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Advective-diffusive motion on large scales from small-scale dynamics with an internal symmetry
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We consider coupled diffusions in n-dimensional space and on a compact manifold and the resulting effective
advective-diffusive motion on large scales in space. The effective drift (advection) and effective diffusion are
determined as a solvability conditions in a multiscale analysis. As an example, we consider coupled diffusions
in three-dimensional space and on the group manifold SO(3) of proper rotations, generalizing results obtained
by H. Brenner [J. Colloid Interface Sci. 80, 548 (1981)]. We show in detail how the analysis can be conveniently
carried out using local charts and invariance arguments. As a further example, we consider coupled diffusions
in two-dimensional complex space and on the group manifold SU(2). We show that although the local operators
may be the same as for SO(3), due to the global nature of the solvability conditions the resulting diffusion will
differ and generally be more isotropic.
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I. INTRODUCTION

The transition from the microscopic to the macroscopic is
the central problem in statistical physics [1]. Posed as early
as the 19th century, it can be understood as the emergence
of qualitatively different phenomena on larger scales from
averaging of (typically simpler) phenomena on smaller scales,
cf. Refs. [2–4]. Analogous considerations were later extended
to hydrodynamics [5] and more general systems of ordinary
or partial differential equations and are today usually referred
to as homogenization [6] or as multiscale methods [7].

In this paper we consider effective diffusion on large
scales from averaging motion involving additional degrees of
freedom on small scales. Our setting is mesoscopic physics
where the small scale motion is understood as an overdamped
dynamics with given transport coefficients and where the
large-scale motion is described by other, effective, transport
coefficients. As will be described in detail below we thus
apply the multiscale method to the analysis of overdamped
Fokker-Planck equations (FPE) where we start with an FPE on
configuration space and an internal symmetry and end up with
an FPE on configuration space only. The effective transport
coefficients on large scales are computed as averages over the
small scales.

In a recent joint work with Bo, Dias, and Eichhorn, we
considered the instance of the problem where the configuration
space is ordinary three-dimensional space and the internal
symmetry the group of rotations SO(3) [8]. We were thus
able to recover results obtained by H. Brenner in the early
1980s [9]. The most striking of these results is a contribution to
the effective diffusivity which is inversely proportional to kBT

and which depends quadratically on the applied force field. As
stressed already by Brenner this effect should completely dom-
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inate the diffusion of, e.g., nonspherical micron-sized particles
settling in a gravitational field and is thus quite important for
the understanding of sedimentation and aggregation during
sedimentation. Further physical consequences of this theory
will be discussed in a forthcoming separate contribution [10].

The objectives of the present paper are threefold. First, we
will separate the different strands of the analysis with the aim
to more clearly distinguish the technical and conceptual points.
We will thus show that advection-diffusion on large scales is
quite general and holds if the internal symmetry is described by
a compact manifold of otherwise arbitrary internal geometry.
The steps in the multiscale analysis can be posed as solving
elliptic partial differential equations on the manifold and then
computing weighted averages of these solutions. These are
both well defined, though generally nontrivial, tasks, and,
consequently, it is only determining the effective transport
coefficients in closed form which necessitates additional
assumptions. Second, we will give further details on the
analysis in Ref. [8] focusing on a local representation of
rotations [elements of SO(3)] as charts and on the computation
of the effective transport coefficients by the use of SO(3)
invariant theory. We will also present results going beyond
a diagonalizability assumption made in Ref. [8], predictions
which we compare to numerical simulations. Third, we will
show that the first step of the multiscale analysis can be carried
out also for a process that satisfies a detailed balance condition.
In this case, however, the transport coefficients cannot be
analytically computed as averages of known terms over the
manifold using simply invariant theory.

As an illustration we also include a discussion of the
example where the configuration space isC2, two-dimensional
complex space, and the internal symmetry is the Lie group
SU(2) of 2 × 2 unitary matrices of unit determinant. The
small-scale motion is thus coupled advection-diffusion on C2

and on the group manifold of SU(2) while the large-scale
motion is advection-diffusion onC2 only. As a consequence of
the Lie algebras su(2) and so(3) being isomorphic the equations
to solve on the consecutive levels of the multiscale analysis are
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equivalent to those for SO(3), but the solvability conditions,
being global, differ.

The paper is organized as follows. In Sec. II we introduce
our basic model of coupled diffusions in space and on a
manifold and the basic notions of differential geometry which
we need in the following. In Sec. III we carry out a multiscale
analysis on the basic model and show that it leads to large-scale
drift and diffusion. In Sec. IV we apply the basic model to
motion in space and a symmetry group acting on that space,
and in Sec. V we discuss the example where space is three
dimensional and the symmetry is rotation group SO(3). In
Sec. VI we similarly discuss the case of SU(2), in Sec. VII
we present numerical results, and in Sec. VIII we sum up and
discuss what has been done. Some standard material is for
completeness included as appendices.

II. DIFFUSION WITH INTERNAL STATES

In this section we introduce our basic model, coupled
diffusion on n-dimensional space and on a manifold M with
dimension m. The general theory of Brownian motion on
manifolds was developed by Kolmogorov, Itô, and Yosida and
others in the middle of the 20th century and is described in
many monographs, cf. Refs. [11–14]. The case of Brownian
motion on SO(3), which will be one of our main examples,
was explicitly constructed by McKean in an early but still very
instructive paper [15].

A. Brownian motion on manifolds

Our purpose in this section is to introduce the notation and
set the stage for the general multiscale analysis in Sec. III.
We therefore start from the dictionary definition that an
m-dimensional manifold is a topological space, each point
of which has a neighborhood that is homeomorphic to the
Euclidean space of dimension m. This means that the manifold
can be covered by a collection of open sets Ui which are
one to one and smoothly related to open sets Vi ∈ Rm. One
set Vi is called a local coordinate patch for the set Ui , and
the map ψi : Ui → Vi is called a local coordinate. Suppose
a point p on the manifold belongs to two sets Ui and Uj

and U ′ is an open set in Ui ∩ Uj containing p. Then we can
define two sets V ′

i = ψi(U ′) and V ′
j = ψj (U ′) and two maps

ψij = ψj ◦ ψ−1
i : V ′

i → V ′
j and ψji = ψi ◦ ψ−1

j : V ′
j → V ′

i

which have the meaning of a change of coordinate, locally
around point p. Obviously, ψji = ψ−1

ij .
On the manifold is defined a metric g which can be

expressed as a matrix gij in local coordinates. This means
that if two points p and q are close and have coordinates
αp = ψi(p) and αq = ψi(q) in the same patch such that
αq = αp + �α, then the squared distance d2(p,q) equals∑

ab gab(α)�αa�αb. Under a change of coordinate α → α′

with Jacobian J a
b = ∂α′a

∂αb the metric g therefore transforms as
a second-order contravariant tensor

g′
ab(α′) =

∑
cd

(J−1)ca(J−1)dbgcd [ψji(α
′)],

The manifold also has a volume element
√

det g, which we will
write

√
g, and which under a coordinate change transforms as√

g′ = √
g/| det J |. We will from now on use the Einstein

convention where repeated indices, one upper and one lower,
are summed.

Let now Rn ⊗ Vi be parametrized as
(x1, . . . ,xn,α1, . . . ,αm). The building blocks of our basic
model are systems of coupled stochastic differential equations

dxi = A1(	x,	α,t)idt + B11(	x,	α,t)ij • dWj

+B12(	x,	α,t)ib • dW ′b,
(1)

dαa = A2(	x,	α,t)adt + B21(	x,	α,t)aj • dWj

+B22(	x,	α,t)ab • dW ′b,

where dWj and dW ′b are independent standard n-dimensional
and m-dimensional Wiener noises, 	A1 and 	A2 n- and m-
dimensional vector fields, and B11, B12, B21, and B22 are,
respectively, n × n, n × m, m × n, and m × m-dimensional
matrix fields. All functions are assumed to depend smoothly
on their arguments. The symbol • denotes a product evaluated
in the Itô sense. The generator of the diffusion is the operator

L = A1(	x,	α,t)i
∂

∂xi
+ A2(	x,	α,t)a

∂

∂αa

+ 1

2
b11(	x,	α,t)ij

∂2

∂xi∂xj
+ 1

2
b22(	x,	α,t)ab ∂2

∂αa∂αb

+ b12(	x,	α,t)ia
∂2

∂xi∂αa
, (2)

with

b
ij

11 = (
B11B

T
11 + B12B

T
12

)ij
;

bab
22 = (

B22B
T
22 + B21B

T
21

)ab
;

bia
12 = (

B11B
T
21 + B12B

T
22

)ia
.

