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The backtracking survey propagation algorithm
for solving random K-SAT problems
Raffaele Marino1, Giorgio Parisi2 & Federico Ricci-Tersenghi2

Discrete combinatorial optimization has a central role in many scientific disciplines, however,

for hard problems we lack linear time algorithms that would allow us to solve very large

instances. Moreover, it is still unclear what are the key features that make a discrete

combinatorial optimization problem hard to solve. Here we study random K-satisfiability

problems with K¼ 3,4, which are known to be very hard close to the SAT-UNSAT threshold,

where problems stop having solutions. We show that the backtracking survey propagation

algorithm, in a time practically linear in the problem size, is able to find solutions very close to

the threshold, in a region unreachable by any other algorithm. All solutions found have no

frozen variables, thus supporting the conjecture that only unfrozen solutions can be found in

linear time, and that a problem becomes impossible to solve in linear time when all solutions

contain frozen variables.
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O
ptimization problems with discrete variables are
widespread among scientific disciplines and often
among the hardest to solve. The K-satisfiability (K-SAT)

problem is a combinatorial discrete optimization problem of
N Boolean variables, x ¼ fxigi¼1;N , submitted to M constraints.
Each constraint, called clause, is in the form of an OR logical
operator of K literals (variables and their negations): the
problem is solvable when there exists at least one configuration
of the variables, among the 2N possible ones, that satisfies all
constraints. The K-SAT problem for KZ3 is a central problem in
combinatorial optimization: it was among the first problems shown
to be NP-complete1–3 and is still very much studied. A growing
collaboration between theoretical computer scientists and statistical
physicists has focused on the random K-SAT ensemble4,5, where
each formula is generated by randomly choosing M¼ aN clauses
of K literals. Formulas from this ensemble become extremely hard
to solve when the clause to variable ratio a grows6: nevertheless,
even in this region, the locally tree-like structure of the factor
graph7, representing the interaction network among variables,
makes the random K-SAT ensemble a perfect candidate for
analytic computations. The study of random K-SAT problems and
of the related solving algorithms is likely to shed light on the origin
of the computational complexity and to allow for the development
of improved solving algorithms.

Both numerical8 and analytical9,10 evidence suggest that a
threshold phenomenon takes place in random K-SAT ensembles:
in the limit of very large formulas, N-N, a typical formula has a
solution for aoas(K), while it is unsatisfiable for a4as(K). It has
been very recently proved in ref. 11 that for K large enough the
satisfiability to unsatisfiability (SAT-UNSAT) threshold as(K)
exists in the N-N limit and coincides with the prediction from
the cavity method of statistical physics12. A widely accepted
conjecture is that the SAT-UNSAT threshold as(K) exists for any
value of K. Finding solutions close to as is very hard, and all
known algorithms running in polynomial time fail to find
solutions when a4aa, for some aaoas. Actually, each algorithm
ALG has it own algorithmic threshold aa

ALG, such that the
probability of finding a solution vanishes for a4aa

ALG in the large
N limit. For most algorithms aa

ALG is well below as. We define
aa ¼ maxALGaALG

a the threshold beyond which no polynomial-
time algorithm can find solutions. There are two main open
questions: to find improved algorithms having a larger aa

ALG, and
to understand what is the theoretical upper bound aa. Here we
present progress on both issues.

The best prediction about the SAT-UNSAT threshold comes
from the cavity method12–15: for example, as(K¼ 3)¼ 4.2667
(ref. 14) and as(K¼ 4)¼ 9.931 (ref. 15). Actually the statistical
physics study of random K-SAT ensembles also provides us with
a very detailed description of how the space of solutions changes
when a spans the whole SAT phase (0raras). Let us consider
typical formulas in the large N limit and the vast majority of
solutions in these formulas (that is, typical solutions), we know
that, at low enough a values, the set of solutions is connected, so
that they form a single cluster. In SAT problems we say two
solutions are neighbours if they differ in the assignment of just
one variable; in other problems (for example, in the XORSAT
model16) this definition of neighbour needs to be relaxed, because
a pair of solutions differing in just one variable are not allowed by
the model definition. As long as the notion of neighbourhood is
relaxed to Hamming distances o(N) all the picture of the solution
space based on statistical physics remains unaltered.

