as CM finished products 

(𝐹’𝑑 = 0). Conversely, 𝑖 is a value included between 1 and 5 if all SKUs are produced with AM (𝐹’𝑑 =

𝐾), where the specific value of 𝑖 depends on 𝐷𝑒𝑔𝐴𝑀 according to Figure 4. Finally, 𝑖 assumes a value 

included between 6 and 10 if some SKUs are purchased as CM finished products, while producing 

with AM some others (0 < 𝐹’𝑑 < 𝐾), where again the specific value of 𝑖 depends on 𝐷𝑒𝑔𝐴𝑀. Next, 

for the identified SC design, Equation 48 is used to calculate 𝐶𝑡𝑜𝑡𝑖, summing the individual costs of 



SKUs in DCs, by treating CM and AM spare parts based on the respective stock deployment policies 

(𝐷𝑒𝑔𝐶𝑀 and 𝐷𝑒𝑔𝐴𝑀). 

𝐶𝑡𝑜𝑡𝑖 = ∑ ∑ 𝐶𝐶𝑀𝑑,𝑘
𝐾
𝑘=1,𝑗𝑑,𝑘=𝐶𝑀

#𝐷𝐶𝐶M
𝑑=1 + ∑ ∑ 𝐶𝐴𝑀𝑑,𝑘

𝐾
𝑘=1,𝑗𝑑,𝑘=𝐴𝑀

#𝐷𝐶𝐴M
𝑑=1   (48) 

At this point, while keeping fixed 𝐷𝑒𝑔𝐶𝑀 (which characterises the considered sub-set), another value 

of 𝐷𝑒𝑔𝐴𝑀 is chosen and the application of the initialisation, inner, intermediate, and outer loops is 

repeated. After screening all possible values of 𝐷𝑒𝑔𝐴𝑀 (Figure 1), the respective optimal SC designs 

are reached, and their total cost is compared. Therefore, according to the objective function in Equation 

49, the optimal SC design is selected as the one with minimum total cost. 

𝑚𝑖𝑛[𝐶𝑡𝑜𝑡i] 𝑤𝑖𝑡ℎ 𝑖 = 1,2,… , 10   (49) 

4.2. Step ii - Parametric analysis 

Once built the heuristic model, in Step ii of the methodological framework, a parametric analysis was 

performed to test it on several realistic case studies, then using the results to feed and train a decision 

tree algorithm (achieving the final DSS). To this end, first, Sobol quasi-random values were associated 

with the input parameters of the heuristic model, collecting a sample of 1,000,000 realistic scenarios 

for each sub-set (i.e., spare parts SCs with different numbers of customers and SKUs, where each SKU 

is characterised by different demand, purchasing costs, transportation costs, backorder costs, required 

service level, etc.). Subsequently, each scenario was submitted to the heuristic model of Step i, 

determining its related optimal SC design (𝑖 = 0 − 10 in Figure 4). Finally, as the outcome of this 

parametric analysis, the dataset needed to feed and train the DSS was achieved for each sub-set, 

consisting of the 1,000,000 scenarios (highlighting for each scenario the set of values assumed by 𝑁, 

𝑆𝐿, �̅�1𝑐
̅̅ ̅̅̅, 𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙, 𝑐�̅�, �̅�, 𝐾, �̅�, and 𝑢𝑐̅̅ ̅, which are described in Table 1) and the respective results of 

the heuristic model (identifiers 𝑖 of the optimal SC designs). 

Concerning the 1,000,000 scenarios investigated, as suggested by Bicchi et al. (2022), they were 

obtained by allowing the heuristic model’s input parameters to assume uniformly distributed values 

according to the Sobol quasi-random low discrepancy sequence. The Sobol quasi-random low 

discrepancy sequence was used as sampling strategy since, when studying problems with numerous 

input parameters, it has been reported to better (more uniformly) cover the space of combinations of 

the admissible input parameter values in respect to other strategies (i.e., discrete sampling or Monte 

Carlo) (Burhenne et al., 2011). Hence, the value of each input parameter (𝑝𝑎𝑟) was varied, according 

to Equation 50 (Bicchi et al., 2022), where 𝑄 is the total number of scenarios to be created, 𝑞 is the 

specific scenario considered, 𝑀 is the total number of heuristic model’s input parameters, 𝑚 is the 

specific input parameter to which we assign a Sobol value (𝑝𝑎𝑟𝑚𝑞), 𝑝𝑎𝑟𝑙𝑙 and 𝑝𝑎𝑟𝑢𝑙 are the lower and 

upper limits admitted for the value of the considered input parameter (Table 2), and 𝑆𝑚𝑞 is the Sobol 

sequence.  



