


Abstract

Advancing Anti-Matter-Wave Interferometry:
Design and Implementation of Techniques for Gravity

Measurement on Positronium Atoms

by Giuseppe Vinelli

This thesis explores the application of matter-wave interferometry techniques

to antimatter, with a particular focus on measuring the gravitational effect on

positronium atoms using a Large Momentum Transfer (LMT) interferometer and

a high-power cavity for photodetachment of the negative positronium ion. The ex-

perimental phase of the photodetachment process is currently being refined, with

simulation activities demonstrating the feasibility of the experiment and guiding

the optimization of the experimental setup. Optical cavity simulations using the

OSCAR package, FEM simulations via Ansys for thermal effects, and Monte Carlo

simulations for beam divergence have been conducted. Results indicate that ther-

mal effects are negligible and a circulating power of about 200 kW is achievable.

The cavity has been assembled and tested in air, showing promising characteristics

similar to high-finesse cavities.

The final part of the thesis involves designing a single-photon LMT interferome-

ter (SPLMT) to measure gravitational effects on positronium, operating with a fast

atomic beam and high energy spread to accommodate the short lifetime of positro-

nium. Simulations indicate that with a 108 Ps/s beam, an angular divergence of

10 mrad, and a relative measurement precision of ∆g/g = 10%, a data integration

time of approximately 11 months is required. Quantum simulations for parasitic

pattern influence show negligible effects. Comparisons between SPLMT and Bragg

interferometers reveal that the SPLMT approach offers greater sensitivity due to its

robustness against the Doppler effect.

This work lays the groundwork for future developments in the positronium grav-

ity measurement, highlighting its potential impact on understanding gravity on

quantum scales and verifying fundamental physics theories. The results provide a

foundation for further advancements in matter-wave interferometry and antimatter

physics.
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Introduction

This thesis aims to apply matter-wave interferometry techniques to antimatter, seek-

ing to advance the current state of the art. Its objective is to assess the experiment’s

feasibility while highlighting critical aspects in its implementation. The subsequent

discussion primarily revolves around designing and developing a Large Momentum

Transfer (LMT) Mach-Zehnder interferometer to measure the gravitational effect on

positronium atoms, along with addressing the construction of a high-power optical

cavity for photodetachment of the negative ion of positronium. It should be noted

that part of this discussion involves experimental work on the photodetachment

stage, which is currently being refined, but being a project in the design phase,

most of this work has been devoted to simulation activities.

This study is part of a project named QUPLAS (Quantum interferometry with

Positrons and LASers), based in Italy and primarily distributed across the Univer-

sity of Milan, Polytechnic of Milan, at the L-NESS laboratory in Como, and the

University of Florence at the physics department in Sesto Fiorentino. The project

benefits from a significant contribution from Istituto Nazionale di Fisica Nucleare.

Positronium (Ps) is the hydrogen-like quasi-stable bound system of an electron

and its antiparticle, the positron. Ps is the lightest element (about 103 times lighter

than hydrogen) and exists in the ground state in two sublevels depending on the spins

of the electron and positron: singlet (para-Ps, spin 0) and triplet (ortho-Ps, spin 1).

Given the multiplicity of these states, positronium in the ground state forms as 75%

ortho-Ps and 25% para-Ps. Their lifetimes in vacuum are very different, 0.125 and

142 ns for para-Ps and ortho-Ps, respectively. Also, the annihilation characteristics

in vacuum are different: para-Ps annihilates with emission of two gamma rays of 511

keV each (equal to mec
2, with me the electron rest mass), while ortho-Ps annihilates

by emitting at least three gamma rays with a maximum energy of 511 keV each and

with a total energy of 2mec
2. Given the short lifetime of para-Ps, only the triplet

state (ortho-Ps) is of interest for this work and in the context of this thesis Ps will

always mean ortho-Ps.

Since its discovery [1], Ps has been the subject of many experimental and theo-

retical investigations (see e.g. [2, 3]). Indeed, as the simplest purely leptonic bound

state, Ps, together with muonium, gives a privileged opportunity for high-precision

studies of quantum electrodynamics (QED) [4, 5]: the low electron and positron
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INTRODUCTION

mass implies that weak force contributions to Ps energy levels are negligible [6],

and that Ps is well described as a bound-state QED system. Measured deviations

from theoretical predictions can then be interpreted as possible indications of new

physics [2, 7–10]. Being neutrally charged, Ps has also the advantage of being in-

sensitive to external electric fields that probably represent the main difficulty in

measuring the gravitational fall of free electrons [11]. In recent decades, interest in

this atom has grown considerably also thanks to the development of positronium

beam technology [12]. Two of the main limitations in dealing with the Ps atom

are its reduced lifetime and the possibility of annihilation with electrons in the sur-

rounding environment; this implies that to obtain intense Ps beams it is necessary to

work with high Ps velocities and efficiently guide the atoms in an ultra-high vacuum

system.

The effect of the Earth’s gravitational field on antimatter is the subject of

ongoing research and discussions at present and during the last decades [13–24]:

any differences in the gravitational behavior between matter and antimatter would

in fact represent a violation of Einstein Equivalence Principle (EEP). Antimat-

ter gravitation has never been measured, except for a result obtained by the AL-

PHA collaboration at CERN, showing that anti-hydrogen atoms behave in a way

consistent with gravitational attraction to the Earth measuring an acceleration

aḡ = 0.75±0.13 (statistical+systematic)±0.16 (simulation)g [25], which needs more

precise investigation to address theoretical issues about fundamental laws also be-

cause of the non negligible contributions of the weak force.

This kind of experiments can often take advantage of the accuracy of interferometry

to measure gravitational effects. Solutions based on different types of interferometry

have been proposed, also for antimatter [26]. Some of these rely on Ps excitation to

high-order Rydberg states to increase its lifetime [27,28].

In this thesis, I propose a new approach for measuring the gravitational effect on

positronium (Ps) atoms, involving the development of a Mach-Zehnder Large Mo-

mentum Transfer (LMT) interferometer and a photodetachment stage for detaching

an electron from the negative Ps− ion. The subsequent discussion encompasses

the design and development of the photodetachment cavity, the design of the LMT

Mach-Zehnder interferometer, and exploration of the photodetachment process: I

will present simulation results to assess the impact of the photodetachment process

on the atomic beam, as well as for the design of the high-power cavity intended for

this purpose. Additionally, I will detail the experimental phase of the photodetach-

ment process, encompassing the construction and characterization of the cavity in

its current stage of ongoing work. I will discuss the interferometer geometry, show

numerical simulation results, and estimate the data taking time required to achieve

a given accuracy on the gravity acceleration measurment. The work is organized as

follows.
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INTRODUCTION

After a presentation of the theoretical interest in Ps gravitation in Chapter 1, I

give an overview of the stages of the experiment by mentioning the production and

preparation of atoms in 1.1. In Chapter 2, we will discuss the main figures of merit

of an atomic interferometer and take a look at the theory behind its applications for

gravity measurements. In Chapter 3, we will discuss the photodetachment stage,

discussing the finite element simulation of the optical cavity mirrors for the evalua-

tion of the thermal effect and the simulation of the optical cavity based on the fast

Fourier transform (FFT). Finally, in section 3.3 I will present the experimental ac-

tivity of this thesis, which consists of the construction and locking photodetachment

cavity. In Chapter 4 I describe the LMT interferometer, its main operating param-

eters and the numerical simulations used to determine the integration time of the

experiment and the influence of parasitic interferometers. The results are compared

with another interferometric light-pulses approach proposed in the literature [21] in

section 4.3.
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Chapter 1

Motivation and design of the

experiment

The study of gravitation with systems containing antimatter addresses some of the

main unresolved issues in Modern Physics.

First of all, our Universe features a striking particle-antiparticle asymmetry; accord-

ing to the widely accepted Big Bang scenario [29], the unbalance was generated close

to the Grand Unification era, around 10−35 s of cosmic evolution time. Therefore,

at the time of baryon formation (temperature of 1013 K, or 10−6 s) only protons and

neutrons could be formed, and not their antiparticles. The likely explanation of this

effect is some level of violation of fundamental laws (like CP invariance, the combi-

nation of Charge and Parity symmetries) as well as the occurrence of the Sakharov

conditions [30], all of this implying that only baryons (and not anti-baryons) fueled

the first stages of cosmic nucleosynthesis.

While the Standard Model of particle physics has the possibility of naturally

generating CP violation for instance through the phase of the Cabibbo-Kobayashi-

Maskawa mixing matrix in the hadronic sector, the amount of violation seems largely

insufficient to explain the primordial asymmetry.

The Standard Model itself, despite of its remarkable successes, appears to be

an incomplete theory for a variety of reasons: it does not include gravitational

interaction, and does not explain the oscillation of neutrinos or the existence of dark

matter and dark energy, constituting the vast majority of the energy budget of the

Universe. Finally, it does not satisfactorily explain the predominance of matter over

antimatter in the Universe. Moreover, it seems natural that new Physics or some

violation of fundamental laws would appear at energies close to the Planck-scale,

because of the unavoidable interplay between Quantum Physics and Gravitation,

which in turn could lead to residual effects at the present energy level.

For these reasons, the study of antimatter holds the possibility of both improving

the Standard Model and to shed light on the composition of our Universe. Matter

and antimatter are related by two key symmetries of Modern Physics: Charge-
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CHAPTER 1. MOTIVATION AND DESIGN OF THE EXPERIMENT

Parity-Time reversal (CPT) and the Einstein Equivalence Principle (EEP). CPT

invariance is the main theoretical tool linking particles and antiparticles at the quan-

tum level and in a flat spacetime. The EEP, on the other hand, relates any form

of matter and energy, for instance, through the feature of Universal Free Fall, but

only at the macroscopic level in any curved spacetime. For these reasons matter

and antimatter asymmetry can effectively be addressed by studying the behaviour

of subatomic particles in a gravitational field.

In spite of its short lifetime, Ps offers two important features which make it a

very interesting system from this point of view. First of all, it is the only bound

system made of elementary constituents of the Standard Model. Its mass is there-

fore directly composed by key parameters of the model, while (for instance) the

mass of an antiproton is mostly made of the energy of the color field, and not of

the mass of the quarks. From the theoretical viewpoint, possible violations of fun-

damental symmetries (Lorentz Invariance, CPT and the EEP) are related by the

Greenberg’s theorem [31] and – more in general – by the framework of the Standard

Model Extension (SME) [32, 33]. The SME is an effective field theory combining

General Relativity and the Standard Model, aimed at extending the Standard Model

of elementary particles to include in a gauge-invariant way all the possible space-

time operators violating CPT and Lorentz symmetry. The main goal of the SME

is to provide a theoretical framework for exploring and testing deviations from the

Standard Model through precision experiments. By measuring the coefficients of

the additional terms introduced by the SME, scientists can search for signs of new

physics beyond the Standard Model, such as dark matter, supersymmetry, or other

theories that extend the description of elementary particles. In the frame of the

SME, the hydrogen-antihydrogen gravitational difference depends on a combination

of four Lorentz violating parameters (CPT-odd and CPT-even coefficients for an-

tiproton and positron) that also incorporate the influence of the color field. Instead,

the gravitation of Positronium, because of his highly symmetric structure (elemen-

tary particle with its own antiparticle), is only sensitive to the CPT-even Lorentz

violating parameter ce:
∆g

g

∣∣∣∣
Ps

=
8

3
ce (1.1)

So that, Ps gravitation is directly sensitive to pure fermionic masses in the Standard

Model and holds the potential to determine unambiguously the ce parameter of the

SME. It has been shown that gravitation with Ps can address CPT-even Lorentz

violation already at the 10% accuracy level [34].
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1.1. DESIGN OF THE EXPERIMENT

1.1 Design of the experiment

The basic principle of the experiment analyzed in detail in this thesis is to exploit the

relationship that links the phase shift of the wavefunction of an atom passing through

an interferometer ∆Φ and a generic gravity acceleration g (eventually different for

antimatter):

∆ϕg = keffgT
2 (1.2)

with T the interrogation time (half of the propagation time through the whole

interferometer) and keff the effective transferred momentum from the laser pulses

of the interferometer to Ps atoms. As will be explained in Chapter 2, the relevant

quantity to be measured is the number of atoms leaving one of the two arms of

the interferometer, which depends on the cosine of the phase shift [35–38]: Nout =

N0[1 + C cos(∆ϕ)], where N0 is half of the total number of atoms considered, C is

the contrast of the interferometer, and ∆ϕ contains ∆ϕg. To measure this phase

shift, a beam of Ps atoms is clearly needed and it must eventually be excited to

the state chosen for the interferometer. In this work I present the design of a LMT

Mach-Zehnder interferometer which makes use of single-photon transitions between

the n = 2 state and the dipole-allowed n = 3 Ps states. The laser light is designed

to have a wavelength of 1312 nm and to be circularly polarized to exploit the 2-3

transition by using the states 23S1 with mJ=1 and 33P2 with mJ=2. These states

and light polarization have been chosen to ensure that the transition can be well

described by a two-level system formalism (the circularly polarized light can excite

this transition only). The Ps must therefore enter the interferometer in the state

23S1 with mJ=1.

To produce a Ps beam, it is necessary to produce a positron (e+) beam. There

are several ways to do this: some involve the use of a radioactive source such as
22Na [39] that decays β+; others, as in the production of positron beams for medical

applications or for high energy physics, generate an electron beam and convert it to

e+ by absorption of brehmstrahlung photons in the nuclear field [40,41]. Once an e+

beam has been produced, it is possible to convert it into relatively slow Ps (energy

on the order of tens of meV) by passing it through mesoporous materials [42–44].

This method, however, does not allow Ps to be directed and focused by electrostatic

focusing since, being neutrally charged, it is immune to the action of electric fields.

One way to obtain a Ps collimated beam is to guide Ps− ions leaving a positron-

Ps− converter [45–47]. The advantage of producing Ps through the negative Ps−

ion, compared to Ps formed in mesoporous materials, is the possibility to obtain

a tunable and monoenergetic beam with low divergence and high coherence well

suited for interferometric experiments [48]. On the other hand, the disadvantage

is the short Ps− lifetime (479 ps), so a very compact system is needed to produce,

accelerate and focus the Ps− beam via electrodes. This topic is discussed in Ref. [49],
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CHAPTER 1. MOTIVATION AND DESIGN OF THE EXPERIMENT

where a proposal to produce a Ps beam is presented: the idea is based on production,

acceleration and focusing of Ps− ions, followed by photodetachment of one electron

via high-power cavity pumped by an Erbium fiber laser [50], leaving Ps essentially

in the ground triplet state. We will explore this issue further in the section 3.2.

After the Ps beam production stage, the atoms will be prepared according to the

following additional steps:

i. 243 nm laser excitation to 23P0;

ii. 18 GHz microwave excitation to 23S1 (mJ=1).

For the UV transition, a magnetic field is needed to define a quantization axis. To

avoid Doppler effects in excitation the laser beam is directed perpendicularly to the

Ps collimated beam. Excitation of one or all the ground triplet states, corresponding

to transitions ∆mJ=0, ±1, is obtained with suitable linearly polarized light. The

second excitation uses circular polarization to selectively couple the 23P0 and 23S1

in a σ+ transition. A similar UV-microwave excitation scheme can be found in Ref.

[51]. Starting from Ps−, the Ps preparation, the interferometer and the detection

stage are shown in Figure 1.1.

Note that the state chosen for the interferferometer (23S1 with mJ=1) is optimized

Detector

Photo-
detachment UV

Excitation
Stage

µw
Excitation

Stage

MZ 
Interferometer
Laser System

n=3 
Ionization

Stage

PsPs-

Electrodes
y

x

z

13S1 

23P0

23P1

23P2

23S1 (τann= 1.14 µs)

33P0

33P1 

33P2

243 nm

18.25 GHz, σ+

1312.2 nm, σ+

a) b)

τann=0.1 ms
τrad=3.2 ns 

=12 ns
=89 ns

Figure 1.1: a) Energy level scheme of Ps, transitions and lifetimes [12, 52]. b)
Representation of the Ps preparation, interferometric and detection stages. The
Ps− beam is photodetached so that the resulting Ps beam is excited to the 23S1

state and propagates through the Mach-Zehnder interferometer. At the end of the
apparatus, the n = 3 state is ionized, and the particles that have remained charged
are swept away by a moderate electric field, leaving the Ps (n = 2) state to be
detected. In the scheme, gravity acts along the negative y direction and the Ps−

production system is not shown.

to be as insensitive as possible to external electric and magnetic fields: ms=±1
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1.2. BRIEF OVERVIEW OF THE PS BEAM PRODUCTION SYSTEM

states with zero orbital angular momentum experience a negligible effect of magnetic

fields [53] (unlike common matter atoms having spin pairs, such as atoms with two

valence electrons), and electric fields have only second-order effects for mJ=1 [12].

This makes the system particularly robust with respect to external perturbations.

The Ps preparation stage is not the focus of this work so it will not be covered

further.

After crossing the interferometer (which will be described in detail in Chapter

4), the weakly bound n = 3 state is laser-ionized [28] by means of an Erbium fiber

laser at 1560 nm in order to allow the measurement of the number of n = 2 Ps atoms

alone (Figure 1.1). The still charged particles (electrons and positrons) are swept

away by means of a moderate electric field. This choice is motivated by the fact that,

without the removal of the n = 3 level, in order to distinguish between the n = 2

and n = 3 populations, one would need to drastically increase the spatial distance

between them requiring the addition of a considerable number of pulses (and linear

space) to the interferometer. At least eight π pulses and one meter of propagation

would be required downstream, admitting a maximum angular divergence of the

order of few tens of microradians. Given the speeds involved, this constraint would

require an additional 3 meters of upstream collimation resulting in a substantial Ps

beam population loss due to annihilation. Given the interferometer’s tendency to

scatter atoms that have not interacted properly with the laser pulses, the signal-to-

noise ratio at the detector can be greatly improved by affixing a physical mask that

selects the area with the highest signal concentration.

Since the n = 3 atoms are not on the same detector, it is not necessary to

distinguish them from the n = 2 states and therefore detector spatial resolution is

not required. There are several possibilities for this type of detection. Some of these

are scintillators, microchannel plate detectors, which are still sensitive to the atomic

velocities involved [54], or germanium detectors [55, 56]. Once the n = 3 atoms

have been ionized, they can be counted for flux normalization by detecting the free

positron annihilation events by means of germanium detectors or by counting the

electron charge (e.g. by means of a Faraday cup).

1.2 Brief overview of the Ps beam production sys-

tem

The apparatus for the production, acceleration, and focusing of Positronium is cur-

rently in the design phase by the team of Politecnico di Milano and is not among

the topics covered in this thesis. However, we will discuss some key points of this

system here to provide a broader overview of the experimental setup.

The initial phase of the QUPLAS project (referred to as QUPLAS-0) utilized a

positron beam to measure, for the first time, an antimatter interferometric signal

8



CHAPTER 1. MOTIVATION AND DESIGN OF THE EXPERIMENT

with Talbot-Lau interferometry and material gratings [57]. Its apparatus obtained

positrons from the β+ decay of a 4 mCi 22Na source, subsequently accelerated,

transported, and focused using an electrostatic electrode system (see Figure 1.2).

To moderate the positrons and reduce their energy spread, they pass through a

1 µm tungsten foil, resulting in about 0.1% of the initial beam being released with

an energy of approximately 2 eV.

A crucial component of the setup is a 90° bend in the electrode system, designed

to exclude high-energy positrons and diminish secondary γ photon flux originating

from the 22Na source. However, this bend introduces beam aberrations and losses,

necessitating the use of three additional lenses to refocus, accelerate, and focus the

beam onto the target, which serves as the first grating of the interferometer.

The final kinetic energy of the positrons can be adjusted within a maximum value

of 20 keV by varying the voltage of the apparatus. The configurations of the po-

tentials shown in Figure 1.2b corresponds to a final kinetic energy of 1 keV and

the last electrode is grounded to allow unimpeded particle propagation through the

interferometer.

High-voltage control electronics enable users to optimize beam focusing by modifying

relative potential differences. The resulting focused beam spot exhibits a Gaussian

intensity profile with a full width at half maximum (FWHM) of a few millimeters,

and its size on the target plane can be controlled by adjusting the voltage of the

last focusing electrode.

Working with Ps instead of positrons necessitates several adjustments to the beam-

line. Firstly, a Ps production system capable of continuously generating antiatoms

and guiding them through the electrode system is required. Since Ps carries no net

charge, it’s imperative to devise a method for transporting and focusing its beam,

while considering the finite lifetimes of antimatter’s bound states. As mentioned,

the chosen strategy involves producing negative positronium ions (e−e+e− bound-

state, Ps−) and incorporating a laser photodetachment stage to remove an electron,

yielding the desired ortho-Ps atoms.

The e+ →Ps− conversion step also serves as a moderator: as positrons traverse the

converter material, they thermalize, potentially forming Ps−, thereby reducing beam

kinetic energy and energy spread. Ps− atoms are emitted from the opposite side of

the target surface impacted by the beam. One of the possible converters is a 1 µm

thick, sodium-coated tungsten foil, known for its high Ps− production efficiencies.

These ions are emitted perpendicular to the converter surface as cylindrical beam

with a diameter of 1 mm with a kinetic energy of approximately 4 eV. A compact

electrostatic system, comprising electrodes at varying potentials, is designed to ac-

commodate the brief Ps− lifetime. A simulation, crafted using SIMION® software,

mapped the trajectory of Ps− ions by computing their paths within defined electric

fields. The electrode configuration, illustrated in Figure 1.3, includes a positron/Ps−

9



1.2. BRIEF OVERVIEW OF THE PS BEAM PRODUCTION SYSTEM

(a) Photograph of the QUPLAS positron accelerator at the Politecnico di Milano
laboratory used for positron interferometry. The source is situated on the right-
hand side of the image, inside the shielding, while the accelerating electrodes
are in the vacuum tubes at the center. The interferometer here is a Talbot-Lau
material gratings interferometer.

(b) Schematic of the electrode system for the focusing and
transport of the positrons beam. The positrons emitted by
the source located before the moderator cross the Soa Grid un-
til they reach the bend made up of a series of electrodes with
increasing potential [58]. The potentials are shown as exam-
ples.

Figure 1.2: Photograph and schematic of the QUPLAS positron accelerator.
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CHAPTER 1. MOTIVATION AND DESIGN OF THE EXPERIMENT

Figure 1.3: Schematic diagram of the Ps− beam acceleration and focusing system
[49].

converter (monocrystalline Na-coated W sample), a focusing ring, and a grounded

electrode featuring a central hole. The converter, modeled as a disk with a 2.5 mm

radius and a potential of -300 V, repels Ps− ions towards the grounded electrode,

reaching a kinetic energy of 300 eV. A 1 mm diameter hole in the last electrode

allows the beam to pass through, closed with a conductive grounded grid to prevent

electrostatic fields from extending beyond the system. The high transmission grid

comprises metal wires (1 µm in diameter) spaced 50 µm apart. To enhance beam

control and minimize divergence, a 2 mm diameter focusing ring, positioned 0.3 mm

after the converter, applies a potential of -320 V to optimize beam divergence re-

duction. Maintaining a 0.3 mm distance between each component ensures adequate

dielectric strength to prevent electric discharges.

As will be explained in Chapter 4, the gravitational measurement proposed in

this thesis requires a high-intensity collimated Positronium beam. While a recently

acquired 22Na source can be utilized, providing approximately 108 e+/s, a linear

accelerator (LINAC) represents a better solution.

A commercial LINAC, pursued by the GBAR antimatter experiment at CERN [59],

coupled with an electron-to-positron conversion technique, could generate an e+

beam with a flux of around 1010 particles/s, offering better collimation and higher

activity than the 22Na source.

The BriXSinO Injector [60–62], situated at the LASA Laboratory in Segrate (Mi-

lano), stands as a more effective choice. This Energy Recovery LINAC (ERL) pro-

gram is dedicated to showcasing high peak and average brightness beam generation,

emphasizing energy sustainability.
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1.2. BRIEF OVERVIEW OF THE PS BEAM PRODUCTION SYSTEM

In the quest to conduct interferometric measurements of Ps gravity over a year-long

period (see Chapter 4), a brilliantly intense positron beam is imperative. The Milan

BriXSinO facility proposes a superconducting LINAC operating at 92 MHz, with

an average electron current of 2-5 mA and an acceleration energy of 10 MeV. This

setup yields at least 5x1016 fast electrons per second, with a beam spot less than 1

mm and minimal divergence of about 50 µrad. By employing an effective positron

moderator like tungsten meshes, a total conversion efficiency (cold e+)/(hot e−) of

at least 10−5-10−6 can be achieved. Under these technical specifications, the pro-

jected positron rate of the slow beam is estimated to be around 109-1010 positrons

per second. The utilization of this LINAC is a realistic hypothesis, as the BriXSinO

project is in an advanced stage of construction, and the QUPLAS research group

is currently interacting with the BriXSinO personnel to explore how to collaborate

and interface the two projects. Alternatively, a commercial LINAC similar to that

of GBAR could be acquired, with which a flow of 105-106 Ps−/s is estimated.

12



Chapter 2

Interferometry for gravity

measurements

Atom interferometry is a versatile and powerful tool for precision measurements,

in particular in gravitational physics [35, 63–68]. The light-pulse interferometer

uses sequences of optical pulses to split, redirect and recombine matter waves by

transferring photon momenta [69, 70] and emulating optical elements (e.g., mirrors

and beam splitters) for coherent manipulation of atomic wave packets [71]. This

type of interferometer has been proposed to improve sensitivity to inertial forces

with large momentum transfer techniques using several light pulses to increase the

space-time area of the interferometer [72].

A schematic of a basic Mach-Zehnder interferometer is shown in Figure 2.1. The

horizontal axis of this graph represents time while the vertical one is the z coor-

dinate. Two interferometric patterns are depicted: one influenced by gravitational

acceleration acting along the negative z-axis and the other unaffected, indicated by

the subscript 0. Three pulses of π/2, π, and π/2 intercept the atomic wavefunction

at times 0, T, and 2T, respectively. The π/2 pulses split the wavefunction in two,

acting as beam splitters, while the π pulse alters its internal state and momentum,

serving as a mirror. Generically, the working principle of an interferometer for iner-

tial sensing is based on the fact that an atom is split into a quantum superposition of

states whose wavefunctions travel different paths and accumulate a different phases.

