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Abstract The aim of this study is to present an alternative way to deduce the equations of motion of general
(i. e. also nonlinear) nonholonomic constrained systems starting from the d’Alembert principle and proceed-
ing by an algebraic procedure. The two classical approaches in nonholonomic mechanics – Četaev method
and vakonomic method – are treated on equal terms, avoiding integrations or other steps outside algebraic
operations. In the second part of the work, we compare our results with the standard forms of the equations
of motion associated with the two method and we discuss the role of the transpositional relation and of the
commutation rule within the question of equivalence and compatibility of the Četaev and vakonomic methods
for general nonholonomic systems.

1 Introduction

Our study concerns discrete mechanical systems subject to constraints involving the coordinates of the points
and their velocities. We refer to this situation as nonholonomic systems even if the denomination, more
generally, encompasses all situations complementary to the case of purely geometric restrictions, i. e. only
on the coordinates of the points and possibly the time. Our approach is theoretical, that is, we deal with the
mathematical formulation of the model and not with the physical realization of the constraints.

A fundamental point of reference for a comprehensive and historical review and for a systematic exposition
of nonholonomic mechanics is [15]. For an update in the following decades and for an important analytical
treatment of nonholonomic systems we quote [16]. The classical treatment of nonholonomic systems regards
in the majority of cases linear constraints, i. e. the constraint equations are linear with respect to the kinetic
variables. Among recent works that face themost general case of nonlinear kinematic constraints we refer to [2]
for a comprehensive and general method for writing the dynamical equations through which various examples
are analyzed. In [3] an example of a nonlinear system is presented, together with a review of the theory. A
second series of works studying nonholonomic nonlinear constrained systems can be found in [24–26].

Our attention turns to constraints of a general type: one of the main objectives of the work is to explore
the possibility of applying the d’Alembert principle to nonlinear nonholonomic systems, using elementary
algebraic techniques. By “algebraic” we essentially intend to avoid the use of integrals with respect to time,
a step very often recurring in most formulations. This possibility is known to exist for holonomic systems,
constrained with only geometric restrictions. The idea to extend the d’Alembert principle to general nonholo-
nomic systems requires only the definition of the virtual displacements (i. e. possible displacements) for which
the virtual work of the constraint forces vanishes (ideal displacements).

In order to establish what types of displacements to consider, it is certain that we have to refer to the two
main approaches prevailing in the theory of general constrained systems: we mean the displacements verifying
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the Četaev condition, historically traceable to [4] on one side, and displacements complying the “vakonomic
condition,” [8–10] (an interesting historical summary of the method is contained in [12]) for which we find in
literature only integral (and not algebraic) approaches (this is indeed a motivation for the work).

The first part of the work (Sect. 2) is dedicated to recalling the D’Alembert principle in themost appropriate
form and we develop simple linear algebra problems, coming from the declaration of two different classes of
virtual displacements (class (A) and class (B)). The main result is stated in Proposition 1, where it is shown
that the two systems of equations corresponding to the two different classes (A) and (B) are equivalent, if the
displacements conditions verify a specific assumption (stated in (16)). We opt to start from assigning physical
coordinates to the model and to develop the theory by using the radius vector of each point; then we show
(Paragraph 2.4) that by passing to any arbitrary set of Lagrangian coordinates the formal structure of the
problem and the results are identical.

In Sect. 3, the specific assignment (36) of the displacements conditions in terms of the constraint functions
identifies the class (A) with the method based on the Četaev condition, class (B) with the formulation of the
vakonomic mechanics. Proposition 3 which transfers the results of Sect. 2 to the mentioned application states
that the two methods are equivalent if both the displacements conditions are assumed, as far as the equations
of motion are obtained through algebraic considerations.

The final discussion in Sect. 4 compares the two set of nonholonomic equations (originating from (A) and
(B)) with those present in literature and classified as Četaev systems or vakonomic systems. In particular, the
vakonomic algebraic method is checked against the procedure of deducing the equations from a variational
principle (Hamilton–Suslov principle). As a further issue, the possibility of making the conditions of the two
kind valid simultaneously is explored. The question of equivalence of the two methods is indeed a current
matter of debate and recently various works are dedicated to the study of the compatibility (or inequivalence)
of the two methods [6,12,21–23].

A significant role in the question is played by the so called transpositional relation, which establishes a link
between the two conditions on the displacements (Četaev and vakonomic types), in terms of the lagrangian
derivatives of the constraint functions and of a quantity which vanishes if the commutation property between
displacement and velocity is assumed (in simple terms: whether the velocity of the displacement is equal to
the displacement of the velocity). Such a rule is another debated issue, starting from [15] up to the significant
and exhaustive discussion in [5]. If on the one hand the validity of the commutation ule (tacitly or explicitly
assumed inmost of the vakonomicmethods) entails the equivalencewith the Četaevmethod only for holonomic
systems [7,12,13], on the other hand the hypothesis of a non–zero coomutation rule offers new substance and
significance to the vakonomic model [14,17]. The final observations of the work are developed precisely on
the role of the transpositional relation assuming the simultaneous validity of the displacements conditions. Our
comments are based mainly on the general vakonomic method presented in [14] and developed in [17].

