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Climate change and hydrological dam safety: a stochastic methodology based on 
climate projections
Marco Lompi a,b, Luis Mediero b, Enrique Soriano b and Enrica Caporali a

aDepartment of Civil and Environmental Engineering, University of Florence, Florence, Italy; bDepartment of Civil Engineering: Hydraulics, Energy and 
Environment, Universidad Politécnica de Madrid, Madrid, Spain

ABSTRACT
Climate change will likely increase the frequency and magnitude of extreme precipitation events and 
floods, increasing design peak flows that could lead to underestimates in current spillway capacity. 
Therefore, new methodologies for hydrological dam safety assessment considering climate change are 
required. This study presents a methodology that considers the impact of climate change on both inflow 
hydrographs and initial reservoir water levels. Moreover, the uncertainty in the procedure is assessed. The 
methodology is applied to the Eugui Dam in the River Arga catchment (Spain). An ensemble of 12 climate 
models is used. The results show an increase in the maximum reservoir water level during flood events 
and in the overtopping probability in the Representative Concentration Pathway 8.5 (RCP 8.5 scenario), 
especially in the 2071–2100 time window. The proposed methodology can be useful to assess future 
hydrological dam safety, fulfilling the requirements of recent regulations to consider the impact of 
climate change on dams.
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1 Introduction

It is widely recognized that climate change will impact the 
hydrological cycle. A warmer climate increases the frequency 
and intensity of extreme precipitations (Donat et al. 2016, Li 
et al. 2019, Myhre et al. 2019), enhancing flood hazards. Floods 
are the leading cause of natural disaster deaths worldwide, with 
more than half a million fatalities caused by rain‐induced 
floods in the period 1980–2009 (Doocy et al. 2013). 
Therefore, the impacts of future climate conditions on flood 
risks should be assessed to develop plan adaptation strategies 
that consider extreme event risks (IPCC 2012, 2014). In addi-
tion, floods represent the hydrological load on dams. 
Therefore, changes in climatic conditions will likely affect 
hydrological dam safety (Bowles et al. 2013).

The impact of climate change on floods can be studied 
using either trend analyses of streamflow data recorded in 
the last few decades or rainfall–runoff modelling with climate 
projections as input data (Quintero et al. 2018). Rainfall and 
temperature climate projections are generated by global cli-
mate models (GCM), based on a set of greenhouse emission 
scenarios in the future called Representative Concentration 
Pathways (RCPs) (Meinshausen et al. 2011). RCPs 4.5 and 
8.5 are usually considered to assess the impact of climate 
change on floods (Kim et al. 2013, Babur et al. 2016, Nilawar 
and Waikar 2019, Marahatta et al. 2021, Oubennaceur et al. 
2021). RCP 4.5 assumes that the peak of emissions occurs 
around 2040, declining with their stabilization at the end of 

the century (Thomson et al. 2011); RCP 8.5 considers that the 
radiative forcing will increase throughout the century (Riahi 
et al. 2011). However, the spatial resolution of GCM outputs is 
usually coarse for hydrological and impact assessment studies 
at the catchment scale. Therefore, GCM outputs are refined in 
a smaller domain with downscaling techniques, such as regio-
nal climate models (RCMs).

Global studies on the impact of climate change on floods 
have shown significant increasing trends in the annual median 
of flood durations (Najibi and Devineni 2018). A general 
increase in flood damages in the largest rivers in the world 
was detected for the time window 2080 in RCP 8.5 (Winsemius 
et al. 2015). A similar pattern is recognized by Alfieri et al. 
(2015); they found a general increase in the 100-year flood in 
Europe for RCP 8.5. On the contrary, other studies point to 
a decrease in flood frequency, especially in southern and east-
ern Europe (Hirabayashi et al. 2013, Blöschl et al. 2019, 
Brunner et al. 2019).

However, a clear pattern of the expected changes in future 
hydraulic risks in southern Europe cannot be identified. 
Discrepant results can be found as studies usually consider 
different sets of climate models, downscaling techniques, or 
bias correction methods (Kundzewicz et al. 2017). For exam-
ple, while Dankers and Feyen (2008) and Rojas et al. (2012) 
found a decrease in the future 100-year flood in Spain, Roudier 
et al. (2016) detected an increasing trend.

Despite the fact that a clear signal of change is not evident, 
stationarity will no longer be appropriate for long-term dam 
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safety management (USACE 2016). Moreover, many large dams 
were designed for downstream flood-control purposes at the 
time of their construction (Chen and Hossain 2019). However, 
downstream urban areas may have expanded, or safety regula-
tions may have changed from that time. Therefore, several stu-
dies have proposed methodologies to assess dam safety in the 
future considering climate change projections. Fluixá-Sanmartín 
et al. (2019b) found a significant uncertainty in the risk given by 
climate projection inputs for RCP 8.5, while an increase in both 
social and economic risks is detected for the RCP 4.5 scenario. 
Lee and You (2013) combined the effect of climate change with 
a reduction of the reservoir flood control volume caused by 
sedimentation, concluding that the major source of risk in the 
future was the magnitude of extreme events. Several aspects are 
related to dam safety. Indeed, both climatic and non-climatic 
drivers can generate dam failures, such as overtopping, piping, or 
sliding, and several methodologies have been developed to 
describe these phenomena (Wahl 2004, Froehlich 2008, 
Ahmadisharaf et al. 2016, Peter et al. 2018).

This study focuses on hydrological dam safety and overtop-
ping hazard. Overtopping occurs when the reservoir water level 
exceeds the dam crest elevation, spilling over the downstream 
dam face. Over the last century, almost 30% of all dam failures 
worldwide were caused by overtopping (Jandora et al. 2008), 
and floods represent their main driver (Costa 1985). A detailed 
analysis of overtopping hazards requires comprehensive infor-
mation on hydrology, hydraulics, characteristics of the dam and 
the use of routing methods (Michailidi and Bacchi 2017). 
Therefore, catchment-scale studies are required to properly 
assess the impact of climate change on future dam safety, 
although more tools are available to assess overtopping prob-
abilities in dams at the regional scale (Fluixá-Sanmartín et al. 
2019a). In addition, Fluixà-Sanmartin et al. (2018) state that 
most studies tend to focus only on the assessment of the 
expected changes in the future hydrological loads (Bahls and 
Holman 2014, Chernet et al. 2014, Novembre et al. 2015), such 
as changes in inflow hydrographs, neglecting other important 
aspects, such as future variations in initial reservoir water levels. 
Indeed, climate change is expected to affect future water avail-
ability because of increasing precipitation temporal variability, 
decreasing precipitation magnitudes, and increasing potential 
evapotranspiration (IPCC 2014). Changes in the overtopping 
probability can be detected with trend analysis and hydrological 
modelling of observed data (Ahmadisharaf and Kalyanapu 
2015). This study, by contrast, provides a methodology to esti-
mate the expected changes in dam overtopping based on climate 
projections.

Dam risk analysis is usually linked to high return-period 
floods, although such estimates involve great uncertainty. 
Therefore, the assessment of uncertainty due to hydrological 
and climate modelling should be accounted for to provide 
helpful information for decision making (Prudhomme and 
Davies 2009). This study presents a methodology that consid-
ers the impact of climate change on both floods and reservoir 
water levels to assess hydrological dam safety. Moreover, 
a stochastic approach that considers all the sources of uncer-
tainty in the procedure is developed. The methodology is 
applied to the Eugui Dam in the River Arga (Spain), with 
a catchment area of 69 km2.

Section 2 describes the data and case study. Section 3 presents 
the methodology used to assess the impact of climate change on 
hydrological dam safety and a description of the models used in 
the analysis. Section 4 gives the results regarding the future 
reservoir water levels and peak inflows, as well as the changes in 
maximum reservoir water levels and the overtopping probability 
after the incorporation of the uncertainty. Finally, the discussion 
(Section 5) and conclusion (Section 6) are included.

