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THE FULL GROUP OF ISOMETRIES OF SOME COMPACT
LIE GROUPS ENDOWED WITH A BI-INVARIANT METRIC

ALBERTO DOLCETTI AND DONATO PERTICI

Abstract. We describe the full group of isometries of absolutely simple, com-
pact, connected real Lie groups, of SO(4), and of U(n), endowed with suitable
bi-invariant Riemannian metrics.

Introduction

In this paper we describe the full group of isometries of some classes of real Lie
groups, endowed with suitable bi-invariant Riemannian metrics: the Killing metric
both on any absolutely simple1, compact, connected Lie group and on the special
orthogonal group SO(4), and also the metric induced on the unitary group U(n)
by the flat Frobenius metric of Mn(C).

In [5] and in [6] we already studied another relevant example of (semi-Riemannian)
metric: the so-called trace metric, which is bi-invariant on GLn(R) and on its Lie
subgroups. Some of the techniques used in the present work were developed in
those papers and in [7], [8], [9].

Given any Lie group G, the Killing form of its Lie algebra extends, on the
whole G, to a bi-invariant symmetric (0, 2)-tensor, denoted by K and called the
Killing tensor of G.

Further properties of G have some relevant consequences. For instance, as is well
known, G is semi-simple if and only if K (and also −K) is a semi-Riemannian metric
on G (Cartan’s criterion); and if G is semi-simple and compact, then the tensor −K
is a Riemannian metric on G, which we call the Killing metric of G. Furthermore,
if G is connected, compact, and simple, then (G,−K) is a globally symmetric
Riemannian manifold with non-negative sectional curvature and, moreover, if G is
also absolutely simple, then (G,−K) is an Einstein manifold. The Killing tensor
of G is more than just an example of a bi-invariant tensor on G. In fact, if G is
connected and absolutely simple, then every bi-invariant real (0, 2)-tensor on G is
a constant multiple of K. These results are discussed in Section 1.
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1In the present paper, a real Lie group is said to be absolutely simple if the complexification

of its Lie algebra is a simple Lie algebra.
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Section 2 is devoted to the general result of this paper:
Theorem 2.3 Let G be an absolutely simple, compact, connected real Lie group
and let −K be its Killing metric. Then F : (G,−K) → (G,−K) is an isometry if
and only if there exist an element a ∈ G and an automorphism Φ of the Lie group
G such that either F = La ◦ Φ or F = La ◦ Φ ◦ j, where La is the left translation
associated to a and j is the inversion map.

Many classical groups satisfy all the conditions of the above Theorem, namely
the special orthogonal groups SO(n), with n ≥ 3 and n 6= 4, the special unitary
groups SU(n), with n ≥ 2, and the compact symplectic groups Sp(n), with n ≥ 1.

A careful analysis of the automorphisms of each group allows us to deduce the
complete list of the isometries of (G,−K), where G is one of the previous classical
groups (Theorem 2.5).

The manifold (SO(4),−K) is not included in the previous result: indeed, SO(4)
is semi-simple but not simple. However, −K is still a Riemannian metric on it.
Section 3 is devoted to this particular case. The key points are the following:
(SO(4),−K) is isometric to the Lie group SU(2)×SU(2)

{±(I2,I2)} (endowed with its Killing
metric), and the natural covering projection of SU(2)× SU(2) (endowed with the
product of the Killing metrics) onto the previous quotient is clearly a local isometry.
All isometries of SU(2)×SU(2) are obtained by means of the analysis presented in
Section 2 via a classical result of de Rham. Since these ones project as isometries
of the quotient, we can obtain the main result of Section 3:
Theorem 3.5. The isometries of (SO(4),−K) are precisely the following maps:

X 7→ AXB, X 7→ AXTB, X 7→ Aτ(X)B, X 7→ Aτ(X)TB,

where A,B are matrices both in SO(4) or both in O(4)\SO(4) (and τ is a suitable
map constructed by means of the Cayley factorization of SO(4)).

Finally, Section 4 is devoted to U(n), endowed with the bi-invariant Riemannian
metric φ, which is the restriction to U(n) of the flat Frobenius metric of Mn(C).
This metric is not a multiple of the Killing tensor, because U(n) is not semi-
simple (and so its Killing tensor is degenerate). Analogously to Section 3, we get
a covering map (which is also a local isometry) from SU(n)× R (endowed with a
suitable product metric) onto (U(n), φ). This allows us to get the main result of
Section 4:
Theorem 4.7. The isometries of (U(n), φ), with n ≥ 2, are precisely the following
maps:

X 7→ AXB, X 7→ AX∗B, X 7→ AXB, X 7→ AXTB,

with A,B ∈ U(n).

We point out that our arguments are different from [17], where the author deter-
mines the group of isometries of simply connected homogeneous spaces of a simple,
compact, connected Lie group. In fact, we also analyze SO(n) and U(n), which
are not simply connected.
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1. Notations and preliminary facts

Notations 1.1. In this paper we will use many standard notations from matrix
theory, which should be clear from the context, such as: Mn(R) for the vector space
of real square matrices, O(n) for the group of real orthogonal matrices, SO(n) for
the group of real special orthogonal matrices, Sp(n) for the compact symplectic
group, Mn(C) for the vector space of complex square matrices, U(n) for the group
of unitary matrices, SU(n) for the group of special unitary matrices (all matrices
are of order n). If A is a matrix, then AT , A−1, A, and A∗ := A

T denote its
transpose, its inverse (when it exists), its conjugate, and its transpose conjugate,
respectively. In is the identity matrix of order n and i ∈ C is the unit imaginary
number.

