Machine Learning: Science and Technology

PAPER « OPEN ACCESS

Learning from survey propagation: a neural
network for MAX-E-3-SAT

To cite this article: Raffaele Marino 2021 Mach. Learn.: Sci. Technol. 2 035032

View the article online for updates and enhancements.

You may also like

- Sharp thresholds and the partition function
Amin Coja-Oghlan and Daniel Reichman

- Focused local search for random 3-
satisfiability
Sakari Seitz, Mikko Alava and Pekka
Orponen

- A message-passing approach to random
constraint satisfaction problems with
growing domains
Chunyan Zhao, Haijun Zhou, Zhiming
Zheng et al.

This content was downloaded from IP address 87.19.210.51 on 07/04/2023 at 12:53

https://doi.org/10.1088/2632-2153/ac0496
https://iopscience.iop.org/article/10.1088/1742-6596/473/1/012015
https://iopscience.iop.org/article/10.1088/1742-5468/2005/06/P06006
https://iopscience.iop.org/article/10.1088/1742-5468/2005/06/P06006
https://iopscience.iop.org/article/10.1088/1742-5468/2011/02/P02019
https://iopscience.iop.org/article/10.1088/1742-5468/2011/02/P02019
https://iopscience.iop.org/article/10.1088/1742-5468/2011/02/P02019

I0P Publishing

@ CrossMark

OPEN ACCESS

RECEIVED
18 October 2020

REVISED
30 April 2021

ACCEPTED FOR PUBLICATION
24 May 2021

PUBLISHED
14 July 2021

Original Content from
this work may be used
under the terms of the
Creative Commons

Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOL.

Mach. Learn.: Sci. Technol. 2 (2021) 035032 https://doi.org/10.1088/2632-2153/ac0496

LEARNING

PAPER

Learning from survey propagation: a neural network for
MAX-E-3-SAT

Raffaele Marino"”

' Laboratoire de Théorie des Communications, Faculté Informatique et Communications, Ecole Polytechnique Fédérale de Lausanne,
1015 Lausanne, Switzerland
2 Dipartimento di Fisica, Universita di Roma “La Sapienza”, Piazzale Aldo Moro, 5, Rome 00185, Italy

E-mail: raffaele.marino@uniromal.it

Keywords: maximum satisfiability, message passing, combinatorial optimization, deep learning

Abstract

Many natural optimization problems are NP-hard, which implies that they are probably hard to
solve exactly in the worst-case. However, it suffices to get reasonably good solutions for all (or even
most) instances in practice. This paper presents a new algorithm for computing approximate
solutions in O(N) for the maximum exact 3-satisfiability (MAX-E-3-SAT) problem by using
supervised learning methodology. This methodology allows us to create a learning algorithm able
to fix Boolean variables by using local information obtained by the Survey Propagation algorithm.
By performing an accurate analysis, on random conjunctive normal form instances of the
MAX-E-3-SAT with several Boolean variables, we show that this new algorithm, avoiding any
decimation strategy, can build assignments better than a random one, even if the convergence of
the messages is not found. Although this algorithm is not competitive with state-of-the-art
maximum satisfiability solvers, it can solve substantially larger and more complicated problems
than it ever saw during training.

1. Introduction

The Boolean Satisfiability (SAT) Problem [1, 2] is the issue of finding an assignment that satisfies a given
Boolean formula. A Boolean formula is any operation made with Boolean variables, where each variable can
take the value TRUE or FALSE, {1, 0} respectively. For example, a CNF (conjunctive normal form) [3]
formula is a conjunction of one or more clauses, where a clause is a disjunction of literals. A CNF formula is
satisfiable if and only if there is a configuration of the Boolean variables that simultaneously satisfy all the
clauses.

In our work, N defines the number of Boolean variables and M the number of clauses so that the CNF
formula has the following form:

/\ (\/ pci)a (1)

1<e<M 1<,

where I, is the size of clause, i.e. the number of literals in clause ¢ for 1 < ¢ < M, and p,; is a literal, thus a
proposal variable x; or its negation X;, for 1 <i << N.

The maximization problem associated with SAT is called maximum satisfiability (MAX-SAT). In this
case, a solver tries to satisfy the maximum number of clauses given a CNF formula [4—6]. If a CNF formula
has in each clause at least k literals, then the problem is called MAX-k-SAT. If there are exactly k literals for
each clause in a CNF formula, then the problem is named MAX-E-k-SAT [7].

The MAX-SAT is of considerable interest not only from the theoretical side but also for applications. For
instance, many mathematical logic and artificial intelligence issues can be expressed in the form of SAT or
some of its variants, like constraint satisfaction [8]. Examples are in probabilistic inference [9], data analysis
[10], Maximum Clique and Maximum Independent Set [11-13], software analysis [14—16], reasoning over

© 2021 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ac0496
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ac0496&domain=pdf&date_stamp=2021-7-14
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2311-4380
mailto:raffaele.marino@uniroma1.it

10P Publishing

Mach. Learn.: Sci. Technol. 2 (2021) 035032 R Marino

bio networks and Bayesian network structure learning [17], minimization of visibly pushdown automata
[18], compressive sensing [19], community detection [20] and much more [21-24]. For instance, in physics,
the MAX-SAT problem is used for providing a provable periodically constrained ground state of a complex
lattice [25]. Physicists also study the global landscape structure of the MAX-SAT problem for understanding
phase transitions that appear into the solution space [26], trying to connect them to computational
complexity limits. An interesting example of this research was developed in [27] and references therein. In
these papers, continuous-time deterministic systems based on ordinary differential equations were proposed
as SAT and MAX-SAT solvers. These works are based on the observation that the continuous-time
deterministic systems have dynamics attracted by fixed points that identify solutions with minimum energy.

From the theoretical point of view [28—30], the MAX-SAT problem is studied for giving optimal
inapproximability results. Inapproximability results help to understand the computational complexity of
hard problems [7, 31]. Many natural optimization problems, indeed, are NP-hard. This implies that they are
probably hard to solve exactly in the worst-case. The worst-case complexity measures the maximum amount
of resources that an algorithm requires, given an input of arbitrary size [32].

However, it suffices to get reasonably good solutions for all (or even most) instances in practice.
Examples of these results have been studied since 1973 when Johnson [31] analyzed the worst-case behavior
of simple, polynomial-time, random algorithms for finding approximate solutions to various combinatorial
optimization problems. He measured the worst solution value ratio, which can be reached by an algorithm,
to the optimal one. For a maximization problem, an algorithm is a p-approximation algorithm, p < 1, if it
produces a solution whose objective value is at least p - OPT where OPT is the global optimum, for each
instance. A similar definition applies to minimization problems. The approximation algorithms’ important
property relates the size of the solution produced directly to a lower bound on the optimal solution. Instead
of telling us how well we might do, they will tell us about the worst-case, i.e. how badly we might perform.

Following this research topic, many computer scientists have proven rigorous results over optimal
inapproximability. The first result proving hardness for the problem we are discussing here was obtained in
the fundamental paper by Arora ef al [33]. He established the probabilistically checkable proofs (PCP)
theorem. The theorem states that every decision problem in the NP complexity class has probabilistically
checkable proofs, where a verifier reads only a constant number of bits and uses logarithmic random of bits.
Many results have been obtained since then, as in [34-36] and references therein, but the most famous was
given by Hastad in 1997 [7]. He proved optimal inapproximability results, up to an arbitrary € > 0, for
MAX-E-k-SAT for k > 3, by maximizing the number of satisfied linear equations in an over-determined
system of linear equations modulo a prime p. More precisely, the author showed that for the maximum exact
3-satisfiability (MAX-E-3-SAT'), no approximate algorithm could outperform the random assignment
threshold, which is set to be 7/8 the optimal one, unless P = NP. He also stated that the maximum exact
4-satisfiability (MAX-E-4-SAT) is not approximable beyond the random assignment threshold on satisfiable
instances. The random assignment threshold is set to be 15/16 the optimal one, unless P = NP. These results
are only valid for approximate algorithms.

In contrast to this kind of algorithms, heuristics [32, 37] can find better approximate solutions. However,
their worst-case performance can be tough to analyze and, therefore, heuristic methods may be considered
approximate and not accurate algorithms. Although they have this negative reputation, heuristics are the only
viable option for various optimization problems that need to be routinely solved in real-world applications.

Heuristic algorithms for solving MAX-SAT problems can be roughly classified into two main categories.
The first category of algorithms searches for a solution by performing a biased random walk in the space of
configurations. Instead, the second one tries to build a solution assigning variables, according to some
estimated marginals. MaxWalkSAT, focused Metropolis search or diffusion Monte Carlo algorithms, genetic
algorithms with local search, and many other SAT-Solvers belong to the former category [38-55]. In
contrast, in the second category, we find algorithms deriving from the class of message passing algorithms.
Examples are warning propagation, belief propagation guided decimation, survey inspired decimation (SID),
backtracking survey propagation (BSP), and SP-y, a generalization of SP algorithm [56—60]. The last
algorithms use a decimation move for building a solution to the problem. This decimation procedure
modifies the underlying graph’s structure and makes these algorithms hard to be analytically analyzable.

