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We experimentally demonstrate, for the first time, noise diagnostics by repeated quantum measurements,
establishing the ability of a single photon subjected to random polarization noise to diagnose non-Markovian
temporal correlations of such a noise process. Both the noise spectrum and temporal correlations are
diagnosed by probing the photon with frequent (partially) selective polarization measurements. We show that
noise with positive temporal correlations corresponds to our single photon undergoing a dynamical regime
enabled by the quantum Zeno effect (QZE), whereas noise characterized by negative (anti) correlations
corresponds to regimes associated with the anti-Zeno effect (AZE). This is the first step toward a novel noise
spectroscopy based on QZE and AZE in single-photon state probing able to extract information on the noise
while protecting the probe state, a conceptual paradigm shift with respect to traditional interferometric
measurements.
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Introduction.—Quantum control [1,2] is a fundamental
tool for quantum technologies. In particular, the quantum
Zeno effect (QZE) [3–8] and anti-Zeno effect (AZE) [7–11],
respectively, denoting the slowdown and speedup of quan-
tum system evolution by its frequent interruptions [12–20],
have been recognized (beyond their fundamental signifi-
cance) as quantum control paradigms [21–26]. Indeed, they
allow either protecting [27–29] or steering [30,31] the
quantum system state via an interplay between frequent
operations (system control) and the coupling of the system to
its environment (a bath) [22,32–35].
These paradigms’ generality is revealed by the Kofman-

Kurizki (KK) universal formula, whereby the overlap of
the system-bath coupling spectrum with the system-
control spectrum determines the initial-state population
decay (relaxation) rate γðtÞ [9,22,33,34]

γðtÞ ¼ 2π

Z
∞

−∞
dωGðωÞFtðωÞ; ð1Þ

being GðωÞ the system-bath coupling spectrum (bath
response) and FtðωÞ the system-control spectrum evalu-
ated within the time interval ½0; t�. According to Eq. (1),
QZE (AZE) corresponds to the suppression (enhance-
ment) of the bath-induced decay γðtÞ by the reduction
(increase) of the overlap between FtðωÞ and GðωÞ [9,22]
(see Supplemental Material [36]). This means that the
time variation of the system control must be much faster
than (for QZE) or as fast as (for AZE) the bath correlation
time, resulting in both effects being distinctly non-
Markovian. Overall, the only condition on Eq. (1) validity
is the system-bath coupling weakness, allowing for a
perturbative treatment of the bath effects. The KK formula
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has been confirmed in scenarios involving frequent
perturbations of open-system evolution, e.g., cold atom
dynamics in optical lattices [12,22], light propagation in
waveguides and cavities [5,37], and AZE cooling and
QZE heating of bath-coupled qubits [38,39]. Moreover,
Eq. (1) can be used for designing optimal protection of
multiqubit quantum information processing [40].
Here, we study both theoretically and experimentally an

alternative purpose of the KK formula, i.e., the diagnostics
(characterization) of random processes, alias noise spec-
troscopy [41]. One may infer the bath-response spectrum
GðωÞ upon varying the control spectrum FtðωÞ and record-
ing the resulting decoherence rate, as in Ref. [42]. This,
however, is a time-consuming process. Alternatively, key
information on GðωÞ may be gathered by appropriate
dynamical control of the system probing the bath [41].
This represents an innovative and powerful tool that we
introduce to expand quantum sensing technology. Although
the QZE has been previously used for assisting noise
sensing [43,44], here we demonstrate its ability to extract
information on noise processes, a direction not yet inves-
tigated and highly relevant to quantum technologies. More
specifically, we present the first demonstration of noise
diagnostics by repeated quantum measurements, showing
how a single photon undergoing random polarization
fluctuations can diagnose non-Markovian noise temporal
correlations. Such a technique may be indispensable under
extremely faint illumination, when traditional interferomet-
ric methods [45] are usually ineffective. To do this, we
realize diverse temporally (anti) correlated noises and their
measurement-based single-photon probing proposed in
Ref. [32]. We show that the noise temporal correlations
can be diagnosed when the single photon undergoes
frequent polarization measurements, demonstrating that
positive (negative) correlations give rise to QZE (AZE).
This paves the way to a new generation of QZE- and AZE-
based noise spectroscopy protocols in single-particle state
probing.
Theoretical model.—A single photon initialized in the