2 Statement of the model

2.1 D’Alembert principle and virtual displacements

We consider a mechanical system consisting of N material points whose position is identified by the R
3N

position vector r = (r1, . . . , rN ), and subject to the nonholonomic constraints (linear or nonlinear)

�ν(r, ṙ, t) = 0, ν = 1, . . . , κ < 3N (1)

where ṙ = (ṙ1, . . . , ṙN ) is the velocity vector of the system. The constraints are independent in the sense that

the κ vectors
∂�ν

∂ ṙ
∈ R

3N , ν = 1, . . . , κ are linearly independent (2)

or, equivalently, the rank of the (κ × 3N ) jacobian matrix
∂�

∂ ṙ
, � = (�1, . . . , �κ) achieves its maximum

value κ .
The Newtonian equations of motions for the systems can be written as

Q̇ = F(r, ṙ, t) + R (3)
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with Q = (m1ṙ1, . . . ,mN ṙN ) is the linear momentum of the system (mi is the mass of each point), F =
(F1, . . . , FN ) lists the forces acting on the points and R = (R1, . . . , RN ) are the constraint forces due to
restrictions (1); the vector R is an unknown quantity of the problem.

The equations become operational if the mechanical behavior of the constraints is specified: following the
d’Alembert Principle of virtual works, the constraints forces reveal the property

R · δr = 0 (4)

for the virtual displacements δr = (δr1, . . . , δrN ) of the system (i. e. the displacements performed at a fixed
time anfd consistent with the constraints).

Remark 1 We follow the formulation given in [15] (as well as in recent articles, see [7,21]) where the variables
which the vector R depends on are not explicitly indicated.Actually, one expects that the classical dependencies
r, ṙ, t of the holonomic case are extended including

..
r if the system is nonholonomic, but this may appear in

conflict with the structure of the Newtonian equations. The discussion of this topic goes beyond the scope of
the work and we refer to [15] for a broader overview; furthermore, by (46) the constraint forces are excluded.

Equations (3) together with conditions (4) provide
(
Q̇ − F

) · δr = 0 (5)

from which the correct equations of motion will be deduced. The question therefore shifts to identifying the
appropriate δr: the selection must be compatible with the constraints (1) i. e. it must be expressed in terms of
the functions �ν ; if on the one hand in the case of holonomic constraints (that is in absence of ṙ or in case of
integrable constraints) the answer is clear and unambiguous, in the case of general constraints we can say that
the question is open, especially in the nonlinear case.

From a formal point of view for the moment, we indicate two general categories of displacements:

(A) the displacements verify

A(r, ṙ, t)δr = 0 (6)

where A is a κ × 3N–matrix with full rank κ .
(B) the displacements fulfill the condition

B(r, ṙ, t)δr + C(r, ṙ, t)δṙ = 0 (7)

where B, C are κ × 3N–matrices and δṙ are the virtual variations of ṙ consistent with (1).

2.2 The mathematical problem

For the moment we are dealing with an abstract situation: the model must be completed by linking the matrices
A, B anc C to the constraint functions (1). The problem is simply posed in these terms: once the position and
the velocity of the system are fixed (by r and ṙ), which displacements are compatible with the conditions (6)
or (7)?

Case (A) can be expanded by a simple argument of linear algebra: for each fixed r, ṙ and t the solution of
(6) is the totality W of δr orthogonal to the row vectors Aν ∈ R

3N of the matrix A, ν = 1, . . . , κ:

δr ∈ W = 〈A1, . . . , Aκ 〉⊥
Since the vectors are linearly independent, W is a vector space of dimension n − κ . Owing to (4), the
constraint force R is orthogonal to all the vectors of W , hence it must be R ∈ W⊥ = 〈A1, . . . , Aκ〉, namely
R = ∑κ

ν=1 λνAν for some coefficients. We conclude that Eq. (3) joined to (4), where the displacements have
to verify (6), are equivalent to

Q̇ = F +
κ∑

ν=1

λνAν case (A) (8)

where the multipliers λν are unknown quantities. The essential assumption is the full rank of A. Eq. (8) are
coupled with (1) in order to form a system of 3N + κ equations in the unknowns r(t) ∈ R

3N and λ1, . . . , λκ .
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The essential final step (missing for the moment) is to establish the class (6) according to the restrictions (1),
namely to set A as a function of �ν and their derivatives.

Let us now examine case (B): assuming that the rank of B is full, we see that (5) and (7) entail

Q̇ − F =
κ∑

ν=1

μνBν + y (9)

where the vector y is subject to the request

y · δr =
κ∑

ν=1

μνCν · δṙ (10)

(Bν ,Cν are the column of B,C andμν are unknownmutliplying factors).We transform the previous expression
by considering that

μνCν · δṙ = d

dt
(μνCν · δr) − d

dt
(μνCν) · δr + μνCν ·

(
δṙ − d

dt
δr

)

The presence of the last term is due to the uncertainty of the rule (we will deal with this question afterward)

d

dt
δr = δṙ (11)

which would express the commutation of the operations d
dt and δ (obviously ṙ = d

dt r).
Let us assume that it is possible to write (the hypothesis will be discussed later)