The generator determines the time change of expectation
values of future events through ∂tE + LE = 0. The evolution
of a probability density is given by the Fokker-Planck equation
∂tP = FP , where

FP = − ∂

∂xi
(A1(	x,	α,t)iP ) − ∂

∂αa
(A2(	x,	α,t)aP )

+1

2

∂2

∂xi∂xj
(b11(	x,	α,t)ijP )

+ 1

2

∂2

∂αa∂αb
(b22(	x,	α,t)abP )

+ ∂2

∂xi∂αa
(b12(	x,	α,t)iaP ). (3)

Note that being a density, P transforms as P ′ = P/| det J |.
During a sufficiently short time interval the solutions

of (1) will, with high probability, not leave Rn ⊗ Vi and then
specify a trajectory in Rn ⊗ M. Assume that the trajectory
is contained in a set Rn ⊗ U ′ centered around point p

parametrized by two coordinate systems (α1, . . . ,αm) ∈ Vi and
(α′1, . . . ,α′m) ∈ Vj with Jacobian J . The Itô lemma specifies
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the motion in the second coordinate system to be

dxi = A′
1(	x, 	α′,t)idt + B ′

11(	x, 	α′,t)ij • dWj

+B ′
12(	x, 	α′,t)ib • dW ′b,

(4)
dα′a = A′

2(	x, 	α′,t)adt + B ′
12(	x, 	α′,t)aj • dWj

+B ′
22(	x, 	α′,t)ab • dW ′b,

where

A′i
1 = A1(	x,α( 	α′),t)i ;

A′a
2 = J a

b A2(	x,α( 	α′),t)b + 1

2

(
∂2α′a

∂αc∂αd

)
bcd

22 ;

B ′
11

i

j = B11(	x,α( 	α′),t)ij ;

B ′
12

i

b = B12(	x,α( 	α′),t)ib;

B ′
21

a

i = J a
c B21(	x,α( 	α′),t)ci ;

B ′
22

a

b = J a
c B22(	x,α( 	α′),t)cb. (5)

from which follows

b′
11

ij = b
ij

11;

b′
12

ia = J a
c bic

12;

b′
22

ab = J a
c J b

d bcd
22 . (6)

It is readily checked that the solutions of the Fokker-Planck
equation (3) change by the transformations (5) and (6).

Diffusion on Rn ⊗ M is specified as a family of systems of
stochastic differential equations (1) in local coordinates which
transform as (4), (5), and (6) under any well-defined change
of variables whatsoever.

B. Integration, adjoint, and Fokker-Planck

Integration on M is defined by first dividing it up in sets
Bi , each contained in an open set Ui with local coordinates
(α1

i , . . . ,α
m
i ) in local patch Vi . Let the metric g expressed in

the coordinates of local patch Vi be the matrix-valued function
g

(i)
ab(αi) and let f be a function f : M → R. Then∫ √

gf =
∑

i

∫
ψi (Bi )

√
g(i)dα1

i · · · dαm
i f

[
ψ−1

i (αi)
]
. (7)

Integrating two functions specifies a scalar product

(f,h) =
∫ √

gf h, (8)

and the adjoint of an operator L is thus given by

(f,L†[h]) = (L[f ],h) =
∫ √

ghL[f ]. (9)

These considerations are immediately extended to square
integrable functions on the product manifold Rn ⊗ M which
has the flat Euclidean metric on Rn and the metric g on M. Let
Rn be divided in sets B

(n)
j and let Rn ⊗ M be divided in the

sets B
(n×m)
ji = B

(n)
j ⊗ Bi . For the generator of diffusions in (2)

the adjoint can be computed by integration by parts in each set
B

(n×m)
ji . It is a fundamental fact that the boundary conditions

then cancel between neighboring sets and

L† = 1√
g

[
− ∂i

√
gAi

1 − ∂

∂αa

√
gAa

2 + 1

2
∂2
ij

√
gb

ij

11

+ 1

2

∂2

∂αa∂αb

√
gbab

22 + ∂i

∂

∂αa

√
gbai

12

]
. (10)

By comparing (10) and (3) we can write the Fokker-Planck
operator as

F[P ] = √
gL†

[
P√
g

]
. (11)

For the following it is convenient to write

P = P̂
√

g, (12)

where P̂ is a scalar function.

C. Closed solutions for the stationary state

The stationary state of the Fokker-Planck equation in ordi-
nary space can be found in closed form if either the diffusion
process satisfies detailed balance or when the drift field is
incompressible. In this subsection we state the generalization
of these results to diffusions on a compact manifold. To
streamline the notation we use here only one d-dimensional
drift vector A with components Aμ and one d × d-dimensional
diffusion matrix b with components bμν . Taking the manifold
to be T n ⊗ M where T n is the n-dimensional torus (d =
m + n), these stationary states can then be used as zeroth-order
probabilities in the multiscale analysis in Sec. III and in the
following.

The starting point is the observation that the Hänggi-
Klimontovich drift

Dμ = Aμ − 1

2
√

g
∂ν(

√
gbμν) (13)

transforms as a covariant vector. For completeness, a demon-
stration is given in the Appendix A. If for some scalar function
V and in some coordinate system we have

Dμ = − 1
2bμν∂νV , (14)

then this must therefore be true in every coordinate system.
The fluxless stationary states of (3) are determined by

1
2bμν(∂νP ) = [

Aμ − 1
2∂ν(bμν)

]
P. (15)

Using the scalar P̂ = P/
√

g we have instead

1

2
bμν(∂ν log P̂ ) =

(
Aμ − 1

2
∂ν(bμν) − 1

2
bμν

∂ν

√
g√

g

)
= Dμ.

(16)
Therefore, if (14) is true, then the stationary state is given by

P ∗ = 1

N
√

ge−V , (17)

where N is a normalization constant. The mean drift with
respect to this measure must vanish:

V μ = 1

N

∫ √
ge−V Aμ

= 1

N

∫ √
ge−V Dμ − 1

N

∫ √
ge−V Dμ = 0. (18)
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Therefore we can only use (or hope to use) this solution method
when the average drift in the internal states vanishes, which
for a rotating Brownian particles means that it cannot have a
mean rotation around an axis. On the other hand, for motion in
space we can go to a comoving frame where the average drift
is zero and then compute the effective diffusion in that frame.

The other class of closed-form solutions is obtained by
noting that

c = ∂a(Da) + Da
∂a

√
g√

g
(19)

is a scalar. The condition c = 0 is thus the natural generaliza-
tion of incompressibility, ∂μAμ = 0 in local flat coordinates.
Consider, then,

S = 1

2

∫ √
g

(
P̂ − 1

N

)2

, (20)

where
∫ √

gP̂ = ∫ √
g 1
N = 1. Using (10) we have

∂tS =
∫ √

g

(
P̂ − 1

N

)
∂t P̂

= 2
∫ √

gcP̂ 2 − 1

2

∫ √
gbab∂aP̂ ∂bP̂ . (21)

If c = 0, then the solutions must therefore relax to P̂ = 1
N .

III. MULTISCALE WITH INTERNAL STATES

In a pioneering contribution published in the mid-1990s,
Vergassola and Avellaneda showed that scalar transport in a
velocity field that varies on a small scale leads to advection
and diffusion on large scales with transport coefficients that
can be computed in a hierarchy of solvability conditions and
solutions [16]; further results in the same direction were later
obtained in Refs. [17] and [18]. We will here apply the same
method to the analysis of the Fokker-Planck equation on a
product manifold Rn ⊗ M written

∂t P̂ = L†P̂ , (22)

where L† is defined in (10) and where the auxiliary scalar
function P̂ is defined in (12). From a technical point of view,
the material in this section is not very new, except that we keep
track of the manifold M of internal states which adds to the
notational complications; readers familiar with the multiscale
formalism may want to skip to Sec. IV.

The first step is to identify a characteristic time tM in which
diffusion spreads out probability mass on the manifold M. By
order of magnitude tM ∼ D2

M/b, where DM is the diameter of
M and b is a characteristic size of the diffusion coefficients b22

in (10). The second step is to identify a characteristic spatial
scale LM which the diffusion process will reach during time
tM. For the case of diffusion of the position and orientation
of a three-dimensional body in space and on SO(3), and for
physically reasonable diffusion coefficients, LM is on the order
of the radius of the body [8]. We will from now on assume
that scales of time and space and distances on the manifold
have been chosen such that tM, LM, and DM are all of order
one, meaning that all the diffusion coefficients b11, b22, and
b12 in (10) are also of order one. We will further assume that
in the same coordinates the drift coefficients Ai

1 and Aa
2 are

also of order one. If in fact Ai
1 and Aa

2 would be smaller, then
this would mean that the drift is relatively small (a special case
of what will be considered below) while if Ai

1 and Aa
2 would

be larger, then diffusion would not be the fastest process on
the scale of the internal states, and the starting point of the
analysis should differ. The third step is to identify a larger
spatial scale L and a small dimension-less ratio ε = LM

L
. We

seek an effective description of the motion in space on scale
L. To do so, we assume that there are processes on time
scale tM which act to spread out probability mass over M
and distances LM in space, processes on time scale ε−1tM
where the probability mass is advected over length scale L,
and processes on time scale ε−2tM where the probability mass
diffuses relative distance L.

The multiscale step proper is to let physical space be
represented by two variables x̃ on scale LM and X on scale L

and similarly time by t̃ on scale tM, τ on scale ε−1tM and θ

on scale ε−2tM. Derivatives with respect to physical time and
space are then represented as

∂

∂t
→ ∂t̃ + ε∂τ + ε2∂θ ,

∂

∂xi
→ ∂i + ε∇i ,

(23)

where ∂i stands for ∂
∂x̃i and ∇i for ∂

∂Xi and ε is the small
parameter. The probability density function is expressed in
local coordinates and expanded as

P = P (0)(x̃,X,α,t̃ ,τ,θ ) + εP (1)(x̃,X,α,t̃ ,τ,θ )

+ ε2P (2)(x̃,X,α,t̃ ,τ,θ ) + . . .