horizontally polarized state jHi passes through a sequence
of N blocks at time instants t1;…; tN . In the kth block
(Fig. 1, k ¼ 1;…; N), the photon polarization is randomly
rotated in the x-z plane of the Bloch sphere by the operator
UðΔϕkÞ realizing a σ̂y Pauli-matrix rotation around the
y axis:

UðΔϕkÞ ¼ e−iσ̂yΔϕk ¼ I cosΔϕk − iσ̂y sinΔϕk; ð2Þ

being I the two-dimensional identity matrix. Passing
through the N blocks, the horizontal (jHi) and vertical
(jVi) polarization states evolve as the degenerate states of
a two-level system coupled by intermittent polarization
rotations. These rotations are interspersed by an equiv-
alent number of selective measurements; in each block,
the photon undergoes a measurement corresponding to

partial or complete absorption of the vertical polarization
component (or, equivalently, to partial projection onto the
jHi state):

Π ¼ jHihHj þ θjVihVj ¼ θI þ ð1 − θÞjHihHj ð3Þ

with θ ∈ ½0; 1� determining the measurement selective
strength. Such an evolution can be realized by an iterative
procedure exploiting, in each block, two k-dependent
polarization rotations Uð−αkÞ and UðβkÞ (k ¼ 1;…; N)
separated by the projection jHihHj. Here, Uð−αkÞ deter-
mines the measurement strength on the state entering the
kth block, and UðβkÞ fixes the polarization of the outgoing
photon. By properly choosing the fαkg and fβkg coef-
ficients (see Supplemental Material [36]), one can recreate
the dynamics induced on the photon polarization by a
sequence of N blocks, each performing a random polari-
zation rotation UðΔϕkÞ followed by the projector Π in
Eq. (3). This is equivalent, in terms of dynamics, to the
scheme proposed in Ref. [32].
The kth block output is the (unnormalized) state

jψðtkÞi ¼ ðQk
l¼1½ΠUðΔϕlÞ�ÞjHi. Since the sequence

Δϕ1;…;ΔϕN is random, because of the external noise
process, we are interested in the horizontal polarization
survival probability averaged over all possible random
sequences

P̄HðtkÞ ¼ jhHjψðtkÞij2; ð4Þ

where the overline denotes the averaging operation.
Consider the case in which the photon undergoes polari-

zation-rotation jumps with identical magnitude, i.e., jΔϕkj ¼
Δϕ ∀ k ¼ 1;…; N. We introduce the parameter C describ-
ing the correlation degree between consecutive jumps
defined as

ΔϕΔϕ0 ¼ pΔϕ0 − ð1 − pÞΔϕ0 ¼ CΔϕ0; ð5Þ

FIG. 1. Scheme of the kth element in a sequence of N blocks
determining the quantum state evolution of a photon passing
through them. First, the photon undergoes a random polarization
rotation UðΔϕkÞ. Then, the rotation Uð−αkÞ followed by the
projection jHihHj and by a proper counter-rotation UðβkÞ for
suitably chosen αk, βk (see Supplemental Material [36]) repro-
duces the selective measurement Π in Eq. (3) at the kth time
instant tk.
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being ΔϕΔϕ0 the average polarization rotation jump at the
end of the kth block (provided the previous jump was Δϕ0)
and p the correlation probability between subsequent jumps.
Thus, jumps are correlated for C > 0 (p > 0.5), anticorre-
lated for C < 0 (p < 0.5), and uncorrelated for C ¼ 0
(p ¼ 0.5). Although a universal closed-form solution for
P̄HðtkÞ is not available, an analytical description of all the
cases of interest will follow.
Nonrandom evolution.—In the maximally correlated

case C ¼ 1, the time dependence of P̄HðtkÞ is the same
as for the nonrandom evolution with identical jumps Δϕ or
(−Δϕ) in each block. In particular, ∀ θ one has [32]

