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Abstract—RGB cameras are one of themost relevant sensors for autonomous driving applications. It is undeniable that failures of

vehicle camerasmay compromise the autonomous driving task, possibly leading to unsafe behaviorswhen images that are subsequently

processed by the driving system are altered. To support the definition of safe and robust vehicle architectures and intelligent systems, in

this paper we define the failure modes of a vehicle camera, together with an analysis of effects and knownmitigations. Further, we build

a software library for the generation of the corresponding failed images, and we feed them to six object detectors for mono and stereo

cameras and to the self-driving agent of an autonomous driving simulator. The resultingmisbehaviorswith respect to operating with clean

images allow a better understanding of failures effects and the related safety risks in image-based applications.

Index Terms—Autonomous driving, RGB camera, failures, obstacles detection, driving simulation, image-based applications

Ç

1 INTRODUCTION

AUTONOMOUS driving is attracting growing attention in
recent years, with ever-increasing demand and invest-

ments from the industry [17]. The objective of an autono-
mous driving system is to drive by itself without requiring
help from a human: the vehicle detects the environment,
locates its position, and operates to safely reach a specified
destination.

Sensor technology, data-fusion, and inference algorithms
as Artificial Intelligence and Machine Learning (AI/ML)
applications are the enabling technologies that play a cor-
nerstone role in autonomous driving systems. These are
involved in many of the essential tasks for safe driving such
as sensor-fusion, environment representation, scene under-
standing, semantic segmentation, tracking, object detection,
and recognition [15].

Amongst sensors, the RGB (red, green, and blue) camera is
acknowledged as the most commonly used and an irreplace-
able one [15]. In fact, despite cameras have the known disad-
vantages of strong sensitivity to external illumination and
limited field of view, visual recognition systems are amongst
the most solid applications of autonomous driving [33]. Vehi-
cle cameras are already exploited in many applications such
as traffic sign recognition, lane detection, obstacle detection,
etc. [15], [16], [17]. Additional prospective applications are
being researched; for example, at intersections, knowing the
location of pedestrians and bicyclists can allow the car to

make sophisticated precedence decisions [16]. Also, cameras
are amongst the cheapest solutions to build autonomous driv-
ing systems that can sense the surroundings [17].

When the images provided by the camera are degraded,
fatal accidents may occur. The trained agents of the AI/ML
applications responsible for the elaboration of inputs may
rely on biased data and consequently lead to wrong (unsafe)
decisions.

Several works explore how to make the trained agents
robust to artificially crafted or accidentally manipulated
input images [35], [36], [37], and how to secure a camera
from direct attacks that may disrupt the proper behavior of
the camera itself [18], [19]. In fact, even slight alterations of
the images may alter the output of the trained agent [39].
However, few or no works focused on the attentive identifi-
cation of a realistic and complete set of accidental modifica-
tions of images from a failed RGB camera. Rather, we believe
such analysis would contribute to a better understanding of
the effects of cameras failures and the related risks, for exam-
ple when cameras are applied in safety-critical domains such
as autonomous driving. Consequently, in this paper we pro-
pose a systematic analysis of the possible malfunctions of a
camera and a detailed description of the related failures
modes. The systematic analysis can bring benefits to system
design, during which hazards are investigated and counter-
measures selected. In addition, we provide software libraries
for the reproduction of the failures, and we experiment with
them, such that this study can support the robustness assess-
ment of image-basedAI/ML applications.

The contribution of this paper is organized in four parts.
First, we identify failure modes of vehicle cameras in the
domain of autonomous driving, by analyzing the different
failures, their causes, and their potential effects on the system.
We achieve this goal by applying an FMEA (Failure Modes
and Effects Analysis, [14]) on the components of an RGB cam-
era, assuming the camera is located on a vehicle. Second, we
review existing mitigations; this review shows that while
mitigations exist for essentially any individual failure, an
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orchestrated approach to the whole set of failures is still miss-
ing. Third, we exercise trained agents for object detection on
failed images, to measure the performance drop due to the
occurrence of failures. To realize this, we alter images from
the KITTI Vision Benchmark Suite for autonomous driving
[75], [76] according to our failure modes, using a python
library that we developed and that is publicly available at [9].
At this point, we execute six object detectors on the modified
images (that we make available at [10]), measuring the result-
ing detection capability in terms of Average Precision [77].
Last, to bring further evidence on the failure criticalities in the
autonomous driving domain, we inject failures in a self-driv-
ing agent for autonomous driving in a simulated environ-
ment: this shows the effects of camera failures in applications
that repeatedly acquire frames and take decisions.

This work is an extended version of [78]: we detail the five
most noticeable additional contributions with respect to [78],
inwhatwe believe is increasing order of relevance. To facilitate
the reader, we also explicitly mention the related Sections of
thiswork. First,wepresent a reviseddescription of the failures,
including also a notation that facilitates the understanding of
each failure (Section 3 and Table 1). Second, we present a
revised version of the python library that allows simulating
the camera failures. In addition to technical improvements to
generate failed images, the library allows simulating a new

failure (flare), and includes the possibility to exercise multiple
configurations; for example, in total, we experiment with 130
configurations (Section 4 and Table 3; the source code is avail-
able at [9], and the produced image dataset is available at [10]).
Fourth, we describe the methodology applied in our experi-
mental campaign (Section 4 and especially Section 4.4), which
acts as reference to build analogous campaigns that evaluate
the robustness of trained agents. Fifth andmost important, Sec-
tion 4 studies the effects of failures on six trained agents (six
object detectors). This is a relevant addition with respect to
[78], which just showed that camera failures may cause the
misbehavior of a single self-driving agent. In this paper, we
show common trends of the six trained agents when affected
by the different failures, andwemeasure the impact of the fail-
ures in terms of reduction of detection performance. Thanks to
this, we can provide quantitative indications on the most dan-
gerous failures (and on those that resulted almost negligible).
Summarizing, in addition to [78], this paper provides i) sub-
stantial evidence that camera failures should be considered a
relevant threat; ii) reference data on the impact of the different
failures; iii) a methodology to evaluate robustness of trained
agents and in particular object detectors.

We observe that Section 5 reports a summarized view of
the experimental campaign in [78]. Section 5 describes the
injection of camera failures in a simulated self-driving agent
under different operating conditions, to show the effects of
camera failures in applications that repeatedly acquire
frames and take decisions. In [78], the reader may find
results of additional runs, here not reported. At the light of
the novel results introduced in this paper and discussed
above, which explain the risks connected to camera failures,
we believe the concise description reported in Section 5 is
fully appropriate to provide the reader with all the relevant
insights on such experimental campaign.

The rest of the paper is organized as follows. In Section 2
we present the fundamentals that are at the basis of our
work. In Section 3 we detail the identified failures, their
effects on the output image, and possible mitigations. In
Section 4 we execute object detectors on altered images
from the KITTI dataset. In Section 5 we inject the failures in
the frontal camera of a simulated vehicle that is driving
autonomously. Finally, in Section 6 we review related works
and in Section 7 we define conclusions.