𝑝𝑎𝑟𝑚𝑞 = 𝑝𝑎𝑟𝑙𝑙 + 𝑆𝑚𝑞 ∙ (𝑝𝑎𝑟𝑢𝑙 − 𝑝𝑎𝑟𝑙𝑙) 𝑤𝑖𝑡ℎ 𝑚 = 1,… ,𝑀 𝑎𝑛𝑑 𝑞 = 1,… , 𝑄  (50) 

Table 2 summarises the ranges of admissible values considered for input parameters, where we 

excluded those which already had predefined values (𝐷𝑒𝑔𝐶𝑀 and 𝐷𝑒𝑔𝐴𝑀) and those for which a 

realistic fixed value was assumed by consulting the literature (Cantini et al., 2022; Sandvik AB, 2022; 

Vukkum et al., 2022) and a panel of experts in AM (𝑜𝑐, 𝐶𝑎𝑝3𝐷𝑃, 𝐿𝑒𝑎𝑠, 𝐿𝑟𝑎𝑤, ℎ%𝑑
, 𝑆𝐿𝑟𝑎𝑤, 𝑑𝑒𝑛𝑟𝑎𝑤, 

and 𝑢𝑛𝑖𝑡𝑟𝑎𝑤, which were taken, respectively, equal to 5 €/order, 8 hours/day, 60,000 €/year, 2 weeks, 

25%, 0.99, 7500
𝐾𝑔

𝑚3, and a metal can containing 20
𝐾𝑔 𝑜𝑓 𝑠𝑡𝑒𝑒𝑙 𝑝𝑜𝑤𝑑𝑒𝑟

𝑐𝑎𝑛
). 

About Table 2, it is worth noting two considerations. First, each input parameter of Table 1 with 

subscript 𝑘 was associated with specific Sobol values, allowing each SKU to assume different �̅�1𝑐𝑘, 

𝑐𝑏𝑘, 𝐿𝑘, 𝑛𝑘, and 𝑢𝑐𝑘. Second, by consulting Figure A.1 and following the indications by Cantini et al. 

(2022), the ranges of admissible values reported in Table 2 were properly updated respecting the 

conditions required to access the specific sub-set under analysis (i.e., specific combinations of input 

parameters 𝑁, 𝑆𝐿, �̅�1𝑐𝑘, 𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙, 𝑐𝑏𝑘, 𝐿𝑘, 𝐾, 𝑛𝑘, and 𝑢𝑐𝑘). For example, if a sub-set contains only 

SKUs which are demanded by less than 50 customers (𝑁 < 50), the range of variation of 𝑁 was 

switched from 5÷100 (Table 2) to 5÷50, modifying the upper range extreme based on the sub-set's 

conditions. 

Table 2. Ranges of Sobol values assumed in the parametric analysis. Before developing the parametric analysis, the upper 

and lower limits of each range were updated based on the considered sub-set. 

Input 

parameter 

Range of admissible values Unit measure Source used to define 

the range of values 

𝑵 integers between 5 and 100 - (Cantini et al., 2022) 

𝑺𝑳 floats between 0.85 and 0.99 - (Cantini et al., 2022) 

�̅�𝟏𝒄𝒌 integers between 1 and 7 units/year (Knofius et al., 2021) 

𝒕 𝒄𝒆𝒏𝒕𝒓𝒂𝒍 floats between 100 and 2,000 €/transportation (Cantini et al., 2022) 

𝒄𝒃𝒌  floats between 1,000 and 100,000 €/backorder (Peron et al., 2021) 

𝑳𝒌 integers between 4 and 26 weeks (Knofius et al., 2021) 

𝑲 integers between 10 and 5,000 - Authors’ choice 

𝒏𝒌 floats between 1 and 3 - (Knofius et al., 2021) 

𝒖𝒄𝒌 floats between 10 and 2,500 €/unit (Knofius et al., 2021) 

4.3. Step iii – DSS development 

Finally, in Step iii, the results of the parametric analysis were used to feed and train a decision tree 

algorithm (using Python's Sklearn library). Therefore, the DSS was achieved (one per each sub-set), 

providing spare parts retailers with a guide to review the design of existing SCs in a multi-item 

perspective. A decision tree algorithm was selected to develop the DSS, being renowned as a quick 

and user-friendly machine learning algorithm, which allows understanding and interpreting the 

correlations among many parameters affecting a system (Arena et al., 2021). 