As a increases, not only the number of solutions decreases, but
at ad the random K-SAT ensemble undergoes a phase transition:
the space of solutions shatters into an exponentially large (in the
problem size N) number of clusters; two solutions belonging to
different clusters have a Hamming distance O(N). If we define the

energy function EðxÞ as the number of unsatisfied clauses in
configuration x, it has been found12 that for a4ad the energy EðxÞ
has exponentially many (in N) local minima of positive energy,
which may trap algorithms that look for solutions by energy
relaxation (for example, Monte Carlo simulated annealing).

Further increasing a, each cluster loses solutions and shrinks,
but the most relevant change is in the number of clusters.
The cavity method allows us to count clusters of solutions as a
function of the number of solutions they contain17: using
this very detailed description several other phase transitions
have been identified15,18. For example, there is a value ac where a
condensation phase transition takes place, such that for a4ac the
vast majority of solutions belong to a sub-exponential number of
clusters, leading to effective long-range correlations among
variables in typical solutions, which are hard to approximate by
any algorithm with a finite horizon. In general adracras holds.
Most of the above picture of the solution space has been proven
rigorously in the large K limit19,20.

Moving to the algorithmic side, a very interesting question is
whether such a rich structure of the solution space affects the
performance of searching algorithms. While clustering at ad

may have some impact on algorithms that sample solutions
uniformly21, many algorithms exist that can find at least one
solution with a4ad (refs 12,22,23).

A solid conjecture is that the hardness of a formula is related to
the existence of a subset of highly correlated variables, which are
very hard to assign correctly altogether; the worst case being a
subset of variables that can have a unique assignment. This
concept was introduced with the name of backbone in ref. 24. The
same concept applied to solutions within a single cluster lead to
the definition of frozen variables (within a cluster) as those
variables taking the same value in all solutions of the cluster25. It
has been proven in ref. 26 that the fraction of frozen variables in a
cluster is either zero or lower bounded by (ae2)� 1/(K� 2); in the
latter case the cluster is called frozen.

According to the above conjecture, finding a solution in a frozen
cluster is hard (in practice it should require a time growing
exponentially with N). So the smartest algorithm running in
polynomial time should search for unfrozen clusters as long as they
exist. Unfortunately counting unfrozen clusters is not an easy job,
and indeed a large deviation analysis of their number has been
achieved only very recently27 for a different and simpler problem
(bicolouring random regular hypergraphs). For random K-SAT
only partial results are known, that can be stated in terms of two
thresholds: for a4ar (rigidity) typical solutions are in frozen cluster
(but a minority of solutions may still be unfrozen), while for a4af

(freezing) all solutions are frozen. It has been rigorously proven28,29

that afoas holds strictly for K48. For small K, which is the
interesting case for benchmarking solving algorithms, we know
ar¼ 9.883(15) for K¼ 4 from the cavity method15, while for K¼ 3
the estimate af¼ 4.254(9) comes from exhaustive enumerations in
small formulas (Nr100; ref. 30) and is likely to be affected by
strong finite size effects. In general adrarrafras holds.

The conjecture above implies that no polynomial time
algorithm can solve problems with aZaf, but also finding
solutions close to the rigidity threshold ar is expected to be very
hard, given that unfrozen solutions becomes a tiny minority. And
this is indeed what happens for all known algorithms. Since we
are interested in solving very large problems we only consider
algorithms whose running time scales almost linearly with N and
we measure performance of each algorithm in terms of its
algorithmic threshold aa

ALG.
Solving algorithms for random K-SAT problems can be

roughly classified in two main categories: algorithms that search
for a solution by performing a biased random walk in the space of
configurations and algorithms that try to build the solutions by
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assigning variables, according to some estimated marginals.
WalkSat31, focused Metropolis search22 and ASAT23 belong to
the former category; while in the latter category we find belief
propagation guided decimation (BPD)21 and survey inspired
decimation (SID)32. All these algorithms are rather effective in
finding solutions to random K-SAT problems: for example,
for K¼ 4 we have aa

BPD¼ 9.05, aFMS
a ’ 9:55 and aSID

a ’ 9:73
to be compared with a much lower algorithmic threshold
aa

GUC¼ 5.54 achieved by Generalized Unit Clause, the best
algorithm whose range of convergence to a solution can be
proven rigorously33. Among the efficient algorithms above, only
BPD can be solved analytically21 to find the algorithmic threshold
aa

BPD; for the others we are forced to run extensive numerical
simulations to measure aa

ALG.
At present the algorithm achieving the best performance on

several constraint satisfaction problems is SID, which has been
successfully applied to the random K-SAT problem12 and to the
colouring problem34. The statistical properties of the SID
algorithm for K¼ 3 have been studied in details in refs 32,35.
Numerical experiments on random 3-SAT problems with a large
number of variables, up to N¼ 3� 105, show that in a time that is
approximately linear in N the SID algorithm finds solutions up to
aSID

a ’ 4:2525 (ref. 35), that is definitely smaller, although
very close to, as(K¼ 3)¼ 4.2667. In the region aa

SIDoaoas the
problem is satisfiable for large N, but at present no algorithm can
find solutions there.