2 Data and case study

2.1 Case study: Arga River and Eugui Dam

The methodology is applied to the Eugui Dam in the Arga River 
catchment in northern Spain (Fig. 1). The Arga River crosses the 
city of Pamplona and has a catchment area of 2759 km2. While 
the drainage area to the city of Pamplona is 510 km2, the catch-
ment area of the Eugui reservoir is 69 km2 (Figs 1(b) and 2(a)). 
The main purpose of the dam is to supply water for the down-
stream population, but it is also used for hydropower generation. 
The Eugui Dam has a gated spillway (Fig. 2(b)) with its crest 
elevation at 625 m a.s.l. The conservation pool has a storage 
capacity of 21.8 million m3and its top elevation is at 628 m a.s.l. 
The spillway capacity is 270 m3/s at the top of the flood control 
pool. The dam crest is at 630 m a.s.l with a length of 252 m. 
Lompi et al. (2021) quantified changes in the design floods by 
focusing on flood hazards in the city of Pamplona. Such results 
are also available at the Eugui Dam, as the Real-time Interactive 
Basin Simulator (RIBS) model (Section 3.1) is fully distributed.

2.2 Data

The observed data consist of precipitation, temperature, water 
levels (or storage volumes) at the reservoir, and outflow dis-
charges released by the dam outlets (Table 1). Two sources of 
data on reservoir water levels are available. Daily data are 
available for 40 years (1978–2018) at the E9825 gauging site, 
while data at a 15-min time resolution are available for 23 years 
(1998–2021) at the E025 gauging site.

The analysis of the observed data is made to identify the 
empirical reservoir water level frequency, i.e. the probability 
associated with a given pool level inside the reservoir in the 
current scenario, and to obtain the inflow peak discharges. This 
information is used to assess the hydrological dam safety in the 
current scenario. Moreover, observed data are used to calibrate 
the hydrological models (RIBS and Hydrologiska Byrans 
Vattenbalansavdeling (HBV)) described in the next sections. 
Inflow discharges in the reservoir were obtained through 
a mass balance with outflow discharges (A152) and storage 
volumes (E025). The Annual Maxima Series (AMS) of daily 
inflow discharges is obtained for the period 1978–2021. In 
addition, AMS of 15-min inflow discharges is extracted in the 
period 1998–2021. The peaks of the hydrograph with a 15-min 
resolution in the period 1978–1997 are estimated from daily 
data. In particular, a linear regression is fitted to the couples of 
daily discharge and 15-min peaks obtained in the last part of the 
time series (1998–2021) with a peak over threshold (POT3), i.e. 
considering three events each year on average. A generalized 
extreme value distribution (GEV) is fitted to the AMS of inflow 
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discharges to analyse the dam hydrological load in the current 
scenario, as homogeneous regions are identified in Spain at the 
national scale by the Centre for Hydrographic Studies of 
CEDEX (Centro de Estudios y Experimentación de Obras 
Públicas, in Spanish), and a given probability distribution func-
tion is recommended in each region (Jiménez-Álvarez et al. 
2013). The POT approach could be preferred for the definition 
of the design rainfalls (Bezak et al. 2014), as AMS either can 
contain small events in years with no significant storms, or 
cannot consider important events lower than the annual 

maximum because several extremes events occurred in the 
same year. Nevertheless, the selection of the threshold and the 
transformation of the POT frequency curve into an AMS fre-
quency curve represent additional sources of uncertainty. 
Therefore, the AMS approach has been selected in this study.

The climate change data consist of rainfall and temperature 
projections in the period 2006–2100 supplied by 12 climate 
models of the EURO-CORDEX (Jacob et al. 2020), considering 
two emission scenarios (RCP 4.5 and RCP 8.5) (Table 2). The 
use of rainfall projections is described in the Methodology 
section.

3 Methodology

Methodologies intended to assess the impact of climate change 
on hydrological dam safety should estimate the expected 

Figure 1. (a) Location of the Arga River basin, upstream of the city of Pamplona in northern Spain; and (b) location of the Eugui Reservoir within the catchment.

Figure 2. (a) Arga River catchment upstream of the Eugui reservoir in northern Spain, with gauging site location and digital elevation model; and (b) Eugui Dam and 
reservoir (source: https://www.iagua.es/data/infraestructuras/presas/eugui). E9825 and EA025 gauging sites have the same location. Therefore, only the position of the 
newest instrument is shown in Fig. 2(a).

Table 1. Observed data used in the study.

Name Measured variable Period Time resolution

E9825 Reservoir water level 1978–2018 Daily
E025 Reservoir water level 1998–2021 15 min
A152 Outflow discharge 1998–2021 15 min
EM25 Rainfall and temperature 2008–2021 15 min

HYDROLOGICAL SCIENCES JOURNAL 747

https://www.iagua.es/data/infraestructuras/presas/eugui


changes in flood quantiles and assess the impact of climate 
change on the reservoir water level frequency. The choice of 
the most appropriate hydrological model depends on the spa-
tial and temporal scale of the phenomenon to be represented. 
For this reason, the fully distributed event-based hydrological 
model RIBS (Section 3.1) is chosen to describe the flooding 
process in the river basin associated with high rainfall quan-
tiles, as it has a fine spatial and temporal scale (sub-daily). On 
the other hand, the continuous model HBV (Section 3.2) has 
a too coarse temporal scale to describe the flooding process in 
a small catchment, but it is suitable to evaluate the expected 
changes in reservoir water levels with long-term simulation. 
An overview of the methodology is summarized in Fig. 3, in 
which all the further subsections are shown.

The impact of climate change on floods in the River Arga 
catchment is quantified using the expected delta changes in 
precipitation quantiles extracted from climate projections in 
Spain (Garijo and Mediero 2019). The RIBS distributed 

hydrological model is used to quantify the expected changes 
in flood quantiles at the Eugui Dam (Lompi et al. 2021) 
(Section 3.1).

The HBV continuous hydrological model is used with 
a daily time step to simulate inflow discharges at the Eugui 
reservoir, considering rainfall and temperature climate change 
projections as input data. HBV can simulate in shorter com-
putation times the long time series of daily inflows at the 
reservoir. The HBV model is calibrated and utilized to simu-
late the catchment daily runoff response using climate projec-
tions as input data (Section 3.2). A reservoir simulation model 
that considers reservoir operation rules is developed to obtain 
daily reservoir water levels using daily inflow discharges sup-
plied by the HBV model as input data (Section 3.3). Expected 
changes in reservoir water levels in the future are obtained.

A stochastic procedure is developed to obtain both the 
maximum reservoir water level frequency and the maxi-
mum outflow discharge released from the dam 

Table 2. Ensemble of the 12 climate models of the EURO-CORDEX considered in the analysis.

Code Abbreviation GCM RCM

1 ICH-CCL ICHEC-EC-EARTH CLMcom-CCLM4-8-17
2 MPI-CCL MPI-ESM-LR CLMcom-CCLM4-8-17
3 MOH-RAC MOHC-HadGEM2-ES KNMI-RACMO22E
4 CNR-CCL CNRM-CERFACS-CM5 CLMcom-CCLM4-8-17
5 ICH-RAC ICHEC-EC-EARTH KNMI-RACMO22E
6 MOH-CCL MOHC-HadGEM2-ES CLMcom-CCLM4-8-17
7 IPS-WRF IPSL-CM5A-MR IPSL-WRF331F
8 IPS-RCA IPSL-CM5A-MR SMHI-RCA4
9 MOH-RCA MOHC-HadGEM2-ES SMHI-RCA4
10 ICH-RCA ICHEC-EC-EARTH SMHI-RCA4
11 CNR-RCA CNRM- CERFACS-CM5 SMHI-RCA4
12 MPI-RCA MPI-ESM-LR SMHI-RCA4

Figure 3. Flowchart of the methodology used to assess the impact of climate change on the future hydrological dam safety.
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(Section 3.4). The volumetric evaluation method (VEM) is 
used to simulate flow routing processes in the reservoir 
during flood events, as the Eugui Dam has a gated spillway 
(Girón 1988). Random inflow hydrographs and random 
initial water levels are combined in VEM (Section 3.5). 
The frequency curve of maximum reservoir water levels is 
obtained for each scenario, assessing the expected changes 
in the exceedance probability of dam overtopping. 
Moreover, the sources of uncertainty in the methodology 
are quantified (Section 3.6). The results are presented with 
overtopping probabilities and expected delta changes in 
maximum reservoir water levels (Section 3.7).