P̄HðtkÞ ¼
½λkþðcosΔϕ − λ−Þ þ λk−ðλþ − cosΔϕÞ�2

ð1þ θÞ2cos2Δϕ − 4θ
ð6Þ

with λ� ≡ 1
2
½ð1þ θÞ cosΔϕ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ θÞ2cos2Δϕ − 4θ

p
�. In

the absence of measurements (θ ¼ 1), one gets P̄HðtkÞ ¼
cos2ðkΔϕÞ analogous to Rabi oscillations of P̄HðtkÞ as a
function of the number of blocks k. For θ ¼ 0, one recovers
the selective (projective) measurement case, since each
time a photon passes through a block its polarization state is
projected onto jHi; here we have P̄HðtkÞ ¼ cos2kðΔϕÞ,
insensitive to jump sign fluctuations and hence identical for
random and nonrandom evolution, becoming P̄HðtkÞ ¼
e−kðΔϕÞ2 for small rotation angles (Δϕ ≪ 1). This decay is
slower than the period of uninterrupted Rabi oscillations,
i.e., QZE occurs. Next, consider nonrandom evolution with
0 < θ < 1 corresponding to partially selective measure-
ments [46]. For small rotation angles and sufficient
selective strength (Δϕ ≪ 1 − θ), Eq. (6) reduces to
P̄HðtkÞ ¼ exp f−½ðΔϕÞ2=τ2ν�tkg, with ν≡ ½ð1 − θÞ=ð1þ
θÞ�ð1=τÞ and the N blocks assumed to be equidistant
(tk ¼ kτ, being τ the photon flight time between consecu-
tive blocks). The quantity ν is the (effective) measurement
rate, i.e., the reciprocal time during which state selection
occurs, scaling as 1=τ and decreasing as θ increases. The
decay rate diminishes with ν, highlighting the QZE.
Random evolution.—Consider the case of random

noisy modulation of UðΔϕÞ for (anti) correlated noise
(−1 ≤ C < 1). For Δϕ ≪ 1, one has (∀ θ) [32]

P̄HðtkÞ ¼ e−ðγþΓ0Þtk
�
coshðStkÞ þ

Γ0

S
sinhðStkÞ

�
; ð7Þ

where S≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ Γ2

0

p
, γ ≡ ½ð1þ CθÞ=ð1 − CθÞ�ðΔϕ2=τÞ is

the polarization decay rate, and Γ0 ≡ −ðln θ=2τÞ denotes
the time-averaged rate of photons absorbed by the polar-
izers (see Supplemental Material [36]).
Without measurements (θ ¼ 1), Eq. (7) yields

P̄HðtkÞ ¼
1þ e−2γ0tk

2
ðγ0 ≡ γjθ¼1Þ: ð8Þ

Thus, random polarization fluctuations lead to complete
unpolarization, i.e., P̄HðtÞ → 1=2 for t → ∞.
For weakly selective measurements (θ → 1), in the limit

Γ0 ≪ γ Eq. (7) becomes

P̄HðtkÞ ≈ e−γtk ; ð9Þ

showing an exponential decay over time of the horizontal
polarization probability.
Finally, for projective measurements (θ → 0), P̄HðtkÞ

evolves following Eq. (9), with γ → Δϕ2=τ.
Experimental results.—In our setup (Fig. 2), single