This paper introduces a new heuristic-learning algorithm that collects local information from the SP
algorithm, avoids any decimation strategy, and fixes the local variables by using supervised learning
methodology [61].

The supervised learning methodology is part of a broader family of machine learning methods and plays
a key role in the fields of statistics, data mining and artificial intelligence, with many useful applications
[62—66]. In this paper we are interested in learning patterns from the solutions of MAX-E-3-SAT for
understanding how to fix a single Boolean variable.

10P Publishing

Mach. Learn.: Sci. Technol. 2 (2021) 035032 R Marino

In combinatorial optimization, learning methodology has been used for solving SAT problems or
problems related to graphical models. For instance, Selsam et al [67] obtained exciting results for SAT
problems. More precisely, the authors presented a message passing neural network that learns to solve SAT
problems after only being trained as a classifier to predict SAT. Instead, for problems related to graphical
models, Dai et al [68] presented a learning algorithm that uses a unique combination of reinforcement
learning and graph embedding. Many other results have been reached during this period, and we refer to an
interesting survey on machine learning for combinatorial optimization of Bengio et al [69] and references
therein. Regarding the MAX-SAT Problem, instead, an exciting work based on statistical learning theory has
been presented recently in [70]. They introduce a novel setting for learning combinatorial optimization
problems from contextual examples.

These works deal with small instances because the neural networks are fed with the whole instance of the
problem. In this paper, in contrast, we present, for the first time, as far as we know, a linear algorithm that
takes information locally on the graph and uses a multi-layers neural network for assigning a single variable.
This strategy allows us to analyze CNF formulae composed of 10° variables, larger and more difficult than
the neural network ever saw during training.

The motivation that guides us in simplifying heuristic methods is the following: although making a
heuristic more complicated does not necessarily make it better in the worst-case, maybe making it simpler
does not necessarily make it worse in the worst-case. The worst-case scenario for heuristic message passing
algorithms is due to the fact that a full convergence of the messages is not found. This can appear even for a
single message. When such a scenario appears, we cannot say anything about the instance we are looking at.
We lose all the local information that is correctly obtained by the message passing procedure.

For this reason, we deal with SP equations. Although they are not the best for the MAX-SAT problem, in
contrast to the SP-y equations, they are simpler and much more suitable for meeting the worst-case scenario.
They may make this heuristic-learning algorithm analytically analyzable. Indeed, decimation and
backtracking moves are avoided.

This paper is divided into the following sections: the first one recalls the MAX-E-3-SAT problem and its
factor graph representation; the second one recalls the SP algorithm; the third one introduces the neural
network and also presents the numerical analysis. We conclude our manuscript with a discussion on the
future research directions that this new method gives rise to.

2. The MAX-E-3-SAT problem and its factor graph representation

As explained in the section 1, the MAX-SAT is the maximization problem associated with the SAT problem.
It is asked to find an assignment of the Boolean variables such that the maximum number of clauses, in a
CNF formula, is satisfied. The maximization version of the k-SAT problem is called MAX-E-k-SAT, in this
case, each clause contains exactly k literals. With k = 3 a 3-SAT problem with N =9 variables and M =4
clauses is of the form:

(Xl V x, \/X3)/\(fl V X4 \/Xs)/\(.??z V Xg \/X7)/\(f3 V Xg \/Xg). (2)

Clearly an assignment that satisfies all the clauses is Sols_sa7: (%] = 1,% = 0,x3 = 0,x4 = 1,
x5 = 0,xs = 1,x; = 0,x3 = 1,x9 = 0). The MAX-E-3-SAT looks for an approximate solution of the problem
in (2). For example, a solution of the MAX-E-3-SAT, outputted by a random algorithm, could be
Solyax-g3-sar: (x1 = 0,50 = 0,x3 = 0,204 = 1,x5 = 0,xs = 1,x7 = 0,x3 = 1,x9 = 0). Solpax-g-3-sar does not
satisfy all the clauses in (2), but it is an approximate solution where just a clause is unsatisfied, i.e.

(x1 Vx Vx3) = FALSE. For a general instance of the MAX-E-3-SAT problem that contains N variables and
M clauses, it is easy to see that a random assignment satisfies each clause with probability 7/8. Indeed, if there
are M clauses, it is not hard to find an assignment that satisfies 7M/8 clauses. Since we can never satisfy more
than all the clauses this gives a 7/8-approximation algorithm [7, 31]. In this paper, as stated in the section 1,
we are interested in heuristic methods that use message passing procedure. For this reason, we recall the
factor graph representation of SAT problems. The SAT problem, and thus the MAX-SAT, is represented as a
factor graph where clauses are identified as functional nodes and variables as variable nodes. A factor graph
is a bipartite graph representing the factorization of a function.

In figure 1, it is shown a cartoon of the factor graph associated with a 3-SAT (MAX-E-3-SAT) problem.
The variables, , j, I and k, are variable nodes (circles) while clauses, g, b and ¢, are functional nodes (squares).
Each variable enters a clause as a literal, e.g. p, if and only if it is connected with an edge. Dashed edges
identify literals where variables are negated, while full edges identify literals where variables are not negated.

10P Publishing Mach. Learn.: Sci. Technol. 2 (2021) 035032 R Marino

Figure 1. The figure shows the representation as a factor graph of a 3-SAT (MAX-E-3-SAT) problem. Squares are functional
nodes, while circles are variable nodes. A functional node is connected with an edge to a variable node if and only if the
variable appears as a literal into the clause. If the edge is a dashed line, then the literal is negated into the clause. Otherwise, if
the edge is a full line, the literal appears not negated.

With the symbol 0,, we define the set of variables nodes that are connected with the functional node g,
i.e. the literals of clause a. In contrast, with the symbol 0;, we define the set of functional nodes connected
with the variable node i, i.e. the set of clauses where the literal indexed i appears. The cardinality of the set 0;
is the degree of a variable node i, i.e. the number of links connected to a circle, and is defined with n;. The set
0; is also composed of two other sets, namely 8i+ that contains the functional nodes where the variable node i
appears not negated, and 0, that contains the functional nodes where the variable node 7 appears negated.
Obviously, the relation 0; = 8{*‘ U0, holds. We also defined two more quantities, nii, for the number of
dashed and full edges of a variable node i. More precisely, n;" defines the cardinality of the set 9;", while n;”
defines the cardinality of the set 0, .

With the symbol 9, (respectively 9;,) we define the set of functional nodes containing the variable node
i, excluding the functional node a itself, satisfied (respectively not satisfied) when the variable x; is assigned
to satisfy clause a. In other words, if the variable x; is not negated in the clause a, then the 9; is the set of
functional nodes containing the variable node i, excluding the functional node a itself, where the variable
node i is connected with a full edge, thus where the variable x; appears not negated, while 0, is the set of
functional nodes containing the variable node i, where the variable node is connected with dashed edges,
thus where the variable X; appears negated. In contrast, if the variable X; is negated in the clause a, then the
8; is the set of functional nodes containing the variable node i, excluding the functional node a itself, where
the variable node 7 is connected with a dashed edge, thus where the variable x; appears negated, while 9, is
the set of functional nodes containing the variable node i, where the variable node is connected with full
edges, thus where the variable x; appears not negated.

3. The SP algorithm

The SP algorithm is a heuristic message passing algorithm. A detailed description of the SP algorithm can be
found in [57, 58], here we recall it naively. Mezard, Parisi, and Zecchina developed it in [57] from the
assumption of one-step replica symmetry breaking and the cavity method of spin glasses. SP has been
applied to different combinatorial optimization problems, like random K-SAT, MAX-E-k-SAT, g-coloring,
Maximum Independent Set, etc [57-59, 71-76], always showing the best performance for solving these
problems. It works on a factor graph. For N — oo, SP is conjectured to work better and better because it runs
over locally-tree like factor graphs, and cycles into the graph are at least O(log N).

Broadly speaking, SP exchanges messages between variables and clauses for guessing the value that each
variable needs to be set. More precisely, a message of SP, called a survey, passed from one function node a to a
variable node i (connected by an edge) is a real number 7,_,; € [0, 1]. Under the assumption that SP runs
over a tree-like factor graph, the messages have a full probabilistic interpretation. In particular, the message
TNa—i corresponds to the probability that the clause a sends a warning to variable i, telling which value the
variable i should adopt to satisfy itself [77].

The updating rules of a single message 7,—; are presented in algorithm 1.