δṙ − d

dt
δr = W (r, ṙ,

..
r, t)δr (12)

where W is a square matrix of order 3N . The specified dependencies r, ṙ,
..
r, t are quite natural, since the

variation δṙ of possible velocities involves the accelerations of the system.
If (12) is the case, (10) reduces to

y · δr =
κ∑

ν=1

(
− d

dt
(μνCν) + μνW

T Cν

)
· δr + d

dt

(
κ∑

ν=1

μνCν · δr

)

so that (9) can be written as

Q̇ − F =
κ∑

ν=1

(
μνBν − d

dt
(μνCν) + μνW

T Cν

)
+ y1

=
κ∑

ν=1

μν

(
Bν − d

dt
(Cν) + WT Cν

)
−

κ∑

ν=1

μ̇νCν + y1 case (B) (13)

where the vector y1 must verify

y1 · δr = d

dt

(
κ∑

ν=1

μνCν · δr

)

. (14)

For C = O (null square matrix of order N ) the cases (A) and (B) are the same with A = B and the
corresponding Eqs. (8), (13) do coincide. As in the previous case, it is necessary to link the elements of B, C
to the functions �ν and their derivatives. Regarding (14), we could say that the condition does not precisely
define y1 therefore the equations are not closed; actually, the not explicit form of y1 in (13) except through
δr makes the equations unusable unless other considerations are added. However, we are interested in the
case when both conditions (6) and (7) hold and this allows us to eliminate y1, as we will see: basically, the
physically interesting situation that we will consider corresponds to A = C , which allows us to suppress y1.
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We finally establish a relation between the two expressions Aδr and Bδr +Cδṙ (appearing in (6) and (7))
written in a way so that the difference appearing in (12):

Bδr + Cδṙ − d

dt
(Aδr) = A

(
δṙ − d

dt
δr

)
+

(
B − d A

dt

)
δr + (C − A)δṙ (15)

The check of (15) is immediate and we refer to it as the transpositional relation. In examining and employing
(15) one does not necessarily have to assume that the two conditions (6) and (7) hold simultaneously (that
is both the expressions vanish); rather, the right terms in the equality (15) allow us to investigate about the
compatibility and the properties of the two classes of displacements (6) and (7).

2.3 The case A = C

Let us consider the special case

A = C (16)

The just written condition seems artificial for the moment, but when the coefficients are specified in the
physical context, a significant situation will be recognized.

In the next two Propositions, we assume that both conditions for displacements (6) and (7) hold and we
check the mathematical implications. The sense of the investigation lies in the question (discussed later on)
whether the two sets of Eqs. (8) and (13) are equivalent.

Proposition 1 Assume that the displacements verify both (6) and (7). If (16) holds, then the vector in (14) can
be taken as

y1 = 0 (17)

and Eqs. (8) and (13) are equivalent.

Proof The null vector (17) satisfies the requirement (14), since (6) holds with C = A. Moreover, if (6) and
(7) are both in effective, relation (15) reduces to

0 = Aν ·
(

δṙ − d

dt
δr

)
+

(
Bν − d

dt
Aν

)
· δr ν = 1, . . . , κ (18)

or equivalently, by (12) and (16),

Cν · Wδr +
(

Bν − d

dt
Cν

)
· δr =

(
Bν − d

dt
Cν + WT Cν

)
· δr = 0 ν = 1, . . . , κ.

Since the vectors Aν , ν = 1, . . . , κ , are linearly independent and the set of displacements δr coincides with
the orthogonal complement of the space generated by same vectors, one can write

Bν − d

dt
Cν + WT Cν =

κ∑

σ=1

ρσ Aσ

for some κ–uple (ρ1, . . . , ρκ). We conclude that, once again by virtue of (16), Eq. (13) (second version) can
be written as

Q̇ − F =
κ∑

ν,σ=1

(μνρσ − μ̇σ ) Aσ

which are equivalent to (8), simply with a different role of the multipliers. ��
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Proposition 2 Again in the case (16) assume that (6) and (7) are valid simultaneously. Then

Cν ·
(

δṙ − d

dt
δr

)
= 0 (19)

if and only if

Bν − d

dt
Aν =

κ∑

σ=1


σ Aσ , ν = 1, . . . , κ (20)

for some real coefficients 
1, . . . , 
κ .

Proof If (19) is true, also (Bν − d
dt Aν) · δr = 0 hence (20) must be verified for some coefficients 
1, . . . , 
κ .

Conversely, if (20) holds, then
(

Bν − d

dt
Aν

)
· δr =

κ∑

σ=1


σ Aσ · δr = 0

by virtue of (6) and (16). We conclude that (19) is true, due to (18). ��
Corollary 1 A necessary condition for the commutation rule (11) is the equality (20).

Indeed, in that case (19) holds, which implies (20). Notice that the inverse statement is not true, that is if
(20) is valid, the rule (11) does not necessarily have to hold.

2.4 Lagrangian coordinates

In terms of generalized coordinates q = (q1, . . . , qn) and generalized velocities q̇ = (q̇1, . . . , qn), n = 3N
one has

r = r(q, t), ṙ(q, q̇, t) =
n∑

j=1

∂r
∂q j

q̇ j + ∂r
∂q j

(21)

where the jacobian matrix
∂r
∂q

=
⎛

⎜
⎝

∂r1
∂q1

. . . ∂r1
∂qn

. . . . . . . . .
∂rN
∂q1

. . .
∂rN
∂qn

⎞

⎟
⎠ has maximum rank n.

Remark 2 When passing from the coordinates r to the generalized coordinates q we can assume either that no
further geometric constraint occurs, i. e. n = 3N , or that additional holonomic conditions are juxtaposed: in
the latter case, the selection of a smaller number of generalized coordinates n < 3N does not lead to substantial
changes in the reformulation of the problem (5).