2 BACKGROUND NOTIONS

We present background notions that are at the basis of our
work. In Section 2.1 we define the architectural structure of
an RGB camera (simply called camera, from now on) that
we use as reference in our work, and in Section 2.2 we
describe the FMEA methodology that we apply to identify
camera failures.

2.1 Architecture of a Camera

We consider a camera structured in five components
(Fig. 1): lens, camera body, Bayer filter, image sensor, and
ISP (Image Signal Processor) [27]. These five components
contribute to the creation of the output image.

Lens. Photographic lenses are devices capable of collect-
ing and reproducing an image [7]. The lens is the compo-
nent that has the greatest impact on the quality of the

TABLE 1
Failures Acronym and Synthetic Description

Failure NAME(Component, Input, Output): Effects

Banding BAND(image sensor, light, raw): altered image
Brightness BRIGHT(lens, light, light): altered image
Blur BLUR(lens, light, light): altered image
Brackish/Salt-
Water

BRACK(lens, light, light): altered image

BRACK(camera body, light, none): no image
Bright Lines BRLINES(image sensor, light, raw): altered

image
Broken Lens BRLE(lens, light, light): altered image
Broken VR BRVR(lens, light, light): altered image
Condensation COND(lens, light, light): altered image

COND(camera body, raw, none): no image
Dead Pixel DEAPIX(image sensor, light, raw): altered image
Dirty DIRTY(lens, light, light): altered image
Electrical Overload ELOV(camera body, light, image): altered image

ELOV(camera body, light, none): no image
Flare FLARE(lens, light, light): altered image
Heat HEAT(lens, light, light): altered image

HEAT(camera body, light, image): altered image
HEAT(camera body, light, none): no image

Ice ICE(lens, light, light): altered image
ICE(camera body, light, none): no image

No Action NOACT(ISP, raw, none): no image
No Bayer Filter NBAYF(Bayer filter, light, raw): altered image
No Chro. Aber. CHROMAB(ISP, raw, image): altered image
No Demosaicing DEMOS(ISP, raw, image): altered image
No Lens Dist. DISTOR(ISP, raw, image): altered image
No Noise Red. NOISE(ISP, raw, image): altered image
No Sharpness SHARP(ISP, raw, image): altered image
Rain RAIN(lens, light, light): altered image
Sand SAND(lens, light, light): altered image

SAND(camera body, light, image): altered image
Spots SPOTS(image sensor, light, raw): altered image
Water WATER(lens, light, light): no image

WATER(camera body, light, none): no image
Wind WIND(lens, light, light): altered image

WIND(camera body, light, image): altered image
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images. The photographic lens can be composed of one or
more lenses and/or reflectors as for example systems of
concave and convex mirrors, often also combined with
diopters. The fundamental factor that distinguishes one lens
from another is primarily the focal length. A second factor
that characterizes the lens is brightness. A third distinguish-
ing factor is macros: a macro lens can focus from infinity to
1:1 magnification that is, the size of the image in real life is
the same as it is reproduced on the sensor. Another relevant
factor is the focus: this can be manual or automatic. The lens
also contains a minimum of electronics, necessary for the
focus motor (when automatic) and for zooming [20].

Camera Body. The camera body is the container of all the
electronics of the camera. The Bayer filter, the image filter,
and the ISP are here contained. Typically, the functions of
the camera body are securing the device and protecting
inner components from exposure and contact with the out-
side. For example, the case protects the sensor from light
and other possible sources of damage.

Bayer Filter. The Bayer filter (or Bayer pattern) is used for
the acquisition of digital images [71]. The photodiodes in an
image sensor are color-blind by nature: they can only regis-
ter shades of gray. To obtain the color in the image, they are
covered with different color filters: red, green and blue
(RGB) according to the model designated by the Bayer filter.
This filter groups the sensors for the three fundamental col-
ors RGB in cells of 2x2 photosites: each cell contains two
green elements, one red element and one blue element
(Fig. 2). Each pixel is filtered to register only one of the three
colors: to obtain a color image, a demosaicing algorithm
interpolates a set of complete red, green and blue values for
each pixel. This algorithm uses the surrounding pixels to
estimate the value of a particular pixel [70].

Image Sensor. The image sensor is the transducer that con-
verts the image into its representation or electrical coding.
Essentially, it is a silicon chip capable of capturing and mea-
suring light i.e., the number of photons which reach the
chip. The sensor surface is made up of millions of tiny
receivers arranged in a regular grid; these receivers, also
called photosites, are the microsensors that carry out the
conversion from photons to electrons. Each receiver can
supply an electrical charge proportional to the number of
photons that hit it. The detected charge is then converted by
a special analog-digital conversion circuit into a numerical
value. Each of the values obtained from the photosites will
constitute a pixel of the obtained image.

There are currently two types of image sensors on the
market: CCD (Charge Coupled Device) and CMOS (Com-
plementary Metal Oxide Semi-conductor). Both are based
on the concept of converting the charge of each photosite
into a digital format using an ADC (Analog to Digital

Converter), but they differ in how the information is proc-
essed. In fact, for CCD sensors, the information on the
charge is taken from the photosites row by row and stored
in a register whose content is passed to an amplifier and
subsequently to the ADC. After the row has been fully proc-
essed, it is eliminated from the exit register and the next
row that undergoes the same treatment is loaded. Instead in
CMOS sensors, together with photosites, transistors have
been integrated which perform amplification and conver-
sion of the charge into voltage. Using a matrix structure, it
is possible to individually select each photosite through its
[row, column] coordinates, and then send the voltage to an
ADC that performs the conclusive digital conversion [6],
[42]. Typically, the image sensor outputs a raw file, which is
further processed by the ISP [93].

ISP. The Image Signal Processor is a type of specialized
media processor or Digital Signal Processor (DSP) used for
image processing in digital cameras [42]. The ISP produces
the digital image (simply called image when clear from con-
text); its functions are multiple, such as: demosaicing, correc-
tion of the image sensor, noise reduction, image sharpness
correction, resizing the image, lens distortion correction,
chromatic aberration correction, image compression and
JPEG encoding, video compression, andmore [42].

2.2 Principles of FMEA

The Failure Mode and Effects Analysis (FMEA, [14]) is a
widely-used reliability management technique designed to
identify potential failures of a component or a process,
understand the effects of these failures, assess the associated
risk, and ultimately classify problems in terms of impor-
tance [4]. This allows choosing and implementing corrective
actions to address the most serious potential failures. Usu-
ally performed analytically, an FMEA is composed of four
stages [4], [5]: i) identify all known or potential failure
modes of a system; ii) confirm the causes and effects of each
failure; iii) rank the recognized failures by their risk, defined
as a combination between the probability of occurrence of a
failure and the severity of the latter; iv) take remedial
actions for the highest risky failures.