= √
g(P̂ (0)(x̃,X,α,t̃ ,τ,θ ) + εP̂ (1)(x̃,X,α,t̃ ,τ,θ )

+ ε2P̂ (2)(x̃,X,α,t̃ ,τ,θ ) + . . .) (24)

and (22) is solved order by order in ε. All functions
P (0),P (1),P (2), . . . are assumed periodic in the small-scale
variable x̃ with period LM.

An important role is now played by the part of the operator
L† in (10) which is of leading order in ε. In local coordinates
(x̃,α) it is written in the same way as (10), i.e.,

L†
0 = 1√

g

[
−∂i

√
gAi

1 − ∂

∂αa

√
gAa

2 + 1

2
∂2
ij

√
gb

ij

11

+ 1

2

∂2

∂αa∂αb

√
gbab

22 + ∂i

∂

∂αa

√
gbia

12

]
, (25)

but is an elliptic partial differential operator not on Rn ⊗ M,
but on the compact manifold T n ⊗ M, where T n is the
n-dimensional torus with radii LM. The coefficients of L†

0
depend in principle on x̃, X, and α. We now appeal to standard
results on spectra of elliptic operators on compact spaces; L†

0
should have a discrete spectrum

Spec(L0) = {λ0,λ1, . . .}, (26)

and λ0 = 0 is a unique zero mode. Physically, this corresponds
the solutions of (22) relaxing for long time to a unique
stationary state; as total probability mass is conserved the
corresponding eigenvalue must then be zero. The operator L†

0
and its adjointL0 have the same eigenvalues but not necessarily
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the same eigenfunctions. Let these be given as

L0nl = λlnl ;

L†
0ml = λlml,

(27)

where (nl,mk) = 1lk . Since in L0 all derivatives stand to
the right of all variable-dependent coefficients, n0 must be
a constant. We can choose that to be 1; the orthogonality
condition for m0 and n0 then gives a normalization of m0:∫

T n⊗M

√
gm0 = 1. (28)

The scalar density
√

gm0 is then a normalized probability
density on T n ⊗ M.

The multiscale is now posed by the following hierarchy:

L†
0P̂

(0) = 0;

L†
0P̂

(1) = ∂τ P̂
(0) + 1√

g
∇i

[√
gAi

1P̂
(0)

]

− 1√
g

∂i∇j

[√
gb

ij

11P̂
(0)] − 1√

g

∂

∂αa
∇i

[√
gbia

12P̂
(0)];

L†
0P̂

(2) = ∂τ P̂
(1) + 1√

g
∇i

[√
gAi

1P̂
(1)

]

− 1√
g

∂i∇j

[√
gb

ij

11P̂
(1)

] − 1√
g

∂

∂αa
∇i

[√
gbia

12P̂
(1)

]

+ ∂θ P̂
(0) − 1

2

1√
g

∇i∇j

[√
gb

ij

11P̂
(0)

]
. (29)

All equations are solved in the relaxation limit for the fast
time t̃ . We note that, by assumption,

√
g only depends on the

internal coordinates, hence it commutes with ∇i , the derivative
on the large scale.

A. Dependence of P (0) on x̃ and internal states

The solution to zeroth order is

P̂ (0)( 	̃x,	α, 	X,τ,θ ) = m0( 	̃x,	α; τ,θ,X)C(0)( 	X,τ,θ ), (30)

where m0( 	̃x,	α; τ,θ,X) is the zero mode of L†
0 with normal-

ization (28). Note that m0 depends parametrically on τ , θ ,
and X because the coefficients of L†

0 may depend on all these
variables. C(0) is, on the other hand, a (so far undetermined)
proportionality coefficient. The zeroth other probability P (0) is
then

√
gm0C

(0). Except for the special cases discussed above
in Sec. II C, solving for m0 is in general not straightforward
and requires numerical methods. For the general discussion in
this section it is, however, enough to assume that it exists and
that it depends smoothly on x̃, α, and (τ,θ,X).

B. Solvability conditions and solution to order ε

Generally, we must have

L†
0P̂

(1) ∈ Im(L†
0) = Span{m1,m2, . . .}, (31)

where the zero mode m0 does not appear on the right-hand
side. By Fredholm alternative we then have (L†

0P̂
(1),n0) =

0 and, using the second line of (29) and the solution P (0)

obtained above, we have a solvability condition (two terms
vanish because the are gradients with respect to the small
scales that are integrated over):(

n0,
∂

∂τ
(m0C

(0))

)
+ ∇i

(
n0,A

i
1m0C

(0)). (32)

Since C(0) does not depend on the small scales, the first
term in (32), (n0,

∂
∂τ

(m0C
(0))), is equal to C(0)(n0,

∂
∂τ

(m0)) +
∂
∂τ

(C(0))(n0,m0). On the other hand, by orthogonality
(n0,m0) = 1 for any values of (τ,θ,X) and n0 has been
chosen independent of τ . Therefore (n0,

∂
∂τ

(m0)) = 0 and (32)
simplifies to

∂τC
(0)( 	X,τ,θ ) + ∇i[C

(0)( 	X,τ,θ )(n0,A
i
1m0)] = 0. (33)

Equation (33) describes advective motion with effective
drift velocity

V i(τ,θ,X) = (
n0,A

i
1m0

) =
∫

T n⊗M

√
g Ai

1m0. (34)

The above is a straightforward generalization of the result
given in Eqs. (17) and (18) in Ref. [16].

To solve for P (1) we first write

L†
0P̂

(1) = m0
∂C(0)( 	X,τ,θ )

∂τ
+ C(0)( 	X,τ,θ )

∂m0

∂τ

+∇i

[
Ai

1C
(0)( 	X,τ,θ )m0

] + P̃ (1), (35)

where the remainder term is

P̃ (1) = − 1√
g

∂i∇j

[
b

ij

11P
(0)

] − 1√
g

∂

∂αa
∇i

[
bia

12P
(0)

] ∈ Im(L†
0).

(36)

Using the solvability condition, the first term in (35) can be
rewritten −m0∇i[C(0)V i], and we have

L†
0P̂

(1) = C(0)

(
∂m0

∂τ
+ V i∇im0

)

+∇i

[
C(0)

(
Ai

1 − V i
)
m0

] + P̃ (1). (37)

By the same argument as given above, (n0,∇im0) = 0, and all
terms on the right-hand side of (37) are therefore in Im(L†

0).
The inverse (L†

0)−1 is an integral operator on functions on
T n ⊗ M defined on all functions orthogonal to n0, and

P̂ (1) = C(0)

(
(L†

0)−1 ∂m0

∂τ
+ V i(L†

0)−1∇im0

)

+ [∇iC
(0)](L†

0)−1[(Ai
1 − V i

)
m0

]
+C(0)(L†

0)−1∇i

[(
Ai

1 − V i
)
m0

]
+ (L†

0)−1P̃ (1) + P̂ (1),hom, (38)

where P̂ (1),hom is the homogenous solution which can be
written C(1)m0, where C(1) is another proportionality. The way
in which (L†

0)−1 does not commute with ∇i is illustrated by
second and third terms in (38). Even though (L†

0)−1 acts on
functions on T n ⊗ M its coefficients depend (by assumption)
on the slow variables. To bring (L†

0)−1 completely inside the
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action of ∇i we would have to write these two terms as

∇i

[
C(0)(L†

0)−1
[(

Ai
1 − V i

)
m0

]]
+C(0)(L†

0)−1[∇iL†
0](L†

0)−1
[(

Ai
1 − V i

)
m0

]
,

where (L†
0)−1(∇iL†

0)(L†
0)−1 is another operator.

C. Solvability conditions to order ε2

The effective diffusion on large scales if determined by the
solvability condition on second order, i.e.,

L†
0P̂

(2) ∈ Im(L†
0). (39)

Considering the right-hand side of the third line of (29), this
means

∂τ [(n0,P̂
(1))] + ∇i

[(
n0,A

i
1P̂

(1))] + ∂θC
(0)

− 1
2∇i∇j

[(
n0,b

ij

11m0
)
C(0)

] = 0, (40)

where P̂ (1) is given by (38). The last term gives a first effective
diffusion term with effective diffusion coefficient matrix

κ
ij

(1) = 1
2

(
n0,b

ij

11m0
)
. (41)

The homogeneous part P̂ (1),hom enters in the first two terms
in (40) as a continuity equation for the proportionality C(1)

with the same effective drift velocity as in (34), while the
other terms in P (1) can be written

P̂ (1) − P̂ (1),hom = [∇kC
(0)]χk + C(0)ξ, (42)

with two auxiliary functions χk (given below) and ξ . Overall,
the second term in (40) therefore contributes

∇i

[(
n0,A

i
1P̂

(1)
)] = ∇i∇k

[
C(0)

(
n0,A

i
1χ

k
)] + ∇i

[
C(0)

(
n0,A

i
1ξ

)
−∇k

[(
n0,A

i
1χ

k
)]]

, (43)

of which the first is a diffusion and the second is a
higher-order advection with effective drift velocity V i

1 =
[(n0,A

i
1ξ ) − ∇k[(n0,A

i
1χ

k)]]. The second effective diffusion
term therefore depends only on

χk = (L†
0)−1

[(
Ak

1 − V k
)
m0 − ∂j

(
b

kj

11m0
)

− 1√
g

∂

∂αa

(√
gbka

12m0
)]

, (44)

and we can also write

κik
(2) =

(
(L0)−1

[(
V i − Ai

1

)
n0

]
,
(
Ak

1 − V k
)
m0

− ∂j

(
b

kj

11m0
) − 1√

g

∂

∂αa

(√
gbka

12m0
))

. (45)

Naturally, only the components symmetric in interchanging
indices i and k matter in the above; (45) is hence the
generalization of Eq. (64) in Ref. [16].

