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Abstract—In the latest years, videoconferencing has taken a
fundamental role in interpersonal relations, both for personal
and business purposes. Lossy video compression algorithms are
the enabling technology for videoconferencing, as they reduce
the bandwidth required for real-time video streaming. However,
lossy video compression decreases the perceived visual quality.
Thus, many techniques for reducing compression artifacts and
improving video visual quality have been proposed in recent
years. In this work, we propose a novel GAN-based method for
compression artifacts reduction in videoconferencing. Given that,
in this context, the speaker is typically in front of the camera
and remains the same for the entire duration of the transmission,
we can maintain a set of reference keyframes of the person
from the higher-quality I-frames that are transmitted within
the video stream and exploit them to guide the visual quality
improvement; a novel aspect of this approach is the update
policy that maintains and updates a compact and effective set of
reference keyframes. First, we extract multi-scale features from
the compressed and reference frames. Then, our architecture
combines these features in a progressive manner according
to facial landmarks. This allows the restoration of the high-
frequency details lost after the video compression. Experiments
show that the proposed approach improves visual quality and
generates photo-realistic results even with high compression
rates. Code and pre-trained networks are publicly available at
https://github.com/LorenzoAgnolucci/Keyframes-GAN.

Index Terms—video restoration, generative adversarial net-
works, videoconferencing.

I. INTRODUCTION

In the latest years videoconferencing has become a primary
means of personal and business communication all over the
world, also because of the emergence of the COVID-19
pandemic.

Lossy video compression algorithms such as H.264 and
H.265 allow to decrease the bandwidth required for video
transmission but introduce compression artifacts that reduce
the perceived quality of the video stream. The degradation of
the visual quality worsens the user experience, even making
it unacceptable in certain cases.

For these reasons, the development of methods for video
quality enhancement constitutes a very active area of research.
In the latest years, Generative Adversarial Networks (GANs)
have emerged as one of the most promising and powerful tools
for several image and video processing tasks, thanks to their
ability to generate photorealistic and perceptually satisfying
results [1], [2], [3].

Applying deep learning-based enhancement methods to
videos has several advantages. Firstly, these methods can be
applied as post-processing steps to existing video compression
and transmission systems without requiring to change any

component and being independent of the specific video codec
employed. Secondly, enhancing the visual quality of videos
reduces compression artifacts and other types of degradation,
thus improving the user experience. Finally, the improvement
in the perceived quality makes it possible to transmit videos
with higher compression rates, consequently reducing the
needed bandwidth. For example, [4] uses semantic video
coding and a GAN to obtain a quality comparable to the one
obtained by standard H.264 with three times the bandwidth. [5]
proposes a talking-head synthesis approach that reconstructs a
video using one-tenth of the original bandwidth.

Contributions: In this work we propose a novel GAN-
based approach for improving visual quality in videocon-
ferencing. In videoconferencing the background has so little
relevance [6] that some commercial solutions provide features
to blur or replace the background with a virtual one. For this
reason, we focus on the enhancement of the framed person,
and in particular on the head area, because it is the most ex-
pressive and important part of interpersonal communications.
Our approach is based on the assumption that the subject
speaking in front of the camera stays the same for a relatively
long consecutive time frame, so that we can exploit for
enhancement the previous high-quality reference keyframes
of the Group of Pictures (GOP) coding (i.e. the so-called I-
frames), used in video compression algorithms as the base for
motion-based compression. In particular, we propose a novel
policy to create and update a set of reference keyframes in or-
der to keep this set small, and thus memory efficient, and also
to make it effective for the improvement of the visual quality.
Our model extracts multi-scale features of the compressed
frame and a reference keyframe and then combines them
according to the facial landmarks (see Fig. 1). The feature
fusion is performed with Adaptive Spatial Feature Fusion
(ASFF) [7] and Spatial Feature Transform (SFT) [8] blocks
in a progressive manner that helps in restoring coarse-to-fine
details. We designed a pipeline for video enhancement that
involves preserving a limited number of keyframes extracted
from the video stream and using the most useful ones as a
reference for restoring the compressed frame. The experiments
and the comparison with competing state-of-the-art approaches
show that our proposed method is very effective in generating
photo-realistic results even with high compression rates.

II. RELATED WORKS

a) Video Coding: Some interesting initial works have
addressed the quality improvement of videos and images using
coding based on neural networks [9], [10]. These approaches
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Fig. 1: Overview of the proposed system at runtime. High quality reference keyframes (video I-frames) are used in our GAN-
based approach to improve the visual quality of the video conference stream. The algorithm used to update the keyframe
reference set is a key element to improve the visual quality of the restored frames.

are currently not deployable with satisfying visual results due
to an unbearable computational cost. Moreover, fully learned
compression requires the standardization and diffusion of a
novel technology, which is a very high market barrier to
practical use.

b) Video Quality Improvement: Recently, many learning-
based image enhancement techniques have been proposed
[11], [12], [13], [14], [15], [1], [16], [2], [17], [18], [19],
[20]. Such approaches learn deep convolutional architectures,
often based on GANs, to restore low-quality images corrupted
by compression artifacts into high-quality ones, and deal with
generic video content. [21] presents a Multi-Frame Quality
Enhancement approach for compressed videos. After observ-
ing that the quality of compressed videos fluctuates across
frames, the authors developed a BiLSTM-based detector to
locate Peak Quality Frames (PQFs), that is frames that have
a higher quality than their neighbors, whose information can
be exploited to reduce the distortion of low-quality frames. A
non-PQF and its nearest two PQFs are the input of a multi-
frame CNN, composed of a motion compensation and a quality
enhancement subnet. [22] presents EDVR, a video restora-
tion framework with enhanced deformable convolutions. A
pyramid, cascading and deformable module uses deformable
convolutions in a coarse-to-fine manner to align the features
of the reference frame to that of its neighboring frames and
then a temporal and spatial attention fusion module combines
them.

c) Face Quality Improvement: Face super-resolution has
been addressed in [23], where the authors proposed GWAInet,
a GAN-based approach that performs 8× face super-resolution
using a HR reference image of the same person depicted in
the LR image. A warper subnetwork aligns the contents of
the reference image to the input image. Then, after extracting
the features of the LR and HR images, a feature fusion chain
combines them to exploit the reference image. A peculiarity
of this method is that it does not require facial landmarks for
the training. In [24] super-resolution of extremely degraded
faces is dealt with a GAN that produces a coarse SR image.
Then, the result is refined by exploiting facial components
extracted from multiple high-quality warped images of the

