
RAIRO-Theor. Inf. Appl. 58 (2024) 13 RAIRO - Theoretical Informatics and Applications
https://doi.org/10.1051/ita/2024010 www.rairo-ita.org

SORTING WITH A POPQUEUE

Lapo Cioni and Luca Ferrari*

Abstract. We introduce a new sorting device for permutations, which we call popqueue. It consists
of a special queue, having the property that any time one wants to extract elements from the queue,
actually all the elements currently in the queue are poured into the output. We illustrate two distinct
optimal algorithms, called Min and Cons, to sort a permutation using such a device, which allow us
also to characterize sortable permutations in terms of pattern avoidance. We next investigate what
happens by making two passes through a popqueue, showing that the set of sortable permutations is
not a class for Min, whereas it is for Cons. In the latter case we also explicitly find the basis of the class
of sortable permutations. Finally, we study preimages under Cons (by means of an equivalent version of
the algorithm), and find a characterization of the set of preimages of a given permutation. We also give
some enumerative results concerning the number of permutations having k preimages, for k = 1, 2, 3,
and we conclude by observing that there exist permutations having k preimages for any value of k ≥ 0.

Mathematics Subject Classification. 05A05, 68R05, 68W32.

Received December 12, 2022. Accepted February 23, 2024.

1. Introduction

Sorting algorithms for permutations using several kinds of containers have been extensively studied in the
last decades. In particular, containers like stacks and queues turn out to be of particular interest. Some classical
papers dealing with these matters are, for instance, [1–3], whereas some more recent ones are [4–7]. This is,
however, only a very small fraction of the literature dedicated to sorting permutations with stacks and queues,
which at present amounts to several dozens of articles.

The most classical and fundamental of these sorting algorithms is Stacksort [8], which attempts to sort
a permutation by making use of a stack. One of the many modifications of the Stacksort algorithm uses a
popstack in place of a stack, and was first studied in [9], where the authors also considered the case of several
popstacks in series. We will refer to such an algorithm as Popstacksort. However, it took many years until
Pudwell and Smith [10], and successively Claesson and Guðmundsson [11], started to investigate the case of two
or more passes from a popstack, and explicitly provide the (rational) generating functions for the corresponding
sortable permutations.

By replacing the stack with a queue (and also allowing the bypass of the queue) one obtains another interest-
ing (and much less studied) sorting algorithm, usually called Queuesort. Much information on Queuesort can
be found in [12], whereas a detailed analysis of the preimages under the associated operator has been recently

Keywords and phrases: Sorting algorithm, popqueue, enumeration, pattern avoidance, permutation.

Dipartimento di Matematica e Informatica “U. Dini”, University of Firenze, Firenze, Italy.

* Corresponding author: luca.ferrari@unifi.it

© The authors. Published by EDP Sciences, 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ita/2024010
https://www.rairo-ita.org
mailto:luca.ferrari@unifi.it
https://creativecommons.org/licenses/by/4.0

2 L. CIONI AND L. FERRARI

Figure 1. A popqueue.

pursued in [13, 14]. In the present paper we define a new sorting device that specializes Queuesort in the
same way as Popstacksort specializes Stacksort. Our main results are a characterization and enumeration
of permutations sortable with a popqueue, as well as the description of two optimal sorting algorithms, which
are able to sort all sortable permutations but employ different strategies. We then investigate what happens by
performing twice each of the two sorting algorithms, showing that the corresponding sets of sortable permuta-
tions are different (notably, in one case we get a class, whereas in the other case we do not). Finally, the last
part of the paper is devoted to the study of preimages of one of our sorting algorithms, namely we provide a
description of the set of all preimages of a given permutation as well as a few related enumeration results. We
close the paper by giving some hints for further work.

2. Preliminary notions and results

A popqueue (see Fig. 1) is a data structure where we can insert and extract elements using a FIFO (i.e.,
first in first out) policy, with the further requirement that the extraction operation consists of removing all
the elements in the container. Thus a popqueue is a special type of queue, with the only difference that an
extraction operation removes all the elements in the container instead of removing only the one in the front of
the queue.

A popqueue can be used as a sorting device for permutations. Namely, the allowed operations are the following:

e: enqueue, insert the current element of the input permutation into the popqueue, in the last position;
p: pop, remove all the elements currently in the popqueue, from the front to the back, and send them into

the output;
b: bypass, move the current element of the input permutation into the output.

Starting from an arbitrary input, several different permutations can be obtained, depending on the order in
which the above operations are carried out. However, since we are interested in sorting a given input permutation,
we will say that a permutation is sortable when there exists a sequence of operations that output the identity
permutation. One of our main goals is to provide an optimal sorting algorithm, which is able to sort all sortable
permutations. In designing such an algorithm, it will be important to define it also on nonsortable permutations;
this will allow us to iterate it, in order to be able to study devices consisting of popqueues connected in series.

As it is usual in this framework, our sorting device can be conveniently described and studied by means of
the notion of pattern of a permutation.

Given two permutations σ = σ1σ2 · · ·σk, τ = τ1τ2 · · · τn, with k ≤ n, we say that σ is a pattern of τ whenever
there exist indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that σ is order-isomorphic to τi1τi2 · · · τik (i.e., for all l,m,
σl < σm if and only if τil < τim). See Figure 2 for an example. If T is any set of permutations, then the set of all
permutations avoiding each pattern of T is denoted Av(T), whereas Avn(T) is the subset of Av(T) consisting
of permutations of length n. The set S of all permutations of finite length can be partially ordered using the
notion of pattern, by declaring σ ≤ τ whenever σ is a pattern of τ . In the poset (S,≤), sets of the form Av(T),
for some T ⊆ S, are called permutation classes, and it is easy to see that they are downsets (i.e. they are closed
downwards). In what follows, we will also use the notation Sn to denote the set of all permutations of length n.