3.1 RIBS model: description, calibration and 
quantification of the expected change in flood quantiles

This section briefly describes the RIBS model and the work 
done by Lompi et al. (2021), where more information can be 
found on how the Real-time Interactive Basin Simulator 
(RIBS) has been calibrated and used to assess expected changes 
in inflow hydrographs at the Eugui Dam. The methodology is 
based on a comparison of flood quantiles in the current sce-
nario with those in future periods.

RIBS is an event-based distributed hydrological rainfall– 
runoff model that extracts the required information for the 
catchment from a digital elevation model (DEM). RIBS uses 
the Brooks-Corey equation to estimate rainfall losses and run-
off in each cell (Cabral et al. 1992). Then, runoff is propagated 
in the domain considering hillslope and reach velocities. 
Hydrograph shapes (volume) and peaks depend on the soil 
hydraulic conductivity and the two velocities, which are eval-
uated through several model parameters that must be cali-
brated. More information about the RIBS model and its 
calibration can be found in Mediero et al. (2011) and Garrote 
and Bras (1995a, 1995b).

RIBS was calibrated in the Arga catchment by comparing 
a set of observed and modelled hydrographs identified with 
a POT analysis using a hydrometer located in Pamplona. Daily 
rainfall data were used to estimate design rainfalls in the current 
scenarios with a GEV distribution. Expected delta changes in 
daily precipitation quantiles in the future were extracted from 
rainfall climate projections supplied by 12 combinations of 
GCMs and RCMs (Table 2) of the EURO-CORDEX Program 
by Garijo and Mediero (2019). Since the position of the grid of 
the delta changes differs from the raingauge locations, the future 
design rainfall field is obtained in each scenario combining the 
raster of the design hyetographs in the current scenario with the 
raster of the delta changes. The rasters are obtained with the 
Thiessen polygon technique. Delta changes in peak flow quan-
tiles were estimated for seven return periods (2, 5, 10, 50, 100, 
500 and 1000 years), two RCPs (RCP 4.5 and RCP 8.5) and three 
future time windows (2011–2040, 2041–2070, 2071–2100) 
(Lompi et al. 2021).

3.2 HBV model: description, calibration and hydrological 
modelling of the climate change scenarios

Hydrologiska Byrans Vattenbalansavdeling (HBV) is a semi- 
distributed conceptual continuous rainfall–runoff model 

(Bergström 1976, 1992). In this model, a catchment is divided 
into sub-catchments, which can be further divided into a set of 
elevation and vegetation zones. The data required by the model 
are daily temperature, precipitation, and potential evapotran-
spiration (PET), which must be calculated externally to the 
model. The model structure is divided into three modules 
(snow and glacier routine, soil routine, and response function 
routine). In the snow routine, precipitation is converted into 
snow accumulation with a snowfall correction factor (SFCF) 
when the temperature is under the temperature threshold (TT). 
CFMAX represents the equivalent melted snow as a function of 
the difference between the actual temperature and TT.

The infiltrated water fills the soil box, recharging the 
groundwater depending on the ratio between its current con-
tent (SM) and its largest possible value (FC). The soil is 
characterized by two reservoirs. The maximum percolation 
rate (PERC) defines the underground flow between the two 
reservoirs. BETA determines the relative contribution to run-
off from rain or snowmelt. In the soil routine, when the soil 
moisture is above a given threshold (LP*FC), evapotranspira-
tion (AET) is equal to PET. Otherwise, AET is reduced linearly 
from its maximum value (PET) to zero. Runoff from the 
groundwater is simulated as a release from linear reservoirs 
with parameters K0, K1 and K2 depending on whether the 
upper groundwater box is above a threshold, UZL, or not. The 
response routing determines the discharge using a triangular 
weighting function characterized by the parameter MAXBAS 
(Seibert and Vis 2012). In this study, the HBV-light software 
has been used.

First, PET is calculated from temperature projections, using 
the Hargreaves equation (Equation 1) (Hargreaves 1981, 
Hargreaves and Samani 1985). In the current scenario, all the 
data required by the Penman-Monteith equation (Monteith 
1965) are available, although climate change data do not 
include humidity and wind speed projections. Therefore, the 
Hargreaves equation is also used to calibrate the HBV model in 
the current scenario: 

PET ¼ 0:0022 � RA � δ0:5
T � T þ 17:8ð Þ (1) 

where RA is the mean extraterrestrial radiation, which depends 
on the latitude of the case study; δT is the difference between 
the mean monthly maximum temperature and the mean 
monthly minimum temperature; and T is the daily 
temperature.

The HBV model is calibrated using Monte Carlo simula-
tions with a single objective function to evaluate model errors: 
the efficiency of the model Reff

� �
. This is how the HBV-light 

model refers to the Nash-Sutcliffe model efficiency NSE (Nash 
and Sutcliffe 1970) (Equation 2). Eleven parameters are con-
sidered for each vegetation zone (TT, CFMAX, FC, LP, BETA, 
PERC, UZL, K0, K1, K2, MAXBAS), the values of which are 
varied within given ranges, to find the optimal combination for 
the case study. 

Reff ¼ NSE ¼ 1 �
P

Qsim ið Þ � Qobs ið Þð Þ
2

P
Qobs ið Þ � Qobs
� �2 (2) 

where Qsim ið Þ is the simulated discharge at the ith day; Qobs ið Þ
is the mean daily observed discharge at the ith day, and Qobs is 
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the mean value of the observed daily discharge time series. The 
optimum value of Reff is one when there is no bias between 
simulations and observations. The calibration target in this 
study consists of obtaining an Reff value of at least 0.85, as 
model evaluation guidelines (table 8 in Moriasi et al. 2015) 
considered 0.8 as the threshold to reach a very good perfor-
mance rating in estimating flow at the river basin scale with 
a daily time step. Moreover, the last part of the observation 
time series is used for the independent validation of the HBV 
model. The model evaluation metrics used to describe the 
HBV model performance after its calibration (in the calibra-
tion and validation period) are: the NSE (Reff ), the root mean 
squared error (RMSE)-observations standard deviation ratio 
(RSR) (Equation 3) and the percent bias (PBIAS) (Equation 4), 
to refer to Moriasi et al. (2015). 

RSR ¼
RMSE

STDEVobs
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

Qsim ið Þ � Qobs ið Þð Þ
2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

Qobs ið Þ � Qobs
� �2

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � NSE
p

(3) 

PBIAS ¼
P

Qsim ið Þ � Qobs ið Þð Þ � 100
P

Qobs ið Þ
(4) 

The HBV model is calibrated with the available rainfall and 
temperature data at the gauging site EM25 (Table 1) over 
a period of 13 years from January 2008 to May 2021 and 
validated in the last year of data, from June 2021 to July 2022. 
Climate projections of rainfall, temperature and PET in the 
period 2006–2100 are used in the calibrated HBV model as 
input data, to obtain future inflow discharge time series in the 
reservoir with a daily time step ðQin;dÞ. However, the first four 
years are skipped for the sake of model stabilization. Therefore, 
the time series obtained in the period 2010–2100 are used as 
input data for the reservoir operation model (Section 3.3) to 
obtain daily reservoir water levels at the Eugui Dam.