The displacements are expressed in terms of lagrangian variables as

δr =
n∑

j=1

∂r
∂q j

δq j (22)

δṙ =
n∑

j=1

∂ ṙ
∂q j

δq j +
n∑

j=1

∂ ṙ
∂q̇ j

δq̇ j =
n∑

j=1

∂ ṙ
∂q j

δq j +
n∑

j=1

∂r
∂q j

δq̇ j (23)

and the problem (5) joined with (6) or with (7) is reformulated in the following way:

(A)

⎧
⎪⎪⎨

⎪⎪⎩

n∑

j=1
(Q̇( j) − F ( j))δq j = 0

n∑

j=1
αν, jδq j = 0

or (B)

⎧
⎪⎪⎨

⎪⎪⎩

n∑

j=1
(Q̇( j) − F ( j))δq j = 0

n∑

j=1
(βν, jδq j + γν, jδq̇ j ) = 0

(24)

where ν = 1, . . . , κ and
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• v( j) = v · ∂r
∂q j

, j = 1, . . . , n, indicates the j–lagrangian component of a 3N–vector v; in particular, the

relation Q̇( j) = d

dt

∂T

∂q̇ j
− ∂T

∂q j
is well known for each j = 1, . . . , n and that the presence of active forces

coming from a generalized potential, that is

F ( j)
P = ∂U

∂q j
− d

dt

∂U

∂q̇ j
, j = 1, . . . , n

for some function U (q, q̇, t) makes us write the upper set of equations in (A) or in (B) as

n∑

j=1

(
d

dt

∂L
∂q̇ j

− ∂L
∂q j

− F ( j)
N P

)
δq j = 0 (25)

where L(q, q̇, t) = T +U is the Lagrangian function and the term F ( j)
N P takes into account the remaining

active forces not deriving from a potential;
• the coefficients are related to those appearing in (6) and (7) by means of

αν, j = Aν · ∂r
∂q j

, βν, j = Bν · ∂r
∂q j

+ Cν · ∂ ṙ
∂q j

, γν, j = Cν · ∂r
∂q j

(26)

and they depend on the variables (q, q̇, t) by virtue of the replacements (21).

In (25), we recognize the ordinary way to formulate the D’Alembert principle in generalized coordinates
version.

Equations (8) (case (A)) converted to lagrangian variables are immediate:

d

dt

∂L
∂q̇ j

− ∂L
∂q j

− F ( j)
N P =

κ∑

ν=1

λναν, j j = 1, . . . , n case (A) (27)

Equations (27) can be achieved (i) either using the same technique of linear spaces as performed in the
previous analysis, (i i) or by calculating the Lagrangian components (by means of the scalar product · ∂r

∂q j
,

j = 1, . . . , n) of (8) and (13). In regard to (i), we see that the matrix (αν, j ) has maximum rank κ , since
(αν, j ) = A(Jrq) (see (6)), hence the formal procedure is identical: the equations (A) in (24) imply that it must
be Q̇( j) − F ( j) = ∑κ

ν=1 λναν, j for suitable coefficients, hence (27).
Concerning case (B), we start by stating the following

Property 1 The commutation property δṙ = d

dt
δr holds if and only if

d

dt

(
δq j

) = δ

(
d

dt
q j

)
(28)

holds for any set of independent lagrangian coordinates q = (q!, . . . , qn).

Proof We see that

δṙ − d

dt
δr =

n∑

j=1

(

�
�

��∂ ṙ
∂q j

δq j + ∂r
∂q j

δq̇ j

)
−

n∑

j=1

(
∂r
∂q j

d

dt
(δq j ) +

�
�

��∂ ṙ
∂q j

δq j

)

=
n∑

j=1

∂r
∂q j

(
δq̇ j − d

dt
δq j

) (29)

Since the vectors ∂r
∂q j

, j = 1, . . . , n are independent, the commutation (11) holds if and only if (28) holds. ��
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Assumption (12) can be assigned in terms of lagrangian coordinates as

δq̇ j − d

dt

(
δq j

) =
n∑

h=1

ω j,hδqh . (30)

Owing to (29), the terms ω j,h(q, q̇,
..
q, t), j, h = 1, . . . , n, are related to the entries wr,s , r, s = 1, . . . , 3N of

W in (12) by means of

3N∑

s=1

wr,s
∂ξs

∂q j
=

n∑

h=1

∂ξr

∂qh
ωh, j r = 1, . . . , 3n, j = 1, . . . , n, (ξ1, . . . , ξ3N ) = r

that is, in terms of W and the matrix � = (ω j,h) j,h=1,...,n:

W
∂r
∂q

= ∂r
∂q

�,

(
∂r
∂q

)

(r, j)
= ∂ξr

∂q j
, r = 1, . . . , 3N , j = 1, . . . , n. (31)

Roughly speaking, the physical role of W (hence of �) is to compensate for the lack of interchange of the
two operations δ and d/dt : the opinion that the presence of nonholonomic constraints makes the operations d
(time derivative) and δ (variation) non–commutative [5] is more and more common and we refer to [14] for a
general overview on that issue; in [17] an extended discussion on how to determine the matrix � is performed.