same person or a similar one. In [25] the problem of face
quality improvement is formulated as a dual-blind restoration
problem, lifting the requirements of both the degradation and
structural prior for training. The authors present HiFaceGAN,
a collaborative suppression and replenishment framework with
a nested architecture for multi-stage face renovation with
hierarchical semantic guidance. [26] proposes a GAN prior
embedded network for blind face restoration, using a U-
shaped DNN for face restoration as a decoder. PSFR-GAN, a
GAN-based Progressive Semantic-aware Style Transformation
framework presented in [27], uses a face parsing network to
obtain a segmentation map given an LQ face image. The input
image and the segmentation map are exploited to produce a
multi-scale pyramid of the inputs modulating different scale
features with a semantic-aware style transfer approach. A
semantic aware style loss accounts for each semantic region
individually. In [28] blind face restoration task is tackled
with a Guided Face Restoration Network (GFRNet) that takes
advantage of a high-quality reference image of the same
identity. A warper subnetwork reduces the difference in pose
and expression between the two images to better recover
fine and identity-aware facial details with a reconstruction
subnetwork. The Deep Face Dictionary Network (DFDNet)
proposed in [29] attempts to overcome the main limitation of
reference-based methods by observing that facial components
are similar between different people. Multi-scale dictionaries
of facial parts are built offline with K-means from high-
quality images. The features in the dictionaries most similar
to the facial components of the degraded input are leveraged
for restoration by means of Dictionary Feature Transfer and
Spatial Feature Transform blocks. In [7] blind face restoration
is tackled by exploiting a high-quality image selected from
multiple available images of the same person as a reference
to restore a degraded one. The features of the guidance image
are warped to the low-quality ones according to the facial
landmarks to reduce the difference in pose and expression.
Multiple Adaptive Spatial Feature Fusion blocks combine the
degraded and guidance features by generating an attention
mask with facial landmarks to guide the restoration of the
facial components. In [4] a method that combines semantic
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video coding and GAN-based video quality restoration is
proposed for video conference systems, using a perceptual loss
that accounts separately for the background and the foreground
face. [30] presents HeadGAN, a method for head reenactment
that conditions head synthesis on 3D face representations
from a driving video. Audio features are exploited to better
synthesize mouth movements. When driving and reference
identities coincide, HeadGAN can be used for face recon-
struction. In [31] facial priors encapsulated in a pretrained
GAN (GFP-GAN) are incorporated for blind face restoration
by means of channel-split Spatial Feature Transform layers.
Unlike GAN inversion methods, GFP-GAN can restore faces
with a single forward pass. [32] tackles blind face restoration
with a GAN that uses multi-scale facial features. A feature
prior loss aims to reduce the difference in the feature space
between the input and restored images, thus preserving the
overall image content and spatial structure information. [33]
proposes a restoration with memorized modulation framework
for blind face restoration. Low-level spatial feature embedding,
wavelet memory embedding and disentangled high-level noise
embedding are combined with adaptive attention maps. [34]
presents DAVD-Net, a DCNN architecture that exploits the
audio-video correlations to remove compression artifacts in
close-up talking head videos. The audio features are extracted
with a BiLSTM and organized in a 2D form. The video and au-
dio features are aggregated with a spatial attention module. To
further improve the restoration the structural information of the
encoder in the video compression standards is embedded into
the network by adding a constraining projection module. In
[35] face quality of compressed videos is enhanced with MRS-
Net+, a multi-level architecture comprised of one base and two
refined enhancement levels which restore small, medium and
large-scale faces, respectively. A landmark-assisted pyramid
alignment subnet is developed to align faces across consecutive
frames. [36] and [37] exploit a multi-modality neural network
to restore strongly compressed face videos. They both use
video and audio signals, combined with codec information in
[36] and with an emotion state in [37]. [38] presents a multi-
task face restoration network that relies on network architec-
ture search to restore images affected by various degradations.
Additionally, during training clean images of the same subject
as the degraded image are exploited by means of an identity
loss. [39] proposes a method based on fully-spatial attention to
tackle blind face restoration. A multi-head cross-attention layer
takes the features of a degraded face as queries while the key-
value pairs are from high-quality facial priors. The key-value
pairs are sampled from a reconstruction-oriented high-quality
dictionary.

Even if our aim is to improve the perceptual quality of
videos we did not follow the standard multi-frame restoration
approach that is commonly used in video restoration tasks,
such as in MFQE 2.0 [21], MRS-NET+ [35] or DAVD-Net
[34], because it usually involves looking also at future frames
and this is not possible in a real-time stream. Surely taking
into account only past neighboring frames is a possibility, but
we preferred to consider possibly very distant I-frames and
not necessarily the closest one. This preference is possible in

videoconferencing because the subject usually is the same for
the entire transmission so old I-frames can still be very useful
in restoring the current compressed frame. This is similar to
exemplar-guided face image restoration techniques but given
that our method is applied to videos we can exploit multiple
I-frames from the same video stream as possible references,
dynamically updating the set of keyframes with the policy
we designed to obtain the best performance. Precisely the
LFU-inspired update strategy for the dynamic set of keyframes
is what mainly differentiates our work from exemplar-based
face restoration methods that constitute the state-of-the-art.
For instance, ASFFNet [7] relies on a given set of reference
images representing the same person and it can not handle
a dynamic set of references, nor a policy for updating it.
Similarly, DFDNet [29] needs an offline-generated dictionary
of features of different subjects, therefore it can not exploit
high-quality I-frames of the same subject that arrive in real-
time.

III. PROPOSED APPROACH

Since its introduction in [40], the Generative Adversarial
Network (GAN) framework has emerged as a powerful tool
for various image and video synthesis tasks, such as image-to-
image translation [41], face reenactment [42] and pose transfer
[43]. Compared to other deep generative models, like Deep
Boltzmann Machines [44] or Variational AutoEncoders [45],
GANs proved to be able to generate more photorealistic results
[46], [3], and have been successfully used to improve the
visual quality of images [2] and videos [20]. Our method is
based on such a framework.

A. Proposed Architecture

We propose a novel GAN architecture shown in Fig. 2 and
inspired by [7] and [29]. Similarly to [7], we adopt the ASFF
block and Moving Least Squares for warping. Differently
from [7], we warp directly the reference image and not its
features and we extract and fuse features at multiple scales in
a progressive manner to help the network in restoring coarse-
to-fine details. We took inspiration from [29] in the use of
multi-scale features and of the SFT block, but we leverage a
high-quality image of the same person to better restore subject-
specific details. Differently from both [7] and [29], we select
our reference image from the best-performing set of high-
quality keyframes coming from the same video, which is built
and updated with our proposed policy.

Our architecture is based on U-Net [47] and it is composed
of an encoder, that processes the input so that it is smaller in
terms of spatial dimensions but deeper in terms of the number
of channels, and by a decoder, that inverts the process. Multi-
scale reference features are combined with the features of the
degraded image in a progressive manner. This approach can
make the network learn coarse-to-fine details and is beneficial
to the restoration process.
Our model takes 3 inputs:

• a degraded (i.e. highly compressed) image;
• a high-quality reference image (i.e. a video I-frame);
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Fig. 2: Overview of the proposed architecture. Best viewed in color on PDF.

• a binary image that is white only in correspondence with
the facial landmarks of the compressed image.

The model produces a restored image from the compressed
one.

We use a pre-trained VGG-19 [48] to extract multi-scale
features from the degraded, reference and landmarks binary
images. The reference (guidance) image is previously warped
to the degraded one based on the facial landmarks using
Moving Least Squares (Sec. III-C). We extract features at
4 different scales from the layers relu_2_2, relu_3_4,
relu_4_4 and conv_5_4 of the VGG-19. The feature
extraction is depicted in Fig. 3.

Fig. 3: Diagram of the multi-scale feature extraction with
VGG-19

To align the warped reference and degraded features we
adopt AdaIN [49]. This helps reduce the difference in style
and illumination between the two images and thus improves
the restoration. We denote by F d and F g the degraded and
guidance features. The AdaIN can be written as

F g,a = σ(F d)

(
F g − µ(F g)

σ(F g)

)
+ µ(F d) (1)

where σ(·) and µ(·) represent the mean and the standard
deviation.

After going through multiple dilated residual blocks, the
degraded features are progressively upsampled by enlarging
the spatial resolution and reducing the number of channels. At
the same time, they are combined with the reference features
by means of Adaptive Spatial Feature Fusion (Sec. III-B) and
Spatial Feature Transform (SFT) [8] blocks.

The SFT block generates affine transformation parameters
for spatial-wise feature modulation incorporating some prior
condition. The scale α and the shift β parameters are learned
from the features outputted by the corresponding ASFF block.
The output of the SFT block is formulated as

SFT = α⊙ F r + β (2)

where ⊙ is the element-wise product and F r are the restored
features, that is the features originated from the degraded ones
and restored in the decoding part of the architecture. Figure 4
shows the structure of the SFT block.

