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Introduction

The computing world is rapidly evolving and advancing, with new ground-
breaking technologies emerging. This dissertation explores three technologies:
Computing Mega Structures, Quantum Computing, and Quantum Machine
Learning, placing a strong emphasis on the latter two. These technologies
have opened up new possibilities, providing unprecedented computational
power and problem-solving capabilities while offering a deeper understanding
of complex systems.

Throughout history, humankind has sought to comprehend the world
and cosmos by relying on thought patterns and mathematical modelling.
However, this perception of a unified certainty began to falter in the early
1800s with the discovery of non-Euclidean geometries and antinomies that
originated from the foundations of mathematics. The theory of relativity and
quantum mechanics, which emerged in the early 1900s, further debunked the
idea of a complete understanding of physical reality, revealing a complexity
beyond our wildest imagination. As a result, new technologies and methods
are essential for managing the vast amount of information required to make
real-time decisions in our society.

This work aims to introduce one such technology: quantum computing,
which utilises quantum particles to perform complex calculations in less time
than traditional calculators. While the topic is broad, this work unavoidably
provides only a partial exposition.

The first chapter discusses current technologies used in massive com-
puting, as well as methods and strategies for managing vast amounts of
data.

The second chapter introduces the postulates of quantum mechanics and
the necessary physical adaptations to perform calculations with particles.
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The third chapter explains the use of photons as special particles in
assembling efficient quantum computation systems, highlighting their ad-
vantages and disadvantages compared to more mature technologies, such as
superconductivity or the ion trap.

The fourth chapter presents various platforms offered by companies
working in the sector, along with the design and implementation of valuable
algorithms and quantum circuits.

The fifth chapter demonstrates two noteworthy applications of quantum
computing in machine learning, one using fermionic particles and the other
utilising photons to analyse the feasibility and robustness of a quantum
statistical classifier.

It is now necessary to proceed with a more detailed description of what
has just been introduced, which will then be outlined and presented in the
individual chapters.

Computing Mega Structures is the first topic covered, focusing on re-
markable advancements in constructing massive computing infrastructures.
These structures employ distributed computing techniques, cloud computing,
data centres, supercomputers, and high-performance computing clusters
to integrate thousands or millions of computational units seamlessly. They
can process vast amounts of data, run complex simulations, and solve in-
tricate problems that were once considered impossible. The chapter has
extensively explored computing mega structures, showcasing their potential
in solving complex problems. These mega structures offer transformative
solutions across various domains by leveraging high-performance computing
approaches and computational intelligence techniques. The examination of
high-performance computing has revealed the benefits of cloud containers,
which provide scalable and flexible computing resources. The insights gained
from container utilisation highlight portability, reproducibility, and resource
optimisation advantages. Additionally, GPGPU computing has demonstrated
the power of parallel processing capabilities, resulting in significant improve-
ments in computational performance. The intersection of GPGPU comput-
ing and neural networks has revolutionised artificial intelligence, propelling
advancements in computer vision, natural language processing, and data
analytics. Furthermore, computational intelligence techniques, particularly
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those based on machine learning, have proven effective in solving complex
problems. Machine learning algorithms, which learn from data, adapt, and
evolve, have found diverse applications and provided valuable insights across
various domains. The convergence of big data and AI has also been a criti-
cal aspect of computing mega-structures. The exponential growth of data
necessitates innovative approaches, and AI techniques play a pivotal role
in extracting valuable insights. The combination of AI and the Internet of
Things (IoT) enables the harnessing of data generated by interconnected
devices, leading to advancements in smart cities, healthcare, and manu-
facturing. Computing mega structures represent a significant advancement
in problem-solving capabilities. Integrating high-performance computing
approaches, computational intelligence techniques, and the synergy between
big data and AI holds immense potential for addressing complex challenges
and driving innovation across industries. Further exploration and research in
these areas will undoubtedly unlock new frontiers and contribute to a more
advanced and interconnected world.

Beyond classical computing, Quantum Computing is explored, which
operates on the principles of superposition and entanglement. By utilising
qubits, quantum computers can perform calculations at an exponential scale,
offering the potential to solve problems currently unsolvable with classical
computers. Quantum Computing promises to revolutionise numerous do-
mains, from cryptography and optimisation to drug discovery and material
science. Chapter 2 explores the intricacies of quantum computing, its appli-
cation in treating high-complexity scenarios, and the fundamental concepts
that underpin its functionality. At the heart of quantum computing are the
postulates of quantum mechanics, which govern the behaviour of quantum
systems and differentiate quantum computing from classical computing.
Central to quantum computing is the notion of bits and qubits. While
classical computing relies on classical bits to encode and manipulate informa-
tion, quantum computing harnesses the power of qubits. Understanding the
properties and characteristics of qubits is crucial for grasping the transfor-
mative potential of quantum computing. Bloch’s sphere provides a geometric
representation to visualise and interpret the states of qubits, facilitating
the comprehension of quantum superposition and aiding in elucidating the
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quantum transformations that transpire during quantum computations. The
exploration of Bloch’s sphere unveils the intricate nature of quantum states
and their relevance in quantum computing. Quantum transformations and
quantum gates form the building blocks of quantum computation, enabling
the manipulation of qubits and paving the way for complex computations
and the development of quantum algorithms. By delving into various quan-
tum transformations and gates, we gain insight into the diverse set of tools
at our disposal within the realm of quantum computing. A fundamental
component of quantum computing is the quantum register, a collection of
qubits operating collectively to perform computations. Quantum circuits,
consisting of interconnected quantum gates, govern the flow of information
and operations within the quantum register. A comprehensive understanding
of quantum registers and circuits is pivotal in harnessing the full potential of
quantum computing. Chapter 3 provides a comprehensive exploration of opti-
cal quantum computing, covering topics such as optical qubits and qumodes,
CV quantum gates, DV quantum circuits, and the entangler circuit in both
single photon and dual rail modes. Foundational elements of optical quantum
computing are qubits and qumodes. Qubits represent discrete states, while
qumodes harness continuous variables. Understanding the interplay between
these distinct quantum elements is crucial for developing efficient and scalable
optical quantum computing architectures. Specialised quantum gates tailored
to manipulate qubits and qumodes are necessary for harnessing the potential
of quantum information. In continuous-variable quantum computation, CV
quantum gates play a pivotal role. These gates facilitate the manipulation
and transformation of quantum states by performing operations such as
squeezing, displacement, and rotation, offering a rich repertoire for imple-
menting advanced quantum algorithms and applications. Discrete-variable
quantum circuits are also essential in optical quantum computing. These
circuits employ a discrete set of operations, including quantum logic gates,
to manipulate qubits. DV quantum circuits offer a versatile toolbox for
quantum algorithm design by harnessing the principles of superposition and
entanglement. Creating entangled states is a central challenge in optical
quantum computing, as they underpin entanglement-based operations and
quantum communication protocols. This chapter delves into two types of

xii



Introduction

entangler circuits: single photon and dual rail modes. The entangler circuit
in single photon mode fosters entanglement generation between qubits or
qumodes by harnessing the unique properties of individual photons. Con-
versely, the entangler circuit in dual rail mode utilises two orthogonal modes
to establish entanglement by capitalising on the wave-particle duality of pho-
tons. A profound comprehension of these entangler circuits is indispensable
for constructing robust and efficient optical quantum computing systems.
Chapter 4 begins by exploring the various platforms and technologies that
act as the foundation of quantum computing, from superconducting qubits to
trapped ions and topological qubits. Each platform has unique strengths and
challenges. The chapter examines these platforms’ fundamental principles
and key components, providing insights into the complex engineering and
control required to realise functional quantum computers. After laying this
groundwork, the chapter turns its attention to the quantum algorithms that
underpin the power and potential of quantum computing. These specialised
algorithms, designed to harness the capabilities of quantum systems, unlock
the ability to solve problems at an accelerated pace, revolutionising the
realm of computation. The chapter explores several pivotal algorithms that
have shaped the quantum landscape, including the Deutsch-Jozsa algorithm,
Grover’s algorithm, and Shor’s algorithm. The Deutsch-Jozsa algorithm is an
early quantum algorithm that showcases the prowess of quantum computing
in solving Boolean function problems with remarkable speedup compared to
classical counterparts. Grover’s algorithm is a groundbreaking advancement
in search algorithms, enabling quick searches within unsorted databases.
Shor’s algorithm is renowned for its capacity to factor large numbers expo-
nentially faster than classical algorithms and has significant implications
for secure communications and encryption protocols. Finally, the chapter
revisits Grover’s algorithm, implementing two possible circuital solutions.

Accompanying Quantum Computing is the emerging field of Quantum
Machine Learning. This fusion of quantum mechanics and machine learning
techniques offers the potential to develop quantum algorithms that can learn
from data and make predictions. Quantum Machine Learning can enhance the
efficiency of classical machine learning algorithms and explore new avenues of
pattern recognition, optimisation, and data analysis. By exploring these three
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topics and examining their underlying principles, cutting-edge applications,
and potential implications, it is possible to understand their transformative
power comprehensively. Together, they offer a glimpse into a future where
computational prowess and intelligent systems converge, propelling humanity
toward new frontiers of knowledge, discovery, and innovation. Chapter 5
discusses two specific cases of Quantum Machine Learning, showing how
the kernel and supervised training techniques used in machine learning are
related to the approaches employed in the quantum variational approach.
Both explain how data is handled by explicitly connecting it to vectors in
real or complex hyperspaces. The application of this similarity in quantum
machine learning is particularly advantageous. In these systems, the data
must first be connected to the quantum system’s physical states, acting
as an analogue adaptation to the nature of the problem. This procedure,
which allocates data to quantum states and then trains the system by
changing its physical characteristics, is essentially equivalent to one-to-one
correspondence. Furthermore, the results obtained using two quantum neural
networks will be compared. The first one employs a "classical" quantum
approach, using a discrete variable model based on the spin properties of
some particles of a fermionic nature. The second utilises photons, and the
model will consist of continuous variables: particle position and momentum.
A specific dataset (two-moons dataset), simple and effective simultaneously,
was used to evaluate the performance of different Machine Learning methods.