The assumption underlying the application of the FMEA
is the principle according to which the risk is related not
only to the probability that a failure occurs, but also the seri-
ousness of its consequences and ability to avoid or mitigate
it. Ultimately, FMEA provides a knowledge base on the

Fig. 1. A camera and its components: the Lens, and the Camera Body
composed of Bayer Filter, Image Sensor, and Image Signal Processor.

Fig. 2. Scheme of a Bayer filter. On the left, a sample cell of 2x2 photo-
sites (BGGR pattern). In digital imaging, a color filter array (CFA), or
color filter mosaic (CFM), is a mosaic of tiny color filters placed over the
pixel sensors of an image sensor to capture color information [41].
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possible failures and their effects, which can be used for
future troubleshooting activities [4], [5], [14]. This matches
the objectives of our work and it is the reason why this tech-
nique was selected.

3 ANALYSIS OF CAMERA FAILURES

We consider a frontal camera of a vehicle organized in the
five components discussed in Section 2.1, and we assume
that output images are then processed by image-based AI/
ML applications. We exercise the FMEA on the components
of the camera. The application of the FMEA identifies the
failure modes of the camera components, the cause of such
failures, and their effect at the camera level i.e., on the out-
put image. Further, we complement this list with a literature
review on camera failures, to assure that no relevant failure
modes are left out. With respect to the usual analytical
application of FMEA, due to the absence of reference data,
we could not associate credible ratings on the risk matched

to an individual failure (this is in line with acknowledged
limitations of risk ratings in FMEA [4]). However, we miti-
gate this gap through Section 4 and Section 5, via the execu-
tion of image-based applications.

In Section 3.1 we list the failures in alphabetic order; we
assign an evocative name to each failure, that we will use in
the rest of the paper. In Section 3.2 we summarize the fail-
ures, and we report state-of-the-art mitigations. To facilitate
the reader, we associate an acronym to each failure, and we
describe it with a synthetic identification of the target com-
ponent, its relevant input, and the output. In Table 1, we
summarize each failure using the notation:

NAME component; input; outputð Þ : effect

where i)NAME is the failure acronym, ii) component is either
lens, camera body, Bayer filter, image sensor, or ISP, iii) inputs
and outputs are respectively inputs and outputs of the com-
ponent when the considered failure is in place, and they can
be none (in case there is no output), light, raw, and image,
and iv) effect describes the failure effect at the camera level
i.e., the camera output that may be used by image-based
applications, and it can be no image or altered image. Further,
to give a visual understanding of the effects of the failures,
we apply them on a reference figure (Fig. 4).

3.1 List of Identified Failures

Banding. In this failure, many parallel horizontal and/or
vertical lines become visible in the produced image. The

Fig. 3. Sample image from the KITTI Vision Benchmark [75], [76] suite,
used as references to explain the failures in Fig. 4.

Fig. 4. Visual effect of different failures on the output image of a frontal camera. Failures are applied to the image in Fig. 3.
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lines are more visible when looking at the darker colors,
although they can be also perceived on lighter ones. Fig. 4a
shows the Banding failure injected into Fig. 3. Only a por-
tion of the banded image is shown, to make the banding
effects visible to the naked eye. Banding failures manifest in
the image sensor.

Brightness. These failures represent the brightness alter-
ation, from its minimum (black image) to its maximum
(white image) limits, that can happen with the breakdown
of fundamental components of the lens such as the shutter,
the diaphragm, or the iris (Fig. 4b). For example, if the shut-
ter has a malfunction that does not allow the entrance of the
correct amount of light through the lens, brightness could
be altered, from entirely black to entirely white. These
brightness failures manifest in the lens component.

Blurred. Blur may occur if the image captured by the
device is not in focus (Fig. 4c) [69]. Especially in autono-
mous driving, it is of fundamental importance that the cap-
tured images are of good quality and therefore in focus.
This is clear if we think that the image-based AI/ML appli-
cations make decisions regarding the vehicle’s movement,
based on the information content of the camera images.
Blurred failures manifest in the lens component.

Brackish/Salt-Water. The brackish phenomenon is com-
mon in coastal areas and puts a strain on the durability of
the materials if not treated with suitable products and/or
not maintained over time [6]. The corrosive power of water
and air given by the substantial percentage of salt may dam-
age the lens and the camera body itself, to the extent that
external agents may enter the circuits [43]. In the worst sce-
nario, this can affect image acquisition. The image may be
altered in various ways; we refer to the description of all the
other failures effects (Fig. 4) for the complete characteriza-
tion of the Brackish/Salt-Water effect. This failure manifests
in the lens and camera body.

Bright Lines. This failure is very rare with the current
knowledge and technology. The produced images could
show bright vertical and/or horizontal lines, also clearly
distinguishable with the naked eye. The cause of these lines
is due to the use of LIDARs: this laser technology emits a
light intensity (not visible to the human eye) that can seri-
ously damage the camera’s image sensor. This failure may
manifest in the image sensor.

Broken Lens. One or more internal or external lenses may
break, for example, because of mechanical stresses due to
vehicle jolts or the impact with gravel throw-up by the tires
of nearby vehicles. The camera regularly outputs the image,
but it will include an additional line (in case of a scratch) or
more complicated patterns (Fig. 4d). This failure manifests
in the lens component.

Broken VR. In this case, the malfunction of the component
that deals with the reduction of vibrations (VR) is considered.
This is located in the lens and it is common on many camera
models. Its malfunction causes out-of-focus images: for this
reason, the effects of this failure are similar to the Blurred
ones (Fig. 4c). BrokenVRmanifests in the lens component.

Condensation. When the outside air temperature drops
sharply, condensation may appear on the lenses. Condensa-
tion, or humidity, degrades the images (Fig. 4e). The image
is acquired, but it may have defects due to halos on the
lenses [72]. If humidity penetrates inside the camera body,

it may cause malfunctions and it may also preclude the
entire operability of the device. Condensation failure mani-
fests in the lens and the camera body.

Dead Pixel. In this failure, the output images have one or
more defects of pixel size. While this failure manifests in the
image sensor, we call it dead pixel, because it has the same
visual effect of the common failure that can be noticed on
LCDs (Liquid Crystal Displays), when a pixel stops working
properly and it appears as a black spot on the screen. A sin-
gle dead pixel may not preclude the good interpretation of
the captured images by the AI/ML applications, despite a
deliberately modified pixel may do so [39]. Obviously, sev-
eral dead pixels (e.g., an extreme case is in Fig. 4f) have
higher chances to drop the accuracy of the AI/ML applica-
tion that uses the image.

Dirty (Internal – External). This failure (Fig. 4g) concerns
debris of various kinds and sizes (most typically, dust and
dirt) which deposits on the internal or external lenses [72].
The most significant difference is that the external dirt can be
removed, usually by cleaning the first lens of the objective
(i.e., the most external lens). Instead, removing the internal
dirt requires more time and, sometimes, specialized person-
nel [44]. Dirty-related failuresmanifest in the lens component.