Specifically, in the training process, the Sobol values assumed by the following parameters (in each 

of the 1,000,000 scenarios) were given as input attributes to feed and train the DSS: 𝑁, 𝑆𝐿, �̅�1c
̅̅ ̅̅̅, 

𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙, 𝑐�̅�, �̅�, 𝐾, �̅�, and 𝑢𝑐̅̅ ̅. Moreover, the identifier of the optimal SC design (𝑖 = 0 − 10 in Figure 

4) associated with each scenario through the heuristic model was indicated as target label that the 

decision tree algorithm should learn to forecast. Finally, the Gini diversity index (𝑔𝑑𝑖) was used at 

each node of the tree to split the starting data points into binary groups (branches) with the maximum 

purity, according to Equations 51-52. 

𝑔𝑑𝑖 = 1 − ∑ 𝑝(𝑥)2𝑋
𝑥=1     (51) 

𝑚𝑖𝑛 (
𝑛𝑙𝑒𝑓𝑡

𝑛
𝑔𝑑𝑖𝑙𝑒𝑓𝑡 +

𝑛𝑟𝑖𝑔ℎ𝑡

𝑛
𝑔𝑑𝑖𝑟𝑖𝑔ℎ𝑡)    (52) 

Where, as reported by Arena et al. (2021), 𝑋 is the total number of target labels to be assigned (eleven 

SC designs in Figure 4), 𝑝(𝑥) is the probability of picking a data point with the target label 𝑥, 𝑛 is the 

number of data points in the original node, 𝑛𝑙𝑒𝑓𝑡 is the number of data points falling into the new node 

on the left branch, 𝑛𝑟𝑖𝑔ℎ𝑡 is the number of data points falling into the new node on the right branch, 

𝑔𝑑𝑖𝑙𝑒𝑓𝑡 is the Gini diversity index of the new node on the left branch, 𝑔𝑑𝑖𝑟𝑖𝑔ℎ𝑡 is the Gini diversity 

index of the new node on the right branch, and the final nodes of the tree (achieved after the last split 

of each branch) are called leaves. 

To validate the performance of the tree and avoid under- or over-fitting issues, a k-fold cross-validation 

process (with five folds) was carried out together with a cost-complexity pruning of the tree. The cost-

complexity pruning was useful not only to avoid over-fitting (Morgan et al., 2003), but also to generate 

a user-friendly DSS. Indeed, as described by Bradford et al. (1998), by imposing a specific cost-

complexity parameter (𝛼), the leaves characterised by the weakest links according to Equation 53 were 

recursively removed, promoting the healthy growth of the tree by containing its size and complexity 

(the pruned leaves were collapsed into the node which was hierarchically superior to them within the 

same branch). 

𝑅𝛼(𝑇) = 𝑅(𝑇) + 𝛼|𝑇|   (53) 

In Equation 53, 𝑅𝛼(𝑇) is the cost complexity measure of the tree (𝑇), |𝑇| is the number of leaves of 

the tree, and 𝑅(𝑇) is given by the sum of misclassification errors made at each leaf of the tree. 

To prune the tree, the value of 𝛼 was selected after accomplishing a sensitivity analysis as follows. 

Several decision trees were developed by imposing different 𝛼 values. Hence, their total accuracy (𝐴, 

Equation 54) was calculated as the ratio between the number of correct forecasts made by the tree 

(#𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑡𝑟𝑒𝑒) and the total number of forecasts (#𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑡𝑟𝑒𝑒, that is the number of 

starting data points). Based on the achieved results, 𝛼 was chosen as the value which produces a trade-



off decision tree characterised by a high accuracy and a reduced size (which results in DSS user-

friendliness). 

𝑨 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑡𝑟𝑒𝑒

#𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑡𝑟𝑒𝑒
    (54) 

Finally, the selected trade-off tree was taken as the DSS of this study (one per each sub-set), and its 

performance was evaluated not only by defining the tree accuracy (𝐴), but also determining other three 

Key Performance Indicators (KPIs), as suggested by Cantini et al. (2022): 

• The accuracy of each leaf (𝑎, Equation 55), calculated as the ratio between the number of correct 

forecasts (#𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓) and the number of total forecast in the leaf 

(#𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓). 

