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Abstract

We interpret Dyck paths of height at most h and without valleys at height h − 1
combinatorially, by means of 312-avoiding permutations with some restrictions on their
left-to-right maxima. We obtain our results by analyzing a restriction of a well-known
bijection between the sets of Dyck paths and 312-avoiding permutations. We also
provide a recursive formula enumerating these two structures by using the ECO method
and the theory of production matrices. As a further result we obtain a family of
combinatorial identities involving Catalan numbers.

1 Introduction

Dyck paths have been widely used in several combinatorial applications. Here, we only
recall their involvement in theory of codes [1, 9], cryptography [19], and partially ordered
structures [8]. Dyck path enumeration has also received much attention in recent decades.
An interesting paper dealing with this matter is the one by Deutsch [15] where the author
enumerates Dyck paths according to various parameters.
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A subclass of these paths has been considered thanks to the simple behavior of the re-
cursive relations describing them and the rational nature of the related generating function.
More precisely, the generating function associated with Dyck paths is algebraic, and it is ra-
tional when the paths are bounded [12, 13], for example with respect to the height. Kallipoliti
et al. [17] consider Dyck paths of height less or equal to a precise value k. Moreover, in the
same paper a further restriction is considered: the authors analyze some characteristics of
Dyck paths avoiding valleys at specified height.

In our work, we consider Dyck paths of height equal or less than h and with no valley at
height h−1. We obtain an interesting relation with a subclass of 312-avoiding permutations
(actually, we obtain a bijection) having some constraints on the left-to-right maxima.

The paper structure is the following. In Section 2 some preliminaries on Dyck paths and
pattern avoiding permutations are introduced and moreover we recall a well-known bijection
between the sets of Dyck paths and 312-avoiding permutations. We are going to largely use
this bijection in the whole paper. Section 3 and Section 4 are devoted to the generation of
the considered Dyck paths (of height equal or less than h and with no valley at height h−1)
and the corresponding 312-avoiding permutations with some restriction on their left-to-right
maxima. The enumerative results are presented in Section 5. We provide the generating
functions for the above mentioned classes and a recurrence relation for their enumeration
according to their size.

Finally, we conclude the paper proposing some further developments on the present
topics.

2 Preliminaries

A Dyck path is a lattice path in the discrete plane Z2 from (0, 0) to (2n, 0) with up and
down steps in {(1, 1), (1,−1)}, never crossing the x-axis. The number of up steps in every
prefix of a Dyck path is greater or equal to the number of down steps, and the total number
of steps (the length of the path) is 2n. We denote the set of Dyck paths of length 2n (or
equivalently semilength n) by Dn. A Dyck path can be codified by a string over the alphabet
{U,D}, where U and D replace the up and down steps, respectively. The empty Dyck path
is denoted by ε.

The height of a Dyck path P is the maximum ordinate reached by one of its steps. A
valley of P is an occurrence of the substring DU , while a peak is an occurrence of the
substring UD. The height of a valley (peak) is the ordinate reached by D (U).

We denote by D(h,k)
n the set of Dyck paths having semilength n and height at most h, and

avoiding k− 1 consecutive valleys at height h− 1. The set of Dyck paths having semilength
n with height at most h (without restriction on the number of valleys) is denoted by D(h)

n .
Moreover,

D(h) =
∑
n≥0

D(h)
n and D(h,k) =

∑
n≥0

D(h,k)
n .

The cardinalities of D(h,k)
n and D(h)

n are indicated by D
(h,k)
n andD

(h)
n , respectively. Finally, the
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set Dn of unrestricted Dyck paths having semilength n ≥ 0 is enumerated by the n-Catalan
number

Cn =
1

n+ 1

(
2n

n

)
.