Electrical Overload. The excessive and dangerous tempera-
ture increase of the conductors due to an electrical overload
could damage, and most likely break, the electronical parts in
the camera body. Adevicewith this generic electrical problem
may stopworking or find itself in a state where images cannot
be processed [44]. The resulting effect is that the images are
produced incorrectly or, most likely, not produced at all. The
image may be altered in a multitude of ways; we refer to the
description of all the other failures for the complete identifica-
tion of possible effects of electrical overload. Electrical over-
loadmaymanifest in the camera body.

Flare. The structure itself of the lenses group creates flare
(Fig. 4h). Flare is due to the reflection of the sun or other
light sources on the lenses. The resulting image shows one
or more spots of various colors, placed on an imaginary
line. Obviously, these spots can cover details in the images:
the subsequent processing steps, even if the image is cap-
tured correctly, will be influenced by the presence of these
spots. Flare is difficult to eliminate also with modern tech-
nology, which sets a series of lenses slightly spaced one
from each other, and each with a specific task. Flare failure
manifests in the lens component.

Heat. This type of failure relates to the heat that the lens
or camera body can suffer in their operational life. In
extreme cases, excessive heat could lead to the evaporation
of the lubricating liquids of the moving parts (e.g., zoom).
As a result, the use of the zoom (if present) and of other
sub-components that are intended to make the image as
clear as possible (e.g., the focus tools) may be precluded. As
for Brackish/Salt-Water, the image may be altered in a mul-
titude of ways; we refer to the description of all the other
failures for the complete identification of possible effects.
The heat failure manifests in the lens and camera body.

Ice. Ice can be the cause of several camera malfunctions. It
can break the externalmaterials of the camera lens and camera
body. Furthermore, the external lens can be covered with a
blanket of ice that prevents the acquisition of images (Fig. 4i).
The Ice failuremanifests in the lens and the camera body.
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No Action. A failed ISP does not respond and therefore the
processing of the acquired image does not take place: the
image remains in raw format, without any type of processing.
The camera does not transmit anything to the other processing
components of the vehicle. This failuremanifests in the ISP.

No Bayer Filter. Without a Bayer Filter properly function-
ing, the produced image would result in wrong colors (for
example, in Fig. 4j, colors are altered using the RGB coeffi-
cients from ITU-R BT.601 [79] to generate achromatic images).
The following phases would unavoidably process chromati-
callywrong images. This failuremanifests in the Bayer filter.

No Chromatic Aberration Correction - Incomplete Chromatic
Aberration Correction. It refers to the case that the ISP fails to
(fully or partially) apply the removal of chromatic aberration
on the acquired image. In optics, axial chromatic aberration
is a defect in the formation of the image, due to the different
refractive values of the light wavelengths that pass through
the optical instrument [67]. It is a defect that may affect all
optical lens systems, to varying degrees. This failure leads to
images with colored halos on the edges of the subjects: the
images show “fringes” of various colors (mostly purple) and
a sort of blur (Fig. 4k). This failuremanifests in the ISP.

No Demosaicing - Incomplete Demosaicing. In No Demosaic-
ing, we consider the case in which the image is acquired in
RAW format (Fig. 4l). This means that the demosaicing pro-
cess has not been carried out and therefore the image is pre-
sented with each pixel containing a red, green, or blue
value. In this case, the Bayer array has not yet been inter-
preted and the image is more pixelated than normal. The
prevalence of the greenish hue, also visible in Fig. 4f, is due
to the high percentage of green parts, which is double the
percentage of the red and blue parts, following the BGGR
pattern in the Bayer filter as previously shown in Fig. 2.
This failure manifests in the ISP.

No Lens Distortion Correction - Incomplete Lens Distortion
Correction. This failure may affect only vehicles which
mount cameras with wide-angle lenses [21], [73], which
tend to deform the image. In this case, the captured image
appears as mapped around a sphere that is more protruding
towards the observer, in the center of the image. If the con-
version to normal proportions (natural symmetric) is not
successful, the image may freeze in this processing phase
and the system may be in a stalled state. Alternatively, if the
output image is incorrectly processed, the AI/ML applica-
tions may use images with surrounding objects of distorted
proportions and shapes. This failure manifests in the ISP.

No Noise Reduction - Incomplete Noise Reduction. The device
captures the image, but during the processing phases (noise
reduction) there is an error that prevents the correct removal
of the noise e.g., Fig. 4m. This failuremanifests in the ISP.

No Sharpness - Incomplete Sharpness. In this case, the proc-
essing of the captured images fails during the sharpness
correction phase. This affects the ability of a camera to iden-
tify and define the separation limit between two contiguous
areas that have different brightness and/or color (Fig. 4n).
This failure manifests in the ISP.

Rain. It refers to the case in which there are small spots on
the images due to the deposit of water drops on the external
lens [72] (Fig. 4o). The elimination of these stains can be con-
sidered trivial when the vehicle is parked and without rain-
fall. However, given the weather variability that a vehicle

can encounter, we cannot only consider such simple case.
This failure manifests in the lens.

Sand. Because of sand, there may be possible corrosion of
the external sub-components of the lens (percentage of salt
in the sand), with the consequent introduction of external
agents inside the device, and to the extent that the camera
may not capture exact images. Sand could block sub-com-
ponents that have the purpose of making the image as clear
as possible (tools for focusing, zooming, etc.). The effect on
the output image (when sand is on the lens) is similar to
Dirty Internal-Dirty External (Fig. 4g). This failure manifests
in the lens and camera body.

Spots. This failure occurs when small particles of dust (or
another type of material) settle on the Image Sensor. This
deposit means that small spots, or shadows, are visible above
the light colors on the output image. Such shadows aremostly
circular and are very common for amateur photography, par-
ticularly when using multiple lenses. In fact, while operating
on the camera for maintenance, external agents of impercepti-
ble size may enter and settle on the exposed Image Sensor
[74]. The failure effect is similar to the Dirty Internal-Dirty
External (Fig. 4g). This failuremanifests in the image sensor.

Water. If water enters the lens or the camera body, the
electrical components can fail and most likely no longer
acquire images, or acquire them without any content [72].
This failure manifests in the lens and camera body.

Wind. We consider those parts of the component with
cavities that, due to the force of the wind (while the vehicle
is in motion or parked), could lead to minimal external
damage and the subsequent infiltration of various agents
inside the camera. The acquisition of images could therefore
be incorrect: lens may move and images may be shifted or
cut, etc. This can be considered very rare for a vehicle cam-
era. This failure manifests in the lens and camera body.

3.2 Summary of the Analysis

Table 2 recaps the failure modes and the involved camera
components. Further, we add a discussion on possiblemitiga-
tions that can be implemented in the camera for each failure.

4 EFFECTS ON DETECTION APPLICATIONS

We study the effects of failures by exercising six object
detectors on images captured by an RGB vehicle camera.
The images are from the KITTI Vision Benchmark Suite
[75], [76] for autonomous driving. The object detectors are
selected amongst solutions for mono and stereo cameras
that are enlisted in the rankings available on the KITTI web-
site [92]. To perform the injections, we developed a Python
library available at [9]. All the failed images and the detec-
tion results are available at [10].