The basic notations and notions on real Lie groups and algebras are the following:
• G is a real Lie group with identity e, TP (G) is the tangent space to G

at any point P ∈ G, j : x 7→ x−1 is the inversion map of G, g is the
Lie algebra of G (identified with the tangent space Te(G)), exp : g → G
is the exponential map and Aut(G) denotes the Lie group of all (smooth)
automorphisms of G;
• if g is a real Lie algebra, gC := g⊕ ig = g⊗RC will denote its complexifica-

tion, which turns to be a complex Lie algebra, having g as real subalgebra;
• if h is a complex Lie algebra, hR will denote its realification, i.e., hR is

simply h regarded as a real Lie algebra;
• for every a ∈ G, La and Ra are, respectively, the left and right translations

in G associated to a, and Ca := La ◦Ra−1 is the inner automorphism of G
associated to a;

• for every a ∈ G, Ada is the automorphism of g, defined as the differential
at e of Ca. It is well known that exp ◦Ada = Ca ◦ exp;

• K is the left-invariant symmetric (0, 2)-tensor on the whole G, extending
the Killing form of g, and therefore the Killing form of g agrees with Ke.
We call K the Killing tensor of the Lie group G.

Lemma 1.2. The Killing tensor K of the Lie group G is bi-invariant on G and it
is preserved by every φ ∈ Aut(G) and by the inversion map j (i.e., φ∗(K) = K and
j∗(K) = K).

Proof. Ke is invariant with respect to all automorphisms of g, hence the left-
invariant tensor K is preserved by all smooth automorphisms of G (in particular
by all inner automorphisms) and so K is right-invariant too. For the assertion on
j see, for instance, [12, pp. 147–148]. �

Remarks-Definitions 1.3. We say that a (finite dimensional) Lie algebra g is
simple if it is non-abelian and has no ideals except 0 and g; while we say that g is
semi-simple if it splits into the direct sum of simple Lie algebras; by the well-known
Cartan criterion, g is semi-simple if and only if its Killing form is non-degenerate
(see, for instance, [2]).
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A Lie group is said to be simple (respectively, semi-simple) if its Lie algebra is
simple (respectively, semi-simple). Hence a simple Lie group is semi-simple too.

Note that if G is a semi-simple Lie group, then (G,K) and (G,−K) are semi-
Riemannian manifolds. We refer to −K (the opposite of the Killing tensor K) as
the Killing metric of the (semi-simple) Lie group.

Proposition 1.4. Let G be a semi-simple connected Lie group. Then
(a) the geodesics of the semi-Riemannian manifold (G,−K) are precisely the

curves of the form t 7→ x exp(tv) for every t ∈ R, with x arbitrary in G and
v arbitrary in the Lie algebra g of G (so (G,−K) is geodesically complete);

(b) the Levi-Civita connection ∇ of (G,−K) is the 0-connection of Cartan–
Schouten, defined by

∇X(Y ) := 1
2 [X,Y ],

where X, Y are left-invariant vector fields on G;
(c) the curvature tensor of type (1, 3) of (G,−K) is

RXY Z := ∇[X,Y ]Z − [∇X ,∇Y ]Z = 1
4[[X,Y ], Z],

where X, Y , Z are left-invariant vector fields on G;
(d) the curvature tensor of type (0, 4) of (G,−K) is the bi-invariant tensor, de-

fined by

RXY ZW := −K(RXY Z,W ) = −1
4K([X,Y ], [Z,W ]),

where X, Y , Z, W are left-invariant vector fields on G.

Proof. Parts (a), (b), and (c) follow directly from the results contained in [12, p. 148
and pp. 548–550] (our tensor R is the opposite of the corresponding tensor of [12]).
Part (c) implies that RXY ZW = −1

4K([[X,Y ], Z],W ). By the skew-symmetry, with
respect to the Killing form, of every operator adv : x 7→ [v, x] (see, for instance, [1]),
we have K([[X,Y ], Z],W ) = K([X,Y ], [Z,W ]), and this concludes (d). �

Remark-Definition 1.5. We say that a real Lie group G is a complex Lie group
if it possesses a complex analytic structure, compatible with the real one, such that
multiplication and inversion are holomorphic. It is known that a real Lie group G
with Lie algebra g is complex if and only if there exists a complex Lie algebra h
such that hR = g (see [14, Prop. 1.110, p. 95]).

Lemma 1.6. Let G be a real Lie group and let g be its Lie algebra with gC as
its complexification. Then the complex Lie algebra gC is simple if and only if G is
simple and not complex.

Proof. It follows from [14, Thm. 6.94, p. 407], remembering that if gC is a simple
complex Lie algebra, then g is a simple real Lie algebra. �
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Definition 1.7. We say that a real Lie group is absolutely simple if it is simple
and not complex or, equivalently by Lemma 1.6, if the complexification of its Lie
algebra is a simple, complex Lie algebra.

A standard consequence of Schur’s lemma is the following.

Proposition 1.8. Let G be a real Lie group and assume that G is connected and
absolutely simple. Then every bi-invariant real (0, 2)-tensor on G is a constant
multiple of the Killing metric −K of G.

Lemma 1.9. Let G be a real Lie group and assume that G is semi-simple and
compact. Then the Killing tensor K of G is negative definite at every point (i.e.,
the Killing metric −K is a Riemannian metric on G).

Proof. It follows from [12, Prop. 6.6 (i), p. 132; Cor. 6.7, p. 133]. �

Remark 1.10. Let G be a simple, compact, connected real Lie group and let g
be its Lie algebra; denote by ∆ the diagonal of G × G and by Z the center of G.
Z is a closed subgroup of G and it is finite. Indeed, the center of g is zero (since
G is simple, see [12, Cor. 6.2, p. 132]). Since the Lie algebra of Z agrees with the
center of g, then Z is a discrete subgroup of the compact group G, and therefore
Z is finite.

Now we denote by U the semisimple compact connected Lie group defined by
U := G×G

(Z×Z)∩∆ , and consider the map

T : U ×G→ G, T ({(g, h)}, x) = gxh−1,

where {(g, h)} is the class of (g, h) in G×G
(Z×Z)∩∆ . T is an effective and transitive

left action of U on G and its isotropy subgroup at the identity is ∆̂ := ∆
(Z×Z)∩∆ .

Therefore G is diffeomorphic to the homogeneous space U
∆̂

. Moreover, for every
{(g, h)} ∈ U , the map x 7→ T ({(g, h)}, x) is an isometry with respect to −K (and
to K). Finally, the pair (U , ∆̂) is a Riemannian symmetric pair (in the sense of
[12, p. 209]) with involutive automorphism given by σ({(g, h)}) = {(h, g)}.