To fill this gap we study a new algorithm for finding solutions to
random K-SAT problems, the backtracking survey propagation
(BSP) algorithm. This algorithm (fully explained in the Methods
section) is based, as SID, on the survey propagation (SP) equations
derived within the cavity method12,32,35 that provide an estimate
on the total number of clusters Nclus ¼ expð�Þ. The BSP algorithm,
like SID, aims at assigning gradually the variables such as to keep
the complexity S as large as possible, that is, trying not to kill too
many clusters35. While in SID each variable is assigned only once,
in BSP we allow unsetting variables already assigned such as to
backtrack on previous non-optimal choices. In BSP the r parameter
is the ratio between the number of backtracking moves (unsetting
one variable) and the number of decimation moves (assigning one
variable). ro1 must hold and for r¼ 0 we recover the SID
algorithm. The running time scales as N/(1� r), with a slight
overhead for maintaining the data structures, making the running
time effectively linear in N for any ro1.

The idea supporting backtracking36 is that a choice made at the
beginning of the decimation process, when most of the variables
are unassigned, may turn to be suboptimal later on; if we
re-assign a variable that is no longer consistent with the current
best estimate of its marginal probability, we may get a better
satisfying configuration. We do not expect the backtracking to be
essential when correlations between variables are short ranged,
but approaching as we know that correlations become long
ranged and thus the assignment of a single variable may affect a
huge number of other variables: this is the situation when we
expect the backtracking to be crucial.

This idea may look similar in spirit to the survey propagation
reinforcement (SPR) algorithm37, where variables are allowed to
change their most likely value during the run, but in practice BSP
works much better. In SPR, once reinforcement fields are large,
the re-assignment of any variable becomes unfeasible, while in
BSP variables can be re-assigned to better values until the very
end, and this is a major advantage.

Results
Probability of finding a SAT assignment. The standard way to
study the performance of a solving algorithm is to measure the

fraction of instances it can solve as a function of a. We show in
Fig. 1 such a fraction for BSP run with three values of the
r parameter (r¼ 0,0.5 and 0.9) on random 4-SAT problems of
two different sizes (N¼ 5,000 and N¼ 50,000). The probability
of finding a solution increases both with r and N, but an
extrapolation to the large N limit of these data is unlikely to
provide a reliable estimation of the algorithmic threshold aa

BSP.
In each plot having a on the abscissa, the right end of the plot

coincides with the best estimate of as, in order to provide an
immediate indication of how close to the SAT-UNSAT threshold
the algorithm can work.

Order parameter and algorithmic threshold. In order to obtain
a reliable estimate of aa

BSP we look for an order parameter
vanishing at aa

BSP and having very little finite size effects. We
identify this order parameter with the quantity Sres/Nres, where
Sres and Nres are respectively the complexity (for example, log of
number of clusters) and the number of unassigned variables in
the residual formula. As explained in Methods, BSP assigns and
re-assigns variables, thus modifying the formula, until the
formula simplifies enough that the SP fixed point has only null
messages: the residual formula is defined as the last formula with
non-null SP fixed point messages. We have experimentally
observed that the BSP algorithm (as the SID one35) can simplify
the formula enough to reach the trivial SP fixed point only if the
complexity S remains strictly positive during the whole
decimation process. In other words, on every run where S
becomes very close to zero or negative, SP stops converging or a
contradiction is found. This may happen either because the
original problem was unsatisfiable or because the algorithm made
some wrong assignments incompatible with the few available
solutions. Thanks to the above observation we have that SresZ0
and thus a null value for the mean residual complexity signals
that the BSP algorithm is not able to find any solution, and thus
provides a valid estimate for the algorithmic threshold aa

BSP. From
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Figure 1 | Fraction of random 4-SAT instances solved by BSP as a

function of the constraints per variable ratio a. The average is computed

over 100 instances with N¼ 5,000 (solid symbols) and N¼ 50,000

(empty symbols) variables. The vertical line is the best estimate for ar and

the shaded region is the statistical error on this estimate. For each instance,

the algorithm has been run once; on instances not solved on the first run, a

second run rarely (o1%) finds a solution. The plot shows that the

backtracking (r40) definitely makes the BSP algorithm more efficient in

finding solutions. Although data become sharper by increasing the problem

size N, a good estimation of the algorithmic threshold from these data sets

is unfeasible.
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the statistical physics solution to random K-SAT problems we
expect Sres to vanish linearly in a.