To estimate this phase shift, it is possible to follow different strategies such as the

perturbative approach [73] and the Feynman path integral approach [74,75], which

we will use in this discussion. The aim of this section is to develop a fairly general

discussion of some of the figures of merit of an atomic interferometer, reserving the

application on the case study of positronium for Chapter 4. In the application of the

path integral and the rest of this treatment we will assume infinitesimally short light

pulses but studies of the issue of the spatial extension of the pulses can be found

in the literature [76]. Until otherwise specified, we will reduce the analysis to the

one-dimensional case, considering laser pulses perfectly parallel to the acceleration

13



Figure 2.1: Schematic space-time diagram of a basic Mach-Zehnder intererometer
with (path Γ) and without gravitational field effect (path Γ0). The gravity acts
along the negative z-axis which indicates the wavefunctions position. Laser pulses
at instants 0, T and 2T behave similarly to beam splitters and mirrors of a light
interferometer, splitting and reflecting the wavefunctions (quantum superposition)
of an atom passing through them.

of gravity.

The fundamental concept of the path integral method lies in considering the path

travelled by classical particles moving from a starting point (za,ta) to an endpoint

(zb,tb). Between these two points, there exists an infinite number of possible space-

time paths (Γ, Γ′,..) connecting them, where each path is described by a function

z(t) satisfying the conditions z(ta) = za and z(tb) = zb. Among all these potential

paths, there is one that is actually followed by the particle, and this path can be

determined using the system’s Lagrangian, L(z, ż), which is the difference between

its kinetic and potential energy.

The actual trajectory taken by a classical particle corresponds to the path for which

the action SΓ(zb, tb; za, ta) is extremal. The action is defined as the integral of the

Lagrangian over the specific path Γ.

SΓ =

∫ tb

ta

L(z, ż) dt (2.1)

By varying the path and evaluating the action for each variation, one can find the

path that minimizes or maximizes the action, which in turn determines the trajectory

of the particle according to the principle of least action. We will denote by Γcl the

actual classical path, for which the action is extremal, and by Scl the corresponding
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CHAPTER 2. INTERFEROMETRY FOR GRAVITY MEASUREMENTS

value of the action.

The starting point of the path integral method involves defining a quantum

propagator K which denotes the amplitude for the particle to arrive at point (zb,tb)

given that it starts from point (za,ta). In quantum mechanics, the propagator is

defined by:

K(zb, tb; za, ta) = ⟨zb|U(tb, ta) |za⟩ (2.2)

where U(tb,ta) is the evolution operator which evolves the state of a quantum system

from ta to tb, |ψ(tb)⟩ = U(tb, ta) |ψ(ta)⟩. This allows us to define the wavefunction

at the final position as a function of the propagator:

Ψ(zb, tb) = ⟨zb|U(tb, ta) |Ψ(za)⟩

=

∫
K(zb, tb; za, ta)Ψ(za, ta) dza

(2.3)

From Feynman’s formulation we define the quantum propagator as a sum of contri-

butions from all possible paths connecting the initial and final points [74, 77]. The

modulus of each contribution is independent of the path Γ but the phase factor

equals SΓ/ℏ:

K(zb, tb; za, ta) =

∫ b

a

Dz(t)eiSΓ/ℏ (2.4)

where Dz(t) represents an infinitesimal change in position along the path over time

t and indicates an integration over all possible z(t) trajectories that the system

could follow, allowing the entire spectrum of possible evolutions of the system over

time to be considered. In the classical limit where SΓ ≫ ℏ, the phase SΓ/ℏ varies

rapidly among neighboring paths Γ, leading to destructive interference. However,

along the classical path, the action is extremal, resulting in constructive interference.

Consequently, only paths near the classical trajectory significantly contribute to the

integral 2.4. Equations 2.3 and 2.4 show an important result, namely that the phase

shift of a wavefunction propagating in space and time is proportional to the action

corresponding to the path travelled:

Ψ(zb, tb) ∝ Ψ(za, ta) exp(iScl/ℏ) (2.5)

In the limit of a large action, the integral in 2.4 simplifies and the wavefunction is

Ψ(zb, tb) = Ψ(za, ta) exp(iScl/ℏ) (2.6)

The same result can be obtained by applying the perturbative method to the La-

grangian of the particle in free motion [75]. Since the action is a function of the

Lagrangian, it is possible to consider the potentials to which the particle is subjected

during propagation, such as the gravitational one.
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2.1. THE PHASE SHIFT IN AN ATOM INTERFEROMETER

It is worth mentioning the Van Vleck formula, which establishes the equivalence

between the path integral and a regular integral for potentials that are at most

quadratic in the coordinates. The Van Vleck formula provides a connection be-

tween the Green’s function associated with the propagator operator and the phase

accumulated along classical paths, allowing the quantum propagator to be expressed

as a sum over all classical paths weighted by a prefactor that depends on the second

derivative of the action with respect to the coordinates:

K(z, za, t) ∝
∑
cl

(√∣∣∣∣ ∂2Scl

∂z∂za

∣∣∣∣ exp(iScl(z, za, t)/ℏ)

)

This is particularly useful in cases where the potential has a quadratic dependence,

facilitating the comparison between the path integral formalism and more traditional

approaches based on the use of the propagator operator.

Since the Hamiltonian is defined as the sum of kinetic and potential energy, a

relationship exists between H and L and is given by:

H = pż − L (2.7)

Keeping the initial spacetime point fixed, the variation in the classical action due

to a change in the final spacetime point (z, t) is

dScl =
∂Scl

∂z
dz +

∂Scl

∂t
dt = pdz −Hdt (2.8)

which gives an expression of the classical action as a function of the Hamiltonian:

Scl =

∫
Γcl

(pdz −Hdt) (2.9)

This also justifies the use of the Hamiltonian in the next sections. If we plug this

equation into 2.6 we obtain the typical equation which describes the external motion

of a plane wavefunction:

Ψ(zb, tb) = e
i
∫
Γcl

(kdz−ωdt)
Ψ(za, ta) (2.10)

2.1 The phase shift in an atom interferometer

Before studying the effect of the gravitational field, it is necessary to contextualise

this analysis to the case of an atom interacting with an interferometer. In Figure 2.2

there is a representation of the effects of a resonant light pulse with a single-photon

transition of an atom passing through it: when the atom absorbs a photon it is

excited and acquires a laser momentum ℏkL along the laser propagation direction;
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CHAPTER 2. INTERFEROMETRY FOR GRAVITY MEASUREMENTS

Figure 2.2: Schematisation of the atom-light interaction in 4 basic cases. a) A
ground state absorbs a photon and changes its internal state and momentum along
the direction of light propagation. b) Inversely to a), an atom in an excited state
returns to the ground state by stimulated emission, losing a momentum in the
direction of the laser. In c) and d), the atom passes through the laser beam without
interacting with the light, which therefore does not alter its state.

when the atom de-excites it also loses a photon by stimulated emission and a laser

momentum along the laser projection direction or, equivalently, acquires one in the

opposite direction. Note that this representation may be different for interferometers

exploiting multi-photon transitions, such as in the case of Raman or Bragg pulses.

Whenever an atom interacts with a light pulse, causing an excitation or de-excitation

action, it undergoes a phase shift represented by

∆ϕΓ
L,i = ±(kLz

Γ
i − ωLti − ϕLi

) (2.11)

where the sign depends on the nature of the interaction (excitation or de-excitation).

kL and ωL represent the wave vector and frequency of the incident light pulse, while

ϕL is the laser phase. In the equation, the subscript Γ represents the interferometric

path (Γ=A, B) while i indicates the interferometric sequence (i=1, 2, 3). zi and ti

respectively represent the position and time at which the atomic interaction with

the light pulse occurs, determining the location and instant of the interaction: t1=0,

t2=T, t3=2T. Based on what has been discussed so far, the total phase of an atom

passing through the interferometer is determined by the phase shift due to propa-

gation along the interferometric trajectories and that generated by interaction with

laser pulses.

∆ϕΓ = ∆ϕΓ
p +∆ϕΓ

L (2.12)
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2.1. THE PHASE SHIFT IN AN ATOM INTERFEROMETER

Each branch has its phase, and we are interested in determining the phase difference

between the two branches, which determines the type of interference on the final

pulse.

∆ϕtot = ∆ϕB −∆ϕA (2.13)

Another contribution could be made by the free evolution of wavefunctions in dif-

ferent internal states, but we can already state that this is null by observing that

the wavepacket spend the same amount of time in the two internal states. The

propagation phase shift between i and i + 1 can be defined using the results of the

previous section:

∆ϕΓ
p(i,i+1)

= SΓ
cl(zi+1, ti+1; zi, ti) =

∫ ti+1

ti

L(z, ż) dt (2.14)

This equation is valid in general and we can use it to study the case of an atom

moving in a constant gravitational field:

L(z, ż) =
1

2
mż2 −mgz (2.15)

where m is the mass of the atom. Calculating the integral 2.14 and considering the

relationship between the gravity-influenced pattern and the undeflected parallelo-

gram

zΓi = zΓ0
i − 1

2
gt2i (2.16)

we obtain that the phase shift due to propagation is zero

∆ϕp = SB
cl(z2, t2; z1, t1) + SB

cl(z3, t3; z2, t2)

− (SA
cl (z2, t2; z1, t1) + SA

cl (z3, t3; z2, t2)) = 0
(2.17)

In this frame, the total phase shift is therefore only determined by the phase shift

of the lasers. Given that for path B we have ∆ϕB
L1

= ∆ϕB
L3

= 0 while ∆ϕB
L2

=

−(kLz
B
2 − ωLt2 − ϕL2), we obtain

∆ϕtot = ∆ϕB
L −∆ϕA

L = kLgT
2 + ϕL1 − 2ϕL2 + ϕL3 (2.18)

which is sensitive to the gravity acceleration g. Note that the phase difference re-

mains unaffected by the initial velocity, thus remaining constant even after averaging

over the velocity spread of the atomic beam. However, it’s important to note that

the velocity spread can significantly influence the probability of atom-laser interac-

tion, thereby impacting the measurement in various other ways.

There is another phase factor that needs to be considered: in Figure 2.3 inter-

ferometric patterns with a spatial separation on the last pulse π/2 that is in general

different from zero are shown. This spatial discrepancy gives rise to a phase sepa-
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CHAPTER 2. INTERFEROMETRY FOR GRAVITY MEASUREMENTS

Figure 2.3: Basic schematic of the Mach-Zehnder interferometer with spatial mis-
match ∆r of wavefunctions at the last laser pulse

ration ∆ϕs [78]. The de Broglie waves from the two wave packets interfere with a

differential phase:

∆ϕs =
p ·∆r
ℏ

(2.19)

where p is the momentum of the atom, and ∆r is the spatial separation of the two

wave packets.

Before the last π/2-pulse, let’s consider the wave packet in path (A,2) moving

at velocity vg, and the wave packet in path (B,2) moving at velocity ve, with their

separation being ∆r (pointing from path A to path B). The pulses have a wave

vector keff, which, as we shall see, has a different definition depending on the type

of interferometer. In the example illustrated in Figure 2.3 with single-photon tran-

sitions we consider keff = k = 2π/λL, with λL wavelength of the laser. Thus the last

π/2-pulse gives a recoil kick of vr = ℏkeff/m. Due to the separation of the two wave

packets, ϕB,3 and ϕA,2 are not the same and are related by:

ϕB,3 = ϕA,3 + keff ·∆r (2.20)

The velocities of the two wave packets in the ground state after the last π/2-pulse are

vg and (ve − vr) (ideally, these two velocities are exactly the same). The separation

phase of the ground state is calculated using the average speed of these two velocities:

ϕg,s =
m(vg + ve − vr)∆r

2ℏ
(2.21)
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2.1. THE PHASE SHIFT IN AN ATOM INTERFEROMETER

Similarly,

ϕe,s =
m(vg + ve + vr)∆r

2ℏ
(2.22)

The excited state and ground state have different laser phase and separation phase

contributions, but it’s easy to prove that the sum of these two is exactly the same:

ϕg,s + ϕB,3 = ϕe,s + ϕA,3 (2.23)

As a result, the total phase of the two states is equal and p of 2.19 can be substituted

by p = ℏkeff : ∆ϕs = keff ·∆r.
In discussing phase shifts in an atomic interferometer, it’s crucial to understand that

there isn’t a distinct physical quantity representing the laser phase or path phase.

Instead, the only observable quantity is the total phase. By transitioning all calcu-

lations into a moving frame, we discover that both the path phase and separation

phase differ, rendering them essentially arbitrary and devoid of physical significance.

However, the sum of these two phases remains consistent with that in the labora-

tory frame, with special relativity ensuring the laser phase remains unchanged under

Lorentz transformations. Consequently, the total phase, or the ratio of population

between two states, remains invariant under inertial frame transformations, as ex-

pected.

2.1.1 Other Lagrangians

Other factors influencing the motion of the atom through the interferometer can

be considered and introduced into the phase shift calculation by modifying the

Lagrangian 2.15. One can for example consider the variation of the gravitational

field with respect to the z-coordinate by inserting a linear gradient γ:

L(z, ż) =
1

2
mż2 −mgz +mγz2/2 (2.24)

By calculating the action again through the equation 2.1, the phase difference be-

tween path B and A and expressing it as a series of powers in γ we obtain a correction

on the acceleration of gravity due to the gradient [64]:

g′ =g0 + g1 + g2 =

g + γ

(
7

12
gT 2 − v̄0T − z0

)
+γ2T 2

(
31

360
gT 2 − 1

4
v̄0T − 7

12
z0 −

1

2
vr(T + Tdet)

)
(2.25)

Where we have stated only the first two terms of the expansion. In the equation

z0 is the initial coordinate of the interferometric sequence (z0=0 for us), v̄0 is the

average velocity after the fist pulse equal to v̄0 = v0+vr,eff/2, with v0 initial velocity
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CHAPTER 2. INTERFEROMETRY FOR GRAVITY MEASUREMENTS

of the atom, vr,eff = ℏkeff/m and Tdet is the time delay between the last pulse and

the detector. The corresponding phase shift is:

∆ϕγ = keff(g1 + g2)T
2 (2.26)

Another variation to the Lagrangian considers rotations by transforming the

laboratory into a rotating frame. To do this we have to break the one-dimensionality

and substitute the velocity v′ = v0 +Ω× r, which contains the angular velocity Ω,

into the equation 2.15 [37]:

L′(r′,v′) =
1

2
m [v + (Ω× r)]2 =

1

2
mv2 +mΩ · (r× v) +

1

2
m(Ω× r)2 (2.27)

For Ω∆t≪ 1, where ∆t id the transit time of the atoms through the interferometer,

the rotation can be considered a small perturbation:

L′ = L0 + L1 =
1

2
mv2 +mΩ · (r× v) (2.28)

where only the term to the first order in Ω was kept. Thus, the phase difference

between the two paths is then given by the action of the perturbing Lagrangian

integrated along the unperturbed (straight-line) paths:

∆ϕΓ0
L1

=
1

ℏ

∫
Γ0

L1 dt =
mΩ

ℏ

∫
Γ0

[r(t)× v(t)] dt (2.29)

By substituting v(t) = dr(t)/dt or r(t) = t · keffℏ/m we obtain respectively:

∆ϕc =
2mΩ

ℏ
A0 = −2T 2v · (keff ×Ω) (2.30)

where A0 is the total area enclosed by the interferometer. Applying the last form of

the result to the case of the Earth where, in the reference frame û = (ûwe, ûn, ûup)

indicating the West-Est, North and upward components, Ω = (0,Ωcos θl,Ω sin θl),

with θl latitude, we have that

∆ϕc = −2T 2vwekeff,upΩcos θl (2.31)

2.2 Probability amplitudes and measurement

As anticipated, one wants to exploit the phenomenon of interference between atomic

wavefunctions to determine phase shift and thus gravity acclection. This is equiv-

alent to turning phase variations into amplitude variations at the output of the

interferometer, similarly to a light Mach-Zehnder. In this section we want to de-

termine the probability of finding the atom in one of the two interferometric states
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and the relationship between the number of atoms exiting the output ports and the

interferometric phase shift.

Let’s assume we are dealing with a two-level system and describe the atom in

a basis representing a ground state |g⟩ and an excited state |e⟩. As mentioned in

Section 2.1, each change of internal state is associated with a change of momentum

state. To model this interaction, we start with the definition of an electric field

E = E0 cos (kLx− ωLt+ ϕ) =
êE0

2

(
ei(kLx−ωLt+ϕ) + e−i(kLx−ωLt+ϕ)

)
(2.32)

The action of the field on a momentum state |p⟩ can be described by

e±ikL =

∫
d3pe±ikLx |p⟩ ⟨p| =

∫
d3p |p± ℏkL⟩ ⟨p| (2.33)

which indicates the change in the total momentum of the atom following the stimu-

lated absorption or emission of a photon. The change of internal state and momen-

tum state occur simultaneously and we can therefore summarise the atomic states

of the interferometer in 2.1 with the state vector |g,p⟩ and |e,p+ ℏkL⟩. However,

we often omit the momentum indices for cleaner notation, identifying the atomic

state only with the internal state. We define the wavefunction at time t as

|ψ⟩ = cg,pe
−iωg,pt |g,p⟩+ ce,p+ℏkLe

−i(ωe,p+ℏkL )t |e,p+ ℏkL⟩ (2.34)

and a Hamiltonian given by the sum

Ĥ = Ĥ0 + ĤL =
p̂2

2m
+ ℏωg |g⟩ ⟨g|+ ℏωe |e⟩ ⟨e| − d · E (2.35)

where Ĥ0 is the Hamiltonian for the internal degrees of freedom and ĤL describes

the interaction between atom and electric field. In these equations cα,l are the slow

varying time dependent probability amplitudes of the states |α, l⟩, d is the electric

dipole moment and

ωα,l = ωα +
|l|2

2ℏm
(2.36)

with ωα optical frequency of the atomic internal state. We can define the Rabi

frequency as Ωeg =
−⟨e|d·E0|g⟩

ℏ and the detuning

δ = ωL − (ωe,p+ℏkL − ωg,p) = ωL −

(
ωe − ωg +

ℏ|kL|2

2m
+ v · kL

)
(2.37)

where the term ℏ|kL|2/2m corresponds to the photon-recoil shift and v · kL corre-

sponds to the Doppler shift given by a non zero initial velocity of the atom in the

laser direction. If Ωeg ≪ ωe, ωg we can solve the Schrödinger equation in the rotating
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wave approximation (neglecting the ei(ωeg+ωL), with ωeg = ωe − ωg) and obtain the

following system: iċe =
Ωeg

2
cge

−i(δt+ϕ)

iċg =
Ω∗

eg

2
cee

i(δt+ϕ)
(2.38)

This system is used to determine the evolution of the probability amplitudes of

the atomic states passing through the interferometer and is the starting point of

the ineterferometer simulation that we will see in chapter 4. For a constant Ωeg is

convenient to refer to a frame rotating about the z-axis (the same of Figure 2.1)

with frequency δ. The Hamiltonian in the rotating frame is give by [79]

ĤR =

{
p̂2

2m
+

ℏ
2

[
−δ Ωege

i(kLx−ϕ)

Ω∗
ege

−i(kLx−ϕ) δ

]}
(2.39)

By solving the eigenvalue problem, it is possible to determine eigenvalues and eigen-

states of the rotating Hamiltonian [80] and obtain the following system:iċe = δ
2
ce +

Ωeg

2
cge

−iϕ

iċg =
Ω∗

eg

2
cee

iϕ − δ
2
cg

(2.40)

What emerges is the presence of a shift in energy levels when the lasers are de-

tuned from the transition. For example, the ground level shift is given by Eg± =

ℏ
[
ωg +

δ
2
± 1

2

√
δ2 +

∣∣Ω2
eg

∣∣] where the sign depends on the sign of δ: for large pos-

itive detuning Eg− ≃
(
ωg − 1

4

|Ωe,g|2
|δ|

)
, while for a large negative detuning Eg+ ≃(

ωg +
1
4

|Ωe,g|2
|δ|

)
.

We are now interested in understanding how the original wavefunction evolves

in the non-rotating frame. To do this, we need to rotate the initial wavefunction

by multiplying it by the operator D(x,−δt0) = eiσzδt0/2, where σz is the Pauli spin

matrix, project it onto the eigenstates of ĤR, and then anti-rotate it with D†. The

wavefunction evolution after an interaction time equal to τ , |ψ(t0 + τ)⟩ = Û(t0 +

τ, t0) |ψ(t0)⟩ = D†(x,−δ(t0 + τ))ÛR(t0 + τ, t0) |ψ(t0)⟩ with Û(t0 + τ, t0) given by:

e−iσzδτ/2 ·

 cos
(
Ωrτ
2

)
− i cos θ sin

(
Ωrτ
2

)
e−i(δt0+ϕ)

[
−i sin θ sin

(
Ωrτ
2

)]
ei(δt0+ϕ)

[
−i sin θ sin

(
Ωrτ
2

)]
cos
(
Ωrτ
2

)
+ i cos θ sin

(
Ωrτ
2

)
 (2.41)

where Ωr =
√

|Ωeg|2 + δ2 is the off-resonant Rabi frequency and θ is defined by the

following relations:

sin θ = Ωeg/Ωr, cos θ = δ/Ωr, 0 ≤ θ ≤ π.
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We can derive the probability amplitude of the excited state assuming t0 = 0, ce(t0) =

0, cg(t0) = 1. In the limit of large detuning (θ ≃ 0, sin θ ≃ θ) the probability of

finding the atom in |e⟩ is

|ce(τ)|2 =
(
Ωeg

Ωr

)2

sin2

(
Ωrτ

2

)
(2.42)

while if 0 < |δ| ≪ Ωeg, sin θ ≃ 1,

|ce(τ)|2 =
1

2
[1− cos(Ωrτ)] (2.43)

These equations tell us that by properly setting the pulse duration or the electric field

amplitude we can decide the probability of transition from one state to the other and

thus obtain the pulses π, π/2, or other types, just by setting Ωrτ ≃ Ωegτ = π, π/2

etc. For a higher δ the probability oscillates faster and can not be unitary. The

probability amplitudes for generic cg, ce and δ ≪ Ωeg, for π andπ/2 pulses are re-

ported in table 2.1.

π/2 π

cg(t0 + τ) eiδτ/2
[
−ice(t0)ei(δt0+ϕ) + cg(t0)

]
/
√
2 −ice(t0)eiδτ/2ei(δt0+ϕ)

ce(t0 + τ) e−iδτ/2
[
ce(t0)− icg(t0)e

i(δt0+ϕ)
]
/
√
2 −icg(t0)e−iδτ/2e−i(δt0+ϕ)

Table 2.1: Probability amplitudes of states |g⟩ and |e⟩ for single-photon transitions
assuming δ ≪ Ωeg.

At this point we can retrace the interferometer of Figure 2.1 computing the ampli-

tudes after each interaction. Assuming that the pulses have the same Rabi frquency

and the pulse duration of the π/2 is τ/2, we obtain the final probability amplitude

of the excited state:

|ce,p+ℏkL(2T + 2τ)|2 = 1

2
[1− cos(∆ϕ− δτ/2)] (2.44)

where ∆ϕ = ϕL1(0) − 2ϕL2(T ) + ϕL3(2T ). This phase shift can be related to the

gravity acceleration by considering the motion of the atom in the gravity field and

the corresponding time dependent phase shift:

ϕLi
(t) = ϕLi

+ kLz(ti)ẑ = ϕLi
+ kL

(
z(t1) + żti −

1

2
gt2i

)
ẑ (2.45)

which gives ∆ϕ = kLgT
2ẑ + ϕL1 − 2ϕL2 + ϕL3 , as in equation 2.18. This important

result lets us link the probability of finding an atom in one of the two states to the

phase shift of the atomic wavefunction, which is in turn connected to the gravity

acceleration. This means that by counting the number of atoms leaving one of the

interferometer’s output ports, for a large enough number of atoms it is possible to
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estimate the gravitational acceleration. Moreover, we can modulate the probability

to find the atom in the ground or excited state by modulating the laser phases.

2.2.1 Bragg interferometer

The sensitivity of atom interferometers can be significantly improved by maximiz-

ing the momentum differences between their paths. For instance, in Sagnac-effect

gyroscopes, sensitivity is directly proportional to the area enclosed by the two in-

terferometer arms (as shown in Equation 2.30). Consequently, larger momentum

differences result in larger enclosed areas, leading to greater sensitivity; similarly, in

gravimeters, sensitivity increases linearly with the separation between wave pack-

ets, assuming a fixed time duration, and a larger momentum recoil translates to

higher sensitivity. Such interferometers are often referred to as large area or Large

Momentum Transfer (LMT) interferometers.

Multi-photon transitions offer an effective approach for implementing atom in-

terferometers, where the two states differ in momentum without internal excitation.

These processes are commonly known as Bragg diffraction, drawing an analogy to

the scattering of X-rays and neutrons off crystals.

In atomic Bragg diffraction, an optical lattice formed by counterpropagating

laser fields serves as the diffracting crystal planes, with atomic matter-waves acting

akin to beams of X-rays. Described in terms of combined cycles of absorption and

stimulated emission, Bragg diffraction transfers pairs of photon momenta.

Generally speaking, in this technique, two laser pulses with frequencies ω1 and

ω2, detuned from the atomic resonance, interact with an atom. The frequency

difference is chosen to be an even multiple of the recoil frequency ωr = ℏk2L/2m. This

interaction enables transitions between states, with the atom absorbing a photon

from frequency ω1 and de-exciting via stimulated emission into light with frequency

ω2, resulting in a net energy gain ∝ ℏωr. This gained energy alters the atom’s kinetic

energy without affecting its internal state, leading to observed atomic motion in one

direction.

Bragg pulses, similarly to Raman pulses [69], exploit an intermediate energy

level to facilitate transitions to a third state. However, strong coupling with the

intermediate level can result in significant losses due to spontaneous emission. Hence,

it’s essential for the laser to be detuned by a certain amount ∆ relative to the atomic

transition between the ground and intermediate states. This concept is expressed

by the equation defining the residual spontaneous decay rate [38]:

Rsp =
(Γ1Γ2)

3/2

8∆2

√
I1
Isat,1

I2
Isat,2

=
Γ3

8∆2Isat

√
I1I2 (2.46)

where Ij and Isat,j denote the intensity and the saturation intensity of the two
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light beams, and Γj is the natural linewidth of the corresponding transition. Unlike

Raman pulses, Bragg diffraction solely alters the momentum state of the atom while

keeping the internal state unchanged. This distinction is crucial in applications

where changes in the internal state could lead to significant losses, such as the one

discussed in this thesis. The second part of the equation accounts for this, and since

there is only one ground state, we have Γ1 = Γ2 = Γ and Isat,1 = Isat,2 = Isat.

To develop a quantum treatment of Bragg pulses, we can start with the same

Hamiltonian described in the equation 2.35 but considering the interaction with two

counterpropagating pulses:

E =
1

2

(
E1e

i(k1x−ω1t+ϕ1) + E2e
i(k2x+ω2t+ϕ2) + c.c.