Thanks to the notion of pattern, we can provide a necessary condition for a permutation to be sortable.

SORTING WITH A POPQUEUE 3

Figure 2. The permutation 361 579 824 contains the pattern 21 453 (in red).

Proposition 2.1. If a permutation π ∈ S contains an occurrence of the pattern 321 or of the pattern 2 413
(i.e., π /∈ Av(321, 2 413)), then π is not sortable.

Proof. Suppose that π contains an occurrence cba of the pattern 321, and suppose by contradiction that π is
sortable. Then c must enter the popqueue, because otherwise it would reach the output before a. For the same
reason, b has to enter the popqueue. As a consequence, c exits the popqueue before b, which is a contradiction.
On the other hand, if the sortable permutation π contains an occurrence bdac of the pattern 2413, when a is
the current element in the sorting process, the elements b and d are both inside the popqueue (since a must
reach the output before both of them). Thus b and d are popped from the popqueue at the same time, so they
reach the output before c, which is again a contradiction (since π is assumed to be sortable).

3. Two optimal sorting algorithms

We now provide two different sorting algorithms which, although rather similar, have a noticeably different
behavior when applied twice. The first algorithm, called Min, takes as input a permutation π = π1π2 · · ·πn and
is described below (Alg. 3.1). In the description, Q denotes the popqueue, Front(Q) is the current first element
of the queue and Back(Q) is the current last element of the queue.

Algorithm 3.1 Min

Q := ∅;
for i = 1, . . . n do

if Front(Q) < πj, for all j ≥ i then
execute p; execute e;

else if Back(Q) < πi then
execute e;

else if Front(Q) > πi then
execute b;

else
execute p; execute e;

execute p;

The reason for the name Min comes from the fact that, whenever the first element of the popqueue is the
next one to output (i.e., it is the minimum element not already in the output), the algorithm pours the whole
content of the popqueue into the output. If this is not the case, the current element of the input is enqueued,
provided that it is larger than the element in the back of the popqueue; otherwise the smallest between the

4 L. CIONI AND L. FERRARI

Figure 3. Performing the algorithm Min on the (unsortable) permutation 24 135.

current element and the element in the front of the popqueue is output (of course, in the latter case the whole
content of the popqueue reaches the output). An example of the execution of Min is given in Figure 3.

Min is an optimal sorting algorithm, as it is shown in the next proposition.

Proposition 3.1. Let π ∈ Sn and denote with Min(π) the output of Min with input π. Then Min(π) ̸= idn if
and only if 321 ≤ π or 2 413 ≤ π.

Proof. By Proposition 2.1, we know that a permutation containing 321 or 2 413 is not sortable.
On the other hand, suppose that Min(π) ̸= idn, and consider the first configuration in which an incorrect

element reaches the output (here “incorrect” means that it is not the minimum element not already in the
output). If such an element comes to the output after executing a bypass operation, then we call it b and we
observe that it must be smaller than the front element c of the queue. Moreover, there must be an element a < b
not yet in the output, otherwise b would be the correct element to output. Since (the content of) the queue is
increasing by construction, then a must be in the input, hence π contains an occurrence cba of the pattern 321.

Otherwise, if the first incorrect element goes through the queue and reaches the output after executing a
pop operation, then we have two possibilities. In the first case, the first element b of the queue is the smallest
element not yet in the output, but the sorting procedure fails because there are elements d inside the queue and
c in the input such that d > c. In such a case, the last element which has reached the output is b− 1, and this
necessarily happened after a bypass operation when b and d were already in the queue (otherwise b would be
already in the output). Therefore the elements b, d, b− 1, c form an occurrence of the pattern 2 413 in π. In the
second case, if the minimum element a not yet in the output is not the first element of the queue, then a must

SORTING WITH A POPQUEUE 5

Figure 4. Performing the algorithm Cons on the (unsortable) permutation 24 135.

still be in the input, and the last element c of the queue must be larger than the current element b of the input
(which is in turn larger than a). Therefore π contains an occurrence cba of the pattern 321.

The second algorithm we describe is Cons, which again takes as input a permutation π = π1π2 · · ·πn. The
notations are the same as in the description of Min.

Algorithm 3.3 (Cons).

Q := ∅;
for i = 1, . . . n do

if πi = Back(Q) + 1 then
execute e;

else if Front(Q) > πi then
execute b;

else
execute p; execute e;

execute p;

The name Cons comes from the first instruction, which forces the content of the queue to consist of consecutive
elements during the whole execution. An example of the execution of Cons is given in Figure 4.

As it happened for Min, also Cons is an optimal sorting algorithm.

Proposition 3.2. Let π ∈ Sn and denote with Cons(π) the output of Cons with input π. Then Cons(π) ̸= idn
if and only if 321 ≤ π or 2 413 ≤ π.

Proof. We already know, by Proposition 2.1, that a permutation containing either the pattern 321 or the pattern
2 413 is not sortable. On the other hand, suppose that Cons(π) ̸= idn, and consider the first configuration in
which an “incorrect” element reaches the output. If the incorrect element b comes directly from the input, by

6 L. CIONI AND L. FERRARI

performing a bypass operation, then an argument completely analogous to that used in Proposition 3.1 shows
that π contains the pattern 321.