As we see in panel (a) of Fig. 2 the mean value of the intensive
mean residual complexity Sres/Nres is practically size-independent
and a linear fit provides a very good data interpolation: tiny finite
size effects are visible in the largest N data sets only close to the
data set right end. The linear extrapolation predicts aa

BSPE9.9
(for K¼ 4 and r¼ 0.9), which is slightly above the rigidity
threshold ar¼ 9.883(15) computed in ref. 15 and reported in the
plot with a shaded region corresponding to its statistical error
(the value of af in this case is not known, but aa

BSPoafras should
hold). Although for the finite sizes studied no solution has been
found beyond ar, Fig. 2 suggests that in the large N limit BSP may
be able to find solutions in a region of a where the majority of
solutions is in frozen clusters and thus very hard to find. We show
below that BSP actually finds solutions in atypical unfrozen
clusters, as it has been observed for some smart algorithms
solving other kind of constraint satisfaction problems38,39.

The effectiveness of the backtracking can be appreciated in
panel (b) of Fig. 2, where the order parameter Sres/Nres is shown
for r¼ 0 and r¼ 0.5, together with linear fits to these data sets
and to the r¼ 0.9 data set (black line). We observe that the
algorithmic threshold for BSP is much larger (on the scale
measuring the relative distance from the SAT-UNSAT threshold)
that the one for SID (that is, r¼ 0 data set).

For random 3-SAT the algorithmic threshold of BSP, run with
r¼ 0.9, practically coincide with the SAT-UNSAT threshold as

(see Fig. 3), thus providing a strong evidence that BSP can find
solutions in the entire SAT phase. The estimate for the freezing
threshold af¼ 4.254(9) obtained in ref. 30 from Nr100 data is
likely to be too small and affected by strong finite size effects,
given that all solutions found by BSP for N¼ 106 are unfrozen,
even beyond the estimated af. Moreover we have estimated
ar¼ 4.2635(10) improving the data of ref. 15 and the inequality
arrafras makes the above estimate for af not very meaningful.

Computational complexity. As explained in Methods, the BSP
algorithm performs f � 1(1� r)� 1 steps roughly, where at each
step fN variables are either assigned [with prob. 1/(1þ r)] or
released [with prob. r/(1þ r)]. At the beginning of each step, the
algorithm solves the SP equations with a mean number Z of
iterations. The average Z is computed only on instances where SP
always converges, as is usually done for incomplete algorithms
(on the remaining problems the number of iterations reaches the
upper limit set by the user, and then BSP exit, returning failure).
Figure 4 shows that Z is actually a small number changing mildly
with a and N both for K¼ 3 and K¼ 4. The main change that we
observe is in the fluctuations of Z that become much larger
approaching as. We expect Z to eventually grow as O(log(N)), but
for the sizes studied we do not observe such a growth.

After convergence to a fixed point, the BSP algorithm just need
to sort local marginals, thus the total number of elementary
operations to solve an instance grows as f� 1(1� r)� 1

(a1ZNþ a2N logN), where a1 and a2 are constants. Moreover,
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Figure 2 | BSP algorithmic threshold on random 4-SAT problems. The

residual complexity per variable, Sres/Nres, goes to zero at the algorithmic

threshold aa
BSP. (a) The very small finite size effects, mostly producing a

slight downward curvature at the right end, allow for a very reliable

estimate of aa
BSP via a linear fit. For random 4-SAT problems solved by BSP

with r¼0.9 we get aa
BSPE9.9, slightly beyond the rigidity threshold

ar¼9.883(15), marked by a vertical line (the shaded area being its s.e.).

(b) The same linear extrapolation holds for other values of r (red dotted line

for r¼0.5 and blue dashed line for r¼0). The black line is the fit to

r¼0.9 data shown in panel (a). SID without backtracking (r¼0) has a

much lower algorithmic threshold, aa
SIDE9.83. Error bars in both panels are

the s.e.m.
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is a linear fit vanishing at as. Error bars are s.e.m.
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given that the sorting of local marginals does not need to be strict
(that is, a partial sorting40 running in O(N) time can be enough),
we have that in practice the algorithm runs in a time almost linear
in the problem size N.