)
(2.47)

Starting from a plane wave with momentum p and in the ground internal state,|g,p⟩,

Figure 2.4: Schematisation of the Bragg diffraction process. Ta energy difference
between momentum states is ℏωr,eff = (ℏkeff)2/2m.

the field with frequency ω1 and Rabi frequency Ω1 couples to the excited state

|e,p+ ℏk1⟩. Similarly, the counterpropagating field with frequency ω2 and Rabi

frequency Ω2 couples the excited state to the ground |g,p+ ℏ(k1 + k2)⟩ state. Both
laser fields are detuned from the transition to the excited state by the quantities

∆1 = ω1− (ωe−ωg) and ∆2 = ω2− (ωe−ωg). We now wish to extend the definition

of the wavefunction 2.34 to the superposition of N (theoretically infinite) momentum

states that are in the same ground state and are coupled with two internal excited

26



CHAPTER 2. INTERFEROMETRY FOR GRAVITY MEASUREMENTS

states:

|ψ⟩ =
∞∑

n=−∞

[
cg,p(n−1)

e
−iωg,p(n−1)

t ∣∣g,p(n−1)

〉
+ cg,pne

−iωg,pn t |g,pn⟩

+cg,p(n+1)
e
−iωg,p(n+1)

t ∣∣g,p(n+1)

〉
+ ce,p′ne

−iωe,p′n t |g,p′
n⟩

+ce,p′(n−1)
e
−iωe,p′(n−1)

t ∣∣e,p′
(n−1)

〉] (2.48)

where n ∈ Z and we have used the notation 2.36 but with pl = p + lℏkeff and

p′
l = p + ℏ(lkeff + k1), where keff = (k1 + k2). Denoting the state projectors by

Pα,pl = |α,pl⟩ ⟨α,pl|, we define the new internal Hamiltonian as

Ĥ0 =
p̂2

2m
+

∞∑
n=−∞

[
ℏωg

(
Pg,p(n−1)

+ Pg,pn + Pg,p(n+1)

)
+ℏωe

(
Pe,p′(n−1)

+ Pg,p′n

)] (2.49)

The states described by 2.48 and coupled by this Hamiltonian are those showed in

Figure 2.4. We now express the interaction Hamiltonian in a more explicit form

than the equation 2.35:

ĤL =
ℏΩ1

2
e−i(ω1t+ϕ1)

(∣∣e,p′
(n−1)

〉 〈
g,p(n−1)

∣∣+ |e,p′
n⟩ ⟨g,pn|+ h.c.

)
+

ℏΩ2

2
e−i(ω2t+ϕ2)

(
|g,pn⟩

〈
e,p′

(n−1)

∣∣+ ∣∣g,p(n+1)

〉
⟨e,p′

n|+ h.c.
) (2.50)

where we have omitted Hermitian conjugates for brevity. By plugging the equations

2.48, 2.49 and 2.50 into the Schrödinger equation we obtain the following differential

system:

iċg,p(n−1)
=

Ω1

2
ce,p′(n−1)

ei(∆1,(n−1)t+ϕ1)

iċe,p′(n−1)
=

Ω1

2
cg,pne

−i(∆1,nt+ϕ1) +
Ω2

2
cg,p(n+1)

e−i(∆2,nt+ϕ2)

iċg,pn =
Ω1

2
ce,p′ne

i(∆1,nt+ϕ1) +
Ω2

2
ce,p′(n−1)

ei(∆2,(n−1)t+ϕ2)

iċe,p′n =
Ω1

2
cg,p(n−1)

e−i(∆1,(n−1)t+ϕ1) +
Ω2

2
cg,pne

−i(∆2,(n−1)t+ϕ2)

iċg,p(n+1)
=

Ω2

2
ce,p′ne

i(∆2,nt+ϕ2)

(2.51)
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where the detunings are:

∆1,(n−1) = ω1 − (ωe,p′(n−1)
− ωg,p(n−1)

)

∆1,n = ω1 − (ωe,p′n − ωg,pn)

∆2,(n−1) = ω2 − (ωe,p′(n−1)
− ωg,pn)

∆2,n = ω2 − (ωe,p′n − ωg,p(n+1)
)

(2.52)

if the population of the excited state is kept small, |∆α,l| ≫ Ωα, and the coeffi-

cients of the ground states and Rabi frequencies vary slowly with respect to ex-

ponentials, it is possible to adiabatically eliminate the excited state amplitude by

integrating the equation defining ċe,p′(n−1)
and ċe,p′n and substituting the results in

ċg,p(n−1)
, ċg,pn and ċg,p(n+1)

of the system 2.51:

iċg,p(n−1)
=

Ω2
1

4∆1,(n−1)

cg,p(n−1)
+

Ω1Ω2

4∆2,(n−1)

cg,pne
i[δ(n−1)t+ϕ1−ϕ2]

iċg,pn =

[
Ω2

1

4∆1,n

+
Ω2

2

4∆2,(n−1)

]
cg,pn +

Ω1Ω2

4∆2,n

cg,p(n+1)
ei[δnt+ϕ1−ϕ2]

+
Ω1Ω2

4∆1,(n−1)

cg,p(n−1)
e−i[δ(n−1)t+ϕ1−ϕ2]

iċg,p(n+1)
=

Ω2
2

4∆2,n

cg,p(n+1)
+

Ω1Ω2

4∆1,n

cg,pne
−i[δnt+ϕ2−ϕ1]

(2.53)

In this system we have introduced δn = ∆1,n−∆2,n = ω1−ω2−
[
(2n+1)ℏ|keff |2

2m
+ vkeff

]
and δ(n−1) = ω1 − ω2 −

[
(2n−1)ℏ|keff |2

2m
+ vkeff

]
. If we focus on the rightmost terms in

the equation 2.53, we observe similarities with those of an actual two-level system,

albeit with an effective (two-photon) Rabi frequency Ωeff = Ω1Ω2/(2∆α,l). In this

scenario, the system is driven by an effective laser with frequency ωeff = ω1 − ω2,

effective wavevector keff , and effective phase ϕeff = ϕ1 − ϕ2.

Conversely, the first two terms depict the light-induced shift of the atomic levels.

Notably, if these terms are equal, they merely alter the energy offset without in-

ducing any significant effects. However, discrepancies between these terms result

in a modification of the frequency difference between the two ground states. These

light-induced shift terms can pose challenges in precision measurements, particularly

when considering the intensity profile of the laser beams. Under such circumstances,

the spatial variation of the Rabi frequency may lead to undesirable interferometer

phase shifts.

The system 2.53 reveals that the state of an atom in a particular internal and

momentum state, immersed in two counter-propagating fields, couples with neigh-

boring momentum states in a manner dependent on the fields’ power, their detuning,

and the probability amplitudes of the states. By properly setting the field parame-

ters, it is possible to carry out multiple cycles of absorption and emission, coupling
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states that differ by a high number of laser momenta (higher diffraction orders).

A Mach-Zehnder interferometer such as the one shown in Figure 2.1 composed of

Bragg pulses should consist of three pairs of counterpropagating pulses capable of

transferring the same number of laser moments and with powers and interaction

times such that the configuration π/2, π, π/2 is respected. In this framework, one

can write the g-dependent phase shift with the wave vector and the effective laser

phase shift as:

∆ϕ = keffgT
2ẑ+ ϕeff1 − 2ϕeff2 + ϕeff3 (2.54)

where ϕeffi
= ϕ1(ti)− ϕ2(ti).
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Chapter 3

Photodetachment Stage

Photodetachment, a fundamental process in atomic and molecular physics, involves

the interaction of a photon with a neutral atom or ion: the ionization process,

which occurs after the absorption of photon energy, results in the liberation of a

bound electron, transforming it into a free electron [81]. This dual process has

wide-ranging implications across scientific and technological domains such as pho-

toelectron spectroscopy, a technique used to study the electronic structure of atoms

and molecules [82]. By measuring the kinetic energy of the electrons emitted dur-

ing the photodetachment process, detailed information about the distribution of

electronic states in the system under investigation can be obtained [83]. More-

over, photodetachment is important for molecular chemistry [84], and antimatter

research [46–48,85,86]. In research laboratories, it is used to study, manipulate and

control atomic and molecular systems.

In the context of this work, photodetachment finds its usefulness considering

that Ps is an electrically neutral system and it is therefore necessary to use the

negatively charged ion, Ps−, to guide and focus the atomic beam. Ps− can be

considered an intermediate system between atomic H+ and molecular H2+ systems

due to its mass ratio, which makes it an intriguing subject for fundamental physics

investigations that also touches on the three-body problem that lacks an analytical

solution. Theoretical studies suggest that Ps− possesses only a ground state where

the two electrons exhibit opposite spins, distinguishing it from the H− ion [47].

The prediction of Ps− by Wheeler in 1946 marked the beginning of its theoretical

exploration, leading to its experimental discovery by Mills in 1981 using the beam-

foil method [87, 88]. Despite its theoretical interest, experimental investigations on

Ps− have been limited due to its low ion yield and short annihilation lifetime of

479 ps. However, advancements in Ps− formation have facilitated studies on Ps−

photodetachment and the production of energy-tunable Ps beams, expanding the

scope of experimental research on this exotic ion [48,85].

In the photodetachment of Ps−, the resulting Ps atoms are typically found in

the ground state, with two spin eigenstates depending on the total spin of the

30



CHAPTER 3. PHOTODETACHMENT STAGE

constituents [89]. Para-positronium (p-Ps, 11S0) primarily decays into two photons

with a short lifetime of 125 ps, while ortho-positronium (o-Ps, 13S1) decays into

three photons with a longer lifetime of 142 ns in vacuum [90]. The population

ratio of p-Ps and o-Ps formed during photodetachment follows the spin statistics

weight of 1:3, with o-Ps being the dominant state [91]. A review of the status of the

research for the three-body positronium negative ion (e−e+e−) and the four-body

positronium molecule (e−e+e−e+) is reported in Ref. [92].

Ps− may not possess any excited states, but Ps ions have a rich structure of

resonances. One can simply think of Ps ion as a ground-state Ps atom surrounded

by a weakly bound electron in a singlet-state relative to the Ps electron. Quasi-bound

states (resonances) have been theoretically predicted in the vicinity of the formation

thresholds of Ps (for principal quantum number n ≥ 2). Although the resonance

states spontaneously dissociate into positronium, for example in the ground state,

the interference between the direct detachment process and the detachment via

the resonance state produces distinguishing features on the cross sections near the

resonance energy. Mills [93] estimated the cross section for photoionization of the

Ps ion system at the lowest (n = 2) Feshbach resonance in 2013. He neglected the

influence of the weakly bound outer electron. The obtained result is σF = 1.4×10−12

cm2. The cross section of the Ps− photodetachment has been extensively studied

over the past decades: a two-photons deteachment has been reported in Ref. [94]

while Figure 3.1 shows the results of several studies for the single photon case. The

image and the curve labeled as ”present” refers ti the study in Ref. [50]. The Figure

3.1 shows two peaks that might be convenient to exploit: the one with a peak at

about 0.7 eV and the resonance peak at about 5.5 eV (n=2). The wavelengths

corresponding to these peaks are approximately 1800 nm and 225 nm. We decide

to exploit the region around the peak at the highest wavelength and to discard the

resonance at n = 2 for two main reasons:

• The UV peak has a very narrow width and therefore, due to the Doppler effect,

imposes a more stringent upper limit on the velocity classes of the atomic beam

that can be used; moreover, the Doppler effect is more significant for higher

frequencies.

• As we will see in Section 3.2, photodetachment can have a detrimental effect

on the beam’s kinematics, causing broadening. This effect is proportional to

the energy of the photons.

For experimental convenience, including access to a wide range of commercially

available equipment, the capability to achieve high powers, and availability of com-

ponents in the laboratory, we opt to operate at a wavelength of 1560 nm, corre-

sponding to a cross-section of approximately 6.5× 10−17 cm2.

The efficiency of the photodetachment thus depends on the nature of the atom
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Figure 3.1: Theoretical values of the total cross section for the positronium negative
ion photodetachment below the Ps (n = 4) threshold according to various works in
the literature [95–97]. The image and the curve labeled as ”present” refer to the
study in Ref. [50].

or ion via the cross section, the energy of the incident photon, but also the inter-

action time between the atomic beam and the laser. These dependencies are well

summarised by the equation defining the photodetachment probability [98]:

Ppd = 1− e−σ
∫ t2
t1

Φph dt (3.1)

where Φph is the photon flux, σ is the photodetachment cross section and (t2-t1) is

the time interval in which an ion interacts with the laser. The flux is defined by

Φph = I(t)
hc/λ

with h Planck’s constant, c speed of light and I(t) laser intensity. Given

the Ps and Ps− lifetimes, it is necessary for the atomic beam to be accelerated to

relatively high speeds. In fact, the design speed of the Ps beam is 200 eV, which

corresponds to approximately 6x106 m/s. Assuming a 0.7 mm waist beam and

an atom passing through it along its diameter, the interaction time is therefore

about ∆t=0.23 ns. Considering the relation between intensity and peak power,

I0 = 2P0

πw2
0
, with w0 laser waist, and neglecting the Gaussian shape for the moment,

we can estimate the power required to obtain a 95% maximum photodetachment
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probability with

P0 = −πhcw2
0

2σλ∆t
ln (1− 0.95) ≃ 193 kW (3.2)

Since we want to ensure a high photodetachment probability even for ions crossing

the laser beam peripherally, we round up the design power to 200 kW. To achieve

a broader waist for capturing a larger number of atoms from a poorly collimated

atomic beam and to ensure high light intensity and resonator stability a confocal

Fabry-Pérot resonator was chosen. This choice was made to optimize the photode-

tachment process efficiency, while balancing experimental feasibility. Considering

that powers of the order of 30 W are commercially available and assuming a laser-

cavity coupling of 50%, to attain the required optical power, a finesse of 40000 has

been chosen. The cavity operates in continuous mode primarily because the exper-

iment was originally designed to use 22Na as the positron source. Sodium requires

continuous operation to avoid losses in accumulation stages. The consideration of

using a LINAC is a recent development, and its operational parameters-such as rep-

etition rate and pulse length-need to be defined with greater precision. This process

could take time, especially if we use the LINAC currently under construction, as pre-

viously mentioned in Section 1.2. Therefore, project plans to use continuous-mode

cavity, with the added goal of testing the excitation and interferometry components

using the 22Na source already available in the Milan laboratory. This versatile cavity

then has the advantage that it can also be used effortlessly with a LINAC, being

totally independent of its operating parameters.

3.1 Optical cavity simulation

During the design and optimization activities of the high-power optical cavity, sim-

ulations were conducted to address two main issues regarding the interfacing of the

atom source electrodes with the laser cavity and the risk of mirror deformation due

to the high circulating power.

One of the main aspects concerned the correct positioning of the electrodes of

the atomic source with respect to the laser beam inside the cavity. This issue stems

from the need to bring the Ps− source as close as possible to the laser beam in order

to minimise annihilation losses but at the same time the interference with the laser

beam could compromise the overall cavity performance due to diffraction losses. To

address this issue, optical simulation using OSCAR [99] has been employed.

Another significant issue is associated with the possibility of the high circulating

power within the cavity causing mirror deformations, thereby compromising the

efficiency and performance of the cavity. To analyze this potential issue, thermal and

structural analysis was performed by Finite Element Modeling (FEM) using Ansys.

The integration of the results obtained from Ansys with the optical simulations from

33



3.1. OPTICAL CAVITY SIMULATION

OSCAR allowed for a comprehensive assessment of the impact of high power on the

geometry and performance of the mirrors.

3.1.1 OSCAR: working principles

OSCAR, or Optical Simulation Code for Advanced Resonators, is a powerful FFT-

based simulation tool made by Jérôme Degallaix for LIGO simulations and designed

to model Fabry-Pérot cavities with arbitrary mirror profiles. The underlying prin-

ciple of OSCAR’s optical propagation code resembles the Fourier transformation

method employed to compute the response of a linear system to an arbitrary func-

tion fi(t).

In this method, fi(t) is represented as a continuous superposition of harmonic

functions of various frequencies ν:

fi(t) =

∫
f̃i(t)e

2πjνtdν

where f̃i denotes the Fourier transform of fi, and e2πjνt represents the harmonic

function of frequency ν used to expand fi.

By knowing the system’s response to each elementary harmonic function e2πjνt, the

response to the input fi can be derived through three fundamental steps. Firstly,

fi is decomposed into the sum of basic harmonic functions via Fourier transforma-

tion. Secondly, the system’s response to each harmonic function is computed, simply

achieved by multiplication in the frequency domain. Finally, the output of the sys-

tem to the input fi is obtained by performing the inverse Fourier transformation of

the output harmonic functions. In the context of OSCAR, the elementary functions

are represented by plane waves of differing spatial frequencies.

A plane wave propagating a distance d along the x-axis can be written as

u(d, y, z) = exp{−j(kxd+ kyy + kzz)} (3.3)

which identifies the phase of the wave along the plane perpendicular to the propa-

gation axis. With the paraxial approximation (kx ≫ ky, kz)we can write

kx =
√

|k|2 − k2y − k2z ≃ |k| −
(k2y + k2z)

2|k|
(3.4)

Plugging in the spatial frequencies νi = ki/2π we obtain that the equation 3.3

becomes:

u(d, y, z) = u(0, y, z) exp
{
−j(|k| − λπ(ν2y + ν2z ))d

}
(3.5)

The term exp(−j|k|d) represents the phase shift of a plane wave propagating along

the x axis and the term exp
(
−jλπ(ν2y + ν2z )d

)
adds a phase correction to take into
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account the fact that the wave propagates with a small angle with respect to the x

axis.

We now want to understand how to propagate a generic electric field E(y, z) that

will represent the laser inside the optical cavity. We can expand the field into a set

of plane waves such as:

E(y, z) =

∫ ∫
Ẽ(νy, νz) exp{−2πj(νyy + νzz)}dνydνz (3.6)

If we think of this equation as an inverse Fourier transform, we have that

Ẽ(νy, νz) =

∫ ∫
E(y, z) exp{2πj(νyy + νzz)}dydz (3.7)

In summary, OSCAR performs the following tasks:

• Decomposition of the field E(0, y, z) into a sum of elementary plane waves by

calculating the 2D Fourier transform: Ẽ(0, y, z) = F(E(0, y, z)).

• Propagation of each plane wave by adding a phase shift in the frequency do-

main: Ẽ(d, νy, νz) = Ẽ(0, νy, νz) exp
(
−j(|k| − λπ(ν2y + ν2z ))d

)
.

• Recomposition of the electric field from the propagated plane waves by com-

puting the inverse Fourier transformation: E(d, y, z) = F−1(Ẽ(d, y, z)).

As previously mentioned, equation 3.3 defines a wave in a plane perpendicular

to its direction. However, when implementing this equation computationally, the

plane needs to be discretized, effectively creating a 2D matrix. The dimensions of

this matrix should be chosen carefully, depending on the specific physical system

under simulation. It’s crucial to select a matrix size with a sufficiently high number

of rows and columns to ensure a high-resolution representation of the propagating

fields over the desired physical length.

Moreover, the process involves computing the discrete Fourier transform (DFT)

of this 2D matrix. The DFT of a complex 2D matrix results in another complex

2D matrix with the same dimensions. In the transformed domain, the low spatial

frequencies are concentrated in the center of the matrix, while the high spatial fre-

quencies are located towards the edges. This distribution reflects the nature of the

Fourier transform, where lower frequencies correspond to variations occurring over

longer distances, while higher frequencies represent rapid changes over shorter dis-

tances.

Furthermore, the spatial frequency resolution, which determines the level of detail

captured in the simulation, is inversely proportional to the total spatial length of

the system. Therefore, a larger system with more significant spatial extent would

require finer frequency resolution to accurately represent the propagating fields. Af-

ter setting up the problem in this way, propagation becomes nothing more than an
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element-wise multiplication between the matrix containing Ẽ(νy, νz) and a propaga-

tion matrix defined at the beginning of the calculation, which is used each time the

field needs to propagate from one end of the cavity to the other. What is missing

in this discussion is the inclusion of mirrors and optical components.

When a laser field Ei traverses a medium with a non-uniform refractive index

n(x, y, z), it undergoes distortion of the wavefront at each point in space (y, z) due

to the difference in optical path length between all points in the plane (y, z) and the

propagation axis:

∆OPL(y, z) =

∫ L

0

n(x, y, z)dx−
∫ L

0

n(0, y, z)dx (3.8)

Ef (y, z) = Ei(y, z) exp{−j|k|∆OPL(y, z)} (3.9)

When propagating a laser beam towards a mirror, its profile must be taken into

account. If, for example, the mirror is concave, the optical path difference will be

two times the sagitta (see Figure 3.2) ∆s = RofC −
√
R2

ofC −∆r2. By changing

the mirror profile, realistic optics can be simulated by adding, for example, tilts,

roughness or other deformations such as thermal deformations.

(a) Profile of a spherical mirror with
radius of curvature RofC and sagitta
∆s.

(b) Corresponding optical path dif-
ference.

Figure 3.2: Profile and optical path difference of a spherical mirror. Images taken
from OSCAR manual [99].

After specifying the laser properties (such as wavelength and initial beam shape),

mirror characteristics (including diameter, profile, refractive index, reflectivity and

losses), and resonator (such as configuration and length), we can estimate the char-

acteristics of the field inside the cavity. This can be done by launching the beam

either from outside, considering the coupling, or from inside the cavity. The code

is capable of adjusting the Gaussian beam parameters to optimize its coupling with

the cavity, determining parameters like waist and radius of curvature, or it can ac-

cept these parameters from the user.

The simulation of the cavity begins with a field, defined for example outside, which
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propagates through the first mirror and then into the cavity. A portion of the field is

reflected by the mirror, accumulating and adding up within the cavity, while the rest

is transmitted or absorbed depending on the mirror’s characteristics. This process

continues until reaching the maximum number of iterations, and the total field is the

sum over all round trips of the transient fields. The procedure is analogous to the

analytical method for calculating the circulating field in an optical cavity [100] and

is illustrated in Figure 3.3. In a lossy cavity, the accumulated field is always finite,

and the power of the transient field decreases by (1-L) per round trip, with L being

the round trip cavity loss. This implies that we can choose the number of iterations

as desired, provided it is high enough to represent a steady-state condition.

Figure 3.3: Schematisation of the process of calculating the circulating field as the
sum of the fields resulting from mirror reflection and propagation in cavity.

3.1.2 Design cavity analysis and loss assessment

The mirrors chosen for the photodetachment cavity are one-inch fused silica mirrors

with 80% clear aperture (CA), 6.35 mm thickness and 2 metre radius of curvature.

The high reflectivity coating has a transmission of 78 ppm (parts per million) with

very low absorption losses of about 0.15 ppm. The anti-reflective (AR) coating has

a transmission coefficient of about 0.999 and an absorption of about 200 ppm. The

cavity mirrors are the same.

As mentioned at the beginning of the chapter, the mirrors were selected with these

specific characteristics to achieve a circulating power on the order of 200 kW and

ensure a sufficiently large beam waist. This allows for a substantial interaction cross-

section between the atomic beam and the light. The cavity spacer is an assembly

of ultra-high vacuum compatible tubes that separate the mirrors over a length of

approximately 2.04 m. For the simulation, a field with a Gaussian profile with a

wavelength of 1550 nm, an input power of 15 W, a waist at the mirrors of approx-

imately 1.05 mm and a wavefront radius of curvature of about 1.4 m is defined
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Table 3.1: Powers relative to the cavity under design conditions

Parameter Value

Power in the input beam 15 W
Circulating power 197.5 kW
Transmitted power 14.93 W
Reflected power 0.009 W

outside the cavity. Both the waist and radius of curvature wavefront were optimised

by finding values that maximise cavity coupling and circulating power. Running the

code to calculate the circulating power under the conditions just described yields

the results listed in table 3.1.

The results indicate that the cavity is capable of achieving a power close enough to

the required value as per the design. The achieved coupling is almost 100%, which

is a highly optimistic condition. However, as mentioned, the plan is to increase

the input power to around 30 W to attain this circulating power even with a lower

coupling efficiency. Figure 3.4 shows the input, circulating, reflected and transmit-

ted fields. Since there is near-perfect matching in the design condition, the circular

symmetry of the reflected field may represent higher-order modes suppressed by the

cavity while the other fields are Gaussian shaped. In this simulation, the etalon

effect has also been taken into account, considering that the reflection from the AR

and HR surfaces creates a cavity within the mirror itself. Under conditions of de-

structive interference, the etalon effect can decrease field transmission and increase

losses. Within the code, a number of iterations for the etalon effect can be defined,

reaching steady-state conditions with about 4 iterations. Among the causes that can

increase this effect is the fact that mirrors have a relatively large radius of curvature,

which for a CA of one inch results in an almost flat profile for both surfaces. In the

absence of compensation for the etalon effect, the power transmitted through the

input mirror, and consequently the circulating power, depends on the thickness of

the mirror and can oscillate significantly with variations in thickness smaller than

the laser wavelength. The circulating power reported in table 3.1 was obtained by

adjusting the mirror thickness to minimize the etalon effect, thereby emulating an

optimal compensation of the effect. Further details on this point will be provided

at the end of this section (see Figure 3.12).

We can now address the issue of positioning the Ps− acceleration and focusing sys-

tem shown in Figure 1.3 with respect to the laser beam. Note that from now on

we will assume that the atoms move primarily along the z-axis and that the gravity

acceleration is antiparallel to the y-axis. As can be seen from the Figure 1.3, the

closest obstruction to the laser beam is the 0 V grid. If this overlaps even peripher-

ally with the laser beam, there is a risk of loss of cavity power. The obstruction is

modelled as an asymmetrical rectangular aperture (on one side only) whose distance
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Figure 3.4: Profiles of the cavity electric fields under design conditions. The grid
captures an area of 1× 1 cm2 and the resolution is approximately 0.08 mm.

from the centre of the beam, ∆zo, is the quantity to be optimised. A diagram of

the model is shown in Figure 3.5.