D. Semianalytic solutions for χ k

For generalized potential motion discussed above, where
m0 = 1

N(V )
e−V and where ∂aV = −2(b−1)abD

b, where Db is
the Hänggi-Klimontovich drift, the calculation of the transport

coefficient can be simplified. First recall that for consistency
we must then be in a comoving frame where the drift velocity
V k is zero. Equation (44) determining χk is then

L†
V χk

(V ) = −Ak
1

1

N(V )
e−V , (46)

where L†
V [·] = 1

2
√

g
∂μ(e−V √

gbμν∂ν(eV [·])). Suppose now
that for some drift field A2 in the internal states, e.g., A2 = 0 in
local flat coordinates, we have found as a solution the uniform
measure m0 = 1

N(0)
. For that drift field there is an auxiliary

field χk
(0) which satisfies

L†
0χ

k
(0) = −Ak

1
1

N(0)
, (47)

and the contribution to the effective diffusion coefficient (45)
is

κik
(2)(V = 0) = − 1

N(0)

∫ √
gχk

(0)A
i
1. (48)

A solution of (46) can be found by:

χk
(V ) = −(L†

V )−1

[
Ak

1
1

N(V )
e−V

]
, (49)

and for general potential motion we thus have

κik
(2)(V ) = − 1

N(V )

∫ √
gχk

(V )A
i
1. (50)

We, therefore, must solve equation (46) for every potential and
average on the manifold.

E. Collapsing equation on orders ε and ε2

To bring out one final equation we introduce the adjusted
advective velocity Ṽ i = V i + εV i

1 and the adjusted zero-order
proportionality,

C̃ = C(0) + εC(1), (51)

and bring back the original variables in time and space. By the
above we then have

∂t C̃ = −∂i[Ṽ
i C̃] + ∂i∂k

[(
κik

(1) + κik
(2)

)
C̃

]
, (52)

where all terms are of order (ε)2 (diffusive time scale) and
where the first correction is of order (ε)3.

IV. MULTISCALE WITH INTERNAL SYMMETRY

In this section we apply the general results of the previous
section to the physical setting where the system of stochastic
differential equations (1) are overdamped equations of motion
and where the manifold describes a symmetry of the motion in
space. We then assume a drift field 	F in the spatial directions
which we call force and a drift field 	M in the tangent space of
the manifold which we call torque.

A. Overdamped motion

We assume that 	F only depends on the large-scale 	X but
not on the internal state or on the small scale 	̃x, while 	M may
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depend on both the internal state and the large-scale 	X. Further
assume a friction matrix

� =
(

γ11 γ12

γ21 γ22

)
,

which has to have only real positive eigenvalues such that
the underdamped motion on a faster time scale is purely
relaxational. In the examples discussed below of motion on
R3 or C2 � will be real symmetric or Hermitian. � therefore
has a square root in the sense that � = σσT

σ =
(

σ11 σ12

σ21 σ22

)

such that Eq. (1) can be written

γ11
i
j dxj + γ12

i
bdαb

= F idt +
√

2kBT
[
(σ11)ij dWj + (σ12)ibdW ′b],

(53)
γ21

a
j dxj + γ22

a
bdαb

= Madt +
√

2kBT
[
(σ21)aj dWj + (σ22)abdW ′b],

where T is the temperature. The inverse of the friction matrix
is a symmetric mobility matrix

�−1 =
(

μ11 μ12

μ21 μ22

)
,

and the drift fields in (1) are given by

Ai
1 = μ11

i
jF

j + μ12
i
aM

a, (54)

Ai
2 = μ21

a
jF

j + μ22
a
bM

a, (55)

while the diffusion amplitudes in (1) are

B =
√

2kBT �−1σ. (56)

We will, for the rest of this section, assume that all Itô terms and
other correction terms from spatial variation of temperature
and friction matrix have been included in the physical force and
torque as the need may be. The diffusion terms in the Fokker-
Planck operator (10) follow from (56) and the expressions
listed below Eq. (2). We will assume that the program of the
previous section can be carried out, i.e., that we can compute
m0, P (1), etc., as needed.

Before introducing symmetry, let us remark that the
advection velocity (57) can now be written as

V i(τ,θ,X) = (
n0,A

i
1m0

) = μi
jF

j + V
i

(57)

with an effective mobility

μi
j =

∫ √
gμ11

i
jm0, (58)

and a drift generated by torsion and cross-mobility

V
i =

∫ √
gμ12

i
aM

am0. (59)

If two bodies experience opposite torques but are otherwise
equivalent, then they would hence typically migrate at different
speeds when the cross-mobility μ12 is nonzero.

B. Overdamped motion with a symmetry

Let us now assume that the internal states are a symmetry
group of the motion in n-dimensional space. Abstractly
defined, a group G is a collection of elements g with the
following properties:

(i) There is a rule for multiplying any two elements, and
their product g1g2 is also an element of G; this rule for
multiplication is associative, so for any three element of
(g1g2)g3 = g1(g2g3);

(ii) There is an identity element of G, say, e, such that
eg = ge = g for any element g;

(iii) For every element g, there is a unique inverse element
g−1 such that gg−1 = g−1g = e.

That the manifoldM is a symmetry group ofRn means that
there is a map from points g on M to operators R(g) acting
on Rn which are a faithful representation of the group, i.e.,

(i) R(g1g2) = R(g1)R(g2);
(ii) R(e) = 1, such that R(eg) = R(ge) = R(g) for any

element g;
(iii) R(g−1) = (R(g))−1.
All the products in the above are ordinary matrix products.

Let now Ue be a patch of the manifold around the identity
element e and let Ve = ψe(Ue) ∈ Rm be local coordinates for
that patch. By the group action we can construct patches Ug =
g(Ue) around each point g, and we can therefore construct
local coordinates for patch Ug as Vg = ψe[g−1(Ug)]. From
now on we will consider motions (1) expressed in these local
coordinates. Furthermore, we will in this section only consider
patches that are very small so the drift terms in (54) and (55)
and the diffusion terms in (56) are practically constant in each
patch. The values of the various quantities around e will be
indexed B for “body.”

That M is a symmetry group of the motion means that for
any g the overdamped motion described by (53) should look
the same if described in the equivalent local coordinates Vg

and in the transformed spatial coordinates

x ′i = Ri
j (g)xj . (60)

The deterministic and random forces in (53) are also be trans-
formed in the same way, while the transformation properties
of the Wiener noises is a matter of convention; here we will
take them to be unchanged. Clearly invariance of the motion
in space only holds if the friction matrices transform as

γ11(g) = R(g)γ B
11R

−1(g); (61)

γ12(g) = R(g)γ B
12; (62)

and the spatial noise terms as

σ11(g) = R(g)σB
11; (63)

σ12(g) = R(g)σB
12. (64)

We have to assume that γ21 and γ22 transform as needed to
preserve positivity; for a real symmetric friction matrix this
means γ21(g) = γ21R

T (g) and σ21(g) = σB
21R

T (g).
Although somewhat more general cases could be consid-

ered we will assume that the friction and noise in the manifold
directions are the same at every point, i.e., γ22(g) = γ B

22 and
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σ22(g) = σB
22. The mobilities in (54) then transform as

μ11(g) = R(g)μB
11R

−1(g),

μ12(g) = R(g)μB
12,

and the effective mobility in (58) is

μi
j =

∫ √
gRi

l

(
μB

11

)l

k
R−1k

jm0. (65)

As we will see below for the examples of SO(3) and SU(2),
when m0 is constant this simplifies considerably and μi

j

then becomes proportional to the identity matrix. The same
result holds for the first (simple) component of the effective
diffusivity in (41).

For invariance to be complete we would finally have to
assume that the torque Ma be the same at each point of
M (expressed in the local coordinates). Since, physically,
the torque is (or could be) externally determined we will,
however, relax this requirement, and the drift generated by
cross-diffusion and torque is then

V
i =

∫ √
gRi

l (g)
(
μB

12

)l

a
Mam0. (66)

This can be nonzero if the variations of Ri
l (g) and Mam0

combine constructively but would be zero if, for instance, Ma

is constant and m0 is uniform.

V. MOTION ON R3 AND ROTATIONS IN THE
LIE GROUP SO(3)

We will now make the previous section more concrete
by considering translation and rotations in ordinary three-
dimensional space. The Lie group SO(3) is the set of rotations
about the origin of the three-dimensional Euclidean space
R3 where the group product is composition of rotations.
Physically, the situation is described by two frames: the
laboratory frame and the body frame, where everything that
depends on the external world (force 	F and perhaps partly
torque 	M) are simply expressed in the laboratory frame,
and everything else is simply expressed in the body frame.
A rotation is a transformation that changes the body frame
to the laboratory frame (active interpretation, left action of
the group). Rotations, being linear transformations, can be
represented as matrices once a basis of R3 has been chosen.
Specifically, if we choose an orthonormal basis of R3, every
proper rotation is described by an orthogonal 3 × 3 matrix
with determinant one, which is the set SO(3). The following
facts about SO(3) are well known, cf. Ref. [19]:

(i) SO(3) preserves the scalar product (x,y) = ∑
i x

iyi .
SO(3) therefore preserves the Euclidean metric tensor
diag(1,1,1), which is the Kronecker symbol δij . As a con-
sequence, all spatial tensor indices can be lowered and raised
at will. SO(3) additionally preserves the three-dimensional
volume element and the Levi-Civita tensor εijk .

