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BRANCHES OF FORCED OSCILLATIONS FOR A CLASS OF

IMPLICIT EQUATIONS INVOLVING THE Φ-LAPLACIAN

ALESSANDRO CALAMAI, MARIA PATRIZIA PERA, AND MARCO SPADINI

Abstract. We consider a class of parametric, implicit ordinary differential
equations with a generalized Φ-Laplacian type term and we study the structure

of the set of forced oscillations in presence of a periodic forcing term. Under

suitable assumptions we obtain global bifurcation results whose statements
require only conditions involving the well-known Brouwer degree in Euclidean

spaces.

1. Introduction

In this paper we study, by topological methods, the forced oscillations of some
nonlinear, implicit ordinary differential equations (ODEs) governed by a generalized
Φ-Laplacian type differential operator.

Implicit ODEs arise naturally in applications and have been studied by many
authors. For this kind of equations, usually the existence of homoclinic/heteroclinic
orbits has been investigated with different methods, for example with a dynamical
system approach (see, e.g., the recent [3] and the survey [20]). As far as we know,
instead, not many papers have been devoted to the study of periodic solutions.

A typical example, in the scalar case, of equations for which it is not possible,
or convenient, to write them explicitly, is provided by those involving the classical
p-Laplacian operator Φ(x) := x|x|p−2, with p > 1, or, more generally, the so-called
Φ-Laplacian: meaning a strictly increasing homeomorphism Φ : R → R. That is,
scalar equations of the form

(Φ(x′))′ = f(t, x, x′).

These equations are well-studied since they arise in some applicative models: for
example, in non-Newtonian fluid theory, nonlinear elasticity, diffusion of flows in
porous media, theory of capillary surfaces and, more recently, the modeling of
glaciology (see, e.g., [4, 9, 32]). From a mathematical viewpoint, different kinds of
boundary conditions can be associated to these equations; for example, the exis-
tence of heteroclinic solutions can be established using the method of upper/lower
solutions (see, e.g., [7, 11, 13, 16, 18]). The study of periodic solutions has also been
pursued in Rn via degree theory: we cite, for instance, [5, 6, 10, 19, 21, 22, 33].

Here we study periodic solutions of some implicit ODEs in Rn with generalized
Φ-Laplacian type terms. We follow a topological approach based on the Brouwer
degree. We consider two different problems which have to be handled separately.
Namely,

(1) [φλ
(
x(t), x′(t)

)
]′ = λf

(
t, x(t), x′(t)

)
, λ ≥ 0,
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2 A. CALAMAI, M.P. PERA, AND M. SPADINI

and

(2) [φλ
(
x(t), x′(t)

)
]′ = g

(
x(t), x′(t)

)
+ λf

(
t, x(t), x′(t)

)
, λ ≥ 0,

where λ is a real parameter and, for a given open set U ⊆ Rn, the maps f : R×U ×
Rn → Rn and g : U ×Rn → Rn are continuous. We assume that f is T -periodic in
the first variable, T > 0 being fixed, and we look for periodic solutions of (1), resp.
(2), of the same period T .

Concerning the left-hand side in (1) and (2), we assume that for each λ ∈ [0,∞)
and x ∈ U , the map

φλ(x, ·) : Rn → Rn

is one-to-one and onto. Therefore, with the introduction of an auxiliary variable
y(t) = φλ

(
x(t), x′(t)

)
, problems (1) and (2) can be equivalently written as explicit

systems in R2n. As a consequence, the properties of the solution sets of (1) and
(2) can be investigated by means of earlier results, obtained by the authors also
in collaboration with Massimo Furi, about periodically perturbed ODEs on differ-
entiable manifolds (see [24, 26, 35]). We observe that the mentioned results rely
upon the topological notion of degree (also called Euler characteristic) of a tangent
vector field, see the classical books [28, 29, 30]. In spite of this fact, no advanced
tools from differential topology are needed in the present paper. In fact, the tech-
nicalities are hidden in the proofs and our main results require only the well-known
Brouwer degree in Euclidean spaces.