This obstruction can be incorporated into OSCAR as a mask covering the mirror’s

HR coating. Basically, it is a matter of multiplying the matrix that defines the pro-

file of the mirror by a matrix of equal size having null values where the obstruction

is. This modifies the equation 3.9 as follows:

Ef (y, z) = A(y, z)Ei(y, z) exp{−j|k|∆OPL(y, z)} (3.10)

where A is the aperture matrix. Note that this method does not take into account

effects that may arise from the interaction of the beam with objects in the cavity,

such as reflections or diffractions, which we nevertheless consider negligible in this

analysis. However, the model is pessimistic because it assumes the grid is near the

mirror, where the laser diameter is larger, whereas in reality it is near the waist. We

will disregard this issue for the sake of an even more conservative estimate. We aim

to determine the minimum ∆zo with 0 < ∆zo ≤ CA/2 that allows achieving the

design circulating power indicated in 3.1. Therefore, we can simulate under design

conditions but by setting ∆zo as a parameter. Figure 3.6a illustrates the round trip

39



3.1. OPTICAL CAVITY SIMULATION

Figure 3.5: Schematisation of the cavity obstruction generated by the acceleration
and focusing sytem. The atoms move towards the z-axis and the cavity is along
the x-axis. The blue circle is one of the two mirrors and the red circle represents a
section of the laser. ∆zo is the distance between the obstruction and the centre of
the laser that is to be optimised.

losses and circulating power as a function of ∆zo while 3.6b shows the profiles of the

fields within the cavity with their respective circulating powers for different values

of ∆zo.

For low values of ∆zo the obstruction destroys the circulating beam causing

losses to increase and the circulating power to decrease drastically. For ∆zo ≤ 2w0

the shading of the obstruction becomes visible and the beam profile shows fringes

attributable to asymmetrical propagation in the cavity. The analysis shows that

the circulating power returns to its design value for ∆zo > 2.5 mm, which has been

therefore chosen as the design distance.

Under these conditions, from the last acceleration electrode to the center of the

laser beam, the Ps− beam is approximately halved. To grasp the importance of

optimizing this distance, consider that if we had chosen a conservative condition

where ∆zo = CA ≃ 20 mm, the resulting beam would have been only about 1% of

that exiting the acceleration and focusing system.

3.1.3 Thermo-elastic and thermo-optic effects

The thermal effects felt by an optical medium result from a temperature change

that causes a difference in optical path. The most prominent for our interests are

the thermal expansion (thermo-elastic effect) and the change of the refraction index

(thermo-optic effect):

∆OPL(r) = ∆n(r) · l + n ·∆l(r) (3.11)
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(a) Round trip losses and circulating power as a function of the distance between
the cavity obstruction and the centre of the laser beam. The quantities are
normalised to their maximum value.

(b) Normalized circulating field profiles and circulating powers as a func-
tion of different values of ∆zo.

Figure 3.6: Evaluation of cavity losses for different Ps− focussing system positions.
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with l thickness of the medium. In the equation 3.11 we have neglected the variation

of the refractive index due to possible stresses in the material (photoelastic effect)

since it is generally less than the thermo-optic effect for various optical materials

[101].

The thermo-elastic effect is a fundamental phenomenon encountered in materials

science and engineering, particularly in the realm of high-power laser systems. As

these systems operate under demanding conditions, often generating intense beams

of coherent light, they are inherently susceptible to variations in temperature that

induce mechanical stresses within their components. Understanding and character-

izing the thermo-elastic behavior of these components is crucial for ensuring the

reliability, performance, and longevity of high-power laser systems. By accurately

predicting the thermal-induced stresses and strains, robust optical systems can be

designed to withstand the constraints of high-power laser operation [102].

At its core, the thermo-elastic effect describes the mechanical response of materials

to changes in temperature. When subjected to thermal gradients, materials change

their dimensions due to thermal expansion or contraction, leading to the develop-

ment of internal stresses. This phenomenon arises from the interplay between the

material’s thermal properties, condensed in the coefficient of thermal expansion, and

its mechanical properties, expressed by its modulus of elasticity.

Mathematically, the thermo-elastic effect can be described by fundamental equations

that govern the relationship between temperature, stress, and strain in a material.

One such equation is Hooke’s law, which relates stress to strain through the mate-

rial’s elastic modulus.

Additionally, the strain experienced by a material due to thermal expansion (εth)

can be expressed as:

εth = α ·∆T (3.12)

Where α is the coefficient of thermal expansion and ∆T is the change in tempera-

ture.

In the context of high-power laser systems, the thermo-elastic effect manifests itself

in various ways. For example, the optical components within the laser cavity, such

as mirrors and lenses, experience thermal loading from the intense laser beams. This

thermal loading induces mechanical stresses within the optical elements, potentially

leading to deformation or even breakage if not properly managed.

Thermo-optic effect is a fundamental phenomenon influencing the performance of

optical devices like mirrors and lenses under temperature variations. It is often not

negligible in high-power laser systems [103,104].

The thermo-optic effect manifests as a change in the refractive index of an optical

material in response to temperature variations: ∆n = n(T1) − n(T0). This change

affects light propagation through the material, altering optical properties such as

phase velocity and refractive angle. Particularly in high-power lasers, refractive
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index variations can lead to unwanted phenomena like laser beam distortion, opti-

cal resonator instability and unwanted couplings with higher-order modes [105–108].

The refractive index change is proportional to the temperature difference ∆T through

the coefficient β = dn
dT
:

∆n(r) = β ·∆T (r) (3.13)

β is the thermo-optic coefficient that varies depending on the material considered.

There are various analytical models for evaluating thermo-elastic and thermo-

optic effects on optical components. Typically, in a high-power cavity, the HR

coating absorbs and heats up due to exposure to the circulating power, while also

heating the substrate through conduction. The substrate, subject to a temperature

gradient, acts as a lens and distorts the wavefront (thermal lensing). Furthermore,

its expansion affects the coating, altering the mirror’s radius of curvature. Addi-

tionally, the absorption of the transmitted beam through the substrate may also be

non-negligible, specifically when the optic is extended longitudinally. Although the

behavior of the HR coating and the substrate are interconnected, their effects are

often considered separately.

The thermo-optic effect given by the mirror substrate is defined by the equation 3.13,

which needs a definition of ∆T (r) to be used. A simple analytical model [101, 109]

defines the temperature variation along the mirror profile in the case of a mirror of

infinite size with radial heat flow and hit by a Gaussian beam as:

∆T (r) = |T (r)− T0(r)| =
α′Pab

4πκth

∞∑
l=0

[
(−1)l(2r2/w2)l

ll!

]
(3.14)

Here, T0(r) is the temperature of the mirror at rest, α′ represents the substrate’s

thermal expansion coefficient per unit length, Pab denotes the absorbed power, κth

is the thermal conductivity and w is the waist at the mirror. The power absorbed

by the substrate is the power transmitted through the mirrors times the absorption

coefficient: Pab = AsubPt.

The thermo-optic effect results in a change in the focal length of the optical com-

ponent, which can be seen as a change in an effective radius of curvature that is, at

first order, given by:
1

R′
ofC

≃ 1

RofC

− βPab

2πκthw2
(3.15)

Given that our setup primarily involves the interaction of the laser with reflective

optics, except for transmission through a mirror (pseudo output coupler), we expect

the total optical path length difference (∆OPL) to be dominated by the thermo-

elastic effect. This effect, resulting from the substrate heating caused by power

absorption in the mirror coatings and substrate, leads to a sag variation given by
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[105]:

∆s ≃ αPab

4πκth
(3.16)

where α represents the substrate’s thermal expansion coefficient. A diagram of this

deformation is shown in Figure 3.7. Note that the thermo-optic effect has a role

Figure 3.7: Variation of the sagitta ∆s due to thermal expansion of the mirror hit
by a high-power laser beam.

only in the transmission of the field through the first mirror (it is present in both

mirrors, but the first one defines the cavity field) while the thermo-elastic effect is

relevant for both mirrors of the cavity. The absorbed power is the sum of the power

absorbed by the coating and the substrate: Pab = AcPc + AsubPt, where Ac is the

absorption coefficients of the coating and Pc represent the circulating and power.

∆s induces a variation in the radius of curvature according to the relation:

1

R′
ofC

≃ 1

RofC

− 2∆s

w2
=

1

RofC

− αPab

2πκthw2
(3.17)

With this model, however, we see the mirror as a large system that responds uni-

formly to thermal stimulation. Nevertheless, we are also interested in determining

local deformations also taking into account possible longitudinal heat flows to the

mirror.

In the subsequent part of this section, we focus on the impact of the thermo-elastic

and thermo-optic effects on the mirrors of the photodetachment cavity. Our goal is

to emulate realistic optics to estimate the actual circulating power and eventually

design strategies to mitigate thermal effects. Unlike the analytical models mentioned

earlier, the aim is to determine the temperature profile ∆T (r) and deformation ∆s
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through simulations to be used in Equation 3.11, considering that ∆s corresponds to

a profile modification ∆l(r) of the spherical mirrors. Comparing equations 3.17 and

3.15, we observe their similarity, prompting us to consider the perturbations from

both effects as an equivalent deformation applicable to the mirror profile. This de-

formation will induce an optical path length difference as per equation 3.11, altering

the field according to equation 3.9.

3.1.4 Estimation of thermal effects on photodetachment cav-

ity

OSCAR lacks the capability to compute the mirrors temperature and shape changes

that stems from the laser action. Therefore, other software tools are required to

determine these quantities. In this analysis, I followed a procedure similar to the

one outlined by OSCAR’s creator, Jérôme Degallaix, in the package manual and

in his doctoral thesis [110], from which I replicated certain results to validate the

approach of my analyses.

The procedure involves coupling OSCAR with finite element analysis software, such

as Ansys, to determine the thermal distribution and deformation to be incorporated

as modifications to the mirror refractive index and profile in OSCAR.

The FEM operates on the principle of discretization, where complex structures

are divided into smaller, simpler elements that can be analyzed individually. These

elements are connected at discrete points called nodes, forming a mesh that repre-

sents the entire geometry of the system.

In FEM, each element is characterized by a set of mathematical equations that de-

scribe its behavior under various conditions, such as mechanical loading, thermal

gradients, or fluid flow. These equations are typically derived from fundamental

principles of physics, such as equilibrium equations, constitutive relations, and con-

servation laws. The behavior of the entire system is then determined by solving

these equations iteratively for each element in the mesh. By applying appropri-

ate boundary conditions and material properties, FEM simulations can accurately

predict the response of the system to external stimuli.

Assuming moderately impactful deformations, I decided to follow the subsequent

iterative method:

1. Determine the nominal circulating power Pc,0 with ∆T (r),∆l(r) = 0.

2. Use Pc,0 to determine the maximum temperature variation ∆T0(r) of the mirror

and consequently the maximum deformation ∆l0(r).

3. Determine the new circulating power Pc,1 with the deformed hot mirrors.

4. Repeat the process until Pc,n ≃ Pc,(n−1).
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This procedure is designed to address the fact that circulating power and defor-

mations are two correlated variables, and it would be necessary to determine them

simultaneously.

The first step for FEM simulation is to define a material. As anticipated, the mirrors

are made of low-absorption SiO2 and its optical, thermal and mechanical character-

istics are listed in the table 3.2. Apart from the absorption coefficients, these values

were not provided by the company but retrieved from the literature.

Parameter Value Unit
Coating absorption coefficient (Ac) 0.15 ppm
Substrate absorption coefficient (Asub) 1 ppm
Substrate thermal expansion coefficient (α) 0.5 10−6K−1

Thermo-optic coefficient (β) 10 10−6K−1

Thermal conductivity (κth) 1.38 Wm−1K−1

Specific heat (C) 740 J kg−1K−1

Refraction index (n) 1.44 -
Density (ρ) 2200 kgm−3

Young modulus (E) 73 GPa
Poisson ratio 0.16 -

Table 3.2: Fused Silica parameters at 20°C used in the Ansys-OSCAR simulation
to estimate thermal effects. The values come from various sources (Ansys materials
database - Granta - and Ref. [110,111]); Ac and Asub are given on the datasheets of
the mirrors.

The chosen geometry is a flat disk with a diameter of one inch: the idea is

to evaluate the deformation in the absence of curvature and import it into the

actual profile of the curved mirrors. To achieve better resolution with acceptable

computational cost, the mirror was divided into two concentric cylinders, and a

finer mesh was applied to the central cylinder, which is struck by the laser beam.

In Figure 3.8a, the meshed geometry of the mirror is shown. The elements in the

central region have a minimum size of 50 µm, while in the peripheral disk, the

minimum size is 0.5 mm. The mesh is prismatic and the minimum element quality

is about 75% while the average is about 98%.

To estimate the temperature variation, a steady-state thermal analysis was con-

ducted starting from the solid at room temperature of 20°C, assuming radiation

from the surfaces to the external environment. Two thermal loads were applied:

one representing the internal generation within the mirror, which accounts for the

transmitted and partially absorbed beam, and a surface flux representing the ther-

mal power transferred by the intracavity beam.

Both loads were introduced using Ansys Parametric Design Language (APDL) and

defined with Gaussian shapes centered on the optical axis: q(r) = q0e
− 2r2

w2 . The

amplitude of the applied load in the FEM model, q0, is calculated with the integral
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for a hypothetical mirror of infinite radius

Pab = 2πq0

∫ ∞

0

e−
2r2

w2 r dr =
q0πw

2

2
(3.18)

which allows us to define the load as a function of radius as:

q(r) =
2Pab

πw2
e−

2r2

w2 (3.19)

This load is fine for the heat flow over the HR coating but for the load representing

(a) Mirror mesh. The zoom shows the denser mesh
near the spot.

(b) Temperature profile caused by optical power ab-
sorption.
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(c) Deformation in axial direction due to mirror heat-
ing. The values are negative because the displacement
of the nodes is along the negative direction of the z-
axis but show an expansion of the mirror.

Figure 3.8: Mesh, temperature profile and mirror deformation resulting from FEM
simulation with Ansys. The zoomed-in portion shows the central part of the mirror,
which is hit by the laser beam, in section. The circle in the zoom of figures b) and
c) delimits the area with a denser mesh. The mirror face shown is the one directed
towards the inside of the cavity.

the power transmitted through the mirror, which is modelled as heat generation

within the mirror volume, q(r) must be divided by the thickness of the mirror.

In Figure 3.8b, the temperature profile obtained is depicted: as expected, the great-

est temperature difference occurs at the HR coating, reaching a peak of approxi-

mately 8°C; the heating caused by the power absorbed in the substrate is negligible.

The analysis of thermally induced deformation was performed using the static struc-

tural module of Ansys, considering the displacement of nodes along the cavity axis.

As boundary conditions, a fixed circular constraint was applied around the mirror,

representing a support capable of uniformly enveloping the mirror.

It is worth noting that this system geometry justifies the inclusion of the Poisson’s

ratio among the key parameters governing its thermoelastic deformation. Indeed,

the Poisson’s ratio describes how a material, when stretched or compressed in one

direction, contracts or expands in the perpendicular directions. In thermoelasticity,

which combines mechanical and thermal effects, this ratio is essential for under-

standing how a material responds when subjected to both temperature changes and

external loads. If a material is constrained or restricted in certain directions, thermal

expansion in one direction may induce deformations in other directions, governed
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(a) Axial deformation of the mirror surface inside the cavity.

(b) Axial deformation and temperature profile of the mirror. Each
curve represents a different layer of the mirror: the highest layer is
the one that faces the inside of the optical cavity.

Figure 3.9: Deformation profiles and mirror temperature in cavity with maximum
circulating power.

by Poisson’s ratio.

In Figure 3.8c, the obtained results are presented: there is an expansion affecting the

entire mirror, with a peak occurring at the location of the highest power absorbed

by the coating.

These results were imported into MATLAB, interpolated and extrapolated to match

the grid used in OSCAR. The results are shown in Figure 3.9.

The deformation, ideally having circular symmetry, has a peak of about 11 nm

and involves the entire surface of the mirror. In Figure 3.9b the deformation and

temperature profiles for different radial sections of the mirror are shown. Note

that in these figures, the deformation is applied to a flat mirror, as it would be

imperceptible with a curved mirror. Although the deformation is several orders of

magnitude lower than the sag of the entire mirror (on the order of 30 µm for a

mirror with a radius of 2 m), this can be relevant when considering the sag defined
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Figure 3.10: Representation of the model used to evaluate the thermo-elastic effect
starting from a flat mirror. The beam passing through the mirror encounters the
deformed region, experiencing a change in refractive index during the length of the
deformation, for both sides of the mirror.

by the laser waist (as in the Figure 3.7), which in this case is approximately 0.6

µm. Given the inverse proportionality between waist and radius of curvature, the

problem of deformation may become more important for large radii of curvature.

We can define the cumulative optical path difference resulting from thermo-elastic

and thermo-optic effects experienced by the transmitted field through the mirror,

based on the discretized form of equation 3.11:

∆OPLt(y, z) = β

∫ l

0

∆T (x, y, z)dx+ (n− n0)∆ltot(y, z) (3.20)

with n and n0 being the refractive indices of the mirror and air, respectively. The

second term in the equation arises from the fact that when the field approaches the

mirror, it encounters its profile earlier and leaves it later compared to the case of a

cold mirror by an amount equal to ∆l. This can be better understood by looking at

Figure 3.10, where the cold mirror is schematized with two flat surfaces for simplicity.

Looking at the Figure 3.11a, it can be seen that the maximum ∆OPLt is of the order

of 0.1 µm and is zero at the centre, where the temperature is maximum, and negative

in the rest of the mirror where the temperature decreases with the radius.

In Figure 3.11b the contributions of the thermo-optic and thermo-elastic effect to

∆OPL of the equation 3.20 are shown separately: it can be seen that the thermo-

optic effect is dominant and is about one order of magnitude higher then the thermo-

elastic effect; this happens due to the relatively high ratio β/kth of the fused silica

[110].

Once in the cavity, the field only interacts with the HR surfaces of the mirrors

deformed by the thermo-elastic effect. Assuming they are deformed in the same
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(a) Total optical path difference for a field passing through the heated
mirror.

(b) Contributions of thermo-optic and thermo-elastic effects presented
separately and as a function of radial coordinate.

Figure 3.11: Optical path difference of cavity mirrors for photodetachment.

way, the optical path difference of the circulating field is given by:

∆OPLr(y, z) = 2∆l(y, z) (3.21)

By modifying the cold mirror profile defined in OSCAR with the deformation and

optical path difference obtained, the powers shown in table 3.3 are obtained. While

the coupling obtained is slightly worse than in the cold cavity as expected, the circu-

lating power is slightly higher than the design value (see Table 3.1). In Figure 3.12,

the circulating powers are shown as a function of the variation in mirror thickness

relative to the laser wavelength. By slightly varying the mirror thickness, we can

observe how the circulating power contrast caused by etalon changes for both the

cold and hot cavities. The etalon effect is generally stronger when the mirrors are

two parallel flat surfaces; thus, one hypothesis for this behaviour is that deforma-

tions reduce the differences between the HR and AR surfaces of the mirror. This

hypothesis accords with the fact that inside the cavity, where the cold mirror is
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Table 3.3: Powers relative to the heated cavity

Parameter Value

Power in the input beam 15 W
Circulating power 197.9 kW
Transmitted power 14.89 W
Reflected power 0.05 W

concave, there is greater deformation due to intracavity power. The values reported

in Tables 3.3 and 3.1 correspond to the condition of maximum power for the cold

cavity.

We will not delve deeply into the reasons of these power values since our interest

lies in the qualitative but important result: Pc,1 ≃ Pc,0. This concludes our analysis,

validating the operational power as the design power, which is approximately 198

kW.

However, if needed, various strategies have can be applied to counterbalance the

thermal effect. Among the main ones are the heating ring, the compensation plate

and the CO2 laser projectors [110–117]. The ring heater is a thermal compensation

system employed to counteract the alteration in the curvature radius caused by laser

heating on the optic’s surface. It is part of a set of thermal compensation systems

integrated into the detectors to mitigate aberrations. The ring radiatively heats

the outer edge of each test mass, thereby reducing the temperature gradient within

them. By applying additional heat at the periphery, the radial profile of absorption is

flattened, counterbalancing the centrally concentrated beam heating and alleviating

the radial component of the thermal gradient. However, this adjustment leads to

a rise in the mean temperature of the optic. In scenarios involving high optical

power, adaptive compensation can be achieved by regulating the electrical power

supplied to one or more heating elements positioned around the optic’s perimeter.

Compensation plates (CP) are vital components of a thermal compensation system

and consist of optical plates (often made of fused silica) that the beam passes through

before entering the high-power optical cavity. The CPs aim to deform the laser

beam wavefront to compensate for the distortion created by the optical effect of the

cavity’s output coupler. CPs require active heating, typically achieved through ring

heaters (RH) or other means such as CO2 laser projectors. These projectors emit

laser beams with wavelengths in a high-absorption region of the optical material

used, with the intention of heating the CPs in a circular area around the impact

zone of the main Gaussian beam. The shape of the projector beams can be achieved

using axicon lenses, which can be combined to create multiple concentric circles.

While these strategies are commonly employed in large-scale, high-power systems

such as gravitational wave detectors, they could be scaled down and adapted for a

more compact system like the one described in this work. If necessary, this could
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Figure 3.12: Circulating power as a function of a small change in mirror thickness:
the hot cavity has a higher contrast probably because the asymmetry of the mirror
surfaces could be reduced by thermal effect, slightly increasing the etalon effect.

represent a future development of the experimental work that we will describe in

Section 3.3.

3.2 Photodetachment process simulation

We aim to estimate the photodetachment probability and its effects on the atomic

beam kinematics starting from an uncollimated beam. The position and velocity

distributions have been estimated by the research group responsible for the focusing

apparatus and are reported in [49]. The article provides estimates of the Ps− dis-

tributions for two different converter temperatures, 10 K and 300 K. In this study,

we will only consider the condition at 300 K, which has a more detrimental effect

on the beam. The resulting spatial and angular distributions are Gaussian with

zero mean (centred at the focal point of the laser beam) and standard deviation

of approximately 0.2 mm and 5 mrad for both y and x. The angle are defined as

θy = arctan(vy/vz), θx = arctan(vx/vz), with vx,y,z initial velocity components of

the ions. Also vz has a Gaussian distribution with a mean about 6 × 106 m/s and

a standard deviation of about 5× 103 m/s.

To estimate the probability of a Ps− ion undergoing photodetachment, we start by

modifying equation 3.1, which defines the photodetachment probability. Specifi-

cally, we can modify the expression of the laser intensity by considering the average

intensity between two points, P1 and P2, as I(t) =
∫ P2

P1
I(s, t)ds/P1P2, and express

the probability as follows:

Ppd = 1− exp

(
− λσ

hcP1P2

∫ t2

t1

∫ P2

P1

I(s, t) dsdt

)
(3.22)
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In this equation, the intensity and the time-space intervals of the laser-ion interaction

remain to be defined, varying for each ion based on its position and velocity.

A standing wave in a cavity is a solution of the Helmholtz equation. Each solution

of the equation represents a different mode of the cavity. We are interested in the

fundamental mode (TEM00), which has a Gaussian shape and concentrates all the

power of the laser beam into a single central spot.

A standing wave is also the superposition of two traveling waves in the cavity, which

we assume to be two TEM00 modes propagating in opposite directions, one parallel

to x and the other antiparallel to x.

The electric field of the waves is given by E1,2(x, y, z, t) = E1,2(x, y, z)e
−iωt, where

E1,2(x, y, z) is expressed as:

E1,2(x, y, z) = êE0
w0

w(x)
e

−r2

w(x)2 e
∓i

(
kx+ kr2

2R(x)
−ϕ(x)

)

Here, ê represents the polarization vector of the field, w0 is the nominal waist at

the focal point, w(x) = w0

√
1 +

(
x−X
xR

)2
, xR is the Rayleigh length, r = (y− Y )2 +

(z−Z)2, and X,Y and Z are the coordinates of the beam center (focal point), R(x)

is the radius of curvature of the wavefront, and ϕ(x) represents the Gouy phase.

The spatial parity of w, R, and ϕ was exploited in the definition of the two fields.

Calculating the total field ET = E1 + E2 and considering that I = ϵ0c|ET|2/2 we

obtain:

I(r, t) = 2êI0

(
w0

w(x)

)2

e
−2r2

w(x)2

[
1 + cos

(
2kx+

kr2

R(x)
− 2ϕ(x)

)]
(3.23)

with I0 = ϵ0cE
2
0/2. From the definition of the Rayleigh length in vacuum, xR =

πw2
0

λ
,

and considering the region of our interest (within about half a millimetre of the

waist) we can make the following reasonable approximations: w(x) ≃ w0, R(x) ≃
∞, ϕ(x) ≃ 0. The intensity to be applied in the equation 3.22 then becomes:

I(x, y, z) = 4I0e
−2r2

w2
0 cos2 (kx) (3.24)

The spatial and temporal integration limits clearly depend on the chosen geometries

and the dimensionality of the region where the photodetachment probability is to be

estimated. This section aims to describe the algorithm to be applied subsequently

to Monte Carlo simulations. For better clarity, we will divide the algorithm into

two successive models. Both models assume that Ps− ions move along trajectories

that can be well represented by straight lines. In the first model, the possibility that

an ion may undergo photodetachment before the end of its trajectory will not be

considered. Instead, the photodetachment probability accumulated along its path
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through the laser, which can be schematized as an infinite cylinder, will be calcu-

lated. In the second model, the photodetachment probability will be calculated in

small independent cubic regions, allowing a Monte Carlo model to also determine

the random position where photodetachment occurs. Note that if we want to deter-

mine the shape of the beam immediately after the photodetachment, it is necessary

to trace all the trajectories of the Ps atoms, which means to determine the posi-

tion where the photodetachment occurred. This analysis becomes necessary when

integrating different systems such as photodetachment, Ps excitation and interfer-

ometer, and geometric and kinematic factors become non-negligible. Although we

will only apply it to photodetachament here, the aim behind this model is to set up

a front-to-end simulation of the entire experiment.

Regardless of the chosen geometry, the idea is to integrate the intensity along the

trajectory followed by the ion within the selected spatial region and divide the result

by the length of the ion’s path within that region. This yields the average value

of the intensity with which the Ps− interacted along its path. This average value

is then inserted into formula 3.22 to obtain the photodetachment probability. For-

mally, the integral is therefore a line integral along the ion’s trajectory, bounded by

the points of intersection between it and the selected spatial region.