When k = 2, the set D(h,2)
n represents the set of Dyck paths with height at most h and

without valleys at height h−1. In the present work we describe a combinatorial interpretation
of D(h,2)

n in terms of restricted permutations.
In our context, the above mentioned permutations are related to the notion of pattern

avoidance which can be generally described as the absence of a substructure inside a larger
structure. In particular, an occurrence of a pattern σ in a permutation π of length n is a
subsequence (not necessarily constituted by consecutive entries) of π whose entries appear
in the same relative order as those in σ. Otherwise, we say that π avoids the pattern σ,
or that σ is a forbidden pattern for π. For example, the permutation π = 352164 contains
two occurrences of σ = 312 in the subsequences 514 and 524, while π = 34251 avoids the
pattern σ. The set Sn(312) denotes the set of 312-avoiding permutations of length n which
is enumerated by the n-Catalan number.

We are going to briefly recall a well-known bijection φ, useful in the rest of the paper,
between the classes Dn and Sn(312). For more details we refer to [15, 18]. Figure 1 shows
an example of the bijection. We fix a Dyck path P , and label its up steps by enumerating
them from left to right (so that the ℓ-th up step is labelled ℓ). Then, we draw one horizontal
line starting from each up step U until it meets a down step D which is the down step
corresponding to U . Next, we assign to each down step the same label of the up step
it corresponds to. Now, let us consider the permutation whose entries are constituted by
the labels of the down steps read from left to right. Such a permutation π = φ(P ) is
easily seen to be 312-avoiding. As far as the inverse map φ−1 is concerned, once fixed a 312-
avoiding permutation π = π1π2 · · · πn we can consider its factorization in terms of descending
subsequences whose first elements coincide with the left-to-right maxima of π. A left-to-right
maximum (l.r.M for short) is an element πi which is greater than all the elements to its left,
i.e., greater than all πj with j < i. Denoting πi1 , πi2 , . . . , πiℓ the left-to-right maxima of π,
the corresponding Dyck path P = φ−1(π) is obtained as follows:

• write as many U ’s as πi1(= π1) followed by as many D’s as the cardinality of the first
descending subsequence headed by πi1 ;

• for each j = 2, . . . , ℓ, add as many U ’s as πij − πij−1
followed by as many D’s as the

cardinality of the subsequence headed by πij .

Two easy properties of the l.r.M of π ∈ Sn(312) and their corresponding steps in P =
φ−1(π) are summarized in the following:

Proposition 1. Let P denote a Dyck path in Dn and π = φ(P ) = π1 . . . πn be the associated
permutation in Sn(312). Each label πij corresponding to the first down step of a subsequence
of consecutive down steps in P is a left to right maximum. Moreover, the number πij − ij is
the height reached by the down step corresponding to πij in P .
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Figure 1: The bijection φ between the set of Dyck paths and the set of 312-avoiding permu-
tations.

3 A generating algorithm

The set D(h,2) can be exhaustively generated by means of an ECO operator [3] which allows
constructing all the paths of a certain length n + 1 (the size of the combinatorial objects)
starting from the ones of size n.

To this aim, consider a Dyck path P ∈ D(h,2)
n which, obviously, starts with t ≤ h up

steps U . We mark these steps factorizing the path P as P = U1U2 · · ·UtDP ′, where P ′ is
a suitable Dyck suffix of length n − t − 1. The idea is to consider some sites in P ∈ D(h,2)

n

where an insertion of the factor UD is allowed in order to obtain paths in D(h,2)
n+1 from P (so

that the sites are called active sites).

Thus, we define an operator ϑ for the class D(h,2)
n as follows:

- if P = U1U2 · · ·Ut−1UtDP ′ ∈ D(h,2)
n , with t < h, then

ϑ(P ) = {UDU1U2 · · ·Ut−1UtDP ′,

U1UDU2 · · ·Ut−1UtDP ′,

· · ·
U1U2 · · ·Ut−1UDUtDP ′,

U1U2 · · ·Ut−1UtUDDP ′ };

- if P = U1U2 · · ·Ut−1UtDP ′ ∈ D(h,2)
n , with t = h, then

ϑ(P ) = {UDU1U2 · · ·Ut−1UtDP ′,

U1UDU2 · · ·Ut−1UtDP ′,

· · ·
U1U2 · · ·UDUt−1UtDP ′}.