(ii) SO(3) is compact manifold of dimension 3.
(iii) The tangent space of SO(3) at the identity element

e is the Lie algebra so(3). An element of the Lie algebra
can be written v = ∑

i αiLi where (α1,α2,α3) are three real
parameters and (L1,L2,L3) are three basis elements. so(3) is
hence isomorphic to R3.

(iv) The exponential map of the Lie algebra covers the
group.

The last point means that every element g ∈ SO(3) can be
written exp(v) for some v. This representation is, of course,
not unique. However, if the real parameters α lie sufficiently
close to the origin, then they determine a set Ve ⊂ R3 such
that the map α → exp(

∑
i αiLi) is one to one. The α’s can

therefore be used to construct a very convenient system of
local coordinates used in Ref. [20] and earlier in Ref. [15]. In
Appendix B we summarize useful facts about this system of
charts.

A. No cross-diffusion and m0 constant

In this section and in the next we will make successive
assumptions to make the problem of computing large-scale
advective-diffusive motion analytically solvable. The first of
these assumptions is to assume that the cross-frictions in (53)
are absent. Our starting point is therefore the simpler set of
overdamped equations,

dxi = γ −1i

jF
jdt +

√
2kBT (γ − 1

2 )ij dWj ,

dαb = η−1a

bM
bdt +

√
2kBT (η− 1

2 )abdW ′b,
(67)

where we have introduced γ (spatial friction matrix) for γ11

and η (rotation friction matrix) for γ22. Note that for space
(indices i and j ) we do not need to distinguish upper and
lower indices, but for motion on the group manifold (indices
a and b) we do. We restate the assumptions already made on
the dependence of the various quantities in (67):

T = T ( 	X,τ,θ );

γ i
j = γ i

j ( 	X,	α,τ,θ );

ηa
b = ηa

b ( 	X,τ,θ );

F i = F i( 	X,τ,θ );

Ma = Ma( 	X,	α,τ,θ ). (68)

where γ , η, and 	F transform as discussed above in Sec. IV B.
A consequence of these assumptions is that the zero-order

probability P (0) = √
gC(0)m0 does not depend on the small

length scale x̃. From now on we will additionally ignore the
dependency of T , γ , and η on τ and θ as they are not our
concern here; similarly as in Sec. IV above, we have in (67)
also assumed that all Itô terms and other correction terms from
spatial variation of temperature and friction matrix have been
included in the physical force 	F .

Second, we assume that the dynamics is such that m0

is constant. As discussed above in Sec. II C, this is so
when the drift (η−1)abM

b is zero and when the generalized
incompressibility condition in (20) is satisfied. One example
of when the latter holds is when Ma is constant (a particle that
tends to rotate around an axis fixed in the body), and another
is when the torque is constant in the laboratory frame.

We now discuss the effective mobility (65), which we write
as

μij =
∑
lk

∫ √
gRil

(
γ −1

B

)
lk
R−1

kj m0, (69)
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where R−1
kj = Rjk . Consider the quadratic form s(x,y) =∑

ij μij xiyj where x and y are two vectors. From the above,
this is

s(x,y) =
∑
lk

∫ √
g

(∑
i

xiRil

)(
γ −1

B

)
lk

⎛
⎝∑

j

yiRjk

⎞
⎠m0.

As m0 is constant, the value of the integral is the same for
every joint rotation of the two vectors; s(Rx,Ry) = s(x,y).
Since the quadratic form invariant by SO(3) is the Kronecker
δ and since TrR(γ −1

B )R−1 = Tr(γ −1
B ), we therefore have

μij = Tr(γ −1)

3
δij , (70)

and the advective velocity is

Vi = Tr(γ −1)

3
Fi. (71)

The same reasoning gives the first component of the effective
diffusion tensor obtained in (41) as

κ
ij

(1) = kBT
Tr(γ −1)

3
δij . (72)

The invariant method used here is described in more detail in
Appendix C.

B. No torque and η diagonal

To proceed further, we need to solve for the first-order
probability P (1), and to do so in closed form we assume that
there is no torque. We will also assume that the angular friction
matrix η is diagonal, which amounts to a choice of basis
for the body frame. Note that we will not assume that γ is
diagonalizable in the same basis, a simplifying assumption
made in Refs. [8] and [9].

Let us first recall that the goal is to compute the second
component of the effective diffusion tensor obtained in (45),
which is

κ
ij

(2) = −(
n0,(γ̃

−1)ilF
lχj

)
, (73)

where χj is given in (44).
Under the assumptions made, the second term on the

right-hand side of this equation [∂j (Bkj

11m0)] vanishes, and, as
discussed in Appendix B, the third term is proportional to α in
the local coordinates. By making the local patches sufficiently
small (evaluating the right-hand side sufficiently close to the
reference point in the center of patch), this term can therefore
also be neglected, and the auxiliary equation to solve is more
simply

L†
0χ

i = m0
[
(γ −1)ilF

l − V i
]
. (74)

As 	F does not depend on the small scales we can look for
solutions through a secondary auxiliary equation,

L†
0λ

ij = (γ̃ −1)ij , (75)

where λ is a tensor and γ̃ −1 is the traceless part of the
mobility matrix. We note that this quantity is an element of the

irreducible representation 5 of SO(3) which transforms as

γ̃ −1 = R∗r(α)γ̃ −1
B r−1(α)(R∗)−1, (76)

where γ̃ −1
B is the traceless part of the mobility tensor in the

body frame.
We now consider the operator L†

0 in (10) acting on λ. As we
have assumed no dependence on the small spatial scales, no
cross-diffusion, and no torque, the only term that matters are
the partial derivatives with respect to the rotations. For a small
patch the terms 1

2

√
gbab

22 will be close to kBT (η−1)ab and, as
discussed in Appendix B, we can interchange the order of the
derivative and 1

2

√
gbab

22 such that

L†
0 = kBT (η−1)ab ∂2

∂αa∂αb
. (77)

We then make the ansatz that λ also lies in 5:

λ = R∗r(α)QBr−1(α)(R∗)−1, (78)

where QB is an auxiliary traceless symmetric tensor in the
body frame. Note that if Qs

B would have a component q1 where
q is a scalar, then L†

0Q
s
B would be zero, and, furthermore, it

would not contribute to (73). We therefore prefer to solve (75)
for a general symmetric matrix QB and then show that
these solutions are only determined up to an arbitrary term
proportional to the identity matrix, after which by adding or
subtracting such a term we can always adjust the trace of QB

to be zero.
The equation to solve is thus[

kBT (η−1)mn ∂

∂αm

∂

∂αn
(R∗r(α)QBr−1(α)(R∗)−1)ij

]
α=0

= (γ̃ −1)ij . (79)

The pertinent terms inside the differentials are the quadratic,
and using (B3), one obtains:

(γ̃ −1)ij = kBT [(3R∗QBη−1(R∗)−1+3R∗η−1QB(R∗)−1

− 4Tr(η−1)R∗QB(R∗)−1−2Tr(QB)R∗η−1(R∗)−1)ij

+ 2(Tr(η−1)Tr(QB) − Tr(η−1QB))δij ]. (80)

It is seen that the factors R∗ and (R∗)−1 can be removed on
both sides.

The diagonal elements obey coupled equations⎛
⎜⎜⎜⎝

γ̃ −1
B11

2kBT

γ̃ −1
B22

2kBT

γ̃ −1
B33

2kBT

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

2
(
η−1

11 − a
) −η−1

22 −η−1
33

−η−1
11 2

(
η−1

22 − a
) −η−1

33

−η−1
11 −η−1

22 2
(
η−1

33 − a
)
⎞
⎟⎟⎠

×
⎛
⎝QB11

QB22

QB33

⎞
⎠. (81)

The general solution of (81) can be written as

QBii
= − 1

6bkBT

⎛
⎝3η−1

ii γ̃ −1
Bii

−
∑

j

η−1
jj γ̃ −1

Bjj

⎞
⎠ + q, (82)

where b = (η−1
11 η−1

22 + η−1
22 η−1

33 + η−1
11 η−1

33 ) and q is arbitrary.
By choosing q = 0 we adjust the trace of QB to be zero.
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When γ̃ −1
B commutes with η−1 (82) is the full result, but in the

more general case γ̃ −1
B is not diagonal in the chosen basis and

the off-diagonal elements of QB are

QBij
= −

γ̃ −1
Bij

(kBT )
(
4Tr(η−1) − 3η−1

ii − 3η−1
jj

) i �= j (83)

Using the invariant method, we obtain the general formula for
the effective diffusion tensor:

(Keff)ik = κik
(1) + κik

(2)

= δik kBT Tr(γ −1)

3
+ Tr

(
γ̃ −1

B QB

)
×

∑
l,j

[
1

30

(
δij δklFlFj

) + 1

10

(
δikδljFlFj

)]
, (84)

where

Tr(γ̃ −1
B QB) =

∑
i

(
γ̃ −1

B

)ii(
γ̃ −1

B

)ii
(η−1)ii

2bkBT

+ 2

kBT

{ [(
γ̃ −1

B

)
21

]2

Tr(η−1) + 3η−1
33

+
[(

γ̃ −1
B

)
23

]2

Tr(η−1) + 3η−1
11

+
[(

γ̃ −1
B

)
13

]2

Tr(η−1) + 3η−1
22

}
. (85)

In the special case where γ̃ −1
B commutes with η−1 only the

first term in (85) is nonzero, which can be seen to be the result
derived in Refs. [21] and [8].