3.2.1 3-D model with cylindrical spatial integration region

In this model, we estimate the photodetachment probability that an ion accumulates

while traversing the entire outer cylinder with a radius of w′
0 = 2.5 mm, defined

by the distance between the source exit electrode and the center of the laser (see

Section 3.1.2). The spatial integration limits are the entry and exit points (P1 and

P2) of the ion from this cylinder, i.e., the points of intersection between the Ps−

trajectory and the cylinder. Since the intensity is not time-dependent (see equation

3.24), its integral over time is simply a multiplication by the time interval ∆t that

the ion spends inside the cylinder: ∆t = P1P2/|v|. Reasonably considering the

trajectory of each ion as a straight line from the point P0 = (x0, y0, 0) with respect

to a reference system centred on the acceleration grid, to determine the intersection

points between the trajectory and the laser cylinder we need to solve the cylinder

equation (y′ − Y )2 + (z−Z)2 = w′2
0, where the generic spatial coordinates of an ion

have been parameterised in z: (x, y, z) → (x′, y′, z) = (x0 +mxz, y0 +myz, z) with

mx and my angular coefficients of the line along the x and y axes. The solution of

the equation allows us to obtain the z1,2 coordinates of the intersection points P1
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and P2:

z1,2 =
my(Y − y0) + Z ±

√
(m2

y + 1)w′2
0 − (myZ − Y + y0)2

m2
y + 1

P1 = (x0 +mxz1, y0 +myz1, z1)

P2 = (x0 +mxz2, y0 +myz2, z2)

(3.25)

To be able to use these results, it is also necessary to parameterise the intensity

function, which becomes:

I(x′, y′, z) = 4I0 exp

{
−2

(y0 +myz − Y )2 + (z − Z)2

w2
0

}
cos2 [k(x0 +mxz)] (3.26)

In order to integrate this function, one must take care to multiply it by the square

root of the sum of the square of the derivatives in z of the new coordinates:

∫
I(s)ds =

∫ z2

z1

I(x′, y′, z)

√(
dx′

dz

)2

+

(
dy′

dz

)2

+ 1 dz

=

∫ z2

z1

I(x′, y′, z)
√
m2

x +m2
y + 1 dz

(3.27)

This integral has to be estimated for any trajectory. Note that the equation 3.27 is

valid for any geometry in the chosen integration region. However, when moving from

one geometry to another, it is necessary to modify the equation 3.25 to determine the

coordinates of the two extremes of spatial integration. If, on the other hand, you wish

to change the shape of the trajectories (e.g. if you insert electrodes that accelerate

ions), you only need to change the functions x’ and y’. As previously mentioned,

the temporal integration involves multiplying the intensity by a time interval ∆t

defined by the intersection points P1 and P2. However, since the Ps
− ion has a finite

lifetime and a velocity distribution with nonzero dispersion, it may happen that the

ion dies before reaching the laser cylinder, or inside it, or that its trajectory does

not intersect the cylinder (see Figure 3.13). Upon exiting the converter, each ion

is assigned a lifetime randomly sampled from a negative exponential distribution

with the mean lifetime as the time constant. If the trajectory does not intersect the

cylinder, Equation 3.25 has no real solutions, and the ion in question is assigned a

zero photodetachment probability.For all other trajectories, it is necessary to verify

that the distance traveled after the exit electrode and before dying, ∆smax, is greater

than the distance between P1 or P2 and the electrode:

a) If ∆smax < P1, the ion dies before reaching the laser and automatically has a

null photodetachment probability.

b) If P1 ≤ ∆smax < P2, the ion dies inside the laser.
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Figure 3.13: Possible intersections between the Ps− ions trajectories and the com-
putational domain, delimited by the cylinder of radius w0’. For a more general and
clear representation, w0’ in this figure does not coincide with ∆zo of section 3.1.2

c) If ∆smax > P2, the ion surpasses the entire cylinder, and its photodetachment

probability is maximum relative to its trajectory.

In case b) it is necessary to recalculate the second integration extremum P ′
2 since

P1P ′
2 < P1P2. The equation to be used to determine the new coordinate z2, valid in

the case of cylindrical geometry, is:

z2 =
|v|(τr − t1)√
m2

x +m2
y + 1

+ z1 (3.28)

where τr is the residual lifetime the ion has when it reaches the exit electrode, and

t1 is the time it takes to reach the first point of intersection with the cylinder,

t1 = P0P1/|v|. Then, as before, to obtain the new x- and y-coordinates of P2’ just

replace z2 in x’ and y’. As for the time integration of case b), the new integration

interval is ∆t′ = τr − t1 = P1P ′
2/|v|.

We define the total cumulative photodetachment probability, Ppd,Tot, as the prob-

ability that an ion accumulates along its entire path inside the laser assuming that

its lifetime is greater than the time it takes to traverse the entire cylinder. Since

in this model the region chosen for integration coincides with the laser cylinder,

Ppd,Tot can be calculated with the equation 3.22. We will use the average of the

total cumulative photodetachment probabilities of the ions, P̄pd,Tot, to estimate the

photodetachment probability of the system by Monte Carlo simulation. Another

indicator is the average photodetachment probability, Ppd,m, calculated as the ratio

of the number of ions photodetaching to the total number of ions entering the laser.

where the number or photodetached ion is estimated by comparing Ppd,Tot with a

random number ranging from 0 to 1. It is expected that for a specific trajectory,
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(a) Probability of an ion passing through the laser beam at
different distances from the optical axis.

(b) Probability of an ion passing through the laser beam at
different positions along the optical axis.

Figure 3.14: Behaviour of the accumulated photodetachment probability along a
transverse plane and a longitudinal plane with respect to the optical axis.

Ppd,m tends to P̄pd,Tot for a sufficiently large number of ions traveling through that

trajectory.

By setting the angular coefficients to 0 and by varying the x0 or y0 co-ordinate, it

is possible to probe Ppd,Tot along the x- and y-direction respectively and obtain the

graphs in Figure 3.14a and 3.14b.

The trend in Figure 3.14a has a Gaussian-like shape and is instead obtained

by dissecting the laser cylinder in the yz plane. The trend of the graph in Figure

3.14b is clearly due to the function cos2(kx) modulating the probability along the

laser axis. Note that the peak probability is higher compared to the estimated

circulating power required in Equation 3.2 because here the intensity corresponds

to the stationary cavity defined by Equation 3.24, which yields I = 4I0 for r and

x equal to zero. These results were obtained by imposing a life time of Ps− much

greater than the time required to travel the entire cylinder, and do not take into

account any distribution (initial positions, angular coefficients and velocities) for

which we refer to the Monte Carlo simulation. The maximum total probability that

can be accumulated by an ion if it moves with an energy of 200 eV and interacts
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with the circulating power in table 3.1 is approximately 99%.

3.2.2 3-D model with cubic spatial mesh

This 3D model essentially involves determining the photodetachment probability

within cubic regions of space intersected by the trajectories of each ion. The idea

is to define the intersection points between the ion trajectory and the k-th cube

to obtain the spatial and temporal integration limits and apply Equation 3.27. It

should be noted that in the general case, where at least one of the angular coefficients

mx and my is nonzero, the trajectory segment delimited by the intersection points

is different in each cube. This implies that the intersection points, and thus the

integral in Equation 3.27 and the time interval to be inserted in Equation 3.22, need

to be calculated for each cube.

We can address this issue with an iterative algorithm that determines the second

intersection point of the k-th interaction (P2,k) based on the angular coefficients

and the first intersection point (P1,k) of each ion. In the subsequent interaction, the

second intersection point becomes the first: P1,k+1=P2,k (see Figure 3.15). Iterations

Figure 3.15: Schematic representation of the cubic geometry model. The trajectories
of two ions are depicted by two straight lines originating from points P1,1 and P ′

1,1.
Unlike P1,1, point P

′
1,1 is not located within the cube that includes the origin of

the axes; therefore, the corresponding initial value of the coefficient Nx is not zero
(equal to 3 in the example shown in the figure).

continue until at least one of the following events occurs:

a) The ion undergoes photodetachment;

b) The elapsed time, ∆ttot, exceeds the residual lifetime τr;

c) The ion surpasses the laser beam and reaches the end of the computational

domain.
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The extremes of spatial integration are defined by the points of intersection

between a line and one of the faces of the k-th cube. Given therefore the angular

coefficients of the line and the point P1,k, one must determine which face of the cube

is closest to P1,k along the ion’s trajectory. This problem is solved by determining

which of the following expressions returns the smallest positive value:[
±lc/2− x1,k

mx

,
±lc/2− y1,k

my

,
lc
2
− z1,k

]
(3.29)

with x1,k, y1,k, z1,k the coordinates of the k-th cube’s first point of intersection and

lc the length of the sides of the cube. If the minimum positive is one of the first two

expressions, the trajectory intersects one of the two faces of the cube parallel to the

yz plane. If the it is one of the third and fourth expressions, the trajectory intersects

one of the two faces of the cube parallel to the xz plane. If the last expression returns

the lower value, the trajectory intersects the second face of the cube parallel to the

xy plane. However, assuming that P1,1 is centred with respect to the first cube in

the x- and y-axes, these expressions are only valid for the first iteration, and to

generalise them it is necessary to introduce correction factors to take into account

the fact that the distance the ion must travel in each direction to intersect a face of

the cube is in general different in each iteration:[
±lc(Nx + 1)− x1,k

mx

,
±lc(Ny + 1)− y1,k

my

, lc(Nz + 1)− z1,k

]
(3.30)

where Nx, Ny, Nz are the number of times a face parallel to the yz, xz or xy plane is

intersected respectively. For the algorithm to work correctly, one of Nx, Ny, Nz must

be incremented at each iteration after determining which face is intersected by the

ion. Since the coordinates x1,k and y1,k of the initial point P1,1 are not necessarily

zero, the initial values of Nx and Ny may not be 0. Therefore, it is necessary to

compute the two correction factors before entering the first interaction (see Figure

3.15). The expressions 3.30 also allow determining the coordinates of the second

intersection point P2,k at each interaction. Specifically, the coordinate z2,k is defined

by the expression that yields the smaller positive value, except for the expression

corresponding to the face parallel to the xy-plane, which must be multiplied by the

cosine of the angle between the dominant direction and the z-axis:

z2,k = min
R+


±lc(Nx+1)−x1,k

mx
cos(θx) + z1,k

±lc(Ny+1)−y1,k
my

cos(θy) + z1,k

lc(Nz + 1)

 (3.31)

with θx,y = arctan(mx,y). The second intersection point is defined by [x2,k, y2,k, z2,k] =
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[x1,k +mx(z2,k − z1,k), y1,k +my(z2,k − z1,k), z2,k] and in the subsequent interaction

we have P1,(k+1)=P2,k. Similarly to the previous method, ∆tk = P1,kP2,k/|v| e

∆ttot =
∑K

k=1 ∆tk.

Equation 3.22 is used in this model to compute the photodetachment probability in

a single cube, but it does not yield either the average probability, Pph,m, or the total

cumulative photodetachment probability, Ppd,Tot. As mentioned earlier, one way to

obtain Pph,m is by evaluating the ratio of the number of ions undergoing photode-

tachment to the total number of ions entering the laser. It is possible to identify the

cube where an ion undergoes photodetachment by comparing a randomly generated

number with the photodetachment probability in that cube. This will be used to

evaluate the beam kinetics in the Monte Carlo simulation and the photodetachment

probability with annihilation. Since Pph,m tends towards P̄ph,Tot for a large num-

ber of ions, it is preferable to use the total probability for estimating the system’s

photodetachment probability in order to reduce computational time. This option is

valid provided that conditions a) and b) from Section 3.2 are neglected (each ion

must pass through the laser completely). In this model, the total photodetachment

probability of an ion is defined by:

Pph,Tot = 1− exp

{
−λσ
hc

K∑
k=1

[
∆tk

(z2,k − z1,k)

∫ z1,k

z2,k

I dz

]}
(3.32)

where the integral is computed in each cube using Equation 3.27. By averaging

Pph,Tot over all ions, one obtains P̄ph,Tot. It should be noted that the sum of the

probabilities of all cubes intersected by an ion’s trajectory does not correspond to

the total photodetachment probability of the ion, as generally:

K∑
k=1

[
1− exp

{
−λσ
hc

∆tk
(z2,k − z1,k)

∫ z1,k

z2,k

I dz

}]
̸= Pph,Tot

withK being the number of cubes intersected by the ion’s trajectory. The equality is

valid for K = 1, which means integrating the intensity over a single large cube with

a side length equal to the difference between the z coordinates of the two intersection

points between the ion’s trajectory and the laser cylinder (which is essentially the

previous cylindrical geometry model). This multiple cubic geometry method yields

the same results as the cylindrical geometry one, and by setting the algorithm as in

Section 3.2.1, the same trend as in the Figure 3.14 is obtained.

3.2.3 Monte Carlo simulation

Applying the model described in section 3.2.2 and the distributions presented in sec-

tion 3.2 (µx,y = 0, σx,y ≃ 0.2mm, µθx,y = 0, σθx,y ≃ 5mrad, µvz = 6×106m/s, σvz ≃
5×103m/s), we obtain an average total cumulative probability in the absence of an-
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nihilation P̄pd,Tot ≃ 95%. Annihilation from the last acceleration grid affects about

50% and the resulting average photodetachment probability is Ppd,m ≃ 47% on a

sample of about 6× 105 ions. A qualitative image of the Monte Carlo simulation is

shown in the Figure 3.16.

Figure 3.16: 3D representation of the Monte Carlo simulation of the Ps− photode-
tachent. The cylinder with the larger diameter delimits the effective mirror area
while the smaller cylinder, which has a radius equal to the waist w0, represents the
laser beam. The coloured spheres represent the ions that have photodetached and
the colour encodes the accumulated photodetachment probability until the process
occurs. The empty spheres represent the ions annihilated without photodetachment.

Ps− is excited by absorbing a photon and de-excited by losing an electron. Part

of the energy of the absorbed photon is used to break the bond with the electron

(threshold energy Eth = 0.326 eV), while the remaining part is distributed between

the electron and the Ps. This process considers both the recoil due to photon

absorption and the recoil from electron separation. The magnitude of the Ps velocity

change due to the first recoil is given by ∆vex =
ℏk
3me

, where me is the electron mass.

The Ps recoil from the separation of two bodies depends on the amount of residual

energy after bond breaking and thus on the wavelength of the incident photon:

∆vdet =
√

Epd−ETh

3me
, where Epd = hc/λ.

For the wavelength considered so far for photodetachement (1560 nm), we have

Epd ≃ 0.8 eV and thus ∆vdet ≃ 1.66 × 105 m/s and ∆vex ≃ 155 m/s. The angular

variations due to recoil and absorption are therefore approximately 28 mrad and

0.03 mrad, respectively. Comparing these values to the initial distribution (σθ ≃ 5

mrad), we observe that the effect of absorption is negligible, while recoil can be

destructive.

A crucial point is that the probability of emission is not isotropic but depends on the
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laser electric field polarization direction: the detached electron is emitted along a

direction rotated by an angle α to the direction of the electric field. α follows a cos2

distribution so the most likely direction will be along the electric field [118]. This

result stems from the theory of Photoelectron Angular Distributions (PAD), which

defines patterns of electron emission distributions following photodetachment events

based on the electronic structure of the atom under consideration. This theory,

which can also be treated semiclassically, defines a general emission distribution

considering cases where the atomic reference frame and the laboratory frame are

different (unpolarized atom), and where the angles are the Euler angles describing

the mutual rotation of the two systems:

I(θs, ϕs) =

∫ 2π

0

dϕ

∫ π

0

sin(θ) dθ

∫ 2π

0

Ppd(ϕ, θ, γ)f(θm, ϕm)dγ (3.33)

In this equation, f represents the final angular distribution of the photoelectrons in

the atom/molecule frame, where (θm, ϕm) are the polar and azimuthal angles with

respect to the z-axis. I(θs, ϕs) denotes the photoelectron angular distribution pat-

tern in the stationary/laboratory frame, where (θs, ϕs) are the polar and azimuthal

angles relative to the direction of the electric field.

A given molecular orientation, characterized by the angles (ϕ, θ, γ), contributes to

the laboratory frame distribution I(θs, ϕs) through the term Ppd(ϕ, θ, γ)f(θm, ϕm).

To obtain the complete photoelectron distribution pattern, one must integrate over

all possible orientations (ϕ, θ, γ).

Here, the photodetachment probability has a different meaning from that discussed

so far and is related to the transition amplitude and then to the projection of the

atomic dipole moment along the direction of the laser’s electric field:

Ppd(ϕ, θ, γ) ∝ |µ · E|2 ∝ cos2(θ) =
2P2(cos θ) + 1

3
(3.34)

with P2(cos θ) Legendre’s polynomial of degree 2. This probability is therefore max-

imum when dipole moment and electric field are aligned (θ = 0). By expressing

f(θm, ϕm) as a series of spherical harmonics, it is possible to show [119] that the an-

gular distribution of the emitted photoelectrons takes on the following expression:

I(θs) =
σpd
4π

[1 + βP2(cos θs)] (3.35)

where σpd is the spherical surface integral of f and represents the total cross-section

for production of photoelectrons from an unpolarized target (in the dipole approx-

imation) by 100% linearly polarized light. β is the symmetry parameter and is a

kind of angular mean of the distribution pattern and ranges from -1 to 2. For an

asymmetry parameter of β = 2, the ejected photoelectrons will have a cos2 distri-

bution (photoelectrons ejected preferentially in the direction- and anti-direction of
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the photon polarization vector). For an asymmetry parameter of β = 1, the ejected

photoelectrons will have a sin2 distribution (photoelectrons ejected preferentially in

the directions perpendicular to the photon polarization vector). For an asymmetry

parameter of β = 0, the ejected photoelectrons will have an isotropic (spherical)

distribution. In general, β also depends on the energy of the incident photon. Dur-

ing the composition of this thesis, an article has been published demonstrating that

the photodetachment of Ps− also follows a distribution in accordance with PADs,

particularly exhibiting a behavior very similar to that of the H− ion [120]. In the

photodetachment process, Ps− loses an electron from the s orbital, resulting in a

p-wave continuum electron and the residual Ps. Following the theory of Cooper and

Zare [118], the corresponding value of β is 2, regardless of the incident photon en-

ergy, and in Ref. [120], it is shown that this value is in agreement with experimental

data.

As discussed in Chapter 4, the interferometer is highly sensitive to angular dis-

tributions transverse to the atomic beam (x and y directions) and fairly robust to

velocity variations along the atom propagation direction. A possible strategy to

minimize the detrimental effects of photodetachment is therefore to use a linearly

polarized laser beam with the electric field aligned along the direction of propa-

gation of the atomic beam obtained by means of a half waveplate. Assuming the

atomic beam is fully polarized along the direction of the field, we can simulate the

photodetachment kinematics by randomly sampling the angles α and ξ from a cos2

distribution in [−π/2, π/2] and a uniform distribution between 0 and 2π respectively

(see the inset in Figure 3.17. The velocity change distribution caused by recoil for

the three velocity components is depicted in Figure 3.17: each point represents a

random extraction of the angles α and ξ. At each point in the figure corresponds a

vector ∆v = [∆vx,∆vy,∆vz], and by aligning the electric field along the z-axis, a

higher probability of recoil along z is observed, resulting in a greater concentration

of points in the regions of the sphere with high ∆vz. The effect of recoil in the

aforementioned configuration has been integrated into the model described in Sec-

tion 3.2.2 by adding the velocity change due to recoil to the velocity of the atomic

beam.

In Figure 3.18a, the simulation results regarding the distributions of angles θx

and θy before (blue curve) and after (red curve) photodetachment at 1560 nm are

presented, starting from the atomic beam distributions described earlier: the stan-

dard deviation of the distribution increases from 5 mrad to approximately 11 mrad.

No distinction was made between θx and θy since the only difference between the two

angles could arise from recoil given by ∆vex, which remains negligible. The same

analysis was conducted on the velocity distribution in the propagation direction,

which is the most penalized by the chosen configuration. It can be observed (Figure

3.18b) that the energy spread of the beam after photodetachment at 1560 nm is
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Figure 3.17: Recoil distribution caused by photodetachment. Each point in this
3-D image represents a random extraction of the angles α and ξ according to the
distributions described in the text. The inset depicts the reference frame used to
describe the angles: [∆vx,∆vy,∆vz] = ∆v · [sin(ξ) sin(α), cos(ξ) sin(α), cos(α)].

approximately ±11 eV, about an order of magnitude larger than the starting beam.

As described above, the recoil amount following electron detachment is proportional

to the difference between the energy of the incident photon and the photodetach-

ment threshold. Another strategy to reduce the destructive effect of the process is

therefore to use light with wavelengths close to the threshold. In Figure 3.18, the

distributions obtained with a 3600 nm laser are shown in green. The results indicate

that with this light, it would be possible to maintain the angular deviation almost

unchanged and reduce the energy spread to approximately ±2 eV.

However, there is an important consideration to be made: the cross-section at

3600 nm is approximately an order of magnitude lower than that at 1560 nm, requir-

ing an optical power of about 2 MW. This power could be achieved with a pulsed

system [121], but an accurate design would be necessary to efficiently interface and

synchronize the Ps− beam production system with the photodetachment stage.

We now inquire how much the initial distributions of the atomic beam affect

those of the photodetached beam. Figure 3.19 shows the ratio of the input and

output beam angular divergences, σi/σf , with respect to the input divergence, for

both considered wavelengths. It is observed that the input beam influences less

than 50% when it has less than about 1 mrad and 5 mrad for 3600 nm and 1560

nm, respectively. These results suggest two things: in order to benefit from a 3600

nm pulsed system, it is necessary to have a focusing system capable of achieving a

divergence below 1 mrad; it is not useful to try to reduce the angular divergence of

the Ps− beam below 5 mrad when performing photodetachment at 1560 nm, but
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(a) Angular distributions of the atomic beam before and after
photodetachment with light at 1560 and 3600 nm.

(b) Kinetic energy distributions of the atomic beam before and
after photodetachment with light at 1560 and 3600 nm.

Figure 3.18: Monte Carlo simulation results for beam kinematics analysis.

rather it is preferable to prioritize atomic flux. Given that there are still several

technical aspects to be designed for an experimental setup that involves an atomic

source suitable for a high-power pulsed laser system at 3600 nm and for the reasons

mentioned at the beginning this chapter, a continuous-wave laser system at 1560 nm

has been chosen for Ps− photodetachment. In the next paragraph, we will discuss

its experimental implementation.

3.3 Experimental setup, realization and results

As previously discussed in Chapters 1 and 3, the original experimental setup uti-

lizes 22Na as the positron source to produce a beam of Ps−. This source has been

subsequently replaced by a LINAC, which is currently under construction, to ensure

a significantly higher atomic flux. While awaiting the realization of this second ap-

proach, the project has set intermediate objectives to sequentially test the stages of

the experiment.

For example, Figure 3.20a illustrates a setup aimed at testing the production, ac-

celeration, and focusing stages, as well as the photodetachment stage. The schematic
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Figure 3.19: The ratio between the input and output angular standard deviation
of the atomic beam for two different laser wavelengths is depicted. At 3600 nm,
the contribution of the photodetachment recoil affects the beam distribution nearly
as much as the initial distribution, already for approximately 1 mrad. At 1560 nm
photodetachment dominates up to just over 5 mrad. Insets in the figure illustrate
distributions for various values of σθ,i.

also includes a material grating interferometer, similar to the setup shown in Figure

1.2a, which would measure an interferometric signal of Ps. The atomic beam exiting

the converter intersects with the laser in the green-colored area at a 30° angle and

then proceeds toward the interferometer. This inclination is designed to shield the

detector at the end of the interferometer from residues originating from the atomic

source. The cavity spacer is highlighted in yellow, while the mirror chambers are

depicted in gray on the sides. These chambers are mounted on Z-motors to en-

sure vertical alignment. The component of primary interest is the photodetachment

cavity, whose characteristics will remain unchanged in the final experimental setup.

Figure 3.20b shows the cavity chambers and the mirror mounts installed on rota-

tional stages that ensure alignment in the x-y and y-z planes. The cavity chamber

consist of a 5-way aluminium setup utilizing CF60 crosses and a CF130 sealing the

assembly. This configuration can accommodate the laser input through kodial glass

viewport, the cavity spacer between the mirrors, vacuum pump connection, and

UHV electrical feedthroughs. The chosen piezo stage (SR-5714CS from Smaract)

are electrically controlled from outside the cavity, offers compatibility with vacuum

levels up to 10-11 mbar, allowing for precise alignment after the entire system has

been placed in ultra-high vacuum.

Since the experiment is being developed in different laboratories before integrat-

ing the various stages, a test cavity has been designed. This test cavity is very
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(a) Intermediate phase experimental setup designed to test the
photodetachment stage and obtain an interferometric signal of
Ps. The atomic beam exiting the converter intersects with the
laser in the green-colored area at a 30° angle and then proceeds
towards the interferometer. The positron source is also located
in the green area, few millimeters from the laser beam. The
cavity spacer is highlighted in yellow, while the mirror chambers
are depicted in gray on the sides. These chambers are mounted
on Z-motors to ensure vertical alignment.

(b) Drawings of the mirror chambers positioned on Z-motors
and the mirror mounts equipped with electric motors rotating
around the y and z axes.

Figure 3.20: CAD drawings depicting the photodetachment cavity and its interface
with the rest of the experimental setup during an intermediate phase of the exper-
iment. This phase aims to test the various stages and measure an interferometric
signal from Ps. The characteristics of the cavity will remain unchanged in the final
phase of the experiment
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Figure 3.21: Photograph of the experimental apparatus tested during this thesis
research. The photo is taken from one side of the cavity, near one of the two mirrors,
and shows the viewport through which the input laser passes, a mirror holder in an
open chamber separated from the cavity spacer by approximately 2.04 meters to the
other chamber. It also displays an ion pump and the vacuum valve that seals the
circuit for the turbo pump, which is not shown in this photo.

similar to the one shown in Figure 3.20a, with the key difference being that the

central cross is a simple 5-way model with perpendicular branches. These branches

are intended to accommodate an ion pump, a getter/turbo pump, the arms of the

cavity spacer, and an inlet for potential testing with the Ps beam without the in-

terferometer (which does not require a 30° inclination). A picture of this setup is

shown 3.21.

Preliminarily, due to laboratory availability constraints, the mirror mounts and ro-

tational stages have been replaced with fixed mounts compatible with UHV (9814-8-

Ni-K-V Newport). In this configuration, Z-motors are not necessary, and the vertical

alignment is ensured by the mirrors outside the cavity. While awaiting the arrival

of the rotational stages and with the goal of characterizing the cavity in the absence

of potential thermal effects, the following project plan has been implemented:

1. Test the cavity at low input power in air with fixed mounts.

2. Test the cavity at low input power in vacuum with fixed mounts.

3. Test the cavity at high input power in vacuum with mobile mounts.

4. Test the cavity at high input power with a temperature compensation system
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(if needed).

The transition from the first to the second step involves only closing and evacuat-

ing the apparatus (assuming the bellows sufficiently decouple the pump vibrations),

while step 3) requires realigning the cavity in vacuum. In this thesis, we will touch

upon the preliminary results of point 1), which has the goals of testing the locking

of the laser to the cavity using the Pound-Drever-Hall (PDH) technique [122, 123],

verifying the coupling efficiency obtained and estimating the finesse of the cavity.