βα
ASFF
features

Restored
features

Learnable
parameters

Conv.

Fig. 4: Structure of the SFT block

Following [4], we train the network to learn the residual
image, so there is a skip connection between the degraded
image and the restored output. This choice reduces the overall
training time and improves its stability.

B. ASFF Block
The fusion of the features of the reference and degraded

images is a fundamental part of exemplar-based approaches,
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as it allows to fully exploit the information supplied by the
guidance image. Adopting a concatenation-based approach, as
in [23], [28], does not take full advantage of the reference
features.

Thus, in our multi-scale architecture, we rely on multiple
Adaptive Spatial Feature Fusion (ASFF) blocks [7]. While the
reference image generally contains more high-quality details,
the degraded image should have more weight in the reconstruc-
tion of the overall face components. For example, if the mouth
of the reference image is closed while that of the compressed
image is open, the reconstruction of the teeth should be mainly
based on the restored features from the degraded image. For
this reason, ASFF blocks generate an attention mask based on
the degraded image facial landmarks to guide the fusion of the
guidance and restored features. Figure 5 shows the structure
of the ASFF block.

Reference
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Compressed
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Fig. 5: Structure of the ASFF block

C. Warping Reference with Moving Least Squares

For most guided face restoration methods, the performance
is diminished by the pose and expression difference between
reference and degraded images because it introduces artifacts
in the reconstruction result. Thus, we spatially aligned the
reference and compressed images with an image deformation
method based on Moving Least Squares (MLS) [50].

Let p and q be respectively the sets of facial landmarks of
the reference and degraded image, with |p| = |q| = N . In our
case, N = 68. We aim to find a deformation function f to
apply to all the points of the reference image. Given a point v
in the image, we solve for the best affine transformation lv(x)
that minimizes

N∑
i=1

wi |lv(pi)− qi|2 where wi =
1

|pi − v|2
(3)

Because the weights wi are dependent on the point of evalu-
ation v we obtain a different transformation lv(x) for each v.
We define the deformation function f to be f(v) = lv(v).

Since lv(x) is an affine transformation we can rewrite it in
terms of a linear transformation matrix M

lv(x) = (x− p∗)M + q∗ (4)

where p∗ and q∗ are weighted centroids

p∗ =

∑N
i=1 wipi∑N
i=1 wi

q∗ =

∑N
i=1 wiqi∑N
i=1 wi

Based on this insight, the least squares problem of Eq. (3) can
be rewritten as

N∑
i=1

wi |p̂iM − q̂i|2 (5)

where p̂i = pi − p∗ and q̂i = qi − q∗. The affine deformation
that minimizes Eq. (5) is

M =

(
N∑
i=1

p̂Ti wip̂i

)−1 N∑
j=1

wj p̂
T
j q̂j

With this closed-form solution for M, we can write a simple
expression for the deformation function f

f(v) = (v − p∗)

(
N∑
i=1

p̂Ti wip̂i

)−1 N∑
j=1

wj p̂
T
j q̂j + q∗ (6)

Applying this deformation function to each point of the refer-
ence image lets to warp it according to the facial landmarks
of the degraded image.

D. Keyframes Selection and Set Maintenance

Although warping with MLS helps to reduce the distance
between the compressed and reference images, if they are
too different the results will still be sub-optimal. Thus it
is natural to select the optimal reference keyframe as the
one that has a similar pose and expression to the degraded
image, instead of simply using the previous keyframe. We
measure the similarity between a keyframe and the degraded
frame with the Euclidean distance between the sets of facial
landmarks. Considering videoconferencing, assuming that the
talking subject stays the same, even very old keyframes can
be useful. So, as the video progresses, one can save a limited
set of keyframes, to reduce memory requirements, and then
use the most similar one as a reference to restore the current
compressed frame. This novel method is the key to improving
the overall restoration quality of the video and limits the
cases in which the compressed and reference frames are very
different.

We took inspiration from the Least-Frequently Used (LFU)
cache replacement strategy: for each keyframe of the set,
we keep count of how many times it was selected for
reconstruction and when a new keyframe is received from
the video stream the least used is evicted. However, in this
way, the first keyframes of the video would be excessively
rewarded. Indeed, since for the first seconds of the video they
are the only ones available as a reference they can be used
not because of similarity with the compressed frame but for
lack of alternatives. To overcome this problem we apply an
exponential decay to the number of uses, i.e. when a new
keyframe arrives the counter of the number of uses of all the
keyframes of the set is halved.

E. Training Losses

As in [7], to train our model we employed a weighted
sum of reconstruction and photo-realistic losses. We denote
by ID, IR and IGT the degraded, reconstructed and ground-
truth (i.e. high-quality uncompressed) images, respectively.
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The reconstruction loss constrains the reconstructed image
to faithfully approximate the ground-truth one and is com-
posed of two terms. First, we relied on the Mean Square Error
(MSE), defined as

ℓMSE =
1

CHW
∥IR − IGT ∥2 (7)

where C, H and W denote the channel, height and width of
the image. Second, we adopted the perceptual loss [51], [52],
[53], defined on the VGG-19 feature space. The perceptual
loss is formulated as

ℓperc =
∑
l∈L

1

ClHlWl
∥Ψl(IR)−Ψl(IGT )∥2 (8)

where Ψl represents the features from the l-th layer of a pre-
trained VGG-19 model and L = {relu_2_2,relu_3_4,
relu_4_4,conv_5_4}. We also experimented using VGG-
Face [54] for the perceptual loss, in particular by extracting
the output taken from the third convolutional layer of the fifth
block before the ReLU activation, but the results were worse
than with VGG-19.

The photo-realistic loss also contains two terms. First, we
used the style loss [55] that is defined on the Gram matrix of
the feature map for each layer in L

ℓstyle =
∑
l∈L

1

ClHlWl

∥∥Ψl(IR)
TΨl(IR)−Ψl(IGT )

TΨl(IGT )
∥∥2

(9)
Second, we employed the hinge version of the adversarial

loss [56], [57]. We adopted multi-scale discriminators [58],
that is 4 discriminators that have the same network structure
but operate at different image scales. The adversarial loss can
be formulated as

ℓadv,D = −
∑
r∈R

[
EI↓r

GT∼P (I↓r
GT )

[
min

(
0,−1 +D(I↓rGT )

)]
+

EI↓r
R ∼P (I↓r

R )

[
min

(
0,−1−D(I↓rR )

)]]
ℓadv,G = −

∑
r∈R

λadv,r EI↓r
D ∼P (I↓r

D )

[
D
(
G(I↓rD )

)]
(10)

where ↓r denotes the downsampling operation with scale
factor r ∈ R = {1, 2, 4, 8} and λadv,r are the trade-off
parameters for each scale discriminator. ℓadv,D and ℓadv,G
are used to update respectively the discriminators and the
generator. To stabilize the learning of the discriminators we
adopted SNGAN [59], incorporating the spectral normalization
after each convolutional layer of the discriminator. Spectral
normalization is based on regularizing the spectral norm of
each layer of the discriminator by simply dividing the weight
matrix by its largest eigenvalue.

The overall training loss is defined as

ℓtotal = λMSEℓMSE +λpercℓperc +λstyleℓstyle +λadvℓadv,G
(11)

where λMSE , λperc, λstyle, and λadv are the tradeoff param-
eters.

IV. RESULTS

A. Datasets

Similarly to [4], we used the Deep Fake Detection (DFD)
dataset [60], which is composed of 363 high-resolution and
high-quality videos depicting different activities performed by
28 actors. Then, we selected 55 videos of actions in which
the actor is talking while facing the camera as in a setup of
a video conference (i.e. “podium speech” and “talking against
wall” scenes) for an overall size of ∼ 40 GB and a duration of
∼ 40 minutes. The first 22 identities were utilized for training
and the last 6 for testing.