Otherwise, if the first incorrect element goes to the output after a pop operation, then let b be the last
element of the queue, d > b + 1 be the current element of the input and a be the smallest element not yet in
the output. Then b + 1 and a must still be in the input, because Q consists of consecutive elements and no
incorrect element reached the output yet. So either π contains the occurrence bda(b+ 1) of the pattern 2 413,
or π contains the occurrence d(b+ 1)a of the pattern 321.

We thus have two different optimal sorting algorithms, which follow distinct heuristics to sort π. Although
the set of sortable permutations is the same, the output of Min and Cons is different in general. For instance,
Min(2 413) = 1 243 and Cons(2 413) = 2 134. We remark that both heuristics are somehow reasonable in the
framework of permutation sorting. First of all, neither Min nor Cons create new inversions. Moreover, if the first
element of the queue is the minimum element among those not yet in the output, then it is reasonable to pop the
queue immediately, as Min does, because the same thing would certainly be done before performing any bypass
operation. On the other hand, if we were to allow non-consecutive elements in the queue, then the output would
certainly not be the identity permutation, so it is reasonable to impose that the elements inside the queue are
consecutive, as Cons does. Both ideas give us optimal algorithms, whose outputs differs only for nonsortable
permutations, although the order in which the single operations are executed may be different even for sortable
permutations. One could be tempted to see what happens when using both heuristics, by designing an algorithm
that only allows consecutive elements inside the queue, and (at the same time) pops the queue whenever its
front element is the next one to be output. However, the resulting algorithm would actually be equivalent to
Cons, because the output would be the same, although operations would be performed in a different order in
general, by prioritizing pop operations over enqueue ones.

As a consequence of the results of this section, we thus have that the set of sortable permutations of length n
is Avn(321, 2 413). The enumeration of such a class is known [15]: this is the sequence of even-indexed Fibonacci
numbers (sequence A001519 in [16]), whose first terms are 1, 1, 2, 5, 13, 34,

We close this section by proving some properties of Cons that will be useful later. Given a permutation
π = π1 · · ·πn, an element πi is called a left-to-right maximum (briefly, LTR maximum) when it is greater than
πj , for all j < i.

Lemma 3.3. Let π = π1 · · ·πn ∈ Sn. When performing Cons on π, πi enters the queue if and only if it is a
LTR maximum. Moreover, the relative order of the non-LTR maxima of π is preserved in Cons(π).

Proof. The proof is by induction on the number of steps during the execution of Cons. The first element π1

is always a LTR maximum, and is in fact enqueued. Now suppose by induction that, at some point, all the
elements currently enqueued are LTR maxima, and none of the LTR maxima has not been enqueued. We will
prove that this remains true after Cons has executed its next instruction. Let πi be the current element of the
input. If πi = Back(Q) + 1, then πi is greater than Back(Q) and thus it is greater than all the previous LTR
maxima, because they all entered the queue in increasing order by the induction hypothesis. Therefore πi is
a LTR maxima as well, and is in fact enqueued by Cons. If instead πi is smaller than Front(Q), then it is
not a LTR maximum by definition, and it bypasses the queue. Finally, if πi > Back(Q) + 1, then πi is a LTR
maximum by the same argument as for the case πi = Back(Q), and it is in fact enqueued (after having popped
the queue).

Finally, if a and b are not LTR maxima of π, they do not enter the queue, hence they keep their relative
order in the output.

This lemma does not hold for Min. Indeed, although every LTR maximum does enter the queue, some non-
LTR maxima may also enter it (for example, the element 4 in 25 143 enters the queue). It is interesting to note
that the optimal sorting algorithm that uses a classical queue (known as Queuesort, see [13]) has the same
properties described in the above lemma.

SORTING WITH A POPQUEUE 7

4. Two passes through a popqueue

As we have already observed, Min and Cons are both optimal sorting algorithms, even if they exploit different
strategies. In particular, the images of unsortable permutations are different, and this is clearly relevant when
we run each of the two algorithms multiple times.

In this section we investigate permutations which are sortable by running each of the previous algorithms
twice. This has been done for Stacksort by West [3], who found that the set of sortable permutations is not a
class; nevertheless it can be described in terms of the avoidance of a pattern and a barred pattern.

We start by defining the sets Sort
(k)
M and Sort

(k)
C of permutations sortable by k applications of Min and Cons,

respectively, that is Sort
(k)
M = {π ∈ S | Mink(π)) = id} and Sort

(k)
C = {π ∈ S | Consk(π)) = id}. In the previous

section we have shown that Sort
(1)
M = Sort

(1)
C = Av(321, 2 413). It is interesting to notice that Sort

(2)
M and

Sort
(2)
C are instead unrelated from the point of view of set containment. Indeed, consider the permutations 2 431

and 35 214. We have Min(Min(2 431)) = 1 243 and Cons(Cons(2431)) = 1 234, hence 2 431 ∈ Sort
(2)
C \Sort(2)M . On

the other hand, Min(Min(35 214)) = 12 345 and Cons(Cons(35 214)) = 21 345, hence 35 214 ∈ Sort
(2)
M \ Sort(2)C .

This shows that Min2 is capable of sorting permutations that Cons2 is unable to sort, and vice versa.

What we show next is that Sort
(2)
M and Sort

(2)
C are not just distinct sets; they also have different features

from the point of view of pattern containment. More precisely, Sort
(2)
C is a permutation class, whereas Sort

(2)
M

is not.

Proposition 4.1. The set Sort
(2)
M is not a permutation class.

Proof. Given the permutation 241 653, we have that Min(Min(241 653)) = 123 456, however Min(Min(2 431)) =
1 243, and clearly 2 413 ≤ 241 653.