Equations (13) in terms of the coefficients (26) are

d

dt

∂L
∂q̇ j

− ∂L
∂q j

− F ( j)
N P =

κ∑

ν=1

(

μνβν, j − d

dt

(
μνγν, j

) + μν

n∑

h=1

γν,hωh, j

)

+ y j

=
κ∑

ν=1

μν

(

βν, j − d

dt
(γν, j ) +

n∑

h=1

γν,hωh, j

)

−
κ∑

ν=1

μ̇νγν, j + y j

j = 1, . . . , n case (B) (32)

The terms containing ωh, j come from (see (31))

WT Cν · ∂r
∂q j

= Cν · W ∂r
∂q j

= Cν · ∂r
∂q

⎛

⎝
ω1, j
. . .
ωn, j

⎞

⎠ =
(

∂r
∂q

)T

Cν ·
⎛

⎝
ω1, j
. . .
ωn, j

⎞

⎠

=
⎛

⎝
γν,1
. . .
γν,n

⎞

⎠ ·
⎛

⎝
ω1, j
. . .
ωn, j

⎞

⎠

and y j = y1 · ∂r
∂q j

(see (14)) is such that

y jδq j = d

dt

(
κ∑

ν=1

γν, jδq j

)

, j = 1, . . . , n. (33)

It should be noticed that despite the non–complete formal adherence between the Greek and Latin functions
in (26) (in fact in βν, j there is an additional Cν), the formal correspondence between the Newtonian equations
(13) and the lagrangian ones (32) is respected, in the sense that “greek” and “latin” terms are present in the same
role. This is true by virtue of the cancelation which occurs calculating the following lagrangian components
in (13):

Bν · ∂r
∂q j

− d

dt
(Cν) · ∂r

∂q j
=

(

βν, j −
�

�
�

�
Cν · ∂ ṙ

∂q j

)

−
(
d

dt

(
Cν · ∂r

∂q j

)
−

�
�

�
�

Cν · ∂ ṙ
∂q j

)

= βν, j − d

dt
γν, j .
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The same formal analogy is present also if we write the transpositional relation (15) using lagrangian coordi-
nates, which is

n∑

j=1

(
βν, jδq j + γν, jδq̇ j

) − d

dt

⎛

⎝
n∑

j=1

αν, jδq j

⎞

⎠

=
n∑

j=1

αν, j

(
δq̇ j − d

dt
δq j

)
+

n∑

j=1

(
βν, j − dαν, j

dt

)
δq j +

n∑

j=1

(
γν, j − αν, j

)
δq̇ j (34)

The relation can be obtained either rearranging directly the terms in the left–hand side, or replacing (22),
(23), (26) in (15); even in this case, cancelations and transfers of terms make the formal structure of (34) in
agreement with (15).

Finally, we see that the case A = C (see (16)) opportunely overlaps the following relations:

αν, j = γν, j , ν = 1, . . . , κ, j = 1, . . . , n (35)

and the effects are the same as those outlined in Paragraph. In particular:

• the terms y j for each j = 1, . . . , n in (32) can be eliminated,
• the last summation in (34) vanishes.

3 A significant application

The correlation between the matrices A, B, C and the constraint functions (1) is now specified as follows:

Aν(r, ṙ, t) = Cν(r, ṙ, t) = ∇ṙ�ν, Bν(r, ṙ, t) = ∇r�ν (36)

where ∇r = ( ∂
∂ξ1

, . . . , ∂
∂ξ3N

), setting r = (ξ1, . . . , ξ3N ). It is evident that the assignment (36) satisfies the
requirement (16).

We indicate by δ(v) and δ(c) respectively the operations appearing to (6) and (7):

δ(c)�ν = ∇ṙ�ν · δr, δ(v)�ν = ∇r�ν · δr + ∇ṙ�ν · δṙ (37)

Definitions (37) discover the virtual displacement condition according to the Četaev theory (first equation) and
to the vakonomic model (second one).

As it is known, the debate about the appropriate choice in (37) for displacements and their consistency with
models is a crucial aspect in the theory of nonholonomic systems. Although the two types of displacements
(37) appear in contradition, a part of literature is dedicated to the study of their compatibility or inequivalency
[5,12,21–23]. A key role is played by the possible interchangeability of the operators δ (variation) and d/dt
(time derivative): if one assumes that the commutative rule (11) is valid, then the equivalency of the two classes
of displacements is claimed to exist only for holonomic systems [12]. Hence, the attempt to reconcile the two
methods must necessarily pass through a non–commutative statement like (12) and the transpositional relation
is the main reference formula, as we will see further on.

The equations of motion (8) and (13) are now

Q̇ = F +
κ∑

ν=1

λν∇ṙ�ν (38)

Q̇ − F =
κ∑

ν=1

(
μν∇r�ν − d

dt
(μν∇ṙ�ν) + μνW

T∇ṙ�ν

)

=
κ∑

ν=1

μν

(
∇r�ν − d

dt
(∇ṙ�ν) + WT∇ṙ�ν

)
−

κ∑

ν=1

μ̇ν∇ṙ�ν + y1 (39)
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where the vector y1 is such that (see (14))

y1 · δr = d

dt

(
κ∑

ν=1

μν∇ṙ�ν · δr

)

.