Given that the cavity is approximately two meters long, it is impossible to simul-

taneously adjust by hand both its mirrors and those of the external optical circuit.

Additionally, over a length of two meters, parallax error makes centering the optical

axis in the cavity more challenging. To facilitate this process, the affinity between

the reflection characteristics of IR-coated (E04 and C-coating [124]) mirrors and the

green wavelength was exploited. A preliminary alignment of the cavity was per-

formed using visible light at 532 nm, following the scheme shown in Figure 3.22a.

The beam splitter, compatible with 532 nm, and the entire green light circuit were

removed after the preliminary alignment, which was secured using two diaphragms

(vertical dashed lines in the figure).

3.3.1 Laser characterization

The IR diode used is a RIO-PLANEX butterfly package external cavity diode laser,

emitting fiber-coupled light at around 1560 nm with a maximum power of approxi-

mately 10 mW. It includes an internal temperature control actuator. The diode is

mounted on a Thorlabs LM14S2 mount, compatible with a Bias-T for high-frequency

modulation. Before being used for the photodetachment cavity, the laser was char-

acterized by analyzing its beat note with an NP Photonics Rock Source laser using

a spectrum analyzer (see Figure 3.23). Both lasers have a specified linewidth of less

than 15 kHz, while their beat note shows a linewidth of about 156 kHz. This broad-

ening, typically due to thermal and current drifts, is sufficiently narrow to allow for

locking between the laser and the cavity.

To scan the cavity, the laser current was modulated with a ramp-shaped signal (re-

ferred to in this discussion as the sweep) having a frequency of νsw = 6 Hz and a

user-adjustable peak-to-peak amplitude Vsw,pp ranging from 0 to 1 V. The sweep

signal is input to the laser driver, which uses a commercial Koheron DRV200 board

with an input voltage to output current ratio,
(
∆I
∆V

)
K
, of 1 mA/V (according to

the datasheet). During the beat note measurement, the frequency response of the

laser was studied by varying the laser driver’s current, and it was found that the

frequency change per mA is approximately
(
∆ν
∆I

)
las

= 300 MHz/mA. This implies
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(a) Pre-alignment Circuit for the Cavity: The shared part of the circuit
took advantage of the high reflectivity of the IR mirrors even at green
wavelengths. After pre-alignment, the green laser circuit has been re-
moved.

(b) Feedback System for Laser Locking to the Cavity via PDH: Paths A, B,
and C divide the error signal into high, medium/low, and low frequencies.
Path C, designed for finer low-frequency control, adjusts the set point of the
laser diode’s temperature and has not been implemented at this stage of the
work.

Figure 3.22: Optical and electronic circuits for pre-alignment and locking of cavity
and laser.

that the laser can move with a scan rate given by

ν̇ = Vsw,pp

(
∆I

∆V

)
K

(
∆ν

∆I

)
las

1

νsw
∈ [0, 50]MHz/s (3.36)

For the case study application, a sweep range of less than 100 MHz is generally

used, corresponding to a scan rate of less than 17 MHz/s. It is important to note,

however, that these values do not account for thermal and current drifts of the free-

running laser, which set a lower limit on the scanning rate greater than 0. This is

the main reason why a technique to lock the laser to the cavity is necessary to probe

the cavity resonance accurately.
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Figure 3.23: Spectrum of the beat note between the laser used for the photode-
tachment cavity and another laser with a similar wavelength of approximately 1560
nm. Both lasers have a linewidth below 15 kHz, but due to various noise sources,
the beat note exhibits an FWHM of approximately 150 kHz over a scan duration
of about 20 ms on the spectrum analyzer having resolution bandwidth equal to 10
kHz.

3.3.2 PDH locking setup

In the realm of laser frequency control, the mentioned Pound-Drever-Hall (PDH)

technique [122,123] is widely used to stabilize the laser frequency relative to an opti-

cal cavity. This technique involves generating an error signal that is used to correct

the laser frequency, keeping it in resonance with the cavity.

The transmission signal of the optical cavity is obtained by monitoring the power

of the light that passes through the cavity. When the laser frequency is exactly

resonant with one of the cavity’s resonant frequencies, the transmission is at its

maximum. Off-resonance, the transmission decreases rapidly due to the high finesse

of the cavity. This behavior clearly identifies the resonance points and allows mea-

surement of the cavity’s response to laser frequency modulation.

The PDH error signal is generated by phase modulating the laser beam before it

enters the optical cavity. This creates two sidebands around the laser’s carrier fre-

quency. The light reflected from the cavity is then detected by a high-frequency

photodiode, and its signal is mixed with the original modulation signal. The prod-

uct of this mixing, after low-pass filtering, provides a signal containing information

about the frequency error between the laser and the cavity.

As mentioned, the cavity is composed of mirrors on fixed mounts, thus lacking

piezoelectrics for adjustment. Consequently, the error signal generated by the PDH

for feedback control will be utilized by the only available actuators in the system:

the current and temperature of the diode. The proposed feedback control scheme is
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illustrated in Figure 3.22b. The error signal is split and directed towards the Bias-T

(path A) and a PI controller (path B). The Bias-T essentially acts as a high-pass

filter connected directly to the anode of the diode configured as cathode ground.

The path through the PI controller is then split again to form a line directly to

the driver, along with a ramp for cavity scanning, and a line to adjust the diode’s

temperature setting (path C). The latter path, intended to compensate for the cav-

ity’s slow drift, has not yet been implemented as it a slower correction compared to

the others. However, it will be implemented for high-power tests. For the current

discussion, the temperature setting is fixed.

Although path B processes the entire signal, it also acts as a low-pass filter with a

cutoff frequency on the order of MHz. Therefore, paths A and B can be understood

as a division of high and middle/low frequencies, both influencing the diode current.

The electro-optical setup utilized for PDH is depicted in Figure 3.24. Light emitted

Figure 3.24: Electro-optical circuit for laser-cavity locking using the Pound-Drever-
Hall technique. The feedback system is illustrated in Figure 3.22b.

by the diode crosses an isolator (IO-G-1550 Thorlabs) and the iXblue MPX-LN-0.1

fiber electro-optic modulator (EOM), before transitioning into free space and passing

through a 1:1 telescope with a movable lens for cavity mode matching. Subsequently,

the beam passes through a half-waveplate (HWP) and a polarizing beam splitter

(PBS) before being injected into the cavity. The transmission through the cavity

and the end mirror is detected by a Thorlabs PDA10CS2 photodiode made of In-

GaAs, amplified with switchable gain, typically set to either 0 or 10 dB to utilize

the higher bandwidths, which are 13 and 1.7 MHz, respectively.

The light reflected from the cavity is directed by the PBS towards another pair of

HWP-PBS to split the beam between two photodiodes able to work at 20 MHz.

Before this final waveplate, a lens focuses the beam onto the photodiodes.

Note that in this setup there are no quarter-waveplates before the cavity to ensure

linear polarization, as explained in section 3.2.3.
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The initial error signal obtained exhibited pronounced sinusoidal-like distortions,

hindering proper locking. Following a thorough circuit analysis, it was determined

that this issue stemmed from residual amplitude modulation (RAM).

3.3.3 RAM monitoring and compensation

RAM is a phenomenon that arises during optical phase modulation, and results in

an unintended amplitude modulation.

Some of the main sources of RAM are etalon effects in optical components and im-

perfections in the EOM used to impose phase modulation on a laser beam.

The etalon effect is caused by the finite reflectivity of the optical medium, which al-

lows some light to circulate within the crystal, creating a multipass light field. This

circulating light field experiences a frequency-dependent phase shift and amplitude

modulation.

EOM imperfections can stem from the misalignment of the input beam polarization

with respect to the crystal axes, and etalon effects within the crystal due to imper-

fect angle-cut end facets. When a random polarized laser beam passes through the

EOM, the birefringence can lead to different phase shifts for orthogonal polarization

components, effectively rotating the polarization and converting some of the phase

modulation into amplitude modulation when a subsequent interaction with polariz-

ing optics occurs.

The presence of RAM introduces systematic and drifting frequency offsets in the

error signal used for laser frequency stabilization. This offset can degrade the sta-

bility and accuracy of the frequency lock, leading to erroneous measurements and

reduced sensitivity in several applications.

After observing the distortion in the error signal, the optical circuit was analyzed

at multiple points using a spectrum analyzer, yielding the results shown in Figure

3.25a. This spectrum was acquired with a 10 MHz modulation, and the peaks indi-

cate amplitude modulation at the modulation frequency and its higher harmonics.

This observation can be understood by considering the expression of the modulated

electric field after passing through the EOM and impinging on the cavity:

Ei = E ′
0e

i(ωt+β sin (Ωt)) (3.37)

With ω denoting the laser frequency, β the modulation depth, and Ω the modulation

frequency. With no RAM, the field amplitude remains constant, E’0=E0, and at the

first order of the series expansion, one obtains the typical expression of the phase

modulated field [122]:

Epm = E0[1 + iβ sin(Ωt)]eiωt = E0

[
eiωt +

β

2
(ei(ω+Ω)t − ei(ω−Ω)t)

]
(3.38)
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If we consider RAM, modulation also affects the amplitude of the field, taking

the form E ′
0 = E0(1 + γ sin(Ωt+ ϕ)), where γ represents the RAM modulation

depth, and ϕ is the phase difference between the RAM modulation and the desired

modulation of the EOM. Equation 3.37 transforms into:

Ei =Epm +
iγ

2

[
ei(Ωi+ϕ) − e−i(Ωi+ϕ)

]
Epm

=Epm +
iE0γ

2

[
ei[(ω+Ω)t+ϕ] − ei[(ω−Ω)t+ϕ]

]
+
iE0βγ

4

[
ei[(ω+2Ω)t+ϕ] + ei[(ω−2Ω)t−ϕ] − (ei[ωt+ϕ] + ei[ωt−ϕ])

] (3.39)

RAM introduces terms that oscillate at twice the modulation frequency. When

detecting the field, the measured quantity is the power, given by |Ei|2 = Ei · E∗
i

which clearly contains terms oscillating at multiples of Ω. However, the terms with

frequencies that are multiples of Ω are not relevant, as they are filtered out by a

low-pass filter at the output of the mixer in the PDH circuit.

A strong dependence of the peak amplitudes in Figure 3.25a on the EOM tem-

perature was observed, corroborating studies in the literature on this topic [125,126]:

temperature drifts affect the orientation of the crystal due to the thermal expansion

of the mounting material and of the crystal which expands, directly modulating its

static birefringence. By maintaining a stable temperature, the thermal effects within

the EOM were minimized, leading to a substantial reduction in the unwanted am-

plitude modulation and enhancing the overall stability of the frequency lock. This

justifies the presence of the temperature control and the spectrum analyzer in Figure

3.24. Figure 3.25b shows the spectrum obtained with temperature stabilization: it

demonstrates a reduction in the modulation depth by more than an order of mag-

nitude, making the RAM negligible.

A potential etalon effect caused by the mirrors and viewports was also consid-

ered. After disassembling and studying their effect on the spectrum of transmitted

and reflected light, both individually and combined, it was concluded that their im-

pact on RAM is negligible. To make sure there were no similar effects, the PBS after

the first HWP was replaced by a piece of glass placed at 45° to the beam passing

through it.

3.3.4 Transmission, error signal and locking

The following sections will use some figures of merit from the theory of optical

resonators, which will not be dealt with exhaustively and for which reference is

made to the literature [127–130].

Mathematically, the incident phase modulate beam is the one showed in equation

3.38 which is characterized by the modulation sidebands at frequencies ω±Ω. When

the laser frequency is near the cavity resonance, the reflected light shows phase and
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(a) Uncompensated RAM: the markers indicate values ranging
from about 1.5 mV to hundreds µV for the first four upper
harmonics of the modulation frequency.

(b) Compensated RAM: amplitude modulation peaks are re-
duced significantly by holding the EOM at a specific fixed tem-
perature.

Figure 3.25: Spectrum of the power beam along the optical circuit. Peaks indicate
residual amplitude modulation before (a) and after (b) temperature stabilisation of
the EOM operating at a modulation frequency of 10 MHz.
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amplitude variations that, once demodulated, provide the error signal.

For high-frequency modulation, where the modulation frequency is much greater

than the the cavity full width at half maximum (FWHM) linewidth, Ω ≫ ∆νFWHM,

the error signal can be expressed by considering that Ω is sufficiently high to cause

the sidebands to be entirely reflected by the optical cavity. Under this condition,

and near the cavity resonance, the error signal ϵ is given by:

ϵ = −2
√
PiPs Im{r(ω)} sin(Ωt) (3.40)

where Pi is the power of the incident field, Ps is the power of the sidebands, and

r(ω) is the reflection coefficient of the cavity.

In the high-finesse limit and for ∆ω < ∆νFWHM, the reflection coefficient can be

approximated as r ≃ i
π

∆ω
∆νFWHM

, with ∆ω representing the detuning from resonance.

This gives an error signal:

ϵ ∝
√
PiPs

∆ω

∆νFWHM

(3.41)

The linearity of this signal allows us to apply control theory techniques to correct

the laser frequency, keeping it locked to the cavity resonance [122].

The analysis of the transmission and error signals in a PDH system is crucial for sta-

bilizing the laser frequency and an accurate characterization of these signals allows

precise frequency control.

Figure 3.26a displays a screenshot of the acquisitions related to the laser scan-

ning through the cavity. From top to bottom, it shows the sweep profile, the error

signal, and the laser transmission. The sweep covers a range of approximately two

longitudinal modes of the cavity so that two peaks in the transmission signal are

visible. In this data acquisitions the modulation was at 20 MHz.

The violet curve shows the typical shape of the error signal, which consists of a

peak that changes from positive to negative values near the resonance, where it

goes to zero. For each cavity mode, the error signal exhibits two additional peaks

corresponding to the modulation sidebands. These peaks also become visible in the

transmission signal by increasing the modulation depth of the EOM beyond the

chosen operating value (approximately 250 mV with Vπ = 1.5 V).

The free spectral range of the cavity was measured by increasing the modulation

frequency until an overlap of the sideband peaks with the cavity resonance peak

was observed. The corresponding frequency value was then read from the signal

generator, resulting in ∆νFSR ≃ 74.2 MHz.

Figure 3.26b highlights the transmission peak of a longitudinal mode of the cav-

ity, resolved over a time interval of about 250 µs with an unlocked laser.

The small side peaks are a typical profile that accompanies Lorentzian transmission

when the scan rate ν̇ is much greater than ∆νFWHM. This effect is easily observed

in high-finesse Fabry-Pérot cavities, which have a small ∆νFWHM. In Ref. [131],
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(a) From top to bottom: sweep, error
signal, and transmission. The sweep
scans over two longitudinal modes of the
cavity.

(b) Transmission peak of a longitudinal
mode of the cavity acquired during the
cavity scan with unlocked laser.

(c) Transmission and error signal with
fast feedback (on the diode Bias-T) and
slow feedback with integrator.

(d) Transmission and error signal during
laser locking to the cavity.

Figure 3.26: Acquisitions and analysis of the sweep (light blue curve), laser trans-
mission through the cavity (yellow curve), and error signal (purple curve). Figures
depict screenshots of the acquired signals under different feedback and sweep con-
figurations. The setup used for the acquisitions is depicted in Figure 3.24.
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a model is proposed that describes the temporal response of a Fabry-Pérot cavity

field to changes in cavity length and the frequency of the incident laser field. This

model can be used to fit the scan rate or estimate other parameters such as the

finesse [132].

The coupling efficiency has been estimated by measuring the ratio of the power

transmitted by the cavity to the incident power and the result is approximately 40%

of coupling efficiency. This estimate was made under the assumption of perfect mode

matching (a reasonable assumption considering that the only peak attributable to

a mode other than TEM00 had an amplitude of approximately 1% of the funda-

mental mode). Typically, good coupling efficiency exceeds 50%, and the lower value

obtained here may be attributed to additional losses within the cavity. A detailed

discussion of this issue is provided in the following section.

In Figure 3.26c, the transmission and error signal obtained with fast feedback

(on the diode Bias-T) and slow feedback with an integrator are depicted. When the

laser and cavity are connected to a well-tuned feedback system, the transmission

peak tends to broaden. This occurs because the laser remains in resonance for a

certain interval, thereby maximizing transmission during that period.

Figure 3.26d illustrates the transmission and error signal during laser locking to the

cavity where the error signal cancels due to the action of the feedback system while

the transmission is maximum.

3.3.5 Finesse estimation by CRDS

The finesse of an optical resonator, F , is defined as the ratio between the free spectral

range, ∆νFSR, and the full-width half-maximum (FWHM) linewidth of the resonant

longitudinal modes, ∆νFWHM, which arises due to the imperfect reflectivity of the

mirrors:

F =
∆νFSR
∆νFWHM

(3.42)

where ∆νFSR = c
2L
, with L being the length of the cavity. Given that the FSR is

the frequency distance between the longitudinal cavity modes, the finesse can be

interpreted as the frequency resolution of the Airy function shaped intensity peaks

transmitted through the cavity: the higher the finesse, the more distinguishable the

peaks are because they are well-spaced in frequency relative to their linewidth.

The finesse depends on the reflectivity of the mirrors, and as highlighted in

Ref. [133], for low reflectivity values, the Lorentzian shape is no longer adequate

to describe the transmission, which becomes a combination of longitudinal modes.

Given that the nominal finesse (from the datasheet) of our cavity is high (40000),

under the operational conditions described in the previous section, we assume it

remains sufficiently high (mirror power reflectivity R1 = R2 = R greater than 0.85).

Thus, we refer to the characteristics of a single longitudinal mode, for which the
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following holds:

F =
π
√
R

1−R
≃ 2π

− ln(R2)
(3.43)

Now, consider the number of photons present in the cavity, ϕ. After j round trips,

starting from ϕ0, the number of photons, following an exponential decay, will be:

ϕ(tj) = e−tj/τcϕ0 (3.44)

where tj = 2jL/c is the time it takes for light to complete j round trips, and τc is

the photon lifetime. Assuming that the only power losses within the cavity are due

to transmission through the mirrors, the intensity after j round trips is defined as:

I(tj) = R2jI0 (3.45)

By comparing the last two equations and using equations 3.43 and 3.42, we obtain:

τc =
−2l

c ln(R2)
=

F
2π∆νFSR

=
1

2π∆νFWHM

(3.46)

Even though the losses occur solely at the mirrors, in this approximation, the photon

lifetime is seen as a distributed loss within the cavity, similar to what happens when

light is absorbed by a non-transparent medium. The specifications of the cavity

show a finesse F̃ =41000 and a photon lifetime τ̃c = 4.2µs for a cavity length of

about 10 cm. We will now deal with estimating the finesse in our case study.

To estimate the finesse of an optical cavity, different methods can be employed

depending on the circumstances and available resources. One of the most direct

methods involves examining the transmission peak width of the optical cavity us-

ing an oscilloscope while sweeping the laser current (as shown in Figure 3.26b) to

measure the width of the transmission peak in the time domain (∆t). The fre-

quency width can then be estimated using ∆νFWHM = ν̇ · ∆t, and consequently,

the finesse can be calculated using equation 3.42. However, this method requires a

precise estimate of both ∆t and ν̇, which in turn requires an accurate estimation

of all the terms in equation 3.36, potentially complicating the process. In fact, one

has to ensure that the scan rate is slow enough to allow photons to accumulate in

the cavity. In our setup, this constraint can be estimated by considering the cavity

frequency linewidth ∆ν̃FWHM resulting from the specifications, which is about 1.8

kHz. Assuming we divide this linewidth into 100 samples, the required scan rate

would be on the order of few MHz. At such scan rates, the free-running laser may

already be dominated by thermal and current drifts, which could also cause ν̇ to be

non-constant, thereby making the measurement less precise.

As previously mentioned, another method to estimate the finesse is to fit the trans-

mission profile shown in Figure 3.26b with the function defined in [131]. However,
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finding the experimental conditions to achieve an accurate fit can be challenging.

The method we will use, known as Cavity Ring-Down Spectroscopy (CRDS), offers

Figure 3.27: Setup employed for finesse measurement using Cavity Ring Down Spec-
troscopy technique. The dashed box encloses the additional setup compared to that
in Figure 3.24, which includes an AOM activated by a trigger and a sinusoidal signal
at 80 MHz mixed in.

an effective alternative for determining finesse without relying on the laser scan rate.

In this method, the laser is first locked into the cavity for a much longer time than

τ̃c and once the light source is turned off, the optical field inside the cavity decays

freely. The measured decay time (τc) of the optical field, acquired with a photodi-

ode, is directly related to the finesse of the cavity according to equation 3.46.

A setup similar to that shown in Figure 3.24 was used, but with some modifications:

between the fiber isolator and the EOM, a line incorporating the G&H 3080-1912

acousto-optic modulator (AOM), lenses for focusing into the AOM with 200 mm

focal length, and a HWP to match the EOM polarization was added (see Figure

3.27). The AOM is used in this case due to its rapid response to the applied RF

field, allowing the beam directed into the cavity to be turned on and off quickly. By

aligning the fiber connected to the EOM with a diffraction mode of the crystal and

rapidly turning off the AOM modulation signal, it is possible to switch off the cavity

input fast enough not to disturb the free decay of the field in the cavity. The rapid

switching of the RF signal is achieved by connecting the AOM to the output of a

mixer with a signal at 80 MHz at the LO input and a DC input signal of a few volts

that can be manually turned off. The mixer is a DMM-2-250 double balanced mixer

which allows a DC IF input. Figure 3.28 shows the CRDS signal with a negative

exponential fit. The fit reveals a photon lifetime of approximately 30 µs which, for

an ∆νFSR of about 74.2 MHz, this corresponds to a finesse of approximately 14000.

This value is about 35% of the expected finesse, and this discrepancy could be at-

tributed to air absorption. We can estimate this effect by considering an additional

loss mechanism in the cavity due to air absorption, which modifies equation 3.45 as

follows:
I(tj)

I0
= R2je−αair2Lj = e−tj/τc (3.47)
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Figure 3.28: Cavity Ring Down Spectroscopy results: the blue curve represents the
transmission signal through the cavity, which decays exponentially from its locked
state with a decay rate of 1/τc after the trigger signal is received. The red curve is
the exponential fit that was used to extract the value of τc.

where αair is the air absorption coefficient per unit length. Solving for αair and

considering equation 3.46, we get:

αair =
1

2L

(
2π

F
+ ln (R2)

)
(3.48)

Assuming the mirrors have the listed reflectivity (R = 1 − 78 × 10−6) and using

the finesse measured via CRDS, we find αair ≃ 71 ppm/m = 0.71 ppm/cm. This

is consistent with the order of magnitude for light absorption at 1560 nm in air,

primarily due to water vapor [134,135].

In the next stages of the experiment, which involve evacuating the system, it is

espected to achieve finesse values closer to the design specifications. To this end,

before use, the cavity has been baked to test the vacuum integrity of the system,

reaching a pressure below 1× 10−10 mbar.
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Chapter 4

SPLMT interferometer to measure

the effect of gravity on

positronium

The aim of the design activity behind the LMT interferometer proposed in this the-

sis is to find an improvement with respect to other types of interferometers based

on high-order Bragg processes [136], Raman-Nath standing-wave interactions [137]

or adiabatic transfer [138, 139] that impose too restrictive constraints on the ve-

locity spread of the atomic beam or are unable to populate higher-lying momen-

tum states. Conventional light-pulse atom interferometry uses two-photon inter-

actions. However, some challenging applications, such as ultralight dark matter

searches [140,141] and gravitational wave detection [142–147], prefer the use of sin-

gle photon transitions. Multiple pulses LMT-enhanced interferometry is an active

research field and new configurations based on single photon transitions have been

recently implemented on atomic clocks [148] and as a method to reach the required

sensitivity improving the rejection of laser noise [149]. Indeed, this kind of inter-

ferometer can be particularly convenient because it allows the use of phase noise

suppression techniques [150] such as the one discussed in this thesis.

Equation 1.2 shows that the quantities to be maximized to obtain a large signal

are keff and T . Since Ps is unstable, designing an interferometer with too high T

would lead to a severe reduction of the beam population. For this reason, maximizing

keff by designing a LMT interferometer is the most convenient strategy. Moreover,

the need to avoid a rapid annihilation of the Ps leads us to consider one of the excited

n = 2 Ps states, precisely the 23S state, which has an annihilation lifetime of 1.14

µs and a radiative lifetime of 0.2 s. This state therefore guarantees a much higher

survival probability of the Ps atoms with respect to the ground (0.142 µs lifetime)

ortho-positronium state. We can exploit this long living Ps state by designing an

interferometer resonant with the 23S1-3
3P2 transition, as already mentioned (see

Figure 1.1 for energy level scheme of Ps, transitions and lifetimes).
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We now turn to how to choose keff and T . Before proceeding, it is essential to

define the meanings of these two quantities and how they depend on the chosen

interferometric configuration. In Ref. [151], some results of this thesis work are

reported, and an LMT interferometer exploiting single-photon transitions (SPLMT)

is proposed, as illustrated in Figure 4.1. This type of interferometer retains the same

macroscopic structure as a basic Mach-Zehnder interferometer shown in Figure 2.1,

but the action of the beam splitter and mirrors is attributed to a set of pulses rather

than a single pulse.

Beam splitter
Mirror

Beam splitterTT

* *

Ps

23S1

23S1
33P2

Detector

33P2
ionization
Stage

Electrodes

y

z

Figure 4.1: Scheme of the light pulse interferometer with positronium. The Ps beam
entering the apparatus propagates according to a laser-driven Mach-Zehnder scheme,
in order to acquire a phase induced by the gravitational field. In the scheme, π/2
pulses act as beam splitters, π-pulses interchange the n = 2 states (in blue) with the
n = 3 states in red, while slightly detuned π*-pulses only act to suppress n = 3 states
during the propagation. The gravitational deformations of the two interferometer
branches have not been represented for simplicity.

Unlike the typical representation of interferometer diagrams, the Figure 4.1 does

not refer to the space-time axis (co-ordinate along the axis of gravity versus time)

but is fully spatial: this is due to the fact that Ps has a non negligible speed along

the z direction and the design of this interferometer involves spatially separated laser

pulses operating in a continuous regime which works well with both continuous and

pulsed atomic beams. The working principle of this type of interferometer has been

presented in Ref. [148].