Proposition 4.2. Let π ∈ Sn be such that π contains one of the following patterns:

� 4 321;
� 35 241;
� 35 214;
� 52 413;
� 25 413;
� 246 153;
� 246 135;
� 426 153;
� 426 135.

Then Cons(Cons(π)) ̸= idn.

Proof. By using the facts that

� the relative order of non-LTR maxima of π is preserved in Cons(π) (see Lem. 3.3), and
� non-inversions in π remain non-inversions in Cons(π),

as well as the definition of Cons, which requires the elements in the queue to be consecutive at all times, it is not
difficult to show that, if π contains one of the patterns 4 321, 35 241, 35 214, 52 413, 25 413, 246 153 or 246 135,

then Cons(π) contains the pattern 321 or the pattern 2 413, therefore π /∈ Sort
(2)
C .

We now consider the remaining patterns. Suppose that dbfaec is an occurrence of the pattern 426 153 in π.
We start by observing that d precedes a in Cons(π) since, when f is processed, d must either be already in
the output or exit the queue (because e is still in the input and d < e < f). Now, recalling the above facts, if
d precedes b in Cons(π) then dba is an occurrence of 321 in Cons(π), otherwise bdac is an occurrence of 2 413

in Cons(π). Therefore in both cases π /∈ Sort
(2)
C . An occurrence of the pattern 426 135 can be dealt with in a

similar way.

8 L. CIONI AND L. FERRARI

Proposition 4.3. Let π ∈ Sn be such that Cons(Cons(π)) ̸= idn. Then π contains one of the following patterns:

� 4 321;
� 35 241;
� 35 214;
� 52 413;
� 25 413;
� 246 153;
� 246 135;
� 426 153;
� 426 135.

Proof. Since Cons(Cons(π)) ̸= idn, we know that 321 ≤ Cons(π) or 2 413 ≤ Cons(π). We consider the two cases
separately.

If 321 ≤ Cons(π), then 321 ≤ π, since Cons does not produce new inversions. Let c, b, a be elements forming an
occurrence of 321 in π. If c is not a LTR maximum, then of course π contains an occurrence of 4 321. Otherwise,
the LTR maximum c enters the queue, but it has to reach the output before b. This happens precisely when the
current element e of the input is larger than Back(Q) + 1 (and so also e > c). Now observe that the element
d = Back(Q)+ 1 cannot appear before c in π (since c is a LTR maximum), nor between c and e in π (otherwise,
when e is the current element of the input, the last element of the queue could not be d − 1). Therefore, all
possible ways in which the elements a, b, c, d, e can occur in π are cedba, cebda e cebad, which form occurrences
of the patterns 4 321 (ignoring c), 35 241 and 35 214, respectively.

Otherwise, suppose that Cons(π) contains the pattern 2 413, and the elements b, d, a, c form such an occur-
rence. Since Cons does not create new inversions, in the permutation π the element d appears before a and c,
which are then not LTR maxima. Therefore π contains the elements d, a, c precisely in this order. Since b has
to precede a in π, we are thus left with two possible configurations, which are dbac and bdac.

If π contains the subword dbac, then necessarily d is a LTR maximum of π (otherwise b could not reach
the output before d), and so in particular d enters the queue at some point. Moreover, we need a to reach the
output after both d and b. In order to understand how this can be possible, we focus on the instant in which
d (and so the entire content of the queue) is popped. In such a situation, b has to be already in the output, d
is in the queue, and the current element of the input, call it f , is larger than Back(Q) + 1 (and so also than
d). Now observe that e = f − 1 is necessarily in the input at this moment: in fact it cannot be inside the queue
(since the content of the queue is increasing) and it cannot be already in the output, otherwise it would appear
before d in π and so d would not be a LTR maximum. Summing up, we have that π must contain one among
the subwords dbfeac, dbfaec, dbface, corresponding to the patterns 25 413 (ignoring d), 426 153, 426 135.

If instead π contains the subword bdac, then d may or may not be a LTR maximum. In case it is, then we
can use an argument completely analogous to the one of the previous case, getting that π has to contain one
among the patterns 25 413, 246 153, 246 135. On the other hand, if d is not a LTR maximum of π, then there is
an element e > d preceding d in π, hence π contains either bedac or ebdac, corresponding to patterns 25 413 or
52 413.

The first terms of the sequence counting Sort
(2)
C with respect to the length are 1, 1, 2, 6, 23, 99, 445, 2 029,

9 292, 42 608, 195 445, . . ., and do not appear in [16]. We also observe that analogous numbers can also be com-

puted for Sort
(2)
M , and the first values are 1, 1, 2, 6, 22, 89, 379, 1 660, 7 380, 33 113, 149 059, From these data,

it appears reasonable to conjecture that, for any n ≥ 3, the number of permutations of length n sortable by
Min2 is smaller than the number of permutations of length n sortable by Cons2.

5. Preimages

In this section we will study the preimages of a generic permutation under Cons. Note that we might also
study the preimages under Min, and that they are (in general) different. We choose Cons since it has the property

SORTING WITH A POPQUEUE 9

that all LTR maxima, and no other element, enter the queue during the sorting process. This property is shared
with Queuesort, and is crucial to describe a simple procedure to find all the preimage of a generic permutation.
For brevity, in the sequel we just call “preimages” the preimages under Cons.

We start by giving a different description of Cons, which highlights how it behaves on the LTR maxima of
a permutation. Given two elements of a permutation, we say that they are consecutive when their values differ
by 1, whereas we say that they are adjacent when their positions differ by 1. Such a notation will be kept for
the rest of the paper.