SP is a local algorithm that extracts information on the underlying graph of a CNF formula. As input, it
takes a CNF formula of a Boolean SAT Problem, and it performs a message passing procedure to obtain
convergence of the messages. More precisely, we are given a random initialization of all messages, and at each
iteration, each message is updated following the SP-UPDATE rule described in algorithm 1. SP runs until all
messages would satisfy a convergence criterion. This convergence criterion is defined as a small number ¢
such that the iteration is halted at the first time ¢ when no message has changed by more than over the last

4

10P Publishing Mach. Learn.: Sci. Technol. 2 (2021) 035032 R Marino

Algorithm 1: Subroutine SP-UPDATE(7,,:)

Input: set of all messages arriving onto each variable node j € 9, \ i
Output: new value for the message 7, i.
forje 0,\ido

S;ﬂ = [1 - Hbeaj_: (1 - nh—>j):| Hbec’)}:r (1 - "7b—>j)
S:a = [1 - Hbgajj’ (1 - 77b—>j)} Hbea; (1 - 771:—>j)]
S]Q—m = [Hb€a7\g(]‘ - nb—>]):|

. 4 . . .
ifa set 8] . is empty, the corresponding product takes value 1 by definition
end

.

- + 0
Sa TS TS0

<

<

iteration. If this convergence criterion is not satisfied after #,,,, iterations, SP stops and returns a failure
output. Once a convergence of all messages 7),_,; is found, SP’s goal is to minimize the number of violated
clauses. For doing that, a new strategy for fixing the value of the variables must be introduced. This strategy
is called decimation and transforms the SP into the SID Algorithm. For using decimation, however, one
needs to compute the SP marginals for each variable i:

m(l-n) o _mi-a)

— i F
1 —m'm i

S =

1

; S=1-8 -8, (3)

=7,

where:

’ﬂ'i:t:l— H (1—7]1,_,,').

beo*

The SP marginal S;* (S;") tells the probability that the variable i must be forced to take the value
x; = 1(x; =0), conditional on the fact that it does not receive a contradictory message, while S? provides the
information that the variable i is not forced to take a particular value.

Once all the SP marginals have been computed, the decimation strategy can be applied. Decimating a
variable node i means fixing the variable to TRUE or FALSE depending on the SP marginals, removing all
satisfied functional nodes and the variable node i from the factor graph, and removing all the literals into the
clauses that have not been satisfied by the fixing. However, how to choose the variable node i to decimate?
The answer is simple, just selecting a variable with the maximum bias S¢, = 1 —min(S; ,S;"). Decimated the
variable node 7, the SID iteratively runs the SP algorithm and uses decimation again. The decimation
procedure continues till one of these three different outcomes appears: (i) a contradiction is found, then SID
returns exit failure; (ii) SP does not find a convergence, then SID returns exit failure; (iii) all the messages
converge to a trivial fixed point, i.e. all the messages are equal to 0, in this case, SID calls WalkSAT, which
solves the residual formula and builds the complete solution of the problem.

The SID has extremely low complexity. Each SP iteration requires O(N) operations, which yields
O(Ntmax), where ¢ is the maximum time allowed for finding a convergence, i.e. a big constant. In the
implementation described above, the SID has a computational complexity of O(#n.xN* logN), where the
NlogN comes from the sorting of the biases. This can be reduced to O(Nty. (log N)?) by noticing that fixing
a single variable does not affect the SP messages significantly. Consequently, SP can be called every No
decimation step by fixing a fraction of variables at each decimation step. The efficiency of SID can be
improved by introducing a backtracking strategy or a reinforcement strategy. We refer to [58], and references
therein for a complete explanation of these strategies.

4. The neural network and a new heuristic-learning algorithm

This manuscript aims to present a new heuristic-learning algorithm that can find an assignment for a set of
Boolean variables that maximizes the number of satisfied clauses of a given CNF formula. Although this new
heuristic-learning algorithm does not reach state-of-the-art algorithms for the MAX-SAT problem, it can
solve substantially larger and more difficult problems than it ever saw during training. The code was
developed in C++ using mlpack, a fast and flexible C++ machine learning library [78]. The experiments
were performed on a cluster with 128 cores and 512 GB of RAM. The code, the training dataset, and the
validation/test dataset can be downloaded from [79]. The experimental results were obtained by analyzing

5

10P Publishing Mach. Learn.: Sci. Technol. 2 (2021) 035032 R Marino

;
0.8
06 s
>
04 |
027 N=10f —— | N=10f —— |
N=105 —=— N= 103 —=—
o ‘ N= 10 —— o ‘ N= 10° ——
42 425 43 435 44 445 45 455 4.6 42 425 43 435 44 445 45 455 4.6
o o

Figure 2. Left: The plot displays the fraction of random 3-SAT instances that did not converge, i.e. v, as a function of the clause
density a. Right: The plot displays the average number of iterations t needed by SP for finding a convergence for all messages,
with € = 0.01, normalized to tmax = 1024 as a function of the clause density . Error bars are standard deviations.

10% instances for N = 10%, 10? instances for N = 10°, and 10 instances for N = 10°. In all figures, they will be
indicated with red circle points, blue empty circle points, and black square points respectively.

4.1. Empirical analysis of SP equations

Before presenting the whole algorithm, we start to analyze the SP algorithm. It is known that the SP
algorithm collects information locally and by using equations in (3) predicts the marginal probabilities that
allow fixing a Boolean variable. This information, however, can be achieved only by a full convergence of the
messages. Without a full convergence of the messages, algorithms based on SP equations always return a
failure output. Therefore, for understanding the limits of SP, we perform an accurate analysis on a set of
random 3-SAT instances for different values of the clause density (the ratio of the number of clauses to the
number of variables) & = M/N, with large M, large N, and keeping constant c. Instances are generated by
considering N variables and M = N clauses, where each clause contains exactly k = 3 distinct variables, and
is picked up with uniform probability distribution from the set of N!(k!(N — k)!)~! 2¥ possible clauses [80].

We choose random 3-SAT instances for two reasons. The first one is just for the sake of simplicity. We use
the same instances to analyze the new algorithm’s performance in approximating the solutions of the
MAX-E-3-SAT problem associated with them. The second one, instead, is given by the fact that many
theoretical results are well known. For example, it is known that the SAT-UNSAT threshold for the random
3-SAT is at oy = 4.267 (vertical coral line) [72, 81]. The SAT-UNSAT threshold defines two regions sharply:
for N — oo, the region before the threshold contains all the instances of random k-SAT problems that have at
least an assignment that satisfies all the clauses (SAT region), while beyond the threshold, no assignment that
satisfies all the clauses exists (UNSAT region). It is also known that when o = ay= 4.36, the SP equations do
not have a unique solution. This fact is not of direct importance for the random 3-SAT problem because we
are beyond the SAT-UNSAT threshold. No exact solution exists, i.e. not all the clauses of an instance can be
satisfied simultaneously. However, for the MAX-E-3-SAT problem, this point is interesting. Indeed, from
there, we expect that SP equations will not converge, and therefore the worst-case scenario for the SP
algorithm appears.

We start analyzing the empirical convergence of the SP algorithm (initialized with uniformly random
messages) as a function of the clause density «, for different values of N. We fix, as described in the previous
section, the value of t,,,x to 1024 and € to 1072,

In figure 2, we plot, for random 3-SAT, the fraction of instances that did not converge, v, (left panel), and
the number of iterations ¢ that SP needs to make for reaching a convergence of all messages (right panel), as a
function of the clause density «.. The analysis shows that the SP algorithm returns a failure output for
random 3-SAT at a§’¢, ;- = 4.355 because a full convergence is not found. In both cases, we observe a step
function form of the fraction of instances that did not converge for N — co. For N — o0, therefore, SP always

converges before the specific value of the clause density ¢, ;, because the solutions of the SP equations are

unique, while does not converge beyond the a5°¢} 1, because the SP equations have many solutions [72]. This
property shows that no algorithm, based on SP equations presented in Algorithm 1, can build any solution
beyond ay = ¢} (vertical magenta line). Analyzing the average fraction of messages that do not converge,
7, as a function of a, however, it seems that beyond the convergence threshold a5’¢} 1, a fraction of messages
always converges. More precisely, a fraction of converging messages, which is almost ~20% of the messages

in each random 3-SAT instance (see figure 3, left panel), exists. This fact inspires us to look at the average

6

10P Publishing

Mach. Learn.: Sci. Technol. 2 (2021) 035032 R Marino

; 03
(o4 L
0s | " | 0.25
02|
AN
s ¢ 015 |
0.1
N=10} —— |
N=103 ~—=— 0.05
o ‘ N= 106 —+— -
42 425 43 435 44 445 45 455 4.6 42 425 4.3 435 44 445 45 455 46
o o

Figure 3. Left: The plot displays the average fraction of messages that do not converge in each instance of a random 3-SAT, n, as a
function of cv. Right: The plot displays the average error (¢) that the not converging messages commit at the last iteration fmax as a
function of the clause density v, on only instances that do not find a full convergence of the messages. Error bars are standard
deviations.

error of convergence. We define the average error of convergence as the quantity (¢) such that:

6 M Z kM ﬂcom’ Z Z Ab—n tmax (5)

i=1 b€o;

where k= 3, because we have three messages for each clause, n" i

the sth instance over the M analyzed, and

is the number of messages that converge in

Apos(tm) = 4 V5 =5 forbg — s > e (6)
b—iltmax] = for|ptmes, — ptmes
0 0r|7717~>1 7717~>1 |<6‘

In the case where n" = kM, we define that m Zil Zbe& Api(fmax) = 0.