During my three-year study, I delved into key topics in information science.
I explored and wrote about various subjects like artificial intelligence, cloud
computing, telerehabilitation, and quantum computing. Quantum computing
has been a particularly enriching area of study for me, as it has allowed me
to explore concepts related to mathematics, physics, and information science.
This field will continue to grow in importance, attracting more interest as
laboratory experimentation progresses and its applications become more
widespread. I am grateful to my supervisors for their guidance and to my
family, Luisa, Giulia, and Paolo, for their unwavering support throughout
this exciting journey.
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Chapter 1

Computing Mega Structures

1.1 Introduction

The handling and administration of enormous volumes of data in ever-
shrinking time frames have been made possible by the sudden and unrelent-
ing computerisation during the past 40 years. Additionally, the utilisation
of computing resources required an exceedingly sophisticated level of elabo-
rateness due to the complexity of scientific and technological concerns [1],
as well as the automation of industrial and corporate operations [2]. That
necessitated a variety of solutions, including the creation of CPUs, GPUs,
TPUs, and other more potent hardware elements, as well as the construction
of computer clusters that could tackle the same problem concurrently (see,
for example, [3, 4, 5]).

In many application problems in the fields of engineering and logistics,
[6, 7, 8, 9], classical analytical methods for the efficient search of the maxi-
mum or minimum values of an objective function have been supported by
very effective heuristics. The study of algorithms that are less greedy for
computational resources can significantly contribute to making information
structures more efficient.

In other instances, the issues are intractable despite the use of extraor-
dinary resources due to an intrinsic complexity, such as when factorising
exceedingly big numbers or solving a certain class of PDEs (Partial Differen-
tial Equations) [10, 11, 12].
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Computing Mega Structures

Artificial intelligence technologies are essential in fields with high compu-
tational complexity, such as chemistry and mathematical-scientific modelling
[13]; they are also important in the identification of specific patterns in
images or other data aggregates, such as the identification of tumours or the
direct identification of emotion from images or photos [14, 15, 16]. The com-
putation framework presupposes an automated, and in some cases, intelligent,
adaptation for managing scenarios where the system variables are many and
vary quickly [17, 18, 19]. Humankind has recently been able to integrate types
of automation and relational empathy with machines at previously imagined
levels thanks to the rapid advancement of artificial intelligence technology
[20, 21]. There is no doubt that such extensive technological advancement
has a significant impact on society: smart cities, which open their doors to
extraordinary views and scenarios for the possibilities of services provided
to their citizens, to legitimate concerns about their environmental impact;
smart schools and educational institutions, which have made significant
investments in technology equipment to improve teaching efficacy, whose
real consequences and adverse effects are only now becoming clear [22, 23,
24, 25, 26, 27]; smart working is a new way of working that technology has
made simpler and more efficient. It has proven effective in some working
scenarios. However, its actual value in situations involving a high level of
complexity and unpredictable outcomes has yet to be determined [28, 29].

Therefore, one might say that the extraordinarily complex nature of
modern society compels us to look for novel answers, even though their
important consequences may not be immediately evident. New models should
be created to help to understand the ramifications of extremely swift changes,
interpret signals, and manage routine and emergency circumstances. Such
models need a lot of research, which has to be supported by quick and robust
technological support.
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1.2 High Performance Computing approaches
to solving complex problems

The pandemic is only the most recent and scorching example of a multi-
chaotic situation with a devastating impact at planetary level, which in a
very short time, thanks to the extraordinary research carried out before and
during the period under consideration, by various companies and research
groups, has managed to produce different types of vaccines that will hopefully
bring us out of the stagnant waters in which we have had to stay for an
extended period of time.

This section present a number of technologies that can be fundamental
resources for modern and near future research and will enable us to reduce
the complexity inherent in various future scenarios.

1.2.1 Cloud containers

Cloud Computing technologies have advanced dramatically in recent years,
progressing from the supervision of physical computers to the virtualisation
of environments and, eventually, the use of containers, resulting in improved
application administration and environment separation.

Containers facilitate cloud infrastructures, and even personal computer
resources, to be more flexible by enabling horizontal scalability and, as a
result, allowing the infrastructure to be tuned to the application demand.
These considerations are critical in order to best calibrate the resources
required to address the complexities of the present challenges.

The tested collection of products and technologies may be customised
and adapted to the demands of any organisation or corporation that wants
to manage data and infrastructure by establishing a private or hybrid
Cloud environment (i.e. able to use computing resources from a provider of
commercial Cloud services) [30].

In order to showcase the potential of open-source components, the fol-
lowing sections outline the essential procedures involved in establishing a
cluster comprising nodes distributed across various company offices. The
system can provide seamless scalability and improved resource utilisation
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using container-based technology, specifically the Docker Engine. The dis-
tributed system architecture is designed to provide high availability and fault
tolerance by incorporating redundant nodes and load-balancing techniques.
Additionally, robust security measures, such as network segmentation, en-
cryption, and access control policies, are implemented to ensure the system’s
confidentiality, integrity, and availability. The aim is to demonstrate how
open-source components can be leveraged to construct a highly dependable
and scalable distributed system with robust security features. The system
will also have the capacity to be easily extended to commercial Clouds for
future growth and expansion. Overall, the sections seek to comprehensively
understand how open-source components and container-based technology
can be utilised to build a highly dependable and secure distributed system
that can quickly scale to meet future business demands.

1.2.2 Containers insights

Data volatility is a significant concern when deploying replicated containers.
Containers, in reality, are stateless, and the data contained within them is
lost the instant the container is destroyed. The destruction of a container
might also occur in an unforeseen manner; for example, it is conceivable
that autoscaling identifies low system usage and, as a consequence, decreases
the number of active nodes. In order to tackle this challenge, it is critical
to provide a network-distributed file system that is subsequently used as
storage by containers. That ensures the permanence and consistency of
information. XFS1 is one of the file systems that may be utilised, and its
maintenance may be delegated to the GlusterFS program. GlusterFS also
allows provisioning a list of dedicated servers. These will create a trustworthy
pool, which will be used to share available disk space across nodes. Persistent
data will uniformly be mounted on each node. An enterprise-grade fibre
connection between sites with a speed of at least 1 Gbps will be required.

1XFS (Extents File System) is a 64-bit, high-performance journaling file system for
Linux. It was initially created by Silicon Graphics for its IRIX OS, but the code was
later donated to Linux. XFS works exceptionally well with large files and is known for its
robustness and speed. XFS supports filenames of up to 255 bytes, files of up to 8 EB and
file systems of up to 16 EB.
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If the services require a database, optimising it will be the next step. The
most successful method entails the establishment of several containers to
which specific tasks are assigned. One will be the DB container, with the
role of master, while the others will be slaves. The master is used for writing
and is the only one that can change the structure and data in the database.
Instead, slaves will be containers with only the necessary rights to perform
reading queries.

The significant advantage is that one can add as many slave nodes
as needed, improving our ability to satisfy customer demands linearly. In
general, individuals who explore a website perform far more reading actions
than writing actions.

With this perspective, one can also create a database autoscaling mech-
anism that raises the number of reader nodes based on various factors or
metrics, such as the average database usage percentage or the average number
of active requests per second. There are two critical points to consider.

First, there is some delay across the slave nodes (readers) and the master
(writer) in this design. It means that there may be instances where readings
on newly written data provide old and out-of-date results. When a database
is configured correctly, latency is very low, often less than 100ms and mostly
closer to 30ms or 40ms.

The second thing to remember is that queries are not automatically
sorted across master and slave nodes. Two methods exist to distribute the
workload among the writer and readers. The first is to act on the program
code that utilises the database, which requires creating two access points to
the database and sorting queries that only perform reading operations on the
access point to the slaves and queries that only execute writing operations
on the access point to the master. However, this solution is only sometimes
feasible; it is perfectly plausible that the program used is legacy or closed
source.

The second method, which arises as an alternative to this problem,
requires the definition of an additional container that acts as a load balancer
and automatically sorts requests across nodes. In the case of a MariaDB
database, for instance, a Maxscale proxy can be used. In this regard, it
is allowed to publish the MariaDB MaxScale REST API port, an HTTP
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interface that generates data in JSON format, offering visual management
tools. Access to the proxy implies adding a new rule to the NAT Network
port forwarding table. MariaDB MaxScale divides requests such that writing
queries are sent to the master container while reading queries are handled and
balanced through the slave1, slave2, . . . , slaveN containers. It is also feasible
to include the master in the pool of nodes capable of reading. Then, in the
master, a special user with GRANT ALL access must be defined for MaxScale.
MariaDB MaxScale is released under a BSL (Business Source License) license
and is capable of much more than simply load balancing: it can also handle
failover and switchover. A few stages are involved in the configuration:
establishing the servers, creating the monitoring service, defining traffic
routing using the Read-Write-Split mode, and lastly, configuring the listener
agents using the mariadbclient protocol and its TCP port.