Let π = π1 · · ·πn ∈ Sn. Mark π1, and repeat the following steps until there are no marked elements:

� if there are no elements to the right of the (necessarily unique) block of adjacent marked elements, then
unmark all marked elements;

� otherwise, compare the rightmost element µ of the block of adjacent marked elements with the element α
to its right:
◦ if µ > α, then swap α with the entire block of marked elements;
◦ if µ = α− 1, then mark α;
◦ if µ < α− 1, then mark α, and unmark all other elements of π.

As an example, we illustrate how this procedure operates on the permutation π = 3241 687. The marked
elements are indicated in bold.

3 241 576 → 2341 576 → 2341 576 → 2 134 576 → 2 134576 → 2 134 576 → 2 134 567 → 2 134 567

Notice that, since an element is marked if and only if it is greater than the previous marked element, this
procedure marks precisely the LTR maxima of the permutation (i.e. the elements that enter the queue). During
the execution they are moved to the right until they reach the next LTR maximum; when this happens, they
are glued together and continue moving to the right if and only if they are consecutive. This means that the
block of marked elements consists of elements that are both adjacent and consecutive.

Notice that our marking mimics precisely what happens in the queue during the execution of Cons: the block
of marked elements consists of the elements in the queue, the elements on its left are in the output and those
on its right are still in the input. Moreover, with the notations used in the above procedure, the case µ > α
refers to a bypass operation, the case µ = α− 1 refers to an enqueue operation, and the case µ < α− 1 refers
to a pop operation.

From now on, when we refer to the execution of Cons on a permutation, we consider this alternative
description.

Proposition 5.1. Let σ be a permutation and set π = Cons(σ). Then the last element of π is n. Also, denoting
with LTR(τ) the set of the LTR maxima of a permutation τ , we have LTR(σ) ⊆ LTR(π).

Proof. During the execution of Cons on σ, n is going to be marked, because it is a LTR maximum, and it
reaches the end of the permutation, since there are no greater elements that can block it.

Now, let µ be a LTR maximum of σ and suppose, by contradiction, that µ is not a LTR maximum of π. This
means that there exists µ′ > µ to the left of µ in π. Since Cons does not create new inversions, we have that µ′

is to the left of µ also in σ, which contradicts the fact that µ is a LTR maximum of σ.

In view of the previous proposition, we can look for the preimages of a given permutation π by looking at
all the subsets of LTR(π) and, for each of them, listing all the possible preimages with the prescribed set of
LTR maxima. Notice that it is possible for a permutation to have no preimage (as well as many preimages) for
a given subset. For example, there are no preimages of 213 whose LTR maxima are both 2 and 3, while 3 421
and 3 214 are both preimages of 2 134 whose LTR maxima are 3 and 4. To describe preimages we introduce the
notion of a mix of two sequences.

10 L. CIONI AND L. FERRARI

Definition 5.2. Let L = l1 · · · lp and A = a1 · · · ar be two sequences of positive integers, such that the li’s and
aj ’s are all different. We say that a sequence m1 · · ·mp+r is a mix of L and A if it contains both L and A as
subsequences, and m1 = l1. Define Mix(L,A) as the set of all the mixes of L and A.

Essentially, a mix of two sequences L and A is a special shuffle of the two sequences, in which the first element
belongs to L.

For example, the mix of 245 and 13 is the set {24 513, 24 153, 24 135, 21 453, 21 435, 21 345}.
We are now ready to describe the set Cons−1(π) of the permutations whose output under Cons is π.

Proposition 5.3. Let π ∈ Sn be a permutation ending with n. Let B ⊆ LTR(π) such that n ∈ B.
If B contains two consecutive integers that are not adjacent in π, then there are no preimages of π whose set

of LTR maxima is B.
Otherwise, we can write π as π = A1L1A2L2 · · ·AkLk, where the blocks Li are maximal sequences of con-

secutive elements of B. The blocks Ai contain the remaining elements of π, and may be empty. Then, all the
preimages of π whose set of LTR maxima is B are those of the form ρ = ρ1ρ2 · · · ρk, with ρi ∈ Mix(Li, Ai), for
every i = 1, . . . , k.

Proof. Let π be a permutation ending with n and B ⊆ LTR(π) such that n ∈ B.
Suppose that µ, µ + 1 ∈ B are not adjacent in π. Suppose that there exists a preimage σ of π such that

LTR(σ) = B. We show that Cons(σ) ̸= π, thus obtaining a contradiction. During the execution of Cons, µ is
marked and moves to the right. Since µ + 1 is also a LTR maximum of σ, µ will reach it and µ + 1 will be
marked while µ remains marked. Therefore both µ and µ+ 1 will be unmarked at the same time, and will be
adjacent in the output. Since µ and µ+ 1 are not adjacent in π, Cons(σ) ̸= π, which is a contradiction. Thus π
has no preimages whose set of LTR maxima is B.

On the other hand, if B contains no consecutive elements which are not adjacent in π, let ρ, Li and Aj be
as in the statement of the proposition, and let λi be the first element of Li, for every i = 1, . . . , k. We want
to prove that ρ is a preimage of π. We start by proving that Cons(ρi) = AiLi. This is in fact true, because
the elements of Li are LTR maxima of π, and are therefore greater than the elements of Ai. By definition of
mix, the first element of ρi is λi, therefore the elements of Ai are not LTR maxima of ρi. Finally, the elements
of Li are consecutive, therefore Cons will move all of them together to the end of the string, thus obtaining
AiLi. Now we just need to notice that the elements of different Li are not consecutive to obtain that, during
the execution of Cons on ρ, all the elements of each Li will be unmarked before marking the elements of Li+1,
hence Cons(ρ) = A1L1 · · ·AkLk = π.