In the right panel of figure 3, we plot the quanstity (€) as a function of the clause density a.. For N — oo,
the probability of finding a full convergence in the region o € [4.200, 4.355) is equal to one because SP
equations run over a factor graph that is locally tree-like. When N is finite and small, for instance, N = 10%,
the property of having a tree-like structure is not always preserved, and, therefore, we can meet before the
threshold o§°¢} 1, instances of the random 3-SAT problem that are not able to find a full convergence of the
messages. This property allows us to understand the worst-case scenario of the SP algorithm in this region.
Therefore, we analyzed a set of instances, with cardinality 2 103, with N = 10%, and we looked at the instances
where the average error of convergence was not trivial, i.e. different from 0. The plot shows that in the region
o € [4.200, 4.355) the average error of convergence (¢) is bounded, i.e. {€) < 0.15, while beyond the
threshold a§’¢} - the quantity (e) grows linearly with cv. This fact suggests that some information can also be
extracted by those messages, although it is not completely correct. However, if we use the local information
obtained by those messages, could we find an assignment of the Boolean variables better than a random one?
To answer this question, we create a simple neural network described in the next subsection.

4.2. The neural network and numerical analysis

Algorithms based on supervised learning methodology have become essential in a wide variety of scientific
disciplines. The prime example is deep learning. Deep learning is a class of machine learning algorithms that
uses multiple layers to extract higher-level features from the raw input. It is based on artificial neural
networks (ANNs), a series of functional transformations. These functional transformations can be obtained
by fixing a set of basis functions in advance and allowing them to be adaptive during training. In this
manuscript, we use an ANN for fixing a single Boolean variable by building a function learned by solutions
coming from SID Algorithm.

In our case, the ANN is a feed-forward neural network that is trained as a classifier to predict the
conditional probability that a variable i must be set to TRUE or not, given a piece of local information
expressed into a vector of input data X(7). This vector X(7) has four dimensions and it is composed by

X(i)=[1—m",1—m ,n,n7]T.1 — 77, under the assumption that the factor graph is locally tree-like, may

i

be interpreted as the probability that the variable i does not receive warnings from the set of clauses where it

7

10P Publishing

Mach. Learn.: Sci. Technol. 2 (2021) 035032 R Marino

appears negated (n™) or not negated (n"). The components of the vector X(i) could be interpreted as the
features used for feeding a neural network in the general framework of machine learning.

The neural network A’/ (%(i), §) has five layers. The input and output layers have four and one neuron
respectively, where sigmoidal activation function acts element-wise on each neuron, i.e.
o(a) = (1+ exp(—a))~'. The hidden layers are sigmoidal layers composed by 40 neurons each. The total set
of parameters to be optimized is defined with §. We define as loss function the following cross-entropy error
function:

—

E(0) = -

—

{Tiinyi(X(i),0) + (1— T)In(1 — y;(X(i),0)) }, (7)

Mz

1

where T is the target variable, and AV is the total batch size. y(X(i),f) is a sigmoidal function of the output
layer. In our case, the target variables 7; are the variables into a satisfiable assignment of a random 3-SAT
problem. We chose the cross-entropy error function as a loss function because we are dealing with a
classification problem. Classification is the problem of identifying to which of a set of categories a new
observation belongs, based on a training set of data containing observations whose category membership is
known. In our case, the training set is composed by vectors X(i) and targets that are Boolean variables. We
can assume that each of these targets has a Bernoulli distribution. Considering them composed by
independent observations, the loss function that arises naturally by taking the negative log-likelihood is the
cross-entropy error function.

The output y(X(i), 6) can be interpreted as the conditional probability p(x; = 1[X(i)), with p(x; = 0[X(i))
given by 1 — y(X(i),#), where § is the set of parameters that has to be optimized.

For optimizing these parameters, we need to train our neural network. For doing that, we solved 400
random 3-SAT problems at a« = 4.2 and N = 10* using SID (see section 3). For each of this 400 instances we
stored one solution and the X(7) for each variable 7. In other words, for each instance random 3-SAT we have
10* vectors X(i), and to each of these vectors is associated the target variable 7;, which is the Boolean variable
associated with the satisfiable assignment. The training of the neural network was performed by giving a
batch of 20 random vectors X(7) and the respective target variables 7j, without replacement, to the neural
network. The optimal assignment of 0, 1.e. 0%, to which the right-hand side of equation (7) vanishes, can be
found by running an SGD algorithm.

For our simulations, we used the default SGD (Adam [82]) given by mlpack [78]. For testing the
performance of the neural network, we calculated the AC in computing the conditional probability
p(x; = 1|X(7)) on a validation data set. The validation data set was obtained by solving 36 random 3-SAT
problems at o = 4.23 and N = 10* using SID. We define the AC of the neural network as:

ZN”H S Vs), (8)

s=1

where, M is the total number of test solutions, i.e. the 36 solutions of random 3-SAT problems at & = 4.23
and N = 10*; N"H(a, b) is the normalized Hamming distance between two strings a and b with the same
length; S; is the exact solution obtained by SID;) is the approximate solution obtained from the deep
neural network. As the reader can see, we tested the network on solutions with a different value of « to which
the neural network was trained. It was possible because we assumed that the local information obtained by
SP equations should be independent of the clause density «.

In the left panel of figure 4, we present the AC of the neural network on the validation data set of 36 10*
elements as a function of the number of training steps, i.e. the number of times that we called the SGD for
optimizing the set of parameters 0. The neural network starts by giving a random assignment to the Boolean
variables, AC ~50%, and after 100 training steps, it learns how to assign the Boolean variables. We also tested
the AC of the neural network on a validation data set of 17 10* elements coming from 17 solutions of 3-SAT
at « =4.24 and N = 104, obtaining the same AC. However, as shown on the right panel of figure 4, the
approximation of the conditional probability y(X(i),6*) completely fails for ~20% of the variables. This
failure is not bad for our purpose. Indeed, we are not interested in building a solution that satisfies all the
clauses. Still, we are interested in finding an approximation of a solution that minimizes the number of
unsatisfied clauses into an instance of MAX-E-3-SAT.

The whole algorithm, which we name NeurNet-SP, is presented in algorithm 2.

For speeding up the algorithm, we introduced the convergence criterion explained in section 3. The
computational complexity of NeurNet-SP algorithm is, therefore, ©(N). Indeed, the maximum number of
operation that it takes for outputting a result, after the training procedure for optimizing the parameters g of
the deep neural network, is ~ tyackM 4 O(|0]2)N, where || << N and M = aN. Moreover, once the neural

8

10P Publishing

Mach. Learn.: Sci. Technol. 2 (2021) 035032 R Marino
1 0.6 ‘ ‘
Correct Assignment
Wrong Assignment =
05 | |
08 | R T R
. ’ 04 |
0.6
Q 0.3 |
<
0.4 02 |
0.2 j 0.1t
0 T— |
0 . - - -0.5 0 0.5 1 15
0 50 100 150 200 .
y(xl),)

Training Steps

Figure 4. Left: The figure displays the accuracy (AC) as a function of the number of training steps. In this case, for each training
step, i.e. for each time that we call the SGD for optimizing the parameter 6 on a batch of the training data set, we compute the
accuracy (equation (8)) on a validation/test set. The validation/test set is composed by 36 instances of the random 3-SAT with
a=4.23 and N = 10*. As shown by the plot, the maximum accuracy (AC) of the neural network is reached just after 100 training
steps. We run the training procedure for one epoch composed of 10* training steps. Error bars are standard deviations. Right: The
figure shows the normalized histogram of the conditional probability returned by the neural network y(X(i), 5*) that a variable i
must be set to TRUE or not. In green, we plot the correct assignments, i.e. the value of y(X(i), 5*) which allows us to correctly fix
the variable i to TRUE or FALSE, while in red we plot the value of y(%(i),6*) which makes us guessing a wrong assignment.
Surprisingly, only the ~20% of variables is fixed in the wrong way.

Algorithm 2: NeurNet-SP

Input: A CNF formula for MAX-E-3-SAT.