The other container to analyse is the proxy for web services. It exposes
port 80 for the HTTP protocol and port 443 for the HTTPS protocol. Its
task will be to receive and sort requests from the network and redirect
them to the proper web servers (such as Apache, NodeJS or Nginx). To
appropriately configure the proxy, the documentation given by the HAProxy
official site is consulted - The Reliable, High-Performance TCP/HTTP Load
Balancer2, where it is explained the use of the software in a Docker Swarm
environment. The DNS resolver definitions are very critical elements to
consider. These are required for identifying the containers that comprise
the backend. Furthermore, proper request timeout settings must be defined
and calculated to reduce the chance that some blocked processes will bind
connections, causing difficulties that render services inaccessible to users.
The HTTP mode setting enables HAproxy to make sophisticated decisions,
such as routing traffic within a particular group of servers depending on the
URL route requested by clients and routing traffic depending on the HTTP
headers received. This parameter allows HAproxy to work as a level 7 load
balancer. This mode is essential for load balancing.

It is also necessary to specify the relevant certificates for using the
HTTPS protocol. Alternatively, one can rely on other containers that deal
with the automatic generation of certificates, such as those developed by

2See the URL: https://hub.docker.com/_/haproxy
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Figure 1.1: Final Architecture

EFF Let’s Encrypt [31]. In the backend unit, it is established the algorithm
for balancing requests to Web servers. There are several algorithms; the
most common is Round Robin, which selects the recipient servers one by one
in a cyclic way.

Alternatively, the LeastConn algorithm may be used: it chooses the Web
server that will handle the request, depending on the number of still active
connections and always selects the Web server with the minimum load. With
this final container, the entire infrastructure may be completed.

The completed infrastructure is depicted in Figure 1.1. One can check
the status and distribution of all containers built using the container orches-
tration tool in swarm mode, Docker service, which is only executable by the
management node. Finally, it is vital to note that Portainer3 may be used
to manage and administrate all of the containers that have been built.

3Portainer is a universal container management tool. It works with Kubernetes, Docker,
Docker Swarm and Azure ACI. It enables the management of containers without needing
to know platform-specific code. See the URL https://www.portainer.io/.
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It has a web interface that makes long-term system maintenance easier
and access to logs, status graphs, and tools for restarting and restoring
individual containers.

1.2.3 GPGPU Computing

GPGPU is an abbreviation that stands for General-Purpose Computing on
Graphics Processing Units. This term refers to the usage of graphics acceler-
ators, which are essential components of computer graphics, for generalised
mathematical operations and calculations that result in the acceleration of
computations. With the advent of customizable shaders and support for
floating point computations in 2001, GPGPU computing grew in popularity.
The capacity to carry easily out SIMD (Single Instruction on Multiple Data)
calculations, is one of the features of these architectures.

GPGPU computing became readily helpful even in the consumer environ-
ment in 2006, owing to the launch by NVIDIA of the 8800 series of graphics
cards with G80 processor, which could benefit from CUDA4, an architecture
capable of executing highly efficient programs for parallel computing on
GPU. In 2006, an 8800GTX with the G80 featured 128 unified shaders
(compute units) working at a frequency of 576 MHz, which guaranteed 345.6
GFLOPS. Today, 15 years later, the top-of-the-line card named RTX 3090
for desktop PCs created by nVidia delivers 8704 compute units at 1440Mhz
that promise 35581 GFLOPS: 102.95 times larger than what was supplied
by the finest video card in 2006.

The graph in Figure 1.2 depicts the rise in the computing capability
of CPUs and GPUs over time. On the Y axis, the number of billions of
floating point operations per second (GFLOPS) is reported. The performance
disparity is increasing yearly, as seen by the logarithmic scale. GPUs become
programmable architectures, similar to CPUs, thanks to both proprietary
(CUDA) and Open Frameworks (OpenCL5 and SYCL6), and can operate

4CUDA is a proprietary framework released by NVIDIA™
5OpenCL™ (Open Computing Language) is an open, royalty-free standard for cross-

platform, heterogeneous, parallel programming devices (CPUs, GPUs, FPGAs, DPSs
6SYCL is a royalty-free, cross-platform abstraction layer that enables code for hetero-

geneous processors to be written using standard ISO C++ with the host and kernel code
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Figure 1.2: CPU vs GPU, performance in GFLOPS

hundreds of threads at the same time. More appropriately, since we are
considering Compute Units, we can name this approach Single Instruction
Multiple Thread (a name NVIDIA gave to this architecture, SIMT).

CUDA and both OpenCL and SYCL have a strong relationship. The
latter is the Open Source alternative to CUDA and enables building parallel,
particularly for a diverse collection of GPUs, including Intel, NVIDIA, and
AMD. However, the performance is different, and OpenCL is often slower
than CUDA because of the feature that allows it to operate on many types
of hardware. In 2011, the performance gap was around 16% [32, 33], and to
date, it appears to have gotten even more pronounced [34].

1.2.4 GPGPU insights

As mentioned in previous sections, GPGPU computing can significantly
speed up many algorithms. Examples include cryptography, image and
sound manipulation and analysis, multimedia coding and decoding, neural
networks, and Natural Language Processing applications that are crucial in
many areas today. However, using these techniques to represent the state

for an application contained in the same source file.
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of the art of research requires adopting specific guidelines to produce the
expected results.

The architecture of the GPGPU involves running a host program on the
CPU and a kernel program on the innumerable Compute Units of the GPU.
The host program has the function of allocating the necessary resources,
monitoring the execution status of the kernels and collecting the final results.
Each Kernel will execute the required algorithm on a Compute Unit, acting
on a portion of the input data. The input data must be moved from the
central memory to the GPU memory before Kernels are executed. At the
end of the kernel computation, the output results have to be copied from
the GPU memory to the central memory. This data movement must be
optimised in the sense that has to be minimised the input-output requests
outside the GPU memory. Furthermore, it is of fundamental importance to
allocate data in such a way as to make maximum use of the memory areas
close to the Compute Units, in line with the Memory model implemented by
OpenCL. The data transfer has a computational cost in terms of time and
machine cycles and can have a heavy impact on the measured performance.
We can conclude that using these technologies is optimal in the case of
medium to extensive input data [35].

Although using these graphics accelerators results in a considerable
increase in power, the performance-per-watt ratio7 is in favour of GPUs
over CPUs [36]. For example, the Intel i9-11900K processor that hit the
market in Q1 2021 has a Thermal Design Power (TDP8) of 125 Watts and is
capable of delivering 996.0 GFLOPS in SGEMM calculations. The NVIDIA
3090 has a TDP of 350 Watts and is capable of delivering 35581 GFLOPS.
When calculating the performance-per-watt ratio, it is got 996/125=7.968
GFLOPS/watt for the CPU and 35581/350=101.66 GFLOPS/watt for the
GPU.

7It evaluates the amount of calculation a computer can perform for every watt of
power consumed.

8The maximum amount of heat created by a computer chip or component is known as
the thermal design power (TDP), which is also known as the thermal design point.
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1.2.5 GPGPU and Neural Networks

The field of machine learning has witnessed a boom of interest in recent
years since several studies have demonstrated the efficacy of neural networks
in various tasks that were previously thought to be extremely difficult.
Experts have access to massive volumes of data, and modern accelerators
have enormous computing capability [37].

Developing code that solves a problem and makes it worthwhile on
many graphics card architectures, on the other hand, has become incredibly
challenging, especially from an algorithmic standpoint. Indeed, while a GPU
gets programmed, it must declare how memory and registers are to be used
and allocated in great detail. Even graphics cards of the same brand and
generation (but different models) might have significant variances. Auto-
tuning approaches have reduced the difficulty of performance portability by
customising memory structures and loops to a specific architecture. Today,
some auto-tuning software and libraries have been developed to cater to
researchers’ powerful instruments and attempt to mitigate this problem.
Various approaches can allow to optimise kernel parameters for various GPU
architectures, i.e. using a deterministic approach and the "Generate and
Test" technique. In more recent times, through machine learning, neural
networks have been created that can predict the best parameters to be used
in a GPU code and optimise final performance.

GPGPU computing is currently used to accelerate many of the most
common deep learning frameworks, such as TensorFlow, PyTorch, Caffe,
Matlab, and others. It is also used in linear algebra, Data analysis, cryptogra-
phy, affective computing and so on [38]. Some specific neural networks work
with images, and convolution is one of the most fundamental operations.
Assume we have a picture saved on our device. In most cases, a picture
is represented using three colour channels: red, green, and blue (RGB),
which are represented in memory with three distinct matrices with the same
dimensions. The number of rows will be equal to the height of the image,
while the number of columns will be equal to the image’s width. Each matrix
element will contain the integer that quantifies the amount of Red, Green,
Blu, respectively. Because most images use 8 bits to encode each pixel’s
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brightness value (grey tone), these values are usually between 0 and 255.
This results in 16 million colours being represented as results combining 255
possible red tones, 255 possible blue tones, and 255 possible green tones.

Convolutional Neural Networks are a type of Deep Neural Network that
performs well on data organised in a grid topology, such as time series and
visual inputs and are one of the most popular machine learning architectures
for image-based classification. Image recognition, segmentation, detection,
and retrieval are examples of applications where CNNs have achieved state-
of-the-art results. Convolutional effects can be varied, such as enhancing
edges, increasing contrast, dilating or eroding the area occupied by the
objects in the image, and so on. Winograd, Image to Column + GEMM, and
Direct Convolution are the three main algorithmic techniques for performing
convolution with digital images. These three algorithms obtain the same
output but have different execution times. Arrays of different sizes and
parameters may be faster with the Winograd convolution than with the
Direct convolution and vice versa. We demonstrated that it is possible
to identify the best algorithm for convolutional operations based on the
previously described arrays [39].