We note that the insertion of UD may create a valley in the paths of ϑ(P ). In particular,

• the insertion of UD before the step Uj, with j = 1, 2, . . . , t − 1, gives the occurrence
of the valley DUj of height j − 1 < h− 1 in every case;
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• the insertion of UD before the step Ut in the case t < h gives the occurrence of the
valley DUt of height equal to t− 1 < h− 1;

• the insertion of UD after the step Ut in the case t < h does not give the occurrence of
a valley (since the next step is again a D step).

In other words, the valley possibly generated by the insertion of UD has height less than
h− 1. Therefore we have

Proposition 2. If x ∈ ϑ(P ), with P ∈ D(h,2)
n , then x ∈ D(h,2)

n+1 .

In the spirit of the ECO method, we have to prove the following proposition.

Proposition 3. The operator ϑ is an ECO operator.

Proof. The proof consists in the following steps:

i) If x, y ∈ D(h,2)
n with x ̸= y, then ϑ(x) ∩ ϑ(y) = ∅.

ii) If x ∈ D(h,2)
n+1 then ∃ y ∈ D(h,2)

n such that x ∈ ϑ(y).

For case i), we suppose that a path P such that P ∈ ϑ(x) and P ∈ ϑ(y), with x ̸= y,
does exist. From the description of the operator ϑ it is easy to realize that the first peak of
P is precisely generated by the insertion of the factor UD. By removing such a peak from
P , we obtain a unique path. Thus, we would have x = y, against the hypothesis.

For case ii), being x ∈ D
(h,2)
n+1 then x = U jUDT ′, with j = 0, 1, . . . , h − 1, where T ′ is a

Dyck suffix of suitable length. Then, the path y = U jT ′ starts with at most h up steps U
so that y ∈ D

(h,2)
n . Clearly, we have x ∈ ϑ(y) since y is obtained by the insertion of UD in

x.

A generating algorithm can be naturally described by means of the concept of succession
rule. Such a concept was introduced by Chung et al. [14] to study reduced Baxter permuta-
tions. Recently, this technique has been successfully applied to other combinatorial objects
[10, 11], and it has been recognized as an extremely useful tool for the ECO method [3]. In
all these cases there is a common approach to the examined enumeration problem: a gen-
erating tree is associated with a certain combinatorial class according to some enumerative
parameters, in such a way that the number of nodes appearing on level n of the tree gives
the number of n-sized objects in the class.

A succession rule is a formal system constituted by an axiom (a) and some productions
(possibly only one) having the form

(k)⇝
(
e1(k)

)(
e2(k)

)
· · ·
(
ek(k)

)
,

so that a succession rule Ω is often denoted by

Ω :


(a)

(k)⇝
(
e1(k)

)(
e2(k)

)
· · ·
(
ek(k)

)
.
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The symbols (a), (k), and ei(k) are called labels (their values are positive integers), and
play a crucial role when the succession rule Ω is represented by a generating tree. This is a
rooted tree whose nodes are the labels of Ω. More precisely, the root is labelled with (a) and
each node having label (k) has k children having labels e1(k), e2(k), . . . , ek(k), according to
the productions in Ω.

In our case, the generating algorithm for D(h,2) is performed by the operator ϑ and from
its definition it is easy to realize the following:

• the empty path ε can be labelled with the axiom (1) having production (1)⇝ (2): the
path ε generates the path UD, having in its turn label (2);

• every other path P can have label (2), (3), . . . , (h) depending on the number t of
its starting up steps U . More precisely, if 1 ≤ t ≤ h − 1 then P is labelled (t + 1).
Otherwise, if t = h then P is labelled (h− 1).

In order to write the productions of the labels (k) of P , with k = 2, 3, . . . , h we observe
the following:

• if k < h then the k paths in ϑ(P ) start, respectively, with 1, 2, . . . , k up steps, so that,
in their turn, they are labelled (2), (3), . . . , (k + 1). Then we can write the production

(k) ; (2)(3) · · · (k)(k + 1), 2 ≤ k < h.