We also employed the High-Definition Talking Face
(HDTF) dataset [61], which contains 362 videos collected
from YouTube with a resolution of 720P or 1080P. We used
the “WDA” subset since it is composed of the videos that
have the highest quality among those in the whole dataset, for
a total of 193 videos. Since the videos have a much larger
duration than those of the DFD dataset, we used only the
initial 30 seconds to reduce the computational cost; this does
not hamper the evaluation since the visual content remains
extremely similar. We relied on this dataset only for testing
purposes, to compare the proposed approach with competing
state-of-the-art methods and to evaluate the generalization
capabilities of the models trained on the DFD dataset.

Starting from the raw (Constant Rate Factor 0) version
of the original sequences, each video was compressed with
the H.264 codec and CRF 32 and 42 using FFmpeg [62].
Then, only during training, the frames of each sequence were
extracted by sampling one frame every five, both for the
raw and compressed versions. In addition, for the compressed
versions, the frames were extracted starting from a given
offset measured in the number of frames to skip. This was
because for the training the reference frames (i.e. the raw ones)
need to precede the compressed ones. The offset used in the
experiments was equal to 5.

Both for training and testing we relied on dlib [63] to
detect the face rectangle and the 68 facial landmarks of each
frame. Then, we leveraged an affine transformation to perform
the crop and alignment of the detected faces based on the set
of facial landmarks. Each reference image was warped to the
corresponding degraded one with Moving Least Squares to
reduce the difference in pose and expression. To this end, we
extracted the facial landmarks of both images and then applied
the MLS algorithm presented in Sec. III-C. Finally, we used
the facial landmarks of the compressed frame to generate the
landmarks binary images. After the preprocessing, we ended
up with 9,007 images for the training set and 12,568 images
for the test set, considering the DFD dataset. Instead, all the
175,832 frames of the HDTF dataset were used for testing.

B. Training Setup

To train both the generator and the discriminator we em-
ployed the ADAM optimizer [64] with batch size 4, learning
rate 10−4 and momentum parameters β1 = 0.9 and β2 = 0.99.
We trained all the models for 15 epochs because after that the
outputs did not change significantly. We adopted several data
augmentation techniques, such as shifting, 90◦ rotations and
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cutout [65]. We performed a grid search to find the optimal
trade-off parameters for the training losses. After that, they
were set as follows: λMSE = 300, λperc = 10, λstyle = 1,
λadv = 2, λadv,1 = 4, λadv,2 = 2, λadv,4 = 1 and λadv,8 = 1.
The 4 layers used to compute the perceptual loss were given
the same weight, equal to 1. During testing, we set the
maximum cardinality of the set of keyframes to 10.

C. Evaluation Metrics

The performance is evaluated using six full-reference and
two no-reference visual quality metrics. Regarding the full-
reference metrics, we employed: 1) Peak Signal-to-Noise
Ratio (PSNR), which is often used to evaluate reconstruc-
tion and compression artifacts reduction, despite its issues
in estimating the perceived quality [66], [67]; 2) Structural
Similarity Index Measure (SSIM) [68], another commonly
used metric, although it is known that it doesn’t perform
well on the output of generative models [69]; 3) Learned
Perceptual Image Patch Similarity (LPIPS) [70], using, in
particular, the version with AlexNet [71] backbone. Typically
LPIPS measures are in contrast with SSIM, i.e. distortions that
are low for LPIPS are high in SSIM and vice-versa. LPIPS has
been shown to have a very strong correlation with perceived
visual quality; 4) CONTRastive Image QUality Evaluator-
Full Reference (CONTRIQUE-FR) [72], using, in particular,
the LIVE FR model downloaded from the official repository;
5) Video Multimethod Assessment Fusion (VMAF) [73], a
full reference perceptual video quality assessment model that
combines multiple elementary quality metrics; 5) Video Multi-
method Assessment Fusion - No Enhancement Gain (VMAF-
NEG) [74], which subtracts the effect of image enhancement
from the VMAF score. Indeed, VMAF tends to overpredict the
perceptual quality when image enhancement techniques, such
as sharpening or histogram equalization, are performed [74].
Both VMAF and VMAF-NEG include an elementary metric
that accounts for the temporal difference between adjacent
frames of the videos, thus evaluating the presence of motion
jitter and flicker. Regarding the no-reference metrics, we relied
on: 1) Blind/Referenceless Image Spatial QUality Evaluator
(BRISQUE) [75], which evaluates the naturalness of an image;
2) CONTRastive Image QUality Evaluator (CONTRIQUE)
[72], using, in particular, the LIVE model downloaded from
the official repository.

D. Baselines

We compare the proposed approach with several state-
of-the-art methods: six methods for blind face restoration,
HiFaceGAN [25], PSFR-GAN [27], GFP-GAN [31], GPEN
[26], DFDNet [29] and ASFFNet [7], and one for face super-
resolution, GWAINet [23]. DFDNet, PSFR-GAN, GPEN and
GFP-GAN do not use a reference image but utilize extra
face prior, respectively some offline-generated dictionaries
of facial components, a segmentation mask and pretrained
GANs. Instead, GWAINet exploits a reference image that is
warped to the compressed one by means of a warper net-
work. HiFaceGAN does not require any additional information
w.r.t. the compressed input image. The most similar to our

work is ASFFNet, which leverages a reference image and
a binary landmark image. As ASFFNet needs a given static
set of reference images, we make all the keyframes in the
video available to it as possible guidance. Therefore, ASFFNet
actually has an advantage over our approach, as, in our case,
we limit the maximum cardinality of the set of keyframes to
10.

E. Quantitative Results
The quantitative results for the DFD dataset are reported in

Tab. I. The proposed method achieves the best performance for
the LPIPS metric, which is the most indicative full-reference
perceptual metric, as well as in terms of CONTRIQUE,
CONTRIQUE-FR and VMAF-NEG. PSFR-GAN performs
better with regard to the signal metrics PSNR and SSIM,
while GWAINet achieves the best result for BRISQUE. How-
ever, manual inspection shows that the images produced by
GWAINet include excessive high-frequency artifacts and thus
we did not consider this approach in the other experiments.
GFP-GAN obtains the best VMAF value, probably because
of its tendency to saturate colors and increase contrast at the
cost of loss of photorealism, as is visible from the qualitative
results. This tendency is similar to the application of image
enhancement methods, which are known to boost the VMAF
score [74]. In support of this theory, we can notice the large
difference from the VMAF-NEG score, which in contrast is
not affected by image enhancement techniques. Our method
achieves both the second-best VMAF value and the best
VMAG-NEG value, proving its ability to obtain great overall
video quality while preserving photorealism. Moreover, the
VMAF and VMAF-NEG scores show that our video results
are temporal consistent and do not present too much motion
jitter and flicker or mosquito noise.

In the second experiment, reported in Tab. II, we compare
the proposed method with the baselines on the HDTF dataset.
It is important to note that our model has not been trained on
this dataset so that we can evaluate its generalization capa-
bilities. Again, the proposed approach outperforms the other
methods in terms of LPIPS, CONTRIQUE, CONTRIQUE-
FR and VMAF-NEG. Manual examination of the results
shows that this may be motivated by the fact that several
competing approaches tend to add (or, on the opposite, hide)
skin imperfections or boost excessively the color of lips and
eyebrows.

Overall, our method is the one that performs best with the
highest consistency, as none of the baselines achieves better
performance on multiple metrics simultaneously. The results
obtained for the HDTF dataset also prove that the proposed
model is capable of generalization. In addition, we argue
that the metrics for which our method performs best, namely
LPIPS, CONTRIQUE, CONTRIQUE-FR, and VMAF-NEG
are those that correlate best with the actual quality of the
restored frames. In Appendix A we provide some examples
that support this argument.