In our main results, Theorems 4.4 and 4.7, we investigate qualitative properties
of the set of T -periodic solutions of (1) and (2). Roughly speaking, we obtain the
existence of an unbounded connected set – a “branch” – made up of “nontrivial”
T -periodic solution pairs (λ, x) of (1) and (2), that emanates from the set of the
“trivial” ones – see Section 2 for more precise definitions. Thus, we may describe our
main theorems as global bifurcation results. To prove the existence of such a branch
we need only suitable assumptions on the Brouwer degree of some maps in Rn,
related with the terms f and g in the right-hand side of (1) and (2). Observe that
the Brouwer degree can be computed explicitly and so, in principle, it is possible,
and often not so difficult, to verify the validity of those assumptions.

Our results are somehow related to similar ones, concerning the set of T -periodic
solutions of periodically perturbed differential-algebraic equations, recently ob-
tained by the authors [8, 12, 15, 36]. In fact, under suitable conditions, also in
that case it is possible to relate such equations to ODEs on manifolds, and to
obtain the desired properties only in terms of the Brouwer degree in Rn.

Another context in which the above mentioned results on periodically perturbed
ODEs on manifolds have been successfully exploited is that of delay differential
equations (see, e.g., [14]). We think that the results obtained here could be gen-
eralized to equations in which a dependence on delayed terms is introduced (see
also [1]). However we do not pursue here this line: see Section 5 below for a brief
discussion.

Observe finally that our results are not directly deducible from the standard
implicit function theorem. And this for different reasons. Firstly, the implicit
function theorem provides information on local properties, while the results we
obtain here are of global nature. Next, the application of the implicit function
theorem requires more regularity than that we assume here (i.e., the involved maps
need to be of class C1 and not merely continuous). In fact, apart from a technical
assumption on the partial differentiability with respect to the parameter λ, we only
require continuity. We believe that our global bifurcation results could be even
generalized to a Carathéodory-type setting. This will be a further line of future
investigation.
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2. Setting of the problem

Assume throughout the paper that φ : [0,∞)× U × Rn → Rn, U being open in
Rn, is a continuous map with the property that for each λ ∈ [0,∞) and u ∈ U , the
map

φ(λ, u, ·) : Rn → Rn

is one-to-one and onto; in other words, φ(λ, u, ·) is invertible with respect to the
third variable in the following sense: for each w ∈ Rn there exist a unique v ∈ Rn,
depending on (λ, u), such that

w = φ(λ, u, v).

We will denote this “partial inverse” as ψ(λ, u, ·), so that v = ψ(λ, u, w). We will
also assume that, for each w ∈ Rn and u ∈ U , the map ψ(·, u, w) is differentiable
and

(3) λ 7→ ∂1ψ(λ, u, w) is continuous.

Here and in what follows, the symbol “∂i” denotes the partial differentiation with
respect to the i-th variable.

We explicitly observe that, throughout the paper, very weak regularity assump-
tions are needed on φ, which is merely assumed to be continuous and such that (3)
holds. In fact, the map φ will be assumed to be a perturbation of a homeomorphism;
however, in the more regular case, the following remark is in order.

Remark 2.1. If the map φ is of class C1, by applying the implicit function theorem,
one gets that the above condition (3) is satisfied if, for any (λ, u, v) ∈ [0,∞)×U×Rn,
the partial derivative

∂3φ(λ, u, v)

is invertible.

It is sometimes convenient to write φλ(u, v) instead of φ(λ, u, v). Finally, we sup-
pose that φ(0, ·, ·) depends only on the third variable, that is, by abuse of notation,
φ(0, u, v) =: φ0(v) thus we may write ψ(0, u, w) = φ−10 (w). The latter assumption
means that we regard φλ as a perturbation of some nonlinearity depending only on
the third variable. With this in mind, we view φ(λ, u, v) as a sum φ0(v)+λδ(λ, u, v),
where φ0 is a homeomorphism and δ(λ, u, v) is a perturbation such that the above
assumptions are satisfied.

Example 2.2. A simple example of a map φ as above, in the case n = 1, is the
following:

φ(λ, u, v) = (v + λ)|v + λ|p−2, p = 2, 3, . . .

which is a perturbation of the classical p-Laplacian, namely φ0(v) = v|v|p−2. In
this case one can explicitly compute, for p = 2, ψ(λ, u, w) = w−λ, while for p > 2,

ψ(λ, u, w) = sign(w)|w|1/(p−1) − λ,

in any case we get ∂1ψ(λ, u, w) = −1 so that the above assumptions are satisfied.