3.3 Reservoir operation model

A reservoir operation model has been developed to simulate 
dam operations, in order to obtain the expected daily time series 
of reservoir water levels in the future. Daily outflow discharges 
(Qout; D) released by spillways and outlet works depend on dam 
operations, such as environmental flows released to sustain 
ecosystems in the downstream river; water supply to meet 
municipal, industrial and agricultural water demands; and 
flood control operations to minimize downstream flooding. 
The Eugui Dam has an outlet work composed of two closed 
pipelines and a gated spillway with a crest length of 25 m. The 
maximum outflow discharge that can be released by both outlet 
works and spillway at a given time step i (Qmax;i) depends on the 
reservoir water level at the time step i (WLi). Maximum daily 
water releases by the spillway in a given time step (Qspill,i) are 
assumed to equal the inflow water volume that cannot be stored 
in the reservoir. Qmax;i will be equal to the sum of the releases 
from both the outlet works and the spillway when WLi is greater 
than the elevation of the spillway gate upper limb (hgate). Qmax;i 
will be equal to the maximum release by the outlet works, 

considering that they are completely open, when WLi is between 
the elevation of the outlet work inlet (houtlet) and hgate. Qmax;i is 
equal to zero when WLi is below houtlet . 

Qmax;i ¼ Aoutlet

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g WLi� houtletð Þ

1:5þλiLoutlet
Doutlet

� �
s

þ Qspill;i if WLi > hgate

Qmax;i ¼ Aoutlet

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g WLi� houtletð Þ

1:5þλi Loutlet
Doutlet

� �
s

if houtlet < WLi � hgate

Qmax;i ¼ 0 if WLi � houtlet

8
>>>>>><

>>>>>>:

(5) 

where Aoutlet , Loutlet , Doutlet , and houtlet are the area, length, 
diameter and intake elevation of the outlet work, respectively; 
λi is the Darcy friction coefficient at the time step i that con-
siders the energy loss in a closed pipe (obtained in this study 
with the Colebrook-White equation); the coefficient 1.5 con-
siders the energy loss at both the intake and outtake of the 
closed conduit; and Qspill;i is the maximum discharge the spill-
way can release at the time step i. The outflow discharge at 
the day i (Qout;i) will be equal or smaller than Qmax;i 
(Equation 5) and is obtained as: 

Qout; i ¼ αm � EFm þ K βm � Qin;i þ γm
� �

αm > 1; Qout;i <Qmax;i
Qout;i i ¼ Qmax;i Qout; i � Qmax;i

�

(6) 

where EFm is the environmental flow in the mth month; Qin;i is 
the daily inflow discharge in the reservoir at day i; αm, βm, γm 
are three parameters for each month of the year (m = 1, . . . ., 
12) that are used to calibrate the reservoir operation model; 
and K is a parameter that considers the flood control process 
in the reservoir at the most extreme events. In particular, when 
WLi is below the maximum reservoir water level, K is 0 and 
Qout;i only depends on EFm. When WLi is close to the max-
imum reservoir water level, K equals 1 and Qout;i also depends 
on Qin;i to consider outflow releases by the spillway. In addi-
tion, if Qout;i exceeds Qmax;i in a given time step, Qout;i will be 
equal to Qmax;i, as the reservoir cannot release Qout;i at that 
time step given the reservoir water level WLi.

In the reservoir operation model, Qin;i is the HBV output for 
both the current scenario and climate projections (Section 3.2). 
EFm is estimated with the revised variable monthly flow method 
(RVFM) (Yu et al. 2021), combining the variable monthly flow 
method (VMF) (Pastor et al. 2014) with the Tennant method 
(Tennant 1976). RVFM assumes that EFm is a percentage of the 
mean monthly flow (MMF) (Equation 7). 

EFm ¼ φ �MMFm (7) 

where EFm is the environmental flow in the mth month, 
MMFm is the mean monthly flow in the mth month; and φ is 
the flow coefficient that varies from zero to one considering six 
ecological conditions in the river (poor, fair, good, excellent, 
outstanding, and optimum) and the month. A given month 
can be defined as a high-flow month if MMFm is higher than 
80% of the mean annual flow (MAF), and as a low-flow month 
if MMFm is lower than 40% of MAF. Otherwise, it will be an 
intermediate-flow month (Table 3). The flow coefficients of Yu 
et al. (2021) (Table 3) can be used in temperate and sub- 
tropical climates, as regions with these conditions have similar 
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values of the φ coefficient in the VMF method proposed by 
Pastor et al. (2014).

MMF and MAF have been obtained from the observed daily 
inflow discharge time series at the Eugui reservoir. EFm does 
not change in the future, as it is assumed that EFm is the 
minimum discharge required to sustain freshwater ecosystems 
downstream of the dam. Water supply demands and outflow 
discharge for energy production have been calculated and 
represent a percentage of EFm. Moreover, the water released 
by the dam for the energy production and the water demands 
also supplies freshwater for the downstream ecosystem. 
Therefore, a further contribution in the outflow discharge is 
not included in Equation (4).

For each day, Qout;i is quantified. A mass balance is applied 
with Qin;i as input volume, the water volume that directly 
evaporates from the reservoir and Qout;i as output volumes, 
obtaining the reservoir water level for the next day (WLiþ1). In 
addition, storage water volumes at the reservoir in each day are 
also calculated.

The 36 parameters of the reservoir operation model (αm, 
βm, γm) are calibrated by comparing the observed and mod-
elled mean daily reservoir water levels in the current scenario 
(2008–2021). Qin;i, obtained with the calibrated HBV model, is 
used to calibrate the reservoir operation model, although 
observed daily inflow discharges are also available in the cur-
rent scenario.

Qin;i simulated by the HBV model is the input data for the 
calibrated reservoir operation model and the results are time 
series of future daily reservoir water levels in the time window 
2010–2100. A reservoir water level frequency curve is obtained 
for the three-time windows (2011–2040, 2041–2070, 2071– 
2100), in order to generate random initial reservoir water levels 
in the stochastic procedure (Section 3.4).

3.4 Stochastic procedure

A stochastic procedure is used to generate a large set of inflow 
hydrographs with random inflow peaks (Qpeak) and initial reser-
voir water levels (WLini). Two random probability vectors are 
generated independently, as no clear correlation has been 
detected in the pairs of Qpeak and WLini in the observations. Ten 
thousand values of Qpeak and WLini are generated for each of the 
72 scenarios considered in the study, given by the combination of 
12 climate models, three future time windows and two RCPs. The 
random vector of Qpeak represents the non-exceedance probabil-
ities (NEPs) of peak inflow hydrographs. The random vector of 
WLini characterizes the exceedance probability (EP) of reservoir 
water levels. The two vectors are randomly combined to obtain 
the feasible combinations of the Qpeak–WLini pairs (Fig. 4).

While a low EP of WLini is associated with a high initial 
reservoir water level (red lines in Fig. 4(c)), a value close to one 
represents low reservoir water levels (dark blue line in Fig. 4 
(c)). A high NEP of Qpeak corresponds to a high inflow peak 
associated with a high return period (RP) (red line in Fig. 4(b)).

The relationship between NEP (or RP) and Qpeak is 
characterized with a GEV distribution function fitted to the 
RIBS model outputs obtained in Lompi et al. (2021). The 
hydrograph shapes supplied by the RIBS model outputs are 
associated with each value of Qpeak. Each EP value for WLini is 
associated with a given reservoir water level using the empiri-
cal reservoir water level frequency curve obtained by coupling 
the HBV and reservoir operation models (Sections 3.2 
and 3.3).

3.5 Volumetric evaluation method

VEM is a flood-routing reservoir model that can simulate 
outflow discharges from gated dam spillways during a flood 
event (Girόn 1988). The main differences between VEM and 
the reservoir operation model (Section 3.4) regard the time 
step and the operation of spillway gates in flood events. The 
reservoir operation model uses a daily scale, useful to simulate 
daily reservoir water levels, although its time resolution is too 
coarse to properly simulate flood control processes at sub-daily 
time scales. However, VEM uses sub-hourly time steps, con-
sidering spillway gate operations, reservoir water level and 
outflow discharge variations at a higher temporal resolution. 
In this study, inflow hydrographs with a 15-min time step are 
used.