1.3 Techniques enabling the solution of com-
plex problems based on Computational
Intelligence

Solving complex problems has always been challenging for organisations
and businesses in every sector, solving complex problems has always been a
challenge. However, with the increased processing power of computers and
advancements in Artificial Intelligence techniques, Computational Intelli-
gence techniques, including Machine Learning, can now be used to tackle
these challenges effectively and efficiently. Machine Learning, one of the most
advanced AI techniques, is revolutionising the resolution of complex prob-
lems in various sectors by learning from data. Machine Learning can provide
even more advanced and sophisticated solutions when combined with other
Computational Intelligence techniques, such as artificial neural networks,
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evolutionary optimisation, and fuzzy logic. This paragraph explores how
Machine Learning and other Computational Intelligence techniques can face
complex problems and their advantages over traditional methods.

1.3.1 Approaches based on Machine Learning

There are different types of Machine Learning methods, one of which is
Supervised Machine Learning. This method involves creating a dataset of
items to train the classifier, focusing on accurately classifying them into
different categories. The dataset is then split into two parts: a training set
and a test set. The training set is used to teach the classifier, while the test
set is used to verify the results. The goal is for the classifier to recognise input
items accurately. After the training is completed, the classifier’s performance
is evaluated by presenting images that were not included in the training
dataset. An example is shown in Figure 1.3.

Some of the most commonly used machine learning techniques are as
follows.

Decision trees

Decision trees (DT) are a non-parametric, supervised machine learning
method for classification and regression. DTs generate white box models that
are easily interpretable as if-then-else expressions. Minor data modifications,
on the other hand, might result in the generation of wholly distinct trees.

Figure 1.3: Supervised learning
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Random Forest

Random Forest fits many independent trees on various subsets of the dataset
to reduce variance and over-fitting. Gradient Tree Boosting is another notable
tree-based classifier that uses gradient descent to grow a weighted ensemble
of DTs gradually.

Bayesian classifier

The simplest variant of a Bayesian network is the naive Bayesian classifier
(NBC). An NBC assumes that all features are conditionally independent
given the class variable. While this assumption is frequently incorrect, it has
proven to be highly effective in practice, obtaining good, simple models with
little training.

Logistic Regression

Logistic Regression (LoR) is a simple type of regression analysis in which
the classes’ independent variables and log odds are assumed to have a linear
relationship.

K-Nearest Neighbours

K-Nearest Neighbours(KNN) finds the K data points closest to the query
feature vector and polls their assigned labels to determine the query vector’s
label. KNN is a non-generalising method; it means that instead of learning a
model’s parameters, it "remembers" the training points and eventually stores
them in a suitable data structure, such as a Ball Tree (i.e. metric tree), to
speed up inference.

Support Vector Machine

Another machine learning technique is the Support Vector Machine. The
data is separated using a support vector machine (SVM) to draw hyperplanes
in the feature space. In order to maximise the separation between classes,
the points closest to the hyper-planes are used as a reference. The kernel
trick, which entails defining alternative inner products for the data points,
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can implicitly embed the problem in higher-dimensional spaces, allowing for
complex separating surfaces.

Multi Layer Perceptron

The simplest feed-forward neural network is the Multi-Layer Perceptron
(MLP). There are at least three node layers: an input layer, a hidden layer,
and an output layer. Each node, except for the input nodes, uses a nonlinear
activation function.

Convolutional neural network

CNNs are a type of deep, feed-forward artificial neural network that is
commonly used for image recognition. They comprise a series of layers, each
of which applies a set of learned convolution filters to the previous layer’s
results (activations). The final layer is usually a classifier with a loss function
to back-propagate gradients through the network and update the filter values
(weights). Non-linearity is typically added after each convolution layer and
other layers like pooling operators and fully-connected layers. CNNs convert
an input image’s original pixel values into final class scores.

1.3.2 Machine learnings insights

Galileo Galilei (1564-1642) introduced the scientific method, characterising
and shaping science for centuries to come. The scientific method is based on
the repeatability of experiments, which ensures that researchers and scientists
can verify the validity of results produced by others. Machine learning, and
in particular neural network learning, on the other hand, produces different
results each time learning is carried out. This is due to the fact that the
weights of the neurons that make up the neural network and that are to
be trained are instantiated at random values and the search for values that
optimise the objective function can lead to different search paths at each
iteration [40]. Because of these characteristics, machine learning makes it
possible to address issues, studies and research in a completely new way.
In recent times, a research group has initiated a study aimed at achieving
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protein recognition through the application of machine learning techniques
[13, 41]. The study commenced with a method that involved protein clas-
sification, which was accomplished by analysing the list of proteinogenic
amino acids that constitute them. The analysis was conducted using a
one-dimensional convolutional neural network that was able to differentiate
between genuine and fake proteins. Afterwards, the researchers endeavoured
to enhance the approach by analysing the three-dimensional structure of
the proteinogenic amino acid chain, which involved incorporating a list of
X, Y, and Z coordinates of various elements in the analysis. The resulting
analysis produced a four-dimensional matrix since each element comprised
three spatial coordinates and the amino acid type, encoded as an integer.
However, the researchers encountered a challenge when trying to test the
quality of the analysis using a convolutional neural network. Most neural
networks employed in the literature accept three-dimensional matrices as
input. Therefore, a method was developed to transform the 4D-encoded
proteins into 3D-encoded proteins. A graphical representation based on
orthogonal axonometry was employed to accomplish this.

Figure 1.4: Ada Structure Complexed With Deoxycoformycin from PDB
(left hand side), Orthogonal Axonometry representation (right hand side)

The image was initially empty and subsequently partitioned into four
segments. The proteins were then inserted into the segments, and the color
of each pixel was encoded using the type of amino acid, while the XY
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position was encoded using a transformation function that employed pho-
tographs of the protein from three different perspectives. Consequently, each
image contained a protein, which was represented using cavalier axonometry.
Convolutional neural networks were then employed to analyze the images,
and a higher performance was achieved compared to previous work. Figure
1.4 presents an example, which involves the 3D representation of the Ada
Structure Complexed With Deoxycoformycin provided by the Protein Data
Bank (PDB) on the left-hand side and our representation using Orthogonal
Axonometry on the right-hand side.

The programming of applications that make use of machine learning
is greatly facilitated by a number of frameworks that allow developers to
implement high-level algorithms that benefit the computational capabilities
of machine learning approaches and that use a number of already optimised
libraries. In Table 1.1 are summarised the main Frameworks available.

Framework Main characteristics Released by
Keras Open Source (MIT License), written

in Python
François Chollet

Scikit-learn Open Source (BSD-3-Clause Li-
cense), written in Python, Cython,
C and C++

David Cournapeau

Tensorflow Open Source (Apache2 License),
written in C++ and CUDA

Google Brain Team

pyTorch Open Source (BSD License), written
in Python, C++ and CUDA

Facebook’s AI Research
lab (FAIR)

Microsoft Cog-
nitive Toolkit

Open Source (MIT License), written
in C++

Microsoft Research

H2O Open Source (Apache2 License),
written in Java

H20.ai

Table 1.1: Main frameworks for machine learning

1.4 Big Number and AI

Computing large numbers has always been a challenge for scientists in all
fields. In many fields, such as physics, astronomy, chemistry and engineering,
calculations of large numbers are essential for research and development.
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However, the complex nature of these calculations often requires a great deal
of time, resources and specialised technical knowledge. Fortunately, Artificial
Intelligence (AI) is revolutionising the resolution of these complex problems.

Thanks to its ability to learn from data and adapt to situations au-
tonomously, AI can automate many processes to calculate large numbers.
For example, AI can be used for data classification, prediction modelling, and
simulation of complex scenarios. Furthermore, AI can be used to optimise
algorithms and parallelise computations, making it possible to solve problems
that would otherwise be impossible or impractical.

One of the most notable examples of AI’s application to large numbers
computations is using artificial neural networks (ANNs) in prediction mod-
elling. ANNs are machine learning algorithms that are capable of learning
from data in a similar way to the human brain. When applied to forecasting
modelling, ANNs can quickly and efficiently analyse large amounts of data
and identify complex patterns quickly and efficiently. That means that ANNs
can be used to predict future events, such as weather, market trends, or
disease risk.

In addition, AI can be used for scientific data analysis, such as analysing
experimental data, anomaly detection, and data visualisation. This type of
data analysis can help scientists identify new relationships in data, reveal
hidden patterns, and uncover new insights. For example, AI can be used for
analysing data from environmental sensors to identify factors influencing
climate change or for analysing genomic data to identify factors causing
certain diseases.

Furthermore, AI can be used for the simulation of complex scenarios,
such as the simulation of physical phenomena or the simulation of industrial
processes. This type of simulation can help scientists evaluate the effectiveness
of new theories or technologies, predict the effects of environmental or policy
changes, and identify areas for improvement in industrial processes. For
example, AI can simulate the propagation of sound waves in air or water
to help design better noise control devices. Furthermore, AI can be used to
simulate the diffusion of chemicals in the air or water to identify possible
environmental effects.

Finally, AI can be used for algorithm optimisation and computational
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parallelisation. That means that calculations of large numbers can be bro-
ken into smaller pieces that can be performed simultaneously on multiple
processors or computers, significantly reducing the time required to solve
them. Algorithmic optimisation and computational parallelisation can be
used in many fields, such as pharmaceutical research, financial analysis, and
electronic device design.

In summary, AI is revolutionising the solving of complex problems based
on large numbers in multiple scientific and industrial fields. AI can model
predictions, analyse scientific data, simulate complex scenarios and optimise
algorithms, and parallelise computations. This fact has led to a considerable
improvement in the speed and efficiency of calculating large numbers, paving
the way for new scientific and technological breakthroughs. However, it is
also important to note that AI cannot wholly replace human experts in
many fields but rather work in synergy with them to achieve better and
more accurate results.