F. Qualitative Results
Qualitative results for the DFD dataset are shown in Fig. 6.

Our approach outperforms all the baselines in generating
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TABLE I: Quantitative comparison between the proposed approach and other state-of-the-art methods for CRF 42 on DFD
dataset [60]. Best and second best results are in bold and underlined, respectively. ↑= higher values are better, ↓= lower values
are better.

Method PSNR ↑ SSIM ↑ LPIPS ↓ BRISQUE ↓ CONTRIQUE ↓ CONTRIQUE-FR ↓ VMAF ↑ VMAF-NEG ↑

GWAINet [23] 22.25 0.608 0.129 24.18 50.16 20.79 44.65 36.60
HiFaceGAN [25] 29.38 0.828 0.075 28.41 48.75 18.67 47.77 45.11
PSFR-GAN [27] 29.68 0.833 0.057 29.07 46.87 16.46 48.55 46.22
GFP-GAN [31] 27.51 0.822 0.081 34.17 50.84 23.01 57.55 48.51
GPEN [26] 27.61 0.813 0.075 28.67 49.42 21.36 55.86 49.26
DFDNet [29] 27.03 0.827 0.065 32.38 46.84 16.04 55.15 48.95
ASFFNet [7] 28.29 0.834 0.062 29.67 46.27 17.48 51.74 46.84
Ours 26.19 0.779 0.037 27.41 44.95 13.16 56.87 54.20

TABLE II: Quantitative comparison between the proposed approach and other state-of-the-art methods for CRF 42 on HDTF
dataset [61]. Best and second best results are in bold and underlined, respectively. ↑= higher values are better, ↓= lower values
are better.

Method PSNR ↑ SSIM ↑ LPIPS ↓ BRISQUE ↓ CONTRIQUE ↓ CONTRIQUE-FR ↓ VMAF ↑ VMAF-NEG ↑

HiFaceGAN [25] 30.70 0.864 0.047 31.71 41.50 10.69 44.50 42.40
PSFR-GAN [27] 30.31 0.853 0.046 30.01 44.99 13.57 40.18 38.40
GFP-GAN [31] 28.19 0.846 0.064 35.02 46.80 13.95 51.06 41.27
GPEN [26] 27.72 0.817 0.061 30.62 46.15 13.31 47.52 40.57
DFDNet [29] 28.16 0.847 0.050 32.10 47.50 12.04 49.48 43.90
ASFFNet [7] 27.88 0.835 0.058 32.18 45.39 12.90 40.15 35.72
Ours 30.39 0.862 0.028 33.34 37.35 7.76 47.82 45.07

photorealistic and detailed results. GWAINet, HiFaceGAN and
PSFR-GAN produce unsatisfactory images that still present
visible artifacts, see for example the mouth in the second
row. GFP-GAN and GPEN generate detailed but artsy and
not photorealistic results, as the eyes in the first and fifth
rows. DFDNet and ASFFNet achieve a better tradeoff between
details and photorealism but, as can be seen in the last row,
still produce visible artifacts. Our model exploits the reference
keyframe and reproduces the high-frequency details lost after
such strong compression without loss of photorealism. It is
interesting to note that often the reference image (i.e. the
bottom-left image in the input column) is not too similar to
the degraded image, but the proposed method is still able to
exploit it. For example, in the last row, the reference image
has open eyes while the compressed one has them closed, and
despite this, our model correctly depicts the restored frame
with closed eyes.

Figure 7 shows the qualitative results for the HDTF dataset.
Again, our method produces the most detailed and photoreal-
istic images. All the baselines generate blurry hair in both
the first and second rows, as well as a not detailed beard
in the third row. In the first row, PSFR-GAN, GFP-GAN,
GPEN and ASFFNet mistake the shadow of the glasses for
their border and thus produce unrealistic results. In the fourth
row, GPEN and DFDNet hallucinate moles that are not present
in the ground truth. In the fifth row, our method is the only
one capable of depicting the eyes as closed without adding
artifacts. In the last row, GFP-GAN and GPEN add traces of
glasses, while ASFFNet exploits the reference incorrectly and
portrays the eyes as open. In general, our method is the one
that most consistently generates satisfactory results that are
similar to the ground truth.

G. Subjective Experiments

In this experiment we conducted a subjective test based
on the three-alternative forced choice (3-AFC) methodology,
using the AVrate Voyager tool [76], [77]. The test included
the inspection of 15 sets of videos, 8 from the DFD dataset
and 7 from the HDTF one, so as to maintain the completion
time of around 15-20 minutes and avoid excessive fatigue as
recommended by ITU-R BT.500-13 [78]. Each original video
was compressed with CRF 42 and restored using our pro-
posed method, GPEN [26] and GFP-GAN [31]; using 3-AFC
allowed to reduce the number of required comparisons [79].
Participants (18, i.e. almost double the minimum required [80])
were requested to choose the reconstruction that matched more
closely the original high-quality video, without considering
aesthetic preferences. The position of the results of all the
methods was changed randomly for each evaluation. Figure 8
reports the percentages of the forced choices for the 15 sets.
The much larger preference given to our proposed method can
be attributed to the fact the proposed GAN introduces fewer
high-frequency details and color shifts than the GPEN [26] and
GFP-GAN [31]; these additions tend to be more visible in a
video sequence than when evaluating separately the frames
using the quality metrics.

H. Inference Time

We compared the Frames Per Second (FPS) processed by
our model with the baselines. The experiments were performed
on an NVIDIA RTX 2080 Ti GPU. As shown in Tab. III,
our method achieves a number of FPS similar to or better
than the baselines but outperforms them in terms of quality.
Given that our model runs at almost 45 FPS, it proves to
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Input GWAINet HiFaceGAN PSFR-GAN GFP-GAN GPEN DFDNet ASFFNet Ours Ground truth

Fig. 6: Qualitative comparison between the proposed approach and the baselines for the DFD dataset and CRF 42. The bottom-
left image in the input column represents the reference frame exploited by our approach. Best viewed in full screen.

be capable of real-time inference and therefore suitable for
videoconferencing.

TABLE III: FPS comparison between the proposed approach
and other state-of-the-art methods. Best and second best results
are in bold and underlined, respectively.

Method # parameters FPS
HiFaceGAN [25] 72.22M 44
PSFR-GAN [27] 67.26M 28
GFP-GAN [31] 86.44M 49
GPEN [26] 71.00M 39
DFDNet [29] 113.31M 4
ASFFNet [7] 23.62M 24
Ours 96.35M 44

I. Ablation Studies

a) Architecture: We performed ablation studies to eval-
uate the importance of each component of our architecture.
In particular, we measure the effect of using: i) Multi-scale
features; ii) ASFF blocks; iii) SFT blocks. We start from a
single-scale features model that considers only the features
with the smallest size but with the most channels and that
relies on concatenation instead of the ASFF and SFT blocks.
Then, we gradually add each component: first individually and
then in combination with each other. The results are reported
in Tab. IV. Our experiments show how the use of multi-scale
features is the most important component of the architecture,
followed by the ASFF and SFT blocks. Additionally, we
substitute the ASFF and SFT blocks one at a time with
SPADE [81], a spatially-adaptive denormalization block. The
proposed architecture outperforms both versions that make
use of SPADE, proving that ASFF and SFT blocks are more
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Input HiFaceGAN PSFR-GAN GFP-GAN GPEN DFDNet ASFFNet Ours GT

Fig. 7: Qualitative comparison between the proposed approach and the baselines for the HDTF dataset and CRF 42. The
bottom-left image in the input column represents the reference frame exploited by our approach. Best viewed in full screen.

effective in our architecture.

b) Keyframes Selection Policy: Tables V and VI compare
the proposed LFU policy update method with a different
approach that maximizes the diversity of the keyframes, called
“Max distance”. The “Max distance” policy consists in maxi-
mizing the Euclidean distance between the facial landmarks of
the frames of the set, in order to have a wide range of poses
and expressions. The idea is that in this way, every future
frame of the video should always have a reference in the set
that is not too different. For each new keyframe, its distance
to all the keyframes in the set is computed. Then, between
all the possible combinations of frames, we choose the group
of keyframes that maximizes the total distance, so the new
keyframe is not necessarily added to the set.