Example 2.3. As another example in the case n = 1, consider

φ(λ, u, v) = Φ(v) + λ(v − u),

where Φ : R → R, a Φ-Laplacian type operator, is a diffeomorphism such that
Φ′(v) > 0 for any v ∈ R. Even in this case one can check that the above assumptions
are satisfied.
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We wish to investigate the two following problems that, although somewhat
similar, lead to substantially different results:

(4) [φλ
(
x(t), x′(t)

)
]′ = λf

(
t, x(t), x′(t)

)
, λ ≥ 0,

and

(5) [φλ
(
x(t), x′(t)

)
]′ = g

(
x(t), x′(t)

)
+ λf

(
t, x(t), x′(t)

)
, λ ≥ 0.

where f : R × U × Rn → Rn and g : U × Rn → Rn are continuous maps and f is
assumed T -periodic in the first variable for a T > 0 given.

By a T -periodic solution of (4), corresponding to a given λ ≥ 0, we mean a
C1 and T -periodic function x : R → Rn such that there exists another C1 and
T -periodic function y : R→ Rn such that the system

(6)

{
x′(t) = ψ

(
λ, x(t), y(t)

)
,

y′(t) = λf
(
t, x(t), ψ

(
λ, x(t), y(t)

))
,

is satisfied identically. The T -periodic solutions of (5), corresponding to λ ≥ 0, are
defined analogously as the T -periodic solutions of the system

(7)

{
x′(t) = ψ

(
λ, x(t), y(t)

)
,

y′(t) = g(x(t), ψ
(
λ, x(t), y(t)

))
+ λf

(
t, x(t), ψ

(
λ, x(t), y(t)

))
,

Observe that from the first equation in (6) we get φλ
(
x(t), x′(t)

)
= y(t), hence

the map t 7→ φλ
(
x(t), x′(t)

)
is C1. Finally, notice that when the partial derivatives

of φλ exist continuous along the curve t 7→
(
x(t), x′(t)

)
∈ R2n with ∂2φλ

(
x(t), x′(t)

)
invertible, one has that x is actually C2 since, in this case, we have

x′′(t) = ∂2φλ
(
x(t), x′(t)

)−1[
λf
(
t, x(t), x′(t)

)
− ∂1φλ

(
x(t), x′(t)

)
x′(t)

]
.

We denote by CrT (U) the set of the U -valued, T -periodic, Cr functions with
topology induced by the Cr norm. This is a subset of the Banach space CrT (Rn).
For simplicity, when r = 0, we write CT (U) instead of C0

T (U).
A pair (λ, x) ∈ [0,∞) × C1

T (U) with x taking values in U , such that x is a T -
periodic solution of (4) (resp. (5)), is said to be a T -forced pair for (4) (resp. (5)).
A T -forced pair (λ, x) is called trivial if x is constant and λ = 0. In this paper we
investigate the set of nontrivial T -forced pairs of (4) and (5).

3. Preliminaries

In order to pursue our investigation on the set of T -forced pairs of (4) and (5)
we need slight generalizations of previous results, obtained in [24, 26, 35]. These
results deal with periodic perturbations of autonomous ODEs on manifolds and
require, in the statements, the notion of degree (also called Euler characteristic) of
a tangent vector field.

In this preliminary section we first recall this notion of degree and its relationship
with the Brouwer degree. As already pointed out, in this paper the degree is only
a tool, whose use is hidden in the proofs. In spite of this, we decided to add the
definition and some properties of the degree on manifolds in order to make the paper
self-contained. The reader which is already familiar with it can skip Section 3.1.

3.1. The degree of a tangent vector field. Let M be a smooth boundaryless
submanifold of Rk, and w : M → Rk a continuous tangent vector field on M :
meaning that, for all p ∈M , we have w(p) ∈ TpM , where TpM ⊆ Rk is the tangent
space of M at p. Particularly relevant in this paper is the special case when M is
an open subset of Rk. When this happens, one has TpM = Rk for all p ∈ Rk.
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Let U ⊆ M be open. The pair (w,U) is said to be admissible if w−1(0) ∩ U is
compact; we also say that w is admissible for the degree in U . It is known (see,
e.g., [28, 29, 30]) that one can associate to any admissible pair (w,U) an integer,
deg(w,U), called the degree of w in U . The degree, roughly speaking, counts
algebraically the number of zeros of w in U .