Whitening procedure. Given that the BSP algorithm is able to
find solutions even very close to the rigidity threshold ar, it is
natural to check whether these solutions have frozen variables or
not. We concentrate on solutions found for random 3-SAT
problems with N¼ 106, since the large size of these problems
makes the analysis very clean.

On each solution found we run the whitening procedure
(first introduced in refs 41,42 and deeply discussed in refs 26,43),
that identifies frozen variables by assigning the joker state ? to
unfrozen (white) variables, that is, variables that can take more
than one value without violating any clause and thus keeping the
formula satisfied. At each step of the whitening procedure, a
variable is considered unfrozen (and thus assigned to ?) if it
belongs only to clauses which either involve a ? variable or are
satisfied by another variable. The procedure is continued until all
variables are ? or a fixed point is reached: non-? variables at the
fixed point correspond to frozen variables in the starting solution.

We uncover that all solutions found by BSP are converted to
all-? by running the whitening procedure, thus showing
that solutions found by BSP have no frozen variables. This is
somehow expected, according to the conjecture discussed in the
Introduction: finding solutions in a frozen cluster would take
an exponential time, and so the BSP algorithm actually
finds solutions at very large a values by smartly focusing on the
sub-dominant unfrozen clusters.

The whitening procedure leads to a relaxation of the number of
non-? variables as a function of the number of iterations t that
follows a two steps relaxation process25 with an evident plateau,
see panel (a) in Fig. 5, that becomes longer increasing a towards
the algorithmic threshold. The time for leaving the plateau, scales
as the time t(c) for reaching a fraction c on non-? variables
(with c smaller than the plateau value). The latter has large
fluctuations from solution to solution, as shown in panel (b) of
Fig. 5 for c¼ 0.4 (very similar, but shifted, histograms are
obtained for other c values). However, after leaving the
plateau, the dynamics of the whitening procedure is the same
for each solution. Indeed plotting the mean fraction of
non-? variables as a function of the time to reach the
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all-? configuration, t(0)� t, we see that fluctuations are strongly
suppressed and the relaxation is the same for each solution
(see panel (c) in Fig. 5).

Critical exponent for the whitening time divergence. In order to
quantify the increase of the whitening time approaching the
algorithmic threshold, and inspired by critical phenomena, we
check for a power law divergence as a function of (aa

BSP� a) or
Sres, which are linearly related. In Fig. 6 we plot in a double
logarithmic scale the mean whitening time t(c) as a function of
the residual complexity Sres, for different choices of the fraction c
of non-? variables defining the whitening time. Data points
are fitted via the power law t(c)¼A(c)þB(c)Sres

� n, where the
critical exponent n is the same for all the c values. Joint
interpolations return the following best estimates for the critical
exponent: n¼ 0.281(6) for K¼ 3 and n¼ 0.269(5) for K¼ 4,
where the uncertainties are only fitting errors. The two estimate
turn out to be compatible within errors, thus suggesting a sort of
universality for the critical behaviour close to the algorithmic
threshold aa

BSP.
Nonetheless a word of caution is needed since the solutions we

are using as starting points for the whitening procedure are
atypical solutions (otherwise they would likely contain frozen
variables and would not flow to the all-? configuration under the
whitening procedure). So, while finding universal critical
properties in a dynamical process is definitely a good news,
how to relate it to the behaviour of the same process on typical
solutions it is not obvious (and indeed for the whitening process
starting from typical solutions one would expect the naive mean
field exponent n¼ 1/2, which is much larger than the one we are
finding).

Discussion
We have studied the BSP algorithm for finding solutions in very
large random K-SAT problems and provided numerical evidence
that it works much better than any previously available algorithm.
That is, BSP has the largest algorithmic threshold known at
present. The main reason for its superiority is the fact that

variables can be re-assigned at any time during the run, even at
the very end. In other solving algorithms that may look similar,
as for example, SPR37, re-assignment of variables actually
takes place mostly at the beginning of the run, and this is far
less efficient in hard problems. Even doing a lot of helpful
backtracking, the BSP running time is still O(N log N) in the
worst case, and thanks to this it can be used on very large
problems with millions of constraints.