First, let’s note that the sequence of single-photon excitations for each type of

pulse is done using the same beam, which is reflected and redirected towards the

atomic beam. This implies that each interaction between atom and light occurs

with an opposite wave vector and a different internal state. This expands the con-

cept represented in Figure 2.2, creating a dual image: an atom in the ground state
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that interacts with a downward-propagating pulse gets excited, acquiring a down-

ward recoil momentum, while an atom in an excited state that interacts with a

downward-propagating pulse gets de-excited, acquiring an upward recoil momen-

tum. By alternating beams propagating in opposite directions, it is possible to

separate the wavefunctions, acting like a Bragg interferometer but with separated

beams instead of overlapped ones.

After the first group of pulses, composed of a π/2-pulse and Nbs π-pulses, which

act as a beam splitter, there is a π∗-pulse that plays the crucial role of bringing both

branches of the interferometer to the n = 2 state. In this region (interrogation),

the atomic wavefunctions must propagate for a time T long enough to accumulate

a significant phase shift for the measurement. The lifetime of the n = 3 state is too

short to allow particles in one of the two arms to propagate for a time equal to T

without annihilating, so we need to exploit the n = 2 state in both branches.

After the first interrogation, a set of π-pulses acts as mirrors and precedes two more

π*-pulses needed to prepare the second part of the interrogation. At the end of the

interferometer, the second beam splitter function is performed again by π and π/2

pulses, used to recombine the wavefunctions.

By setting the Rabi frequency of the π*-pulse as

Ωeg =
(Nbs + 1)ℏk2

m
√
3

(4.1)

it is possible to make it act as a π-pulse on one of the two arms of the interferometer

and as a 2π-pulse on the other [148].

For the correct operation of the π*-pulse, it is necessary that the Ps transition prob-

ability is zero for a given value of the atom momentum, which can be obtained by a

suitable shaping of the laser spatial profile, in the form of a square pulse. This can

be implemented by means of top-hat shaping lenses [152]; given the intensity of the

flat-top laser beam in the form I(r) = I0e
−2(r/w)l , where w is the beam waist and

l > 2, the simulations have shown that the value l = 6 would be adequate for an

efficient π*-pulse [153,154]. π and π/2 pulses have the same wavelength of 1312 nm,

while π*-pulses are slightly detuned from the transition to work at the maximum

transition probability for the n = 3 states: ωπ∗ = ωL +
ℏ(Nbs+1)2k2

2m
.

Having a set of pulses instead of a single one creates a difference with the defini-

tion of T from Chapter 2, which can be more or less pronounced depending on the

operational parameters of the interferometer. Indeed, we can always consider T as

the interrogation time interval (the interval during which most of the gravity-induced

phase shift occurs), but the preceding time interval, necessary to traverse the beam

splitter, can no longer be considered negligible and can significantly impact the de-

cay of the atomic beam. This time interval clearly depends on the arrangement and
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shape of the pulses and is given by:

∆tbs =
2∆zπ/2 + 2Nbs∆zπ + 2∆zπ∗

vz
(4.2)

where ∆z is a length grater than (and proportional to) the waist of the pulses, Nbs

is the number of π-pulses in the beam splitter, and vz is the velocity of the atoms

along the z direction. In the equation, we have considered a distance between the

centers of the pulses equal to 2∆z.

To close the paths, the entire interferometer can be related to the number of π-

pulses chosen in the splitter. Assuming that the pulses are alternated and that

π/2-pulses propagate upward and π∗-pulses propagate downward, the number of

π-pulses needed in the mirror to close the circuit is Nmir = 2Nbs + 1. The time to

traverse the mirror from π∗ to π∗ is therefore

∆tmir =
(2Nbs + 1)2∆zπ + 4∆zπ∗

vz
(4.3)

In this configuration, we define the effective wave vector as the sum of the mo-

menta transferred to the wavefunction of the upper branch minus those of the lower

branch at the beginning of the interrogation region, i.e., after the beam splitter:

keff =
∆p(tbs)

ℏ
=

top,BS∑
i

pr,i
ℏ

−
bot,BS∑

i

pr,i
ℏ

= kπ/2 +Nbskπ + kπ∗ − (−Nbskπ) = 2(Nbs + 1)k

(4.4)

where the signs account for the different effects on different internal states and it is

assumed that k = kπ/2 = kπ ≃ kπ∗.

From the quantities presented so far, several fundamental parameters emerge in

the design of the interferometer: the effective wave vector, directly linked to the

number of pulses in the beam splitter Nbs, and the propagation time T , which is

related to the velocity of the atomic beam vz. Additionally, there is the propagation

time through the entire interferometer, which depends on both Nbs and vz:

∆tSPLMT = 2∆tbs + 2T +∆tmir =
2∆zp(4Nbs + 7)

vz
+

∆zT
vz

(4.5)

where we have assumed ∆zp = ∆zπ/2 = ∆zπ ≃ ∆zπ∗ and ∆zT is the interrogation

space. In reality, ∆zπ∗ is greater than ∆zπ/2 and∆zπ, but this does not affect the

substance of the discussion.

One way to optimize the interferometer is to minimize its sensitivity, defined as

the minimum detectable value of gravitational acceleration, which is given by [21]:

∆g =
1

C
√
NPskeffT 2

(4.6)
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where C is the contrast of the interferometer and NPs is the number of atoms de-

tected downstream of the interferometer.

This formula already reveals the most critical aspect of the experiment: to measure

gravitational acceleration with good precision, we need a high-flux source of positro-

nium atoms.

The number of atoms reaching the detector decreases due to annihilation and decay

throughout the various stages of the experiment:

• Exiting the e+/Ps− converter and propagating to the photodetachment cavity

• Propagating to (state n = 1) and beyond the UV-microwave excitation (state

n = 2)

• Propagating through the interferometer (states n = 2 and n = 3)

Considering that atoms spend the same amount of propagation time through the

beam splitters and mirrors in states n = 2 and n = 3, we can estimate the behavior

of the number of detected atoms as:

NPs

N0

∝ exp

(
−∆zpd
vzτPs−

)
exp

(
−∆zecc
vzτn=1

)
exp

(
−∆zI
2vz

[
1

τg
+

1

τe

])
exp

(
−∆zT
vzτg

)
(4.7)

where ∆zpd and ∆zecc are the propagation distances to reach the photodetachment

and microwave cavities respectively, ∆zI = 2∆zp(4Nbs + 7), and g and e denote

the states with n = 2 and n = 3 respectively. In the equation, we have ignored

the less probable decay channel n = 3 → n = 1 (see Figure 1.1). To optimize

the interferometer, one could substitute equations 4.7 and 4.4 into equation 4.6 and

calculate:

∇Nbs,vz(∆g) =

(
∂(∆g)

∂Nbs

,
∂(∆g)

∂vz

)
= 0 (4.8)

For a more realistic sensitivity estimate, it is also necessary to consider the de-

pendence of C on Nbs and eventually vz. As we will do in this treatment for the

chosen operating conditions, this can be estimated using a Monte Carlo method that

includes the velocity and position distributions of the atomic beam.

However, as mentioned, some stages of the experiment, that have not been ad-

dressed in this research work, are in the planning stage, and this implies that some

constraints may lead to variable values. For this reason, it is preferable for now

to follow the approach in Ref. [151], which involves designing an interferometer to

provide realistic estimates of operational parameters and achievable results based

on available data, choosing experimentally feasible operating regime. We therefore

leave the search for the exact optimal point to future development, with the under-

standing that the following discussion provides a good approximation relative to the

current state of the art.
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As mentioned, it is preferable to have a high T , but reducing vz means increasing

losses before the interferometer. Therefore, we set the length of the interferometer

to a relatively large but experimentally feasible value: ∆zI +∆zT ≃ 5 m.

To achieve a gain in the annihilation of the n = 3 state, we require 2∆tbs +

∆tmir ≪ T . However, this implies a small Nbs, contrary to what is desired. Consid-

ering that a very high Nbs would make it experimentally challenging to control the

number of pulses, we decide to fix Nbs = 4. Taking into account the interrogation

time, annihilation, and de-excitation processes, a suitable energy for the Ps could

be 200 eV (≃ 6× 106 m/s). Under these conditions, we have:

keff = 10k, T ≃ 0.4µs (4.9)

To obtain a 10 ℏk momentum separation between the wavefunctions, the device

is composed by 23 pulses as shown in Figure 4.1. Assuming conventional gravity

acceleration (9.81 m/s2) is measured, the gravity-induced phase shift achievable with

this interferometer is:

∆ϕg ≃ 84µrad (4.10)

As metionend in Chapter 1, after crossing the interferometer, the weakly bound

n = 3 state is laser-ionized using an Erbium fiber laser at 1560 nm. This ionization

allows for the measurement of the number of n = 2 Ps atoms alone. The remaining

charged particles (electrons and positrons) are removed by a moderate electric field

performing a state selective detection which does not require spatial separation of

the states. Achieving this separation would necessitate the addition of numerous

pulses and extend the interferometer by several meters, leading to a substantial loss

of the Ps beam due to annihilation.

Additionally, the interferometer tends to scatter atoms that have not properly in-

teracted with the laser pulses. To improve the signal-to-noise ratio at the detector,

a physical mask is used to select the area with the highest signal concentration.

4.1 Other phase shifts and differential measure-

ment

Under the operating conditions described, we can evaluate the effect of the gravita-

tional gradient presented in Section 2.1.1. Specifically, by applying Equation 2.25,

we can estimate the perturbations relative to a hypothetical gravitational accelera-

tion g and obtain:
g1
g0

≃ 1.7× 10−10,
g2
g0

≃ 2× 10−29 (4.11)

where we have considered v̄0 = vr,eff/2 ≃ 1.4×103 m/s. These values are far beyond

the target sensitivity of this experiment at its current stage and will therefore be
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neglected.

Additionally, it is noteworthy that the high recoil velocity is another distinctive

feature of working with the Ps atom, which has an extremely low mass compared

to typical experiments of this kind.

Applying Equation 2.31, we can evaluate the effect of Earth’s rotation on the

phase shift of the wavefunctions. Considering the current location of the laboratory

(Sesto Fiorentino, Florence, Italy), the latitude to use is θl = 43◦50′07′′N . With

Ω = 7.29×10−5 rad/s, keff = 7.6×106 m−1, and assuming the propagation direction

of the Ps is aligned West-East, we obtain ∆ϕc ≃ 0.88mrad. This represents the

most unfavorable condition, mainly due to the higher velocity spread, as shown in

Figure 3.18b.

However, if we align the interferometer perpendicularly to the West-East axis,

the phase shift would be dominated by the transverse spread of the beam. Using the

values from section 3.2, this would result in ∆ϕc < ∆ϕg, allowing to distinguish the

interference fringes. Nonetheless, this phase shift must be carefully characterized

and taken into account in the analysis of the measurement.

An atom interferometer is generally subjected to phase shifts that are either

independent or dependent of the effective wavevector, some of which have been

mentioned in this work. Among the k-independent phase shifts are those related

to perturbations of the internal degrees of freedom of the atoms, such as magnetic

field gradients and single-photon Stark shifts caused by non-resonant light, as well

as laser phase noise.

Another important effect is due to wavefront distortions of the laser pulses, which

can introduce phase shifts dependent on the atomic trajectories. Imperfections

in the wavefront convolve with the spatial and velocity distribution of the atoms,

causing complex phase shifts [155]. Quantifying the phase shifts and phase noise

of the interferometer is beyond the scope of this discussion, which instead aims to

estimate the contrast and some operational parameters of the system. However, we

will briefly discuss a possible method, compatible with the proposed interferometric

configuration, to reject certain undesired phase shifts.

To isolate these shifts, measurements can be taken with the effective wavevector

oriented upwards and downwards:∆ϕ↑ = keffgT
2 +∆ϕdep +∆ϕindep

∆ϕ↓ = −keffgT 2 −∆ϕdep +∆ϕindep

(4.12)

The sum of the measurements allows for the isolation of the phase shifts that are

independent of the direction:

∆ϕindep =
∆ϕ↑ +∆ϕ↓

2
=

∆Φ+

2
(4.13)
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Ps
Beams

A B

Beam
Splitter

Mirror

Beam
Splittery

z

x

Figure 4.2: Scheme of the differential measurement strategy on the subdivided Ps
beam. The laser radiation hits the two beams A and B with opposite momentum
to reject the phase noise. For simplicity, only three pulses are shown here, but the
strategy is designed for all the 23 pulses of the interferometer.

while the difference allows for the determination of the dependent phase shifts and

the calculation of the gravitational acceleration:

keffgT
2 +∆ϕdep =

∆ϕ↑ −∆ϕ↓

2
=

∆Φ−

2
(4.14)

The proposed interferometer has no control over the laser phase noise and would

require an accuracy on the positioning of the optical components that could exceed

the experimental possibilities. The same problem arises in the reference literature of

gravitation with Ps [21,22] where sub-nm accuracy is required in gratings placement.

It is proposed to solve the issue by extracting the phase signal with a differential

method just mentioned [156,157]: a double measurement can be performed by split-

ting the Ps beam in two and having the laser pulses hitting the beams from opposite

directions, as is shown in Figure 4.2.

This configuration works effectively as a couple of Positronium interferometers,

each making use of two identical beam; two independent n = 2 population set can

therefore be measured during the same data taking, so that the phase can be ex-

tracted from the Lissajous plot of the two combined populations, similar to what

was done for atomic gravitation in Ref. [156]. As can be seen from the equation

4.14, the additional advantage of this strategy is the doubling of the signal which

becomes proportional to 2keffgT
2 [158]. In the proposed configuration the reflection

mirror for the double measurement covers the whole length of the interferometer

and is suspended by anchors designed to minimize deformations. Given its high

spatial extension, the interferometer could be subject to thermal drifts and mechan-
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ical stresses, especially on the reflection mirror. It is possible to significantly reduce

these effects by making the mirror with ultra-low expansion (ULE) material.

In general, we can separate the k-dependent phase shift into two contributions

that depend or do not depend on the interrogation time T:

∆ϕdep = ∆ϕ(keff , T ) + ∆ϕ(keff) (4.15)

Any interferometer phase shifts that depend on k but not on T (e.g., given by

possible deformations of the mirror in the transverse direction) can be reduced by

following the described sequence with two different Ps velocities, e.g., 6 × 106 m/s

and 1.2×107 m/s, obtained by changing the acceleration potentials of the electrodes.

When the interferometer is run with twice the Ps speed, the interrogation time scales

from T to T/2 and by measuring the difference between the two cases of slow and

fast beam, one obtains a 1.5 final gain on the signal:

∆Φdd = ∆Φ−
Slow −∆Φ−

Fast =

2
[
keffgT

2 +∆ϕ(keff , T ) + ∆ϕ(keff)
]
− 2[keffg

(
T

2

)2

+∆ϕ

(
keff ,

T

2

)
+∆ϕ(keff)]

=
3

2
keffgT

2 + 2

[
∆ϕ(keff , T )−∆ϕ

(
keff ,

T

2

)]
(4.16)

where the substript ”dd” stands for double differential. Once the phase shifts of

both measurements have been obtained by analyzing the two differential signals,

the final value of the phase difference is obtained by simple subtraction.

4.2 SPLMT interferometer simulations

In this section, I will describe the simulation of the interferometer discussed previ-

ously, aiming to estimate the contrast and data acquisition times, also called inte-

gration times, that are crucial for assessing the feasibility of the experiment. The

simulation for estimating the contrast has been performed using the Monte Carlo

method within a semiclassical (quantum amplitude probabilities with classical par-

ticles) framework for various atomic beam distributions. Additionally, a quantum

simulation has been conducted to evaluate the effect of parasitic interferometers,

which will be briefly explained in Section 4.2.3.
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4.2. SPLMT INTERFEROMETER SIMULATIONS

4.2.1 Amplitude probabilities and simulation setting

The core part of the simulation concerns the interaction between the laser pulses

and the atomic wavefunctions defined by

|Ψ⟩ =
∑
q

cg,2qe
−iωg,2qt |g, 2qℏk⟩+ ce,2q+1e

−iωe,2q+1t |e, (2q + 1)ℏk⟩ (4.17)

where k = kL · ŷ and q is a momentum index which allows us to summarize all

possible momentum states (q ∈ Z). As in Chapter 2, the expression |α, l⟩ refers to
a generic state, where α indicates the energy level (ground, g, or excited, e, which

correspond to 23S1 and 33P2 respectively) and l is the momentum. For brevity, we

omit the initial momentum of the atom, p, in the subscripts and in the kets, which is

determined by the atomic beam velocity distribution at the interferometer entrance.

Thus, ωα,l is defined as:

ωα,l = ωα +
(p+ lℏk)2

2ℏm
(4.18)

Since in the center-of-mass reference frame the initial Ps state is |g, 0⟩, l is even

for ground states and odd for excited states. In general, the summation over q is

infinite, but only the states having q between −(N − 1) to N − 1 will be populated,

where N is the number of pulses. The amount of momentum states to be considered

for the simulations is therefore 2N .

The interaction Hamiltonian of the system has a significant difference compared

to that of the Bragg interferometer (equation 2.50), specifically that the action of

the upward and downward propagating fields is not simultaneous. This means that

we need to define two different Hamiltonians for the two propagation directions,

which should not be summed but rather considered individually:

Ĥ↑
L =

ℏΩeg

2

(
ei(ky−ωLt−ϕ) + e−i(ky−ωLt−ϕ)

)
Ĥ↓

L =
ℏΩeg

2

(
ei(−ky−ωLt−ϕ) + e−i(−ky−ωLt−ϕ)

) (4.19)

By solving the Schrödinger equation with |Ψ⟩ and considering that the laser action

flips the internal state and changes the momentum states according to equation

2.33 we note that the interaction couples the momentum states pairwise, and this

coupling changes sign by ±ℏk depending on the direction of the Hamiltonian:

Ĥ↑
L ∝

∑
q

[
e−i(ωLt+ϕ) |e, (2q + 1)ℏk⟩ ⟨g, 2qℏk|+ ei(ωLt+ϕ) |g, 2qℏk⟩ ⟨e, (2q + 1)ℏk|

]
Ĥ↓

L ∝
∑
q

[
ei(ωLt+ϕ) |g, 2qℏk⟩ ⟨e, (2q − 1)ℏk|+ e−i(ωLt+ϕ) |e, (2q − 1)ℏk⟩ ⟨g, 2qℏk|

]
(4.20)
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Furthermore, the solution of the Schrödinger equation yields a system very similar

to that in equation 2.38, with the difference being the detunings that vary according

to the direction of the laser:

↑:

iċe,2q+1 =
Ωeg

2
cg,2qe

−i(δ↑t+ϕ)

iċg,2q =
Ω∗

eg

2
ce,2q+1e

i(δ↑t+ϕ)
↓:

iċe,2q−1 =
Ωeg

2
cg,2qe

−i(δ↓t+ϕ)

iċg,2q =
Ω∗

eg

2
ce,2q−1e

i(δ↓t+ϕ)
(4.21)

where

δ↑ = ∆−
[(

2q +
1

2

)
ℏk2

m
+
pk

m

]
δ↓ = ∆+

[(
2q +

1

2

)
ℏk2

m
+
pk

m

]
∆ = ωL − (ωe − ωg)

(4.22)

The systems 4.21 must be calculated alternately (the lasers change direction alter-

nately) for each interaction and for each state and, given the time dependence of

the Rabi frequency, the system has to be integrated numerically (e.g. using a 4-th

order Runge-Kutta method).

In the expressions for the detunings, the presence of the Doppler effect caused by

the initial velocity distribution of the atomic beam is evident, along with the term

dependent on q. As the atom progresses along the interferometer, higher momen-

tum states begin to populate (q increases), leading to an increasing detuning that

decreases the transition probability. This is the reason for the link between contrast

and keff .

4.2.2 Pulse parameters and efficiencies

As we saw in equation 2.42 (which is valid for square pulses instead of Gaussian

pulses but offers general considerations), the probability of transition from one state

to another depends on the Rabi frequency (and thus the laser power) and the in-

teraction time. For a fixed atom velocity, this depends on the longitudinal waist

of the pulse wz. One way to make the transition more robust against the Doppler

effect is to increase the interaction bandwidth of the pulse (1/τ) by reducing wz

and increasing the beam power. In Figure 4.3a, the transition probability is plotted

as a function of the Doppler effect due to the atom’s initial velocity for different

values of wz: the curve broadens as wz decreases. This effect can be understood as

the tendency of the atom to misinterpret the pulse frequency when it becomes less

distinguishable due to the short interaction time, attributing it also to frequencies

near the resonance.

However, simultaneously, we want a larger transverse waist dimension wx to

maximize the interaction region between the pulse and the atomic beam. There-
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fore, for the interferometer, we chose a cylindrical pulse with wx > wz. Considering

experimental limits on asymmetry beyond which the beam might become too de-

formed, we selected wx = 1.4 mm and wz = 0.16 mm for the π/2 and π-pulses, and

wx = 1.8 mm and wz = 1.13 mm for the π∗. With these waists, the selected opti-

cal pulse powers are lower than 30 W and, if needed, are achievable with coherent

combination techniques [159,160].

Figure 4.3b reports the transition probability from one state to another, given

by |cg|2 or |ce|2, as a function of δ. Since the Ps Doppler shift is included in δ, 4.3

also indicates the robustness of the pulses to Doppler effects: the wider the curves,

the more robust the interferometer is. The pulse most sensitive to the Doppler effect

is certainly the π*. Let’s define the interferometer efficiency as the product between

the π/2 pulse efficiency and the geometric mean of the mirror efficiencies of the

upper and lower branches:

η = ηπ/2
√
ηtopηbot (4.23)

Given that the pulse transition probability after an atom-pulse interaction, Pt, is

the square modulus of the probability amplitude of the target atomic state (for

instance, e) normalized by the probability amplitude of the starting atomic state

(for instance, g), we can define the efficiency of the upper and lower branch as the

product of the transition probabilities of all the π and π*-pulses in the branch:

ηtop =
∏
top

P π
t P

π∗

t , ηbot =
∏
bot

P π
t P

π∗

t (4.24)

Instead, the efficiency of the splitters is defined by

ηπ/2 = 4

√
(1− P

π/2
t,1 )P

π/2
t,1 (1− P

π/2
t,2 )P

π/2
t,2 , (4.25)

where P
π/2
t,1 and P

π/2
t,2 are the transition probabilities of the two π/2 pulses. ηtop, ηbot

and ηπ/2 represent the probability of an atom to interact correctly with the pulses in

the upper and lower branches and in splitter stages respectively. Note that all prob-

abilities Pt vary along the interferometer due to the Doppler effect resulting from

momentum transfer from the pulses to the Ps. This implies that even a perfectly

collimated beam cannot achieve unit efficiency unless each pulse is detuned by an

amount equal to the recoil frequency, which is a complex experimental condition.

In order to have an estimate of the admissible divergence, the efficiency as a

function of Ps entrance angles and coordinates has been studied, and the results are

presented in 4.4: the efficiency is almost 0 at about 250 µrad while it is still high

for an atom entering the interferometer at 0.25 mm from the centre of the entrance

hole. The dependence of efficiency on Ps energy begins to decrease significantly at

about 25 eV from the design value (200 eV), and since Ps is expected to have an

energy spread of the order of ±10 eV [49, 86, 161, 162] (see also Figure 3.18), which
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(a) Behavior of transition probability after an interaction with
a π-pulse as a function of the detuning due to non null atom
velocity, for different values of wz and power. Decreasing the
waist size widens the curves, making the pulses more robust
against Doppler effects.
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(b) Transition probability between the n = 2 and n = 3 states as a function
of the ratio between the detuning and the recoil frequency. The π*-pulse
detuning is also shown: it acts as a 2π-pulse for the interferometric wave-
function which absorbed 4 photons with negative momentum, giving zero
transition probability, and as a π-pulse for the wavefunction which absorbed
5 photons with positive momentum.

Figure 4.3: Transition probabilities for pulses under different operating conditions
and for different pulse types.
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Figure 4.4: Interferometer efficiency as a function of Ps energy, entrance angles and
position.

corresponds to a decrease in efficiency of less than 5%, it is not critical in this ex-

periment.

These results explain the choice of aligning the polarization of the laser field for

photodetachment along the propagation direction so as to direct the maximum ve-

locity spread on the interferometer axis more robust to the Doppler effect. Moreover,

based on these results and by trying different values, an optimal size of the mask to

be placed in front of the detector so as to select input angles less than 100 µrad has

been found.

4.2.3 Quantum simulation for parasitic interferometers

An atom that crosses the interferometer can be represented by a wavefunction pop-

ulating two different energy and momentum states after an interaction with a pulse.

The two states separate spatially along the propagation thus defining two distinct

trajectories. Although this splitting should occur only at the π/2-pulses, the non-

ideality of the beams causes it to happen at every pulse. By applying this process

to the entire interferometer, one obtains that the maximum number of trajectories

is equal to 2N , which is about 8 million for the interferometer proposed in this work.

The effective number is reduced if we consider that two states recombine when they

spatially overlap.

From now on we will call the wavefunction path indicated in Figure 4.1 as ”main

pattern” and all other paths as ”parasitic pattern” or ”parasitic trajectories”. The
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Figure 4.5: Representation parasitic patterns (dashed lines) generation due to the
imperfections of the first 5 pulses of the interferometer. Lines with the same color
and inclination represent states with the same internal state and momentum prop-
agating along different trajectories. If the coherence length of Ps, ∆yPs, is greater
than the minimum separation ∆ymin, interference occurs between at least two states.
Wavefunctions are represented by lines for clarity.

main one corresponds to an ideal atom-pulses interaction pattern, and is the most

probable if the interferometer is well sized. On the other hand, the parasitic pattern

represents all other trajectories arising from losses in the single interactions. The

gravitational information is contained only in the main pattern while the parasitic

one contributes to the noise. Given the high number of parasitic trajectories, it

is not possible to define a priori how many and which of these interfere with each

other or with the main pattern, changing its phase and therefore the gravitational

information. This issue was studied by a full quantum-mechanical simulation of

the interferometer, which independently traces each trajectory and sums up the

probability amplitudes in case of spatial superposition inside a pulse (which is in

the present case the intersection between the trajectories [163]). We can generally

describe the problem in quantum mechanical terms as

|Ψn⟩ = Ôn |Ψ0⟩ , (4.26)

where Ψn and Ψ0 are the wavefunctions at the beginning of the interferometer and

after the n-th pulse, where n ranges from 1 to N . Ôn is the operator expressing
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the action of the pulses. Starting with Ps in the ground state with zero momentum

(with respect to its center-of-mass) we have |Ψ0⟩ = |g, 0⟩, while for |Ψn⟩:

|Ψn⟩ =
Qn∑

q=−Qn

(cn,g,q(t) |g, 2qℏk⟩+ cn,e,2q+1(t) |e, (2q + 1)ℏk⟩) (4.27)

In equation 4.27, cn,α,l is the probability amplitude of the α internal state with mo-

mentum l after the n-th pulse and Qn = n−1
2

if n is odd or Qn = n
2
if n is even. Note

that each state contains a high number of trajectories: |α, l⟩ =
∑J

j=1 cα,l,j |α, l, j⟩,
where j is the trajectory index and J is the total number of trajectories which de-

pends on l (e.g., the states in which more trajectories converge are those with l close

to 0). Putting it all together we get

|Ψn⟩ =
Qn∑

q=−Qn

J(2q)∑
j=1

cn,g,2q,j(t) |g, 2qℏk, j⟩+
J(2q+1)∑

j=1

cn,e,2q+1,j(t) |e, (2q + 1)ℏk, j⟩

 .