Output: An assignment Solaax-g-3-saT for MAX-E-3-SAT.

Learn the parameters §* of the neural network N\ (X(i), 6)
Random initialization of all messages 77, in the clauses.

for t < tmax do

RUN SP on the factor graph underlying the CNF formula, i.e.
Algorithm 1

end

forl <i< Ndo

Compute X(7)

Use the output of N'A/(X(i), ") for fixing the variable i, i.e. if
y(%(i),0) > 0.5 then i is set to 1, else i is set to 0

Save the value of i into Solyax.g.3-saT

end
return Solyax.g.3-saT

network’s training procedure is performed, one can save the parameters’ value and upload them instead of
re-training the neural network each time. We also release the parameters’ value, which can be downloaded
from [79].

For performing an analysis on the performance of this heuristic-learning algorithm, we need, therefore,
to check the ratio of the number of satisfied clauses to the total number of clauses, i.e. p. This result is
described in figure 5. Both plots describe the quantity of 1 — p as a function of c. In each plot, having 1 — p
on the y-axis, the top end of the plot coincides with the estimate of the random assignment threshold, i.e.

1 — prand = 1 —7/8 = 0.125, to provide an immediate indication of the performance of the NeurNet-SP. In
the left panel of the figure 5, in the region « € [4.200, 4.355) the average of 1 — p is performed only on the
instances of random 3-SAT problem that converged, i.e. t* < tax. In other words, we are looking at the
average-case performance of the heuristic-learning algorithm.

The behavior of 1 — p is constant, showing, therefore, that the NeurNet-SP algorithm can find
approximate solutions such that only 1.46% of clauses are unsatisfied by the assignment found, more
precisely (1 — p) =0.0146 £0.0002. In the region o € [4.355, 4.620] the average was performed only on the
instances of random 3-SAT problem that did not converge, i.e. * = f;,y. This is obvious because no
convergence is possible beyond o5’¢/ . The behavior of 1 — p, in this case, is not constant anymore, but it is
linear with the clause density .

10P Publishing

Mach. Learn.: Sci. Technol. 2 (2021) 035032 R Marino
o2} ‘ ‘ ‘ ‘] 012 |
0.1 1 0.1
0.08 | 1 0.08
[o% (=N
< 0.06 | o, < 0.06 | o, ﬁg{%

it
0.04 |] 0.04 | H@ﬁﬁﬁﬁﬂﬁ

002 T oce e

0 . N=10° —— 0 ‘ L N=10t
42 425 43 435 4.4 445 45 455 46 42 425 43 435 44 445 45 455 46
o o

Figure 5. Left: The plot displays the quantity 1 — p as a function of the clause density «. In the region o € [4.200, 4.355), the
average was performed only on the instances of MAX-E-3-SAT problem that converged, i.e. t* < fmax. In the region

a € [4.355,4.620], the average was performed only on the instances of random 3-SAT problem that did not converge, i.e.

t* = tmax. Right: The plot displays the quantity 1 — p as a function of the clause density « for instances of the random
MAX-E-3-SAT problem that did not converge. Error bars are standard deviations.

In the right panel, we plot, instead, the worst-case scenario for the SP equations, i.e. only the instances
that did not find a convergence of all messages, i.e. the time t* = #;,,x and (€) # 0. For showing the
worst-case scenario, we run 2 10° the heuristic-learning algorithm on instances random 3-SAT with N = 10*,
and we analyzed only those where a full convergence of the messages was absent. We observe that the local
nature of the SP algorithm helps us to find an approximate solution much better than the one outputted by
the Johnson algorithm [31]. In the region « € [4.200, 4.355) the average error of the convergence, i.e (¢), in
the right panel of figure 3 is bounded and the NeurNet-SP seems to follow the same behavior. This behavior
shows that the solutions we found using NeurNet-SP are not affected by the loss of convergence. In contrast,
in the region o € [4.360, 4.620] the algorithm, following the behavior of the average error of convergence (e)
defined in (5), is affected to the linear growth, and, therefore, the behavior of the quantity 1 — p grows
linearly with . As test, we computed the sample Pearson correlation between two sets of variables:

S (6) i~)
Vi =) S 0 —)2

;)

Teorr =

where is the sample size, x;, y; are the individual sample points indexed with i, and p, = % oL xi the
sample mean (and analogously for 1), between the set of data 1 — p and (€). The sample Pearson correlation
is equal to reorr = 0.9959, confirming that the two quantities are dependent on each other.

As stated in section 1, NeurNet-SP is not competitive with state-of-the-art of MAX-SAT solvers. For
showing this, we compared our results with the results obtained by two different established methods:
MaxWalkSat [80], and SP-y [59]. MaxWalkSat searches for a solution by performing a biased random walk in
the solution space. At the same time, SP-y is a message passing algorithm that tries to build a solution
assigning variables according to some estimated marginals.

We start with comparing NeurNet-SP and MaxWalkSat, by analyzing the performance of the two
algorithms for instances of MAX-E-3-SAT composed by N = 10° variables. In table 1, we show the values of
1 — p, the fraction of unsatisfied clauses, at three different values of a, i.e. 4.2, 4.3, 4.5. These three points are
in three distinct regions of the solution space. The first one, i.e. & =4.2, is in the region where solutions
always exist. The second one, i.e. & =4.3, is in the region where no solution exists, but SP equations always
converge. Instead, the third one is in the region where no solution exists, and SP equations do not converge.

The fraction of unsatisfied clauses obtained by MaxWalkSat is strongly dependent on the cutoff
parameter chosen. The cutoff parameter in MaxWalkSat identifies the number of flips performed by the
algorithm for leading to the greatest decrease in the total number of unsatisfied clauses. We chose the values
104, 10°, 10%, 107, 108 for our comparison. When the cutoff is smaller than or equal to 107, the performance
of NeurNet-SP is better than the performance of MaxWalkSat in satisfying the maximum number of clauses.
However, from a cutoff of 108, or bigger, the MaxWalkSat performance is the best.

When the cutoff increases, the time for searching for an optimal solution also increases. This situation
makes the MaxWalkSat really hard to analyze analytically. In other words, we do not know when N — oo
how big the cutoff should be. It is just a parameter that is chosen a priori. In contrast, NeurNet-SP overcomes
this issue. No parameter increases its efficiency in finding an optimal approximate solution.

10

10P Publishing

Mach. Learn.: Sci. Technol. 2 (2021) 035032 R Marino

Table 1. MaxWalkSat results at N = 10° for different values of o and different cutoffs. We stop increasing the cutoff as soon as we find
that MaxWalkSat results are better than the one found by NeurNet-SP.

Cutoff N (1 _p)a:4.2 :l:o-(l—ﬂ)a:mz (1 _p)a:4-3 :l:a(l—P)a:4,3 (1 _p)a:4-5ia(]—l))a:4.5
10* 10° 0.5074 (6) 0.5197 (7) 0.5456 (8)
10° 10° 0.3760 (6) 0.3880 (6) 0.4137 (6)
10° 10° 0.0872 (3) 0.0971 (3) 0.1176 (4)
107 10° 0.0240 (3) 0.0320 (4) 0.0497 (3)
108 10° 0.0062 (1) 0.0137 (3) 0.0340 (4)
1 T !Ig;!!g!!;!!!!!!!!!!
0.8)
0.6 |
3
0.4
02 N= 10} ——
l N= 106 ——
0 & % ll I N: 10. .
4.62 464 4.66 4.68 4.7 472 4.74 476 4.78 4.8
o

Figure 6. The plot shows the behavior of w, i.e. the fraction of variables where unit propagation strategy was used for fixing the
value of the Boolean variable i in a MAX-E-3-SAT instance, as a function of the clause density c. Error bars are standard
deviations.

SP-y is a message passing algorithm ideated for minimizing the number of violated clauses in the
MAX-E-k-SAT. It takes as INPUT a Boolean formula F in CNF and outputs a simplified Boolean formula F’
in CNF and a partial truth-value assignment for the variables. If 7' # () is given to a heuristic MAX-SAT
Solver (as MaxWalkSat, Simulated Annealing) for building the complete assignment of F. It uses decimation
and backtracking strategies, which means that iteratively fixes and un-fixes variables for building up a partial
(or complete) solution of F according to some estimated marginals.

Its performance is extraordinary. For o = 4.24 and N = 10°, SP-y can find a completely satisfiable
assignment of the formula F, or, in its worst performance, a value of (1 — p)~ 107> Above the
SAT — UNSAT threshold, for example, when a = 4.29, the best performance of the algorithm, on a single
sample of a MAX-E-3-SAT instance, reached a value of (1 — p)~ 2 10~*. These performances can be
obtained only when backtracking and decimation moves are performed, implying a very long run-time.
Indeed, the SP-y algorithm has a computational complexity of order O(N?), making the established method
unfeasible for huge values of N.