VEM assumes that, considering constant inflow Qin;t and 
outflow discharges Qout;t when Qin;t is greater than Qout;t , the 
number of remaining time steps (Nt) before the maximum 
reservoir storage capacity (Vmax) will be reached is: 

Nt ¼
Vmax � Vt

ðQin;t � Qout;tÞ � Δt
(8) 

where Vt is the reservoir storage volume at time t; Qin;t is the 
inflow discharge at time t; Qout;t is the outflow discharge at 
time t; and Δt is the inflow hydrograph time step. When the 
reservoir is filled, inflow and outflow discharges must be the 
same to avoid overtopping. Therefore, VEM is based on 
a linear increasing of Qout;t values, to reach Qin;t in the Nt 
time steps. Therefore, Qout;i must increase ΔQout;t in each 
time step (Equation 9). 

ΔQout;t ¼
Qin;t� 1 � Qout;t

Nt
¼

Qin;t� 1 � Qout;t
� �2

Vmax � Vt
Δt (9) 

Table 3. Values of the flow coefficient (φ) associated with the ecological condition (poor, fair, good, excellent, outstanding, and 
optimum) and hydrological season (high-flow, intermediate-flow and low-flow months) in the revised variable monthly flow method. 
Extracted from Yu et al. (2021).

Months Poor Fair Good Excellent Outstanding Optimum

High-flow 0.10 0.30 0.40 0.50 0.60 0.70
Intermediate-flow 0.15 0.45 0.55 0.65 0.75 0.85
Low-flow 0.20 0.60 0.70 0.80 0.90 1.00
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Outflow discharge released by the spillway (Qout;t) is obtained 
in each time step with Equation (9), producing outflow hydro-
graphs. VEM uses the 10 000 inflow hydrographs associated 
with the 10 000 random initial reservoir water volumes in each 
scenario to obtain the 10 000 maximum reservoir water levels 
(WLmax). RP quantiles of WLmax are estimated from the 
empirical frequency curve of WLmax for each scenario.

3.6 Uncertainty assessment

Uncertainty assessment in the simulation chain aims to con-
sider all sources of error in the methodology. Several tools and 
methodologies are available to account for uncertainty 
(Refsgaard et al. 2007, Matott et al. 2009), as well as guidance 
to identify the most suitable uncertainty assessment tool (Van 
Der Keur et al. 2010). Katz (2002) recommends to disintegrate 
the uncertainty analysis and assess each element separately 
within an integrated framework. According to Morales- 

Torres et al. (2016), climate-related uncertainties have the 
greatest impact on risk analysis models for dam management. 
Indeed, high return periods are usually involved in dam risk 
analysis, but the time series length of observed data is not 
adequate for their characterization. For this reason, several 
studies have proposed to incorporate climate uncertainty in 
dam management both in future (Fluixá-Sanmartín et al. 
2021) and in the current scenario (Tarouilly et al. 2021).

The main sources of uncertainty in this study arise from both 
inflow hydrograph and reservoir water level probability estimates. 
Inflow hydrograph estimates in the future, i.e future flood quan-
tiles, have two sources of uncertainty: (i) uncertainty in delta 
changes of precipitation associated with a given return period 
(red in Fig. 5), and (ii) errors in design peak discharge estimates 
obtained with the RIBS model (blue in Fig. 5). In addition, the 
main source of uncertainty in initial reservoir water level esti-
mates comes from errors in HBV model simulations (green in 
Fig. 5).

Figure 4. Random generation of peak discharge and initial water levels (Qpeak–WLini pairs). (a) Feasible space of Qpeak–WLini pairs; (b) non-exceedance probabilities 
(NEPs) associated with Qpeak represented with return periods (RPs); (c) exceedance probabilities (EP) of WLini.

Figure 5. Uncertainty chain in the evaluation of hydrological dam safety. Three sources of errors are assessed: design rainfall uncertainty is red, and the uncertainty of 
the hydrological models is blue for RIBS and green for HBV. (Icons made by Sittipat Tojarean, Good Ware, Freepik and Umeicon from www.flaticon.com).
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First, the uncertainty in delta changes of precipitation 
quantiles obtained by Garijo and Mediero (2019) is assessed, 
as precipitation quantile estimates are obtained using short 
rainfall time series. Uncertainty is quantified by generating 
a set of 10 000 time series of annual maxima with a length of 
Nobs years, where Nobs is the number of years considered in 
each time window of the current and future periods to estimate 
rainfall quantiles. Delta changes of rainfall quantiles are 
obtained by comparing precipitation quantiles in a given 
time window with the control period. Therefore, 10 000 values 
of delta changes are obtained for each return period and 
scenario (combination of climate model, RCP, and time win-
dow). Ten thousand mean values of precipitation in the Eugui 
Dam catchment are calculated for each return period and 
scenario by analysing together the spatial distribution of 
delta changes and the spatial distribution of the raingauges 
used to determine the design rainfall in the current scenario, 
replicating the methodology of Lompi et al. (2021).

A support vector machine is trained to reproduce the per-
formance of the RIBS model using the simulations run in 
Lompi et al. (2021) to avoid the long computation times that 
would require the fully distributed hydrological model to 
simulate 5 040 000 events. Therefore, 10 000 values of peak 
flows are obtained for each return period and scenario, con-
sidering the precipitation values generated above.

The RIBS model uncertainty in the estimation of peak 
discharges is considered with a parameter KRIBS that 
represents the ratio between the observed, Qpeak;obs, and the 
modelled, Qpeak;RIBS, peak discharges. The observed peaks refer 
to the real event considered in the calibration of the model. 

KRIBS ¼
Qpeak;obs

Qpeak;RIBS
(10) 

A normal probability distribution is fitted to the KRIBS values, 
to generate random KRIBS values for each peak flow, aiming to 
consider the uncertainty of the RIBS model.

Seven percentiles are extracted from each set of 10 000 peak 
discharge values for each return period: 5%, 10%, 32%, 50%, 
68%, 90%, and 95%. A GEV distribution is fitted to the peak 
flow quantiles obtained for each percentile (Fig. 6). For each 
GEV distribution, 10 000 random NEPs (or RPs) values are 
generated (Section 3.4). Hydrograph shapes supplied by the 
RIBS model are associated with each Qpeak value.

Uncertainty in HBV model outputs is considered by calcu-
lating the KHBV coefficient, which is the ratio between the daily 
observed and modelled discharges obtained after the calibra-
tion of HBV, similarly to Equation (10) for the RIBS model. 
A normal distribution is fitted to the KHBV values. A random 
KHBV value is generated each day with such a normal distribu-
tion to include uncertainty in Qin;i that is the input data in the 
reservoir operation model (Equation 6). The uncertainty in 
HBV model outputs is considered to assess the uncertainty in 
the initial water level frequency curve. The complete time 
series of inflow discharge is corrected 50 times with random 
daily KHBV values, as producing 10 000 simulations with the 
reservoir operation model for each scenario is unaffordable 
due to the computational cost. A sensitivity analysis concluded 
that 50 simulations were sufficient, as the difference between 
the mean water level frequency curve obtained with 50 and 10 
000 simulations was negligible. The reservoir water level fre-
quency curve considered for estimating initial reservoir water 
levels is obtained as the mean value of the 50 water reservoir 
level frequency curves. A given initial reservoir water level is 
assigned to each synthetic inflow hydrograph.

3.7 Overtopping probability and delta changes estimates

The impact of climate change on hydrological dam safety is 
assessed using the overtopping probability and delta changes 
in maximum reservoir water level. Delta changes of max-
imum reservoir water levels (ΔWL) are obtained with 
Equation (11). 

Figure 6. Stochastic procedure to incorporate the uncertainty in inflow hydrograph estimates.
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ΔWL RPi; 50th� �
¼WLfut RPi; 50th� �

� WLcur RPi; 50th� �
(11) 

where WLfut RPi; 50th� �
is the maximum reservoir water 

level expected in the future associated with a given return 
period RPi for the 50th percentile after the uncertainty 
incorporation, and WLcur RPið Þ is the maximum reservoir 
water level in the current scenario for the return period RPi 
and the 50th percentile. If ΔWL is greater than zero, the 
maximum reservoir water level expected in the future will 
be greater than the current scenario. If ΔWL is lower than 
zero, the maximum reservoir water level expected in the 
future will decrease. ΔWL is obtained as the difference 
between the future and control periods, as all delta changes 
would be close to one if the ratio between water levels 
above sea level is considered.