4.1 KITTI Image Dataset and Target Metrics

The KITTI Vision Benchmark Suite (hereafter, just KITTI)
includes images showing a variety of street situations cap-
tured from a moving platform driving around the city of
Karlsruhe. A set of 7481 labeled images is provided with the
ground truth, defined through labels that contain the
bounding boxes of objects like cars, pedestrians, cyclists
amongst others. As all images are captured by a stereo cam-
era (i.e., two parallel sets of images are provided), they can
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be used for both 2D and 3D object detection. A similar set of
images is intended for fair testing and comparison of object
detectors, and ground-truth labels are not released.

KITTI includes a benchmark to measure object detection
performance based on the average precision AP [77]. AP
summarizes the shape of the precision/recall curve, and it
is defined as the mean precision at a set of n equally spaced
recall levels. Value n is set to 11 in [77], while it is set to n ¼
40 in KITTI. In other words, we have that:

AP ¼ 1

40

X

r2 0; 140;
2
40; ���; 1f g

pinterp rð Þ

where the precision p at each recall level r is interpolated by
taking the maximum precision measured for which the cor-
responding recall exceeds r [77]. We compute AP using the
standard KITTI configuration for cars detection, which

confirms detection if there is at least an overlap of 70%
between the ground-truth bounding boxes and the gener-
ated bounding boxes.

4.2 The Selected Object Detectors

We selected six object detectors by exploring the ranking for
2D and 3D object detection available on the KITTI website.
The mandatory criteria for the selection are: i) source code
or trained model publicly released; ii) usage of RGB cam-
eras only (no point clouds); iii) not older than five years i.e.,
2016; iv) output must include bounding boxes in the KITTI
format. With this last criterion, we can sample the individ-
ual image outputs to verify that low APs are caused by
wrong detections and not because of processing issues.

We select four object detectors for mono cameras (Fast-
Box, SqueezeDet, SqueezeDetþ, ResNet50), and two for
stereo cameras (DSGN, Disp R-CNN). In the following

TABLE 2
Failure Modes, Failures Apportionment to the Camera Components, and Discussion on Mitigations
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description of the object detectors, we report on the image
data augmentation used during training. In fact, we may
conjecture that some augmentation techniques may increase
robustness against specific camera failures, because they add
effects analogous to some of the failures (intuitively, in an
analogous way as in adversarial training to defend against
adversarial images [95]).

FastBox [81] is designed to achieve a high detection perfor-
mance at a very fast inference speed, and it is able to jointly
perform road segmentation, car detection and street classifica-
tion. We apply the KittiBox scripts at [82] to train and execute
FastBox. Regarding image data augmentation, color features
are augmented by applying random brightness and random
contrast to the images, while spatial features are distorted by
applying randomflip, random resize, and random crop.

SqueezeDet and SqueezeDetþ [83] are designed to be
small and fast, with also a focus on energy efficiency. They
are both convolutional neural networks based on SqueezeNet
[84]; SqueezeDetþ is a variation of SqueezeDet, where amore

powerful SqueezeNet is adopted. ResNet50 is a variant of the
above, where the ResNet50 [85] network is used. Image data
augmentation techniques used on SqueezeDet, SqueezeDetþ
andResNet50 are only random cropping and flipping.

DSGN [87] is an end-to-end stereo-based 3D object detec-
tion pipeline, which relies on space transformation from 2D
features to achieve a 3D structure. The image data augmen-
tation used is horizontal flipping only.

Disp R-CNN [88], which also operates on stereo cameras,
considers 3D object localization as a learning-aided geome-
try problem rather than an end-to-end regression problem. It
extends stereo-mask R-CNN [90], and its main characteristic
is that it treats the object Region of Interest [89] as an entirety
rather than independent pixels. The only reported image
data augmentation is the image flip of stereo-mask R-CNN.

4.3 Failures Configuration

From the failure modes in Sect. 3, we define 130 failures con-
figurations, reported in Table 3. It should be noted that

TABLE 3
Failures Implemented, Implementation Details, and Selected Configurations
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some failures similarly alter the image, and consequently
we group failures that have similar effects on the output
image. This applies to the Blurred and the Broken VR fail-
ures (we will consider only the first one, from now on), and
to the Dirty and Spots failures (again, we will consider only
the first one). Further, we ignore failures whose effect is
either i) not providing an output image (Electrical Overload,
No Action, Water), or ii) not univocally determined (Brack-
ish/Salt-Water, Heat, Sand). We exclude Bright Lines and
Wind as we believe they are very rare for vehicles cameras.
We exclude No Lens Distortion correction as the images are
not collected with wide-angle lenses.

4.4 Definition of the Experimental Campaign

First, we discuss the train/validation split of the KITTI
image set, the training of the object detectors, and the identi-
fication of the images on which we inject failures. The test
set is not defined, because a separate test set is available for
KITTI, whose labels are not disclosed: this is the same
approach adopted in the papers describing the object detec-
tors [81], [87], [83].

Concerning the four object detectors for mono cameras, to
make the comparison as fair as possible we identify a set of
images that is not used in the train split. We observe that
Fastbox is trained in [81] with a train/validation split of
[7001, 480] images, while the remaining three object detectors
are trained in [83] with a train/validation split of [3741, 3740]
images. Consequently, we extract 480 images from the 7481
labeled KITTI images: these images are the validation split of
FastBox, and they are also included in the 3740 images of the
validation split of the remaining three object detectors. Then,
all object detectors are retrained. We stop the training when
we reach scores analogous to those presented by their
authors in the respective papers. We will inject failures on
the 480 images previously selected. Object detectors for ste-
reo cameras are instead not retrained because of computa-
tional load issues. In this case, we use the trained models
provided by the authors (which relied on a train/validation
split of [3712, 3769] images following [94]), and we select 500
images onwhichwewill inject failures.

To explain the experimental campaign, let us consider a
single object detector. Each of the 130 failure configurations
of Table 3 is applied on the images, selected as described
above. This leads to 130 sets of altered images, which are
stored in 130 folders, plus one folder with the clean images
(for a total of 131 folders). Note that for stereo cameras, we
simulate the failure of one of the two cameras i.e., we inject
failures in only one of the two parallel sets of images. Then,
the object detector is applied on such 131 folders i.e., it per-
forms the detection on the images in each folder and saves
outputs in temporary folders. It should be noted that for each
processed image, an object detector outputs a text file con-
taining the identified bounding boxes; this leads to 131 fold-
ers each containing various text files. To compute the AP,
these text files need to be further processed: we either rely on
utilities of the object detector when available (this is the case
for squeezeDet, squeezeDetþ, resnet50), or we use the tool at
[80] (this is the case for KittiBox, DSGN andDisp R-CNN).

