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Abstract: In this study, we aimed to evaluate whether candidate genes for abiotic stresses in Fagus
sylvatica L. are also candidate genes for herbaceous plants, with the purpose of better defining
the abiotic stress response model of F. sylvatica. Therefore, a meta-analysis was performed on
published papers related to abiotic stress. Firstly, we carried out a systematic review regarding the
activity of 24 candidate genes selected for F. sylvatica under abiotic stress reported in 503 articles.
After choosing the inclusion criteria, 73 articles out of 503, regarding 12 candidate genes, were
included in this analysis. We performed an exploratory meta-analysis based on the random-effect
model and the combined effect-size approach (Cohen’s d). The results obtained through Forest and
Funnel plots indicate that the candidate genes for F. sylvatica are considered to be candidate genes in
other herbaceous species. These results allowed us to set up models of plants’ response to abiotic
stresses implementing the stress models in forest species. The results of this study will serve to
bridge knowledge gaps regarding the pathways of response to abiotic stresses in trees based on the
meta-analysis. The study approach used could be extended to observe larger gene databases and
different species.

Keywords: meta-analysis; candidate gene; abiotic stress; Fagus sylvatica L.; abiotic stress model

1. Introduction

Plants, during their life cycle, are exposed to continuous chemical–physical and bio-
logical changes in their habitat or in an environment altered by humans. These changes
are often unfavourable or stressful for growth and development. Therefore, plants have
evolved various dynamic molecular reprogramming events to rapidly perceive changes
and adapt accordingly [1–3]. In recent decades, significant progress has been achieved in
understanding the physiological, cellular, and molecular mechanisms important for plant
adaptation to certain climatic conditions [1–5]. Using molecular biology approaches, many
abiotic stress-inducible genes have been identified, and their functions have been charac-
terised in plants [6,7]. This has permitted finding evidence of adaptive loci at the DNA level
using the candidate gene approach [8]. The development of Next-Generation Sequencing
technologies has allowed the sequencing of thousands of genotypes that will give a sig-
nificant advancement in the identification of genes important to adaptation [6,8–14]. This
large amount of available data has improved all omics disciplines with respect to the study
of regulatory pathways and gene expression and their correlation to abiotic stress. Despite
the variety of available data and rich resources, it is important to note that the diversity of
experimental designs and types of analyses can be a limiting factor for comparing these
genomic data and the development of stress models. Due to the variability present in the
methods applied to induce stress in the sampled tissues and the bioinformatics tool used
for data generation and analysis, this large amount of information has given rise to a new
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source of heterogeneity [11–13]. Ambiguous information from distinct resources may result
in methodological artefacts derived from observational data. In addition, the heterogeneity
of results present among different plant species demonstrates that efforts are necessary
to transfer the assessment of gene roles from reference models to other species [14]. The
challenge is to find ways to combine these resources to build reliable datasets of information
that are easily manageable and testable. Systemic approaches could bring many advan-
tages and pave the way toward comprehensive modelling. To obtain a comprehensive
view of plant responses to environmental stresses, it will be important to integrate omics
data with systemic biology data and to develop computational models [11,14,15]. In their
review, Cramer et al. [14] explored the perspectives of systemic approaches in determining
molecular responses to abiotic stresses. In the post-genomic era, comprehensive analyses
using systemic or omics approaches have increased our understanding of the complex
molecular regulatory networks associated with stress adaptation and tolerance. Although
many of the functions of individual parts are unknown, their function can sometimes
be inferred through association with other known parts, providing a better understand-
ing of the biological system as a whole [14]. New models can be formed from the large
amount of data collected and can lead to new hypotheses generated by these [15]. The
most used models to describe signalling or metabolic pathways are based on theoretical
models [15–17]. These models are based on the laws of physics and use differential or
algebraic equations to represent biological processes. Therefore, these models cannot rep-
resent dynamic processes such as gene regulation. Over the years, alternative methods
based on computational models have emerged, and statistical and systemic models are the
dominant models in stress-response studies [18,19]. Due to the potential for hypothesis
testing, prediction, and uncertainty quantification, statistical models have proven to be
very useful in these studies. However, their main limitation is that they fail to incorporate
the diversity present in gene expression data acquired under different conditions and
experimental conditions [15]. Models based on mixed types overcome these limitations
by setting fixed- and random-effects terms. These models are useful for combining omics
data from highly variable studies, and meta-analysis is one of the main types of analysis
that allows this combination. Meta-analysis is a statistical procedure for analysing data
combined from several studies and can be an important source of concise and updated
information. This type of analysis has been widely used to observe candidate genes for
abiotic stress response [20–24]. The meta-analysis approach makes it possible to overcome
the lack of characterising candidate gene datasets or differentially expressed genes, mainly
caused by the heterogeneity of single studies. In their review, Tseng et al. [25] identify
four principal meta-analysis approaches: combined p-value, combined effect size, com-
bined ranks, and directly merging raw data [25]. The objective of this work is to provide
further insight into the abiotic stress response and to increase the accuracy of response
models. For this, we conducted a statistical analysis on some candidate gene data and
related stress. We used an exploratory meta-analysis approach as a tool for the evaluation
of a dataset of candidate genes regarding the abiotic stress response in Fagus sylvatica L.
More specifically, we conducted a systematic quantitative review, through the method of
combined effect size (ES), of a wide range of studies to increase the knowledge on the roles
of candidate genes included in the initial dataset, through the acquisition of information
present in the literature. The aim of this work is to improve existing models that describe
the response to environmental stimuli of forest species, characterised by long life cycles.
To achieve this goal, we first performed a systematic review to obtain a large database of
articles concerning the study of candidate genes involved in responding to different abiotic
stresses in herbaceous plants. Subsequently, we conducted an exploratory meta-analysis
that provided a quantitative summary of the results.

2. Materials and Methods

The experimental design followed to perform the meta-analysis is shown in Figure 1.
The details of each step are reported in successive paragraphs.
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Figure 1. Flowchart of steps followed to perform systematic review and meta-analysis.

2.1. Candidate Genes Database

The first step was to search for and collect the scientific articles concerning the expres-
sion, sequencing, and annotation of specific genes in response to environmental stimuli in
F. sylvatica, and to place them into a single dataset (Table S1). A database of 24 selected genes
involved in response to abiotic stresses (drought, salt, cold and heat stress) in F. sylvatica
was implemented.

2.2. Systematic Review

This step is particularly important as it allows us to decide which article can be consid-
ered as following the inclusion criteria (decision on inclusion criteria) and obtain the final
papers’ database (included papers database) to be used for the successive meta-analysis.

As a first step, we collected information regarding enzymes encoded by the F. sylvatica
selected genes. In particular, we searched information on: (i) enzyme name, (ii) transcript
name referred to Arabidopsis thaliana genome annotation TAIR, (iii) family, (iv) subfamily,
(v) molecular function, (vi) biological process, (vii) cellular component, and (viii) protein
class. Such information was collected through a search on major databases (KEGG, Panther,
UniProt, TAIR) and collected into a table (Table S2). Successively, we conducted a systematic
review regarding each gene present in the initial dataset following the guidelines proposed
by the PRISMA protocol [26]. This procedure provides a standardised framework for
meta-analysis and systematic reviews, thus allowing the reliability and replicability of the
results obtained. The PRISMA protocol is based on identifying articles through exhaustive
bibliographical research, screening of collected articles through exclusion of duplicates,
title–abstract screening, evaluation of articles for eligibility, and the inclusion of studies of
interest in quantitative synthesis (meta-analysis) [26,27].

We searched the available literature for each selected gene through the major databases
(Scopus, Research Gate, and Spring Link) and search engines (PubMed and Google Scholar)
using the following search terms: “gene ID” + “plant *” + “candidate gene *” + “abiotic
stress” + “response *” + “SNPs”. The terms have been used both together and in combina-
tion of two or three terms (such as ‘Gene ID’ + ‘abiotic stress’ or ‘Gene ID’ + ‘abiotic stress’
+ ‘response’, etc.).

Based on the guidance of Nakagawa et al. [28], to overcome data independence,
publication bias, and outlier issues, we limited our search to English peer-reviewed papers
and excluded reviews (which could have led to duplicate information from some papers).
After initial screening, we determined the inclusion criteria necessary to collect usable data:
compare control to treated; quantitative PCR articles with the presence of comparable gene
expression data (|log2 fold change| ≥ 0.00012); provide the mean, a measure of dispersion
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(Standard Error—SE or Standard Deviation—SD), and sample size, or provide the original
data to calculate mean and SD. Moreover, the minimum number of four articles available
for each abiotic stress was considered necessary for meta-analysis. In the case of sub-group
analysis, we needed at least four articles for each gene for each stress. Because some articles
presented more than one case study, we considered those reporting results from different
treatments, species, or both as independent cases to avoid cases of pseudo-replication.

Effect Size Calculation

After applying the inclusion criteria, the effect size was calculated. Effect size is a way
of quantifying the size of the difference between two groups. It is particularly valuable for
quantifying the effectiveness of a particular treatment relative to a control. By emphasizing
the most important aspect of a treatment rather than its statistical significance, effect size
promotes a more scientific approach to knowledge accumulation. Based on some other
studies [29–32], we used Cohen’s d as the effect size. Cohen’s d describes the standardised
mean difference in an effect and is useful to compare effects across studies when the
dependent variables are measured differently. It is defined as the mean difference between
two groups, divided by the standard deviation of both groups. Conventionally, in meta-
analysis, the two groups are considered the experimental and control groups. Cohen [33] is
given by Equation (1):

d =
FCt − FCC√

(nt−1)SDt2−(nC−1)SDC
2

nt+nC

(1)

where:

FCt = log2 fold change of treated plants;
FCC = log2 fold change of control plants;
nt = number of treated plants;
nc = number of control plants;
SDt = standard deviation of treated plants;
SDc = standard deviation of control plants.

The numerator is the difference between the log2 fold change of the two groups of
observations. The denominator is the pooled SD. The pooled estimate represents the mean
value of the standard deviations of the treatment and the control groups. The articles
collected during the systematic review were characterised by the presence of continuous
outcomes. The main problem detected during the calculation of the effect size was the
presence of incomplete articles of SD or other measures of dispersion. As this lack of
information was present in most of the articles collected, we followed the lists multiple
solutions of varying nature method reported by Weir et al. [30] to impute dispersion
measures from incomplete reports. Among the listed solutions, we observed and applied
the prognostic method, also described by the article by Ma et al. [29]. Therefore, the
calculation of effect sizes can be divided into two steps: (i) calculation of assigned SE
and the assigned SD through prognostic method, and (ii) calculation of SDpooled and then
Cohen’s d. To apply the prognostic method for SD imputation, we collected data from the
study by Van Zhong et al. [34]. From this article, 27 SE values were selected. Through
application of the prognostic method, it was possible to impute SD and calculate Cohen’s d
(Equation (1)).

2.3. Meta-Analysis: Random Effect Model, Forest and Funnel Plot

After conducting the systematic review of the collected papers and calculating the
effect size, we performed the data analysis using the “Included papers database” (Table S4)
and conducting an exploratory meta-analysis. For this analysis, we chose to follow the
combined effect size approach [25], which assumes that standardised effect sizes can be
combined across studies. According to Tseng et al. [25], the two most used models in this
category are the fixed effects model (FEM) and the random effects model (REM). We decided
to use REM given that: (i) the data analysed were continuous results and the REM is the
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most effective; (ii) data vary over time, the use of this model is recommended; and (iii) the
REM is used when heterogeneous data characterised by a large variability of experimental
conditions must be compared, without committing methodological errors. The analyses
were conducted with the JASP 0.14.1 Meta-Analysis module [35]. JASP software supports
a wide range of techniques commonly used for meta-analysis. These include fixed and
random effects analysis, fixed and mixed effects meta-regression, Forest and Funnel plots,
tests for funnel plot asymmetry, and more. The engine behind this power of analysis is the
metafor R package [36]. JASP is user-friendly and freely available (https://jasp-stats.org/,
last accessed on 18 December 2021) [35].