photons initialized in the jHi state traverse N ¼ 7 stages
hosting a half-wave plate (HWP) and a polarizer, repro-
ducing the dynamics of a sequence of N ¼ 7 blocks in
Fig. 1. For each k, the HWP reproduces the combined effect
of the global rotation UðαkÞUðΔϕkÞUðβk−1Þ, while the
polarizer realizes the projector jHihHj. Every stage induces
a random polarization rotation jump �Δϕ (selected by a
random number generator, with Δϕ ¼ 4°) and realizes the
(partially) selective measurementΠ in Eq. (3). Each jump is
set to be equal (correlated) to the previous one with
probability p ¼ ½ðC þ 1Þ=2�. At the end of the sequence,
only horizontally polarized photons are detected. We have
three possible handles on P̄HðtkÞ: (i) the parameter θ
determining the strength of the measurement Π in
Eq. (3), (ii) the correlation coefficient C, and (iii) the
polarization jump amplitude Δϕ. In the experiment we
investigated three cases, C ¼ −0.6, 0, and 0.4, while

FIG. 2. Heralded single photons at 702 nm generated by type-I
parametric down-conversion are fiber coupled and then colli-
mated in a Gaussian beam (2 mm width) over a 2-m-long path.
After being prepared in the jHi state by a polarizer, each photon
passes through a series of N ¼ 7 polarization rotation and
measurement stages. When Zeno measurements occur, each
stage hosts a half-wave plate (HWP) and a polarizer, while
without measurements only a HWP is present (after theNth stage,
a polarizer performs the final projection jHihHj). An interference
filter (IF, 3 nm FWHM) removes environmental light, then the
photons are fiber coupled and detected by a silicon single-photon
avalanche diode (SPAD).
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varying θ and keeping Δϕ ¼ 4°. For each C value, we
measured the single-photon detection probabilities and
standard deviations (uncertainties) of 100 random sequen-
ces of N ¼ 7 jumps. Figure 3 presents the behavior of
P̄HðtkÞ with respect to tk for θ ¼ 0, corresponding to a
projective measurement, and θ ¼ 1, i.e., in the absence of
measurement (the measurement strength decreases as θ
increases). Figure 4, instead, shows the results obtained for
0 < θ < 1, i.e., from the projective limit to the weakly
selective one. In the Markovian case C ¼ 0, the measured
probability is independent of θ. The novel result is that for
C > 0 (C < 0), the QZE (AZE) is revealed, meaning
slowdown (speedup) of the decay compared to the uncor-
related case. By varying θ, one can promote or suppress
both effects [32,47,48]. In both Figs. 3 and 4, the obtained
results (dots) are in good agreement with the theoretical
predictions (lines).
Finally, for each noise (anti) correlation regime, we

estimated the correlation parameter C by comparing the
P̄H value at the end of our process with and without Zeno

measurements (P̄ðθ¼0Þ
H and P̄ðθ¼1Þ

H , respectively). By inter-
polating the results of numerical simulations based on
Eq. (4), we can extract the dependence of C on the difference

ΔP̄H ¼ P̄ðθ¼0Þ
H − P̄ðθ¼1Þ

H (Fig. 5). From the experimental
ΔP̄H values and uncertainties (orange dashed and solid

lines, respectively), we can estimate the corresponding CðexpÞ
(green dashed line). For each regime investigated, the green
solid lines delimit the confidence interval IC on CðexpÞ

obtained propagating the experimental uncertainty on ΔP̄H

and reported in the inset table together with CðexpÞ and the
theoretical values CðthÞ.

FIG. 3. QZE (AZE) effect as a signature of (anti) correlated noise. (a) Theoretical average probability P̄HðtkÞ for (anti) correlated
consecutive jumps of magnitude Δϕ ¼ 4° as a function of tk and the correlation parameter C, in the presence (θ ¼ 0, blue surface) and
absence (θ ¼ 1, orange surface) of measurement. The green planes indicate the C values considered in our experiment, whose results are
shown in (b)–(d).There, the experimental data are shown for both θ ¼ 1 (orange) and θ ¼ 0 (blue), with the statistical uncertainties
evaluated as the standard deviation of 100 different realizations. The solid curves show the theoretical predictions given by Eqs. (8) and (9),
respectively. The dashed orange lines represent, instead, P̄HðtkÞ numerical estimations for θ ¼ 1, as per Eq. (4), obtained by averaging over
100 simulated random sequences of �Δϕ jumps. The inset plots show, in detail, the experimentally investigated region tk ∈ ½0; 7�.