To guarantee reproducibility of results, all the altered
images are available at [10], and the software to apply fail-
ures configuration is at [9]. All computations are performed

on a Dell Precision 5820 Tower with a 12-Core I9-9920X and
GPU Nvidia Quadro RTX5000.

4.5 Analysis of Results

We discuss the impact of failures on the object detection
task. We remark that our objective is to show that camera
failures have detrimental effects on different object detec-
tors (and consequently should always be considered a credi-
ble threat), while comparing object detectors is not the scope
of this work.

We first review results on clean images, which are
reported in Table 4 and constitute the baseline of our analy-
sis. Object detectors DSGN and Disp R-CNN compute both
bi-dimensional (2D) and tri-dimensional (3D) bounding
boxes, measuring respectively 2D AP and 3D AP. Interest-
ingly, Table 4 shows that AP on clean images is not the
highest AP, with the exception of SqueezeDet. This may
raise the question of whether object detectors benefit from
certain failure configurations. We can disregard any system-
atic benefit, because the improvements in Table 4 are just
small fluctuations on the AP score, with the (partial) excep-
tion of DEAPIX-vcl on Disp R-CNN under the DEAPIX-vcl
failure, which raises 3D AP from �58% to �63%.

We now discuss the failures from Table 3. We organize
the discussion based on the apportionment of failures to the
camera and its components, following Table 1 and Table 2
(clearly, we ignore the cases in which there is no output
image, for example the ice failure in the camera body). Con-
sequently, we discuss: i) lens failures; ii) failures that can
happen both in the lens and the camera body; iii) Bayer filter
failure; iv) image sensor failures; v) ISP failures. Last, we
comment on the possible benefits of data augmentation.

Analysis of lens failures. We discuss the simulated failures
of Table 3 that affect lenses only i.e., brightness, blurred,
broken lens, dirty, flare, rain.

Fig. 5 shows the AP under 10 different brightness fail-
ures. As expected, significant alterations of brightness
drastically reduce the detection capability. This behavior
is also common to DSGN and Disp R-CNN: the object
detectors require that both input images are well-elabo-
rated, and their detection performance is severely affected
by the failure of just one camera. We obtain a similar effect
with the 25 configurations of blurred failure (plot is not
shown for brevity). For example, we can consider BLUR
(10, 10), which is the blur level of Fig. 4c. No object detec-
tor has AP above 0.6, even if the vehicles are visually
distinguishable.

TABLE 4
Results on Clean Images and Maximum AP
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We comment instead on broken lens, dirty and rain fail-
ures with the help of Table 5. If the AP deviates of less than
5% from the AP on clean images, the corresponding cell in
Table 5 is colored. We can deduce that most of the BRLE
(scratches) and DIRTY failures are well-tolerated by most of
the object detectors. These failures are simulated by overlay-
ing images: clearly, the characteristics of the image that is
overlayed have a relevant role on the measured AP e.g.,
because of the amount and size of raindrops contained.

Last, flare effects reduce AP to varying degrees. AP of
object detectors for themono camera is significantly reduced,
with FastBox being the least affected (AP is reduced from
87% to 60%), and SqueezeDetþ the most affected (AP drops
from 89% to 57%). DSGN and Disp R-CNN appear overall
resilient to flare effects (the AP is reduced by at most 13
points; this happens with Disp R-CNN 3Dwhich drops from
58% to 45%). This is probably because they rely on two cam-
eras and this can partly mitigate our injected flare effect,
which inmany cases affects only a small part of the image.

Analysis of lens-camera body failures. The simulated failures
that affect both lens and camera body are condensation and
ice failures. The reduction of AP depends strongly on the
overlayed figure: if the ice crystals and the condensation
cover a significant part of the image, the ability to detect
objects is altered. In Fig. 6 we show the minimum AP
recorded under ice and condensation failures. All object
detectors are severely affected by these failures. DSGN and
Disp R-CNN can tolerate the condensation failures more

than ice failures, most likely because the condensation has
higher transparency.

Analysis of Bayer filter failures. We consider the No Bayer
Filter failure. This showed a peculiar behavior: the removal
of colors according to a correction factor has a non-negligi-
ble impact on the various detectors, leading to a massive
reduction of AP, which is measured below 10%. Addition-
ally, the execution of Disp R-CNN failed under such config-
uration. The exception is DSGN which just reduces 2D AP
by 3% and 3D AP by 19%. We observe that none of the
object detectors was trained with color augmentation.

Analysis of image sensor failures. Following Table 3 and
Table 2, the simulated failures that affect both lens and cam-
era body are banding and dead pixels failures.

The two configurations of the banding failure BAND1 and
BAND2 are well-tolerated by the object detectors, leading to
minimal AP reduction. The worst case is with ResNet50,
where the AP is reduced from 88% with clean images to 84%
in the case of BAND2. Also, dead pixel failures have limited
effects on the image processing phase. In fact, for all the con-
figurations DEAPIX1, DEAPIX50, DEAPIX200, DEAPIX500,
DEAPIX-vcl, DEAPIX-3l, the worst AP reduction is with
ResNet50, that is also in this case from 88% on clean images
to 84%with the DEAPIX500 failure.

Analysis of ISP failures. Failures of the ISP that we simu-
late are no chromatic aberration, no demosaicing, no noise
reduction, no sharpness correction.

The failure no chromatic aberration correction is a seri-
ous concern as it generally leads to a severe loss in AP, also
for stereo cameras. Table 6 marks in dark gray the cases in
which AP is reduced by above 50%, and in light grey the
AP reductions between 20% to 50%.

To simulate the no demosaicing failure, we revert the
action of the ISP when producing the jpeg from the input
raw. We achieve this by decomposing each pixel in its indi-
vidual RGB contribution, as described in Table 3. In this
way, an image of larger scale than the clean image is created.
This is the reason some object detectors are not able to pro-
cess the images producedwhen injecting this failure. Disp R-
CNN rates 89,46% 2D AP and 43,30% 3D AP, showing lim-
ited AP reduction with respect to the clean images; the other
object detectors score 0% AP, except for DSGN which fails
during execution, for the reasons explained above.

Last, the two failures no noise reduction and no sharp-
ness correction show predictable trends: incremental values
of NOISE and SHARP slowly degrade performances.
NOISE progressively reduces AP as can be seen in Fig. 7.
Instead, some object detectors can tolerate unsharpened

Fig. 5. AP measured for 10 different brightness alterations.

TABLE 5
AP (In percentage) for Broken Lens, Dirty and Rain

Fig. 6. Minimum AP with ice and condensation failures.
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images: even with SHARP set to -5, FastBox, SqueezeDet,
DSGN 2D and Disp R-CNN 2D still show AP � 70%.