1.4.1 IoT and AI

The Internet of Things (IoT) and Artificial Intelligence (AI) are two tech-
nologies revolutionising how people interact with the world around them. In
particular, the IoT allows the connection of everyday objects to the network,
while AI allows the analysis of the collected data to obtain valuable informa-
tion. When these two technologies are combined, the result obtained is a
highly sophisticated home monitoring system that offers numerous benefits.

One of the main benefits of using IoT and AI for home monitoring is
the ability to detect and prevent potential security issues. For example, IoT
sensors can detect the presence of smoke or toxic gases, while AI can be used
to analyse the collected data and determine if it is a real threat. Furthermore,
IoT and AI-based security systems can detect any intrusion into the home
and notify the proper authorities in an emergency.

Another benefit of using IoT and AI to monitor home environments is
the ability to monitor energy consumption. Sensors can detect the presence
of people inside the house and automatically adjust the temperature and
lighting according to individual needs. Furthermore, IoT and AI-based
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monitoring systems can be used to monitor the energy consumption of
individual electronic appliances, allowing the house’s occupants to identify
any waste and take measures to reduce consumption.

However, there are also some issues to consider when using IoT and AI
for home monitoring. For example, privacy can be an issue, as sensors collect
data about the activities of the home’s occupants. It is essential to ensure
that data is protected and only used for its intended purpose. Additionally,
there can be compatibility issues between various IoT devices, which can
make it challenging to integrate sensors with other systems.

1.5 Conclusion

Computing’s mega structures have become a crucial tool for solving complex
problems across a wide range of industries. High-performance computing ap-
proaches have enabled the processing of massive amounts of data, simulation
of complex systems, and optimisation of intricate processes that would oth-
erwise be impossible with traditional computing methods. The development
of computing structures has come a long way since the first supercomputer
was built in the 1960s. Today, high-performance computing systems are
faster, more powerful, and more accessible than ever. Advances in hardware
and software technologies have paved the way for new approaches to solving
complex problems, such as artificial intelligence, machine learning, and deep
learning. The use of high-performance computing approaches has significantly
impacted various fields, including scientific research, healthcare, energy, fi-
nance, and manufacturing. For example, in scientific research, HPC systems
have enabled simulations of complex systems, such as weather patterns,
protein folding, and astrophysical events, which have led to groundbreaking
discoveries and advancements in various fields. In healthcare, HPC systems
have facilitated the analysis of large datasets from clinical trials and genomics
research, leading to personalised medicine and better patient outcomes. In
energy, HPC systems have enabled the optimisation of energy production,
storage, and distribution, leading to more efficient and sustainable systems.
In finance, HPC systems have facilitated the analysis of market trends and
risk management, leading to more informed investment decisions. In man-
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ufacturing, HPC systems have enabled the simulation and optimisation of
production processes, improving quality and efficiency. Despite the numerous
benefits of high-performance computing approaches, challenges still need
to be addressed. One of the biggest challenges is the cost of building and
maintaining HPC systems. The high costs of hardware, software, and energy
consumption can make it difficult for smaller organisations to invest in HPC
infrastructure. Additionally, the complexity of HPC systems and the need for
specialised expertise can make it challenging for organisations to implement
and maintain HPC solutions. Another challenge is the need for scalable and
efficient algorithms to take advantage of HPC systems’ parallel processing
capabilities. Developing efficient algorithms that can handle massive datasets
and complex systems is an ongoing research area that requires collaboration
between computer scientists, mathematicians, and domain experts. In con-
clusion, high-performance computing approaches have revolutionised how
we solve complex problems. As technology advances, it can be expected to
see even more innovative and impactful uses of computing mega structures
in the future.
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Quantum Computing

2.1 Introduction

The idea of using quantum mechanics in the world of computation was
born around the 1950s following the statement by R. Feynman about the
possibility of simulating nature efficiently and effectively. Some years later,
he described [42] the possibility of defining physical laws through a computer,
by analyzing their probabilistic aspect: the important conclusion was that
classical computation could not effectively simulate physical processes, that
would only be reachable through a quantum computer.

In the late 1970s classical probabilistic computation became extremely
important in computer science and as a result the first non-deterministic
algorithms were implemented, giving rise to doubts about Church-Turing’s
thesis [43]. This was followed by the studies of David Deutsch who in
his"Quantum theory, the Church–Turing principle and the universal quantum
computer" [44] lays the foundations to define how to apply quantum principles
to the Turing machine. He first talked about a quantum Turing Machine,
that is, an abstract model that allowed to simulate a quantum computer.

In 1982, physicist Paul Benioff was able to demonstrate that the classical
Turing machine could simulate certain physical phenomena without incurring
an exponential slowdown in its performance. Three years later David Deutsch
hypothesized that, since the laws of physics were ultimately approximated
to those of quantum mechanics, a device based on the principles of quantum
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mechanics could be used to efficiently simulate an arbitrary physical system.
The true potential of this new science was highlighted in the early 1990s
by Richard Jozsa, who in 1991, after describing the functions that cannot
be solved by quantum parallelism, collaborated with Deutsch proposing
the first problem that a quantum machine could solve more quickly than a
deterministic one.

Later, in 1994, a mathematician named Peter Shor developed an algorithm
that could find the factors of large numbers much more efficiently than the
best classical algorithm. It was so powerful that it put modern cryptography
at risk: in fact, encryption algorithms that until then (and even in the present
day) were considered state-of-the-art, with the advent of this new type of
computation would have soon become obsolete. It is thought that, given an
integer N, Shor’s algorithm can factorize it in a time of O(log(N)), while
on a classical computer the time is exponential in N. This means that the
quantum algorithm could easily pierce the best modern encryption algorithm,
in a very short time.

Another notable algorithm was thought by the researcher Lov Grover,
who was able to solve a search problem in a database of N unsorted items
in O(

√
N) using O(logN) as storage space. This is a real incredible result

compared to classical search algorithm that operates in O(N).
These advances contributed to the current definition of quantum com-

puters, which are computers that use quantum physics and mechanics to
provide computational power much superior to that of a classical computer
for some types of problems.

The study of these machines has given rise to a new field of theoretical
research in computer science and physics called quantum computation, which
will completely overturn the processing of information, managing to solve
currently unsolvable scientific problems. Despite the fact that the premises are
very promising, the actual technical implementation for quantum computers
has not helped to achieve the desired results yet; in fact, managing a large
number of qubits, which is required to solve problems of varying nature and
structure, has demonstrated a significant level of implementation complexity.
In addition, the realization of a quantum algorithm necessitates an ad-hoc
configuration of the algorithm itself, due to the peculiarity of quantum
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transformations compared to classical ones, and the implementation of the
corresponding quantum circuit. Nonetheless, the time and resources required
to design and construct such systems will be amply repaid with the ability to
solve computationally very complex problems, which are currently difficult,
if not impossible, to solve with existing hardware architectures.

2.2 Quantum Computing to treat high com-
plex scenarios

The actual quantum race, which spans the years 2000 to the present, starts
in 2001 when IBM completed the most difficult quantum calculation. They
built a seven-qubit quantum computer using billions of molecules, solving a
short variant of the mathematical conundrum that underlies many modern
cryptographic data security solutions.

Moreover, in 2016, IBM made the first quantum computer accessible via
the IBM cloud. From then on, the world’s largest IT companies started to
confront, culminating in 2019 with Google’s assertion of quantum supremacy
[45]. They conducted a sampling experiment known as a random quantum
circuit and published the results in Nature. Their Sycamore 53 qubits-
quantum computer managed to provide a solution in around 3 minutes, a
billion times faster than the 10,000 years that a traditional supercomputer
would need.

Despite Google’s landmark achievement, the result just obtained by the
Hefei USTC (University of Science and Technology of China) team is very
interesting [46]. The photon system developed would be able to perform
the calculation ten trillion times faster than the most powerful Chinese
supercomputer. The operation in practice refers to Galton’s machine, where
there are photons instead of beads. At the same time, instead of the pegs,
prisms and mirrors divert the particles’ path. This system of mirrors and
prisms is called an interferometer. In the case of Galton’s machine, it is
sufficient to count the beads that fall into each column at the base. However,
when using photons, it is necessary to use devices capable of detecting the
arrival of light particles. Based on Gaussian Boson Sampling’s concepts, this
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new experiment obtained incredible results, demonstrating how a calculation
performed with this system of interferometers was enormously more efficient
than the one performed on a supercomputer. These results conclude that
this approach can take a considerable step towards a new way of conceiving
computation.

Although it will be some time before there is a commercially viable
quantum system, several business companies, which are currently developing
quantum processors, are working together to assess the potential uses of
quantum in daily life.

A quantum computer would be able to manage a large quantity of data,
making it highly beneficial for logistics and transportation and for all those
tasks that call for a significant database. Quantum algorithms manage to be
significantly more efficient than classical ones. Then, given its capacity for
problem-solving, it will undoubtedly be employed in both the financial and
health sectors to advance artificial intelligence.

Quantum computing offers the potential to solve problems exponentially
faster than classical computers, but its development and implementation
come with special and distinctive challenges in processing information.

1. Scalability Factor :

• Physical Scalability: Quantum computers differ from classical
computers as they use qubits instead of bits to process information.
Creating stable qubits that can maintain their quantum state
(coherence) for a sufficient amount of time is challenging. As
we increase the number of qubits in a system, ensuring they all
interact correctly and maintain coherence becomes progressively
more complicated.

• Error Correction: Quantum computers are highly susceptible to
errors due to their delicate nature. To scale up, we need quantum
error correction techniques to correct these mistakes. Implement-
ing these techniques requires additional qubits, making large-scale,
fault-tolerant quantum computing a significant challenge.

2. Energy Factors:
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• Cooling Needs: Superconducting qubits, a popular approach to
quantum computing, require temperatures near absolute zero to
function correctly. This cooling is energy-intensive and becomes
more challenging as systems grow.