For K¼ 3 the BSP algorithm finds solutions practically up to
the SAT-UNSAT threshold as, while for K¼ 4 a tiny gap to the
SAT-UNSAT threshold still remains, but the algorithmic
threshold aa

BSP seems to be located beyond the rigidity threshold
ar in the large N limit. Beating the rigidity threshold, that is,
finding solutions in a region where the majority of solutions
belongs to clusters with frozen variables, is hard, but not
impossible (while going beyond af should be impossible). Indeed,
even under the assumption that finding frozen solutions takes an
exponential time in N, very smart polynomial time algorithms
can look for a solution in the sub-dominant unfrozen
clusters38,39. BSP belongs to this category, as we have shown
that all solutions found by BSP have no frozen variables.

One of the main questions we tried to answer with our
extensive numerical simulations is whether BSP is reaching
(or approaching closely) the ultimate threshold aa for polynomial
time algorithms solving large random K-SAT problems. Under
the assumption that frozen solutions cannot be found in
polynomial time, such an algorithmic threshold aa would
coincide with the freezing transition at af (that is, when the last
unfrozen solution disappears). Unfortunately for random K-SAT
the location of af is not known with enough precision to allow us
to reach a definite answer to this question. It would be very
interesting to run BSP on random hypergraph bicolouring
problems, where the threshold values are known44,45 and a very
recent work has shown that the large deviation function for the
number of unfrozen clusters can be computed27.

It is worth noticing that the BSP algorithm is easy to parallelize,
since most of the operations are local and do not require any
strong centralized control. Obviously the effectiveness of a
parallel version of the algorithm would largely depend on the
topology of the factor graph representing the specific problem: if
the factor graph is an expander, then splitting the problem on
several cores may require too much inter-core bandwidth, but in
problems having a natural hierarchical structure the paralleliza-
tion may lead to further performance improvements.

The backtracking introduced in the BSP algorithm helps a lot
in correcting errors made during the partial assignment of
variables and this allows the BSP algorithm to reach solutions at
large a values. Clearly we pay the price that a too frequent
backtracking makes the algorithm slower, but it seems worth
paying such a price to approach the SAT-UNSAT threshold
closer than any other algorithm.

A natural direction to improve this class of algorithms would
be to used biased marginals focusing on solutions which are easier
to be reached by the algorithm itself. For example in the region
a4ar the measure is concentrated on solutions with frozen
variables, but these can not be really reached by the algorithm.
The backtracking thus intervenes and corrects the partial
assignment until a solution with unfrozen variables is found by
chance. If the marginals could be computed from a new biased
measure which is concentrated on the unfrozen clusters, this
could make the algorithm go immediately in the right direction
and much less backtracking would be hopefully needed.

Methods
Survey inspired decimation. A detailed description of the survey inspired
decimation (SID) algorithm can be found in refs 12,13,32. The SID algorithm is
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Figure 6 | Critical exponent for the whitening time divergence. The

whitening time t(c), defined as the mean time needed to reach a fraction c

of non-? variables in the whitening procedure, is plotted in a double

logarithmic scale as a function of Sres for random 3-SAT problems with

N¼ 106 (upper data set) and random 4-SAT problems with N¼ 5� 104

(lower data set). The whitening time measured with different c values

seems to diverge at the algorithmic threshold, where the residual

complexity Sres vanishes. The lines are power law fits with exponent

n¼0.281(6) for K¼ 3 and n¼0.269(5) for K¼4. Error bars are s.e.m.
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based on the SP equations derived by the cavity method12,13, that can be written in
a compact way as

m̂a!i ¼
Y

j2@a n i

mj!a; ð1Þ

mi!a ¼
p�ia ð1� pþia Þ
1�pþia p

�
ia

; ð2Þ

with p�ia ¼ 1�
Y

b2@ �ia

ð1� m̂b!iÞ; ð3Þ

where qa is the set of variables in clause a, and qia
þ (resp. qia

� ) is the set of clauses
containing xi, excluding a itself, satisfied (resp. not satisfied) when the variable xi is
assigned to satisfy clause a.

The interpretation of the SP equations is as follows: m̂a!i represents the fraction
of clusters where clause a is satisfied solely by variable xi (that is, xi is frozen by
clause a), while mi-a is the fraction of clusters where xi is frozen to an assignment
not satisfying clause a.