When w is (Fréchet) differentiable at p ∈M and w(p) = 0, then its derivative at
p, w′(p) : TpM → Rk, actually maps TpM into itself, and, therefore, its determinant
detw′(p) is well-defined. If, moreover, p is a nondegenerate zero (i.e., w′(p) : TpM →
Rk is injective) then p is an isolated zero and detw′(p) 6= 0.

In the regular case, that is, when w is admissible for the degree in U and the
zeros of w are all nondegenerate, then the set w−1(0)∩U is finite and the following
equality holds:

(8) deg(w,U) =
∑

p∈w−1(0)∩U

sign detw′(p).

Moreover, we stress that, when M = Rk, deg(w,U) coincides with the Brouwer
degree, degB(w, V, 0), of the triple (w, V, 0): where V ⊆ U is any bounded open
set, whose closure is contained in U , containing the compact set w−1(0) ∩ U , i.e.,

(9) degB(w, V, 0) = deg(w,U).

All the standard properties of the classical Brouwer degree on open and bounded
subsets of Euclidean spaces, such as homotopy invariance, excision, additivity, exis-
tence, are still valid in the more general context of differentiable manifolds. Indeed,
it can be shown (see [25]) that the degree of a tangent vector field is uniquely
determined by some of these properties used as axioms.

The classical Brouwer degree can be extended to the case when the open set
U is possibly unbounded; see e.g. [17, §1.2.4] or, in the context of differentiable
manifolds, [31, §1.3]. It is not difficult to show, using the excision property, that
(9) is valid also in this extended context. Indeed, one could use (9) as basis for the
extended notion of Brouwer degree.

In this paper, we will always omit the “target” point it in the notation for the
degree since we are only interested in the case when this is 0. By abuse of notation
justified by (9), we will write deg to denote both the extended Brouwer degree and
the degree of a tangent vector field.

3.2. On the set of T -periodic solutions of perturbed ODEs on manifolds.
In this section we will be concerned with differential equations on manifolds. We
need to introduce some further notation. Let M ⊆ Rk be a boundaryless dif-
ferentiable manifold. By CT (M) we denote the set of the M -valued, T -periodic,
continuous functions with the topology induced by the Banach space CT (Rk).

Consider the following differential equations on M ⊆ Rk depending on a param-
eter λ ∈ [0,∞):

(10) ξ̇(t) = g
(
ξ(t)

)
+ λf

(
t, ξ(t), λ

)
,

and

(11) ξ̇(t) = λf
(
t, ξ(t), λ

)
,

where f : R×M× [0,∞)→ Rk and g : M → Rk are continuous vector fields tangent
to M , f being T -periodic in the first variable.

A pair (λ, ξ) ∈ [0,∞) × CT (M), such that (10) (resp. (11)) holds identically is
a T -pair for (10) (resp. (11)). A T -pair (λ, ξ) is called trivial if ξ is constant and
λ = 0. In this paper we investigate the set of nontrivial T -pairs of (10) and (11).

Given any point p ∈ M it is convenient to introduce the notation p to denote
the function constantly equal to p. Accordingly, a T -pair for (10) is trivial if and
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only if it is of the form (0, p) for some p ∈ g−1(0). Similarly, for all p ∈M , all pairs
(0, p) are trivial T -pairs for (11).

The qualitative properties of the set of T -pairs of (10) and (11) can be deduced
by suitable assumptions on the degree of some tangent vector fields, see [26].

In fact, by inspection of Theorem 3.3 of [26] one immediately sees that the
following result holds:

Theorem 3.1. Let f and g be as in equation (10) and let Ω be an open subset of
[0,∞)×CT (M). Put ΩM =

{
p ∈M : (0, p) ∈ Ω

}
. Assume that deg(g,ΩM ) is well

defined and nonzero. Then there exists a connected set Γ of nontrivial T -pairs in
Ω whose closure in [0,∞) × CT (M) intersects the set

{
(0, p) ∈ [0,∞) × CT (M) :

p ∈ g−1(0) ∩ ΩM
}

and is not contained in any compact subset of Ω. In particular,

if M is closed in Rk and Ω = [0,∞)× CT (M), then Γ is unbounded.

Similarly, by inspection of the proof of Theorem 2.3 of [24] one obtains the
following:

Theorem 3.2. Let f be as in (11), define v : M → Rk be the autonomous vector
field given by

v(p) :=
1

T

∫ T

0

f(t, p, 0) dt.