• if k = h then the k paths in ϑ(P ) start, respectively, with 1, 2, . . . , h up steps. Since
the path having h starting up steps is labelled (h−1) then we can write the production

(h) ; (2)(3) · · · (h− 1)2(h).

The two paths having label (h− 1) are precisely the one starting with h up steps and
the one starting with h− 2 up steps.

Finally, the generating algorithm for D(h,2) can be described by the succession rule (for
h ≥ 3) as follows:

Ωh :


(1)

(1) ; (2)

(k) ; (2)(3) · · · (k)(k + 1), for 2 ≤ k < h

(h) ; (2)(3) · · · (h− 1)2(h).

(1)

4 The bijection with a subset of 312-avoiding permu-

tations

Let S(h)
n (312) denote the subset of permutations π ∈ Sn(312) such that πij − ij ≤ h− 1, for

each l.r.M. πij of π. The reader can easily check that the restriction φ∣∣D(h)
n

of φ to the set

D
(h)
n is a bijection between D

(h)
n and S

(h)
n (312) (using Proposition 1).
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We now consider the paths in D
(h,2)
n and characterize the corresponding permutations via

the restriction of φ to D
(h,2)
n . The following proposition holds.

Proposition 4. Let P denote a Dyck path in D(h)
n . Then P ∈ D(h,2)

n if and only if in the
corresponding permutation π = φ(P ) there is not any left-to-right maximum πij such that

1. πij − ij = h− 1 and

2. πij+1
= πij + 1.

Proof. Suppose that π = φ(P ) does not have any left-to-right maximum πij such that
πij − ij = h − 1 and πij+1

= πij + 1. Let P = φ−1(π) denote the corresponding path. We

have to prove that P ∈ D(h,2)
n .

• If P has height less than h then P ∈ D(h,2)
n and the proof is completed.

• Let us suppose that P has height equal to h and suppose, ad absurdum, that P /∈ D(h,2)
n .

Therefore, there exists a valley of height h − 1. Thus, the path P can be written as
P ′UiDiUi+1Di+1P

′′, where P ′ and P ′′ are, respectively, a Dyck prefix and a Dyck suffix
of height h−1. Considering the permutation π = φ(P ) = π1 · · · πiπi+1 · · · πn (where we
highlighted the entries πi and πi+1 corresponding to the steps Di and Di+1), thanks to
Proposition 1, it is possible to observe that the elements πi and πi+1 associated with Ui

and Ui+1, respectively, are l.r.M. in π. Again from Proposition 1, we have πi− i = h−1
and πi+1 − (i + 1) = h− 1. Therefore, by substitution, it is πi+1 = πi + 1 against the
hypothesis, and then P ∈ Dn(h, 2).

On the other side, let us suppose that P ∈ D(h,2)
n and suppose, ad absurdum, that the

permutation π = φ(P ) = π1 · · · πiπi+1 · · · πn ∈ S(h)
n (312) has a left to right maximum πi with

πi+1 = πi + 1 and πi − i = h− 1. Then, it is π = π1 · · · πi(πi + 1) · · · πn. Since πi < πi+1 and
π is a 312-avoiding permutation, then there is no πl > πi with l < i. Thus, both πi and πi+1

are l.r.M. in π. From Proposition 1, the quantities πi − i and πi+1 − (i + 1) are the heights
reached by the corresponding descending steps in P . Moreover, from the two hypotheses
πi − i = h− 1 and πi+1 = πi + 1, we deduce πi+1 − (i+ 1) = πi + 1− (i+ 1) = h− 1. Thus,
the path P = φ−1(π) can be factorized as P = P ′UiDiUi+1Di+1P

′′ showing that P admits a

valley of height h− 1, against the hypothesis P ∈ D(h,2)
n .

The permutations corresponding to the paths in D(h,2)
n are denoted by S(h,2)

n (312). By
means of the above proposition, we prove the following one.