2.4. Interactive Analyses of Stress Meta-Analyses Data

To better understand the results obtained from the meta-analysis and the information
present in the bibliography, we investigated the presence of possible relationships between
the observed genes and the studied stresses. To do so, we illustrate simple set relationships
between abiotic stresses, using the genes relevant to those stresses as commonalities. We
then visualised such data through a Venn diagram, obtained using the R Venndiagram
package [37]. The Venn diagram compares lists of genes from a set of experiments and
identifies the genes shared between the experiments or unique to an experiment in relation
to a stress.

3. Results
3.1. Candidate Gene Dataset, Systematic Review, and Inclusion Criteria

From the bibliographic review carried out to collect information regarding genes in-
volved in response to abiotic stress in Fagus sylvatica L., we obtained information regarding
24 selected genes (Table S1). Based on the results obtained, we carried out a systematic
review as previously described. We collected a total of 503 articles related to the expression
study of 24 selected genes in other species (Table S3). We applied the PRISMA protocol
parameters for screening the collected articles, and Figure 2 shows the complete workflow
of study selection and screening of eligible datasets.

Following the guidelines suggested by Nakagawa et al. [28], we limited the systematic
review to English peer-reviewed papers and excluded reviews. Applying these limitations
allowed us to avoid the collection of duplicate studies. During the screening phase, we had
to exclude 94 articles. The remaining 409 articles were submitted to the eligibility phase of
the PRISMA protocol. This involved the selection and application of the inclusion criteria,
which considers both: (i) whether or not the comparison between treated and control is
available, and (ii) the presence of measures of dispersion, sample size, the presence of
original data, or a combination of the three to calculate the SD. We excluded 336 articles
that did not meet the chosen inclusion criteria. From the remaining 73 articles, data useful
for conducting the meta-analysis were derived, as described in Materials and Methods.
The reduction we had to apply due to the lack of usable data to conduct the meta-analysis
resulted in the exclusion of 12 selected genes represented in Table 1, which also shows
the number of initial and included studies and the number of case studies analysed. For
each selected gene, a database was made with the information and data collected for the:
(i) selected genes, (ii) reference, (iii) species (iv), type of abiotic stress, (v) log2 fold change of
treated plant and control plant, (vi) number of treated plant and control plant, (vii) imputed
SE of treated plant and control plant, (viii) imputed SD of treated plant and control plant,
(ix) Spooled, and (x) effect sizes (Table S4).

https://jasp-stats.org/
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Figure 2. Standardized PRISMA framework showing the flow of information followed to carry out
the systematic review and meta-analysis as defined by Moher et al. [26]. Our results are shown within
the brackets.

Table 1. Summary of the 12 selected genes for which the number of articles included in the meta-
analysis is reported. For each gene, the initial articles, included articles, and case studies are reported.
Study cases represent selected cases within the same article that differ in exposure time, treatment,
plant species, and type of stress.

Candidate Genes NO. of Initial
Articles

NO. of Included
Articles

NO. of Study
Cases

B-ketoacyl-coA synthase 21 5 8

Caffeic acid o-methyltransferase 37 7 9

Cytosolic class I small heat shock protein 46 10 22

Formate dehydrogenase 20 4 6

Glyceraldehyde-3-phosphate
dehydrogenase 41 5 24

Heat shock protein 70 24 10 16

S-adenosylmethionine decarboxylase 27 8 12

Light harvesting complex II protein 30 6 15

S-adenosylmethionine synthase 42 6 36

Xyloglucan endotransglusylase
hydrolase protein 23 64 4 7

Adenylate kinase 19 4 8

ADP-glucose pyrophosphorylase large
subunit 38 4 8
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3.2. Meta-Analysis Results

We performed the meta-analysis through the software JASP, which allowed us to
obtain the cumulative effect size values for each selected gene. These values, including 95%
confidence intervals, are reported in Table 2, and the graphical representation is shown
through Forest and Funnel plots (Figure S1). Through observation of the I2 index (Table 2),
we observed that for Caffeic acid o-methyltransferase, Cytosolic class I small heat shock protein,
Formate dehydrogenase, Glyceraldehyde-3-phosphate dehydrogenase, Heat shock protein 70, Light
harvesting complex II protein, S-adenosylmethionine synthase, and Xyloglucan endotransglusylase
hydrolase protein 23 genes, the heterogeneity was high because I2 is greater than 75% [33].
To investigate what caused the heterogeneity, we decided to carry out subgroup analysis to
assess whether, by conducting a meta-analysis by single stress (drought, heat, cold, salinity),
the heterogeneity decreased. As shown in Table 3, we performed subgroup analyses by
subdividing the analysed studies according to the type of stress observed. We could carry
out this type of analysis only for Cytosolic class I small heat shock protein, S-adenosylmethionine
synthase, and Heat shock protein 70 genes because the number of articles available for each
abiotic stress was sufficient (at least four articles for each gene for each stress).

Table 2. Summary of results obtained through applying the random-effects model (REM). For each
candidate gene observed, we report: the name of the gene, the species studied, the stress studied,
the cumulative effect size values, the 95% confidence interval values, and the I2 index. The I2 index
quantifies the degree of heterogeneity in analysis and measures the extent of true heterogeneity by
dividing the difference between Q (chi-square statistic) and its degrees of freedom (k − 1) by Q, and
multiplying the result by 100.

Candidate Genes Species Stress
REM

(Cumulative
Effect SIZE)

95% Confidence
Interval

I2

(Cumulative
Index in %)

B-ketoacyl-coA
synthase

Arachis hypogaea L. Drought

0.88 (−0.56, 2.33) 0.000
Arabidopsis thaliana L. Drought
Gossypium hirsutum L. Salt

Hippophae rhamnoides L. Cold/Freeze
Zea mays L. Submergent

Caffeic acid
o-methyltransferase

Phyllanthus urinaria L. Drought

4.31 (−2.60, 11.21) 98.936

Zea mays L. Drought
Tamarix hispida Willd. Salt
Salix matsudana Koitz. Salt

Medicago truncatula
Gaertn. Heavy metal (Al)

Allium cepa L. Heavy metal (Pb)

Cytosolic class I small
heat shock protein

Pennisetum glaucum
R. Br. Drought/Salt

2.54 (1.56, 3.52) 99.873

Arabidopsis thaliana L. Drought/Cold
Agrostis stolonifera L. Drought/Salt

Juglans regia L. Salt/Cold
Sedum lineare L. Salt
Oryza sativa L. Drought/Salt

Camelia sinensis Kuntze Cold

Formate
dehydrogenase

Hordeum vulgare L. Drought

1.72 (−0.83, 4.26) 88.187Trifolium pratense L. Cold
Glycine max Merr. Heavy metal (Al)

Vigna umbellata Thunb. Heavy metal (Al)

Glyceraldehyde-3-
phosphate

dehydrogenase

Arabidopsis thaliana L. Heavy metal (Cd)
2.47 (1.23, 3.72) 91.334Triticum aestivum L. Drought/Cold/Salt

Oryza sativa L. Salt/Heat

Heat shock protein 70

Zea mays L. Heat

3.74 (1.69, 5.79) 97.688

Triticum aestivum L. Drought/Heat
Glycine max Merr. Heat

Nicotiana tabacum L. Heat/Cold
Chrysanthemum spp. Heat

Arabidopsis thaliana L. Cold
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Table 2. Cont.

Candidate Genes Species Stress
REM

(Cumulative
Effect SIZE)

95% Confidence
Interval

I2

(Cumulative
Index in %)

S-adenosylmethionine
decarboxylase

Oryza sativa L. Drought/Salt

1.91 (1.01, 2.80) 67.026

Sugar beet monosomic Salt
Zea mays L. Salt

Brassica napus L. Waterlogging
Eremochloa ophiuroides

Hack. Cold
Arachis hypogaea L. Salt

Light harvesting
complex II protein

Solanum lycopersicum L. Drought/Cold

−4.79 (−8.18, 1.39) 99.202

Vitis vinifera L. Drought
Hordeum vulgare L. Drought

Populus simonii Carrière Heat

Sedum alfredii L. Heavy metal (Cd,
Zn)

Panax ginseng C.A.Mey. Salt/Chilling

S-adenosylmethionine
synthase

Suaeda maritima
Dumort. Salt

45.10 (−40.06, 130.127) 99.998

Oryza sativa L. Salt
Cucumis sativus L. Salt

Lycopersicon
esculentum L. Salt

Solanum lycopersicum L. Drought/Heat/Cold/salt
Cajanus cajan L. Drought/Cold

Panax ginseng C.A.Mey. Cold/Salt

Xyloglucan
endotransglusylase
hydrolase protein 23

Zea mays L. Heat

3.18 (1.38, 4.98) 89.734

Vigna umbellata Thunb. Heavy metal (Al)
Populus euphratica Oliv. Heavy metal (Cd)
Arabidospsis thaliana L. Heavy metal (Br)

Glycine max Merr. Iron deficiency
Benincasa hispida

Thunb. Drought

Adenylate kinase

Oxytenanthera
Abyssinica A.Rich. Drought

0.32 (−0.56, 1.67) 0.000Solanum lycopersicum L. Drought
Helianthus annuus L. Drought

Zea mais L. Salt

ADP-glucose
pyrophosphorylase

large subunit

Oxytenanthera
Abyssinica A.Rich. Drought

0.84 (−0.42, 2.11) 20.691Solanum lycopersicum L. Drought
Oryza sativa Salt

After subgrouping, the heterogeneity not caused by chance of the observations for
S-adenosylmethionine synthase does not seem to decrease. The heterogeneity could be derived
from the variability of the experimental conditions under which the studied plant species
are subjected to the stresses. However, a decrease in heterogeneity can be detected for
only those studies involving the observation of cold stress response, an indicator that the
experimental conditions were similar. We observed similar results for Heat shock protein
70, where only the subgroup related to heat stresses appears to decrease in heterogeneity.
Subgrouping for Cytosolic class I small heat-shock protein resulted in decreased heterogeneity
values for all observed stresses.

The main result of the meta-analysis is represented by a graph, called a forest plot,
which depicts the extension of the effect size for each study case and the cumulative effect
size obtained with the random effects model (REM). Figures 3 and 4 show the forest plots
for the subgroup analysis of Cytosolic class I small heat shock protein and S-adenosylmethionine
decarboxylase.
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Table 3. Summary of heterogeneity indexes for only those genes to which subgrouping could be
applied. For each candidate gene, we report: the name of the gene, I2 cumulative, the stress studied
for subgroup, the cumulative effect size values for each subgroup, the 95% confidence interval values
for each subgroup, and I2 for each subgroup. The I2 index represents the degrees of variability: it
quantifies the degree of heterogeneity in analysis and measures the extent of true heterogeneity by
dividing the difference between Q (chi-square statistic) and its degrees of freedom (k − 1) by Q and
multiplying the result by 100.