• Power Consumption: As quantum systems scale, their power
consumption could become significant, especially when considering
error correction and other overheads.

3. Dealing with Security Threats (Quantum-Safe Cryptography):

• Quantum Supremacy and Encryption: The most immediate secu-
rity threat is the potential for quantum computers to break widely
used cryptographic schemes. For instance, RSA and ECC, popu-
lar public-key cryptographic methods, can be compromised by a
sufficiently powerful quantum computer using Shor’s algorithm.

• Transition to Quantum-Safe Algorithms: While quantum comput-
ers threaten existing cryptographic techniques, they also pave the
way for new quantum-safe algorithms. Transitioning to these new
methods will require global cooperation, rigorous testing, and
significant changes to existing IT infrastructures.

• Quantum Key Distribution (QKD): QKD offers provably secure
encryption based on the principles of quantum mechanics. How-
ever, it currently has limitations in terms of distance and requires
specialized infrastructure, such as quantum repeaters, to make it
viable for broader applications.

4. Other Challenges:

• Software and Algorithms: Quantum computing requires a new
programming paradigm. Developing software that can harness
the potential of quantum hardware is still in its early stages.

• Interfacing with Classical Systems: Quantum computers will likely
work in tandem with classical systems for many applications.
Efficient communication and data transfer between the two is
crucial.
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While quantum computing has immense potential, it presents unique
challenges requiring interdisciplinary expertise and cooperation. As tech-
nology advances, addressing these challenges will be critical to realizing its
promise and mitigating its risks.

Therefore, the quantum will undoubtedly be a subject of discussion for
years to come and a driver of investments and innovations.

2.3 Quantum mechanical postulates

Scientists have derived some assumptions that lead to what is known as
the postulates1 of quantum mechanics in order to comprehend quantum
mechanics more thoroughly. These are, in fact, the presumptions we must
make to comprehend the relationship between the mathematics of quantum
physics and measurable reality.

1. Postulate 1 - The Wave Function Postulate: The state of a
quantum mechanical system is completely specified by a function
Ψ(r, t), called the wave function or state function, that depends on the
coordinates of the particle(s) and on time.

As a single particle has a probability equal to 1 of being discovered
somewhere in space, the normalisation condition must be applied∫ ∞

−∞
Ψ∗(r, t)Ψ(r, t)dτ = 1 (2.1)

2. Postulate 2 - Experimental Observables: a linear, Hermitian
operator in quantum mechanics corresponds to each observable in
classical mechanics. If we demand that the expected value of an operator
Â be real, as it should be, then this postulate is obligatory.

3. Postulate 3 - Individual Measurements: the eigenvalues that
match the eigenvalue equation (Eq.2.2) are the only values that may

1https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_
Chemistry_Textbook_Maps/The_Live_Textbook_of_Physical_Chemistry_
(Peverati)/23%3A_Postulates_of_Quantum_Mechanics
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ever be detected in any measurements of the observable related to
operator A:

Â |Ψ⟩ = α |Ψ⟩ (2.2)

This postulate expresses the essential tenet of quantum mechanics:
dynamical variable values can be quantised. However, it is possible to
have a continuum of eigenvalues, as in the case of unbound states in
photonics. Every measurement of the quantity Â will always result
in α if the system is in an eigenstate of Â with eigenvalue α. Even
though measurements must always return an eigenvalue, the starting
state need not be an eigenstate of Â.

4. Postulate 4 - Expectation Values and Collapse of the Wave-
function: the average value of the observable corresponding to Â in a
system characterised by a normalised wave function is given by:

⟨A⟩ =
∫ ∞

−∞
Ψ∗ÂΨdτ (2.3)

The wave function instantaneously collapses into the associated eigen-
state Ψi following measurement of returns some eigenvalue αi. This is
an essential implication of the fourth postulate. Measurement, thus,
has an impact on the system’s state.

5. Postulate 5 - Time Evolution: The wave function of a system
evolves in time according to the time-dependent Schrödinger equation:

ĤΨ(r, t) = iℏ
∂Ψ
∂t

(2.4)

6. Postulate 6 - Pauli Exclusion Principle: The total wave function
of a system with n spin− 1

2 particles (also called fermions) must be
antisymmetric concerning the interchange of all coordinates of one
particle with another. For spin-1 particles (also called bosons), the
wave function is symmetric:

Ψ (r1, r2, . . . , rn) = −Ψ (r2, r1, . . . , rn) fermions
Ψ (r1, r2, . . . , rn) = +Ψ (r2, r1, . . . , rn) bosons

(2.5)

28



Quantum Computing

To describe the properties of the qubit, we must necessarily refer to a
reformulated subset of the postulates of quantum mechanics.

1. A suitable Hilbert space H is associated to every physical system. The
state of this system is described by a vector |ψ⟩ ∈ H | ⟨ψ|ψ⟩ = 1
(unitary norm). If two physical systems 1 and 2, with Hilbert spaces H
and H are combined in a unique system (for example by making them
interact in some way), the space of Hilbert of the composite system is
given by the tensor product of H1 by H2 (H1 ⊗ H2).

2. Each observable quantity A is associated with a linear and self-adjoint
operator Â in space. The set of possible values for measuring a quantity
is given by the spectrum of the operator associated with it.

3. If the physical system is in a state |ψ⟩ the probability that the ob-
servation of a quantity A gives as result α is directly proportional to
|⟨αi|ψ⟩|2.

4. The measure of the observable A on the state |ψ⟩, assuming we got α
as a result, projects |ψ⟩ on the eigenspace of α.

2.4 Quantum Computing

Quantum computing is a field of computing that uses quantum-mechanical
phenomena, such as superposition and entanglement, to perform operations
on data [47, 48]. Unlike classical computers, which use bits that can only
be in one of two states (either 0 or 1), quantum computers use quantum
bits, or qubits (rarely also written "qbits"), that can exist in multiple states
simultaneously, allowing them to perform calculations much faster than
classical computers. A qubit is a two-level quantum system that can be
in a state of 0, 1, or a superposition of both states. In other words, a
qubit can be considered a unit of information in a quantum computer.
Unlike classical bits, which are either 0 or 1, qubits can exist in a linear
combination of the two states, known as a superposition. In addition to
superposition, qubits also have the ability to be entangled with one another.
Entanglement is a quantum phenomenon in which the states of two or
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more qubits are correlated in a way that classical physics cannot explain.
That allows quantum computers to perform certain operations faster than
classical computers, such as factorisation and searching large databases.
While quantum computing has the potential to revolutionise computing
as known so far, it is still in its infancy. It faces many challenges, such
as decoherence (loss of quantum information due to interaction with the
environment), error correction, and scalability. Nevertheless, researchers
continue to progress in this exciting field, and quantum computers are
already used for specific tasks in industry and research.

2.4.1 Bits and Qubits

The bit is the smallest unit of information; it is also the foundational element
of Claude Shannon’s classical theory of information, and it is physically
equivalent to a two-state system with only two possible values: 0 and 1.
Instead, the quantum computer employs qubits (quantum bits), a physical
property of an elementary particle that obeys quantum physics by simul-
taneously existing in two states: it can be both 1 and 0 at the same time,
or even in a superposition of them, that is a linear combination of them. A
classical system could be compared to a region in real three-dimensional
space made up of two distinct points, whereas a qubit could be compared
to one of the infinite points on the surface of an unitary sphere (Figure
2.1). This quantum physical device was defined by Benjamin Schumacher
[49] as being simpler, more flexible, and powerful than the digital one. To
comprehend the essence of this new kind of machine and how it differs from
its traditional counterpart, the bit, we must consider the rules that govern
the actions and development of a particular physical structure, and therefore
the transmission of the knowledge found within it. It has become possible to
extend the field of operation of a machine by looking at it from a different
point of view, thanks to some quantum mechanics postulates. As a result, the
space filled by classic binary sequences (bit registers) will contain all infinite
variations (principle of superposition of states) as well as their non-classical
relations (phenomenon of interference), and all of these will affect the final
outcome (principle of measurement).
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Figure 2.1: Bit and qubit

Always referring to quantum physics we can identify the qubit as a vector
ψ in the two-dimensional complex space C2 (Hilbert space) defined in the
form

|ψ⟩ =α|0⟩ + β|1⟩ = α

0
1

+ β

1
0

 =
α
β

 ,
with (α, β) ∈ C2 ∧ |α|2 + |β|2 = 1

(2.6)

where the scalars α and β are complex numbers expressing the probability
amplitude of the state |0⟩ and |1⟩, respectively; |0⟩ and |1⟩ states constitute
the computational basis for the space under consideration. The probability
that a qubit can be 0 or 1 is totally without guarantees and is dependent
only on situations of uncertainty. These intermediate states of the qubit are
considered superpositions of the states and can be viewed as a coexistence
of them in certain proportions. The probability that a quantum state |ψ⟩
can be detected in state |φ⟩ when it is measured in relation to a basis that
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also contains |φ⟩ is equal to

P|φ⟩(ψ) = | ⟨φ|ψ⟩ |2 (2.7)

The individual probabilities, with respect to the computational basis, for
the state |ψ⟩ can be calculated as in the equations Eq.2.8.

P|0⟩(ψ) = | ⟨0|ψ⟩ |2 = |α ⟨0|0⟩ + β ⟨0|1⟩ |2 = |α|2

P|1⟩(ψ) = | ⟨1|ψ⟩ |2 = |α ⟨1|0⟩ + β ⟨1|1⟩ |2 = |β|2
(2.8)

Projective measurements are the name for this kind of measurement. For
pure states [50, 51], to satisfy the normality condition, the components of
the state |ψ⟩ must meet the equation Eq.2.9.