Proposition 5. There exists a bijection between the classes S(h,2)
n (312) and D(h,2)

n , which is
the restriction φ∣∣D(h,2)

n
.

A generating algorithm for the class S(h,2)
n (312) according to the succession rule Ωh can

be obtained, thanks to Proposition 5. A combinatorial interpretation of Ωh in terms of
permutations is then desired.
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First of all we note that, if π = π1 · · · πn ∈ S(h,2)
n (312), then π1 ≤ h. After that, we have

to find an interpretation of the parameters appearing in the rule Ωh. The axiom (1) at level
0 can be associated with the empty permutation and its production labelled with (2) can be
associated with the permutation 1. The parameter (k) at level n in the rule Ωh admits the

following interpretation according to the value of π1 in π ∈ S
(h,2)
n (312):

(k) =

{
π1 + 1, if π1 ̸= h;

π1 − 1, if π1 = h.
(2)

More precisely, if π1 < h, a permutation π = π1 · · · πn ∈ S(h,2)
n (312) at level n produces

k = π1 + 1 sons at level n+ 1 by inserting the element ℓ, with ℓ = 1, 2, . . . , π1 + 1, before π1

and rescaling the sequence ℓπ in order to obtain a permutation π′ ∈ S(h,2)
n+1 (312) (for the sake

of clearness, each entry πi of π equal or greater than ℓ is increased by 1 in order to obtain
π′).

Otherwise, when π1 = h, a given permutation π = π1 · · · πn ∈ S(h,2)
n (312) at level n

produces k = π1 − 1 = h− 1 sons at level n+ 1 by inserting the element ℓ, whose values are
ℓ = 1, 2, . . . , h − 1, before π. Analogously, the permutation π′ ∈ S(h,2)

n+1 (312) is obtained by
rescaling the sequence ℓπ, for each ℓ.

As an example, fixed h = 3, the succession rule for S(3,2)
n (312), or equivalently for D(3,2)

n ,
is as follows:

Ω3 :


(1)

(1) ; (2)

(2) ; (2)(3)

(3) ; (2)(2)(3).

(3)

In Figure 2 a graphical representation of the first levels of Ω3 is shown in terms of
permutations in S(3,2)

n .

5 Enumeration

The case h = 2 is not included in the general formula (1) for the succession rules. However,
it is easy to see that in this case it is

Ω2 :


(1)

(1) ; (2)

(2) ; (1)(2).

(4)

The succession rule (4) defines the Fibonacci numbers.
A given succession rule can be also represented by the production matrix P =

(
pk,i
)
k,i≥0

where each entry pk,i is the number of labels li produced by label lk. For more detail we refer
to the theory developed by Deutsch et al. [16].
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Figure 2: Graphical representation of the generating tree associated with S(3,2)
n where the

label associated with each permutation is shown between parentheses.

The production matrix P2 associated with Ω2 is

P2 =

(
0 1
1 1

)
(5)

and, for h ≥ 3, the production matrix Ph associated with Ωh is

Ph =

(
0 ut

0 Ph−1 + eut

)
, (6)

where ut is the row vector (1 0 0 · · · ), and e is the column vector (1 1 1 · · · )t of appro-
priate size. For what the generating function fh(x) of the sequence corresponding to Ωh is
concerned, we have [16], for h ≥ 2,

fh(x) =
1

1− xfh−1(x)
. (7)
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When h = 1, clearly the unique paths in D(1,2)
n are the empty path ε and UD, so that

the sequence (D
(1,2)
n )n≥0 is {1, 1, 0, 0, . . .}, whose generating function is f1(x) = 1 + x which

is rational. Thanks to (7) it is possible to deduce that also fh(x) with h ≥ 2 is rational, too.
Therefore, we can consider its general form as follows:

fh(x) =
ph(x)

qh(x)
, (8)

where ph(x) and qh(x) are polynomials with suitable degrees. From (7) and (8) we obtain

ph(x) = qh−1(x)

qh(x) = qh−1(x)− xqh−2(x).
(9)

Since the degree of the polynomial qh(x) is
⌈
h+1
2

⌉
(it can be easily seen by induction), we

can assume

qh(x) = ah,0 − ah,1x− ah,2x
2 − · · · − ah,jx

j with j =

⌈
h+ 1

2

⌉
.