Proposition 1.11. Let G be a simple, compact, connected real Lie group and let
−K be its Killing metric. Then (G,−K) is a globally symmetric Riemannian mani-
fold with non-negative sectional curvature; furthermore, every connected component
of the Lie group of its isometries is diffeomorphic to G×G

(Z×Z)∩∆ , where Z is the cen-
ter of G and ∆ is the diagonal of G×G. Moreover, if G is absolutely simple too,
then (G,−K) is an Einstein manifold.

Proof. By [12, Prop. 3.4, p. 209], (G,−K) is a globally symmetric Riemannian
manifold, via Remark 1.10. By Proposition 1.4 (d), the sectional curvature of the
space generated by two left-invariant and R-independent vector fields X,Y of G
agrees with −1

4K([X,Y ], [X,Y ]), which is non-negative and equal to 0 if and only
if [X,Y ] = 0. The assertion about the connected components of the Lie group of
the isometries follows from [12, Thm. 4.1 (i), p. 243] and from the fact that in a Lie
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group all connected components are diffeomorphic to the component containing
the identity.

The last statement is a consequence of Proposition 1.8, taking into account that
the Ricci tensor of (G,−K) is bi-invariant. �

Remark 1.12. For further details and information on Lie groups with bi-invariant
metrics, we refer the reader to [4, Ch. 2].

2. Isometries of a compact Lie group

Lemma 2.1. Let g be a real Lie algebra, whose complexification gC is a simple,
complex Lie algebra, and let L be an isometry with respect to the Killing form B of
g such that L([v, w]) = [v, L(w)] for every v, w ∈ g. Then L = ±Idg.

Proof. The killing form BC of gC is the extension by C-linearity of the Killing form
B of g; by C-linearity too, L can be extended to a map LC : gC → gC, which is an
isometry with respect to the Killing form BC of gC, satisfying again the analogous
condition LC([v, w]) = [v, LC(w)] for every v, w ∈ gC. Let λ ∈ C be an eigenvalue
of LC and let Vλ 6= {0} be the corresponding eigenspace. If v ∈ gC and w ∈ Vλ,
then LC([v, w]) = [v, λw] = λ[v, w], so [v, w] ∈ Vλ, which turns out to be a non-zero
ideal of gC, and therefore Vλ = gC, i.e., LC = λIdgC . Since LC is an isometry with
respect to the Killing form BC, which is non-degenerate by Cartan’s criterion, the
map LC agrees with ±IdgC , and therefore L = ±Idg. �

Proposition 2.2. Let G be an absolutely simple, compact, connected real Lie
group, and let −K be its Killing metric. Then F : (G,−K) → (G,−K) is an
isometry fixing the identity e ∈ G if and only if there exists an automorphism Φ
of the Lie group G such that either F = Φ or F = Φ ◦ j, where j is the inversion
map.

Proof. Lemma 1.2 implies that the automorphisms and the inversion map of the
Lie group G are isometries with respect to −K fixing e.

For the converse, let J be the group of isometries of (G,−K), let Je be the
corresponding subgroup of isotropy at e and let J 0, J 0

e be their connected com-
ponents containing the identity. In Remark 1.10, we observed that (U , ∆̂) is a
Riemannian symmetric pair, and so by [12, Thm. 4.1 (i), p. 243], we have J 0 ' U
(as Lie groups). From this we get that dim(J ) = dim(J 0) = dim(U) = 2 dim(G),
and therefore dim(J 0

e ) = dim(Je) = dim(J )− dim(G) = dim(G).
Let us consider the adjoint representations of G and of its Lie algebra g, denoted

by Ad : G → GL(g) and by ad : g → gl(g), respectively; we indicate with Ad(G)
and with ad(g) their images. Note that Ad(G) is a closed Lie subgroup of GL(g)
and ad(g) is its Lie algebra; moreover, since the kernel of the map ad agrees with
the center of g, which is zero, we get that ad : g→ ad(g) is an isomorphism of Lie
algebras; this implies that Ad(G) and G have the same dimension.

Let us also consider the representation d : Je → GL(g), defined as the differential
at e of every element of Je. By [16, Prop. 62, p. 91], d is a faithful representation and
so d(J 0

e ) = (d(Je))0 (the component of the image d(Je) containing the identity).
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Hence dim(d(Je))0 = dim(J 0
e ) = dim(G). Since G is connected, we have the

inclusion Ad(G) ⊆ (d(Je))0. Now these manifolds have the same dimension; hence,
by the domain invariance theorem, Ad(G) is open in (d(Je))0; moreover, Ad(G) is
compact and (d(Je))0 is connected, and this allows us to get that Ad(G) = (d(Je))0.

For any fixed F ∈ Je, the previous equality gives dF Ad(G) dF−1 = Ad(G).
Hence there exists a unique automorphism α of Ad(G) such that

dF ◦AdX ◦dF−1 = α(AdX) for every X ∈ G. (2.1)

We denote by exp : g → G and by êxp : ad(g) → Ad(G) the two usual expo-
nential maps. It is well known that Ad ◦ exp = êxp ◦ ad (see, for instance, [10,
Thm. 3.28, p. 60]).

For every t ∈ R and every v ∈ g, equation (2.1) implies

dF ◦Adexp(tv) ◦dF−1 = α(Adexp(tv)). (2.2)

Now let α̃ be the unique automorphism of ad(g) such that α ◦ êxp = êxp ◦ α̃.
The map α := ad−1 ◦ α̃ ◦ ad is an automorphism of the Lie algebra g, satisfying
Ad ◦ exp ◦α = α ◦Ad ◦ exp. Hence, for every t ∈ R and every v ∈ g, equation (2.2)
implies

dF ◦Adexp(tv) ◦dF−1 = Adexp(tα(v)) . (2.3)
Now, if we differentiate the identity (2.3) with respect to t, for t = 0, we get

dF ◦ adv ◦ dF−1 = adα(v).