Without any decimation or backtracking moves, as in NeurNet-SP, the algorithm has the same
performances of the heuristic MAX-SAT Solver used (indeed F = F'), and the performance of the
algorithm is strongly dependent on the parameters of the heuristic.

For concluding the analysis of the algorithm, we looked at the performance of the algorithm beyond
a=4.620. In the region « € (4.620,+00), we meet a point at a = 4.67, for N — oo, where the SP equations
return at least one message 1,—; = 1, also if n; > 1. When such an issue happens, numerical instability into
the SP equations appears. For avoiding this issue, therefore, we introduce a simple strategy, i.e. unit
propagation strategy, on the variable i where at least one message 7,—,; = 1 appears in the set of functional
nodes associated with it, and we fix such a variable by using the rule: i is TRUE if njr > n; , FALSE otherwise.
In figure 6 we present the fraction of variables where unit propagation strategy was used for fixing the value
of the Boolean variable i in a sample of MAX-E-3-SAT instances, i.e. w, as a function of .. At o = 4.67, for
N = 10°, we pass from a region where NeurNet-SP uses the neural network to a region where the unit
propagation rule fixes all the variables. Beyond the threshold at oo = 4.67 we can claim, also if numerically we
meet the random assignment threshold p;ang = 7/8 at av = 10 for each value of N analyzed, that the
worst-case performance of the NeurNet-SP is equal to the random assignment outputted by the Johnson
algorithm [31].

11

10P Publishing

Mach. Learn.: Sci. Technol. 2 (2021) 035032 R Marino

5. Conclusion

This paper has presented a new heuristic-learning algorithm, namely NeurNet-SP algorithm, that finds
approximate solutions for the MAX-E-3-SAT problem. This algorithm runs SP equations on the random
factor graph associated with the MAX-E-3-SAT problem. It gives the local information computed to a neural
network N/ (%(i),0%). The set of parameters 6 are optimized following a supervised learning approach

(by using target values obtained by SID on a sample of random 3-SAT problems) and outputs an assignment.
We have displayed an accurate analysis to explain the algorithm’s average and worst-case behavior as a
function of the clause density . We have started with presenting the limits of the SP equations and the
neural network’s performance in learning and inferring the conditional probability that a variable i should
take to TRUE or FALSE. Then, we have shown that this algorithm can find approximate solutions that
outperform the random assignment threshold value in the region where the SP equations do not present any
numerical instability, and we have identified its algorithmic threshold, which is the ultimate limit of the
algorithm, at v, = 4.67. Moreover, we have observed that the algorithm’s output is strongly related to the
average error of convergence (e) that the SP equations commit if they do not find a unique set of fixed points.
Although this algorithm is not competitive with state-of-the-art MAX-SAT solvers, it can solve substantially
larger and more difficult problems than it ever saw during training.

As future research directions, we propose to analyze the performance of the algorithm on MAX-E-4-SAT
problem and verify if a Belief Propagation algorithm version could perform as well as our NeurNet-SP on
that particular problem. We also suggest using SP-y equations, instead of SP equations, for improving the
performance of this new heuristic-learning algorithm. Moreover, we suggest analyzing with a probabilistic
approach the properties of the maximum error of convergence €n,y that the SP equations can perform on
random instances of the MAX-E-k-SAT problem. This maximum error should be related to the algorithmic
performance, as numerically shown in our analysis.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable
request. The code that supports the findings of this study is openly available at [79].

Acknowledgments

R M acknowledges interesting discussions with Nicolas Macris. This work is supported by the Swiss National
Foundation Grant No. 200021E 17554.

ORCID iD
Raffaele Marino ® https://orcid.org/0000-0002-2311-4380

References

[1] Pulina L and Seidl M 2020 Theory and Applications of Satisfiability Testing-SAT ed P Luca and S Martina Lecture Notes in
Computer Science (Berlin: Springer) XI, p 538
[2] Yolcu E and P6czos B 2019 Learning local search heuristics for boolean satisfiability NeurIPS vol 32 ed H Wallach, H Larochelle,
A Beygelzimer, F d’Alché-Buc, E Fox and R Garnett (Vancouver, Canada) pp 7990-8001 (available at: https://papers.nips.cc/paper/
2019/file/12e59a33dealbf0630f46edfel 3d6ea2-Paper.pdf)
[3] Chang W L and Vasilakos A V 2021 Boolean algebra and its applications Fundamentals of Quantum Programming in IBM’s
Quantum Computers 1st edn vol 81 Studies in Big Data (Berlin: Springer) pp 53-108
[4] Berend D and Twitto Y 2021 Probabilistic characterization of random Max r-Sat Discrete Optim. 40 100630
[5] Lourengo H R, Martin O C and Stiitzle T 2019 Iterated local search: framework and applications Handbook of Metaheuristics
vol 272 ed M Gendreau and J Y Potvi (Berlin: Springer) pp 12968
[6] Pei Y R, Manukian H and Di Ventra M 2020 Generating weighted MAX-2-SAT instances with frustrated loops: an RBM case dtudy
J. Mach. Learn. Res. 21 1-55
[7] Hastad J 2001 Some optimal inapproximability results J. ACM (JACM) 48 798859
[8] Dlask T and Werner T 2020 Bounding linear programs by constraint propagation: application to Max-SAT Int. Conf. on Principles
and Practice of Constraint Programming (Springer) pp 177-93
[9] Walter R, Felfernig A and Kiichlin W 2017 Constraint-based and SAT-based diagnosis of automotive configuration problems
J. Intell. Inf. Syst. 49 87-118
[10] Berg O J et al 2019 Applications of MaxSAT in data analysis EPiC Series in Computin vol 59 ed D Le Berre and M Jarvisalo Proc.
Pragmatics of SAT 2015 and 2018 pp 5064
[11] San Segundo P, Coniglio S, Furini F and Ljubi¢ I 2019 A new branch-and-bound algorithm for the maximum edge-weighted clique
problem Eur. J. Oper. Res. 278 76-90
[12] Marino R and Kirkpatrick S 2018 Revisiting the challenges of MaxClique (arXiv:1807.09091)

12

https://orcid.org/0000-0002-2311-4380
https://orcid.org/0000-0002-2311-4380
https://doi.org/10.1007/978-3-030-51825-7
https://papers.nips.cc/paper/2019/file/12e59a33dea1bf0630f46edfe13d6ea2-Paper.pdf
https://papers.nips.cc/paper/2019/file/12e59a33dea1bf0630f46edfe13d6ea2-Paper.pdf
https://doi.org/10.1007/978-3-030-63583-1
https://doi.org/10.1016/j.disopt.2021.100630
https://doi.org/10.1016/j.disopt.2021.100630
https://doi.org/10.1007/978-3-319-91086-4_5
https://doi.org/10.1145/502090.502098
https://doi.org/10.1145/502090.502098
https://doi.org/10.1007/978-3-030-58475-7_11
https://doi.org/10.1007/s10844-016-0422-7
https://doi.org/10.1007/s10844-016-0422-7
https://doi.org/10.29007/3qkh
https://doi.org/10.1016/j.ejor.2019.03.047
https://doi.org/10.1016/j.ejor.2019.03.047
https://arxiv.org/abs/1807.09091

10P Publishing

Mach. Learn.: Sci. Technol. 2 (2021) 035032 R Marino

[13] Marino R and Kirkpatrick S 2020 Large independent sets on random d-regular graphs with fixed degree d (arXiv:2003.12293)

[14] Si X, Zhang X, Grigore R and Naik M 2017 Maximum satisfiability in software analysis: applications and techniques Int. Conf. on
Computer Aided Verification (Springer) pp 68—-94

[15] Paxian T, Raiola P and Becker B 2021 On preprocessing for weighted MaxSAT Int. Conf. on Verification, Model Checking and
Abstract Interpretation (Springer) pp 55677

[16] Paxian T, Reimer S and Becker B 2018 Dynamic polynomial watchdog encoding for solving weighted MaxSAT Int. Conf. on Theory
and Applications of Satisfiability Testing (Springer) pp 37-53

[17] Gouveia F, Lynce I and Monteiro P T 2020 Revision of Boolean models of regulatory networks using stable state observations
J. Comput. Biol. 27 144-55

(18] Heizmann M, Schilling C and Tischner D 2017 Minimization of visibly pushdown automata using partial Max-SAT Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems (Springer) pp 461-78

[19] Ayanzadeh R, Halem M and Finin T 2019 SAT-based compressive sensing (arXiv:1903.03650)

[20] Jabbour S, Mhadhbi N, Raddaoui B and Sais L 2020 SAT-based models for overlapping community detection in networks
Computing 102 1-25