Table V reports the results obtained with CRF 32 and Ta-
ble VI those for CRF 42. The maximum number of keyframes
in the group was set to 10 in both cases. The results show that
the proposed LFU strategy outperforms the “Max distance”
one for almost all the metrics.

c) Keyframes Set Cardinality: Regarding the dimension
of the set of keyframes, we expect that as the maximum cardi-
nality increases, the results will improve. In fact, having more
possible references available, it is less likely that a compressed
frame has no similar reference. The results reported in Tab. VII
confirm our assumption, but the increase in performance is not
too significant. However, we set the maximum cardinality to
10 because the time needed to choose the best keyframe is
still about 0.1 milliseconds so a higher number of keyframes
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TABLE IV: Ablation studies with CRF 42 on the DFD dataset. SSF stands for Single-Scale Features, MSF for Multi-Scale
Features. Best results are in bold. ↑= higher values are better, ↓= lower values are better.

Ablation PSNR ↑ SSIM ↑ LPIPS ↓ BRISQUE ↓ CONTRIQUE ↓ CONTRIQUE-FR ↓ VMAF ↑ VMAF-NEG ↑

SSF w/o ASFF w/o SFT 25.41 0.736 0.078 33.30 49.95 16.50 48.19 46.19
SSF w/ ASFF w/ SFT 24.99 0.736 0.079 30.96 49.97 15.83 47.90 45.83
MSF w/o ASFF w/o SFT 26.19 0.777 0.039 25.84 44.34 13.84 54.49 52.34
MSF w/o ASFF w/ SFT 26.17 0.776 0.038 26.21 45.25 13.87 55.29 52.99
MSF w/ ASFF w/o SFT 26.12 0.776 0.038 29.17 45.86 13.39 56.33 53.84
MSF w/ ASFF w/ SPADE 26.17 0.777 0.038 28.14 45.06 14.18 55.18 52.97
MSF w/ SPADE w/ SFT 26.18 0.776 0.039 27.57 45.12 13.78 55.87 53.39
MSF w/ ASFF w/ SFT 26.19 0.779 0.037 27.41 44.95 13.16 56.87 54.20

Fig. 8: Subjective results using 3-AFC. Videos from 1 to 8
belong to the DFD dataset, the others to the HDTF dataset.

TABLE V: Ablation studies on the keyframes selection policy
for the DFD dataset and CRF 32. Best results are in bold. ↑=
higher values are better, ↓= lower values are better.
Strategy PSNR ↑ SSIM ↑ LPIPS ↓ BRISQUE ↓ CONTRIQUE ↓ CONTRIQUE-FR ↓ VMAF ↑ VMAF-NEG ↑
Max distance 29.29 0.844 0.022 27.89 43.83 13.79 66.99 63.53
LFU 29.32 0.845 0.021 27.92 43.77 13.75 67.18 63.69

to choose from does not impact the computational complexity
significantly.

d) Feature Extractor: In this experiment We replace
the VGG-19 backbone with different feature extractors. In
particular, we exploit the small and large versions of Mo-
bileNetV3 [82], a popular and light CNN designed for mobile
platforms which, from our experiments, reduces the inference
time of our model by about two times. Table VIII reports the
quantitative results. As expected, the version with the VGG-
19 outperforms the MobileNetV3 ones, but the number of
parameters is an order of magnitude greater. However, looking
at the qualitative results obtained with the MobileNetV3 as
the feature extractor we noticed how they were still more
than acceptable, proving how effective our approach is, and
suggesting that these backbones could be used for deployment
on mobile devices.

e) Discriminator: We substitute the multi-scale discrim-
inators with a standard single-scale discriminator. Conse-
quently, we also replace the adversarial loss described in
Eq. (10) with the following one:

TABLE VI: Ablation studies on the keyframes selection policy
for the DFD dataset and CRF 42. Best results are in bold. ↑=
higher values are better, ↓= lower values are better.
Strategy PSNR ↑ SSIM ↑ LPIPS ↓ BRISQUE ↓ CONTRIQUE ↓ CONTRIQUE-FR ↓ VMAF ↑ VMAF-NEG ↑
Max distance 26.22 0.776 0.039 27.50 45.09 13.29 55.85 53.24
LFU 26.19 0.779 0.037 27.41 44.95 13.16 56.87 54.20

TABLE VII: Ablation studies on the maximum cardinality of
the set of references for the DFD dataset and CRF 42. Best
results are in bold. ↑= higher values are better, ↓= lower
values are better.
Max cardinality PSNR ↑ SSIM ↑ LPIPS ↓ BRISQUE ↓ CONTRIQUE ↓ CONTRIQUE-FR ↓ VMAF ↑ VMAF-NEG ↑

1 26.23 0.779 0.038 27.68 45.07 13.18 56.63 53.95
3 26.25 0.779 0.037 27.50 45.01 13.19 56.82 54.14
5 26.25 0.779 0.037 27.46 45.00 13.16 56.87 54.20
10 26.19 0.779 0.037 27.41 44.95 13.16 56.87 54.20

ℓadv,D = −EIGT∼P (IGT ) [min(0,−1 +D(IGT ))]−
EIR∼P (IR) [min(0,−1−D(IR))]

ℓadv,G = −EID∼P (ID) [D(G(ID))] (12)

ℓadv,D and ℓadv,G were used to update respectively the dis-
criminator and the generator.

Tables IX and X report the quantitative results for the DFD
and HDTF datasets, respectively. Even if the version with the
single-scale discriminator outperforms the multi-scale one for
some metrics, the qualitative results show clearly that the use
of the multi-scale discriminators allows to obtain less blurry
and more sharp and detailed outputs. This is proven also by
the lower values of the LPIPS metric for both datasets. For
instance, Fig. 9 shows how the multi-scale version has less
blurred and more detailed hair and eyes than the single-scale
one, as well as an overall color more faithful to the ground
truth. Additionally, the multi-scale discriminators let to achieve
higher VMAF and VMAF-NEG values, which correspond to
a better temporal consistency.

TABLE VIII: Ablation studies on feature extractor for the DFD
dataset and CRF 42. Best results are in bold. ↑= higher values
are better, ↓= lower values are better.
Features extractor # parameters PSNR ↑ SSIM ↑ LPIPS ↓ BRISQUE ↓ CONTRIQUE ↓ CONTRIQUE-FR ↓ VMAF ↑ VMAF-NEG ↑
MobileNetV3 Small 2.72M 25.87 0.784 0.047 33.18 44.96 13.00 50.30 48.19
MobileNetV3 Large 8.45M 26.11 0.786 0.045 31.37 45.94 11.91 50.26 48.01
VGG-19 96.35M 26.19 0.779 0.037 27.41 44.95 13.16 56.87 54.20
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TABLE IX: Ablation studies on the discriminator for the DFD
dataset and CRF 42. Best results are in bold. ↑= higher values
are better, ↓= lower values are better.
Discriminator PSNR ↑ SSIM ↑ LPIPS ↓ BRISQUE ↓ CONTRIQUE ↓ CONTRIQUE-FR ↓ VMAF ↑ VMAF-NEG ↑
Single-scale 26.49 0.804 0.039 32.97 44.87 11.88 50.44 48.85
Multi-scale 26.19 0.779 0.037 27.41 44.95 13.16 56.87 54.20

TABLE X: Ablation studies on the discriminator for the HDTF
dataset and CRF 42. Best results are in bold. ↑= higher values
are better, ↓= lower values are better.
Discriminator PSNR ↑ SSIM ↑ LPIPS ↓ BRISQUE ↓ CONTRIQUE ↓ CONTRIQUE-FR ↓ VMAF ↑ VMAF-NEG ↑
Single-scale 30.34 0.873 0.030 34.25 37.52 8.22 40.21 38.94
Multi-scale 30.39 0.862 0.028 33.34 37.35 7.76 47.82 45.07

V. CONCLUSIONS

In this paper we have proposed a novel GAN-based method
and a keyframes selection system that improves the visual
quality of videoconference videos enhancing the appearance
of faces. A key element of the system is the policy that updates
a set of previous I-frames and exploits them to improve the
visual quality improvement process. The proposed approach
improves over competing state-of-the-art methods in terms of
perceptual metrics and is rated much better in terms of fidelity
by human evaluators.