Since adv(w) = [v, w] for every v, w ∈ g and remembering that α is an automor-
phism of the Lie algebra g, we get dF ([v, w]) = [α(v), dF (w)] = α([v, α−1(dF (w))]),
and so (α−1 ◦ dF )([v, w]) = [v, (α−1 ◦ dF )(w)] for every v, w ∈ g. Note that dF
and α are both isometries of g with respect to its Killing form; moreover, since G
is absolutely simple, its Lie algebra g satisfies the hypotheses of Lemma 2.1; thus
we obtain dF = ±α.

Let π : G̃→ G be the universal covering group of G and let F̃ : G̃→ G̃ be such
that F ◦ π = π ◦ F̃ , with F̃ (ẽ) = ẽ, where ẽ is the identity of G̃; from this we get
F̃∗ = π−1

∗ ◦ dF ◦ π∗ = π−1
∗ ◦ (±α) ◦ π∗, where F̃∗, π∗ denote the differentials at the

identity ẽ of F̃ and π, respectively. If we denote by β the automorphism of the Lie
algebra g̃ of G̃, given by β = π−1

∗ ◦ α ◦ π∗, we can write F̃∗ = ±β.
By [23, Thm. 3.27, p. 101], there exists a unique automorphism Ψ of the simply

connected Lie group G̃, whose differential at the identity ẽ, Ψ∗, agrees with β.
Hence F̃∗ = ±Ψ∗.

Since Ψ is an automorphism of G̃, it is an isometry of (G̃,−K̃), where −K̃ is the
Killing metric of G̃ (remember Lemma 1.2).

It is easy to check that π : (G̃,−K̃) → (G,−K) is a local isometry and this
implies that F̃ : (G̃,−K̃)→ (G̃,−K̃) is an isometry too.

If F̃∗ = Ψ∗, then F̃ = Ψ (see, for instance, [16, Prop. 62, p. 91]) and hence
F ◦ π = π ◦ Ψ. The surjectivity of π, together with the fact that π and Ψ are Lie
group homomorphisms, implies that F is a (bijective) endomorphism of G. This
allows us to conclude that F ∈ Aut(G).
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Suppose now that F̃∗ = −Ψ∗. We denote by j̃ the inversion map of G̃ and by
j̃∗ its differential at the identity ẽ. By Lemma 1.2, j̃ is an isometry of (G̃,−K̃);
furthermore, j̃∗ agrees with the opposite of the identity map (see, for instance, [12,
p. 147]).

Now F̃∗ = j̃∗ ◦ Ψ∗ = (j̃ ◦ Ψ)∗ and, arguing as in the previous case, we get that
F̃ = j̃ ◦Ψ, and so F ◦π = π◦ j̃ ◦Ψ = j ◦π◦Ψ. Hence j ◦F ◦π = π◦Ψ and, as above,
we obtain that Φ := j ◦F ∈ Aut(G); therefore we conclude that F = j ◦Φ = Φ ◦ j,
with Φ ∈ Aut(G). �

Theorem 2.3. Let G be an absolutely simple, compact, connected real Lie group
and let −K be its Killing metric. Then F : (G,−K) → (G,−K) is an isometry if
and only if there exist an element a ∈ G and an automorphism Φ of the Lie group
G such that either F = La ◦ Φ or F = La ◦ Φ ◦ j, where La is the left translation
associated to a and j is the inversion map.

Proof. Note that La ◦ Φ and La ◦ Φ ◦ j are both isometries, because they are
compositions of isometries (remember again Lemma 1.2).

The converse follows from Proposition 2.2, because, for a = F (e), La−1 ◦F is an
isometry fixing the identity e ∈ G. �

Remark 2.4. As is well known, relevant examples of absolutely simple, compact,
connected real Lie groups are

• the special orthogonal group SO(n), n ≥ 3, n 6= 4;
• the special unitary group SU(n), n ≥ 2;
• the compact symplectic group Sp(n), n ≥ 1.

The automorphisms of SO(n), with n ≥ 3 odd, of SU(2) and of Sp(n), with
n ≥ 1, are precisely the inner automorphisms of the corresponding group.

Furthermore, the automorphisms of SO(n), with n ≥ 6 even, are precisely the
maps X 7→ AXAT , with A ∈ O(n).

Finally, the automorphisms of SU(n), with n ≥ 3, are the inner automorphisms
and all the maps X 7→ CXC∗, where C ∈ SU(n).

From these facts and from Theorem 2.3 we can easily get the following.

Theorem 2.5.
(a) The isometries of (SO(n),−K), with n ≥ 3 odd, are precisely the maps

X 7→ AXB and X 7→ AXTB,

with A,B ∈ SO(n).
(b) The isometries of (SO(n),−K), with n ≥ 6 even, are precisely the maps

X 7→ AXB and X 7→ AXTB,

with A,B both in SO(n) or both in O(n) \ SO(n).
(c) The isometries of (SU(2),−K) are precisely the maps

X 7→ AXB and X 7→ AX∗B,

with A,B ∈ SU(2).
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(d) The isometries of (SU(n),−K), with n ≥ 3, are precisely the maps
X 7→ AXB, X 7→ AX∗B, X 7→ AXB, and X 7→ AXTB,

with A,B ∈ SU(n).
(e) The isometries of (Sp(n),−K), with n ≥ 1, are precisely the maps

X 7→ AXB and X 7→ AX∗B,

with A,B ∈ Sp(n).

Remark 2.6. The Lie groups of isometries of (SO(n),−K), with n ≥ 3 odd, of
isometries of (SU(2),−K), and of isometries of (Sp(n),−K), with n ≥ 1, have two
connected components, while the Lie groups of isometries of (SO(n),−K), with
n ≥ 6 even, and of isometries of (SU(n),−K), with n ≥ 3, have four connected
components.

Remark 2.7. If G is one of the groups SO(n), n ≥ 3 and n 6= 4, SU(n), n ≥ 2, or
Sp(n), n ≥ 1, then KA(X,Y ) = c·tr(A∗XA∗Y ) for some strictly positive constant c,
for every A ∈ G, and for every X,Y ∈ TA(G) (as we can deduce, for instance, from
[20, Ex. 6.19, p. 129]).