𝑎 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓

#𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓
   (55) 

• The number of elements in each leaf (𝑝, Equation 56), calculated as the ratio between the number 

of elements classified within the considered leaf ((#𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓) and the number of total 

elements to be classified (#𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑡𝑟𝑒𝑒, that is the number of starting data points). 

𝑝 =
#𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓

#𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑡𝑟𝑒𝑒
   (56) 

• The expected percentage of cost increase (c, Equation 57) to be paid by spare part retailers in case 

an element is wrongly classified in a leaf, calculated as the average of cost increases associated 

with wrong tree forecasts. 

𝑐 =
∑ (|

𝑐𝑜𝑠𝑡𝑜𝑓 𝑤𝑟𝑜𝑛𝑔 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 −𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡ℎ
𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡ℎ

|∗100)
#𝑤𝑟𝑜𝑛𝑔 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓
ℎ=1

#𝑤𝑟𝑜𝑛𝑔 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠𝑙𝑒𝑎𝑓
   (57) 

5. Results and discussion 

This Section shows the results of the methodological framework, discussing the achieved DSSs. 

Considering spare parts retailers who have optimised stock deployment policies of CM spare parts, 

then dividing SKUs into the sub-sets of Figure A.1, we applied the methodological framework to each 

sub-set, thus achieving three DSSs. In this Section, we present the DSS related to sub-set with 

𝐷𝑒𝑔𝐶𝑀 = 0 (blue in Figure A.1), while reporting the other two DSSs in Appendix B. 

Concerning the sub-set with 𝐷𝑒𝑔𝐶𝑀 = 0, aiming to obtain a DSS that is both accurate and user-friendly 

(namely, easy-to-read), we carried out the sensitivity analysis of Figure 6, investigating the decision 

tree accuracy (𝐴) related to different cost-complexity parameters (𝛼). Based on the results of Figure 6, 

we determined how to prune the tree, taking as DSS the decision tree with 𝛼 = 0.015 (red dot), which 



is considered a trade-off between user-friendliness and accuracy. Figure 7 shows the achieved DSS, 

which suggests the optimal SC design (0-10 in Figure 4) with a total accuracy of 𝐴 = 86.5%. 

 

Figure 6. Sensitivity analysis on DSS’s accuracy. 

 

Figure 7. DSS related to sub-set with 𝐷𝑒𝑔𝐶𝑀 = 0.The numbers inside the leaves refer to Figure 4. 

The decision levels of the DSS (associated with branch splits) are defined based on the relative 

importance of input parameters on the selection of the optimal SC design. The relative importance is 

calculated by summing the changes in the Gini Diversity Index (weighted by the node probability due 

to splits at each parameter), and then dividing the sum by the number of branch nodes (Lolli et al., 

2022). Based on this, Figure 7 proves that, among the input parameters of the DSS (related to sub-set 

with 𝐷𝑒𝑔𝐶𝑀 = 0), 𝑁 and �̅�1𝑐
̅̅ ̅̅̅ have a low impact on the process of selecting the optimal SC design. 

Indeed, they do not appear in the final DSS (low relative importance). Conversely, 𝑢c̅̅ ̅, �̅�, 𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙, 

𝐾, �̅�, 𝑆𝐿, and 𝑐�̅� affect the DSS, especially 𝑢𝑐̅̅ ̅, 𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙, and �̅�, which appear in the first decision 

levels of the tree (high relative importance), also guiding most of branch splits. Moreover, Figure 7 

shows that, among the optimal SC designs, that with identifier 0 (Figure 4) is the most frequently 

suggested, appearing in 35% of the leaves, and influencing 93.4% of the DSS’s forecasts (𝑝 sum). This 

result proves that, regarding the sub-set characterised by 𝐷𝑒𝑔𝐶𝑀 = 0, keeping the starting SC design 

unchanged is often convenient, avoiding investing in AM. Besides SC design 𝑖 = 0, those with 



identifiers 3 and 8 are also repeatedly suggested, appearing in 20% of the leaves, and representing, 

respectively, 0.98% and 3.53% of the DSS's forecasts. Therefore, in some cases, the DSS suggests a 

single-sourced SC design where all SKUs are produced in-house as AM spare parts and a hybrid 

deployment policy is adopted (𝐷𝑒𝑔𝐴𝑀 = 0.50). Moreover, in other cases a dual-sourced SC is 

recommended where CM SKUs are managed with 𝐷𝑒𝑔𝐶𝑀 = 0 and AM SKUs are managed with 