The overtopping probability is the EP of the reservoir 
water level that corresponds to the maximum reservoir sto-
rage capacity at the dam crest. In addition, potential wave 
heights generated by wind are also considered with the 
Stevenson formula (Stevenson et al. 1981) (Equation 12) 
that can be used when no wind data are available. 
Therefore, overtopping is assumed to occur when the reser-
voir water level equals the dam crest elevation minus the wave 
height. 

hw ¼ 0:76þ 0:34 �
ffiffiffi
F
p
� 0:26

ffiffiffi
F4
p

(12) 

where hw is the wave height (m); and F is the fetch (km), which 
is the longest path over water from the dam to any point in the 
reservoir. The height considered in the study is four thirds of 
hw, as two thirds of hw is above the reservoir water level for 
a given wave, and water jumps to two thirds of hw above the 
wave crest when it hits the dam upstream face.

4 Results

This section presents the results of the methodology 
applied to the Eugui Dam case study. The results of the 
statistical analysis with observed data are shown in 
Section 4.1; the reservoir water levels and peak inflow 

discharges obtained in the future are presented in 
Section 4.2; and the findings on the changes in maximum 
reservoir water levels are in Section 4.3. Finally, the results 
that include the uncertainty assessment are given in 
Section 4.4.

4.1 Statistical analysis of observed data

A GEV distribution function is fitted to the AMS of 42 years of 
peak inflow discharges in the period 1979–2020 (Fig. 7(a)). In 
addition, the empirical distribution of reservoir water levels in 
the current scenario is obtained with 15-min observations in 
the period 1998–2021 (Fig. 7(b)). The two frequency curves are 
used in the stochastic procedure to assess the maximum reser-
voir water level frequency curve in flood events in the current 
scenario.

The maximum inflow peak discharge observed at the reser-
voir is 131.3 m3/s. The inflow peaks associated with return 
periods of 100, 500 and 1000 years are 170.9, 245.8 and 
285.1 m3/s, respectively.

The reservoir water levels oscillate between 615 and 626 m 
a.s.l. However, a reservoir water level of 620 m a.s.l. has an 
exceedance probability of around 90%. In addition, the EP of 
the water level at the spillway crest elevation (625 m a.s.l.) is 
29%. The maximum reservoir water level recorded is 
627.5 m a.s.l. Therefore, the EP of the water level associated 
with the upper limb of the gates (628 m a.s.l.) is zero in the 
period with observations.

4.2 Reservoir water levels and peak inflows in the future

The HBV model is calibrated in the Eugui Dam catchment 
with 13 years of observations (2008–2021). Figure 8 shows the 
results just in the period 2019–2022. A set of 20 000 random 
combinations of the 11 HBV model parameters is considered 
using Monte Carlo simulations. The efficiency of the model, 
quantified by the Reff statistic, is 0.8556; this reaches the 
calibration target, as the Reff value is greater than 0.85. The 
performance of the model in the validation period remains 

Figure 7. Frequency curves in the current scenario: (a) peak inflow discharges in the reservoir; (b) reservoir water levels.
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good according to Moriasi et al. (2015): Reff (NSE) is equal to 
0.773, RSR is 0.476 and PBIAS is −5.64%.

Monthly environmental flows (EFm) used in the reservoir 
operation model are presented in Table 4. The time series of 
daily inflow discharges to the Eugui reservoir simulated by the 
HBV model in the current scenario (2008–2021) are used as 
input data for the reservoir operation model described in 
Section 3.3, to simulate daily reservoir water levels in the last 
13 years. The reservoir operation model is also calibrated using 
Monte Carlo simulations, aiming to reduce the bias between 
daily simulated and observed reservoir water levels. Varying 
values of the 36 parameters αm, βm, γm of the reservoir 

operation model have been considered (Section 3.3), analysing 
the RMSE and NSE between observed and simulated daily 
water levels. Figure 9 shows that the simulated frequency 
curve of WL is close to the frequency curve fitted to 
observations.

Moreover, the Kolmogorov-Smirnov two-sample statistical 
test is conducted on the two empirical cumulative distribu-
tions, and the p value of .044 shows that the calibration of the 
reservoir operation model is good. Indeed, the closer the 
p value is to 0, the more likely it is that the two samples 
come from the same distribution. Nevertheless, this is just 
intended to assess the goodness of the calibration as the 

Figure 8. Results of the calibration (solid line) and of the validation (dashed line) of the HBV model in the period 2019–2022. The blue line represents the observed daily 
discharges by the HBV model, while the red line shows the observations.

Table 4. Monthly environmental flows used in the reservoir operation model.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

EFm [m3/s] 2.51 2.72 2.46 1.87 1.43 1.44 1.02 0.92 0.93 1.20 1.87 2.18

Figure 9. Calibration results for the reservoir operation model. The dashed blue line represents the empirical frequency curve of reservoir water levels extrapolated 
from the observations. The red line represents the reservoir water levels simulated by the reservoir operation model.
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empirical frequency curves do not come from a given distribu-
tion, as they are the results of a hydrological model rather than 
a statistical analysis.

Future initial reservoir water levels for each climate model, 
RCP and future period are assessed. Climate projections of 
rainfall and temperature are used as input data for the cali-
brated HBV model, obtaining time series of daily inflow dis-
charges in the reservoir (Qin) (Fig. 10(a)). The calibrated 
reservoir operation model uses Qin as input data to simulate 
the time series of daily reservoir water levels (Fig. 10(b)).

Three future periods are considered – 2011–2040, 2041– 
2070, and 2071–2100 – corresponding to the periods used in 

Lompi et al. (2021). Initial reservoir water level frequency 
curves are obtained from the outputs of HBV and reservoir 
operation models (Fig. 11). Figure 11 shows the impact of 
climate change on initial reservoir water levels expected at 
the beginning of flood events. In the future, reservoir water 
levels are expected to decrease compared with water levels in 
the current scenario. Such a decrease is clear for the 12 climate 
models in both RCPs, but it is greater in RCP 8.5 than in RCP 
4.5. In addition, flood peaks will increase over time for RCP 
8.5, with the greatest changes expected in the 2071–2100 time 
window. Therefore, the greatest flood events will encounter 
lower reservoir initial water levels.

Figure 10. Results for the MPI-CCL climate model and RCP 4.5 in the period 2006–2100. (a) Inflow discharge time series in the reservoir simulated by the HBV model; (b) 
reservoir water levels obtained by the reservoir operation model.

Figure 11. Initial reservoir water level and inflow peak discharge frequency curves for the ICH-CCL climate model in the three time windows. The left column shows the 
results for RCP 4.5. The right column offers the results for RCP 8.5. Each time window is represented with a different colour. Control periods are illustrated with dashed 
lines and future periods with solid lines.
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4.3 Changes in maximum reservoir water levels

Figure 12 shows the expected elevations of maximum reservoir 
water levels (WLmax) in flood events for the IPS-WRF climate 
model. The dam is represented in grey, showing that the 
maximum water levels should not exceed the dam crest eleva-
tion at 630 m a.s.l. In addition, the overtopping threshold is 
fixed to the elevation of 628.71 m a.s.l., to consider potential 
wave heights induced by wind (Section 3.7). If WLmax exceeds 
the overtopping threshold, it is assumed that water can exceed 
the dam crest. Figure 12 also shows the expected delta changes 
in maximum reservoir water levels (ΔWL). ΔWL positive 
values point to an increase in the maximum reservoir water 
levels in flood events in the future. ΔWL negative values 
indicate a decrease in the maximum reservoir water levels in 
flood events in the future.