The transpositional relation (15) takes the form

δ(v)�ν − d

dt

(
δ(c)�ν

)
= ∇ṙ�ν ·

(
δṙ − d

dt
δr

)
− D(r)�ν · δr (40)

where

D(r)F = d

dt
(∇ṙF) − ∇rF (41)

is the lagrangian derivative of a function F(r, ṙ, t).
A clear difference between the two equations of motion (38) and (39) is the presence of the time derivative

μ̇ν of the Lagrange multipliers in the second set of equations, whereas in (38) the coefficients λν appear only
in entire form. This presupposes that it is necessary to prescribe the initial conditions μν(0), ν = 1, . . . , κ
in order to solve the problem, introducing in this way an unclear element to disentangle, whenever Eq. (39)
are used. The need of assigning initial conditions for the Lagrange multipliers is indeed an inconvenience
related to Vakonomic equations Dealing with this issue is outside our aim and we refer to [12], [17] for some
discussion.

3.1 Displacements and constrained systems

Let us now place the constraints (1) into the lagrangian formalism: we consider

gν(q, q̇, t) = �ν(r(q, t), ṙ(q, q̇, t), t) = 0, ν = 1, . . . , κ (42)

which correspond to (1) rewritten via (21). The jacobian matrix
∂g
∂q̇

= ∂�

∂ ṙ
∂ ṙ
∂q̇

= ∂�

∂ ṙ
∂r
∂q

, where g =
(g1, . . . , gk), has full rank κ , by virtue of (2) and the non–singularity of ∂r/∂q, since the generalized coordinates
q are independent.

The choice (36) corresponds to

αν, j = γν, j = ∂gν

∂q̇ j
, βν, j = ∂gν

∂q j
, ν = 1, . . . , κ, j = 1, . . . , n (43)

and that the displacements (37) take the form, for each ν = 1, . . . , κ:

δ(c)�ν = δ(c)gν =
n∑

j=1

∂gν

∂q̇ j
δq j , δ(v)�ν = δ(v)gν =

n∑

j=1

∂gν

∂q j
δq j +

n∑

j=1

∂gν

∂q̇ j
δq̇ j . (44)

In order to verify (43) and (44) it suffices to take into account (22), (23) and the relations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂gν

∂q j
=

n∑

i=1

∂�ν

∂ξi

∂ξi

∂q j
+

n∑

i=1

∂�ν

∂ξ̇i

∂ξ̇i

∂q j
= ∇r�ν · ∂r

∂q j
+ ∇ṙ�ν · ∂ ṙ

∂q j

∂gν

∂q̇ j
=

n∑

i=1

∂�ν

∂ξ̇i

∂ξ̇i

∂q̇ j
=

n∑

i=1

∂�ν

∂ξ̇i

∂ξi

∂q j
= ∇ṙ�ν · ∂r

∂q j
,

(45)

where we indexed r = (ξ1, . . . , ξ3N ).

Remark 3 In defiance of the check, the conclusion could only be (44) if we want the operations δ(c) and δ(v)

to have a meaning independent of the choice of variables. That is, if we had started with generic Lagrangian
coordinates q, the virtual displacements conditions have necessarily the form (44).
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At this stage, we can summarize the path through the equations and definitions (1), (5), (6), (7), (24), (27),
(32), (36), (38), (39), (42), (43), (44) by presenting the following scheme:

n∑

j=1
(Q̇( j) − F ( j))δq j = 0,

{
gν = 0
ν = 1, . . . , κ

D’Alembert principle
+constraints

Č etaev condition ↙ (A) (B) ↘ vakonomic condition (46)

δ(c)gν =
n∑

j=1

∂gν

∂q̇ j
δq j = 0 δ(v)gν =

n∑

j=1

∂gν

∂q j
δq j +

n∑

j=1

∂gν

∂q̇ j
δq̇ j = 0

⇓ ⇓ (47)

D(q j )L − F ( j)
N P =

κ∑

ν=1
λν

∂gν

∂q̇ j

⎧
⎪⎪⎨

⎪⎪⎩

D(q j )L − F ( j)
N P = −

κ∑

ν=1
μνD(q j )gν

−
κ∑

ν=1
μ̇ν

∂gν

∂q̇ j
+

κ∑

ν=1
μν

n∑

h=1

∂gν

∂q̇h
ωh, j + y j

(48)

where y j is defined by (33) and vanishes whenever (47) first condition holds,

D(q j ) f (q, q̇, t) = d

dt

∂ f

∂q̇ j
− ∂ f

∂q j
(49)

is the lagrangian derivative with respect to the variable q j of a function f . In (46) and (47) the index ν takes
each of the values ν = 1, . . . , κ; the letters (A) and (B) refer to the two categories of displacements (6) and
(7); the equations in (48) are n for each type, j = 1, . . . , n.

We now transfer the content of Proposition 1 (which is legitimate because we are in the case (16), as it is
evident from(35) and (43)), to state the main result:

Proposition 3 Let the dynamics of the constrained system governed by the principle (46), where the displace-
ments are related to the constraint functions by (47), first equality, or second equality. Then, the equations of
motion are those written in (48). Furthermore, assume that the displacements verify both (47). Then y j defined
in (33) can be taken as zero and the two groups of equations in (48) are equivalent.