We denote by φ the (flat) Frobenius hermitian metric of Mm(C) (m ≥ 2), defined
by φ(A,B) = Re(tr(AB∗)) for every A,B ∈Mm(C). To simplify the notation, we
denote also by φ its restriction to each submanifold N of Mm(C) and we call it
the Frobenius metric of N . It is just a computation that, if A ∈ U(m), then
the maps LA and RA are isometries of (Mm(C), φ), and therefore the Frobenius
metric of U(m) is bi-invariant. Moreover, arguing as in [6, Recall 4.1], it is simple
to verify that the expression of the Frobenius metric φ of U(m) is as follows:
φA(X,Y ) = − tr(A∗XA∗Y ) for every A ∈ U(m) and every X,Y ∈ TA(U(m)).

In each of the above cases, G is a (closed) Lie subgroup of U(n) or of U(2n),
i.e., G is a submanifold of some U(m) (m ≥ 2); hence, on G, the metric φ is bi-
invariant and φ = −1

c
K (with c > 0). Therefore, if G is one of the above groups,

then Proposition 1.4, Proposition 1.11, and Theorem 2.5 also hold with φ instead
of −K.

Remark 2.8. Parts (a) and (b) of Theorem 2.5 can be compared with an analogous
result, obtained in [3, Thm. 1], where the distance on SO(n) is induced by the so-
called c-spectral norm, which is different from the distance induced by the Killing
metric.

3. Isometries of SO(4)

Remark 3.1. By Lemma 1.9, the Killing metric of the semi-simple compact Lie
group SO(4) is a Riemannian metric on SO(4). It is easy to check that the Killing
form of the special orthogonal Lie algebra so(4), evaluated at U, V , agrees with
2 tr(U, V ) (this extends to the case n = 2 the formula (3) of [20, Ex. 6.19, p. 129]).
Hence the Killing metric −K of SO(4) agrees with the double of the Frobenius
metric φ of SO(4). Therefore, for the Lie group SO(4), Proposition 1.4 holds for
φ as well as for −K. However, in [6, Prop. 4.3], we already proved that (SO(4), φ)
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(and so also (SO(4),−K)) is an Einstein globally symmetric Riemannian manifold
with non-negative sectional curvature.

Remarks-Definitions 3.2.
(a) The map ρ : C→M2(R), given by

ρ(z) :=
(

Re(z) − Im(z)
Im(z) Re(z)

)
,

is a monomorphism of R-algebras between C and M2(R).
More generally, for any h ≥ 1, we still denote by ρ the monomorphism

of R-algebras Mh(C) → M2h(R), which maps the h × h complex matrix
Z = (zij) to the (2h) × (2h) block real matrix (ρ(zij)), having h2 blocks
of order 2 × 2. We refer to ρ as the decomplexification map of Mh(C) into
M2h(R).

It is known that, for every Z ∈Mh(C), the map ρ satisfies
tr(ρ(Z)) = 2 Re(tr(Z)), det(ρ(Z)) = |det(Z)|2, and ρ(Z∗) = ρ(Z)T .

For simplicity, we still denote by ρ all its restrictions to any subset of
Mh(C). Hence, for instance, ρ(U(h)) = ρ(Mh(C)) ∩ SO(2h) is a Lie sub-
group of SO(2h) (isomorphic to U(h)) and, in particular, ρ(SU(2)) is a Lie
subgroup of SO(4), isomorphic to SU(2).

(b) We consider the matrix J = JT = J−1 ∈ O(4), defined by

J :=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

and the Lie subgroup of SO(4), conjugate to ρ(SU(2)) in O(4), defined by
Jρ(SU(2))J . It is easy to check that ρ(SU(2)) ∩

(
Jρ(SU(2))J

)
= {±I4},

and that X commutes with JY J for every X,Y ∈ ρ(SU(2)). Moreover, it is
known that every matrix of SO(4) has a Cayley factorization as commutative
product of a matrix of ρ(SU(2)) and of a matrix of Jρ(SU(2))J , and that
such factorization is unique up to the sign of both matrices (see, for instance,
[13, Thm. 3.2] and also [15], [22], [18]).

(c) Let us consider X = ρ(X1) [Jρ(X2)J ], with X1, X2 ∈ SU(2), a matrix in
SO(4), together with its Cayley’s factorization. The map τ : SO(4) →
SO(4), given by X = ρ(X1) [Jρ(X2)J ] 7→ τ(X) := ρ(X1) [Jρ(X2)J ]T =
ρ(X1) [Jρ(X∗2 )J ], is well defined and bijective; moreover, τ2 = Id and τ ◦j =
j ◦ τ (where j is the inversion map (i.e., the transposition map) of SO(4)).

(d) The map χ̂ : SU(2)× SU(2)→ SO(4), defined by χ̂(X,Y ) = ρ(X)Jρ(Y )J ,
is an epimorphism of Lie groups, whose kernel is {±(I2, I2)}. Then χ̂ induces
a Lie group isomorphism χ : SU(2)×SU(2)

{±(I2,I2)} → SO(4). Therefore (SO(4),−K)

is a Riemannian manifold isometric to
(
SU(2)×SU(2)
{±(I2,I2)} ,−K′

)
, where −K′ is

the Killing metric of the Lie group SU(2)×SU(2)
{±(I2,I2)} .
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(e) The Killing tensor of SU(2)×SU(2) is K2×K2, where K2 denotes the Killing
tensor of SU(2). We denote by σ : SU(2) × SU(2) → SU(2) × SU(2) the
map which interchanges the two factors of SU(2)× SU(2).

By a classical result due to de Rham (see [19, Thm. III, p. 341]), the
isometries of (SU(2)× SU(2),−(K2 ×K2)) are precisely the maps

ψ1 × ψ2 : (X,Y ) 7→ (ψ1(X), ψ2(Y ))

and
(ψ1 × ψ2) ◦ σ : (X,Y ) 7→ (ψ1(Y ), ψ2(X)),

where ψ1, ψ2 are isometries of (SU(2),−K2). In particular, the map σ is an
isometry of (SU(2)× SU(2),−(K2 ×K2)).

From these facts and from Theorem 2.5 (c), if we denote by j the inversion map
of SU(2), we get the following.