Let Ω be an open subset of [0,∞) × CT (M), and put ΩM =
{
p ∈ M : (0, p) ∈ Ω

}
.

Assume that deg(v,ΩM ) is well defined and nonzero. Then there exists a connected
set Γ of nontrivial T -pairs in Ω whose closure in [0,∞) × CT (M) meets

{
(0, p) ∈

[0,∞) × CT (M) : p ∈ v−1(0) ∩ ΩM
}

and is not contained in any compact subset

of Ω. In particular, if M is closed in Rk and Ω = [0,∞) × CT (M), then Γ is
unbounded.

Observe that Theorem 3.2 concerns the case not covered in general by Theorem
3.1 of perturbations of the zero vector field. In fact, unless the manifold M is
compact, Theorem 3.1 above is not applicable, g not being admissible.

Finally, consider the following system of coupled equations, depending on the
parameter λ ≥ 0, on the manifold M × N , where M ⊆ Rk and N ⊆ Rs are
differentiable manifolds

(12)

{
ξ̇(t) = λf

(
t, ξ(t), η(t), λ

)
,

η̇(t) = g
(
ξ(t), η(t)

)
+ λh

(
t, ξ(t), η(t), λ

)
,

where f : R×M×N×[0,∞)→ Rk, h : R×M×N×[0,∞)→ Rs and g : M×N → Rs
are continuous vector fields tangent to M ×N , f and h being T -periodic in the first
variable.

A triple (λ, x, y) ∈ [0,∞) × CT (M × N), such that (12) holds identically is a
T -triple for (12). A T -triple (λ, x, y) is called trivial if (x, y) is constant and λ = 0.

As above, given (p, q) ∈M ×N , by p and q we denote the functions constantly
equal to p and q, respectively. Thus, a T -triple is trivial if and only if it is of the
form (0, p, q) with (p, q) ∈ g−1(0).

Let ν : M×N → Rk+s be the vector field, tangent to the manifoldM×N ⊆ Rk+s,
given by

ν(p, q) =

(
1

T

∫ T

0

f(t, p, q, 0) dt , g(p, q)

)
.

As for the previous two theorems, an inspection of the argument of Theorem 4
of [35] shows that the following statement holds:

Theorem 3.3. Let f, g and h be as in equation (12), and let Ω be an open subset
of [0,∞)× CT (M ×N). Assume that deg

(
ν,ΩM×N

)
is well-defined and nonzero.
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Then there exists a connected set Γ of nontrivial T -triples in Ω of (12) whose
closure in [0,∞)×CT (M ×N) intersects

{
(0, p, q) ∈ [0,∞)×CT (M ×N) : (p, q) ∈

ν−1(0) ∩ ΩM×N
}

and is not contained in any compact subset of Ω. In particular,

if M ×N is closed in Rk+s and Ω = [0,∞)× CT (M ×N), then Γ is unbounded.

4. Main results

In this section we investigate the set of T -pairs for equations (4) and (5). A
crucial step is the following simple observation that essentially is a version of
Hadamard’s Lemma, see e.g. [2]:

Remark 4.1. Let φ be as in equations (4) and (5). Let also u ∈ U , v, w ∈ Rn
and λ ∈ [0,∞) be such that w = φλ(u, v); then there exists a continuous function
h such that v = φ−10 (w) + λh(λ, u, w). To see that this is the case, let us write
v = ψ(λ, u, w) and then, in order to isolate λ, we observe that

v − φ−10 (w) = v − ψ(0, u, w) =

∫ 1

0

d

ds
ψ(sλ, u, w) ds

=

∫ 1

0

λ∂1ψ(sλ, u, w) ds = λh(λ, u, w),

where h(u,w, λ) =
∫ 1

0
∂1ψ(sλ, u, w) ds.

We consider separately the cases of equations (4) and (5).

4.1. On the set of T -forced pairs for equation (4). Introducing the new func-
tion y(t) = φλ

(
x(t), x′(t)

)
and using Remark 4.1 we are led to the following system:

(13)

{
x′(t) = φ−10

(
y(t)

)
+ λh(λ, x(t), y(t)

)
,

y′(t) = λf
(
t, x(t), φ−10

(
y(t)

)
+ λh(λ, x(t), y(t)

))
,

which is of the form (12). We relate the set X ⊆ [0,∞)× C1
T (U) of T -forced pairs

of (4) with te set Y ⊆ [0,∞)× CT (U × Rn) of T -triples of (13).
Define the map H : Y → X by H : (λ, x, y) 7→ (λ, x), and observe that H is

continuous.