APPENDIX

QUANTITATIVE RESULTS ANALYSIS

In Sec. IV-E we reported the quantitative results for the
DFD and HDTF datasets. Our method obtains the best perfor-
mance in terms of LPIPS, CONTRIQUE, CONTRIQUE-FR
and VMAF-NEG. We argue that these metrics best correlate
with the perceived visual quality. In Figs. 10 and 11 we
show two examples supporting our argument. In Fig. 10 we
compare a frame restored by our method and by GWAINet
and present the corresponding values of no-reference metrics
BRISQUE and CONTRIQUE. The proposed approach clearly
generates a more satisfying image than GWAINet, which adds
high-frequency artifacts. We argue that these artifacts deceive
BRISQUE, which mistakes them for high-frequency details
that are distinctive of high-quality images [83]. In Fig. 11
we report the values of the full-reference metrics PSNR,
SSIM, LPIPS and CONTRIQUE-FR obtained by our approach
and HiFaceGAN for a restored frame. Again, the proposed
method produces a more detailed and photorealistic image,
while HiFaceGAN generates a frame with visible artifacts.
However, HiFaceGAN obtains better values for PSNR and
SSIM. PSNR and SSIM are signal-based metrics that do not
correlate well with the perceived visual quality for the output
of generative models [66], [67], [69]. On the contrary, LPIPS
and CONTRIQUE-FR are perceptual-based metrics and are
good indicators of the actual perceived quality of an image.

Regarding VMAF, it is known that image enhancement tech-
niques tend to boost its values [74]. As Fig. 12 shows, some
baselines, such as GFP-GAN, saturate colors and increase the
contrast of the restored frames, making them more visually
pleasing but less similar to the ground truth. This tendency
is similar to the application of image enhancement methods.
We argue that this is the reason why such baselines perform

(a) Single-scale (b) Multi-scale (c) Ground truth

Fig. 9: Qualitative results for different discriminators for max
cardinality 10 and CRF 42 on the DFD dataset.

(a) GWAINet
30.28/46.39

(b) Ours
36.90/35.42

(c) Ground truth

Fig. 10: Comparison between our method and GWAINet [23].
The reported values represent BRISQUE ↓ /CONTRIQUE ↓ ,
respectively, where ↓ means that lower values are better. Best
results for each image are highlighted in bold.

so well in terms of VMAF. Our argument is supported by
the large difference between the values of the baselines for
VMAF and VMAF-NEG, which is not affected by image
enhancement techniques, in Tabs. I and II. On the contrary,
our method obtains high values for both metrics without a
substantial difference between them, meaning that they are due
to the actual quality and temporal consistency of the results,
and not due to color enhancement.

ACKNOWLEDGMENTS

This work was partially supported by the European Com-
mission under European Horizon 2020 Programme, grant
number 951911 - AI4Media.

REFERENCES

[1] L. Galteri, L. Seidenari, M. Bertini, and A. Del Bimbo, “Deep generative
adversarial compression artifact removal,” in Proc. of IEEE International
Conference on Computer Vision (ICCV), 2017.

[2] L. Galteri, L. Seidenari, M. Bertini, and A. D. Bimbo, “Deep Universal
Generative Adversarial Compression Artifact Removal,” IEEE Transac-
tions on Multimedia (TMM), vol. 21, no. 8, pp. 2131–2145, 2019.

[3] M.-Y. Liu, X. Huang, J. Yu, T.-C. Wang, and A. Mallya, “Generative
adversarial networks for image and video synthesis: Algorithms and
applications,” Proceedings of the IEEE, vol. 109, no. 5, pp. 839–862,
2021.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2023.3264882

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, JULY 2022 13

(a) HiFaceGAN
28.46/0.795/
0.133/15.26

(b) Ours
26.58/0.761/
0.064/14.54

(c) Ground truth

Fig. 11: Comparison between our approach and HiFaceGAN
[25]. The reported values represent PSNR ↑ /SSIM ↑ /LPIPS ↓
/CONTRIQUE-FR↓ , respectively. ↑= higher values are better,
↓= lower values are better. Best results for each image are
highlighted in bold.

(a) GFP-GAN (b) Ours (c) Ground truth

Fig. 12: Comparison between our approach and GFP-GAN.

[4] L. Galteri, M. Bertini, L. Seidenari, T. Uricchio, and A. Del Bimbo,
“Increasing Video Perceptual Quality with GANs and Semantic Coding,”
in Proc. of ACM International Conference on Multimedia (ACM MM),
2020. [Online]. Available: https://doi.org/10.1145/3394171.3413508

[5] T.-C. Wang, A. Mallya, and M.-Y. Liu, “One-Shot Free-View Neural
Talking-Head Synthesis for Video Conferencing,” in Proc. of IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[6] M. Wijnants, S. Coppers, G. Rovelo Ruiz, P. Quax, and W. Lamotte,
“Talking video heads: Saving streaming bitrate by adaptively applying
object-based video principles to interview-like footage,” in Proc. of
ACM International Conference on Multimedia (ACM MM), 2019.
[Online]. Available: https://doi.org/10.1145/3343031.3351045

[7] X. Li, W. Li, D. Ren, H. Zhang, M. Wang, and W. Zuo, “Enhanced
blind face restoration with multi-exemplar images and adaptive spatial
feature fusion,” in Proc. of IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[8] X. Wang, K. Yu, C. Dong, and C. C. Loy, “Recovering realistic texture
in image super-resolution by deep spatial feature transform,” in Proc. of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[9] O. Rippel and L. Bourdev, “Real-time adaptive image compression,” in
Proc. of International Conference on Machine Learning (ICML), 2017.

[10] O. Rippel, S. Nair, C. Lew, S. Branson, A. G. Anderson, and L. Bourdev,
“Learned video compression,” in Proc. of IEEE International Conference
on Computer Vision (ICCV), 2019.

[11] L. W. Kang, C. C. Hsu, B. Zhuang, C. W. Lin, and C. H. Yeh, “Learning-
based joint super-resolution and deblocking for a highly compressed
image,” IEEE Transactions on Multimedia (TMM), vol. 17, no. 7, pp.
921–934, 2015.

[12] C. Dong, Y. Deng, C. Change Loy, and X. Tang, “Compression artifacts
reduction by a deep convolutional network,” in Proc. of IEEE Interna-
tional Conference on Computer Vision (ICCV), 2015.

[13] X. Mao, C. Shen, and Y.-B. Yang, “Image restoration using very deep
convolutional encoder-decoder networks with symmetric skip connec-
tions,” in Proc. of Advances in Neural Information Processing Systems
(NeurIPS), 2016.