Proposition 3.3. The isometries of (SU(2) × SU(2),−(K2 × K2)) are precisely
the maps of the form

(LA1 ◦RA2)× (LB1 ◦RB2),
(LA1 ◦RA2 ◦ j)× (LB1 ◦RB2),
(LA1 ◦RA2)× (LB1 ◦RB2 ◦ j),
(LA1 ◦RA2 ◦ j)× (LB1 ◦RB2 ◦ j),(
(LA1 ◦RA2)× (LB1 ◦RB2)

)
◦ σ,(

(LA1 ◦RA2 ◦ j)× (LB1 ◦RB2)
)
◦ σ,(

(LA1 ◦RA2)× (LB1 ◦RB2 ◦ j)
)
◦ σ,(

(LA1 ◦RA2 ◦ j)× (LB1 ◦RB2 ◦ j)
)
◦ σ,

where A1, A2, B1, B2 are arbitrary elements of SU(2).
In particular the isometries of (SU(2)× SU(2),−(K2 ×K2)) fixing the identity

(I2, I2) are the previous ones, with A∗1 = A2 and B∗1 = B2.

Proposition 3.4. Let π : SU(2) × SU(2) → SU(2)×SU(2)
{±(I2,I2)} be the natural covering

projection. If Ψ is an isometry of
(
SU(2)×SU(2)
{±(I2,I2)} ,−K′

)
fixing the identity of the

group, then there exists a unique isometry Ψ̃ of ((SU(2) × SU(2)),−(K2 × K2))
fixing the identity (I2, I2) such that Ψ ◦ π = π ◦ Ψ̃.

Conversely, if Ψ̃ is an isometry of ((SU(2) × SU(2)),−(K2 × K2)) fixing the
identity (I2, I2), then there exists a unique isometry Ψ of

(
SU(2)×SU(2)
{±(I2,I2)} ,−K′

)
fixing

the identity of the group such that Ψ ◦ π = π ◦ Ψ̃.

Proof. Let Ψ be an isometry of
(
SU(2)×SU(2)
{±(I2,I2)} ,−K′

)
fixing the identity of the

group. Since SU(2)×SU(2) is simply connected, there exists a unique homeomor-
phism Ψ̃ : SU(2) × SU(2) → SU(2) × SU(2) fixing the identity (I2, I2) such that
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Ψ ◦ π = π ◦ Ψ̃. Since π is a local isometry from (SU(2)× SU(2),−(K2 ×K2)) onto(
SU(2)×SU(2)
{±(I2,I2)} ,−K′

)
, the map Ψ̃ is an isometry of (SU(2)× SU(2),−(K2 ×K2)).

For the converse, we denote by µ the isometry of (SU(2)× SU(2),−(K2 ×K2))
defined by µ(A,B) = (−A,−B). From Theorem 2.5 (c) and from Remarks-
Definitions 3.2 (e), the map µ commutes with all isometries Ψ̃ of
(SU(2) × SU(2),−(K2 × K2)) fixing the identity of the group, and so all these
last project as isometries of the quotient. �

Theorem 3.5. The isometries of (SO(4),−K) are precisely the following maps:

X 7→ AXB, X 7→ AXTB, X 7→ Aτ(X)B, X 7→ Aτ(X)TB,

where A,B are matrices both in SO(4) or both in O(4) \ SO(4).

Proof. By Propositions 3.3 and 3.4, all isometries of
(
SU(2)×SU(2)
{±(I2,I2)} ,−K′

)
fixing the

identity are obtained by projecting onto the quotient the following isometries of
((SU(2)× SU(2)),−(K2 ×K2)):

CA × CB ,
(CA × CB) ◦ (j × id),
(CA × CB) ◦ (id × j),
(CA × CB) ◦ (j × j),

(CA × CB) ◦ σ,
(CA × CB) ◦ (j × id) ◦ σ,
(CA × CB) ◦ (id × j) ◦ σ,
(CA × CB) ◦ (j × j) ◦ σ,

with A,B ∈ SU(2). Here id and j denote, respectively, the identity and the
inversion map of SU(2), whereas CX denotes, as usual, the inner automorphism of
SU(2) associated to any element X of SU(2).

By Remarks-Definitions 3.2 (d), the isometries of (SO(4),−K) fixing the iden-
tity I4 are of the form χ ◦ Φ ◦ χ−1, where Φ is one of the above isometries of(
SU(2)×SU(2)
{±(I2,I2)} ,−K′

)
.

Standard computations show that χ ◦ (CA × CB) ◦ χ−1 = C
χ̂(A,B) for every

A,B ∈ SU(2); χ ◦ (id × j) ◦ χ−1 = τ
(
and so τ is an isometry of (SO(4),−K)

)
;

χ◦ (j× id)◦χ−1 = τ ◦ ĵ = ĵ ◦ τ ; χ◦ (j× j)◦χ−1 = ĵ, where ĵ denotes the inversion
map of SO(4) and χ◦σ ◦χ−1 = CJ , where J is the matrix of O(4)\SO(4), defined
in Remarks-Definitions 3.2 (b). From this, we get that the complete list of the
isometries of (SO(4),−K) fixing the identity I4 is the following:

CM , CM ◦ ĵ ◦ τ, CM ◦ τ, CM ◦ ĵ,

where M is an arbitrary matrix of O(4).
To get the full group of isometries of (SO(4),−K), it suffices to compose these

isometries with a left translation LA, where A ∈ SO(4). This allows us to conclude
the proof. �

Remark 3.6. The full group of isometries of (SO(4),−K) has 8 connected com-
ponents, all diffeomorphic to SO(4)×SO(4)

{±(I4,I4)} .
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Remark 3.7. Also Theorem 3.5 can be compared with the analogous result ob-
tained in [3, Thm. 1] for n = 4. In this case as well, the distance on SO(4) is
different from the distance induced by the Killing metric.

4. Isometries of U(n)

In this section we describe the full group of isometries of the Riemannian man-
ifold (U(n), φ) (n ≥ 2), where φ is the Frobenius metric of U(n), defined by
φA(X,Y ) = − tr(A∗XA∗Y ) for every A ∈ U(n) and for every X,Y ∈ TA(U(n)).
By the way, note that φ can also be obtained by the Frobenius metric φ0 of SO(2n)
as φ = 1

2ρ
∗(φ0), where ρ is the decomplexification map of U(n) into SO(2n).