[21] Benedetti M and Mori M 2018 Parametric RBAC maintenance via Max-SAT Proc. 23nd ACM Symp. on Access Control Models and
Technologies pp 15-25

[22] Urbonas M, Bundy A, Casanova J and Li X 2020 The use of Max-SAT for optimal choice of automated theory repairs Int. Conf. on
Innovative Techniques and Applications of Artificial Intelligence (Springer) pp 49-63

(23] Chandriah K K and Naraganahalli R V 2021 Maximizing a deep submodular function optimization with a weighted MAX-SAT
problem for trajectory clustering and motion segmentation Appl. Intell. 51 1-20

[24] LiY L, Lin S T, Nishizawa S and Onodera H 2020 Mcell: multi-row cell layout synthesis with resource constrained max-sat based
detailed routing Proc. 39th Int. Conf. on Computer-Aided Design pp 1-8

[25] Huang W, Kitchaev D A, Dacek S T, Rong Z, Urban A, Cao S, Luo C and Ceder G 2016 Finding and proving the exact ground state
of a generalized Ising model by convex optimization and MAX-SAT Phys. Rev. B 94 134424

[26] Ochoa G, Chicano F and Tomassini M 2020 Global landscape structure and the random Max-SAT phase transition vol 12270 Int.
Conf. on Parallel Problem Solving from Nature (Springer) pp 125-38

[27] Molnar B, Molnar F, Varga M, Toroczkai Z and Ercsey-Ravasz M 2018 A continuous-time MaxSAT solver with high analog
performance Nat. Commun. 9 1-12

[28] Py M, Cherif M S and Habet D 2020 Towards bridging the gap between SAT and Max-SAT refutations 2020 IEEE 32nd Int. Conf. on
Tools With Artificial Intelligence (ICTAI) (IEEE) pp 13744

[29] Joshi S, Kumar P, Martins R and Rao S 2018 Approximation strategies for incomplete MaxSAT vol 11008 Int. Conf. on Principles
and Practice of Constraint Programming (Springer) pp 219-28

[30] Li CM, Manya F and Soler J R 2019 Clausal form transformation in MaxSAT 2019 IEEE 49th Int. Symp. on Multiple-Valued Logic
(ISMVL) (IEEE) pp 132-7

[31] Johnson D S 1974 Approximation algorithms for combinatorial problems J. Comput. Syst. Sci. 9 25678

[32] Knebl H 2020 Algorithms and Data Structures: Foundations and Probabilistic Methods for Design and Analysis 1st edn (Switzerland:
Springer) XI, p 349

[33] Arora S, Lund C, Motwani R, Sudan M and Szegedy M 1998 Proof verification and the hardness of approximation problems J.
ACM (JACM) 45 501-55

[34] Poloczek M, Schnitger G, Williamson D P and Van Zuylen A 2017 Greedy algorithms for the maximum satisfiability problem:
simple algorithms and inapproximability bounds SIAM J. Comput. 46 1029-61

[35] Chou C N, Golovnev A and Velusamy S 2020 Optimal streaming approximations for all boolean Max-2CSPs and Max-kSAT 2020
IEEE 61st Symp. on Foundations of Computer Science (FOCS) (IEEE) pp 33041

[36] Brakensiek J, Huang N, Potechin A and Zwick U 2021 On the mysteries of MAX NAE-SAT Proc. 2021 ACM- Symp. on Discrete
Algorithms (SODA) (SIAM) pp 484-503

[37] Demirovi¢ E and Stuckey P J 2019 Techniques inspired by local search for incomplete MaxSAT and the linear algorithm: varying
resolution and solution-guided search vol 11802 Int. Conf. on Principles and Practice of Constraint Programming (Springer)
pp 177-94

[38] Bouhmala N, Oseland M and Bradland @ 2016 Walksat based-learning automata for Max-SAT Int. Conf. on Soft
Computing-MENDEL (Springer) pp 98—110

[39] Liu S and De Melo G 2017 Should algorithms for random SAT and Max-SAT be different? Proc. Conf. on Artificial Intelligence vol 31
pp 3915-21

[40] Bouhmala N 2019 Combining simulated annealing with local search heuristic for MAX-SAT J. Heuristics 25 47—69

[41] Djenouri Y, Habbas Z and Djenouri D 2017 Data mining-based decomposition for solving the MAXSAT problem: toward a new
approach IEEE Intell. Syst. 32 48-58

[42] Brandts-Longtin A 2019 Smoothed Analysis of Max-k-SAT (Canada: McGill University)

[43] Jarret M, Jordan S P and Lackey B 2016 Adiabatic optimization versus diffusion Monte Carlo methods Phys. Rev. A 94 042318

[44] Traversa F L, Cicotti P, Sheldon F and Di Ventra M 2018 Evidence of exponential speed-up in the solution of hard optimization
problems Complexity 2018 1-13

[45] Ali HM, Ejaz W, Al Taei M and Igbal F 2019 Solving Max-SAT problem by binary biogeograph-based optimization algorithm 2019
IEEE 10th Annual Information Technology, Electronics and Mobile Conf. (IEMCON) (IEEE) pp 1092-7

[46] Bouhmala N and @vergdrd K 12018 Combining genetic algorithm with variable neighborhood search for max-sat Innovative
Computing, Optimization and Its Applications 1st edn vol 741 (Berlin: Springer) XVIII, p 336

[47] Berend D and Twitto Y 2020 Effect of initial assignment on local search performance for Max SAT 18th Int. Symp. on Experimental
Algorithms (SEA 2020) (Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik) (available at: http://www.sea2020.dmi.unict.it/
LIPIcs160/LIPIcs-SEA-2020-8.pdf)

(48] Xu Z, He K and Li C M 2019 An iterative Path-Breaking approach with mutation and restart strategies for the MAX-SAT problem
Comput. Oper. Res. 104 49-58

[49] Bacchus F, Berg J, Jarvisalo M and Martins R 2020 MaxSAT Evaluation 2020: Solver and Benchmark Descriptions (Helsinki:
University of Helsinki, Department of Computer Science) (available at: https://helda.helsinki.fi/bitstream/handle/10138/318451/
mse20proc.pdffsequence=1)

[50] AlKasem H H and Menai M E B 2021 Stochastic local search for partial Max-SAT: an experimental evaluation Artif. Intell. Rev.
54 2525-66

13

https://arxiv.org/abs/2003.12293
https://doi.org/10.1007/978-3-319-63387-9_4
https://doi.org/10.1007/978-3-030-67067-2_25
https://doi.org/10.1007/978-3-319-94144-8_3
https://doi.org/10.1089/cmb.2019.0289
https://doi.org/10.1089/cmb.2019.0289
https://doi.org/10.1007/978-3-662-54577-5_27
https://arxiv.org/abs/1903.03650
https://doi.org/10.1007/s00607-020-00803-y
https://doi.org/10.1007/s00607-020-00803-y
https://doi.org/10.1145/3205977.3205987
https://doi.org/10.1007/978-3-030-63799-6_4
https://doi.org/10.1007/s10489-021-02276-8
https://doi.org/10.1007/s10489-021-02276-8
https://doi.org/10.1145/3400302.3415612
https://doi.org/10.1103/PhysRevB.94.134424
https://doi.org/10.1103/PhysRevB.94.134424
https://doi.org/10.1007/978-3-030-58115-2_9
https://doi.org/10.1038/s41467-018-07327-2
https://doi.org/10.1038/s41467-018-07327-2
https://doi.org/10.1109/ICTAI50040.2020.00032
https://doi.org/10.1007/978-3-319-98334-9_15
https://doi.org/10.1109/ISMVL.2019.00031
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1007/978-3-030-59758-0
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/278298.278306
https://doi.org/10.1137/15M1053369
https://doi.org/10.1137/15M1053369
https://doi.org/10.1109/FOCS46700.2020.00039
https://doi.org/10.1007/978-3-030-30048-7_11
https://doi.org/10.1007/978-3-319-58088-3_10
https://doi.org/10.5555/3298023.3298137
https://doi.org/10.1007/s10732-018-9386-9
https://doi.org/10.1007/s10732-018-9386-9
https://doi.org/10.1109/MIS.2017.3121546
https://doi.org/10.1109/MIS.2017.3121546
https://doi.org/10.1103/PhysRevA.94.042318
https://doi.org/10.1103/PhysRevA.94.042318
https://doi.org/10.1155/2018/7982851
https://doi.org/10.1155/2018/7982851
https://doi.org/10.1109/IEMCON.2019.8936281
https://doi.org/10.1007/978-3-319-66984-7
http://www.sea2020.dmi.unict.it/LIPIcs160/LIPIcs-SEA-2020-8.pdf
http://www.sea2020.dmi.unict.it/LIPIcs160/LIPIcs-SEA-2020-8.pdf
https://doi.org/10.1016/j.cor.2018.12.005
https://doi.org/10.1016/j.cor.2018.12.005
https://helda.helsinki.fi/bitstream/handle/10138/318451/mse20proc.pdf?sequence=1
https://helda.helsinki.fi/bitstream/handle/10138/318451/mse20proc.pdf?sequence=1
https://doi.org/10.1007/s10462-020-09908-4
https://doi.org/10.1007/s10462-020-09908-4