Lemma 4.2. The map H is a homeomorphisms that respects the notion of triviality,
in the sense that it makes trivial T -triples correspond to trivial T -forced pairs and
vice versa.

Proof. First notice that, if (λ, x, y) is a T -triple of (13), then x is a T -periodic
solution of (4) corresponding to λ. In particular, when (λ, x, y) is trivial, λ = 0
and x is constant: hence (λ, x) is a trivial T -forced pair.

Conversely, take any (λ, x) ∈ X, and let y(t) = φλ
(
x(t), x′(t)

)
. We immediately

see that y is T -periodic and that (x, y) is a T -periodic solution of (13) corresponding
to λ. In other words

H−1(λ, x) =
(
λ, x, φλ

(
x, x′

))
= (λ, x, y)

and this map is obviously continuous. Observe, in particular, that when x is con-
stant so is y, hence the image under H−1 of any trivial T -pair is a trivial T -forced
pair. �

Consider the following vector field, defined on U × Rn:

ν(p, q) :=

(
1

T

∫ T

0

f
(
t, p, φ−10 (q)

)
dt , φ−10 (q)

)
.

Taking into account Theorem 3.3 and Lemma 4.2 one sees that the degree of ν plays
a crucial role in our investigation. Furthermore, since φ−10 is a homeomorphism,
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the computation of the degree of ν can be reduced to the degree of the “average
wind”:

(14) w(p) :=
1

T

∫ T

0

f(t, p, 0) dt,

as shown by the following technical lemma:

Lemma 4.3. Let W ⊆ U be open. The vector field ν is admissible for the degree
in W × Rn if and only if so is w in W , and

(15) deg
(
ν,W × Rn

)
= ± deg

(
w,W

)
.

Proof. Since φ−10 is a homeomorphism let q0 ∈ Rn be the (unique) point such that
φ−10 (q0) = 0. We have

(16) ν−1(0) =
{

(p, q0) : p ∈ w−1(0)
}
,

so that w−1(0)∩W is compact if and only if so is ν−1(0)∩ (W ×Rn). This implies
that ν is admissible in W × Rn if and only if so is w in W .

We now prove formula (15). Let W1 and W2 be open and bounded subets of W
and Rn respectively such that ν−1(0) ⊆W1 ×W2. By the excision property of the
degree, we find

(17) deg
(
ν,W1 × Rn

)
= deg

(
ν,W1 ×W2

)
.

Denote by ν1 the first component of ν. By known transversality theorems, we can
approximate ν1 with a smooth map ν̂1 with only isolated zeros and also approximate

φ0 with a smooth diffeomorphism φ̂0. Let

ν̂(p, q) =
(
ν̂1(p, q) , φ̂−10 (q)

)
.

We can take the approximations so close, that the homotopy

H(s, p, q) = sν̂(p, q) + (1− s)ν(p, q)

=
(
sν̂1(p, q) + (1− s)ν1(p, q) , sφ̂−10 (q) + (1− s)φ−10 (q)

)
,

has no zeros on the boundary of the bounded open set W1×W2 for s ∈ [0, 1]. Thus
H is admissible in W1 ×W2. The homotopy property of the degree yields

(18) deg
(
ν,W1 ×W2

)
= deg

(
ν̂,W1 ×W2

)
.

Similarly, defining ŵ(p) = ν̂1(p, 0), we have

(19) deg(w,W1) = deg(ŵ,W1).

Given an isolated zero (p0, q0) of ν̂, we have

det ν̂′(p0, q0) = det

(
∂1ν̂1(p0, q0) 0

∂2ν̂1(p0, q0) (φ̂−10 )′(q0)

)
= det ŵ′(p0) det(φ−10 )′(q0).

As in (16) we have

ν̂−1(0) =
{

(p, q0) : p ∈ ŵ−1(0)
}
.

Also, φ̂−10 being a diffeomorphism, sign det(φ̂−10 )′(q0) = ±1. Thus,

deg(ν̂,W1 ×W2) =
∑

(p0,q0)∈ν̂−1(0)∩W1×W2

sign det ν̂′(p0, q0)

= sign det(φ̂−10 )′(q0)
∑

p0∈ŵ−1(0)∩W1

sign det ŵ′(p0)

= ±deg(ŵ,W1).