Remarks-Definitions 4.1.
(a) The pair (SU(n)×R, p), where p is the map SU(n)×R→ U(n) defined by

p(B, x) = eixB, is the (analytic) universal covering group of U(n). Indeed, p
is clearly an analytic homomorphism of Lie groups, whose differential at the
point (B, x) ∈ SU(n)× R maps the tangent vector (W,λ) to eix(W + iλB).
At the identity (In, 0), this map has kernel zero and so it is an isomorphism;
hence, by [23, Prop. 3.26, p. 100], it is a covering map.

(b) From (a), we easily get that, if K and K̂ are the Killing tensors of U(n)
and of SU(n) × R, respectively, then we have p∗(K) = K̂. Since K̂ is the
product of the Killing tensors of SU(n) and of R (and this last is zero), and
remembering again [20, Ex. 6.19, p. 129], we have K̂(B,x)((W,λ), (W ′, λ′)) =
2n tr(B∗WB∗W ′) for every B ∈ SU(n), every W,W ′ ∈ TB(SU(n)), and
every x, λ, λ′ ∈ R.

Let A := eixB = p(B, x) (with B ∈ SU(n) and x ∈ R). If Y,Z ∈
TA(U(n)), then, by (a), Y and Z are the images, through the tangent
map of p, of

(
e−ixY − tr(A∗Y )

n B,− i
n tr(A∗Y )

)
and of

(
e−ixZ − tr(A∗Z)

n B,

− i
n tr(A∗Z)

)
, respectively (note that tr(A∗Y ) and tr(A∗Z) are purely imag-

inary, because A∗Y and A∗Z are skew-hermitian matrices).
Since p∗(K) = K̂, we get that

KA(Y,Z) = K̂(B,x)

((
e−ixY − tr(A∗Y )

n
B,− i

n
tr(A∗Y )

)
,(

e−ixZ − tr(A∗Z)
n

B,− i
n

tr(A∗Z)
))

= 2n tr
(
B∗
(
e−ixY − tr(A∗Y )

n
B
)
B∗
(
e−ixZ − tr(A∗Z)

n
B
))

= 2n
(

tr(A∗Y A∗Z)− 1
n

tr(A∗Y ) tr(A∗Z)
)

= 2n tr(A∗Y A∗Z)− 2 tr(A∗Y ) tr(A∗Z)
= −2nφA(Y,Z)− 2 tr(A∗Y ) tr(A∗Z).
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Therefore we can state the following.

Lemma 4.2. The Killing tensor K of U(n) has the expression
KA(Y,Z) = 2n tr(A∗Y A∗Z)− 2 tr(A∗Y ) tr(A∗Z)

= −2nφA(Y,Z)− 2 tr(A∗Y ) tr(A∗Z)
for every A ∈ U(n) and every Y,Z ∈ TA(U(n)).

Remark 4.3. The Killing tensor K of U(n) is a (degenerate) negative semi-definite
tensor (and so U(n) is not semi-simple). It suffices to check it at the identity
In ∈ U(n). By Lemma 4.2, we have KIn(iIn, iIn) = 0; furthermore, if Y is a
skew-hermitian matrix with purely imaginary eigenvalues iy1, . . . , iyn, then

KIn(Y, Y ) = −2n
n∑
j=1

y2
j +

n∑
h,j=1

2yhyj ≤ −2n
n∑
j=1

y2
j +

n∑
h,j=1

(y2
h + y2

j ) = 0.

Remark-Definition 4.4. On the product manifold SU(n) × R, we consider the
metric H defined as follows:

H(B,x)
(
(W,λ), (W ′, λ′)

)
= − tr(B∗WB∗W ′) + nλλ′

for every B ∈ SU(n), every W,W ′ ∈ TB(SU(n)), and every x, λ, λ′ ∈ R. Note that
the metric H is the product of a constant positive multiple of the Killing metric
of SU(n) and of a constant positive multiple of the euclidean metric of R. By [19,
Thm. III, p. 341], the isometries of (SU(n) × R,H) are precisely the maps of the
form Φ×α, where Φ is an isometry of SU(n), endowed with its Killing metric, and
α is an euclidean isometry of R.

Lemma 4.5.
(a) The map p : (SU(n)× R,H)→ (U(n), φ) is a local isometry.
(b) For every isometry F of (U(n), φ) fixing the identity In of U(n), there is a

unique isometry F̂ of (SU(n)×R,H) fixing the identity (In, 0) of SU(n)×R
such that p ◦ F̂ = F ◦ p.

Proof. If x, λ, λ′ ∈ R, B ∈ SU(n), W,W ′ ∈ TB(SU(n)) (so tr(B∗W ) = tr(B∗W ′) =
0), by Remarks-Definitions 4.1 (a), we have

p∗(φ)(B,x)
(
(W,λ), (W ′, λ′)

)
= φ(eixB)

(
eix(W + iλB), eix(W ′ + iλ′B)

)
= − tr

(
(B∗W + iλIn)(B∗W ′ + iλ′In)

)
= − tr(B∗WB∗W ′) + nλλ′

= H(B,x)
(
(W,λ), (W ′, λ′)

)
,

i.e., p∗(φ) = H and the proof of (a) is complete. Part (b) follows from part (a) and
from the fact that (SU(n)× R, p) is the universal covering of U(n). �

Proposition 4.6.
(a) Every isometry of (SU(2) × R,H) fixing the identity (I2, 0) of SU(2) × R

projects (through the covering map p) as an isometry of (U(2), φ) fixing the
identity I2 of U(2).
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(b) The isometries of (U(2), φ) fixing the identity I2 of U(2) are precisely the
maps

X 7→ SXS∗, X 7→ SX∗S∗, X 7→ SXS∗, X 7→ SXTS∗,

with S ∈ SU(2).