C. General potential motion on SO(3)

We now return to the setting of Sec. III D and assume that
there is another set of torques which satisfy a detailed balance
condition but with a nontrivial zeroth probability P (0) =√

ge−V /N(V ). Using (50) the contribution to the effective
diffusivity is

κik
(2)(V ) = T ik

jlF
jF l, (86)

where the fourth-order tensor is given by

T ik
jl = −

∫ √
g(γ̃ −1)ij (L†

V )−1

[
(γ̃ −1)kl

1

N(V )
e−V

]
(87)

with a tensor differing from Eqs. (78), (82), and (83) above.

VI. MOTION ON C2 AND TRANSFORMATIONS
IN THE LIE GROUP SU(2)

As a further example we consider motion in four real
dimensions with an internal symmetry differing from the four-
dimensional rotation group SO(4). Let four real coordinates
(x1,y1,x2,y2) be grouped into two complex coordinates (z1,z2).
An overdamped dynamics in (x1,y1,x2,y2), analogous to the
first line of (67), can then be taken to be(

dz1

dz2

)
= S

(
f1

f2

)
dt +

√
2kBT S

1
2 •

(
dω1

dω2

)
, (88)

where S is a Hermitian mobility matrix, f1 and f2 are two
complex forces, and dω1 and dω2 are two complex Wiener

process such that

〈dωμ(t)dων(s)〉 = 0;

〈dωμ(t)dων(s)〉 = 2dtδμνδ(t − s). (89)

Two-dimensional complex space has the symmetry of the
special unitary group [SU(2)] of 2 × 2 unitary matrices with
determinant 1. To have diffusion on C2 with the internal
symmetry of SU(2) we should therefore add to (88)

d 	α = η−1 	Mdt +
√

2kBT η− 1
2 • d	ξ, (90)

where α is the coordinate in some local chart of SU(2) and the
mobility tensor transforms as

S(g) = U (g)S(e)U−1(g). (91)

Equations (88)–(91) define the model we will study in this
section.

The following facts about SU(2) are well known:
(i) If z = (z1,z2) and w = (w1,w2) are two pairs of com-

plex numbers, then SU(2) preserves the scalar product (z,w) =
z1w1 + z2w2. Introducing the covariant vector (“ket”) zi and
the contravariant vector (“bra”) zi = zi SU(2) hence preserves
the identity operator 1i

j . In particular, SU(2) preserves the norm
|z|2 = (z,z) = ∑

i ziz
i .

(ii) SU(2) is a compact manifold of dimension 3, and is the
twofold covering group of SO(3).

(iii) The tangent space of SU(2) at the identity element e

is the Lie algebra su(2), isomorphic to R3 [and to so(3)]. An
element of the Lie algebra can be written v = i

∑
i αiσi where

(α1,α2,α3) are three real parameters and (σ1,σ2,σ3) are three
Hermitian traceless matrices, commonly chosen to be the Pauli
matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
.

(iv) The exponential map of the Lie algebra covers the
group. If H is a Hermitian 2 × 2 matrix with zero trace, then
U = eiH is in SU(2).

In this setting the analysis proceeds much as above for
SO(3). Qualitatively speaking, one main difference is that
SU(2) only preserves the identity matrix 1i

j and not, as SO(3),
both an identity matrix and a three-dimensional Euclidean
metric. A simplifying feature is, on the other hand, that the
friction operator S can be expressed in the same basis as the
Lie algebra. Let us therefore write

S = μ01 +
∑

l

μlσl Tr(S) = 2μ0. (92)

The advection velocity is then

V μ = μ0f
μ. (93)

We also introduce the traceless mobility tensor,

S̃μ
ν =

∑
l

μl(σl)
μ

ν. (94)

The analog of the auxiliary tensor field λ for SO(3) above is
now a Hermitian 2 × 2 matrix, and the analog of the ansatz (78)
is

λμ
ν = Uμ

λ(QB)λκ (U−1)κ ν . (95)
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As QB is Hermitian, it can be written

QB = q01 +
∑

l

qlσl (96)

and the analog of (79) is

kBT
∑

i

(η−1)ii
∂2

∂α2
i

{
U (	α)

(
q01 +

∑
k

qkσk

)
U−1(	α)

}

= −U (	α)
∑

k

μkσkU
−1(	α), (97)

with solution

qp = 1

4kBT

μp

Tr(η−1) − η−1
pp

(98)

and q0 arbitrary.
The effective diffusion on C2 is determined by the fourth-

order tensor

T μν
κλ = 〈

S̃μ
κ λν

λ

〉
, (99)

which by SU(2) invariance can be written A1μ
κ 1ν

λ + B1μ
λ 1ν

κ .
The coefficients are determined by the two equations

0 = 4A + 2B, (100)

Tr[S̃λ] = 2A + 4B, (101)

and it therefore suffices to compute

B = 4kBT Tr[S̃λ] =
∑

p

μ2
p

Tr(η−1) − (η−1)pp
. (102)

The effective diffusion has two components of which the first
is

2
(
Re

(∇2
zμzμ

))(
κ

μμ

(2) C(0)
)

= (∇xμ
∇xμ

+ ∇yμ
∇yμ

)(
C(0) B

3kBT
f μf μ

)
(103)

and the second is

Re
(∇2

zμzν
κ

μν

(2) C
(0) − ∇2

zμzν
κ

μν

(2) C
(0)

)
= Re

(
∇2

zμzν

B
6kBT

f μf νC(0) − ∇2
zμzν

B
6kBT

f μf
ν
C(0)

)
.

(104)

VII. NUMERICAL SIMULATIONS

In this section we compare our result (84) to numerical
simulations of a Brownian particle, which can translate and
rotate in three dimensions and subjected to an external constant
force field. During the simulation we solve numerically
the equations in (67), where the evolution of translational
Brownian motion is computed in the laboratory frame, while
the rotational Brownian motion is computed in the body frame.
We also assume that:

(i) The translational friction tensor is only dependent by
orientation in the laboratory frame.

(ii) The rotational friction tensor and the translational
friction tensor are not diagonal in the same base in the body
frame.

(iii) The force is constant in the laboratory frame and is
applied only in one direction.

(iv) The torque is set to zero.
For the simulations, we choose a quaternion as a concrete

parametrization of rotation, i.e., the model is supplemented by
the equation of motion for the quaternion q,

q̇ = 1
2q ◦ �, (105)

where the symbol ◦ denotes a quaternion product [22]
evaluated in the Stratonovich sense and � is the angular
velocity in the body frame (from the equation describing the
rotational motion), represented as a pure quaternion [22].

We solve translational and rotational equations describing
the motion of Brownian body with the Euler algorithm with
time step 10−4 s and temperature T = 300 K. The result of the
simulations averaged over 104 realizations of the noise sources
(with identical initial conditions) are shown in the following
figures.

In Fig. 1 a trajectory in the laboratory frame of a Brownian
body is shown. The shape of the particle is identified by
translational friction tensor and rotational friction tensor in
the body frame:

γB =
⎛
⎝25 0 0.2

0 16 0
0.2 0 13

⎞
⎠ (

fN s

μm

)
,

η =
⎛
⎝17 0 0

0 16 0
0 0 8

⎞
⎠ (fN μm s). (106)

As expected, the motion of the body is enhanced along the
direction where the force is applied, while diffusion governs
the motion along the other two directions. In this specific case,
the force is applied along the x direction with magnitude equal
to ‖ 	F‖ = 10 fN.