(4.28)

The interferometric operator can be expressed as the product of the pulse operator

L̂ times the propagation operator Û which expresses the free propagation of the

wavefunction after the n-th pulse

Ôn =
n∏

i=1

L̂iÛi (4.29)

L̂ is a 2N × 2N matrix having all the elements of the main diagonal and some ele-

ments of the first supradiagonal and subdiagonal different from 0. These elements

are computed by solving systems 4.21 for two coupled states with δ defined by equa-

tion 4.22. For example, considering a pulse propagating in the negative y direction,

the states |g, 2qℏk⟩ couple with the states |e, (2q − 1)ℏk⟩, thus, just considering q

= 0, the two coupled states are |g, 0⟩ and |e,−ℏk⟩. Since systems 4.21 have no

analytical solution, we cannot explicitly write the elements of the operator L̂ but

we can substitute it with the probability amplitudes of the states of the system that

would result from applying the operator by solving 4.21 numerically. Collecting

these amplitudes into a matrix L̃, for a pulse with a negative propagation direction

and assuming that N is even, the matrix L̃↓ takes the form
ce,−(N−1) cg,−(N−2)→e,−(N−1) . . . 0 0

ce,−(N−1)→g,−(N−2) cg,−(N−2) . . . 0 0
...

...
. . .

...
...

0 0 . . . ce,N−1 cg,N→e,N−1

0 0 . . . ce,N−1→g,N cg,N

 (4.30)
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where, for instance,
∣∣cg,−(N−2)→e,−(N−1)

∣∣2 is the probability to have a transition from

a ground state with −(N − 2)ℏk to an excited state with −(N − 1)ℏk after the

pulse.
∣∣ce,−(N−1)

∣∣2 is the probability to find the atom in the same |e,−(N − 1)ℏk⟩
state before and after the pulse. For a pulse with a negative propagation direction,

the matrix elements [L̃j,j; L̃j+1,j] and [L̃j,j+1; L̃j+1,j+1] are solution of the systems

4.21 with [ce,2q; cg,2q] = [0; 1] and [ce,2q−1; cg,2q−1] = [1; 0] as initial condition for the

Runge-Kutta integrator. The propagation matrix is a 2N × 2N diagonal matrix

whose elements are e−iH0t/ℏ (free propagation). By computing equation 4.26 with

a matrix product, it would be impossible to distinguish the probability amplitudes

of different trajectories belonging to the same momentum state since they would be

mixed (total mixing). In this condition, the assumption for which only overlapping

trajectories sum up would not be respected. It is therefore necessary to set up a sym-

bolic calculation that uses the propagation operator to distinguish the trajectories

and sum up the probability amplitudes with a common propagator only (selective

mixing). In this way we are basically summing up the interferometers that close

with the main pattern. Figure 4.6 shows the amplitude probabilities of all states

grouped in bins as a function of their position at the interferometer output. The two

probabilities which correspond to the main pattern are in the highest bin, all the

other bins correspond to the parasitic pattern. The total number of states is about

1100000 which, starting from the initial 2N , has been reduced by recombination in

closed patterns.

Since the path and interactions of the main pattern are known, it is possible to

determine its probability amplitude in absence of interference by manually selecting

the elements of L̃ and Û belonging to this path. By comparing this result with the

selective mixing it is possible to verify that they coincide, proving that the parasitic

pattern negligibly interfere with the main one. For this reason, it was decided to

resort to computationally cheaper simulations with a semi-classical approach dis-

cussed in section 4.2.4: each atom is described by a classical point-like particle that

crosses the laser beams with which it interacts in the way described by the quantum

treatment of the system 4.21.

This semi-classical method was compared with the selective mixing, showing that

their efficiencies coincide, thus validating the results of the semi-classical simulation.

Note that the matching among the different type of recombinations considered is

expected, as the influence of parasitic patterns increases with the inefficiency of the

interferometer. This efficiency is maximal for an atom with no initial position offset

and zero initial transverse velocities, as considered in this section. Discrepancies

could become more pronounced at larger angles. If an atom of this type were to

reach the detector after appropriately interacting with all the pulses, its phase might

not be correlated with gravitational acceleration anyway, thereby adding noise to

the measurement. This remarks the utility of a mask in front of the detector to
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Figure 4.6: Probability amplitudes of the states corresponding to each possible tra-
jectory for an atom with null entrance angles. The abscissa axis indicates the arrival
position (y coordinate) at the detector of the Ps atoms having different trajectories.
The highest bar represents the states that carry the gravitational information and
the corresponding amplitude is about 0.92. The other bars represent the noise and
the sum of their amplitudes covers the remaining probability, which is equal to 0.08.

filter out higher velocity classes and to select the atoms that carry the gravitational

information.

What has been discussed so far represents the current state of this work, but

the investigation of parasitic patterns has future developments in studying the in-

termediate case: the interference of parasitic patterns among themselves and with

the main pattern for interferometers that close due to the broadening of the wave

packet during propagation.

These analyses are interesting because parasitic patterns act as a loss channel

for the interferometer. By appropriately configuring the spatial separation between

pulses, it is possible to make them interfere destructively, thereby increasing the

interferometer’s efficiency [164]. This strategy requires the atomic wavefunctions

to overlap throughout the interferometer to interfere, which is particularly relevant

for positronium which, having a much smaller mass compared to typical atomic

interferometry applications, is subject to significant atomic packet dilation.
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Figure 4.7: Contrast (blue) and percentage of atoms that have correctly crossed the
interferometer (red) vs Ps beam angular standard deviation. The solid lines repre-
sent the statistics in a 1.5x1 mm2 acceptance mask while the dashed ones correspond
to the case of the whole screen (no mask). The contrast in the mask remains approx-
imately constant and about 0.4 while the contrast of the whole detector tends to 0.
The small difference between the percentage of “good” atoms (atoms that correctly
crossed the interferometer) outside and inside the mask indicates the suitability of
mask sizing.

4.2.4 Monte Carlo simulation

Since we are currently not focused on quantifying the phase shift (which may be

useful in a later stage of the experiment when comparing results with simulations),

we will only consider the contrast of the interferometer. Therefore, we treat the

phase of the wavefunctions as a constant in each run, setting it to operate at a peak

of the interference fringe.

In this algorithm the interaction between atom and laser, with consequent change

of state, occurs in the case in which the transition probability between g and e is

greater than a random number ranging from 0 to 1.

The Monte Carlo parameters of the positronium beam are the entrance angles and

positions. The input coordinates have a uniform distribution on the entrance hole

and the angular distributions are Gaussian. In this semi-classical approach, the

annihilation and radiative decay were also modeled by comparing the probability
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Table 4.1: ϵ ratio and interferometric contrast for different values of the beam an-
gular standard deviation. All values have a relative error lower than 5%.

σθ [mrad] ϵ C

0.1 14% 60%
1 0.3% 40%
3 0.03% 40%
5 0.01% 40%
7 0.006% 40%
10 0.003% 40%

with a random number, like the laser-atom interaction, in every small step in which

the space was divided (spatial mesh). The n = 3 Ps (n is the principal quantum

number) can radiatively decay towards n = 2 or n = 1 with a probability equal to

1− e−t/τ , with τ3→2 ≃89 ns and τ3→1 ≃12 ns [52] while the n = 2 state radiatively

decays into n = 1 in 0.24 s (the two-photon emission is the primary radiative decay

mode) [165] and annihilates in 1.14 µs. It may happen that a Ps decays radiatively

from n = 3 to n = 2 and then continues to run through the interferometer remaining

in resonance with the laser excitation. In this case the atom loses the gravitational

information, and it therefore adds noise on the detector. An atom that reaches

the level with n = 1 continues to propagate until it decays or hits the detector,

contributing to the noise. Each radiative decay involves the isotropic emission of a

photon that randomly changes the atomic momentum.

In the proposed configuration the mask in front of the detector plays the im-

portant role of selecting atomic trajectories that typically tend to have a favourable

interaction with the whole interferometer. Since Ps atoms failing the correct prop-

agation have a lower probability of being accepted, the mask allows to clean up the

accepted statistics in terms of fringe visibility (interferometric contrast), which can

be set almost independently of the beam distribution.

If ng is the number of atoms that correctly cross the interferometer and nn is

the number of atoms that fail the interferometer, we can define the percentage

n%
g = ng

ng+nn
%. In Figure 4.7 the contrast (blue curves) and n%

g (red curves) as a

function of the Ps beam angular standard deviation, σθ, in presence (solid lines) and

absence (dashed lines) of the mask are shown. Each point of the curves represents

a run of the Monte Carlo simulation with different values of σθ. Here, the contrast

(or visibility) is calculated as ng−nn

ng+nn
, which holds if ng is measured at a peak of the

fringes by appropriately setting the phase shift of the wavefunctions.

After an initial decrease, the contrast with the mask stays approximately constant

and equal to 0.4 while it tends to 0 without the mask. The difference between the

percentage of signal with and without the mask is low, implying that the mask is

well sized since it discards only a small part of the signal but a large amount of noise.
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The effect of Ps decay is taken into account in the simulation, as can be appreciated

by the difference between the initial values of the contrasts for a null σθ (perfectly

collimated beam). In this case there is still some noise generated by decayed atoms

reaching the detector at nonzero angles due to the decay recoil.

The minimum detectable acceleration value is defined by the sensitivity given in

equation 4.6. Note that the mask reduces NPs but this effect is counteracted by the

increase in C.

As discussed in section 3.2.3, it is reasonable to assume that the atomic beam can

fit a Gaussian distribution with σθ ranging from 1 to 10 mrad on the angles and a

uniform distribution extending for 0.25 mm in diameter on the entrance coordinates.

Given the differential measurement (see equation 4.14) with two beams carrying the

same number of atoms and taking into account the error propagation, the sensitivity

to the gravitational acceleration g becomes

∆g =

√
2

2C
√
NPskeffT 2

(4.31)

The acquisition time can be defined as

t =
NPs

ΦPs

1

ϵ
=

( √
2

20kT 2∆gC

)2
1

ϵΦPs

(4.32)

where ΦPs is the Ps flux and ϵ is the ratio between the number of atoms entering

the mask and the total number of atoms entering the interferometer. ϵ considers the

annihilation and the probability that an atom ends up in the mask: ϵ = ϵannϵmask.

Table 4.1 shows ϵ and contrast for different atomic beam divergences. For sigma

greater than about 0.5 mrad, the mask begins to cut the beam at the interferometer

exit while keeping constant the contrast and reducing ϵ. Note that the proposed

detection method allows the interferometer to perform a ”self-cleaning action” by

removing from the mask the atoms that have lost the gravitational information.

This effect is expressed by the behaviour of ϵmask: as σθ increases, ϵmask decreases

by an amount not solely attributable to the different shape of the atomic beam but

also to the scattering of the laser pulses. The advantage of this method is that

while ϵ decreases, the contrast, on which the data acquisition time has a quadratic

dependence, remains constant.

With an input flux of 0.5x108 Ps/s and σθ = 10 mrad, one would obtain ∆g/g =

10%, which is significant for a fundamental physics test (see Chapter 1), in about

11 months of data acquisition. Figure 4.8 shows the desired sensitivity as a function

of the signal acquisition time for σθ equal to 1, 5 and 10 mrad.
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Figure 4.8: Behaviour of the relative error on gravitational acceleration as a function
of the data acquisition time, for three values of the atomic beam angular standard
deviation.

4.3 Bragg and SPLMT interferometers compari-

son

In this section we compare the interferometer proposed in this thesis with the lit-

erature, with reference to the Bragg interferometer (BI) proposed in Ref. [21]. In

this regard, a similar interferometer has been designed and simulated: a standard

Mach-Zehnder configuration (two π/2 pulses and one π-pulse) in Bragg regime at

the first and fifth diffraction order, with detuning from the 2S-3P transition of the

order of tens of GHz. To reduce the acquisition times, it is necessary to maximize

the product CkeffT
2. For the comparison, a BI with the same T as the single pho-

ton LMT (SPLMT) has been considered. The Ps speed must also be equal because

it strongly affects the atomic flux in the stages preceding the intererometer. This

means that the lengths of the interferometers are the same but the BI waist along

the z-direction must be much larger, about 7 mm. The constraint on the waist is

given by the recoil frequency which sets a minimum value of the interaction time

between the atoms and the pulses. The maximum power required by the BIs at the

considered diffraction orders ranges from tens of W to kW. These powers with such
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laser beam sizes pose a major technological challenge, but we will neglect this aspect

in this discussion to make an ideal comparison. The effective momentum is fixed

by the design of the interferometers which is 2ℏk for the first BI diffraction order

and 10ℏk for the SPLMT and the fifth BI order. The results are shown in Figure

4.10. The model used in for BIs pulses is described in section 2.2.1 and in Ref. [166].

Figure 4.9 provides a qualitative depiction of the transition probability for a 5th

Figure 4.9: Transition probability of the atom after interaction with a Gaussian
Bragg π-pulse as a function of the atom-pulse interaction time. The dashed curves
represent the loss channels of the pulse, which are momentum states we aim to avoid
populating.

order Bragg π-pulse as a function of normalized interaction time. The curves rep-

resent the momentum states with which the initial state can couple, based on the

pulse parameters. The dashed curves represent states other than the initial and final

states, indicating the loss channels of the pulse, which we don’t want to populate.

The interferometers have been simulated to analyze their efficiency as a function of

the entrance angles and transverse coordinate, like in Figure 4.4. The efficiency of

the BIs for θy=0 is higher because of the smaller number of pulses forming them (3

vs. 23), however, as soon as an imperfectly collimated atomic beam is considered,

the Bragg efficiency collapses below that of the SPLMT interferometer due to the

Bragg condition becoming more stringent at high atomic velocities. As the diffrac-

tion order increases, the angular acceptance decreases, and the efficiency drops to

zero for lower values of θy. Note that this characteristic must also be considered in

the alignment of the laser pulses, which must then respect a maximum relative angle

with the atomic beam. The efficiency of BI as a function of input parameters related

to the x direction is higher for first-order and equal to the SPLMT for fifth-order.

The time of flight through the interferometers is the same but the BIs do not

create n = 3 states resulting in a different probability of survival to Ps beam decay,
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(a) Efficiency of the interferometers as a function of the y entrance
angle for two Bragg diffraction orders. The degree of angular accep-
tance of Bragg interferometers decreases as the order of diffraction
increases. The SPLMT interferometer has the best angular accep-
tance in the y direction which is the most critical.
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(b) Efficiency of the interferometers as a function of the x entrance
angle and position for two Bragg diffraction orders. For the chosen
parameters (see text), the BI results to be more efficient than the
SPLMT.

Figure 4.10: Efficiency of the interferometers as a function of the entrance angles
and position. The curves refer to different interferometric configurations: the Single
Photon LMT interferometer discussed in this work (black), and the Bragg interfer-
ometers at the first (red) and the fifth (blue) diffraction order.
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ϵann. One of the main limitations of the BI is the impossibility of filtering the

interferometric outputs based on the internal state. In fact, the atoms leaving the

apparatus are in different momentum states but in the same internal state. This

implies that in order to separate the arms and ensure that the signal spots do

not overlap on the detector, several metres of downstream propagation could be

necessary, resulting in a further loss due to annihilation (i.e. a further reduction of

ϵann), as already mentioned in Chapter 1. The separation of the spots must be sized

according to the desired degree of angular acceptance and it is defined by

∆zsep = [Dy + 2∆zMZ tan
(
θmax
y

)
]
vzm

Ndoℏk
(4.33)

where Dy is the entrance hole diameter, ZMZ is the interferometer length, θmax
y is

the maximum accepted angle of the atomic beam and Ndo is the diffraction order.

Choosing Dy = 0.25 mm and θmax
y = 125 µrad (as for the SPLMT), the propagation

needed after the interferometer ranges from 32 m to 6.5 m from the first to the

fifth order. As already mentioned, it is necessary to ensure that atoms with an

angle greater than θmax
y do not enter the interferometer via upstream collimation.

This requires another 2.5 m of propagation. The total distance travelled by an

atom exiting the microwave cavity would be 39.5 m and 14 m for the first and fifth

diffraction order, respectively. ϵann would be about 0.32% for the first order and

14% for the fifth order that should be compared with ϵann ∼ 27% of the SPLMT. In

the Bragg configuration no mask is needed but the collimation reduces the atomic

flux: ϵBI=ϵannϵcoll. The beam is also collimated in the x direction so that the BIs

operate at a minimum efficiency of about 30%: this selects a maximum angle and

input coordinate that varies with diffraction order (see Figure 4.10, b). The ratio

between the acquisition times of the two types of interferometers is given by

tBI

tSPLMT

=

(
keffSPLMTCSPLMT

keffBICBI

)2
ϵSPLMT

ϵBI

(4.34)

This ratio is shown in Figure 4.11 as a function of the BI’s diffraction order for three

angular standard deviation values. As the order increases, the ratio decreases due

to the higher effective momentum and the lower separation length at the detection.

This decrease is counteracted by the lower angular acceptance which is inversely

proportional to the diffraction order (as shown in Figure 4.10). The higher value

of the ratio at 0.1 mrad is due to the fact that, as σθ decreases, the contrast of

SPLMT starts to increase earlier and more than that of BI. The difference between

the curves at 1 and 3 mrad is not significative beacuse for σθ ≥ 1 mrad the contrasts

and ϵSPLMT/ϵBI are approximately constant. For fifth-order, the time ratio is driven

by CBI/CSPLMT and ϵSPLMT/ϵBI, where ϵBI is governed by the decay in the collimation

and separation zone. Both ratios favor the SPLMT interferometer emphasizing the
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main differences between the two types of interferometer: BI is not optimal with

high-speed atomic beams because of the minimal interaction time required between

light and atom, and the detection mode is not selective on the internal atomic

state. Given the technical difficulties of generating pulses with powers of tens of

kW and waist of about 7 mm, it is not necessary to analyze and simulate BIs at

higher orders. A Bragg interferometer may be feasible and cost-effective with a

much slower beam, but a high reduction in speed would lead to a drastic reduction

in atomic flux, both within the interferometer and in the focusing zone, resulting in

an inconveniently large increase in integration time. This result shows that using a

Single Photon LMT interferometer is more convenient than a Bragg interferometer

for positronium inertial sensing.
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Figure 4.11: Data acquisition times ratio (Bragg over SPLMT) as a function of
the first five Bragg diffraction orders, for three values of beam angular standard
deviation. The rate decreases with the diffraction order and it is much greater than
one for every order and σθ. The relative errors are lower than 5%.
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Conclusions and future

perspectives

This thesis explores the application of matter-wave interferometry techniques to anti-

matter, with a particular focus on measuring the gravitational effect on positronium

atoms using a Large Momentum Transfer (LMT) interferometer and a high-power

cavity for the photodetachment of the negative positronium ion. This study rep-

resents a significant step in the QUPLAS (Quantum Interferometry with Positrons

and LASers) project, examining the feasibility of the experiment and addressing

critical aspects of its implementation.

Matter-wave interferometry applied to positronium offers a unique window for

testing the fundamental laws of physics, particularly gravity, on a purely leptonic

system. Positronium, being the lightest bound state composed exclusively of leptons,

represents a prime opportunity for high-precision experiments on exotic atoms.

The experimental part regarding photodetachment is still being refined, but sim-

ulation activities have demonstrated the feasibility of the experiment and provided

guidance for optimizing the experimental setup. Specifically, simulations of the

optical cavity were conducted using the MATLAB-based package OSCAR, FEM

simulations via Ansys were performed to estimate the thermal effect on the mirrors

caused by the high circulating power in the cavity, and Monte Carlo simulations were

used to estimate the divergence of the photodetached beam. The results indicated

that the thermal effect can be considered negligible and that a circulating power of

about 200 kW should be achievable with the selected low-absorption mirrors. Addi-

tionally, the Monte Carlo simulations highlighted an expansion of the atomic beam

following photodetachment, which, for the purposes of gravity measurement, can be

mitigated by appropriately orienting the linear polarization of the laser field.

Despite being in the early stages of development, the cavity has been assembled

and tested in air, showing that it is possible to use the Pound-Drever-Hall tech-

nique for laser locking through actuators on the diode current. The cavity exhibits

characteristics similar to high-finesse cavities, with its finesse value measured using

the Cavity Ring Down Spectroscopy technique. The measured finesse is lower than

the nominal value (14,000 compared to 40,000), probably due to the non-negligible

absorption of air in the near-infrared.
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The final part of the thesis discusses the design of a single-photon LMT inter-

ferometer (SPLMT) to measure the gravitational effect on positronium.

The interferometer, like the entire experiment, is designed to operate with a very

fast atomic beam and with a much higher energy spread compared to normal opera-

tional conditions for gravity measurements. These conditions are necessary because

positronium has a short lifetime and can be focused in the form of Ps−, which

annihilates even faster. With the idea of operating a device with a wide angular

acceptance, the work proposes a single-photon interferometer consisting of 23 pulses

operating on the 23S1-3
3P2 transition to exploit the relatively long lifetime of the

23S1 state (1.14µs), with an interrogation time of less than one microsecond and an

effective wave vector of 10ℏk.
The interferometer was simulated using the Monte Carlo method, with the param-

eters based on the atomic beam distributions. The results allowed for estimating

the data integration time, which, for an atomic flux of 108 Ps/s with an angular

divergence of 10 mrad and a relative measurement precision of ∆g
g

= 10%, is ap-

proximately 11 months.

A quantum simulation was also conducted to estimate the influence of parasitic

patterns generated due to non-idealities of the interferometer pulses. The result

indicates that they do not have a significant influence.

The comparison between the SPLMT interferometer and the Bragg interferometer

demonstrated that the SPLMT approach can offer greater sensitivity in measuring

gravitational effects on positronium due to its higher robustness against the Doppler

effect.

This work lays the foundation for a series of future developments in the project

such as those listed below.

A. Testing the photodetachment cavity in vacuum and at high power

The next steps in the research will be crucial for testing the optical cavity for

photodetachment under vacuum and high-power conditions. This will verify

whether the cavity can achieve the desired power and its stability. If necessary,

active or passive homogenization systems for the thermal profile of the mirrors

and the laser beam wavefront can be developed, drawing on the extensive

literature on the topic.

B. Detailed analysis of other stages of the experiment

Some components of the experimental system, such as the UV-microwave ex-

citation system and the ionization system downstream of the interferometer,

require more accurate sizing and efficiency estimation. It will be necessary

to further design these systems to ensure they are optimized for the specific

needs of the interferometer.

C. Improving efficiency and optimizing the interferometer
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Once the operational parameter ranges of all stages of the experiment are care-

fully defined, it will be possible to determine the optimal parameters for the

interferometer. This includes optimizing the effective wave vector, interroga-

tion time, and atomic beam velocity. Techniques for efficiency enhancement

can be considered, such as suppressing interferometer loss channels based on

destructive interference of parasitic patterns. Additionally, the research will

continue to explore other experimental configurations that may improve mea-

surement efficiency and reduce demands on the atomic beam.

D. Studying other systematic effects

Although some systematic effects have already been addressed (e.g. gravity

gradients, Earth’s rotation), a more comprehensive analysis could be valuable.

Other effects to consider may include, for instance, how the shape, alignment

and chirp of the laser beams impact the interferometric phase.

E. Studying the interfacing between various stages of the experiment

Finally, it will be necessary to study more precisely how to interface the var-

ious stages of the experiment with each other. This involves optimizing the

connections between positronium beam production, its preparation, passage

through the interferometer, and final detection. A well-designed interface will

ensure optimal signal transmission and minimize information loss during the

measurement process.

In summary, this work has estimated the technical feasibility of the proposed

experiment, highlighting its critical points and its potential impact on understanding

gravity on quantum scales and verifying fundamental physics theories. The results

obtained provide a solid foundation for future developments and refinements of the

QUPLAS project, paving the way for new and promising lines of research in matter-

wave interferometry and antimatter physics.
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[105] W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling. Heating by optical

absorption and the performance of interferometric gravitational-wave detec-

tors. Phys. Rev. A, 44:7022–7036, Dec 1991.

[106] W. Winkler, R. Schilling, K. Danzmann, J. Mizuno, A. Rüdiger, and
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[164] A. Béguin, T. Rodzinka, L. Calmels, B. Allard, and A. Gauguet. Atom inter-

ferometry with coherent enhancement of bragg pulse sequences. Phys. Rev.

Lett., 131:143401, Oct 2023.

[165] A. M. Alonso, B. S. Cooper, A. Deller, S. D. Hogan, and D. B. Cassidy.

Positronium decay from n = 2 states in electric and magnetic fields. Phys.

Rev. A, 93:012506, Jan 2016.

[166] H. Müller, S. Chiow, and S. Chu. Atom-wave diffraction between the Raman-

Nath and the Bragg regime: Effective Rabi frequency, losses, and phase shifts.

Phys. Rev. A, 77:023609, Feb 2008.

125


	Introduction
	Motivation and design of the experiment
	Design of the experiment
	Brief overview of the Ps beam production system

	Interferometry for gravity measurements
	The phase shift in an atom interferometer
	Other Lagrangians

	Probability amplitudes and measurement
	Bragg interferometer


	Photodetachment Stage
	Optical cavity simulation
	OSCAR: working principles
	Design cavity analysis and loss assessment
	Thermo-elastic and thermo-optic effects
	Estimation of thermal effects on photodetachment cavity

	Photodetachment process simulation
	3-D model with cylindrical spatial integration region
	3-D model with cubic spatial mesh
	Monte Carlo simulation

	Experimental setup, realization and results
	Laser characterization
	PDH locking setup
	RAM monitoring and compensation
	Transmission, error signal and locking
	Finesse estimation by CRDS


	SPLMT interferometer to measure the effect of gravity on positronium
	Other phase shifts and differential measurement
	SPLMT interferometer simulations
	Amplitude probabilities and simulation setting
	Pulse parameters and efficiencies
	Quantum simulation for parasitic interferometers
	Monte Carlo simulation

	Bragg and SPLMT interferometers comparison

	Conclusion
	Bibliography