The assertion now follows from equations (19), (18) and (17). �
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Given an open subset Ω of [0,∞)×CT (U), the set Ω∗ = Ω×CT (Rn) is open in
[0,∞)× CT (U × Rn). As in Section 3 we define

ΩU =
{
p ∈ U : (0, p) ∈ Ω

}
that is clearly open in U . Similarly, we consider the open set Ω∗U×Rn ⊆ U × Rn
given by

Ω∗U×Rn =
{

(p, q) ∈ U × Rn : (0, p, q) ∈ Ω∗
}

= ΩU × Rn.
By Lemma 4.3 we have that, when deg(w,ΩU ) is well defined and nonzero, then

so is deg(ν,Ω∗U×Rn). Thus, by Theorem 3.3 applied to (13) we find that there
exists a connected set, say Θ, of nontrivial T -triples in Ω of (13) whose closure in
[0,∞) × CT (U × Rn) meets ν−1(0) ∩ Ω∗U×Rn and is not contained in any compact
subset of Ω∗U×Rn . According to Lemma 4.2, one finds that Γ = H(Θ) is a set of
T -forced pairs for (4) in Ω such that trivial T -triples of (13) correspond to trivial
T -forced pairs. Since H is a homeomorphism, we have the following result:

Theorem 4.4. Let Ω be an open subset of [0,∞)×CT (U). Let w be as in (14) and
assume that deg(w,ΩU ) is well-defined and nonzero. Then there exists a connected
set Γ of nontrivial T -forced pairs in Ω of (4) whose closure in [0,∞) × CT (U)
intersects the set

{
(0, p) ∈ [0,∞)×CT (U) : p ∈ w−1(0)∩ΩU

}
and is not contained

in any compact subset of Ω. In particular, when U = Rn and Ω = [0,∞)×CT (Rn)
then Γ is unbounded.

4.2. On the set of T -forced pairs for equation (5). Proceeding analogously to
the above case, system (7) can be written as

(20)


x′(t) = φ−10

(
y(t)

)
+ λh(λ, x(t), y(t)

)
,

y′(t) = g
(
x(t), φ−10

(
y(t)

)
+ λh(λ, x(t), y(t)

))
+

+λf
(
t, x(t), φ−10

(
y(t)

)
+ λh(λ, x(t), y(t)

))
.

With the same procedure used in Remark 4.1, we can isolate λ from inside g as

well and get, for some appropriate function ĥ, the equality:

g
(
x(t), φ−10

(
y(t)

)
+ λh(λ, x(t), y(t)

))
= g
(
x(t), φ−10

(
y(t)

))
+ λĥ(λ, x(t), y(t)

)
.

So, collecting all the λ-dependent terms in the second equation into an appropriate
function F we can rewrite (20) as

(21)

{
x′(t) = φ−10

(
y(t)

)
+ λh(λ, x(t), y(t)

)
,

y′(t) = g
(
x(t), φ−10

(
y(t)

))
+ λF

(
t, x(t), y(t), λ

)
.

This is of the form (10) with M := U ×Rn, so that, in analogy with Section 4.1, we
will speak about T -triples rather than T -pairs. Accordingly, we will relate the set
Ξ ⊆ [0,∞)×C1

T (U) of T -forced pairs of (5) with the set Υ ⊆ [0,∞)×CT (U ×Rn)
of T -triples of (21).

Define the map G : Υ→ Ξ by H : (λ, x, y) 7→ (λ, x). A result analogous to Lemma
4.2 holds in this case too.

Lemma 4.5. G is a homeomorphisms that respects the notion of triviality, in the
sense that it makes trivial T -triples correspond to trivial T -forced pairs and vice
versa.

In this case our result will be a consequence of Theorem 3.1. Let G be the vector
field defined on U × Rn:

(p, q) 7→
(
φ−10 (q) , g

(
p, φ−10 (q)

))
.
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In analogy with the previous section, since φ−10 is a homeomorphism, the degree of
G reduces to the degree of the vector field:

(22) γ(p) := g(p, 0).

The proof of the next lemma can be carried out as in Lemma 4.3 above and,
therefore, is omitted.