On data augmentation. An additional consideration is pro-
vided about the possible use of image data augmentation
strategies, to understand if it may improve robustness. As
reported above, FastBox has been trained with random
brightness, contrast, flip, resize and crop. Instead, ResNet50,
SqueezeDet, SqueezeDetþ apply random cropping and flip-
ping, while DISP-RCNN and DSGN apply image flipping.
FastBox is slightly more robust than ResNet50, SqueezeDet,
SqueezeDetþ under the brightness failure. The other data
augmentation strategies are instead not relatable to the
injected failures. While this is a hint to build our future
works, this analysis is insufficient to conclude on the useful-
ness of data augmentation to improve robustness against
camera failure, and more specific tests are needed.

Summary of the analysis. None of the object detectors is
significantly more robust to camera failures than the others.
Even if the object detectors are different, they are all affected
by the simulated failures to a relevant extent. This under-
lines the need to carefully consider camera failures and their
possible effect when deploying object detectors.

5 EFFECTS ON DRIVING TASKS

To underline the possible impact on safety, we inject the
failures in the vehicle camera of an autonomous driving
simulator. Logs and some videos that describe the various
runs are available at [10].

5.1 Autonomous Driving With Carla Simulator

We opt for the Open Urban Driving Simulator Carla (Car
Learning to Act, [1]) to create a vehicle that is autonomously
driving in a town using only the RGB camera.

Carla has been implemented as an open-source layer
over the Unreal Engine 4 (UE4, [2]) to support training, pro-
totyping, and validation of autonomous driving models,
including both perception and control. Carla includes urban
layouts, several vehicle models, buildings, pedestrians,
street signs, etc. Further, it provides information on the sim-
ulated vehicles as position, orientation, speed, acceleration,
collisions, and traffic violations.

Amongst the autonomous driving agents that exist for
Carla, we use the trained agent from [3]. Technical details
on the trained agent are outside the scope of this paper and
are reported in [3]; we introduce only the notions required

to illustrate our tests. Using this trained agent, at each simu-
lation step it is acquired: i) one RGB image from the frontal
camera of the vehicle at a resolution of 384�160 pixels (this
is significantly smaller than the KITTI images used in Sec-
tion 4), and ii) the current speed from the speed sensor.
These values are processed by the trained agent to predict
waypoints in the camera coordinates, and then these way-
points are projected into the vehicle’s coordinate image [3].
In simpler words, the trained agent “designs” a trajectory
composed of five waypoints on the image acquired from the
camera. From this, a low-level controller is executed that
decides the steering angle, the throttle level, and the braking
force. Finally, throttle, speed, and braking are applied to the
vehicle.

We selected this trained agent amongst the various avail-
able because: i) it uses only the camera as sensing system; ii)
it presents very good performances, with a minimal number
of collisions. Further, the model was trained with image
data augmentations following [8], including pixel dropout,
blurring, Gaussian noise, and color perturbations which
partially overlap with our set of failures.

5.2 Injection Strategy and Failure Implementation

Our injection strategy consists of the following actions, per-
formed at each simulation step: i) acquire the output image
from the camera; ii) modify the image by injecting the
selected failure before the trained agent processes the
image; and iii) feed the modified image to the trained agent.
We report on the following configurations from Table 3:
BAND1, BRIGHT 0 (black images), BRIGHT 1.5, BLUR
(12,12), DEAPIX1, DEAPIX200, DEAPIX-vcl, NBAYF,
CHROMAB2-nb, NODEMOS, NOISE 1, SHARP -3.5, one
BRLE, one COND, one DIRTY, one ICE, one RAIN. These
configurations are selected to describe the behavior of the
trained agent under different camera failures. The images
overlayed for these tests are available at [9]. We exclude
Flare as it depends on the sun position and it needs to con-
sider vehicle movements, requiring environmental data;
further, it would overlap with the flare effects already repre-
sented in the Carla simulator.

5.3 Test Plan and Execution

The test plan is based on the corl2017 benchmark from [1].
The test plan is composed of multiple runs in which a target

TABLE 6
AP (in percentage) for No Chromatic Aberration

(values in Percentage)

Fig. 7. AP measured for 10 different noise alterations.
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vehicle must reach a destination position B from a starting
position A before a timeout expires. The timeout value is
the time required to cover the distance from A to B at an
average speed of 10 Km/h as in [1], [3]; this matches the set-
tings of the corl2017 benchmark, which takes into account
vehicle stops at traffic lights and traffic. Re-using the
nomenclature from [1], the starting position A and the desti-
nation position B are selected such that three test objectives
are set:

� Straight road: Destination position B is located
straight ahead of the starting position A.

� Turn road: Destination position B is one turn away
from the starting position A.

� Navigation: There is no restriction on the location of
the destination position B relative to the starting
position A; this results in runs of longer distance and
multiple turns.

For each run, the success criterion is to reach destination
B before the expiration of the timeout. The failure criterion
is whenever the vehicle collides or the timeout expires: we
modified the corl2017 benchmark to halt the run whenever a
collision occurs, as in our work we prioritize safety over
traveled distance.

The target town we select is Carla Town02, which is a
basic town layout with all “T junctions” and it is also the
town used for testing the trained agent in [3]. Further, we
select three different weather conditions: clear noon, wet
cloudy noon, and hard rain sunset. In addition, in each of
the runs performed, the town includes exactly 50 vehicles
and 30 pedestrians. We always use the same randomization
seed so that the spawning positions of vehicles and pedes-
trians are the same in the repeated runs.

The experiments were organized in two phases. In the
first phase, we performed golden runs on clean images, i.e.,
we execute the simulation runs without introducing any
modification to the images captured by the camera. The sec-
ond phase repeats the same runs of the previous phase, but
with the injection of camera failures to each acquired image.

The three test objectives are investigated in 150 runs (50
runs for each test objective) for the golden runs and for the
17 failure configurations that we inject. With a total of 2700

runs, the simulated time in Carla corresponds to approxi-
mately 80 hours of driving. The simulations were executed
on a Dell Precision 5820 Tower with a 24-Core I9-9920X and
GPU Nvidia Quadro RTX5000.

5.4 Collisions and Success Rate

First, we discuss the impact of each failure on the decisions
of the trained agent of [3]. Fig. 8a and Fig. 8b show respec-
tively the success rate and the number of collisions for the
three test objectives Straight road, Turn road, and Naviga-
tion. Not surprisingly, runs on clean images perform the
best, with the highest success rate and the lowest number of
collisions (4 collisions, all under the Navigation test objec-
tive). Similar results are achieved by DEAPIX1 (5 collisions)
and BAND (6 collisions): differences from the golden runs
are small.

As expected DEAPIX1 does not significantly affect the
trained agent: this failure consists of a single black pixel
introduced at the bottom right of the image. The trained
agent is robust also against other dead pixel failures (DEA-
PIX200 and DEAPIX-vcl), and banding. These failures were
also well-tolerated by the object detectors analyzed in Sec-
tion 4. While this may suggest that these effects do not sig-
nificantly alter the proper behavior of trained agents, it
should be remarked that the results presented here cannot
be generalized to any trained agent. For example, it has
been proven that few altered pixels in strategic position can
fail the classification task [96].