Candidate Genes I2 (Cumulative) Subgroups REM (for Each
Subgroup)

95% Confidence
Interval (for Each
Subgroup in %)

I2 (for Each
SUBGROUP in %)

Cytosolic class I small
heat shock protein 99.873

Salt 1.81 (0.53, 3.09) 65.885
Cold 0.83 (−0.59, 2.26) 67.125

Drought 1.94 (0.80, 3.07) 63.164

Heat shock protein 70 97.632
Heat 0.72 (0.31, 3.55) 31.33
Cold 1.94 (−1.43, 5.31) 95.142

Drought 8.32 (5.36, 11.27) 94.358

S-adenosylmethionine
synthase 99.721 Salt −0.64 (−3.15, 1.86) 96.505

Cold 1.05 (−0.54, 2.65) 68.209

Figure 3. Forest plots of cytosolic class I small heat-shock protein. Subgroup analysis was conducted for
(a) salt stress, (b) cold stress, and (c) drought stress. The presence of a repeated article in succession
within the figure represent the presence of multiple case studies reported in the same paper and
which differ in time exposure, treatment, plant species, and type of stress. The references within the
figure are part of the reference list reported in the Table S4.
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Figure 4. Forest plots S-adenosylmethionine synthase. Subgroup analysis was conducted for (a) salt
stress and (b) cold stress. The presence of a repeated article in succession within the figure represent
the presence of multiple case studies reported in the same paper and which differ in time exposure,
treatment, plant species, and type of stress. The references within the figure are part of the reference
list reported in the Table S4.

Observing the cumulative effect size values, shown in Table 3 and Figure 3, it can
be inferred that the expression of the gene encoding for cytosolic class I small heat-shock
protein is positively regulated in response to salinity, cold, and drought stress. The large
heterogeneity of studies for the response to cold stress confers a lower statistical potential,
observable by the model confidence interval intersecting zero (Table 3, Figure 3).

Figure 4 displays the forest plots of the subgroup analysis for the gene encoding for
S-adenosylmethionine synthase. Observing the cumulative effect size reported in Figure 4 and Table 3,
it is possible to observe that the expression of the gene encoding for S-adenosylmethionine
synthase is positively regulated during the response to cold stress and negatively regulated
during the response to salinity stress. Again, the heterogeneity of the studies confers greater
uncertainty. The confidence interval, in both cases, intersects 0. Thus, although a subgroup
analysis can be performed, the heterogeneity of these studies still confers a degree of
uncertainty. The situation is somewhat different for analyses performed in the absence of
subgroup division of study cases. The variance of the studies in this type of analysis is
higher than in subgroups. Despite this, it was possible to observe values of the cumulative
effect size of the REM having a confidence interval that does not intersect the 0. In Figure 5,
forest plots with the relative effect size of some genes analysed without the subdivision into
subgroups are reported. It can be seen that the genes encoding for S-adenosyl decarboxylase
and xyloglucan endotransglucosylase hydrolase protein 23 exhibit positive expression regulation
during the response to abiotic stresses.
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Figure 5. Forest plots of (a) caffeic acid o-methylantransferase, (b) formate dehydrogenase, (c) s-adenosyl
decarboxylase, and (d) xyloglucan endotransglucosylase hydrolase protein 23 in plants subjected to abiotic
stress. The presence of a repeated article in succession within the figure represent the presence of
multiple case studies reported in the same paper and which differ in time exposure, treatment, plant
species, and type of stress. The references within the figure are part of the reference list reported in
the Table S4.

3.3. Comparison between Selected Genes and Related Stress

To assess the relationship between the genes relevant to stress response in the studied
stresses, we analysed the data obtained from the meta-analysis through a Venn diagram
(Figure 6). The graph represents the genes that have been observed to be relevant to the
response to one or more stresses. As can be observed, all the genes analysed are involved
in the response to multiple stresses, and none of them shows a stress-specific relationship.
It is interesting to note that there is the presence of only three genes (GAPDH, SAM, and
LHC-II) that are relevant for the response to all the stresses observed (drought, cold, heat,
and salt stress).
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Figure 6. Venn diagram regarding stresses and candidate genes whose expression is regulated in
response to these stresses. The results were generated using Venndiagram R package [37]. The data
present within and at the intersections of the sets represent the ID of the observed genes. The sets
represent the type of stress studied.

4. Discussion

The information collected and analysed by an exploratory meta-analysis based on
the random-effect model and the combined effect-size approach (Cohen’s d) allowed us
to identify and select 12 genes responding to abiotic stresses in F. sylvatica. As can be
seen from our overall synthesis of the collected studies revealed heterogeneity between
studies (Table 2, Figure S1, Figures 3 and 4), for Heat shock protein 70 (Figure S1), cytosolic
class I small heat-shock protein (Figure 3), and S-adenosylmethionine synthase (Figure 4), it was
possible to conduct an analysis in subgroups, limited only to case studies concerning a
specific stress (Table 3). This type of analysis, in some cases, has led to a reduction in the
heterogeneity present originally (Table 3, Figure S1, Figures 3 and 4). We hypothesised that
this heterogeneity might also be due to different conditions and the time of exposure to
which plants are subjected to abiotic stress. Thus, we speculated that the heterogeneity
depends on methodological differences between studies included in the meta-analysis.
Despite this great heterogeneity, it was possible to observe the cumulative effect of the
various case studies for the 12 genes analysed (Table 2). This effect, obtained through
the application of the REM, allowed us to observe the expression of genes in response
to stresses.

The results obtained allowed us to set up models of plants’ responses to abiotic stresses
implementing the stress models in forest species reported below. As there is no specific
information on a metabolic pathway in forest species, we considered herbaceous species
to acquire more specific information of the selected genes to check if they are involved
in abiotic stresses Using our results, we have developed a specific model for each abiotic
stress (heat, cold, drought, and salt). We have followed the general scheme suggested by
Harfousche et al. [3] as this is one of the most comprehensive for illustrating the main
generic response pathways to abiotic stresses.

4.1. Heat Stress Model

Sudden increases in temperature trigger the stress response in many different organ-
isms, such as bacteria, fungi, and plants. In plants, it has been observed that initial exposure
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from medium to high heat stress provides resistance against a subsequent lethal dose. This
phenomenon is called acquired tolerance [38,39]. The heat stress response is characterised
by an elevated synthesis of a specific set of heat shock proteins (Hsps) associated with the
development of thermotolerance [40–42]. Among the genes involved in the heat stress
response, we observed the gene encoding for Hsp70 to be positively regulated by heat
stress (Table 2). In eukaryotes, including plants, many different members of the Hsp70
family have been observed. From the information obtained from the systematic review,
we observed that members of the Hsp70 family exhibit functions attributed to heat and
cold stress and seed maturation and germination (Figure S1, Table 2). Together, these
data suggest that plant Hsp70 proteins interact with diverse substrates and take part in
a plethora of cellular processes in Glycine max L. and Zea mays L [43–45]. Additionally,
concerning the heat stress response, we observed the regulation of the gene encoding for
cytosolic small heat shock protein (sHsps) (Figure 3). This gene appears to be over-expressed
in response to this stress. Based on the information obtained from the systematic review,
we observed that sHsps are a group of proteins whose production is ubiquitous in the cell
in response to heat stress. In fact, these proteins are the most dominant proteins produced
in response to such stress [38]. These proteins exhibit typical chaperone-like activity; in
fact, they bind to unfolding intermediates to protect them from irreversible aggregation
and maintain them in a competent refolding state. Expression patterns and chaperone-like
function of sHsps suggest that their production correlates with the thermotolerance status
acquired by cells following mild heat stress in Nicotiana tabacum L. [46]. One of the genes
that we have observed to be regulated in response to heat stress is the gene encoding for
ADP-glucose pyrophosphorylase large subunit (AGP-ase) (Figure S1). In contrast to what has
been reported for the previous two genes, the expression of AGP-ase seems to be negatively
regulated by heat stress conditions. Indeed, from the information obtained as a result of
the systematic review, we observed that AGP-ase activity is decreased, inhibited, or both
in response to heat stress (Figure S1, Table S4) in accordance with what was reported by
Shayanfar et al. [46] in Triticum aestivum L. and Mangelsen [47] in Hordeum vulgare L. Kaur
et al. [48] reported that AGP-ase activity is directly correlated with starch biosynthesis
in Triticum aestivum L. The decrease in AGP-ase activity during heat stress appears to be
directly related to the redirection of carbon flux away from starch biosynthesis pathways.
Inhibition of this gene appears to be directly related to the decrease in 3-phosphoglycerate
caused by increased respiration. Another gene that we observed to be down-regulated in
response to this stress is the gene encoding for Light harvesting complex II protein (LHC-II).
As can be seen from Table 2, the cumulative effect size for this gene is negative (−4.79).
Based on the information obtained from the systematic review, we observed how heat
stress conditions could directly affect the structure of this protein (Table S3). Accordingly,
Song et al. [49] and Shakeel et al. [50] have also observed a down-regulation of LHC-II in
response to elevated temperatures in Populus simonii Carrière and Agave americana L. An
interesting finding reported by Vayghan et al. [51] concerns the phosphorylation status of
the gene in response to elevated temperatures. This epigenetic pattern is usually linked
with increased gene expression. Indeed, in the study by Vayghan et al. [51], the gene
encoding for LHC-II was found to be up-regulated in Lepidium sativum L. Figure 7 shows
the model of response to heat stress considering the results obtained from the meta-analysis
of our study.
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Figure 7. Hypothetical model of heat stress responses. AHAK1, Histidine kinase 1 [52]; HPT/AHP2
Histidine-containing phosphotransfer ABF [52]; CNGC6, Cyclic nucleotide gated Ca2+ chan-
nel 6 [53–56]; MID1, Ca2+-permeable mechanosensitive channels mid1-complementing activ-
ity 1 [57]; phyB, Photosensory receptor B [56,58]; TMS10, TMS10L, Thermo-sensitive genic male
sterile 10 [5,56,59]; CaM3, Calmodulin 3 [56,60]; CBK3, CaM-binding protein kinase 3 [56,60];
CRLK1, Calcium/Calmodulin-regulated receptor like cytoplasmic kinases 1 [5,56,61]; CRLK2,
Calcium/Calmodulin-regulated receptor like cytoplasmic kinases 2 [5,61]; DREB2A, DRE-binding pro-
tein 2A [62]; HSFs, Heat stress transcription factor [62]; WRKY39, WRKY transcription factor 39 [2,62];
bZIP17, Basic doamin/leucine zipper17 Transcription factor [2,62]; bZIP28, Basic doamin/leucine zip-
per28 Transcription factor [2,62]; bZIP60, Basic doamin/leucine zipper60 Transcription factor [2,62].