Clearly, it is ah,j = 0 if j >
⌈
h+1
2

⌉
.

As a1,0 = 1, thanks to (9) we have ah,0 = ah−1, and

ah,0 = 1 for each h ≥ 1.

Moreover,

qh(x) = 1− ah,1x− ah,2x
2 − · · · − ah,jx

j with j =

⌈
h+ 1

2

⌉
. (10)

Using the expression (9) for qh(x), we obtain

qh(x) = 1− ah−1,1x− ah−1,2x
2 − · · · − ah−1,j−1x

j−1

− x
(
1− ah−2,1x− ah−2,2x

2 − · · · − ah−2,j−2x
j−2
)
.

(11)

Thanks to the identity theorem for polynomials, comparing formulas (10) and (11) for qh(x),
it is

ah,j =

{
ah−1,1 + 1, for j = 1;

ah−1,j − ah−2,j−1, for j = 2, 3, . . . ,
⌈
h+1
2

⌉
.

(12)

In Table 1 we list the first numbers of the coefficients ah,j for some fixed values of h ≥ 1
and j ≥ 1. On the diagonals, it is possible to observe a similarity with the A112467 sequence
in The On-line Encyclopedia of Integer Sequences [20].

We have an explicit formula for the coefficients ah,j thanks to the following proposition.

Proposition 6. For h ≥ 2 and for j = 1, 2, . . . ,
⌈
h+1
2

⌉
we have

ah,j =
3j − h− 2

j

(
h− j + 1

j − 1

)
(−1)j. (13)

10
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h
j

1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0
3 2 1 0 0 0 0 0 0
4 3 0 −1 0 0 0 0 0
5 4 −2 −2 0 0 0 0 0
6 5 −5 −2 1 0 0 0 0
7 6 −9 0 3 0 0 0 0
8 7 −14 5 5 −1 0 0 0
9 8 −20 14 5 −4 0 0 0
10 9 −27 28 0 −9 1 0 0
11 10 −35 48 −14 −14 5 0 0
12 11 −44 75 −42 −14 14 −1 0
13 12 −54 110 −90 0 28 −6 0
14 13 −65 154 −165 42 42 −20 1

Table 1: The coefficients ah,j for some fixed values of h and j.

Proof. We proceed by induction on h. For h = 2, it is j = 1, 2, and expression (13) gives
a2,1 = 1 and a2,2 = 1, agreeing with the expression for f2(x) =

1
1−x−x2 derived from (7) and

f1(x) = 1 + x.
For h > 2, we first analyze the case j = 1. Using ah,1 = ah−1,1 + 1 from (12) and the

inductive hypothesis, we have

ah,1 = ah−1,1 + 1 = (2− h)(−1)1 + 1 = h− 1

which matches the value of ah,1 returned by (13).
For j > 2, we use ah,j = ah−1,j − ah−2,j−1 from (12) and, again, the inductive hypothesis.

We get
ah,j = ah−1,j − ah−2,j−1

=
3j − h− 1

j

(
h− j

j − 1

)
(−1)j − 3j − h− 3

j − 1

(
h− j

j − 2

)
(−1)j−1

=
3j − h− 1

j

(
h− j

j − 1

)
(−1)j +

3j − h− 3

j − 1

(
h− j

j − 2

)
(−1)j.

Expanding the binomial coefficients and with some manipulations, it is

ah,j =
(−1)j(h− j + 1)!(3j − h− 2)

j(j − 1)!(h− 2j + 2)!
=

3j − h− 2

j

(
h− j + 1

j − 1

)
(−1)j,

as required. The proof is completed.
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In the sequel, we are going to evaluate a recurrence relation for the terms D
(h,2)
n involving

the series expansion at x = 0 of the generating function

fh(x) =
ph(x)

qh(x)
=

qh−1(x)

qh(x)
=
∑
n≥0

D(h,2)
n xn.