Figure 2, instead, shows the probability distribution func-
tions of the final position of all trajectories for the same body
described before. Here the asymmetry given by the application

 0  150  300  450
-15

 0
 15

-30
-15

 0
 15

x [µm]
y [µm]

z 
[µ

m
]

FIG. 1. The figure describes a trajectory in laboratory
frame of a Brownian body in three dimensions. Body:
(γB )11 = 25 fN s

μm ,(γB )22 = 16 fN s
μm ,(γB )33 = 13 fN s

μm , (γB )13 =
0.2 fN s

μm (γB )12 = (γB )23 = 0 fN s
μm , (η)11 = 17 fN μm s, (η)22 =

16 fN μm s ,(η)33 = 8 fN μm s. The external force is 	F =
(10 fN,0 fN,0 fN).
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 0

 50

 100

 150

 200

 250

-100  0  100  200  300  400  500  600  700

Final Position [µm]

FIG. 2. The figure describes the final position distribution
probability functions for the x and z components in the laboratory
frame of all trajectories for a Brownian body, respectively (black)
right and (gray) left probability distributions (the y-component
probability distribution function is not shown. It overlaps with the
z-component probability distribution function, as expected). The
asymmetry is given by the application of an external force field
on the body. Body: (γB )11 = 25 fN s

μm ,(γB )22 = 16 fN s
μm ,(γB )33 =

13 fN s
μm , (γB )13 = 0.2 fN s

μm (γB )12 = (γB )23 = 0 fN s
μm , (η)11 =

17 fN μm s ,(η)22 = 16 fN μm s ,(η)33 = 8. fN μm s. The external
force is 	F = (10 fN,0 fN,0 fN).

of an external force is well displayed. Indeed, the final position
mean of Brownian particle, along the coordinate where the
force is applied, can be computed as:

〈	xfinal〉 = 	Vbtfinal, (107)

where 	Vb is given by Eq. (71) and tfinal is set to 1000 s.
In this case, the ballistic velocity of the Brownian body is
V x

b = 0.60 μm
s . The final position mean is therefore 〈xfinal〉 =

600 μm.
In Fig. 3 we show the temporal evolution of the translational

diffusion tensor along the three different axes and, in the
inset, the ballistic velocity, component x, for a Brownian body.
The components of the effective diffusion tensor computed
in Eq. (84) are in very good agreement with the long-term
coefficients obtained by the simulation. The external force
applied to the system is 	F = (200 fN,0 fN,0 fN), while the
translational friction tensor and rotational friction tensor in the
body frame have the following form:

γB =
⎛
⎝12 2.0 0

2.0 10 0
0 0 10

⎞
⎠ (

fN s

μm

)
,

η =
⎛
⎝7.12 0 0

0 6.84 0
0 0 4.12

⎞
⎠ (fN μm s). (108)

The two full horizontal lines represent the theoretical long-
term prediction given by Eq. (84):

Keff =
⎛
⎝1.18 0 0

0 0.99 0
0 0 0.99

⎞
⎠ (

μm2

s

)
. (109)
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FIG. 3. The figure describes the diffusion coefficient along the
x axis, y axis, and z axis in the laboratory frame, respectively (red)
cross, (green) empty square, and (blue) full circle points, as function
of the time for a body at room temperature T = 300 K, averaged
over 104 realization of the Gaussian noise source, but for identical
initial position and orientation of the body. The two full horizontal
lines represent the theoretical long-term prediction from (84),
(Keff )xx = 1.18 μm2/s, (Keff )yy = (Keff )zz = 0.99 μm2/s.
Body: (γB )11 = 12. fN s

μm ,(γB )22 = (γB )33 = 10 fN s
μm , (γB )12 =

2 fN s
μm (γB )13 = (γB )23 = 0 fN s

μm , (η)11 = 7.12 fN μm s, (η)22 =
6.84 fN μm s ,(η)33 = 4.12 fN μm s. The external force is
	F = (200 fN,0 fN,0 fN). In the inset is plotted the x component of
the ballistic velocity of the particle (red) empty circle points, the full
horizontal line is equal to V x = 19.31 μm/s (the other net velocity
components are zero, not shown).

The inset shows the evolution of the x component of the
ballistic velocity of the body. The full horizontal line is the
long-term prediction computed by Eq. (71) and it is equal to
V x = 19.31 μm

s
.

Figure 4 shows the temporal evolution of the translational
diffusion tensor along the three different axes and, in the inset,
the component x of the ballistic velocity of a Brownian body.
The components of the effective diffusion tensor computed in
Eq. (84) are in very agreement with the long-term coefficients
obtained by the simulation. The external force applied to the
system is 	F = (200 fN,0 fN,0 fN) and the translational friction
tensor in the body frame has the following form:

γB =
⎛
⎝12 2.0 0

2.0 11 0
0 0 10

⎞
⎠ (

fN s

μm

)
. (110)

The rotational friction tensor is the same as that of Eq. (108).
The two full horizontal lines represent the theoretical long-
term prediction given by Eq. (84):

Keff =
⎛
⎝1.41 0 0

0 1.15 0
0 0 1.15

⎞
⎠ (

μm2

s

)
. (111)

The inset shows the evolution of the x component of the
ballistic velocity of the body. The full horizontal line is the
long-term prediction computed by Eq. (71) and it is equal to
V x = 18.70 μm

s
.
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FIG. 4. The figure describes the diffusion coefficient along the
x axis, y axis, and z axis in the laboratory frame, respectively (red)
cross, (green) empty square, and (blue) full circle points, as function
of the time for a body at room temperature T = 300 K, averaged
over 104 realization of the Gaussian noise source but for identical
initial position and orientation of the body. The two full horizontal
lines represent the theoretical long-term prediction from (84),
(Keff )xx = 1.41 μm2/s, (Keff )yy = (Keff )zz = 1.15 μm2/s. Body:
(γB )11 = 12 fN s

μm ,(γB )22 = 11 fN s
μm ,(γB )33 = 10 fN s

μm , (γB )12 =
2 fN s

μm (γB )13 = (γB )23 = 0 fN s
μm , (η)11 = 7.12 fN μm s ,(η)22 =

6.84 fN μm s ,(η)33 = 4.12 fN μm s. The external force is
	F = (200 fN,0 fN,0 fN). In the inset is plotted the x component of
the ballistic velocity of the particle (red) empty circle points; the full
horizontal line is equal to V x = 18.7 μm/s (the other net velocity
components are zero, not shown).

VIII. DISCUSSION

In this paper we have analyzed the coupled overdamped
motion in space and on a manifold of internal states. We
have shown that on large scales in space and time the
probability distribution over the internal states and on small
scales in space is slaved to the large-scale spatial probability
distribution, which is that of an advection-diffusion process.
This process is described by an effective drift field and an
effective diffusion matrix, as is to be expected on physical
grounds. The method to arrive at these results is the multiscale
formalism, which here amounts to solving auxiliary elliptic
partial differential equations on the manifold, and computing
weighted averages of these solutions, over the manifold.
In general, the solutions of the auxiliary equations and the
averages can only be found numerically. For the drift field we
identified settings including cross-mobility between space and
internal states where particles that are acted on by different
internal drifts (torques), but are otherwise equivalent, may
migrate at different speeds in space.

We then showed that when the drift field obeys a detailed
balance condition with respect to the diffusion operator the
auxiliary equations must be solved to compute the effective
diffusion.

A condition for such a solution to exist is that the average
drift velocity vanishes, and the analysis therefore has to be
carried out in a comoving frame in space. We have assumed
that this comoving frame moves with constant speed; effects

of the speed of co-moving frames varying on large scales of
space and time have not been considered in this work.

We then applied our general approach to the Brownian
translations and rotations, which is advection-diffusion on R3

and on Lie group SO(3) of rotations in three dimensions.
We considered the special case of constant angular friction
and no torque and showed that the auxiliary equations then
can be solved in closed form. The solution can be described
as follows: the traceless mobility tensor γ̃ −1 is a traceless
symmetric 3 × 3 matrix and, hence, an element of SO(3) irrep
5. Its value at a given group element g is determined by its
value at the group identity γ̃ −1

B , which is the traceless part of
the mobility tensor in the body frame, and a rotation matrix
R(g), through the formula γ̃ −1 = R(g)γ̃ −1

B RT (g). We then
find another element of irrep 5, λ = R(g)QBRT (g), where
QB is a linear transform of γ̃ −1

B . The effective diffusion matrix
is then computed as an average of the product γ̃ −1λ over a
uniform measure on rotations (Haar measure). As discussed
in the main text, these averages can be computed in closed
form using invariant theory. We compare our predictions to
numerical simulations with excellent results.

Compared to results reported recently [8] we have not
assumed that the spatial mobility matrix γB commutes with the
angular diffusion matrix in the body frame. Hence, we have
here enlarged the set of cases where the effective diffusion
can be computed analytically in closed form. We have also
shown that the effective diffusion of Brownian translations and
rotations, which has the same angular diffusion and which is in
detailed balance, can be computed when an analytic expression
of the solution of Eq. (46) can be found. When the measure over
rotations is not uniform, these averages cannot be computed
using invariant theory and would require further study. We
hope to be able to return to this issue and other applications of
the methods developed here in future contributions.
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APPENDIX A: TRANSFORMATION PROPERTIES OF
THE HÄNGGI-KLIMONTOVICH DRIFT

We want to show that

Da = Aa − 1

2
√

g
∂αb (

√
gbab), (A1)

defined in Eq. (13) above, transforms as a vector. Consider
therefore in a transformed coordinate system

D′a = A′a − 1

2
√

g′ ∂α′b (
√

g′b′ab). (A2)
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Using the transformation properties of A, b,
√

g, and deriva-
tives, this is

D′a = J a
b Ab + 1

2

∂2α′a

∂αa∂αb
bpq

− d

2
√

g
(J−1)qb

∂

∂αq

(√
g

1

d
J a

pJ b
r bpr

)
, (A3)

where J a
b = ∂α′a/∂αb and d = det J . Identifying terms, this

is

D′a = J a
b Db + 1

2

∂2α′a

∂αa∂αb
bpq − d

2
(J−1)qbb

pr ∂

∂αq

(
1

d
J a

pJ b
r

)
.