4.2. Cold Stress Model

Low temperature is one of the major abiotic stresses limiting the growth and devel-
opment of many plant species and affecting their geographic distribution. Arabidopsis
thaliana L. can increase freezing tolerance in response to low temperatures through exten-
sive gene expression reprogramming events that result in appropriate metabolic–structural
alterations [63,64]. The result of these reprogramming events is the increased levels of
hundreds of metabolites with protective and signalling effects [64]. Through the analysis of
the results of the systematic review, we observed the behaviour of some key genes (Cytosolic
class I small heat-shock protein, Light-harvesting complex II protein, S-adenosylmethionine syn-
thase, S-adenosyl-l-homocysteine hydrolase) for the response to these environmental conditions
(Table 2, Figure 8). These include the previously mentioned genes encoding for Hsps
(Figure 3) and sHsps (Figure S1). Hsps are commonly associated with response to high
temperatures, but evidence indicates that they can also respond to low temperatures in
Arabidopsis thaliana [65,66]. Renaut et al. [67] observed that two Hsp70-like proteins were
up-regulated in response to cold stress in Prunus persica L. As already observed for heat
stress, the role of Hsps is to prevent the aggregation of denatured proteins, facilitating
their refolding under cold stress conditions [63]. Among the genes found to be regulated
in response to multiple stresses, we observed the gene encoding for Light-harvesting com-
plex II protein (LHC-II). From the observation of the results obtained from the systematic
review, in fact, the expression of the LHC-II gene appears to be induced by cold stress
(Table 2). In some studies on tomatoes and tobacco, the up-regulation of this gene in
response to low-temperature stress has been observed [68–70]. Up-regulation of LHC-II
allows a reduction in ROS content, acting as an antioxidant. This effect protects the bi-
ological membrane system and protects photosystem-II from photoinhibition. After the
application of the systematic review and meta-analysis, we observed cold-stress-induced
regulation of two interesting genes coding for S-adenosylmethionine synthase (SAMS) and
S-adenosyl-l-homocysteine hydrolase (SAHH) (Figure S1). S-adenosyl methionine is an important
protein that serves as a universal donor of methyl groups. Being the keystone of one of the
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most important epigenetic patterns, this protein is fundamental during the growth and
development phases of plants. SAM has, in fact, a fundamental role in the methylation
of DNA, RNA, and polyamine and biotin biosynthesis [71,72]. Scientific evidence has
shown that SAM can interact in the regulatory pathway of environmental stimuli response
through epigenetic modifications and hormonal control in plant cells, as demonstrated
in Oryza sativa L. and Arabidopsis thaliana L. [73]. SAM is synthesised through the action
of the enzyme S-adenosylmethionine synthetase (SAMS) that catalyses this synthesis from
ATP and l-methionine. From the observation of our results, SAM seems to be up-regulated
during cold stress (Table 2, Table S4). Studies of Guo et al. [74], Mahatma et al. [75], and
Heidari et al. [76] demonstrated that in plants such as Medicago sativa L. [74], Cajanus cajan
L. [75], and Solanum lycopersicum L. [76], a gene encoding for SAMS was up-regulated in
response to cold stress. Induction of SAMS during stress increases SAMS levels as positive
effects of ethylene and polyamine biosynthesis [71]. Because it appears to correlate with
hormone synthesis, induction of SAMS activity may elevate ethylene levels. Ethylene might
be involved in cell wall thickening [73]. According to Poulton et al. [77], the availability
of the SAM enzyme is a key prerequisite for methylation. However, these methylation
reactions have by-products that can inhibit methyltransferase activity [78,79]. One of these
by-products is S-adenosyl-l-homocysteine (SAH). This protein can compete with SAM for the
same binding site. Therefore, during developmental stages and during the stress response,
this protein must be efficiently removed. To ensure the proper methyl-transferase activity
of SAM, SAH is rapidly hydrolysed by another key enzyme during the stress response,
namely S-adenosyl-l-homocysteine hydrolase (SAHH), which catalyses the hydrolysis of SAH
into l-homocysteine and adenosine (Ado) [79]. In fact, the results of the systematic review and
meta-analysis showed that in Arabidopsis thaliana plants subjected to cold stress, there is
over-regulation of SAHH (Figure S1), in accordance with Puyaubert et al. [80]. The results
obtained in our study permitted us to depict the model of response to heat stress reported
in Figure 8.

Figure 8. Hypothetical model of cold stress responses. AHAK1, Histidine kinase 1 [52]; HPT/AHP2
Histi-dine-containing phosphotransfer ABF [52]; CNGC6, Cyclic nucleotide gated Ca2+ chan-
nel 6 [53–56]; MID1, Ca2+-permeable mechanosensitive channels mid1-complementing activ-
ity 1 [57]; COLD1, Chilling tolerance divergenece 1 [56,81]; RGA1, G-protein alpha subunit 1 [56,81];
CIPK7, CBL-interacting protein kinase 7 [56–60]; CRLK1, Calcium/Calmodulin-regulated recep-
tor like cytoplasmic kinases 1 [5,56,61]; CRLK2, Calcium/Calmodulin-regulated receptor like cy-
toplasmic kinases 2 [5,56,61]; ICE1, Induced CBP expression 1 [82]; CBF3, C-repeat-binding fac-
tor 3 [82];DREB1A, DRE-binding protein 1A [62]; ERF, Ethylene-responsive transcription factor [82];
AP2, APETALA2/ethylene response factor [82]; RAP2.1, CBF-regulation transcription factor 2.1 [82];
RAP2.6, CBF-regulation transcription factor 2.6 [82]; STZ/ZAT10, C2H2-type zinc finger transcription
factor [82]; CCA1, MYB-type transcription factor [82]; LHY, MYB-type transcription factor [82].
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4.3. Drought Stress Model

Drought stress is a major factor that can often lead to plant mortality. This stress
is strictly correlated to the water deficit, for which the major effect is the interruption of
water flows along the xylem, causing cavitation. This results in embolisms that disturb the
normal conduction of water, causing alterations in plant growth [3]. Moreover, in long-
lived perennial tree species, the water balance in the tissues is crucial for growth, survival,
and reproductive ability and influences the species’ distribution along the environment
gradient [83,84]. Stress-mitigation mechanisms aim to improve water-use efficiency by
balancing uptake and leakage. As shown in Figure 6, all 12 candidate genes are involved
in plant responses to drought stress. Among the observed genes, there are some that
are quite remarkable: caffeic acid 3-O-methyltransferase (COMT) and xyloglucan endotrans-
glucosylase/hydrolases 23 (XTHs). From our study, we found that drought stress leads to
increased cell wall lignification through the increased abundance of COMT, as found by
Vincent et al. [84] in Zea mays L. Another gene that seems to be involved in the drought
stress response is xyloglucan endotransglucosylase/hydrolases (XTHs). In effect, based on the
information obtained through the systematic review, we observed that XTHs are positively
regulated by drought stress in plants such as Benincasa hispida Thunb. [85], Zea mays L. [86],
and Solanum lycopersicum L. [87]. XTHs play a key role in modifying cell wall structure
and elasticity by cleaving and reforming the bonds between xyloglucan chains [88]. Plants
organs development is based on cell division in the meristematic zones followed by a
tremendous expansion of novel cells in a complex turgor-driven process. Therefore, any
reduction in cell turgor, caused by osmotic stress, also reduces the mechanical power of the
cell to expand the polysaccharide network [89]. Figure 9 shows the model of response to
drought stress detailed with the results obtained from the meta-analyses of our study.

Figure 9. Hypothetical model of drought stress responses. BAM1, Leucine-rich repeat receptor-like
serine/threonine-protein kinase 1 [5,90]; BAM2, Leucine-rich repeat receptor-like serine/threonine-
protein kinase 1 [5,90]; ECA1, ER-localized type 2A Ca2+-ATPase [5,91]; CLE25, Small peptide
Clavata3/endosperm domain-binding region-related 25 [5,90]; PBS2, mitogen-activated protein ki-
nase PBS2 [5]; HOG1, Mitogen-activated protein kinase HOG2 [5]; pKC, protein kinase C [5,92]; CDPK,
calcium-dependent protein kinase [5]; NFYA5, Nuclear factor Y A5 [93]; ABRE, ABA-responsive
element [92,93]; DRE/CRT, Dehydration-responsive element-binding protein [91,92]; ABFs, ABRE-
Binding factor [92,93]; DPBFs, D3 protein binding factor [93]; AP2/EREBP, APETALA2/Ethylene-
responsive element binding protein [92,93]; bZIP, Basic domomain/leucine zipper17 Transcription
factor [92,93]; MYB96, MYB transcription factor 96 [92,93]; NAM-ATF1, NAC-transcription factor
1 [92,93]; NAM-ATF2, NAC-transcription factor 2 [92,93]; DRIP1, DREB2A-interacting protein 1 [93];
DRIP2, DREB2A-interacting protein 2 [93].
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4.4. Salt Stress Model

The salinity of the soil, often caused by NaCl, has a negative impact on the growth
and development of plants [3]. This stress is represented by ion imbalance and hyperos-
motic stress, leading to disorganisation of the cell membrane, ion toxicity, and oxidative
damage [3]. In addition, salt stress causes oxidative stress due to the generation of reactive
oxygen species (ROS) [94]. Regarding this kind of stress, through systematic reviews, we
found interesting aspects concerning the behaviour of glyceraldheyde 3-phosphate dehydroge-
nase (GAPDH), S-adenosylmethionine synthase (SAMS), and S-adenosyl-l-homocisteine hydrolase
(SAHH) genes (Table 2, Figure 10). GAPDH is involved in glycolysis, the photosynthetic
reductive pentose phosphate pathway, and in signal-transduction processes related to the
perception/signalling of abiotic stresses. Therefore, to date, this enzyme is defined as a
moonlighting protein [95]. It is possible that the enzyme contributes to increasing salt
tolerance in plants maintaining higher recycling rates of ADP and NADP+ to decrease ROS
production, helping to maintain photosynthetic efficiency and plant development [96]. We
observed from our results (Table S4) that GADPH expression was positively influenced
by salt stress in Thellungiella halophila, Medicago sativa, Arabidopsis thaliana, and rice [97–99].
Furthermore, glyceraldheyde 3-phosphate dehydrogenase participated in the polyamines (PAs)-
mediated salt stress responses of Arabidopsis thaliana roots [98]. Another interesting finding
that we observed concerns the activity of two key genes, S-adenosylmethionine synthase
(SAM) and S-adenosyl-l-homocysteine (SAHH). SAM, from our results (Table S4), appears to
be up-regulated under salt stress in Lycopersicon esculentum. From the information obtained
through systematic reviews (Table S3), it emerged that there is an association between
lignin deposition in vascular plant tissues and up-regulation of the gene encoding for
SAMS during salt stress [100]. In addition, in response to salinity stress, vascular plants
activate mechanisms to increase root cell wall synthesis and modification [101] (Table S3).
These mechanisms involve a strong methyltransferase activity that requires elevated SAM
synthesis. As observed for cold stress, methyltransferase activity appears to be crucial to the
stress response. The dynamic process involves three foundational enzymes: SAM, SAMS,
and SAHH. As already observed for cold stress [80], upregulation of the gene encoding for
SAHH was also observed for salt stress in Spinacia oleracea L. [102]. Figure 10 shows the
model of response to salt stress implemented with the results of our study.

4.5. Comparison of Genes and Related Stress

The Venn diagram showed no presence of stress-specific genes (Figure 6). Never-
theless, some types of stress responses are systemic and potentially confer tolerance to
multiple types of stress [115,116]. This confirms what was found in other multiple stresses
studies carried out in Arabidopsis thaliana L. and Oryza sativa L. [117,118], showing that the
plant response represents the result of complex interactions rather than a simple merging
of responses to individual stresses. Moreover, Sewelam et al. [116] suggested that genes
that are induced under multiple stress conditions represent possible better candidates for
holding stress-tolerance patterns than select genes that are only expressed under individual
stresses. Genes associated with these systemic responses may provide interesting infor-
mation about the molecular networks underlying stress resistance [117–119]. It is possible
to assume that these systemic response mechanisms are conserved among different plant
species. Our results showed that regardless of the species subjected to abiotic stresses, the
12 genes analysed are involved in response to abiotic stress (Table S4). In fact, LHC-II was
involved in plants such as tobacco and tomato in response to cold stress and SAM was
involved in Medicago sativa L. [74], Cajanus cajan L. [75], and Solanum lycopersicum L. [76]
(Table S3).
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Figure 10. Hypothetical model of salt stress responses. AHAK1, Histidine kinase 1 [52]; HPT/AHP2
Histidine-containing phosphotransfer ABF [52]; OSCA1.1, Hyperosmolality-gated Ca2+ permeable
channel 1.1 [5,103]; OSCA1.2, Hyperosmolality-gated Ca2+ permeable channel 1.2 [5,102]; OSCA3.1,
Hyperosmolality-gated Ca2+ permeable channel 3.1 [5,102]; AHA2, inhibition of the plasma mem-
brane H+-ATPase 2 [52,104]; RALFs, Rapid alkalinization factors [5,105]; IPUT1, Inositol phos-
phorylceramide glucuronosyltransferase [5,106]; GIPC, Sphingolipid glycosyl insitol phosphorylce-
ramide [5,106]; LLG1, co-receptor LORELEI-like GPI-anchored protein 1 [5,107,108]; LRX3, Leucine-
rich extension 3 [5,107,108]; LRX4, Leucine-rich extension 4 [5,107,108]; LRX5, Leucine-rich extension
5 [5,107,108]; SIP, RALF22 ligand via Site 1 Protease [5,109]; MYB, MYB-type transcription factor [110];
TCP, TCP-type transcription factor [110]; Class III HD-ZIP, Class III HD-ZIP transcription factor [110];
CBF-B/NF-YA, CCAAT-binding transcription factor [110]; SCR, Scarecrow transcription factor [111];
PLT, Plethora transcription factor [111]; BHLH, basic helix–loop–helix transcription factor [111]; GRF2,
GRF2 Growth regulating transcription factor [112]; KN3, KN3 Homeobox transcription factor [62];
CAMTAs, CaM-Binding transcription factor [113]; GTLs, GT-element-binding proteins transcription
factor [113]; NIG1, basic helix-loop-helix-type [114].