𝐷𝑒𝑔𝐴𝑀 = 0.50. Conversely, Figure 7 shows that inventory centralisation is not cost-effective, since 

SC designs with 𝐷𝑒𝑔𝐴𝑀 = 0.75 and 1 are never suggested (4-5 and 9-10, Figure 4). Finally, the KPIs 

𝑎, 𝑝, and 𝑐 in Figure 7, allow spare parts retailers to accept the DSS results, ensuring that its forecasts 

lead to leaves characterised by high accuracy (𝑎 > 90%) or, at least, low percentage of cost increase 

(𝑐 < 10%). This means that the DSS predictions are accurate or, in case they are wrong, they imply a 

negligible increase in costs that spare parts retailers should pay compared to that of the optimal SC 

design. It is worth mentioning that the above comments relate to Figure 7. However, similar 

considerations can be derived from DSSs linked to other sub-sets (Appendix B). 

In conclusion, spare parts retailers can leverage DSSs’ results by consulting Figure 7 and Figures B.1-

B.2 according to the logic summarised in Figure 8, where three alternatives arise. 

• If the DSS suggests continuing purchasing all SKUs as CM spare parts (0 in Figure 4), spare parts 

retailers should keep the starting SC design unchanged and there is no need to apply the heuristic 

model of Step i (more accurate than the DSS, but onerous in terms of time consumption and 

resource computations) to get specific information on individual SKUs. 

• If the DSS suggests producing all SKUs with AM (1 − 5 in Figure 4), again there is no need to 

apply the heuristic model. In fact, all SKUs should be produced with AM and the number of 3D 

printers to be installed in each DC can be determined via Equations 42 and 48; 

• Finally, if the DSS suggests producing some SKUs through AM, while purchasing the others as 

CM (dual-sourced SC, 6-10 in Figure 4), in this case, it is worth applying the heuristic model to 

deepen the specific SKUs to be produced with AM and the optimal number of 3D printers to be 

installed in DCs. 



 

Figure 8. Guidelines to leverage the DSSs. 

5.1. DSS application on a case study 

The DSS related to sub-set with 𝐷𝑒𝑔𝐶𝑀 = 0 (Figure 7) was applied to a case study company, aiming 

to show with an example how the findings of this work can be used, also testing the considered DSS. 

The case study company distributes aircraft spare parts to twenty main customers (𝑁) and its existing 

SC includes four DCs. Within each DC, spare parts are stocked according to a (𝑅𝑂𝑃, 𝑄) supply policy, 

where CM SKUs are purchased by a supplier, who serves all DCs. Eight SKUs (𝐾) are managed by 

the company, which are aircraft components distributed with a service level of 95%. The average 

procurement lead time is equal to 8 weeks (𝐿𝑘) for all SKUs (being defined by contracts with the 

supplier). The average demand of SKUs and their unitary cost are reported in Table 3. The unitary 

transportation cost from a DC to a customer was estimated to be 𝑡 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 = 550 €/𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 

(based on the vehicles used and the average distance between DCs and customers). Finally, according 

to company assessments, the unitary backorder cost of all SKUs was estimated to be around 𝑐𝑏𝑘 =

20,000 €/𝑏𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟. Indeed, these SKUs are critical for the functioning of aircrafts, and their stock-

outs cause problems of vehicle unavailability for customers. The company was interested in evaluating 

if this starting SC design (with 𝐷𝑒𝑔𝐶𝑀 =  0) was optimised or should be reviewed. Moreover, they 

wanted to evaluate the economic convenience of producing in-house AM spare parts instead of buying 

CM stocks. 

Table 3. SKUs managed by the case study company.  