10P Publishing

Mach. Learn.: Sci. Technol. 2 (2021) 035032 R Marino

[51] Lei Z and Cai S 2018 Solving (weighted) partial MaxSAT by dynamic local search for SAT IJCAI 7 134652

[52] Ignatiev A, Morgado A and Marques-Silva] 2019 RC2: an efficient MaxSAT solver J. Satisfiabil. Boolean Model. Comput. 11 53—64

[53] Berg], Demirovi¢ E and Stuckey P] 2019 Core-boosted linear search for incomplete MaxSAT vol 11494 Int. Conf. on Integration of
Constraint Programming, Artificial Intelligence and Operations Research (Springer) pp 39-56

[54] Luo C, Cai S, Su K and Huang W 2017 An efficient local search algorithm for weighted partial maximum satisfiability Artif. Intell.
243 26-44

[55] Nadel A 2018 Solving MaxSAT with bit-vector optimization vol 10929 Int. Conf. on Theory and Applications of Satisfiability Testing
(Springer) pp 54-72

[56] Zhao CY and Fu Y R 2021 Belief propagation guided decimation algorithms for random constraint satisfaction problems with
growing domainsBelief propagation guided decimation algorithms for random constraint satisfaction problems with growing
domains J. Stat. Mech.: Theory Expl. 2021 033408

[57] Mézard M, Parisi G and Zecchina R 2002 Analytic and algorithmic solution of random satisfiability problems Science 297 812-5

[58] Marino R, Parisi G and Ricci-Tersenghi F 2016 The backtracking survey propagation algorithm for solving random K-SAT
problems Nat. Commun. 7 1-8

[59] Battaglia D, Kolaf M and Zecchina R 2004 Minimizing energy below the glass thresholds Phys. Rev. E 70 036107

[60] Wang X and Jiang J 2017 Propagation algorithm for the MAX-3-SAT problem IEEE Trans. Emerg. Top. Comput. 7 57884

[61] Berry M W, Mohamed A and Yap B W 2019 Supervised and Unsupervised Learning for Data Science Unsupervised and
Semi-Supervised Learning (Berlin: Springer) VIII, p 187

[62] Shinde P P and Shah S 2018 A review of machine learning and deep learning applications 2018 Fourth Int. Conf. on Computing
Communication Control and Automation (ICCUBEA) (IEEE) pp 1-6

[63] Ker J, Wang L, Rao J and Lim T 2017 Deep learning applications in medical image analysis IEEE Access 6 9375-89

[64] Zhang T, Gao C, Ma L, Lyu M and Kim M 2019 An empirical study of common challenges in developing deep learning applications
2019 IEEE 30th Int. Symp. on Software Reliability Engineering (ISSRE) (IEEE) pp 10415

[65] Balas V E, Roy S S, Sharma D and Samui P 2019 Handbook of Deep Learning Applications vol 136 Smart Innovation, Systems and
Technologies (Berlin: Springer) (https://doi.org/10.1007/978-3-030-11479-4)

[66] Sarmadi H and Entezami A 2021 Application of supervised learning to validation of damage detection Arch. Appl. Mech.
91 393-410

[67] Selsam D et al 2018 Learning a sat solver from single-bit supervision Int. Conf. on Learning Representations

[68] Dai H, Khalil E, Zhang Y, Dilkina B and Song L 2020 Learning combinatorial optimization algorithms over graphs Proc. 31st Int.
Conf. on Neural Information Processing Systems

[69] Bengio Y, Lodi A and Prouvost A 2020 Machine learning for combinatorial optimization: A methodological tour d’horizon Eur. J.
Oper. Res. 290 405-21

[70] Kumar M, Kolb S, Teso S and De Raedt L 2020 Learning Max-SAT from contextual examples for combinatorial optimisation Proc.
Conf. Artif. Intell. 34 4493-500

[71] Budzynski L, Ricci-Tersenghi F and Semerjian G 2019 Biased landscapes for random constraint satisfaction problems J. Stat. Mech.:
Theory Exp. 2019 023302

(72] Bartha Z, Sun N and Zhang Y 2019 Breaking of 1RSB in random regular MAX-NAE-SAT 2019 IEEE 60th Symp. on Foundations of
Computer Science (FOCS) (IEEE) pp 1405-16

[73] Gabrié M, Dani V, Semerjian G and Zdeborova L 2017 Phase transitions in the q-coloring of random hypergraphs J. Phys. A
50 505002

[74] Budzynski L and Semerjian G 2020 The asymptotics of the clustering transition for random constraint satisfaction problems J. Stat.
Phys. 181 1490-522

[75] Bartha Z 2020 Replica symmetry breaking in the random regular k-NAE-SAT problem PhD Thesis UC Berkeley

[76] Moore C 2017 The computer science and physics of community detection: landscapes, phase transitions, and hardness
(arXiv:1702.00467)

[77] Hetterich S 2016 Analysing survey propagation guided decimationon random formulas 43rd Int. Colloquium on Automata,
Languages, and Programming (ICALP 2016) vol 55 pp 1-12 (arXiv:1602.08519)

[78] Curtin R R, Cline J R, Slagle N P, March W B, Ram P, Mehta N A and Gray A G 2013 MLPACK: a scalable C4-+ machine learning
library J. Mach. Learn. Res. 14 801-5

[79] Marino R 2020 (available at: https://github.com/RaffaeleMarino/DeepSP)

[80] Selman B et al 1996 Local search strategies for satisfiability testing Cliques Coloring Satisfiabil. 26 52132

[81] Ding], Sly A and Sun N 2015 Proof of the satisfiability conjecture for large k Proc. Forty-Seventh Annual ACM Symp. on Theory of
Computing pp 59-68

[82] Kingma D and Ba J 2015 Adam: A method for stochastic optimization 3rd Int. Conf. Learning Representations (San Diego, CA, USA,
7-9, May 2015) (arXiv:1412.6980)

14

https://doi.org/10.24963/ijcai.2018/187
https://doi.org/10.24963/ijcai.2018/187
https://doi.org/10.3233/SAT190116
https://doi.org/10.3233/SAT190116
https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1016/j.artint.2016.11.001
https://doi.org/10.1016/j.artint.2016.11.001
https://doi.org/10.1007/978-3-319-94144-8_4
https://doi.org/10.1088/1742-5468/abe6fe
https://doi.org/10.1088/1742-5468/abe6fe
https://doi.org/10.1126/science.1073287
https://doi.org/10.1126/science.1073287
https://doi.org/10.1038/ncomms12996
https://doi.org/10.1038/ncomms12996
https://doi.org/10.1103/PhysRevE.70.036107
https://doi.org/10.1103/PhysRevE.70.036107
https://doi.org/10.1109/TETC.2017.2736504
https://doi.org/10.1109/TETC.2017.2736504
https://doi.org/10.1007/978-3-030-22475-2
https://doi.org/10.1109/ICCUBEA.2018.8697857
https://doi.org/10.1109/ACCESS.2017.2788044
https://doi.org/10.1109/ACCESS.2017.2788044
https://doi.org/10.1109/ISSRE.2019.00020
https://doi.org/10.1007/978-3-030-11479-4
https://doi.org/10.1007/s00419-020-01779-z
https://doi.org/10.1007/s00419-020-01779-z
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1609/aaai.v34i04.5877
https://doi.org/10.1609/aaai.v34i04.5877
https://doi.org/10.1088/1742-5468/ab02de
https://doi.org/10.1088/1742-5468/ab02de
https://doi.org/10.1109/FOCS.2019.00086
https://doi.org/10.1088/1751-8121/aa9529
https://doi.org/10.1088/1751-8121/aa9529
https://doi.org/10.1007/s10955-020-02635-8
https://doi.org/10.1007/s10955-020-02635-8
https://arxiv.org/abs/1702.00467
https://arxiv.org/abs/1602.08519
https://github.com/RaffaeleMarino/DeepSP
https://doi.org/10.1090/dimacs/026
https://doi.org/10.1090/dimacs/026
https://doi.org/10.1145/2746539.2746619
https://arxiv.org/abs/1412.6980

	Learning from survey propagation: a neural network for MAX-E-3-SAT
	1. Introduction
	2. The MAX-E-3-SAT problem and its factor graph representation
	3. The SP algorithm
	4. The neural network and a new heuristic-learning algorithm
	4.1. Empirical analysis of SP equations
	4.2. The neural network and numerical analysis

	5. Conclusion
	Acknowledgments
	References