To conclude, we need to prove that every preimage σ of π such that LTR(σ) = B is of the form ρ1 · · · ρk,
for some mixes ρi of Li and Ai. First of all, the elements of σ that are not LTR maxima must be in the same
relative order as they are in π, since Cons does not change their relative positions. So, reading such elements
in σ from left to right, we get the string A1 · · ·Ak. The same argument can be used for the LTR maxima of σ,
thus getting that σ contains the subsequence L1 · · ·Lk. The first LTR maximum is λ1, and it must be the first
element of σ. Furthermore, all the elements of A1 must be to the left of λ2 in σ. Indeed, since all the elements
of L1 are consecutive, and λ2 is strictly larger than the last element of L1 plus 1, then during the execution of
Cons the elements of L1 are marked and move to the right, but they will be unmarked as soon as λ2 is reached.
Therefore the elements of L1 cannot shift to the right of λ2 and all the elements of A1 must be to their right,
otherwise Cons(σ) would not be the permutation π = A1L1 · · ·AkLk. Finally, all the elements of A2 must be to
the right of λ2, because otherwise the last element of L1 would shift to the right of them and the image of σ
would not have all the elements of A2 to the right of L1. Therefore σ can be written as ρ1S, where ρ1 a mix of
L1 and A1.

Iterating this argument, we obtain that a mix ρ2 of L2 and A2 must follow ρ1 in σ, and so on, until we obtain
σ = ρ1 · · · ρk.

By Proposition 5.1, we know that the LTR maxima of any preimage of π must be a subset of LTR(π)
containing n. Therefore the previous proposition describes all the preimages of a generic permutation.

SORTING WITH A POPQUEUE 11

For example, given π = 3245 617, if we select the subset B = {4, 5, 7}, we have that the corresponding
preimages are 4 532 761, 4 352 761, 4 325 761. If we look at all the subsets of LTR(π) = {3, 4, 5, 6, 7} (containing
7 and without consecutive elements not adjacent in π) we obtain the following permutations, which are all the
preimages of π:

{7}: 7 324 561,
{3, 7}: 3 724 561,
{4, 7}: 4 327 561,
{5, 7}: 5 324 761,
{3, 5, 7}: 3 524 761,
{4, 5, 7}: 4 532 761, 4 352 761, 4 325 761.

5.1. Enumerative results

The correspondence between subsets of LTR(π) and preimages of π would be particularly simple for permu-
tations with no consecutive LTR maxima. Indeed, in that case there would be only one preimage for every legal
subset. Unfortunately this never happens, because a permutation has preimages if and only if it ends with its
maximum n, hence n− 1 is always a LTR maximum. Nonetheless we still have a simple case, for which we are
able to count preimages.

Proposition 5.4. Let π ∈ Sn be a permutation ending with n, such that the only consecutive elements in
LTR(π) are n − 1 and n. Suppose that n − 1 and n are not adjacent in π, and let k = |LTR(π)|. Then
|Cons−1(π)| = 2k−2 and there is a bijection between Cons−1(π) and the subsets of LTR(π) containing n but
not n− 1.

Proof. Referring to Proposition 5.3, let B be a subset of LTR(π) containing n. If n− 1 ∈ B, then there are no
preimages of π whose LTR maxima are the elements of B, since n− 1 and n are not adjacent in π. Otherwise,
if n − 1 /∈ B, then we express π = A1L1 · · ·AkLk as in Proposition 5.3, noting that the blocks Li consist of
just one element (call it λi). Therefore there exists precisely one mix between Li and Ai, for every i, which
provides exactly one preimage. Thus, we have a correspondence mapping each subset of LTR(π) containing n
and not containing n− 1 into a preimage of π. Since the preimages are all different, we have a bijection between
preimages of π and subsets of LTR(π) with the required properties. As a consequence, the number of preimages
of π is the number of subsets of LTR(π) of size k, containing n and not containing n− 1, which is 2k−2.

Notice that the case described in the previous proposition gives a result analogous to the general result
concerning the enumeration of the preimages of a permutation under Bubblesort [17]. Specifically, the number
of preimages under Bubblesort of a permutation π ending with n and having k LTR maxima is 2k−1. In fact,
there is one preimage for every subset of LTR(π) containing n, because (in the case of Bubblesort) the LTR
maximum n− 1 does not give troubles and can be selected. On the other hand, if there are consecutive elements
in LTR(π) other than n− 1 and n, the analogy fails and there does not seem to be any link between the two
situations.

To conclude, we provide some results concerning permutations with a given number of preimages. Define c
(k)
n

as the number of permutations of length n which have exactly k preimages under Cons. We already noticed

that a permutation has preimages if and only if it ends with its maximum, therefore c
(0)
n = (n− 1)(n− 1)!, for

every n ≥ 1, and c
(0)
0 = 0.

The next propositions deal with permutations having exactly 1, 2 or 3 preimages.

Proposition 5.5. Let π = π1 · · ·πn ∈ Sn. Then π has exactly one preimage under Cons if and only if πn = n
and π1 = n− 1, for every n ≥ 3.

Therefore c
(1)
n = (n− 2)! for every n ≥ 3, and c

(1)
0 = 1, c

(1)
1 = 1, c

(1)
2 = 0.

Proof. If πn = n and π1 = n− 1 then π has one preimage by Proposition 5.4.

12 L. CIONI AND L. FERRARI

On the other hand, suppose that πn ̸= n or π1 ̸= n− 1. If π does not end with n, then it has no preimages.
Otherwise, we have that πn = n and π1 ̸= n − 1 is a LTR maximum of π. Writing π = π1Mn, we have that
both nπ1M and π1nM are preimages of π, so π has more than one preimage.