SKU 
�̅�𝟏𝒄𝒌 

[units/year] 

𝒖𝒄𝒌 

[€/unit] 

A 6 3,500 

B 8 650 

C 6 10,300 



D 6 17,690 

E 23 150 

F 12 525 

G 7 500 

H 9 340 

The company had already optimised the stock deployment policies of CM spare parts following 

Cantini et al. (2022) and adopting 𝐷𝑒𝑔𝐶𝑀 =  0 for all SKUs. This choice can be confirmed by 

consulting Figure A.1, where all SKUs fall under sub-set with 𝐷𝑒𝑔𝐶𝑀 =  0. Focusing on this sub-set, 

the DSS in Figure 7 was consulted to review the SC design. To do so, the average cost of SKUs was 

calculated (𝑢𝑐̅̅ ̅ = 4,207 €/𝑢𝑛𝑖𝑡), and the average production cost of each AM SKUs was estimated to 

be on average less expensive than the purchasing cost of the equivalent CM spare parts (�̅� = 0.9). 

Based on this, Figure 7 suggested as optimal SC design the one characterised by identifier 𝑖 = 7 (dual-

sourced SC, where 𝐷𝑒𝑔𝐶𝑀 =  0 and 𝐷𝑒𝑔𝐴𝑀 =  0.25). Since the suggested SC design involved dual-

sourcing, according to Figure 8 the heuristic model was applied to the specific case study, aiming to 

obtain detailed information on individual SKUs. The heuristic model validated the results of the DSS, 

suggesting as optimal the SC design 𝑖 = 7.  Finally, the heuristic model allowed to determine which 

SKUs to produce with AM (A, C, D, G, H) and which to purchase as CM finished products CM (B, E, 

F), also suggesting installing in each DC one 3D printer. 

6. Conclusions 

This paper supports spare parts retailers in reviewing the design of existing SCs, selecting, for each 

SKU, the optimal manufacturing technology (AM or CM) and the optimal stock deployment policy 

(centralised, decentralised, or three hybrid stock deployment policies). As the starting condition, spare 

parts retailers who purchase CM spare parts from suppliers and distribute them to customers are 

considered. Moreover, spare parts retailers are supposed to have already optimised stock deployment 

policies of CM spare parts, adopting methodologies such as that by Cantini et al. (2022), then splitting 

SKUs into sub-sets. On top of this, in this paper, a DSS is provided per each sub-set to help spare part 

retailers in selecting the most cost-effective SC design among eleven ones, which are distinguished by 

varying the stock deployment policies (investigating the five aforementioned alternatives) and 

considering: (i) single-sourced SCs where all SKU are CM spare parts purchased from suppliers; (ii) 

single-sourced SCs where all SKUs are AM spare parts produced in-house; (iii) dual-sourced SCs 

where some SKUs are produced as AM spare parts, while the others are purchased as CM. 

To develop the DSS, a decision tree algorithm was chosen, being renowned as a quick, and user-

friendly tool, which allows the robustness of decisions to be measured with proper KPIs. Moreover, it 

exploits the capability of machine learning to understand and interpret correlations among many 

parameters affecting a system. To achieve the DSS, a three-steps methodological framework was 

followed for each sub-set, where: in Step i, a heuristic model was developed (based on a preliminary 



initialisation and three nested iterative loops) to compare the total costs of eleven SC designs. In Step 

ii, a parametric analysis was performed, collecting a sample of 1,000,000 realistic SC scenarios, and 

submitting each of them to the heuristic model (determining its optimal SC design). Finally, in Step 

iii, the parametric analysis was used to feed and train a decision tree, which was pruned based on a 

sensitivity analysis to achieve a DSS representing a trade-off between user-friendliness and accuracy 

of predictions. 

The developed DSSs (one per each sub-set) represent the main contribution of this study, since nothing 

similar has been done before. In fact, it is well known that an efficient SC design improves the 

performance of a spare part retailer, minimising SC costs and guaranteeing high service levels. 

However, to the best of our knowledge, the only DSS provided by the literature to support spare parts 

retailers in reviewing the SC design (quantitatively capturing the differences between SCs with CM 

and AM spare parts) does not investigate the in-house production of AM spare parts, also neglecting 

fixed costs of 3D printers and the optimisation of SC designs with multiple SKUs at the same time. 

Based on this, at a theoretical level, this study fills the aforementioned literature gap, providing DSSs 

and a heuristic model capable of suggesting under which conditions it is economically advantageous 

to have centralised, decentralised, or hybrid stock deployment policies, also selecting the optimal spare 

parts manufacturing technology (comparing the CM purchase with the AM in-house production, and 

considering fixed costs of 3D printers and the optimisation of multiple SKUs at the same time). At a 

practical level, this study provides spare parts retailers with a quick and user-friendly DSS for 

determining how to review the design of existing SCs. Therefore, the provided DSS could help spare 

parts retailers in remaining competitive on the market, maintaining an alignment between logistic 

activities and customer needs despite spare parts demand fluctuations. 