The SP equations impose 2KM self-consistency conditions on the 2KM
variables fmi!a; m̂a!ig living on the edges of the factor graph7, that are solved in
an iterative way, leading to a message passing algorithm (MPA)4, where outgoing
messages from a factor graph node (variable or clause) are functions of the
incoming messages. Once the MPA reaches a fixed point fm�i!a; m̂�a!ig that solves
the SP equations, the number of clusters can be estimated via the complexity

� ¼ logNclus ¼
X

i

�i þ
X

a

ð1�KaÞ�a; ð4Þ

�a ¼ logð1�
Y

j2@a

m�j!aÞ; �i ¼ logð1�pþi p�i Þ ð5Þ

with p�i ¼ 1�
Y

b2@ �i

ð1� m̂�b!iÞ; ð6Þ

where Ka is the length of clause a (initially Ka¼K) and qi
þ (resp. qi

� ) is the set of
clauses satisfied by setting xi¼ 1 (resp. xi¼ � 1). The SP fixed point messages also
provide information about the fraction of clusters where variable xi is forced to be
positive (wi

þ ), negative (wi
� ) or not forced at all (1�wi

þ �wi
� )

w�i ¼
p�i ð1� p�i Þ
1�pþi p�i

: ð7Þ

The SID algorithm then proceed by assigning variables (decimation step).
According to SP equations, assigning a variable xi to its most probable value
(that is, setting xi¼ 1 if wi

þ4wi
� and viceversa), the number of clusters gets

multiplied by a factor, called bias

bi ¼ 1�minðwþi ;w�i Þ: ð8Þ
With the aim of decreasing the lesser the number of cluster and thus keeping the
largest the number of solutions in each decimation step, SID assigns/decimate
variables with the largest bi values. In order to keep the algorithm efficient, at each
step of decimation a small fraction f of variables is assigned, such that in O(log N)
steps of decimation a solution can be found.

After each step of decimation, the SP equations are solved again on the
subproblem, which is obtained by removing satisfied clauses and by reducing
clauses containing a false literal (unless a zero-length clause is generated, and in
that case the algorithm returns a failure). The complexity and the biases are
updated according to the new fixed point messages, and a new decimation step is
performed.

The main idea of the SID algorithm is that fixing variables that are almost
certain to their most probable value, one can reduce the size of the problem
without reducing too much the number of solutions. The evolution of the
complexity S during the SID algorithm can be very informative35. Indeed it is
found that, if S becomes too small or negative, the SID algorithm is likely to fail,
either because the iterative method for solving the SP equations no longer
converges to a fixed point or because a contradiction is generated by assigning
variables. In these cases the SID algorithm returns a failure. On the contrary, if S
always remains well positive, the SID algorithm reduces so much the problem, that
eventually a trivial SP fixed point, m�i!a ¼ m̂�a!i ¼ 0, is reached. This is a strong
hint that the remaining subproblem is easy and the SID algorithm tries to solve it
by WalkSat31.

A careful analysis of the SID algorithm for random 3-SAT problems of size
N¼O(105) shows that the algorithmic threshold achievable by SID is
aa

SID¼ 4.2525 (ref. 35), which is close, but definitely smaller than the SAT-UNSAT
threshold as¼ 4.2667.

The running time of the SID algorithm experimentally measured is
O(N log(N))32.

Backtracking survey propagation. Willing to improve the SID algorithm to find
solutions also in the region aa

SIDoaoas, one has to change the way variables are
assigned. The fact the SID algorithm assigns each variable only once is clearly a

strong limitation, especially in a situation where correlations between variables
becomes extremely strong and long-ranged. In difficult problems it can easily
happen that one realizes that a variable is taking the wrong value only after having
assigned some of its neighbours variables. However, the SID algorithm is not able
to solve this kind of frustrating situations.

The backtracking survey propagation (BSP) algorithms36 tries to solve this kind
of problematic situations by introducing a new backtracking step, where a variable
already assigned can be released and eventually re-assigned in a future decimation
step. It is not difficult to understand when it is worth releasing a variable. The bias
bi in terms of the SP fixed point messages fm̂�a!iga2@i

arriving in i can be computed
also for a variable xi already assigned: if the bias bi, that was large at the time the
variable xi was assigned, gets strongly reduces by the effect of assigning other
variables, then it is likely that releasing the variable xi may be beneficial in the
search for a solution. So both the variables to be fixed in the decimation step and
the variables to be released in the backtracking step are chosen according to their
biases bi: the variables to be fixed have the largest biases and the variables to be
released have the smallest biases.