Figure 12 shows how the operation of spillway gates can 
maintain the maximum reservoir water level at the elevation of 
their upper limb (628 m a.s.l.) for the events with an RP 
between five and 500 years, despite the fact that inflow peak 
discharges associated with different return periods can differ. 
Nevertheless, maximum peak outflow discharges increase for 
the highest return periods to avoid exceeding the elevation of 
the upper limb of the spillway gates. Only a slight increase in 
the maximum reservoir water level for the 500- and 1000-year 
RP is obtained for RCP 4.5 in the 2011–2040 time window. 
Similarly, the greatest expected changes in maximum reservoir 
water levels in RCP 4.5 for the 1000-year flood are found in the 
2011–2040 time window for 10 out of 12 climate models. 
Figure 12 also shows how the greatest expected changes of 
maximum water levels are in the 2041–2070 time window for 

RCP 8.5, where the maximum reservoir water level can cause 
dam overtopping. Nevertheless, the IPS-WRF climate model is 
the only one with these highest water levels expected in such 
a time window. Indeed, while five of the 12 climate models 
show that the greatest maximum water levels are expected at 
the end of the century in RCP 8.5, in six climate models no 
changes are expected in this emission scenario.

4.4 Uncertainty assessment

GEV distribution functions are fitted to the 12 climate models 
(Fig. 6) for the three time windows (2011–2040, 2041–2070), 
two emission scenarios (RCP 4.5, RCP 8.5) and seven percen-
tiles (5%, 10%, 32%, 50%, 68%, 90% and 95%) to consider the 
uncertainty in inflow peak estimates. Figure 13 shows the 
results considering the uncertainty chain, representing the 
maximum reservoir water level frequency curve for the seven 
percentiles. Moreover, the results obtained previously without 
accounting for the uncertainty shown in Fig. 12 are also pre-
sented, with red dots.

Figure 13 highlights the importance of considering uncer-
tainty in the methodology. In some cases, the uncertainty 
assessment supplies a confidence interval to the results 
obtained without uncertainty, and the red dots overlap the 
curve for the 50th percentile, as for example in the 2041–2070 
time window for RCP 8.5. In other cases, the results without 
considering the uncertainty (red dots) are below the median 
values obtained considering uncertainty, usually underesti-
mating the maximum reservoir water levels. For example, for 
the time window 2071–2100 in RCP 8.5, the results obtained 

Figure 12. Comparison of maximum reservoir water level frequency curves in the three periods in the future with the control period for the IPS-WRF climate model. The 
top row shows maximum reservoir water level elevations and the bottom row shows the delta changes in maximum reservoir water levels. The horizontal dashed red 
line that crosses 628.7 m a.s.l. in the upper figures represents the overtopping threshold. The grey box represents the dam with its crest elevation at 630 m a.s.l. The 
dashed green line in all the sub-plots represents the control period. Future periods are represented with solid lines for RCP 4.5 on the left and for RCP 8.5 on the right.
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without assessing the uncertainty do not point to an increase in 
the hydrological dam risk, although an increase of almost 
1 m is expected when the uncertainty is considered.

A complete overview can be obtained by joining the 
results of the 12 climate models. For a given scenario, delta 
changes in maximum reservoir water levels are quantified 
with the difference between their median value (50th percen-
tile) and the control period (Section 3.7). Delta changes for 
the 12 climate models are joined in the box plot shown in 
Fig. 14. The expected maximum reservoir water levels in the 

future can be obtained by applying the delta changes to the 
maximum reservoir water level frequency curve in the cur-
rent scenario (Fig. 14), offering information about the 
expected changes in maximum reservoir water levels. The 
information about the overtopping probability is shown in 
Table 5 and Fig. 15, where the probabilities for the 12 climate 
models, scenarios and time windows are extracted from the 
50th percentiles after the uncertainty incorporation. Figure 14 
(a) shows that no overtopping risk is expected for events 
with an RP below 1000 years in the current scenario. The 

Figure 13. Expected maximum reservoir water levels in the future for the IPS-WRF climate model considering uncertainty. The top row includes the results for RCP 4.5 
and the bottom row includes the results for RCP 8.5. Columns present results by time windows in the future. The thickest solid blue line represents the median values. 
Thinner solid light blue lines represent the rest of the percentiles. Red points represent the results without considering uncertainty for the seven return periods. The 
grey box represents the dam with its crest elevation at 630 m a.s.l. The horizontal dashed red line represents the overtopping threshold.

Figure 14. (a) Maximum reservoir water level frequency curve in the current scenario; (b) delta changes in maximum reservoir water levels for the ensemble of 12 
climate models considering uncertainty.
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delta changes for the 50th percentile, for RPs between 5 and 
500 years in the three time windows and two emission 
scenarios, point to no expected changes in maximum reser-
voir water levels in the future with high confidence. This is 
because the spillway gate operation can maintain the max-
imum water level at 628 m a.s.l. for the magnitude of such 
events. Nevertheless, despite dam operations that can main-
tain the maximum water level at 628 m a.s.l., outflow dis-
charges will increase to maintain such a level in those RPs. 
A higher variability is found in the results associated with the 
RP of 2, 500 and 1000 years. In the first case, the variability is 
generated by many cases in which maximum reservoir water 
levels are below 628 m a.s.l., which is the water level when 
the spillway gates begin to operate. For extreme events with 
return periods of 500 and 1000 years, the variability is driven 
by water levels above 628 m a.s.l., as dam operations are not 
able to maintain such a water level because the spillway does 
not have sufficient capacity to release the outflow discharges 
required to avoid increasing water levels.

Table 5 shows the number of climate models with an 
overtopping probability greater than 10−4 in each scenario. 
Zero values correspond to probabilities smaller than 10−4, as 
each scenario is characterized by 10 000 synthetic events. The 

current scenario has an overtopping probability equal to zero 
as the most extreme synthetic event causes a reservoir max-
imum water level of 628.45 m a.s.l., which is under the over-
topping threshold (628.71 m a.s.l.). Dam overtopping is more 
likely to occur in RCP 8.5 in the 2071–2100 time window, 
where nine climate models show a probability greater than 
zero. This is evident by analysing the median values of the box 
plots that ensemble the dam overtopping probabilities in 
Fig. 15. Only RCP 8.5 has non-zero median values, especially 
in the time window 2071–2100 when the dam overtopping 
probability is 0.0016 (RP = 625 years).

5 Discussion

The decreasing pattern in initial water levels at the beginning 
of flood events in Fig. 11 agrees with the results of many other 
studies. Indeed, a warmer climate will lead to a decrease in 
reservoir storage volumes because catchment runoff volumes 
will decrease and evapotranspiration rates will increase at the 
Eugui Dam, as detected by Konapala et al. (2020) globally. 
These results also agree with Fluixá-Sanmartín et al. (2019b), 
who found similar results in another dam in western Spain. In 
this study, such decreasing reservoir water levels are related to 

Table 5. Extracted overtopping probability obtained with the 50th percentile for the 12 climate models considering the incorporation of uncertainty. Zero 
values correspond to probabilities smaller than 10−4.

Climate model

RCP 4.5 RCP 8.5

2011–2040 2041–2070 2071–2100 2011–2040 2041–2070 2071–2100

ICH-CCL 0 0 0 0 0 0.0023
MPI-CCL 0.0208 0.0105 0.0157 0.0214 0.0016 0.0121
MOH-RAC 0 0 0 0 0 0
CNR-CCL 0 0.0037 0.0021 0.0018 0.0006 0.0026
ICH-RAC 0 0.0009 0.0016 0.0001 0 0.0005
MOH-CCL 0 0 0.0002 0.0033 0 0.0028
IPS-WRF 0.0012 0 0 0.0012 0.0042 0.0014
IPS-RCA 0.0007 0.0003 0 0.0011 0.004 0.0004
MOH-RCA 0 0 0 0 0 0
ICH-RCA 0 0.0003 0.0001 0.0003 0.0004 0.0023
CNR-RCA 0.0009 0 0.0007 0 0.0002 0
MPI-RCA 0.0002 0 0 0.0006 0.0006 0.0018

Figure 15. Overtopping probability with the ensemble of the 12 climate models accounting for the uncertainty in the three time windows. (a) RCP 4.5; (b) RCP 8.5. The 
dashed black line represents the overtopping probability in the current scenario, which is zero as it is lower than 10−4.
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two different drivers. First, a greater mean temperature in the 
Eugui Dam catchment will increase evapotranspiration rates in 
the reservoir, decreasing water storage volumes, and reducing 
soil moisture content in the catchment. Second, a lower mean 
annual precipitation in the catchment will reduce runoff 
volumes, decreasing reservoir water storage volumes and 
levels. In addition, the decreasing trend in reservoir storage 
volumes in the future at the Eugui Dam agrees with the 
reduction of water availability in some Mediterranean lakes 
(Bukac et al. 2017) and catchments (Iglesias et al. 2007). 
Moreover, global annual mean reservoir evaporation rates 
are expected to increase by 16% by 2100 (Woolway et al. 
2020). Furthermore, mean annual streamflows are projected 
to decrease in the southern part of Europe (Blöschl et al. 2019).