5. Conclusions

In this study, we were able to deepen the knowledge reported in some theoretical
models for the response to abiotic stresses showing the usefulness of the meta-analysis
approach. In fact, large-scale theoretical models, based on mathematical methods, are
very useful to understand the physical and biophysical laws at the basis of stress response
metabolic pathways [15,25], but cannot clearly represent the dynamic mechanisms that
regulate gene expression in response to one or more stress conditions. These theoretical
models present some knowledge gaps due to the lack of representation of transcription
factors or, indeed, candidate genes.

The approach we used for the identification and representation of B-ketoacyl-coA syn-
thase, Caffeic acid o-methyltransferase, Cytosolic class I small heat shock protein, Formate dehydro-
genase, Glyceraldehyde-3-phosphate dehydrogenase, Heat shock protein 70, S-adenosylmethionine
decarboxylase, Light harvesting complex II protein, S-adenosylmethionine synthase, Xyloglucan
endotransglusylase hydrolase protein 23, Adenylate kinase, and ADP-glucose pyrophosphorylase
large subunit genes (Table 1, Figures 7–10) for stress-responsive metabolic pathways, proved
to be very useful and effective in collecting and analysing information to better understand
their role in the response to abiotic stresses. The future direction of this type of analysis
should certainly be to analyse entire databases of genes involved in abiotic stress responses
in other trees to deepen the knowledge of molecular and physiological responses in relation
to different environmental stimuli. Future research should lead to the development of
theoretical–statistical models, where information is obtained with mathematical, physical,
statistical, and biophysical models.



Forests 2022, 13, 159 19 of 23

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/f13020159/s1, Table S1: List of selected candidate genes for abiotic stress response in Fagus
sylvatica L. [120,121]. Table S2: List of enzymes encoded by selected genes, Table S3: Systematic
review bibliography, Table S4: Database for meta-analysis, Figure S1: Forest and Funnel plot.

Author Contributions: Co-First/Equal authorship: C.G. and R.F.; Conceptualization, C.G., R.F., C.V.
and D.P.; methodology, C.G. and R.F.; formal analysis, C.G. and R.F.; resources, D.P.; data curation,
C.G., R.F., C.V., and D.P.; writing—original draft preparation, C.G. and R.F.; writing—review and
editing, C.V. and D.P.; supervision, D.P.; project administration, C.V.; funding acquisition, D.P. and
C.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by LIFE PROGRAMME OF EUROPEAN UNION, grant number
LIFE18ENV/IT/000124 LIFE SySTEMiC.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in the supple-
mentary MS Access database included with this submission: Table S3.

Acknowledgments: We would like to thank Catia Boggi (CNR-IBBR, Italy) for technical support. We
thank the anonymous reviewers for their revision and for helpful comments on the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhu, J.-K. Abiotic Stress Signaling and Responses in Plants. Cell 2016, 167, 313–324. [CrossRef] [PubMed]
2. Ahuja, I.; de Vos, R.C.H.; Bones, A.M.; Hall, R.D. Plant Molecular Stress Responses Face Climate Change. Trends Plant Sci. 2010,

15, 664–674. [CrossRef]
3. Harfouche, A.; Meilan, R.; Altman, A. Molecular and Physiological Responses to Abiotic Stress in Forest Trees and Their Relevance

to Tree Improvement. Tree Physiol. 2014, 34, 1181–1198. [CrossRef]
4. Estravis-Barcala, M.; Mattera, M.G.; Soliani, C.; Bellora, N.; Opgenoorth, L.; Heer, K.; Arana, M.V. Molecular Bases of Responses

to Abiotic Stress in Trees. J. Exp. Bot. 2020, 71, 3765–3779. [CrossRef]
5. Gong, Z.; Xiong, L.; Shi, H.; Yang, S.; Herrera-Estrella, L.R.; Xu, G.; Chao, D.-Y.; Li, J.; Wang, P.-Y.; Qin, F.; et al. Plant Abiotic

Stress Response and Nutrient Use Efficiency. Sci. China Life Sci. 2020, 63, 635–674. [CrossRef]
6. Ambrosino, L.; Colantuono, C.; Diretto, G.; Fiore, A.; Chiusano, M.L. Bioinformatics Resources for Plant Abiotic Stress Responses:

State of the Art and Opportunities in the Fast Evolving-Omics Era. Plants 2020, 9, 591. [CrossRef]
7. Hirayama, T.; Shinozaki, K. Research on Plant Abiotic Stress Responses in the Post-Genome Era: Past, Present and Future. Plant J.

2010, 61, 1041–1052. [CrossRef] [PubMed]
8. Balkenhol, N.; Cushman, S.; Storfer, A.; Waits, L. Landscape Genetics: Concepts, Methods, Applications; Wiley-Blackwell: Chichester,

UK, 2015; pp. 1–288. ISBN 978-1-118-52529-6.
9. Kersey, P.J. Plant Genome Sequences: Past, Present, Future. Curr. Opin. Plant Biol. 2019, 48, 1–8. [CrossRef]
10. Isabel, N.; Holliday, J.A.; Aitken, S.N. Forest Genomics: Advancing Climate Adaptation, Forest Health, Productivity, and

Conservation. Evol. Appl. 2020, 13, 3–10. [CrossRef]
11. Neale, D.B.; Langley, C.H.; Salzberg, S.L.; Wegrzyn, J.L. Open Access to Tree Genomes: The Path to a Better Forest. Genome Biol.

2013, 14, 120. [CrossRef]
12. Fady, B.; Aravanopoulos, F.; Benavides, R.; González-Martínez, S.; Grivet, D.; Lascoux, M.; Lindner, M.; Rellstab, C.; Valladares, F.;

Vinceti, B. Genetics to the Rescue: Managing Forests Sustainably in a Changing World. Tree Genet. Genomes 2020, 16, 80. [CrossRef]
13. Baxter, I. We Aren’t Good at Picking Candidate Genes, and It’s Slowing Us down. Curr. Opin. Plant Biol. 2020, 54, 57–60.

[CrossRef]
14. Cramer, G.R.; Urano, K.; Delrot, S.; Pezzotti, M.; Shinozaki, K. Effects of Abiotic Stress on Plants: A Systems Biology Perspective.

BMC Plant Biol. 2011, 11, 163. [CrossRef]
15. Tong, H.; Madison, I.; Long, T.A.; Williams, C.M. Computational Solutions for Modeling and Controlling Plant Response to

Abiotic Stresses: A Review with Focus on Iron Deficiency. Curr. Opin. Plant Biol. 2020, 57, 8–15. [CrossRef] [PubMed]
16. Kaur, G.; Asthir, B. Proline: A Key Player in Plant Abiotic Stress Tolerance. Biol. Plant. 2015, 59, 609–619. [CrossRef]
17. Puglielli, G.; Hutchings, M.J.; Laanisto, L. The Triangular Space of Abiotic Stress Tolerance in Woody Species: A Unified Trade-off

Model. New Phytol. 2021, 229, 1354–1362. [CrossRef] [PubMed]
18. Asefpour Vakilian, K. Machine Learning Improves Our Knowledge about miRNA Functions towards Plant Abiotic Stresses. Sci.

Rep. 2020, 10, 3041. [CrossRef] [PubMed]
19. De la Fuente, A. (Ed.) Gene Network Inference; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-45160-7.

https://www.mdpi.com/article/10.3390/f13020159/s1
https://www.mdpi.com/article/10.3390/f13020159/s1
http://doi.org/10.1016/j.cell.2016.08.029
http://www.ncbi.nlm.nih.gov/pubmed/27716505
http://doi.org/10.1016/j.tplants.2010.08.002
http://doi.org/10.1093/treephys/tpu012
http://doi.org/10.1093/jxb/erz532
http://doi.org/10.1007/s11427-020-1683-x
http://doi.org/10.3390/plants9050591
http://doi.org/10.1111/j.1365-313X.2010.04124.x
http://www.ncbi.nlm.nih.gov/pubmed/20409277
http://doi.org/10.1016/j.pbi.2018.11.001
http://doi.org/10.1111/eva.12902
http://doi.org/10.1186/gb-2013-14-6-120
http://doi.org/10.1007/s11295-020-01474-8
http://doi.org/10.1016/j.pbi.2020.01.006
http://doi.org/10.1186/1471-2229-11-163
http://doi.org/10.1016/j.pbi.2020.05.006
http://www.ncbi.nlm.nih.gov/pubmed/32619968
http://doi.org/10.1007/s10535-015-0549-3
http://doi.org/10.1111/nph.16952
http://www.ncbi.nlm.nih.gov/pubmed/32989754
http://doi.org/10.1038/s41598-020-59981-6
http://www.ncbi.nlm.nih.gov/pubmed/32080299


Forests 2022, 13, 159 20 of 23

20. Zhang, H.; Uddin, M.S.; Zou, C.; Xie, C.; Xu, Y.; Li, W.-X. Meta-Analysis and Candidate Gene Mining of Low-Phosphorus
Tolerance in Maize: Meta-Analysis of Low-Phosphorus Tolerance in Maize. J. Integr. Plant Biol. 2014, 56, 262–270. [CrossRef]

21. Mirdar Mansuri, R.; Shobbar, Z.-S.; Babaeian Jelodar, N.; Ghaffari, M.; Mohammadi, S.M.; Daryani, P. Salt Tolerance Involved
Candidate Genes in Rice: An Integrative Meta-Analysis Approach. BMC Plant Biol. 2020, 20, 452. [CrossRef]

22. Yin, Z.; Qi, H.; Chen, Q.; Zhang, Z.; Jiang, H.; Zhu, R.; Hu, Z.; Wu, X.; Li, C.; Zhang, Y.; et al. Soybean Plant Height QTL Mapping
and Meta-Analysis for Mining Candidate Genes. Plant Breed. 2017, 136, 688–698. [CrossRef]

23. Zhang, L.; Zhang, Z.; Zhang, X.; Yao, Y.; Wang, R.; Duan, B.; Fan, S. Comprehensive Meta-Analysis and Co-Expression Network
Analysis Identify Candidate Genes for Salt Stress Response in Arabidopsis. Plant Biosyst. 2019, 153, 367–377. [CrossRef]

24. Pinheiro, C.; Chaves, M.M. Photosynthesis and Drought: Can We Make Metabolic Connections from Available Data? J. Exp. Bot.
2011, 62, 869–882. [CrossRef]

25. Tseng, G.C.; Ghosh, D.; Feingold, E. Comprehensive Literature Review and Statistical Considerations for Microarray Meta-
Analysis. Nucleic Acids Res. 2012, 40, 3785–3799. [CrossRef] [PubMed]

26. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; the PRISMA Group. Reprint—Preferred Reporting Items for Systematic Reviews
and Meta-Analyses: The PRISMA Statement. Phys. Ther. 2009, 89, 873–880. [CrossRef] [PubMed]

27. Evans, K.O.; Larsen-Gray, A.; Miller, D.; Loehle, C. Systematic Review of Bird Response to Privately-Owned, Managed Pine
Stands in the Southeastern U.S. Forests 2021, 12, 442. [CrossRef]

28. Nakagawa, S.; Noble, D.W.A.; Senior, A.M.; Lagisz, M. Meta-Evaluation of Meta-Analysis: Ten Appraisal Questions for Biologists.
BMC Biol. 2017, 15, 18. [CrossRef]

29. Ma, J.; Liu, W.; Hunter, A.; Zhang, W. Performing Meta-Analysis with Incomplete Statistical Information in Clinical Trials. BMC
Med. Res. Methodol. 2008, 8, 56. [CrossRef] [PubMed]

30. Weir, C.J.; Butcher, I.; Assi, V.; Lewis, S.C.; Murray, G.D.; Langhorne, P.; Brady, M.C. Dealing with Missing Standard Deviation and
Mean Values in Meta-Analysis of Continuous Outcomes: A Systematic Review. BMC Med. Res. Methodol. 2018, 18, 25. [CrossRef]

31. Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t-Tests and ANOVAs.
Front. Psychol. 2013, 4, 863. [CrossRef]

32. Thalheimer, W.; Cook, S. How to Calculate Effect Sizes from Published Research Articles: A Simplified Methodology. 2002.
Available online: https://paulogentil.com/pdf/How%20to%20calculate%20effect%20sizes%20from%20published%20research%
20-%20a%20simplified%20methodology.pdf (accessed on 18 December 2021).

33. Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN
978-0-8058-0283-2. [CrossRef]

34. Zhong, G.V.; Burns, J.K. Profiling Ethylene-Regulated Gene Expression in Arabidopsis Thaliana by Microarray Analysis. Plant
Mol. Biol. 2003, 53, 117–131. [CrossRef]

35. Grasman, R. Meta-Analysis in JASP. Web Publication/Site, JASP. 2017. Available online: https://jasp-stats.org/2017/11/15
/meta-analysis-jasp/ (accessed on 18 December 2021).

36. Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Soft. 2010, 36, 1–48. [CrossRef]
37. Chen, H.; Boutros, P.C. VennDiagram: A Package for the Generation of Highly-Customizable Venn and Euler Diagrams in R.

BMC Bioinf. 2011, 12, 35. [CrossRef] [PubMed]
38. Krishna, P. Plant Responses to Heat Stress. In Plant Responses to Abiotic Stress; Hirt, H., Shinozaki, K., Eds.; Topics in Current

Genetics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 4, pp. 73–101. ISBN 978-3-540-20037-6. [CrossRef]
39. Xu, L.; Gao, J.; Guo, L.; Yu, H. Heat Shock Protein 70 (HmHsp70) from Hypsizygus marmoreus Confers Thermotolerance to Tobacco.

AMB Express 2020, 10, 12. [CrossRef] [PubMed]
40. Aghaie, P.; Tafreshi, S.A.H. Central Role of 70-KDa Heat Shock Protein in Adaptation of Plants to Drought Stress. Cell Stress

Chaperones 2020, 25, 1071–1081. [CrossRef] [PubMed]
41. Cho, E.K.; Choi, Y.J. A Nuclear-Localized HSP70 Confers Thermoprotective Activity and Drought-Stress Tolerance on Plants.

Biotechnol. Lett. 2009, 31, 597–606. [CrossRef]
42. Li, H.; Liu, S.; Yi, C.; Wang, F.; Zhou, J.; Xia, X.; Shi, K.; Zhou, Y.; Yu, J. Hydrogen Peroxide Mediates Abscisic Acid-induced HSP

70 Accumulation and Heat Tolerance in Grafted Cucumber Plants. Plant Cell Environ. 2014, 37, 2768–2780. [CrossRef]
43. Mohammadi, P.P.; Moieni, A.; Hiraga, S.; Komatsu, S. Organ-Specific Proteomic Analysis of Drought-Stressed Soybean Seedlings.

J. Proteom. 2012, 75, 1906–1923. [CrossRef]
44. Kumar, M.; Kesawat, M.S.; Ali, A.; Lee, S.-C.; Gill, S.S.; Kim, H.U. Integration of Abscisic Acid Signaling with Other Signaling

Pathways in Plant Stress Responses and Development. Plants 2019, 8, 592. [CrossRef]
45. Hu, X.; Liu, R.; Li, Y.; Wang, W.; Tai, F.; Xue, R.; Li, C. Heat Shock Protein 70 Regulates the Abscisic Acid-Induced Antioxidant

Response of Maize to Combined Drought and Heat Stress. Plant Growth Regul. 2010, 60, 225–235. [CrossRef]
46. Shayanfar, A.; Afshari, R.T.; Alizadeh, H. Proteome Analysis of Wheat Embryo (Triticum aestivum) Sensu Stricto Germination

under Osmotic Stress. Plant Omics 2015, 8, 372–380. [CrossRef]
47. Mangelsen, E.; Kilian, J.; Harter, K.; Jansson, C.; Wanke, D.; Sundberg, E. Transcriptome Analysis of High-Temperature Stress in

Developing Barley Caryopses: Early Stress Responses and Effects on Storage Compound Biosynthesis. Mol. Plant 2011, 4, 97–115.
[CrossRef] [PubMed]

48. Kaur, V.; Madaan, S.; Behl, R.K. ADP-Glucose Pyrophosphorylase Activity in Relation to Yield Potential of Wheat: Response to
Independent and Combined High Temperature and Drought Stress. Cereal Res. Commun. 2017, 45, 181–191. [CrossRef]

http://doi.org/10.1111/jipb.12168
http://doi.org/10.1186/s12870-020-02679-8
http://doi.org/10.1111/pbr.12500
http://doi.org/10.1080/11263504.2018.1492989
http://doi.org/10.1093/jxb/erq340
http://doi.org/10.1093/nar/gkr1265
http://www.ncbi.nlm.nih.gov/pubmed/22262733
http://doi.org/10.1093/ptj/89.9.873
http://www.ncbi.nlm.nih.gov/pubmed/19723669
http://doi.org/10.3390/f12040442
http://doi.org/10.1186/s12915-017-0357-7
http://doi.org/10.1186/1471-2288-8-56
http://www.ncbi.nlm.nih.gov/pubmed/18706124
http://doi.org/10.1186/s12874-018-0483-0
http://doi.org/10.3389/fpsyg.2013.00863
https://paulogentil.com/pdf/How%20to%20calculate%20effect%20sizes%20from%20published%20research%20-%20a%20simplified%20methodology.pdf
https://paulogentil.com/pdf/How%20to%20calculate%20effect%20sizes%20from%20published%20research%20-%20a%20simplified%20methodology.pdf
http://doi.org/10.4324/9780203771587
http://doi.org/10.1023/B:PLAN.0000009270.81977.ef
https://jasp-stats.org/2017/11/15/meta-analysis-jasp/
https://jasp-stats.org/2017/11/15/meta-analysis-jasp/
http://doi.org/10.18637/jss.v036.i03
http://doi.org/10.1186/1471-2105-12-35
http://www.ncbi.nlm.nih.gov/pubmed/21269502
http://doi.org/10.1007/978-3-540-39402-0_4
http://doi.org/10.1186/s13568-020-0947-6
http://www.ncbi.nlm.nih.gov/pubmed/31955280
http://doi.org/10.1007/s12192-020-01144-7
http://www.ncbi.nlm.nih.gov/pubmed/32720054
http://doi.org/10.1007/s10529-008-9880-5
http://doi.org/10.1111/pce.12360
http://doi.org/10.1016/j.jprot.2011.12.041
http://doi.org/10.3390/plants8120592
http://doi.org/10.1007/s10725-009-9436-2
http://doi.org/10.13140/RG.2.1.3467.3365
http://doi.org/10.1093/mp/ssq058
http://www.ncbi.nlm.nih.gov/pubmed/20924027
http://doi.org/10.1556/0806.45.2017.003


Forests 2022, 13, 159 21 of 23

49. Song, Y.; Chen, Q.; Ci, D.; Shao, X.; Zhang, D. Effects of High Temperature on Photosynthesis and Related Gene Expression in
Poplar. BMC Plant Biol. 2014, 14, 111. [CrossRef] [PubMed]

50. Shakeel, S.N.; Aman, S.; Haq, N.U.; Heckathorn, S.A.; Luthe, D. Proteomic and Transcriptomic Analyses of Agave Americana in
Response to Heat Stress. Plant Mol. Biol. Rep. 2013, 31, 840–851. [CrossRef]

51. Sattari Vayghan, H.; Tavalaei, S.; Grillon, A.; Meyer, L.; Ballabani, G.; Glauser, G.; Longoni, P. Growth Temperature Influence on
Lipids and Photosynthesis in Lepidium sativum. Front. Plant Sci. 2020, 11, 745. [CrossRef]

52. Nongpiur, R.C.; Singla-Pareek, S.L.; Pareek, A. The quest for osmosensors in plants. J. Exp. Bot. 2020, 71, 595–607. [CrossRef]
53. Ward, J.; Kim, K.; Harvell, C. Temperature Affects Coral Disease Resistance and Pathogen Growth. Mar. Ecol. Prog. Ser. 2007, 329,

115–121. [CrossRef]
54. Knight, H.; Trewavas, A.J.; Knight, M.R. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in

calcium signature after acclimation. Plant Cell 1996, 8, 489–503. [CrossRef]
55. Zhu, X.; Feng, W.; Chang, J.; Tan, Y.-W.; Li, J.; Chen, M.; Sun, Y.; Li, F. Temperature-feedback upconversion nanocomposite for

accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 10437. [CrossRef]
56. Ding, Y.; Shi, Y.; Yang, S. Molecular Regulation of Plant Responses to Environmental Temperatures. Mol. Plant 2020, 13, 544–564.

[CrossRef] [PubMed]
57. Yuan, Q.; Li, G.; Yao, F.; Cheng, S.; Wang, Y.; Ma, R.; Mi, S.; Gu, M.; Wang, K.; Li, J.; et al. Simultaneously achieved temperature-

insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics.
Nano Energy 2018, 52, 203–210. [CrossRef]

58. Hayes, S.; Schachtschabel, J.; Mishkind, M.; Munnik, T.; Arisz, S.A. Hot topic: Thermosensing in plants. Plant Cell Environ. 2021,
44, 2018–2033. [CrossRef]

59. Yu, Y.; Jia, T.; Chen, X. The ‘how’ and ‘where’ of plant microRNAs. New Phytol. 2017, 216, 1002–1017. [CrossRef] [PubMed]
60. Liu, X.; Yang, P.; Yang, W. Enzyme-inhibitor-like tuning of Ca2+ channel connectivity with calmodulin. Nature 2010, 463, 968–972.

[CrossRef]
61. Liu, J.; Shi, Y.; Yang, S. Insights into the regulation of C-repeat binding factors in plant cold signaling. J. Integr. Plant Biol. 2018, 60,

780–795. [CrossRef]
62. Mittler, R.; Finka, A.; Goloubinoff, P. How do plants feel the heat? Trends Biochem. Sci. 2012, 37, 118–125. [CrossRef]
63. Yuan, P.; Yang, T.; Poovaiah, B.W. Calcium Signaling-Mediated Plant Response to Cold Stress. IJMS 2018, 19, 3896. [CrossRef]

[PubMed]
64. Chinnusamy, V. Molecular Genetic Perspectives on Cross-Talk and Specificity in Abiotic Stress Signaling in Plants. J. Exp. Bot.