(A4)

The second line in above gives three terms,

2ndline = d

2
(J−1)qbb

pr ∂d

∂αq

1

d2
J a

pJ b
r − d

2
(J−1)qbb

pr

× ∂2α′a

∂αq∂αp

1

d
J b

r − d

2
(J−1)qbb

pr ∂2α′b

∂αq∂αr

1

d
J a

p . (A5)

Since (J−1)qbJ
b
r = 1q

r the second line in the above cancels
with the second term in the first line of (A4). The first line in
the above can similarly be be rewritten 1

2J a
p bpq∂αq log d. Since

∂αq log d = Tr[J−1 ∂J
∂αq ] this cancels with the third line and we

have hence simply

D′a = J a
b Db + all other terms cancel. (A6)

APPENDIX B: LOCAL CHARTS OF THE SO(3)
GROUP MANIFOLD

Let e be the unit element of SO(3) and let 1 be its
representation as a unit rotation matrix. The matrices

M(α) =
⎛
⎝ 0 −α3 α2

α3 0 −α1

−α2 α1 0

⎞
⎠, (B1)

can be identified with elements in the Lie algebra so(3). Let
Ve be a neighborhood of the origin in R3 with |α| � C, a
neighborhood of e in SO(3) is then given by

Ue : r(α) = exp [M(α)] α ∈ Ve. (B2)

Let g∗ be another element of SO(3) and let R∗ = r(α) be its
representation as a rotation matrix. The local patch around g∗
is then given by

Ug∗ : R(β) = R∗r(β) β ∈ Ve. (B3)

As the exponential is smooth, (B5) provides a one-to-one

mapping between vectors in the open ball
√

	βT 	β < C and
sets Ug∗ if the maximal radii C are small enough. In fact, the
elements along a line in α correspond to rotations around a
given axis which give distinct outcomes as long as the angle
of rotation is less than half a turn; the constant C therefore has
to be less than π . Note that r−1(α) = r(−α).

Using the Levi-Civita tensor and the Einstein convention,
we can write

r(α)ij = e−εijsαs , (B4)

which is convenient for calculation. However, it has to be
remembered that when doing so we connect the basis of the
Lie algebra with the body frame (they have to rotate together
to keep ε invariant). In the main text and below we use a basis
such that the angular diffusion matrix b22 = kBT η−1 entering
the elliptic operatorL0 is diagonal at the group identity element
e. This together with (B4) means that we have chosen a frame
of reference for the body system, the one for which the angular
friction matrix η is diagonal, η = diag(η11,η22,η33).

Let now g be another group element close to g∗. As
described above it can be represented by a rotation matrix
which can be written either as r(α)r(�β) with some small �β

or as r(α + �α), with some small �α. This means

r(�β) = r(−α)r(α + �α), (B5)

which, when the increments are infinitesimal, gives the
inverse Jacobian (upper and lower indices do not need to be
distinguished since both β and α are elements of R3)

(J−1)ab = ∂βa

∂αb

=
[
δab + 1

2
εabtαt + 1

6
(αaαb − α2δab)

]
+ O(α3).

(B6)

The Jacobian is, similarly,

(J )ab = ∂αa

∂βb

=
[
δab − 1

2
εabtαt + 1

12
(αaαb − α2δab)

]
+ O(α3).

(B7)

The volume element close to unit element is given by

dVol = dβ1dβ2dβ3. (B8)

By above, the volume element in the local coordinate is
therefore up to terms quadratic in α given by

√
gdα1dα2dα3 = (

1 − 1
12α2

)
dα1dα2dα3. (B9)

In the main text we are interested in the partial differential
operator L†

0. Suppose that at the group element g and in
system of local coordinates β around g it is given by a
torque (drift field) T = 0 and a constant diffusion matrix
b. In coordinates α′ centered on g∗ L†

0 is then given by
1√
g′ ∂α′a (−√

g′T ′a + 1
2∂α′b (

√
g′b′ab)) where T ′ and b′ follow

from the transformations (5). In the case at hand this means

T ′a = 1

2

∂2α′a

∂βp∂βq

b
pq

, (B10)

b′ab = ∂α′a

∂βp

∂α′b

∂βq

b
pq

, (B11)

√
g′ = det

(
∂α′a

∂βp

)−1

. (B12)

We recognize that the combination T ′a − 1
2
√

g′ ∂α′b (
√

g′b′ab) is
the Hänggi-Klimontovich drift which transforms as a vector

062147-14



ADVECTIVE-DIFFUSIVE MOTION ON LARGE SCALES . . . PHYSICAL REVIEW E 93, 062147 (2016)

and which therefore here is zero. The operator (acting on a
function h) is hence

L†
0[h] = 1

2
b′ab ∂2h

∂α′a ∂α′b
+ 1

2
√

g′ ∂α′a (
√

g′b′ab)
∂h

∂α′b
. (B13)

The factor ∂αa (
√

gbab) is of order O(α), which means that for
a small-enough patch it can be ignored.

APPENDIX C: INVARIANT METHOD

In this section we show how the method to average over
the orientations can be used to compute the effective diffusion
tensor. The averages over orientations are of the type

Mijkl = 〈
Qij γ̃

−1
kl

〉
(C1)

for some indices (i,j,k,l) and Qij = R∗
ikQBkk

(R∗)−1
kj , and

where the average is taken with respect to the uniform measure
(Haar measure). This can be written

Mijkl = ∂4

∂xi
∂yj

∂zk
∂wl

I (x,y,z,w), (C2)

I (x,y,z,w) = 〈
Qij γ̃

−1
k′l′ xi ′yj ′zk′wl′

〉
, (C3)

where x, y, z, and w are three-dimensional vectors and
(i ′,j ′,k′,l′) are summed-over indices (Einstein convention).
When the measure is uniform, I (x,y,z,w) must be an invariant
of SO(3) since any overall rotation of the vectors can be

brought over on the matrices γ̃ and Q, and all rotations of
the matrices are included in the average. By general invariant
theory and by symmetry under x ↔ y and z ↔ w,

I (x,y,z,w) = A(x,y)(z,w) + B(x,z)(y,w) + B(x,w)(y,z),

which leads to

Mijkl = A1ij 1kl + B1ik1j l + B1il1jk, (C4)

where A and B are constants to be determined. We observe
that 〈

Qiiγ̃
−1
jj

〉 = 0,
(C5)〈

Qij γ̃
−1
ji

〉 = Tr(Qγ̃ −1),

which gives the equations

9A + 6B = 0,

3A + 12B = Tr(Qγ̃ −1).
(C6)

The solution is

A = −Tr(Qγ̃ −1)

15
,

B = Tr(Qγ̃ −1)

10
.

(C7)

In summary, by the invariant method, we only need to compute
one trace. A similar calculation was sketched in the main body
of the paper for SU(2).
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[14] E. P. Hsu, Stochastic Analysis on Manifolds (American Mathe-
matican Society, Washington, DC, 2002), Vol. 38.

[15] H. P. McKean, Jr., Mem. College Sci. Univ. Kyoto Ser. A Math.
33, 25 (1960).

[16] M. Vergassola and M. Avellaneda, Physica D 106, 148
(1997).

[17] A. Mazzino, S. Musacchio, and A. Vulpiani, Phys. Rev. E 71,
011113 (2005).

[18] M. M. Afonso, A. Mazzino, and P. Muratore-Ginanneschi,
J. Fluid. Mech. 694, 426 (2012).

[19] Y. Choquet-Bruhat and C. DeWitt-Morette, Analysis, Manifolds
and Physics, Part 1: Basics, revised ed. (North-Holland, Ams-
terdam, 1996).

[20] C. J. Taylor and D. J. Kriegman, Technical Report No.
9405 (1994), http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.21.9990.

[21] H. Brenner, J. Colloid Interface Sci. 23, 407 (1967).
[22] E. A. Coutsias and L. Romero, Sandia National

Laboratories, Technical Report SAND2004-0153 (2004),
http://hdl.handle.net/1928/20182.

062147-15

http://hdl.handle.net/1912/2914
http://dx.doi.org/10.1209/0295-5075/114/30005
http://dx.doi.org/10.1209/0295-5075/114/30005
http://dx.doi.org/10.1209/0295-5075/114/30005
http://dx.doi.org/10.1209/0295-5075/114/30005
http://dx.doi.org/10.1016/0021-9797(81)90214-9
http://dx.doi.org/10.1016/0021-9797(81)90214-9
http://dx.doi.org/10.1016/0021-9797(81)90214-9
http://dx.doi.org/10.1016/0021-9797(81)90214-9
http://projecteuclid.org/euclid.kjm/1250776060
http://dx.doi.org/10.1016/S0167-2789(97)00022-5
http://dx.doi.org/10.1016/S0167-2789(97)00022-5
http://dx.doi.org/10.1016/S0167-2789(97)00022-5
http://dx.doi.org/10.1016/S0167-2789(97)00022-5
http://dx.doi.org/10.1103/PhysRevE.71.011113
http://dx.doi.org/10.1103/PhysRevE.71.011113
http://dx.doi.org/10.1103/PhysRevE.71.011113
http://dx.doi.org/10.1103/PhysRevE.71.011113
http://dx.doi.org/10.1017/jfm.2011.562
http://dx.doi.org/10.1017/jfm.2011.562
http://dx.doi.org/10.1017/jfm.2011.562
http://dx.doi.org/10.1017/jfm.2011.562
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9990
http://dx.doi.org/10.1016/0021-9797(67)90185-3
http://dx.doi.org/10.1016/0021-9797(67)90185-3
http://dx.doi.org/10.1016/0021-9797(67)90185-3
http://dx.doi.org/10.1016/0021-9797(67)90185-3
http://hdl.handle.net/1928/20182