Lemma 4.6. Let W ⊆ U be open. The vector field G is admissible for the degree
in W × Rn if and only if so is γ in W , and

(23) deg
(
G,W × Rn

)
= ± deg

(
γ,W

)
.

We conclude as in Section 4.1. Given an open subset Ω of [0,∞) × CT (U), we
observe that the set Ω∗ = Ω×CT (Rn) is open in [0,∞)×CT (U×Rn) and we define
the open subset of U :

ΩU =
{
p ∈ U : (0, p) ∈ Ω

}
.

Furthermore, we consider the open set Ω∗U×Rn ⊆ U × Rn given by

Ω∗U×Rn =
{

(p, q) ∈ U × Rn : (0, p, q) ∈ Ω∗
}

= ΩU × Rn.
By Lemma 4.6 it follows that, if deg(γ,ΩU ) is well defined and nonzero, then

so is deg(G,Ω∗U×Rn). Hence, Theorem 3.1 applied to (21) yields the existence
of a connected set, say Θ, of nontrivial T -triples in Ω of (21) whose closure in
[0,∞)× CT (U × Rn) meets G−1(0) ∩ Ω∗U×Rn and is not contained in any compact
subset of Ω∗U×Rn . By Lemma 4.5, we get that Γ = G(Θ) is a set of T -forced pairs
of (5) in Ω since G is a homeomorphism. As above, observe that a T -triple (0, x, y)
of (21) is trivial if and only if (0, x) is a trivial T -pair of (5). Thus, we have proved
the following result:

Theorem 4.7. Let Ω be an open subset of [0,∞)×CT (U). Let γ be as in (22) and
assume that deg

(
γ,ΩU

)
is well-defined and nonzero. Then there exists a connected

set Γ of nontrivial T -forced pairs in Ω of (5) whose closure in [0,∞) × CT (U)
intersects the set

{
(0, p) ∈ [0,∞)×CT (U) : p ∈ γ−1(0)∩ΩU

}
and is not contained

in any compact subset of Ω. In particular, when U = Rn and Ω = [0,∞)×CT (Rn)
then Γ is unbounded.

As already pointed out, this theorem cannot be obtained as a direct consequence
of Theorem 4.4.

5. Final remarks and perspectives

In this paper we have investigated the structure of the set of T -periodic solutions
of equations (1) and (2). Although the former can be seen as a particular case of
the latter, and despite the fact that the results concerning the set of T -forced
pairs of either equations have a similar form, we notice an important difference.
Namely, the degree of the average wind w, that is crucial for Theorem 4.4, plays
no role in Theorem 4.7: it could, in principle, be not even defined. Conversely,
for equation (1), the degree of γ does not even make sense. It seems natural to
compare Theorems 3.2 and 3.1 with Theorems 4.4 and 4.7, respectively.

An interesting question, that we postpone to further research, is whether it would
be possible to find a bridge between Theorems 4.4 and 4.7. After all, Theorem 3.3
does something similar for Theorems 3.1 and 3.2, see the pertinent discussion in [35].

A further attractive line of study, not addressed here, is the investigation of the
set of T -periodic solutions of equations (1) and (2) when a dependence on delayed
arguments is introduced in φ and f . Namely if equations of the form

[φλ
(
x(t), x(t− r), x′(t)

)
]′ = g

(
x(t), x′(t)

)
+ λf

(
t, x(t), x(t− r), x′(t), x(t− r)

)
, λ ≥ 0
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are considered. In fact, it seems reasonable to combine the method used here to
prove Theorem 3.1 with the arguments developed in [27]. Actually, at the price of
some increase in the technical details it seems possible to use the arguments of [14]
in conjunction with the techniques of the present paper to further generalize our
results to the functional delay case.

Finally, we mention another possible extension of the results obtained here. It
seems plausible to use the results of [23, 34] in order to generalize Theorem 3.3
to the case when h and f are Carathéodory so that, following the argument of
Section 4, one could extend Theorems 4.4 and 4.7 to equations of the form (1) and
(2) where the forcing term f is allowed to be Carathéodory.
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versità Politecnica delle Marche Via Brecce Bianche I-60131 Ancona, Italy

Email address: calamai@dipmat.univpm.it

Maria Patrizia Pera, Dipartimento di Matematica e Informatica “Ulisse Dini”, Uni-
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