2003, 55, 225–236. [CrossRef] [PubMed]
65. Rizhsky, L.; Liang, H.; Mittler, R. The Combined Effect of Drought Stress and Heat Shock on Gene Expression in Tobacco. Plant

Physiol. 2002, 130, 1143–1151. [CrossRef]
66. Bae, M.S.; Cho, E.J.; Choi, E.-Y.; Park, O.K. Analysis of the Arabidopsis Nuclear Proteome and Its Response to Cold Stress: The

Arabidopsis Nuclear Proteome and Cold Stress. Plant J. 2003, 36, 652–663. [CrossRef]
67. Renaut, J.; Hausman, J.-F.; Bassett, C.; Artlip, T.; Cauchie, H.-M.; Witters, E.; Wisniewski, M. Quantitative Proteomic Analysis of

Short Photoperiod and Low-Temperature Responses in Bark Tissues of Peach (Prunus Persica L. Batsch). Tree Genet. Genomes
2008, 4, 589–600. [CrossRef]

68. Ge, W.; Cui, J.; Shao, Y.; Bian, X.; Jia, Y.; Zhang, K. Temperature Change Shortens Maturation Time in Lilium with Evidence for
Molecular Mechanisms. Mol. Breed. 2018, 38, 145. [CrossRef]

69. Calzadilla, P.I.; Vilas, J.M.; Escaray, F.J.; Unrein, F.; Carrasco, P.; Ruiz, O.A. The Increase of Photosynthetic Carbon Assimilation as
a Mechanism of Adaptation to Low Temperature in Lotus japonicus. Sci. Rep. 2019, 9, 863. [CrossRef]

70. Deng, Y.-S.; Kong, F.-Y.; Zhou, B.; Zhang, S.; Yue, M.-M.; Meng, Q.-W. Heterology Expression of the Tomato LeLhcb2 Gene Confers
Elevated Tolerance to Chilling Stress in Transgenic Tobacco. Plant Phys. Biochem. 2014, 80, 318–327. [CrossRef]

71. Roeder, S.; Dreschler, K.; Wirtz, M.; Cristescu, S.M.; van Harren, F.J.M.; Hell, R.; Piechulla, B. SAM Levels, Gene Expression of
SAM Synthetase, Methionine Synthase and ACC Oxidase, and Ethylene Emission from N. suaveolens Flowers. Plant Mol. Biol.
2009, 70, 535–546. [CrossRef] [PubMed]

72. Gong, B.; Li, X.; VandenLangenberg, K.M.; Wen, D.; Sun, S.; Wei, M.; Li, Y.; Yang, F.; Shi, Q.; Wang, X. Overexpression of
S-Adenosyl- L -Methionine Synthetase Increased Tomato Tolerance to Alkali Stress through Polyamine Metabolism. Plant
Biotechnol. J. 2014, 12, 694–708. [CrossRef] [PubMed]

73. Sauter, M.; Moffatt, B.; Saechao, M.C.; Hell, R.; Wirtz, M. Methionine Salvage and S-Adenosylmethionine: Essential Links between
Sulfur, Ethylene and Polyamine Biosynthesis. Biochem. J. 2013, 451, 145–154. [CrossRef]

74. Guo, X.; Liu, D.; Chong, K. Cold Signaling in Plants: Insights into Mechanisms and Regulation. J. Int. Plant Biol. 2018, 60, 745–756.
[CrossRef] [PubMed]

75. Mahatma, M.K.; Radadiya, N.; Parekh, V.B.; Dobariya, B.; Mahatma, L. Abiotic Stresses Alter Expression of S-Adenosylmethionine
Synthetase Gene, Polyamines and Antioxidant Activity in Pigeon Pea (Cajanus cajan L.). Legume Res. 2016, 39, 905–913. [CrossRef]

76. Heidari, P.; Mazloomi, F.; Nussbaumer, T.; Barcaccia, G. Insights into the SAM Synthetase Gene Family and Its Roles in Tomato
Seedlings under Abiotic Stresses and Hormone Treatments. Plants 2020, 9, 586. [CrossRef]

77. Poulton, J.E.; Butt, V.S. Purification and properties of S-adenosyl-l-methionine: Caffeic acid o-methyltransferase from leaves of
spinach Beet (Beta vulgaris L.). Biochim. Biophys. Acta-Enzymol. 1975, 403, 301–314. [CrossRef]

http://doi.org/10.1186/1471-2229-14-111
http://www.ncbi.nlm.nih.gov/pubmed/24774695
http://doi.org/10.1007/s11105-013-0555-6
http://doi.org/10.3389/fpls.2020.00745
http://doi.org/10.1093/jxb/erz263
http://doi.org/10.3354/meps329115
http://doi.org/10.1105/tpc.8.3.489
http://doi.org/10.1038/ncomms10437
http://doi.org/10.1016/j.molp.2020.02.004
http://www.ncbi.nlm.nih.gov/pubmed/32068158
http://doi.org/10.1016/j.nanoen.2018.07.055
http://doi.org/10.1111/pce.13979
http://doi.org/10.1111/nph.14834
http://www.ncbi.nlm.nih.gov/pubmed/29048752
http://doi.org/10.1038/nature08766
http://doi.org/10.1111/jipb.12657
http://doi.org/10.1016/j.tibs.2011.11.007
http://doi.org/10.3390/ijms19123896
http://www.ncbi.nlm.nih.gov/pubmed/30563125
http://doi.org/10.1093/jxb/erh005
http://www.ncbi.nlm.nih.gov/pubmed/14673035
http://doi.org/10.1104/pp.006858
http://doi.org/10.1046/j.1365-313X.2003.01907.x
http://doi.org/10.1007/s11295-008-0134-4
http://doi.org/10.1007/s11032-018-0904-0
http://doi.org/10.1038/s41598-018-37165-7
http://doi.org/10.1016/j.plaphy.2014.04.017
http://doi.org/10.1007/s11103-009-9490-1
http://www.ncbi.nlm.nih.gov/pubmed/19396585
http://doi.org/10.1111/pbi.12173
http://www.ncbi.nlm.nih.gov/pubmed/24605920
http://doi.org/10.1042/BJ20121744
http://doi.org/10.1111/jipb.12706
http://www.ncbi.nlm.nih.gov/pubmed/30094919
http://doi.org/10.18805/lr.v39i6.6640
http://doi.org/10.3390/plants9050586
http://doi.org/10.1016/0005-2744(75)90060-1


Forests 2022, 13, 159 22 of 23

78. Cantoni, G.L.; Scarano, E. The formation of S-adenosylhomocysteine in enzymatic transmethylation reactions. J. Am. Chem. Soc.
1954, 76, 4744. [CrossRef]

79. Alegre, S.; Pascual, J.; Trotta, A.; Angeleri, M.; Rahikainen, M.; Brosche, M.; Moffatt, B.; Kangasjärvi, S. Evolutionary Conserva-
tion and Post-Translational Control of S-Adenosyl-L-Homocysteine Hydrolase in Land Plants. PLoS ONE 2020, 15, e0227466.
[CrossRef] [PubMed]

80. Puyaubert, J.; Fares, A.; Rézé, N.; Peltier, J.-B.; Baudouin, E. Identification of Endogenously S-Nitrosylated Proteins in Arabidopsis
Plantlets: Effect of Cold Stress on Cysteine Nitrosylation Level. Plant Sci. 2014, 215–216, 150–156. [CrossRef]

81. Yun Ma, Y.; Dai, X.; Xu, Y.; Luo, W.; Zheng, X.; Zeng, D.; Pan, Y.; Lin, X.; Liu, H.; Zhang, D.; et al. COLD1 Confers Chilling
Tolerance in Rice. Cell 2015, 160, 1209–1221. [CrossRef]

82. Miura, K.; Furumoto, T. Cold Signaling and Cold Response in Plants. Int. J. Mol. Sci. 2013, 14, 5312–5337. [CrossRef]
83. Jenkins, M.F.; White, E.P.; Hurlbert, A.H. The Proportion of Core Species in a Community Varies with Spatial Scale and

Environmental Heterogeneity. PeerJ 2018, 6, e6019. [CrossRef]
84. Vincent, D.; Lapierre, C.; Pollet, B.; Cornic, G.; Negroni, L.; Zivy, M. Water Deficits Affect Caffeate O -Methyltransferase,

Lignification, and Related Enzymes in Maize Leaves. A Proteomic Investigation. Plant Physiol. 2005, 137, 949–960. [CrossRef]
85. Wang, M.; He, X.; Jiang, B.; Liu, W.; Lin, Y.; Xie, D.; Liang, Z.; Chen, L.; Peng, Q. Transcriptome Analysis in Different Chieh-qua

Cultivars Provides New Insights into Drought-Stress Response. Plant Biotechnol. Rep. 2019, 13, 663–675. [CrossRef]
86. Devi, M.J.; Reddy, V.R. Effect of Temperature under Different Evaporative Demand Conditions on Maize Leaf Expansion. Environ.

Exp. Bot. 2018, 155, 509–517. [CrossRef]
87. Choi, J.Y.; Seo, Y.S.; Kim, S.J.; Kim, W.T.; Shin, J.S. Constitutive Expression of CaXTH3, a Hot Pepper Xyloglucan Endotransglu-

cosylase/Hydrolase, Enhanced Tolerance to Salt and Drought Stresses without Phenotypic Defects in Tomato Plants (Solanum
lycopersicum Cv. Dotaerang). Plant Cell Rep. 2011, 30, 867–877. [CrossRef] [PubMed]

88. Yang, W.-J.; Du, Y.-T.; Zhou, Y.-B.; Chen, J.; Xu, Z.-S.; Ma, Y.-Z.; Chen, M.; Min, D.-H. Overexpression of TaCOMT Improves
Melatonin Production and Enhances Drought Tolerance in Transgenic Arabidopsis. IJMS 2019, 20, 652. [CrossRef]

89. Tenhaken, R. Cell Wall Remodeling under Abiotic Stress. Front. Plant Sci. 2015, 5, 771. [CrossRef] [PubMed]
90. Takahashi, F.; Kuromori, T.; Sato, H.; Shinozaki, K. Regulatory Gene Networks in Drought Stress Responses and Resistance in

Plants. In Survival Strategies in Extreme Cold and Desiccation; Advances in Experimental Medicine and Biology; Iwaya-Inoue, M.,
Sakurai, M., Uemura, M., Eds.; Springer: Singapore, 2018; Volume 1081. [CrossRef]

91. Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant Drought Stress: Effects, Mechanisms and Manage-
ment. In Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer:
Dordrecht, The Netherlands, 2009. [CrossRef]

92. Baldoni, E.; Frugis, G.; Martinelli, F.; Benny, J.; Paffetti, D.; Buti, M. A Comparative Transcriptomic Meta-Analysis Revealed
Conserved Key Genes and Regulatory Networks Involved in Drought Tolerance in Cereal Crops. Int. J. Mol. Sci. 2021, 22, 13062.
[CrossRef] [PubMed]

93. Fang, Y.; Xie, F.; Xiong, L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. J. Exp. Bot. 2014,
65, 2119–2135. [CrossRef]

94. Isayenkov, S.V.; Maathuis, F.J.M. Plant Salinity Stress: Many Unanswered Questions Remain. Front. Plant Sci. 2019, 10, 80.
[CrossRef]

95. Zhang, L.; Xu, Z.; Ji, H.; Zhou, Y.; Yang, S. TaWRKY40 Transcription Factor Positively Regulate the Expression of TaGAPC1 to
Enhance Drought Tolerance. BMC Genom. 2019, 20, 795. [CrossRef]