The formula for c
(1)
n follows immediately, since there are no restrictions on the terms π2, . . . , πn−1.

The following lemma helps dealing with the case in which n− 1 and n are adjacent in π.

Lemma 5.6. Let π be a permutation of length n > 2 such that πn−1 = n− 1 and πn = n. Then π has at least
four preimages.

Proof. Since n > 2, then π1, n− 1 and n are all distinct LTR maxima of π. Writing π as π1M(n− 1)n, we have
that (n− 1)π1Mn, nπ1M(n− 1), (n− 1)nπ1M and π1nM(n− 1) are all distinct preimages of π.

Proposition 5.7. Let π = π1 · · ·πn ∈ Sn. Then π has exactly two preimages under Cons if and only if πn = n,
π1 ̸= n− 1 ̸= πn−1 and LTR(π) = {π1, n− 1, n}, for every n ≥ 4.

Therefore c
(2)
n = (n− 2)!

∑n−3
j=1

1
j for every n ≥ 4, and c

(2)
0 = 0, c

(2)
1 = 0, c

(2)
2 = 1, c

(2)
3 = 0.

Proof. If π is of the form described in the statement, then we can use Proposition 5.4 to count its preimages,
of which there are precisely two.

On the other hand, if πn ̸= n or π1 = n − 1, then we can use the same argument as in the proof of
Proposition 5.5 to see that π has at most one preimage. If πn−1 = n − 1, then, by Lemma 5.6, we have that
π has more than two preimages. The only remaining case is that of π having more than three LTR maxima.
Suppose that α is a LTR maximum, with π1 < α < n − 1. Writing π = π1M1αM2(n − 1)M3n, the following
three permutations are preimages of π: nπ1M1αM2(n− 1)M3, π1nM1αM2(n− 1)M3 and απ1M1nM2(n− 1)M3.

To find a closed formula for c
(2)
n we recall Foata’s fundamental bijection [18], which maps a permutation σ

written in one-line notation to the permutation in cycle notation obtained by inserting a left parenthesis in σ
preceding every LTR maximum, then a right parenthesis where appropriate. Applying such a map to the set
of permutations of length n ≥ 4 having exactly two preimages, returns the set of permutations of length n in
which n is a fixed point and consisting of two further cycles, the one containing n− 1 having size at least two.
If the cycle not containing n − 1 has size j, with 1 ≤ j ≤ n − 3, then we have

(
n−2
j

)
different ways to choose

the elements in that cycle, and (j − 1)! different ways to arrange the elements into the cycle. The remaining
n− 1− j elements (including n− 1) can be arranged in (n− 2− j)! different ways. Summing up, we obtain that
the number of permutations of length n with exactly two preimages is

n−3∑
j=1

(
n− 2

j

)
(j − 1)!(n− 2− j)! =

n−3∑
j=1

(n− 2)!

j!(n− 2− j)!
(j − 1)!(n− 2− j)! = (n− 2)!

n−3∑
j=1

1

j
,

which concludes the proof.

The quantities Hn =
∑n

j=1
1
j are commonly known as harmonic numbers, so the above formula for c

(2)
n can

be written as c
(2)
n = (n− 2)!Hn−3.

Proposition 5.8. Let π = π1 · · ·πn ∈ Sn with n ≥ 4. Then π has exactly three preimages under Cons if and
only if πn = n, LTR(π) = {k, k + 1, n − 1, n}, with 1 ≤ k ≤ n − 3, and both k, k + 1 and n − 1, n are not
adjacent.

Proof. If π is as in the statement above, then we can use Proposition 5.3 to count its preimages, of which there
are precisely three, one for each of the subsets {k, n}, {k + 1, n}, {n}.

On the other hand, we can argue as in the previous propositions to observe that, if a permutation has less than
four LTR maxima or n− 1 and n are adjacent, then it cannot have three preimages. If k and k+1 are adjacent,
then π has at least four preimages, since each of the four subsets {k, n}, {k+1, n}, {n}, {k, k+1, n} corresponds
to at least one preimage. The same holds when the four LTR maxima are k, h, n− 1, n, with h > k + 1.

SORTING WITH A POPQUEUE 13

Finally, if π has more than four LTR maxima, suppose that {α, β, γ, n − 1, n} ⊆ LTR(π). Then there is a
least a preimage for each of the subsets {α, n}, {β, n}, {γ, n}, {n}, so π has more than three preimages.

Looking at the previous results, we may wonder whether every number of preimages is allowed. More formally,
does there exist any permutation π such that |Cons−1(π)| = k, for every k?

For Stacksort[19], Queuesort[13] and Bubblesort[17] the answer is negative, so we could expect that also
Cons may have some forbidden cardinality for preimages. Surprisingly, this is not the case.

Proposition 5.9. For every k ≥ 0, there exist (at least) a permutation π such that |Cons−1(π)| = k.

Proof. For k ≥ 5, a permutation of length k − 1 with k preimages is (k − 3)ρ(k − 2)(k − 1), with ρ ∈ Sk−4.
Moreover, 3 152 647 has four preimages. We can thus conclude thanks to Propositions 5.5, 5.7 and 5.8.

6. Conclusion and further work

Motivated by the sorting algorithm Popstacksort, we have introduced similar sorting algorithms for per-
mutations which make use of a popqueue. We have shown that there are at least two natural optimal sorting
algorithms, that are able to sort all sortable permutations (which turn out to be characterized by the avoidance
of two patterns). We have also investigated what happens when each of the two algorithms is performed twice,
and for one of them (namely Cons) we have provided information on the preimages of a given permutation.