[14] P. Svoboda, M. Hradis, D. Barina, and P. Zemcik, “Compression
artifacts removal using convolutional neural networks,” arXiv preprint
arXiv:1605.00366, 2016.

[15] Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S. Huang,
“D3: Deep dual-domain based fast restoration of JPEG-compressed
images,” in Proc. of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[16] L. Yu, T. Tillo, J. Xiao, and M. Grangetto, “Convolutional neural
network for intermediate view enhancement in multiview streaming,”
IEEE Transactions on Multimedia (TMM), vol. 20, no. 1, pp. 15–28,
2017.

[17] L. Cavigelli, P. Hager, and L. Benini, “CAS-CNN: A deep convolutional
neural network for image compression artifact suppression,” in Proc. of
International Joint Conference on Neural Networks (IJCNN), 2017.

[18] J. Yoo, S.-h. Lee, and N. Kwak, “Image restoration by estimating
frequency distribution of local patches,” in Proc. of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[19] D. Maleki, S. Nadalian, M. M. Derakhshani, and M. A. Sadeghi, “Block-
CNN: A deep network for artifact removal and image compression.”
in Proc. of IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2018.

[20] F. Vaccaro, T. Uricchio, M. Bertini, and A. Del Bimbo, “Fast video
visual quality and resolution improvement using SR-UNet,” in Proc. of
ACM International Conference on Multimedia (ACM MM), 2021.

[21] Z. Guan, Q. Xing, M. Xu, R. Yang, T. Liu, and Z. Wang, “MFQE 2.0:
A new approach for multi-frame quality enhancement on compressed
video,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(T-PAMI), 2019.

[22] X. Wang, K. C. Chan, K. Yu, C. Dong, and C. Change Loy, “EDVR:
Video restoration with enhanced deformable convolutional networks,”
in Proc. of IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2019.

[23] B. Dogan, S. Gu, and R. Timofte, “Exemplar guided face image super-
resolution without facial landmarks,” in Proc. of IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, 2019.

[24] X. Li, G. Duan, Z. Wang, J. Ren, Y. Zhang, J. Zhang, and K. Song,
“Recovering extremely degraded faces by joint super-resolution and
facial composite,” in Proc. of IEEE International Conference on Tools
with Artificial Intelligence (ICTAI). IEEE, 2019, pp. 524–530.

[25] L. Yang, S. Wang, S. Ma, W. Gao, C. Liu, P. Wang, and P. Ren, “HiFace-
GAN: Face renovation via collaborative suppression and replenishment,”
in Proc. of ACM International Conference on Multimedia (ACM MM),
2020.

[26] T. Yang, P. Ren, X. Xie, and L. Zhang, “GAN Prior Embedded
Network for Blind Face Restoration in the Wild,” in Proc. of IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[27] C. Chen, X. Li, L. Yang, X. Lin, L. Zhang, and K.-Y. K. Wong, “Pro-
gressive semantic-aware style transformation for blind face restoration,”
in Proc. of IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[28] X. Li, M. Liu, Y. Ye, W. Zuo, L. Lin, and R. Yang, “Learning Warped
Guidance for Blind Face Restoration,” in Proc. of European Conference
on Computer Vision (ECCV), 2018.

[29] X. Li, C. Chen, S. Zhou, X. Lin, W. Zuo, and L. Zhang, “Blind face
restoration via deep multi-scale component dictionaries,” in Proc. of
European Conference on Computer Vision (ECCV), 2020.

[30] M. C. Doukas, S. Zafeiriou, and V. Sharmanska, “Headgan: One-shot
neural head synthesis and editing,” in Proc. of IEEE International
Conference on Computer Vision (ICCV), 2021.

[31] X. Wang, Y. Li, H. Zhang, and Y. Shan, “Towards real-world blind
face restoration with generative facial prior,” in Proc. of IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[32] Y. Liu, “Face restoration network with feature prior,” in Proc. of IEEE
International Conference on Computer Science, Artificial Intelligence
and Electronic Engineering (CSAIEE). IEEE, 2021, pp. 222–226.

[33] J. Li, H. Huang, X. Jia, and R. He, “Universal face restoration with
memorized modulation,” arXiv preprint arXiv:2110.01033, 2021.

[34] X. Zhang, X. Wu, X. Zhai, X. Ben, and C. Tu, “DAVD-net: Deep audio-
aided video decompression of talking heads,” in Proc. of IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[35] T. Liu, M. Xu, S. Li, R. Ding, and H. Liu, “MRS-Net+ for Enhancing
Face Quality of Compressed Videos,” IEEE Transactions on Circuits
and Systems for Video Technology (TCSVT), 2021.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2023.3264882

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, JULY 2022 14

[36] X. Zhang and X. Wu, “Multi-modality deep restoration of extremely
compressed face videos,” arXiv preprint arXiv:2107.05548, 2021.

[37] Y. Guo, X. Zhang, and X. Wu, “Deep multi-modality soft-decoding of
very low bit-rate face videos,” in Proc. of ACM International Conference
on Multimedia (ACM MM), 2020, pp. 3947–3955.

[38] R. Yasarla, H. R. V. Joze, and V. M. Patel, “Network architecture search
for face enhancement,” arXiv preprint arXiv:2105.06528, 2021.

[39] Z. Wang, J. Zhang, R. Chen, W. Wang, and P. Luo, “Restoreformer:
High-quality blind face restoration from undegraded key-value pairs,”
arXiv preprint arXiv:2201.06374, 2022.

[40] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,” in
Proc. of Advances in Neural Information Processing Systems (NeurIPS),
2014.

[41] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[42] W. Wu, Y. Zhang, C. Li, C. Qian, and C. C. Loy, “ReenactGAN:
Learning to reenact faces via boundary transfer,” in Proc. of European
Conference on Computer Vision (ECCV), 2018.

[43] T.-C. Wang, M.-Y. Liu, A. Tao, G. Liu, J. Kautz, and B. Catanzaro,
“Few-shot Video-to-Video Synthesis,” arXiv preprint arXiv:1910.12713,
2019.

[44] A. Fischer and C. Igel, “An introduction to restricted Boltzmann
machines,” in Proc. of Iberoamerican Congress on Pattern Recognition
(CIARP), 2012.

[45] D. P. Kingma and M. Welling, “An introduction to variational autoen-
coders,” arXiv preprint arXiv:1906.02691, 2019.

[46] I. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,”
arXiv preprint arXiv:1701.00160, 2016.

[47] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. of International
Conference on Medical image computing and computer-assisted inter-
vention, 2015.

[48] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[49] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with
adaptive instance normalization,” in Proc. of European Conference on
Computer Vision (ECCV), 2017.

[50] S. Schaefer, T. McPhail, and J. Warren, “Image deformation using
Moving Least Squares,” in Proc. of ACM SIGGRAPH, 2006.

[51] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in Proc. of European Conference
on Computer Vision (ECCV), 2016.

[52] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single
image super-resolution using a generative adversarial network,” in Proc.
of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[53] A. Dosovitskiy and T. Brox, “Generating images with perceptual simi-
larity metrics based on deep networks,” in Proc. of Advances in Neural
Information Processing Systems (NeurIPS), 2016.

[54] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in Proc. of British Machine Vision Conference (BMVC), 2015.

[55] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer
using convolutional neural networks,” in Proc. of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[56] J. H. Lim and J. C. Ye, “Geometric GAN,” arXiv preprint
arXiv:1705.02894, 2017.

[57] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention
generative adversarial networks,” in Proc. of International Conference
on Machine Learning (ICML), 2019.

[58] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-Resolution Image Synthesis and Semantic Manipulation with
Conditional GANs,” in Proc. of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018, pp. 8798–8807.

[59] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral
normalization for generative adversarial networks,” arXiv preprint
arXiv:1802.05957, 2018.
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