Lompi et al. (2021) found the greatest expected changes in 
flood quantiles in the 2011–2040 time window in RCP 4.5, when 
the peak of emission occurs. In this study, 10 of the 12 climate 
models also show the greatest delta changes of maximum water 
levels in such a scenario, pointing to a relationship between the 
future hydraulic dam safety and the greenhouse gas emission 
peak. However, this signal becomes negligible (median ΔWL = 
5 cm) when the uncertainty is incorporated into the methodol-
ogy and the ensemble of all climate models is considered 
(Fig. 14). Indeed, no increase in the overtopping probability is 
found in this scenario (Fig. 15). Figure 12 shows that the greatest 
changes of maximum water levels are expected in the 2041–2070 
time window. This result may be just an anomaly, however, 
representing an outlier both in the ensemble of delta changes 
of maximum water levels (right part of Fig. 14) and in the 
overtopping probabilities (right part of Fig. 15). Moreover, the 
greatest expected changes in maximum reservoir water levels 
(right part of Fig. 14) are expected in the peak of emissions, i.e. 
the end of the 21st century in RCP 8.5, when the ensemble of all 
the climate models and uncertainty are considered. Indeed, even 
if the variability of the delta changes associated with the most 
extreme event is evident for both the emission scenarios, the 
median values of the box plots show an increase in the max-
imum reservoir water level only in RCP 8.5, especially in the 
2071–2100 time window, with an increase of 0.67 m for the 
1000-year flood. In addition, such an increase can generate dam 
overtopping when it is summed to the maximum reservoir water 
level in the current scenario. In other case studies, similar results 
were obtained by Mallakpour et al. (2019), who found that 
hydrological failure probability is likely to increase for most 
dams in California by 2100 in RCP 8.5, while the results do 
not agree with Fluixa-Sanmartin et al. (2019b), who found no 
clear signal for such a scenario, as in this case the higher prob-
ability of social and economic risk was found in RCP 4.5.

Uncertainty assessment has a key role in the evaluation of 
hydrological dam safety. Assessments carried out without 
incorporating uncertainty tend to underestimate both the 
delta changes of maximum water levels and the overtopping 
probabilities in all the climate models and scenarios. This 
could be driven by underestimates in rainfall quantiles and 
by the uncertainty in the RIBS hydrological model that tends to 
underestimate flood peaks at the Eugui Dam. Therefore, the 
inclusion of uncertainty with the coefficient KRIBS tends to 
increase the results obtained without considering the 
uncertainty.

Future changes in land cover upstream of the dam can 
affect the overtopping risk, but in both the hydrological 
models this is not considered also because it is very uncer-
tain. Climate change impacts not only hydrograph peak 
discharges but also flood volumes, with expected changes 
not necessarily proportional to the peak (Brunner et al. 
2018). For this reason, an improvement of the proposed 
methodology could be the generation of random hydrograph 
shapes for the inflow hydrograph in the reservoir to also 
consider future flood volumes in a multivariate framework. 
Moreover, the stochastic procedure proposed in this study 
considers the impact of climate change on hydrological dam 
safety on an annual basis, not considering the seasonality of 
inflow peaks and reservoir water level frequency. However, 
peak discharge and initial reservoir water levels at the begin-
ning of the flood event can depend on the season. Indeed, 
reservoir water levels are usually higher in late spring than in 
early autumn at the end of the dry season, as part of the 
storage volume is used for water supplies in summer. 
Therefore, future research will focus on the seasonality of 
the climate change impact on hydrological dam safety.

The proposed methodology can be also useful for decision 
makers who use different hydrological models. Indeed, if other 
calibrated hydrological models are used, even with higher resi-
dual uncertainty, the outcomes of the hydrological dam safety 
assessment study are expected to be similar, as the uncertainty 
assessment provides results close to the observations.

Lastly, the results of the impact of climate change on hydro-
logical dam safety can vary when a different set of climate 
projections is used. In this study, most of the GCMs/RCMs 
considered point to increasing risk for the Eugui Dam in RCP 
8.5, especially at the end of the century. Therefore, the signal 
(increasing risk in the future) seems to be consistent regardless 
of the climate models that are considered, although the mag-
nitude of the changes could depend on the climate model and 
the projections considered. In this study, climate projections 
from the Coupled Model Intercomparison Project Phase 5 
(CMIP5) were considered, as they are already downscaled by 
the EURO-CORDEX Program to a small spatial scale (0.11° 
grid spacing) which is suitable for impact assessment studies 
on a small river basin. Currently, CMIP5 climate projections 
have higher spatial resolution than CMIP6 projections do. We 
recommend the future development and use of the CMIP6 
climate projections when available with finer a spatial scale to 
assess whether the results are sensitive to the climate projec-
tions used as input data.

6 Conclusions

A methodology to assess the impact of climate change on 
hydrological dam safety has been presented. Two hydro-
logical models were used with climate projections supplied 
by an ensemble of 12 climate models as input data. The 
HBV continuous hydrological model was used to assess the 
impact of climate change on the reservoir water level 
frequency that supplies information about the expected 
initial reservoir water level in the future. The distributed 
and event-based RIBS hydrological model was used to 
transform the delta changes in precipitation quantiles 
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expected in the future into delta changes in peak flow 
quantiles. Moreover, all the sources of uncertainty in the 
methodology were assessed and incorporated to obtain 
sounder results that can increase the reliability of the 
conclusions.

The results show how climate change will have an 
impact on the initial water level expected at the beginning 
of flood events in the future, as well as on expected inflow 
peak discharges, reducing the hydrological dam safety. 
Indeed, the greatest expected changes in the maximum 
reservoir water levels will be expected at the end of the 
century in the scenario with higher emissions (RCP 8.5). 
At the same time, the results show how reducing emissions 
around 2040 (RCP 4.5) could lead to greater hydrological 
dam safety in the future. A warmer climate will lead to 
a decrease in the initial water levels in the reservoir, 
increasing the flood routing capacity of the dam to reduce 
outflow peaks, although with possible impacts on water 
management or energy production. Nonetheless, since the 
overtopping probability will in any case increase at the end 
of the century in RCP 8.5, dam managers will have to 
adapt strategies to optimize the water resource manage-
ment in that scenario, lowering the reservoir water levels to 
face an increased risk with further implications for the 
water resources. The expected changes in maximum reser-
voir water levels in flood events will lead to changes in 
maximum outflow discharges. Therefore, regional and local 
civil protection bodies will need to adapt their current 
emergency plans for downstream of dams to new climate 
change scenarios. Indeed, local municipalities could con-
sider the expected potential changes in outflow discharges 
released by upstream dams in their urban plans and poten-
tial mitigation measures to reduce flood risk, improving 
flood resilience in urban areas.

The stochastic procedure presented in this study incor-
porates the main sources of uncertainty and shows it is 
crucial in a hydrological dam safety analysis. Indeed, 
underestimates in maximum water levels and overtopping 
probabilities are obtained when the uncertainty is not 
included in the analysis. The results of this study are 
focused on the Eugui Dam, thus the conclusions cannot 
be extended to other dams. However, the methodology 
proposed can fulfil the requirements of recent dam regula-
tions that demand the inclusion of climate projections in 
hydrological dam risk assessment analyses, such as the 
latest Spanish regulation about dam safety (BOE, 2021).
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