FIG. 4. Average probability P̄Hðt7Þ at the end of our protocol as
a function of the Πmeasurement strength θ [Eq. (3)], for the three
C values chosen for our experiment. Lines: theoretical predictions
given by Eq. (7) for τ ¼ 1 and k ¼ 7. Dots: measured P̄Hðt7Þ
values. Experimental uncertainties are evaluated as the standard
deviation of the 100 different realizations results.
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All the estimated values are in good agreement with
their theoretical counterparts, certifying the reliability
and robustness of our single-photon technique for noise
temporal correlations estimation.
Here, we considered linear polarization rotations of

equal magnitude around a fixed axis. Yet, our method
can be extended to far more general noise classes. To prove
this, we performed numerical simulations considering a
generic polarization noise model, i.e., polarization jumps
with random amplitude along any randomly chosen axis of
the Bloch sphere. Our simulations (see Supplemental
Material [36]) demonstrate that behavior akin to our
proof-of-principle experiment can be observed for very
general noise classes, for which our protocol allows
estimating qualitatively (and even quantitatively) the cor-
relation parameter C. Such a generalization requires the
adaptation of our experimental procedure by inserting
further quarter- and half-wave plates to realize generic
polarization rotations. The investigation of this scenario, as
well as of methods for increasing the number of blocks
[49], is demanded to further studies.
Conclusions.—We experimentally investigated the

polarization coherence loss for a single photon undergoing
stochastic polarization noise and, concurrently, frequent
(weak or strong) selective quantum measurements, dem-
onstrating that the polarization decay rate depends on non-
Markovian correlations within the noise. The key feature
is that (anti) correlated jumps give rise to decay-rate

slowdown (speedup), giving rise to QZE (AZE), fully
complying with the KK universal formula for the decay-
rate dependence on the overlap between the noise and
frequent-measurement spectra [9,22,34]. This demonstra-
tion enables the use of photons and other particles as
probes of noise correlations. As shown above, a limited
number (here, 100) of single-photon polarization coher-
ence loss events in a noisy medium probed by a few (here,
N ¼ 7) selective measurements can reveal unequivocally
the noise correlation characteristics. Characterizing noise,
especially in non-Markovian processes [50–52], is crucial
for several quantum technologies. To this end, our scheme
may be modified by inserting a fluctuating birefringent
medium between consecutive measurements [28], thereby
allowing the sensing [41] of the polarization noise spect-
rum associated with a propagating photon.
As an example, among the envisaged applications of the

proposed noise sensing method we may contemplate the
probing of magnetic field fluctuations, translated into
photon polarization fluctuations through the Faraday effect
[53–56]. Single-photon probing of such fluctuations may
allow for the exploration of vacuum magnetic birefringence
[57], parity violation in atoms [58], and weak-magnetic-
noise calibration [59]. Further applications conceive dis-
ordered media [60] and physiological processes sensing,
like polarization microscopy of birefringent cholesterol
crystals in human biological (synovial, pleural, and peri-
cardial) fluids to diagnose rheumatoid diseases [61–63] and
atherosclerosis [64]. Finally, chirality plays a relevant role in
protein biosynthesis, allowing for polarization-based bio-
physical techniques for protein structure characterization
[65,66]; combining these methods with our sensing tech-
nique could allow us to study biopolymer synthesis and
evolution, investigating correlations among morphological
structures during biochemical processes.
To conclude, we established the possibility of probing

correlations in photon polarization fluctuations by QZE and
AZE observation. Our noise sensing procedure, different
from interferometric measurements [45], works even at
extremely low illumination levels, allowing its application
to highly photosensitive materials and molecules that should
absorb (almost) no photon. This paves theway to a new kind
of quantum sensing techniques, extracting information on
the noise affecting a quantum channel while preserving the
probe quantum state.
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