In Section 4, we have already mentiond an intriguing open problem, concerning the exact enumeration of
permutations sortable by two passes of Cons (or Min). Moreover, the study of combinatorial properties of the
sorting trees associated with each of our two optimal sorting algorithms would be desirable, along the same
lines it has been done for Bubblesort in [17]. Recall that the sorting tree of order n associated with a given
sorting algorithm Algsort is the infinite rooted tree whose nodes are all permutations of length n, whose root
is the identity permutation 12 · · ·n and such that, for every node π ∈ Sn, the parent of π is the permutation
Algsort(π) obtained by performing Algsort on π. Another potentially interesting issue could be to compose
Cons or Min with other sorting algorithms: the problem of characterizing and enumerating the resulting sets of
sortable permutations may reveal some nice combinatorial structure. Another suggestion for further work is to
determine the average number of applications of Min or Cons needed to sort a permutation; this was considered
for Stacksort in [20], for Popstacksort in [21] and for Bubblesort in [17]. Finally, the study of preimages of single
permutations through sorting operators is a field of research still to be fully explored. Apart from the results
concerning the algorithms cited throughout the paper, there are many other algorithms that can be investigated
along the same line. The MSc thesis of Magnusson [12] is a source of interesting examples in this respect.

Acknowledgements. We would like to thank the anonymous referees, whose comments and suggestions have contributed to improve

the overall quality of the paper.

Funding. L.C. and L.F. are both members of the INdAM research group GNCS; they are partially supported by the 2022 INdAM-
GNCS project “Stringhe e matrici: combinatoria, enumerazione e algoritmi”.

References

[1] V.R. Pratt, Computing permutations with double-ended queues. Parallel stacks and parallel queues. Proc. Fifth Annual ACM

Symposium on Theory of Computing (1973) 268–277

[2] R.E. Tarjan, Sorting using networks of queues and stacks, J. ACM 19 (1972) 341–346.

[3] J. West, Sorting twice through a stack. Theoret. Comput. Sci. 117 (1993) 303–313.

[4] G. Cerbai, A. Claesson and L. Ferrari, Stack sorting with restricted stacks. J. Combin. Theory Ser. A 173 (2020) 105230.

[5] G. Cerbai, A. Claesson, L. Ferrari and E. Steingrimsson, Sorting with pattern-avoiding stacks: the 132-machine. Electron.

J. Combin. 27 (2020) 3.32.

[6] C. Defant, M. Engen and J.A. Miller, Stack-sorting, set partitions, and Lassalle’s sequence. J. Combin. Theory Ser. A 175

(2020) 105275.

[7] R. Smith, Two stacks in series: a decreasing stack followed by an increasing stack. Ann. Comb. 18 (2014) 359–363.

14 L. CIONI AND L. FERRARI

[8] J. West, Permutations with Forbidden Subsequences and Stack Sortable Permutations. PhD thesis, Massachusetts Institute of

Technology (1990).

[9] D. Avis and M. Newborn, On pop-stacks in series. Utilitas Math. 19 (1981) 129–140.

[10] L. Pudwell and R. Smith, Two-stack-sorting with popstacks. Australas. J. Combin. 74 (2019) 179–195.

[11] A. Claesson and B.A. Guðmundsson, Enumerating permutations sortable by k passes through a pop-stack. Adv. Appl. Math.
108 (2019) 79–96.

[12] H. Magnusson, Sorting operators and their preimages. MSc thesis, Reykjavik University (2013).

[13] L. Cioni and L. Ferrari, Preimages under the Queuesort algorithm. Discrete Math. 344 (2021) 112561.

[14] L. Cioni and L. Ferrari, Characterization and enumeration of preimages under the Queuesort algorithm, in Extended Abstracts

EuroComb 2021. Trends in Mathematics, Vol. 14, edited by J. Nešetřil, G. Perarnau, J. Rué, J. and O. Serra. Birkhäuser,
Cham.

[15] J. West, Generating trees and forbidden sequences. Discrete Math. 157 (1996) 363–374.

[16] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences. Available at oeis.org.

[17] M. Bouvel, L. Cioni and L. Ferrari, Preimages under the Bubblesort operator. Electron. J. Combin. 29 (2022) 4.32.

[18] D. Foata and M.-P. Schützenberger, Théorie géométrique des polynômes Eulériens. Lecture Notes Math. 138 (1970).

[19] C. Defant, Fertility numbers. J. Comb. 11 (2020) 527–548.

[20] C. Defant, Fertility monotonicity and average complexity of the stack-sorting map. Eur. J. Combin. 93 (2021) 103276.

[21] L. Lichev, Lower bound on the running time of Pop-Stack sorting on a random permutation. Available at https://arxiv.org/
abs/2212.09316.

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model
(S2O). We are thankful to our subscribers and supporters for making it possible to publish
this journal in open access in the current year, free of charge for authors and readers.

Check with your library that it subscribes to the journal, or consider making a personal
donation to the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports,
is available at https://edpsciences.org/en/subscribe-to-open-s2o.

oeis.org
https://arxiv.org/abs/2212.09316
https://arxiv.org/abs/2212.09316
mailto:subscribers@edpsciences.org
https://edpsciences.org/en/subscribe-to-open-s2o

	Sorting with a popqueue
	1 Introduction
	2 Preliminary notions and results
	3 Two optimal sorting algorithms
	4 Two passes through a popqueue
	5 Preimages
	5.1 Enumerative results

	6 Conclusion and further work

	References