The BSP algorithm then proceeds similarly to SID, by alternating the iterative
solution to the SP equations and a step of decimation or backtracking on a fraction
f of variables in order to keep the algorithm efficient (in all our numerical
experiments we have used f¼ 10� 3). The choice between a decimation or a
backtracking step is taken according to a stochastic rule (unless there are no
variables to unset), where the parameter r A [0,1) represents the ratio between
backtracking steps to decimation steps. Obviously for r¼ 0 we recover the SID
algorithm, since no backtracking step is ever done. Increasing r the algorithm
becomes slower by a factor 1/(1� r), because variables are reassigned on
average 1/(1� r) times each before the BSP algorithm reaches the end, but its
complexity remains at most O(N log N) in the problem size.

The BSP algorithm can stop for the same reasons the SID algorithm does: either
the SP equations can not be solved iteratively or the generated subproblem has a
contradiction. Both cases happen when the complexity S becomes too small or
negative. On the contrary if the complexity remain always positive the BSP
eventually generate a subproblem where all SP messages are null and on this
subproblem WalkSat is called.

Data availability statement. The numerical codes used in this study and the data
that support the findings are available from the corresponding author upon
request.

References
1. Cook, S. A. The complexity of theorem proving procedures, Proc. 3rd Ann.

151–158 (ACM Symp. on Theory of Computing, Assoc. Comput. Mach., New
York, 1971).

2. Garey, M. & Johnson, D. S. Computers and Intractability; A guide to the theory
of NP-completeness (Freeman, 1979).

3. Papadimitriou, C. H. Computational Complexity (Addison-Wesley, 1994).
4. Mézard, M. & Montanari, A. Information, Physics, and Computation (Oxford

University Press, 2009).
5. Moore, C. & Mertens, S. The Nature of Computation (Oxford University Press,

2011).
6. Cook, S. A. & Mitchell, D. G. in Discrete Mathematics and Theoretical

Computer Science, Vol. 35 (eds Du, J., Gu, D. & Pardalos, P.)American
Mathematical Society, 1997).

7. Kschischang, F. R., Frey, B. J. & Loeliger, H.-A. Factor graphs and the
sum-product algorithm. IEEE Trans. Infor. Theory 47, 498–519 (2001).

8. Kirkpatrick, S. & Selman, B. Critical behaviour in the satisfiability of random
Boolean expressions. Science 264, 1297–1301 (1994).

9. Dubois, O., Boufkhad, Y. & Mandler, J. Typical random 3-SAT formulae and
the satisfiability threshold, in Proc. 11th ACM-SIAM Symp. on Discrete
Algorithms, 126–127 (San Francisco, CA, USA, 2000).

10. Dubois, O., Monasson, R., Selman, B. & Zecchina, R. (eds.)Phase transitions in
combinatorial problems. Theoret. Comp. Sci. 265, 1–2 (2001).

11. Ding, J., Sly, A. & Sun, N. Proof of the satisfiability conjecture for large k,
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing (Portland, OR, USA, 2015).
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45. Coja-Oghlan, A. & Zdeborová, L. The condensation transition in random
hypergraph 2-coloring, Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms (Kyoto, Japan, 2012).

Acknowledgements
We thank K. Freese, R. Eichhorn and E. Aurell for useful discussions. This research has
been supported by the Swedish Science Council through grant 621-2012-2982 and by the
European Research Council (ERC) under the European Unions Horizon 2020 research
and innovation programme (grant agreement No [694925]).

Author contributions
All authors contributed to all aspects of this work.

Additional information
Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Marino, R. et al. The backtracking survey propagation
algorithm for solving random K-SAT problems. Nat. Commun. 7,12996
doi: 10.1038/ncomms12996 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12996

8 NATURE COMMUNICATIONS | 7:12996 | DOI: 10.1038/ncomms12996 | www.nature.com/naturecommunications

http://arxiv.org/abs/cs/0301015
http://arxiv.org/abs/cond-mat/0308510
http://arxiv:cs/0212047
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	The backtracking survey propagation algorithm for solving random K-SAT problems
	Introduction
	Results
	Probability of finding a SAT assignment
	Order parameter and algorithmic threshold
	Computational complexity
	Whitening procedure
	Critical exponent for the whitening time divergence

	Discussion
	Methods
	Survey inspired decimation
	Backtracking survey propagation
	Data availability statement

	Additional information
	Acknowledgements
	References