96. Chang, L.; Guo, A.; Jin, X.; Yang, Q.; Wang, D.; Sun, Y.; Huang, Q.; Wang, L.; Peng, C.; Wang, X. The Beta Subunit of
Glyceraldehyde 3-Phosphate Dehydrogenase Is an Important Factor for Maintaining Photosynthesis and Plant Development
under Salt Stress—Based on an Integrative Analysis of the Structural, Physiological and Proteomic Changes in Chloroplasts in
Thellungiella halophila. Plant Sci. 2015, 236, 223–238. [CrossRef]

97. Xiong, J.; Sun, Y.; Yang, Q.; Tian, H.; Zhang, H.; Liu, Y.; Chen, M. Proteomic Analysis of Early Salt Stress Responsive Proteins in
Alfalfa Roots and Shoots. Proteome Sci. 2017, 15, 19. [CrossRef]

98. McLoughlin, F.; Arisz, S.A.; Dekker, H.L.; Kramer, G.; de Koster, C.G.; Haring, M.A.; Munnik, T.; Testerink, C. Identification of
Novel Candidate Phosphatidic Acid-Binding Proteins Involved in the Salt-Stress Response of Arabidopsis thaliana Roots. Biochem.
J. 2013, 450, 573–581. [CrossRef] [PubMed]

99. Zhang, X.-H.; Rao, X.-L.; Shi, H.-T.; Li, R.-J.; Lu, Y.-T. Overexpression of a Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase
Gene OsGAPC3 Confers Salt Tolerance in Rice. Plant Cell Tissue Organ. Cult. 2011, 107, 278–285. [CrossRef]

100. Sanchez-Aguayo, I.; Rodriguez-Galen, J.M.; Garcia, R.; Torreblanca, J.; Pardo, J.M. Salt Stress Enhances Xylem Development and
Expression of S-Adenosyl-l-Methionine Synthase in Lignifying Tissues of Tomato Plants. Planta 2004, 220, 278–285. [CrossRef]

101. Espartero, J.; Pintor-Toro, J.A.; Pardo, J.M. Differential Accumulation of S-Adenosylmethionine Synthetase Transcripts in Response
to Salt Stress. Plant Mol. Biol. 1994, 25, 217–227. [CrossRef]

102. Weretilnyk, E.A.; Alexander, K.J.; Drebenstedt, M.; Snider, J.D.; Summers, P.S.; Moffatt, B.A. Maintaining Methylation Activities
during Salt Stress. The Involvement of Adenosine Kinase. Plant Physiol. 2001, 125, 856–865. [CrossRef]

103. Li, Y.; Yuan, F.; Wen, Z.; Li, Y.; Wang, F.; Zhu, T.; Zhuo, W.; Jin, X.; Wang, Y.; Zhao, H.; et al. Genome-wide survey and expression
analysis of the OSCA gene family in rice. BMC Plant Biol. 2015, 15, 261. [CrossRef] [PubMed]

http://doi.org/10.1021/ja01647a081
http://doi.org/10.1371/journal.pone.0227466
http://www.ncbi.nlm.nih.gov/pubmed/32678822
http://doi.org/10.1016/j.plantsci.2013.10.014
http://doi.org/10.1016/j.cell.2015.01.046
http://doi.org/10.3390/ijms14035312
http://doi.org/10.7717/peerj.6019
http://doi.org/10.1104/pp.104.050815
http://doi.org/10.1007/s11816-019-00564-x
http://doi.org/10.1016/j.envexpbot.2018.07.024
http://doi.org/10.1007/s00299-010-0989-3
http://www.ncbi.nlm.nih.gov/pubmed/21207033
http://doi.org/10.3390/ijms20030652
http://doi.org/10.3389/fpls.2014.00771
http://www.ncbi.nlm.nih.gov/pubmed/25709610
http://doi.org/10.1007/978-981-13-1244-1_11
http://doi.org/10.1007/978-90-481-2666-8_12
http://doi.org/10.3390/ijms222313062
http://www.ncbi.nlm.nih.gov/pubmed/34884864
http://doi.org/10.1093/jxb/eru072
http://doi.org/10.3389/fpls.2019.00080
http://doi.org/10.1186/s12864-019-6178-z
http://doi.org/10.1016/j.plantsci.2015.04.010
http://doi.org/10.1186/s12953-017-0127-z
http://doi.org/10.1042/BJ20121639
http://www.ncbi.nlm.nih.gov/pubmed/23323832
http://doi.org/10.1007/s11240-011-9950-6
http://doi.org/10.1007/s00425-004-1350-2
http://doi.org/10.1007/BF00023239
http://doi.org/10.1104/pp.125.2.856
http://doi.org/10.1186/s12870-015-0653-8
http://www.ncbi.nlm.nih.gov/pubmed/26503287


Forests 2022, 13, 159 23 of 23

104. Falhof, J.; Torbøl Pedersen, J.; Thoe Fuglsang, A.; Palmgren, M. Plasma Membrane H+-ATPase Regulation in the Center of Plant
Physiology. Mol. Plant 2016, 9, 323–337. [CrossRef] [PubMed]

105. Sharma, A.; Hussain, A.; Bong-Gyu, M.; Imran, Q.; Falak, N.; Lee, S.; Kim, J.; Hong, J.; Loake, G.; Ali, A.; et al. Comprehensive
analysis of plant rapid alkalization factor (RALF) genes. Plant Physiol. Biochem. 2016, 106, 82–90. [CrossRef] [PubMed]

106. Jiang, M.; Liu, Y.; Liu, Y.; Tan, Y.; Huang, J.; Shu, Q. Mutation of Inositol 1,3,4-trisphosphate 5/6-kinase6 Impairs Plant Growth
and Phytic Acid Synthesis in Rice. Plants 2019, 8, 114. [CrossRef]

107. Feng, W.; Kita, D.; Peaucelle, A.; Cartwright, H.N.; Doan, V.; Duan, Q.; Liu, M.; Maman, J.; Steinhorst, L.; Schmitz-Thom, I.; et al.
The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling. Curr. Biol. 2018, 28,
666–675. [CrossRef] [PubMed]

108. Zhou, Y.; Tang, N.; Huang, L.; Zhao, Y.; Tang, X.; Wang, K. Effects of Salt Stress on Plant Growth, Antioxidant Capacity, Glandular
Trichome Density, and Volatile Exudates of Schizonepeta tenuifolia Briq. Int. J. Mol. Sci. 2018, 19, 252. [CrossRef]

109. Rahman, M.A.; Thomson, M.J.; Shah-E-Alam, M.; de Ocampo, M.; Egdane, J.; Ismail, A.M. Exploring novel genetic sources of
salinity tolerance in rice through molecular and physiological characterization. Ann. Bot. 2016, 117, 1083–1097. [CrossRef]

110. Kim, J.; Kim, H.Y. Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling. FEBS Lett.
2006, 580, 5251–5256. [CrossRef] [PubMed]

111. Qiu, Z.; Guo, J.; Zhu, A.; Zhang, L.; Zhang, M. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress.
Ecotoxicol. Environ. Saf. 2014, 104, 202–208. [CrossRef] [PubMed]

112. Srivastava, A.K.; Rai, A.N.; Patade, V.Y.; Suprasanna, P. Calcium Signaling and Its Significance in Alleviating Salt Stress in Plants.
In Salt Stress in Plants; Ahmad, P., Azooz, M.M., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2013. [CrossRef]

113. Tawab, F.; Munir, I.; Nasim, Z.; Khan, M.S.; Tawab, S.; Nasim, A.; Iqbal, A.; Ahmad, M.A.; Ali, W.; Munir, R.; et al. Identification
and Characterization of a Novel Multi-Stress Responsive Gene in Arabidopsis. PLoS ONE 2020, 15, e0244030. [CrossRef]

114. Zhou, B.; Zhang, L.; Ullah, A.; Jin, X.; Yang, X.; Zhang, X. Identification of Multiple Stress Responsive Genes by Sequencing a
Normalized CDNA Library from Sea-Land Cotton (Gossypium Barbadense L.). PLoS ONE 2016, 11, e0152927. [CrossRef] [PubMed]

115. Haak, D.C.; Fukao, T.; Grene, R.; Hua, Z.; Ivanov, R.; Perrella, G.; Li, S. Multilevel Regulation of Abiotic Stress Responses in Plants.
Front. Plant Sci. 2017, 8, 1564. [CrossRef]

116. Sewelam, N.; Oshima, Y.; Mitsuda, N.; Ohme-Takagi, M. A Step towards Understanding Plant Responses to Multiple Environ-
mental Stresses: A Genome-Wide Study: Plant Responses to Multiple Abiotic Stresses. Plant Cell Environ. 2014, 37, 2024–2035.
[CrossRef]

117. Noctor, G.; Mhamdi, A.; Foyer, C.H. The Roles of Reactive Oxygen Metabolism in Drought: Not So Cut and Dried. Plant Physiol.
2014, 164, 1636–1648. [CrossRef]

118. Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci. 2002, 7, 405–410. [CrossRef]
119. White, C.R.; Frangos, J.A. The Shear Stress of It All: The Cell Membrane and Mechanochemical Transduction. Philos. Trans. R. Soc.

B 2007, 362, 1459–1467. [CrossRef]
120. Lalagüe, H.; Csilléry, K.; Oddou-Muratorio, S.; Safrana, J.; de Quattro, C.; Fady, B.; González-Martínez, S.C.; Vendramin, G.G.

Nucleotide Diversity and Linkage Disequilibrium at 58 Stress Response and Phenology Candidate Genes in a European Beech
(Fagus Sylvatica L.) Population from Southeastern France. Tree Genet. Genomes 2014, 10, 15–26. [CrossRef]

121. Müller, M.; Seifert, S.; Finkeldey, R. A Candidate Gene-Based Association Study Reveals SNPs Significantly Associated with Bud
Burst in European Beech (Fagus Sylvatica L.). Tree Genet. Genomes 2015, 11, 116. [CrossRef]

http://doi.org/10.1016/j.molp.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/26584714
http://doi.org/10.1016/j.plaphy.2016.03.037
http://www.ncbi.nlm.nih.gov/pubmed/27155375
http://doi.org/10.3390/plants8050114
http://doi.org/10.1016/j.cub.2018.01.023
http://www.ncbi.nlm.nih.gov/pubmed/29456142
http://doi.org/10.3390/ijms19010252
http://doi.org/10.1093/aob/mcw030
http://doi.org/10.1016/j.febslet.2006.08.050
http://www.ncbi.nlm.nih.gov/pubmed/16962584
http://doi.org/10.1016/j.ecoenv.2014.03.014
http://www.ncbi.nlm.nih.gov/pubmed/24726929
http://doi.org/10.1007/978-1-4614-6108-1_9
http://doi.org/10.1371/journal.pone.0244030
http://doi.org/10.1371/journal.pone.0152927
http://www.ncbi.nlm.nih.gov/pubmed/27031331
http://doi.org/10.3389/fpls.2017.01564
http://doi.org/10.1111/pce.12274
http://doi.org/10.1104/pp.113.233478
http://doi.org/10.1016/S1360-1385(02)02312-9
http://doi.org/10.1098/rstb.2007.2128
http://doi.org/10.1007/s11295-013-0658-0
http://doi.org/10.1007/s11295-015-0943-1

	Introduction 
	Materials and Methods 
	Candidate Genes Database 
	Systematic Review 
	Meta-Analysis: Random Effect Model, Forest and Funnel Plot 
	Interactive Analyses of Stress Meta-Analyses Data 

	Results 
	Candidate Gene Dataset, Systematic Review, and Inclusion Criteria 
	Meta-Analysis Results 
	Comparison between Selected Genes and Related Stress 

	Discussion 
	Heat Stress Model 
	Cold Stress Model 
	Drought Stress Model 
	Salt Stress Model 
	Comparison of Genes and Related Stress 

	Conclusions 
	References