The expression for qh(x) becomes

qh(x) = 1−
⌈h+1

2
⌉∑

j=1

3j − h− 2

j

(
h− j + 1

j − 1

)
(−1)jxj. (14)

Thus, we obtain

fh(x) =

1−
⌈h
2
⌉∑

j=1

3j − h− 1

j

(
h− j

j − 1

)
(−1)jxj

1−
⌈h+1

2
⌉∑

j=1

3j − h− 2

j

(
h− j + 1

j − 1

)
(−1)jxj

(15)

and 1−
⌈h+1

2
⌉∑

j=1

3j − h− 2

j

(
h− j + 1

j − 1

)
(−1)jxj

(∑
n≥0

D(h,2)
n xn

)
=

1−
⌈h
2
⌉∑

j=1

3j − h− 1

j

(
h− j

j − 1

)
(−1)jxj.

Sorting the first part according to the increasing powers of x we have

∑
n≥0

D(h,2)
n −

⌈h+1
2

⌉∑
j=1

D
(h,2)
n−j

3j − h− 2

j

(
h− j + 1

j − 1

)
(−1)j

xn =

1−
⌈h
2
⌉∑

j=1

3j − h− 1

j

(
h− j

j − 1

)
(−1)jxj

where D
(h,2)
ℓ = 0 whenever ℓ ≤ 0.

For the identity theorem for polynomials we can deduce the desired recurrence relation

D(h,2)
n =


1, for n = 0;
⌈h+1

2
⌉∑

j=1

D
(h,2)
n−j

3j − h− 2

j

(
h− j + 1

j − 1

)
(−1)j − 3n− h− 1

n

(
h− n

n− 1

)
(−1)n, for n ≥ 1.
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A very interesting note arises when, once h is fixed, we ask for the number D
(h,2)
n of Dyck

paths having semilength n ≤ h. Clearly, in this case, it is D
(h,2)
n = Cn since all the Dyck

paths of a certain semilength n ≤ h have height at most equal to n. Thanks to the above
argument it is possible to derive interesting relations involving Catalan numbers. Indeed,
for the above remark, posing h = n+α, we can write D

(n+α,2)
n = Cn, where α ≥ 0 is integer.

Then, it is possible to deduce a combinatorial identity involving Catalan numbers as follows:

Cn =
n∑

j=1

Cn−j
3j − n− α− 2

j

(
n+ α− j + 1

j − 1

)
(−1)j − 2n− α− 1

n

(
α

n− 1

)
(−1)n. (16)

6 Further developments

In this paper we analyzed the case k = 2 leading to bounded Dyck paths avoiding valleys
at given height (i.e., h− 1) corresponding to the permutations in S(h,2)

n (312). An interesting
generalization could concern the cases k > 2 in order to investigate what are the arising
constraints on the subclasses of 312-avoiding permutations. The number k−1 of consecutive
valleys allowed at height h− 1 clearly affects the value and position of the l.r.M., as we have
seen in the k = 2 case. For values of k larger than 2, the permutations probably have a
structure that can be described in terms of a suitable block decomposition.

The above combinatorial identity (16) is obtained by means of a purely combinatorial
consideration. By virtue of this, similar relations are expected to arise even in cases k > 2.
It might then be possible to derive a family of combinatorial identities as k varies.

Another further line of research could consider the possibility to list the paths of D(h,2)
n in

a Gray code sense using the tools developed by Barcucci et al. [1] and Bernini et al. [4, 5, 6, 7].
As mentioned in Section 2, these paths can be encoded by strings on the alphabet {U,D},
so the problem of defining a Gray code could be addressed by starting from the techniques
developed by Vajnovszki et al. [21].

Moreover, the considered Dyck paths could be used for the construction of the strong
non-overlapping code proposed by Barcucci et al. [2].
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