1 = | |ψ⟩ |2 = ⟨ψ|ψ⟩ = (α∗ ⟨0| + β∗ ⟨1|) · (α |0⟩ + β |1⟩) =
= α∗α ⟨0|0⟩ + α∗β ⟨0|1⟩ + β∗α ⟨1|0⟩ + β∗β ⟨1|1⟩ = |α|2 + |β|2

(2.9)

In order to create a computational model, which allows the automatic
execution of the calculation, it is necessary to be able to carry out some
elementary transformations on a single qubit or groups of qubits. These
transformations respond to precise temporal evolutions of the wave function
and can be mathematically represented through particular operators with
their specific algebra or, equivalently, by unitary matrices. From a functional
point of view, these transformations are called Quantum Gates (section
2.4.3).

Comprehending quantum processes applies the notion of entanglement,
which refers to the correlation between two or more quantum systems. This
correlation exists even when the sub-systems are not communicating directly
or indirectly and are related in a cause-and-effect relationship. An essential
and direct concept correlated is quantum teleportation, which involves the
instantaneous transmission of a quantum state from one stage to another
regardless of the distance between the particles. See Figure 2.2 and Algorithm
1 for more information. It is necessary to produce an entangled quantum
state or a Bell’s state (the four states that can be created when two qubits
are maximally entangled - Eq.2.10) for the qubit to be transmitted so that
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Figure 2.2: Quantum Teleportation

effective teleportation can be performed.

∣∣∣Φ+
〉

= |00⟩ + |11⟩√
2∣∣∣Φ−

〉
= |00⟩ − |11⟩√

2∣∣∣Ψ+
〉

= |01⟩ + |10⟩√
2∣∣∣Ψ−

〉
= |01⟩ − |10⟩√

2

(2.10)

In order to manipulate the entangled quantum state, the sender then pre-
pares the particle with information in the qubit and joins it with one of
the entangled particles in the intermediate state. The entangled particle’s
modified state is subsequently transferred to an instrument that tracks the
alteration. Information can be teleported or transmitted between two persons
in separate places if the change in measurement enables the destination to
reproduce the original information the sender possessed. The no-cloning the-
orem2 [52] is preserved as the information is regenerated from the entangled

2The no-cloning theorem states that it is impossible to implement a circuit that will
perfectly copy an unknown quantum state
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state and not copied during teleportation. That happens since the original
quantum information is definitively lost when it becomes a component of
the entanglement state.

2.4.2 Bloch’s Sphere

Equation 2.6 emphasises that a qubit may be represented as a vector of C2

and, more specifically, as a linear combination of two computational basis
eigenstates. The system of equations characterising the state is lowered by one
degree by the constraint that the state’s norm must be equal to 1, decreasing
the overall system’s degrees of freedom to three. That allows visualising a
qubit in three dimensions using a proper geometrical representation called
Bloch’s sphere (Fig.2.3).

Figure 2.3: Qubit |ψ⟩ on the Bloch’s sphere

So, two antipodal points on this unit 2-sphere type correspond to a pair
of mutually orthogonal state vectors. North and South Poles in the Bloch’s
sphere are commonly set to match the conventional basis vectors |0⟩ and |1⟩,
which may represent an electron’s spin-up and spin-down states correspond-
ingly. Other representations of the qubit are possible, all equivalent. Starting
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Algorithm 1 Quantum Teleportation - Part 1
1: In Reference to Fig.2.2, the initial state |ψ0⟩ is created from three distinct

particles. The first from the top (least significant qubit - LSQB) is in
the generic α |0⟩ + β |1⟩ state, while the others are in the zero-state.
The LSQB, |ψ⟩ = α |0⟩ + β |1⟩, contains the information to be sent.
Mathematically:

|ψ0⟩ = |0⟩ ⊗ |0⟩ ⊗ |ψ⟩ = |0⟩ ⊗ |0⟩ ⊗ (α |0⟩ + β |1⟩) = α |000⟩ + β |001⟩

2: The subcircuit characterising stage 2 of the transmission circuit is the
entangler, capable of creating a Bell state, starting from two distinct
ground-states |0⟩. In this specific case, the Bell’s state generated is

|Φ+⟩ = 1√
2

|00⟩ + 1√
2

|11⟩

So, |ψ1⟩ = |Φ+⟩ ⊗ |ψ⟩.
Now the two most significant qubits are entangled and can be

individually distributed to the sender and receiver. The initial state |ψ0⟩
will then be transformed into |ψ1⟩.

|ψ1⟩ =
((

I ⊗ |0⟩ ⟨0| +X ⊗ |1⟩ ⟨1|
)

⊗ I
)

·
(
I ⊗ H ⊗ I

)
· |ψ0⟩ =

=
√

2
2 α |000⟩ +

√
2

2 β |001⟩ +
√

2
2 α |110⟩ +

√
2

2 β |111⟩

3: Once the state |ψ1⟩ has reached the receiver, it is converted to the state
|ψ2⟩ employing a disentangling circuit

|ψ2⟩ =
(
I ⊗ I ⊗ H

)
·
(
I ⊗

(
I ⊗ |0⟩ ⟨0| +X ⊗ |1⟩ ⟨1|

))
· |ψ1⟩ =

= α

2 |000⟩ + α

2 |001⟩ + β

2 |010⟩ − β

2 |011⟩ +

+ β

2 |100⟩ − β

2 |101⟩ + α

2 |110⟩ + α

2 |111⟩
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Algorithm 1 Quantum Teleportation - Part 2
4: Four possible results are possible after measuring the two least significant

qubits
1. measurements outcomes are equal to 00, then the state |ψ3⟩ is

|ψ3⟩ = α

2 |000⟩ + β

2 |100⟩

2. measurements outcomes are equal to 01, then the state |ψ3⟩ is

|ψ3⟩ = α

2 |001⟩ − β

2 |101⟩

3. measurements outcomes are equal to 10, then the state |ψ3⟩ is

|ψ3⟩ = β

2 |010⟩ + α

2 |110⟩

4. measurements outcomes are equal to 11, then the state |ψ3⟩ is

|ψ3⟩ = −β

2 |011⟩ + α

2 |111⟩

5: At this point, it will be sufficient to use two quantum gates controlled
by the collapsed qubits, such as a cX and a cZ, to obtain always the
original state |ψ⟩ on the most significant qubit.

from Eq.2.6, it is also possible to describe the qubit in Hilbert Space as
follows mathematically:

1. Let

α = Aeiφ1 ∧ β = Beiφ2

with A ∈ R+
0 ∧B ∈ R+

0

with φ1 ∈ [0, 2π) ⊂ R ∧ φ2 ∈ [0, 2π) ⊂ R

2. From constraints in Eq.2.9, it is obtained

|α|2 + |β|2 = 1 ⇒
∣∣∣Aeiφ1

∣∣∣2 +
∣∣∣Beiφ2

∣∣∣2 = 1 =⇒ A2 +B2 = 1
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3. From constraints in 1. and 2., it is possible to write

A = cos θ2 ∧B = sin θ2 , with θ ∈ [0, π] ⊂ R

4. Constraints in 1. , 2. and 3. implies

|ψ⟩ = α |0⟩ + β |1⟩ = eiφ1 cos
(
θ

2

)
|0⟩ + eiφ2 sin

(
θ

2

)
|1⟩ =

= eiφ1

cos
(
θ

2

)
|0⟩ + eiφ2 sin

(
θ

2

)
|1⟩



5. From a purely physical point of view, the multiplicative factor eiφ1

(called global phase) is not measurable and therefore

|ψ1⟩ = eiφ1

cos
(
θ

2

)
|0⟩ + eiφ sin

(
θ

2

)
|1⟩


and

|ψ2⟩ = cos
(
θ

2

)
|0⟩ + eiφ sin

(
θ

2

)
|1⟩

are two indistinguishable states (with φ = φ2 − φ1).

6. This new mathematical description (Eq.2.11) presents two freedom
degrees and explicitly highlights that a single qubit can be imagined as a
three-dimensional vector of unit norm. These angles can be interpreted
geometrically as Euler angles in the unit sphere (Fig.2.3). Each point
on the sphere surface can be reached through the following definition:

|ψ⟩ = cos
(
θ

2

)
|0⟩ + eiφ sin

(
θ

2

)
|1⟩ (2.11)

with θ ∈ [0, π] ⊂ R and φ ∈ [0, 2π] ⊂ R.

An equivalent mathematical form to effectively represent a qubit is given by
its density matrix. Assuming that this matrix (Eq.2.12) can represent any
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2x2 unitary transformation:

U =
 a b

−eiωb∗ eiωa∗

 (2.12)

with a ∈ C ∧ b ∈ C ∧ ω ∈ [0; 2π) ⊂ R ∧ |a|2 + |b|2 = 1. The outer product
|ψ⟩ ⟨ψ| gives the density matrix (Eq.2.13) ρ of the qubit |ψ⟩ (Eq.2.11).

ρ = |ψ⟩ ⟨ψ| = cos2 θ

2 |0⟩ ⟨0| + e−iφ cos θ2 sin θ2 |0⟩ ⟨1| +

+ eiφ cos θ2 sin θ2 |1⟩ ⟨0| + sin2 θ

2 |1⟩ ⟨1| =

=
 cos2 θ

2 e−iφ cos θ
2 sin θ

2
eiφ cos θ

2 sin θ
2 sin2 θ

2

 =

= 1
2

 1 + cos θ e−iφ sin θ
eiφ sin θ 1 − cos θ

 =

= 1
2

 1 + cos θ cosφ sin θ − i sinφ sin θ
cosφ sin θ + i sinφ sin θ 1 − cos θ



(2.13)

Moreover, Equations 2.13 and 2.14 connect several equivalent qubits’ descrip-
tions: the density matrix, Pauli’s Spinors and Bloch’s vector r⃗ = (rx, ry, rz) ∈
R3.