Proof. We denote by id the identity map of R, by Id the identity map of SU(2),
by j the inversion map of SU(2), and by CB = LB ◦RB∗ the inner automorphism
of SU(2), associated to B. By Remark-Definition 4.4 and by Theorem 2.5 (c), the
isometries of (SU(2) × R,H) fixing the identity (I2, 0) ∈ SU(2) × R are precisely
the maps of the form

CB × (±id) = (CB × id) ◦ (Id × (±id))

and
(CB ◦ j)× (±id) = (CB × id) ◦ (j × (±id)),

with B ∈ SU(2). Easy computations show that all the maps CB × id (with B ∈
SU(2)), Id × id, Id × (−id), j × id and j × (−id) project as maps of U(2). More
precisely, CB × id projects as the inner automorphism of U(2) associated to B,
Id × id as the identity map of U(2), Id × (−id) as the involution of U(2) given
by A 7→ A

det(A) , j × id as the involution of U(2) given by A 7→ det(A)A∗, and

j × (−id) as the inversion of U(2). By composition, the maps of U(2), obtained in
this way, are the following:

X 7→ BXB∗, X 7→ BX∗B∗, X 7→ BXB∗

det(X) , X 7→ det(X)BX∗B∗,

with B ∈ SU(2). They are isometries of (U(2), φ), by Lemma 4.5 (a). Part (b) of
the same Lemma implies that there are no other isometries.

To conclude it suffices to remark that, denoted by W :=
(

0 −1
1 0

)
∈ SU(2), we

have X

det(X) = W ∗XW and det(X)X∗ = WXTW ∗ for every X ∈ U(2). �

Theorem 4.7. The isometries of (U(n), φ), with n ≥ 2, are precisely the following
maps:

X 7→ AXB, X 7→ AX∗B, X 7→ AXB, X 7→ AXTB,

with A,B ∈ U(n).

Proof. We assume first n ≥ 3, but we use the same notation as in the proof of
Proposition 4.6 (with n ≥ 3) and, moreover, we write µ(X) := X and η(X) := XT

for every X ∈ SU(n). Again, by Remark-Definition 4.4 and by Theorem 2.5 (d),
the isometries of (SU(n)×R,H) fixing the identity (In, 0) of SU(n)×R are precisely

Rev. Un. Mat. Argentina, Vol. 65, No. 2 (2023)



260 A. DOLCETTI AND D. PERTICI

the maps of the form

CB × (±id) = (CB × id) ◦ (Id × (±id)),
(CB ◦ j)× (±id) = (CB × id) ◦ (j × (±id)),
(CB ◦ µ)× (±id) = (CB × id) ◦ (µ× (±id)),
(CB ◦ η)× (±id) = (CB × id) ◦ (η × (±id)),

with B ∈ SU(n).
Since the isometries of (SU(n) × R,H), projecting (throughout p) as maps of

U(n), form a group with respect to the composition, it suffices to examine the
following isometries:

• CB × id, which projects as the inner automorphism of U(n), associated to
the matrix B ∈ SU(n),
• Id × id, which projects as the identity map of U(n),
• j × (−id), which projects as the inversion map of U(n),
• µ× (−id), which projects as the (complex) conjugation map of U(n),
• η × id, which projects as the transposition map of U(n), and
• Id × (−id), j× id, µ× id, η× (−id), which, on the contrary, do not project

as maps of U(n).

The proofs of the first five cases are obvious. For the isometries, which do not
project as maps of U(n), we consider, as an example, only the case Id × (−id); the
other cases can be treated in the same way.

We have In = p(In, 0) = p
(
e

2πi
n In, − 2π

n

)
, p ◦

(
Id × (−id)

)
(In, 0) = In, and

p ◦
(
Id × (−id)

) (
e

2πi
n In, − 2π

n

)
= e

4πi
n In; these last two are different, because

n ≥ 3, and so the isometry Id × (−id) does not project as a map of U(n).
Therefore, taking into account Lemma 4.5, the isometries of (U(n), φ) (n ≥ 3)

fixing the identity In are the following maps: X 7→ BXB∗, X 7→ BX∗B∗, X 7→
BXB∗, X 7→ BXTB∗, with B ∈ SU(n). Note that such isometries are formally
the same as those of the case n = 2 in Proposition 4.6 (b). Now, by left (or right)
translation with a matrix of U(n), we obtain all the isometries in the statement
both for n = 2 and for n ≥ 3. �

Remarks 4.8.
(a) The full group of isometries of (U(n), φ), for n ≥ 2, has 4 connected compo-

nents, all diffeomorphic to U(n)×U(n)
{λ(In,In) :λ∈C, |λ|=1} . Indeed, arguing as in Remark 1.10,

the group generated by left and right translations of U(n) is diffeomorphic to
U(n)×U(n)
(Z×Z)∩∆ , where Z and ∆ are, respectively, the center of U(n) and the diagonal

of U(n)×U(n). We conclude, because the center of U(n) is {λIn : λ ∈ C, |λ| = 1}.

(b) For every n ≥ 2, (U(n), φ) is a (globally) symmetric Riemannian manifold.
Indeed, for every A ∈ U(n), the map X 7→ AX∗A is an isometry of (U(n), φ)
fixing A and whose differential at A is the opposite of the identity map of TA(U(n)).
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Remark 4.9. Compare Theorem 4.7 with an analogous result of [11, Thm. 8],
where the distance considered on U(n) is again different from the distance induced
by the Frobenius metric.

Remark 4.10. Following [21, p. 60] (in particular, Thm. 1.5), it is possible to
get that, for n ≥ 2, the group of the automorphisms of U(n) is the semidirect
product of its subgroup of inner automorphisms with the subgroup generated by
the map µ : X 7→ X. Hence, by Theorem 4.7, we deduce that, for every n ≥ 2, the
isometries of (U(n), φ) fixing the identity are precisely the automorphisms and the
antiautomorphisms of the Lie group U(n).

Note that an analogous result holds in the case of (G,−K) (instead of (U(n), φ)),
where G is an absolutely simple, compact, connected real Lie group (see Proposi-
tion 2.2), but not in the case of (SO(4),−K); indeed, the maps X 7→ τ(X) and
X 7→ τ(X)T of Theorem 3.5 are neither automorphisms nor antiautomorphisms.

Acknowledgments

We wish to express our gratitude to Fabio Podestà for his help and for many
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