We link the equations of motion with the transpositional relation we developed through the formulas (15),
(40) and (34), which we write again, in light of (43) and (44), as

δ(v)gν − d

dt

(
δ(c)gν

)
=

n∑

j=1

∂gν

∂q̇ j

(
δq̇ j − d

dt
δq j

)
−

n∑

j=1

D(q j )gνδq j (50)

where the derivative D(q j ) is defined in (49). If (30) is assumed to hold, then the relation takes the form

δ(v)gν − d

dt

(
δ(c)gν

)
=

n∑

h, j=1

∂gν

∂q̇ j
ω j,hδqh −

n∑

j=1

D(q j )gνδq j . (51)

We also transfer the content of Proposition 2 to the relation (50) and we state the following

Proposition 4 Assume that (47) are valid simultaneously. Then

n∑

j=1

∂gν

∂q̇ j

(
δq̇ j − d

dt
δq j

)
= 0 (52)

if and only if

D(q j )gν =
κ∑

σ=1


σ

∂gσ

∂q̇ j
, ν = 1, . . . , κ (53)

for some real coefficients 
1, . . . , 
κ .
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The proof is identical to that exhibited in Proposition 2. As we remarked through (28), the commutation
property (i. e. (19) vanishes) is independent of the set of variables are chosen. The necessary condition of
Corollary 1 for the commutation (28) becomes now (53). In [20] it is shown that exact constraints (that is gν =
ḟν(q, t) for some fν) and constraint functions admitting an integrating factor (that is φν(q, t)gν = ḟν(q, t)
for some factor φν) so that the commutation (28) is consistent with these categories. On the other hand, even
simple examples of linear constraints (i. e. gν = ∑n

j=1 �ν, j (q, t)q̇ j + pν(q, t)) for which (53) does not hold,
so that the commutation cannot be assumed as valid.

4 Discussion and conclusion

The two conditions δ(v)gν = 0 and δ(c)gν = 0 express two different points of view and their application
involves various points of discussion: wondering whether they are valid separately, both are valid, one or the
other should be applied only to specific classes of mechanical systems are all current topics on the subject.

The debate about the simultaneous validity of both conditions in (47) – or better their compatibility – can
profitably look at (50), where it is evident that the question intersects the also relevant and controversial issue
about the commutative property of the two operators δ and d/dt (an useful and extensive discussion on this
issue can be found in [5]).

First of all a comparison with the motion equations of the same kind present in the literature is necessary.
Concerning the class (A), Eq. (48), first group, do represent the classic equations of motion for nonholonomic
systems deriving from the Četaev condition (47), first equality. This last condition extends in a simple way a
fundamental point in the theory of nonholonomic constraints,which consists of assigning to the linear kinematic
constraint gν = ∑n

j=1 �ν, j (q, t)q̇ j + pν(q, t) = 0 the displacements δq j such that
∑n

j=1 �ν, jδq j = 0 (we

refer, among others, to [11], [15]); clearly δ(c)gν = 0 reduces to the previous condition, if gν is linear with
respect to the generalized velocities.

Although a rigorous derivation from a physical principle or a theoretical validation of the Četaev condition
are uncertain (an extensive discussion on this can be found in [5]), the method (A) shows two remarkable
advantages:
(i) it does not introduce the question of the commutation rule, since δq̇ j , j = 1, . . . , n, are absent in the

definition δ(c)gν = 0 of virtual displacements; Eq. (8) of case (A) can be formulated without making
any pronouncements on (11), that is the validity or not of (28).

(i i) it leads to the same equations even by switching the theoretical approach from the d’Alembert principle
(as we performed in an algebraic way) to the Hamilton principle via a variational approach [18,19].

Let us move now on to case (B) and make the following distinction:

(B1) the hypothesis (11), namely δṙ = d

dt
δr is assumed to hold, hence

d

dt
δq j = δq̇ j , j = 1, . . . , n, for any

set of lagrangian coordinates (see (28)),
(B2) (11) does not hold and the non–commutative operations is expressed by the formulation of (12), namely

δṙ = d

dt
δr = Wδr (where the matrix W needs to be specified), or equivalently (30).

The hypothesis (B1) reduces Eq. (48), second group, to (we are also assuming both (47), hence y j = 0)

D(q j )L − F ( j)
N P = −

κ∑

ν=1

μνD(q j )gν −
κ∑

ν=1

μ̇ν

∂gν

∂q̇ j
(54)

and they do coincide with the vakonomic equations of motion which are obtained either by the integration (as
in [6,21])

t1∫

t0

n∑

j=1

(
D(q j )L − F ( j)

N P

)
δq jdt = 0

or by the constrained Hamilton principle [1]

δ

t1∫

t0

(

L − F ( j)
N P +

κ∑

ν=1

μνgν

)

δq jdt = 0. (55)
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Remark 4 The treatment by integration needs the additional conditions of both ends fixed

δr|t=t0 = δr|t=t1 = 0

(or equivalently on δq j )that further specifies the class of displacements. Our method based on a common
algebraic technique for both cases (A) and (B) does not require such a request on the displacements, that is
the displacements are treated on equal terms.

The vakonomic model has been decisively criticized over the past few years either for the aspect of specific
testing problems showing inconsistency (as in [12] and in [22]) and from the theoretical perspective. Regarding
the latter, we glean two conclusions from the recent literature (as [6,12,13]):

• the vakonomic equations (B1) do not reproduce the correct physical state even in the case of linear or
homogeneous kinematic constraints,

• the first system in (48) and (54) are equivalent if and only if the constraints are holonomic, that is gν = ḟν .

As far as we understand, the result in Proposition 3 would seem to offer a broader perspective (i. e. even
more than the holonomic case) regarding the simultaneous validity of models (A) and (B) (possibly reduced
to (B1)), attributable to the role of multipliers.