The main findings of this study can be summarised as follows: the DSS provided for each sub-set is 

robust since a decision tree with accurate leaves is achieved or, at least, the DSS forecasts prevent 

spare parts retailers from paying a high percentage of cost increase (always less than 10%, often below 

5%) in case of wrong predictions. Moreover, the DSS related to each sub-set proves that, despite the 

advantages of risk-pooling, centralisation of spare parts (in SCs with 𝐷𝑒𝑔𝐶𝑀 or 𝐷𝑒𝑔𝐴𝑀 higher than 

0.75) is rarely advantageous, being never suggested as cost-effective. Conversely, decentralised and 

hybrid SCs are often convenient, especially with 𝐷𝑒𝑔𝐶𝑀 or 𝐷𝑒𝑔𝐴𝑀 ≤ 0.25 (which cover 79.2% of the 

leaves of Figure 7 and Figures A1-A2). Finally, input parameter 𝑁 has a low impact in the decision-

making process, not appearing in Figure 7 nor in Figures A.1-A.2. After building a DSS per each sub-

set, one of them was tested on the case study of an aircraft spare parts retailer to validate its results 

and, above all, to show with an example how to leverage the findings of this work. The results showed 

how to consult the DSS, proving how quickly spare parts retailers can compare their current SC design 

with the optimal one (only four questions were answered in Figure 7 before defining the optimal SC 

design). 



Future developments of this study could be twofold. First, to evaluate the possibility of producing AM 

spare parts on-demand. Indeed, AM production times are, currently, too slow to compete with CM 

production in an on-demand policy. However, in the future, AM technology will advance, and an on-

demand AM production could become cost-effective and worth to be investigated. Second, to relax 

some assumptions underlying this study, which were made to achieve a quick and user-friendly DSS, 

suitable for taking strategic decisions on the SC design. For instance, next studies could remove the 

need for splitting SKUs into sub-sets, also investigating stochastic procurement lead times, SC 

sustainability problems, and the transportation of multiple spare parts at the same time. 

Appendix A 

As the starting condition for this study, we consider spare parts retailers who manage CM spare parts, 

having optimised their stock deployment policies, and having divided SKUs into sub-sets. Since not 

all spare parts retailers may have already optimised their stock deployment policies, in this study we 

facilitated the accomplishment of this task as follows. We applied the methodology by Cantini et al. 

(2022) focusing on CM spare parts (excluding AM variables). Therefore, following the authors’ 

instructions, we derived Figure A.1, which guides spare parts retailers in identifying the conditions 

(combinations of the input parameters of Table 1) under which individual CM SKUs (𝑘) should be 

associated with different sub-sets. Figure A.1 shows that Cantini et al. (2022) suggest splitting CM 

SKUs in only three sub-sets (characterised by 𝐷𝑒𝑔𝐶𝑀 equal to 0.50, 0.25, and 0, respectively), while 

underlining as not cost-effective for CM spare parts the other stock deployment policies (𝐷𝑒𝑔𝐶𝑀 equal 

to 0.75 and 1, Figure 1). 



 

Figure A.1. Conditions suggested by Cantini et al. (2022) to divide CM SKUs into three sub-sets, according to their optimal 

stock deployment policy (𝐷𝑒𝑔𝐶𝑀). 



Appendix B 

Considering spare parts retailers who have already divided SKUs into the sub-sets of Figure A.1, we 

applied the methodological framework to each sub-set, achieving three DSSs. The DSS related to sub-

set with 𝐷𝑒𝑔𝐶𝑀 = 0 (Figure A.1) was presented in Section 5, while the other two DSSs are reported 

below. Particularly, Figure B.1 shows the DSS related to sub-set with 𝐷𝑒𝑔𝐶𝑀 = 0.25, while Figure 

B.2 depicts the DSS related to sub-set with 𝐷𝑒𝑔𝐶𝑀 = 0.50. 

 

Figure B.1. DSS related to sub-set with 𝐷𝑒𝑔𝐶𝑀 = 0.25. 

 

Figure B.2. DSS related to sub-set with 𝐷𝑒𝑔𝐶𝑀 = 0.50. 
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