Failures BRIGHT 0, BLUR, NOISE 1, COND, BRLE are
the worst-performing: these failures significantly modify
the image. Still, they show some successful runs, and this
may look especially surprising for the Straight road with
BRIGHT 0 (image is black). This is simply because the car is
moving forward blindly in a straight direction and, if there
are no obstacles, the run ends successfully.

The remaining failures have variable performances; how-
ever, for each of them, the number of collisions is always the
highest in Navigation and the lowest in Straight road. The
majority of collisions happen when the vehicle performs a
turn, while instead the trained agent is generally able to
avoid the vehicle in front. The image is sufficiently dis-
rupted to not allow a proper calculation of the trajectory,

Fig. 8. Execution of the simulated runs in the three test objectives Straight road, Turn road, and Navigation road.
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but it still allows detecting objects right in front of the vehi-
cle in a straight road.

Last, we observe that the order of failures in Fig. 8a and
Fig. 8b is not the same. This is mostly because some runs ter-
minate due to timeout: in general, a timeout occurs when the
vehicle is unable to decide how to advance after a particular
event. In fact, in few cases the vehicle stops to avoid a vehicle
in a colliding trajectory: the trained agent can detect the
object, so there is no collision but the driving does not restart.

Impact on safety and generalization of results. It is evident
that our results depend on the target application, and conse-
quently a univocal definition of failure criticalities and risks
cannot be devised. However, these experiments bring evi-
dence that the represented failures should not be ignored
when building image-based autonomous driving systems
and applications. We show that even failures with small
visual effects affect the decisions of the trained agent, e.g.,
see the number of collisions under the DEAPIX200 failure
that scatters 200 dead pixels on a camera with a resolution
of 384�160 (above 60.000 pixels).

6 RELATED WORKS

To the best of our knowledge, no research works discuss the
failure model of a vehicle camera, including an analysis of
effects and safety risks, and the provision of a software
library. However, several works deal with similar or inher-
ent problems.

The performance, robustness, and security of an RGB camera
have been widely explored, however usually focusing on
specific elements or target metrics and without addressing
the full set of failures. For example, Bijelic et al. [25] present
a test and evaluation methodology to compare sensor tech-
nologies: the paper shows the difference between an image
captured by a standard CMOS camera and one captured by
a gated camera. Schops et al. [26], motivated by the limita-
tions of existing multi-view stereo camera benchmarks (a
stereo camera has two or more lenses, each with a separate
image sensor: this allows the device to simulate binocular
human vision and capture three-dimensional images [34]),
introduce a new dataset and a technique to minimizes the
photometric errors. In [32] a simulation environment is pre-
sented which includes the virtual structures of a car
designed for autonomous driving tests; typical driving sit-
uations have been used to analyze how sensors respond
when used in real circumstances as well as to confirm the
impacts of environmental conditions. Considering instead
sensor security issues, Petit et al. [19] blind a commercial
camera system used in commercial vehicles with several
light sources. The work shows that leveraging a laser or
LED matrix could blind the camera. Similarly, Yan et al. [34]
successfully blind the camera by aiming the LED and the
laser light at the camera directly: radiating a laser beam
against a camera of a vehicle may cause irreversible damage
and disrupt the corresponding autonomous applications. In
general, it is observed that, because of the vulnerability of
the camera caused by its optical characteristics, it is difficult
to build a completely secure camera system [18].

In the domain of image-based AI/ML algorithms and
applications, many works acknowledge that the risk of acci-
dental alterations of the output image of the camera is realistic

e.g., [47]. However, this consideration is usually ancillary to
the main contribution of the work. Nonetheless, works in the
AI/ML domain strongly helped us refine and cross-check
the completeness of the failure modes we identified. In fact,
chromatic aberration, noise, color temperature, blur and
brightness alteration are often considered in image-based
AI/ML trained agents, although for the scope of data aug-
mentation during training [30]. For example, Toromanoff
et al. [31] present a new convolutional neural networks
(CNN)model, in which label augmentation based on transla-
tion and rotation allows generating data using only a short-
range fisheye (wide angle) camera.Menze et al. [23] elaborate
a new model and data set for 3D scene flow estimation, and
explicitly take advantage of the background movement
caused by the camera mounted on a vehicle. Behzadan et al.
[24] show a new deep reinforcement learning framework; to
develop robust sensors and algorithms, testing under certain
meteorological conditions is deemed crucial for determining
the impact of badweather on sensors.

Several other works instead focused on security and
robustness of the trained agents that contribute to the autonomous
driving system, trying to understand the possible modifica-
tion of camera images that could be produced by an
attacker, or to define corner cases. Attackers may mali-
ciously alter the images with transformations that are simi-
lar, in concept, to those that could happen with non-
malicious failures: also, these works were useful when iden-
tifying the set of failures. Most relevant, K. Pei et al. [35]
apply input space reduction techniques to transform the
image, and can simulate a wide range of real-world distor-
tions, noises, and deformations. W. Wu et al. [36] present a
faults model for deep neural networks classifiers, which
includes several corner cases based on the alteration of the
input image, including amongst the possible causes bright-
ness, camera alignment, and object movements. Finally,
evasion attacks consist in modifying the input to a classifier
such that it is misclassified, while keeping the modification
as small as possible [37]. For example, to create such adver-
sarial images, the correct images can be modified by over-
laying carefully crafted noise [38], altering few selected
pixels [39], or with rotation and translation [40]. A represen-
tative list of such evasion attacks and their implementations
is available at [37].

7 CONCLUSION

It is commonly acknowledged that RGB cameras may fail,
and that a failed camera may produce altered images. This
is a relevant issue if such images are further processed by
safety-critical image-based applications. Nevertheless, to
our knowledge, a thorough enumeration of camera failure
modes and means for their reproduction are still missing.
Especially when cameras are used for safety-critical applica-
tions e.g., in the autonomous driving domain, the definition
of failure modes would benefit software and system engi-
neers to build resilient architecture or to assess application
robustness.

This paper identifies the failure modes of a vehicle cam-
era, describing their effects on the output image. We believe
this can benefit software and system engineers that can rely
on a reference model both when architecting the system
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and when assessing robustness of intelligent systems. The
discussion is complemented with the identification of
potential mitigations, and with a software library that can
be used to reproduce the failures on image sets. Further, we
reproduced such failures in image-based AI/ML applica-
tions for autonomous driving (six car detectors and one
self-driving agent), to understand the impact of failures.
First, we showed that camera failures have a relevant
impact on different object detectors, and consequently
should always be considered a credible threat. Further, we
showed that even failures that slightly perturb the image
may alter the decisions of a trained agent. As possible detec-
tion strategies, we have hypothesized that data augmenta-
tion techniques may be a viable means to tolerate failures;
while this is outside the scope of this paper, our current
research works are in fact oriented in this direction. Last,
we remark that our results are application-dependent: even
if some failures are tolerated in our experiments, still we
recommend to not disregard them when assessing robust-
ness of image-based AI/ML applications.
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