The case (B2) offers an interesting and recent proposal to reconcile the two cases (A) and (B) through
the action of the matrix W or � (defined in (12) and (30)) which regulates the non–commutativity of the
operations. We mainly refer to [14,17] in order to compare our results with the ones obtained via a variational
approach, summarized by (55). The equations of motion achieved at a first stage in [14] (and revisited in [17]
as “modified vakonomic method”) correspond, in our notation, to

D(q j )L − F ( j)
N P = −

κ∑

ν=1

μνD(q j )gν −
κ∑

ν=1

μ̇ν

∂gν

∂q̇ j

+
κ∑

ν=1

μν

n∑

h=1

∂gν

∂q̇h
ωh, j +

n∑

h=1

∂L
∂q̇h

ωh, j , j = 1, . . . , n (56)

and actually they do not match precisely with (48), second group, because of the terms in (56)
∑n

h=1
∂L
∂q̇h

ωh, j .

Remark 5 The presence of the additional sum can be understood, if we think about (55) and we rearrange (56)
in the form

D(q j )

1 L − F ( j)
N P = −

κ∑

ν=1

μνD(q j )

1 gν −
κ∑

ν=1

μ̇ν

∂gν

∂q̇ j
j = 1, . . . , n (57)

where D( j)
1 is the operator

D(q j )

1 = D(q j ) −
n∑

h=1

ωh, j
∂

∂q̇h
j = 1, . . . , n. (58)

The disagreement between (57) and (48) second group, which can be written by means of (58) as

D(q j )L − F ( j)
N P = −

κ∑

ν=1

μνD(q j )

1 gν −
κ∑

ν=1

μ̇ν

∂gν

∂q̇ j
j = 1, . . . , n (59)

is then overcome if the hypothesis

n∑

h=1

∂L
∂q̇h

ωh, j = 0 for each j = 1, . . . , n (60)
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is assumed. The same condition (60) plays a special role in [17], in the sense we are going to explain. The
transpositional condition (51) can be written by (58) and by assuming both (47) simply as

0 =
n∑

h, j=1

ωh, j
∂gν

∂q̇h
δq j −

n∑

j=1

D(q j )gνδq j = −
n∑

j=1

D
(q j )

1 gνδq j . (61)

The just written relation is used to claim D
(q j )

1 gν = 0 for each j = 1, . . . , n singularly and to write Eq. (57)
as in [17], recalling [14]:

D(q j )

1 L − F ( j)
N P = −

κ∑

ν=1

μ̇ν

∂gν

∂q̇ j
j = 1, . . . , n (62)

At this point it is evident that (60) makes these equations equivalent to the Četaev Eq. (48), first group, simply

by setting λν = −μ̇ν (actually D(q j )

1 L = D(q j )L if (60) holds). Hence in [17] the assumption (60) is claimed
as sufficient condition for the equivalence of the Četaev and vakonomic equations.

Let us comment this conclusion: as far as we are concerned, the relation (59) does not imply logically the

single conditions D
(q j )

1 gν = 0, j = 1, . . . , n; hence, we understand that the latter conditions are imposed in
order to determine W , and they are consistent with (59).

In any case, the same condition (60) turns out to be essential also for our presentation, not really for the
question of the equivalence of the two types of equations (that we assert to exist in general, independently of
(60)), but for the consistency of the vakonomic equations following the two different deductions of algebraic
or variational type.

Our interest in analyzing deeper the topics introduced will focus mainly on the following points:

• to investigate condition (53), in order to define the class of constraints for which the terms containing
δq̇ j − d

dt δq j can be eliminated from the transpositional relation (50), owing to (52), independently of the
validity of (28),

• still concerning (50), to determine exactly the validity of the model (B1), that is the entire set of functions
gν verifying

∑n
j=1 D

(q j )gνδq j = 0 (the sum, not singularly), in particular whether it coincides with the
class of functions that admitting integrating factor,

• what and how many conditions allow us to determine the matrix W or � – defined in (12) and (30) – and
whether we actually always arrive at a closed system.

The last question is a delicate point and it is crucial in order to close the problem, by fixing the 3N × 3N
entries of W , or the n × n entries of �. One aspect of the question has already emerged regarding the validity

(which we have questioned) of D(q j )

1 gν = 0 for each j = 1, . . . , n: this would provide κ × n conditions on
the n2 entries of �. On the contrary, the (only one) condition (61) supplies just 3N − κ conditions, from our
point of view.

Finally, we remark that another source of information for the matrixW or � may come from the particular
structure of the problem: for instance, if q̄ j is an ignorable lagrangian coordinate in L, that is ∂L

∂ q̄ j
= 0. Let

us add the hypotheses ∂gν

∂ ˙̄q j
= 0 for any ν = 1, . . . , κ (the circumstance is not uncommon, as in the examples

studied in [17]): then the corresponding equation of motion (48), first group states that

∂L
∂ ˙̄q j

= p̄ j = costant

and transferring this information to the corresponding equation on the right one gets the condition on ωh, j

p̄ j =
n∑

h=1

(

gν −
κ∑

h=1

∂gν

∂q̇h
ωh, j

)

On the contrary, if (62) are claimed to hold, then the deduced condition confirms (60) for the index j corre-
sponding to the ignorable variable q̄ j .
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