= 1
2

 1 + rz rx − iry

rx + iry 1 − rz

 =

= 1
2

 1 0
0 1

+
 0 1

1 0

 · rx +
 0 −i
i 0

 · ry +
 1 0

0 −1

 · rz

 =

= 1
2

[
I + σx · rx + σy · ry + σz · rz

]
= 1

2

[
I + σ⃗ · r⃗

]
(2.14)

where (rx, ry, rz) = (cos θ, cosφ sin θ, cosφ sin θ) is the mathematical charac-
terisation of a point on a unit-sphere.

In quantum mechanics and group theory, the matrices I (Identity) and
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σx, σy, σz (Pauli’s matrices) constitute the so-called Pauli’s Group G1

G1
def= {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} ≡ ⟨X, Y, Z⟩ (2.15)

where

I =
 1 0

0 1

 , X = σ1 =
 0 1

1 0


Y = σ2 =

 0 −i
i 0

 , Z = σ3 =
 1 0

0 −1

 (2.16)

The eigenvectors (eigenstates) derived from the individual Pauli’s matrices
form a tern of orthonormal bases helpful in describing the qubit’s state.
The preferred basis for the computation is given by the eigenstates of the
Z-matrix, which are positioned as two antipodal points of the Bloch’s sphere
and on its Z-axis (Fig.2.4); they are labelled |0⟩ (North Pole) and |1⟩ (South
Pole) and named Computational Basis.

Alternative bases are the Hadamard Basis on the X-axis and the Circular
Basis on the Y-axis (Eq.2.17 and Table 2.1).

{|+⟩ , |−⟩} =
{√

2
2 |0⟩ +

√
2

2 |1⟩ ,
√

2
2 |0⟩ −

√
2

2 |1⟩
}

{|⟳⟩ , |⟲⟩} =
{√

2
2 |0⟩ +

√
2

2 i |1⟩ ,
√

2
2 |0⟩ −

√
2

2 i |1⟩
} (2.17)

Basis Name Generating Axis
|0⟩ , |1⟩ Computational Z

|+⟩ , |−⟩ Hadamard X
|⟳⟩ , |⟲⟩ Circular Y

Table 2.1: Basis vectors and their generating axes on the Bloch’s sphere

Any point on the Bloch’s sphere can be reached, starting from state
|0⟩ (North Pole), through the composition of three rotations around two of
the three axes X, Y, Z. The rotation matrices [53, 54] around the axes are
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Figure 2.4: The Bloch’s sphere, Pauli’s axes and their bases for quantum
computation.

respectively given in Eqs.2.18, 2.19, 2.20.

RX(θ) = e−i θ
2 ·X = exp

−iθ2 ·

0 1
1 0

 =
 cos

(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos

(
θ
2

)  (2.18)

RY (θ) = e−i θ
2 ·Y = exp

−iθ2 ·

0 −i
i 0

 =
cos

(
θ
2

)
− sin

(
θ
2

)
sin

(
θ
2

)
cos

(
θ
2

)  (2.19)

RZ(φ) = e−iφ
2 ·Z = exp

−iφ2 ·

1 0
0 −1

 =
e−iφ

2 0
0 ei

φ
2

 (2.20)

with θ and φ like in Eq.2.11. More precisely, in minimal form, a series of gates
RZ, RX , RZ , or equivalently RZ, RY , RZ , are sufficient to mathematically
describe each quantum state on the Bloch sphere, except for a global phase.

2.4.3 Quantum Transformations and Quantum Gates

A rudimentary quantum circuit using a few qubits is known as a quantum
logic gate (or just a quantum gate). Classical logic gates are the building
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blocks of traditional digital circuits, so they are the building blocks of
quantum circuits [55, 56, 57]. Taking as reference a basis of the Hilbert space,
almost always the computational basis, quantum gates are unitary operators
and are expressed as unitary matrices. Eq.2.12 can be equivalently rewritten
in the following forms:

U = ei
φ
2

 eiφ1 cos θ eiφ2 sin θ
−e−iφ2 sin θ e−iφ1 cos θ


U = ei

φ
2

 eiψ 0
0 e−iψ

 ·

 cos θ sin θ
− sin θ cos θ

 ·

 ei∆ 0
0 e−i∆


U =

 cosα − sinα
sinα cosα

 ·

 eiξ 0
0 eiζ

 ·

 cos β sin β
− sin β cos β


(2.21)

Apart from the real values to be assigned to the various parameters in
the individual equations in Eq.2.21, it is interesting to note that a unitary
matrix can be decomposed, or factorised, into simpler unitary matrices, which
depend singularly on one parameter. That suggests the actual possibility
of realising any quantum transformation on a qubit through the use and
composition of a set of elementary transformations.

The following proposes a collection of the most representative and pri-
marily used quantum gates in quantum computation.

Identity Gate

The Identity gate does not perform any changes on the qubit state. Its only
purpose is to mathematically express the results of different gate operations,
especially in multi-qubit circuits. In practical use, it can act as a delay stage,
aiding in the synchronisation of quantum transformations that take place in
both parallel and series.

Its graphical representation is given in Fig.2.5, while its mathematical
descriptions are in Eq.2.22 (expressed in Dirac’s notation and matrix notation,
respectively).
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Figure 2.5: Identity Gate.

I = |0⟩ ⟨0| + |1⟩ ⟨1|

I =
1 0

0 1

 (2.22)

X Gate

Gate X performs an exchange operation of the components of the state
vector, i.e. it transforms |0⟩ into |1⟩ and vice versa, or |ψ⟩ = α |0⟩ + β |1⟩ in
β |0⟩ + α |1⟩ (Eq.2.23).

X |0⟩ =
(
|0⟩ ⟨1| + |1⟩ ⟨0|

)
|0⟩ = |0⟩ ⟨1|0⟩ + |1⟩ ⟨0|0⟩ = |1⟩

X |1⟩ =
(
|0⟩ ⟨1| + |1⟩ ⟨0|

)
|1⟩ = |0⟩ ⟨1|1⟩ + |1⟩ ⟨0|1⟩ = |0⟩

X |ψ⟩ = X
(
α |0⟩ + β |1⟩

)
= αX |0⟩ + βX |1⟩ = β |0⟩ + α |1⟩

(2.23)

Its graphical representation is given in Fig.2.6, while its mathematical
descriptions are in Eq.2.24.

Figure 2.6: X Gate.

X = |0⟩ ⟨1| + |1⟩ ⟨0|

X =
0 1

1 0

 (2.24)

Y Gate

Gate Y performs a swap operation of the components of the state vector
and displaces state component |1⟩ of π, unless a global phase of π

2 , i.e.
it transforms |0⟩ into i |1⟩ and |1⟩ into −i |0⟩, or |ψ⟩ = α |0⟩ + β |1⟩ in
iβ |0⟩ − iα |1⟩ (Eq.2.25).

Y |0⟩ = i
(
|1⟩ ⟨0| − |0⟩ ⟨1|

)
|0⟩ = i|1⟩ ⟨0|0⟩ − i|0⟩ ⟨1|0⟩ = i |1⟩

Y |1⟩ = i
(
|1⟩ ⟨0| − |0⟩ ⟨1|

)
|1⟩ = i|1⟩ ⟨0|1⟩ − i|0⟩ ⟨1|1⟩ = −i |0⟩

Y |ψ⟩ = Y
(
α |0⟩ + β |1⟩

)
= αY |0⟩ + βY |1⟩ = iβ |0⟩ − iα |1⟩

(2.25)
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Its graphical representation is given in Fig.2.7, while its mathematical
descriptions are in Eq.2.26.

Figure 2.7: Y Gate.

Y = i
(
|1⟩ ⟨0| − |0⟩ ⟨1|

)
Y =

0 −i
i 0

 (2.26)

Z Gate

Gate Z performs a sign inversion on the quantum state’s component |1⟩ while
leaving the component |0⟩ unchanged, or |ψ⟩ = α |0⟩ + β |1⟩ in α |0⟩ − β |1⟩
(Eq.2.27).

Z |0⟩ =
(
|0⟩ ⟨0| − |1⟩ ⟨1|

)
|0⟩ = |0⟩ ⟨0|0⟩ − |1⟩ ⟨1|0⟩ = |0⟩

Z |1⟩ =
(
|0⟩ ⟨0| − |1⟩ ⟨1|

)
|1⟩ = |0⟩ ⟨0|1⟩ − |1⟩ ⟨1|1⟩ = − |1⟩

Z |ψ⟩ = Z
(
α |0⟩ + β |1⟩

)
= αZ |0⟩ + βZ |1⟩ = α |0⟩ − β |1⟩

(2.27)

Its graphical representation is given in Fig.2.8, while its mathematical
descriptions are in Eq.2.28.

Figure 2.8: Z Gate.

Z = |0⟩ ⟨0| − |1⟩ ⟨1|

Z =
1 0

0 −1

 (2.28)

H Gate

Gate H, also called Hadamard Gate, maps the computational basis vectors |0⟩
and |1⟩ into the basis vectors |+⟩ and |−⟩, respectively (Eq.2.29). Moreover,
if the computational basis state is provided, it can produce an equivalent

43



Quantum Computing

superposition state.

H |0⟩ = 1√
2
(
|0⟩ ⟨0| + |1⟩ ⟨0| + |0⟩ ⟨1| − |1⟩ ⟨1|

)
|0⟩ =

= 1√
2
(
|0⟩ ⟨0|0⟩ + |1⟩ ⟨0|0⟩ + |0⟩ ⟨1|0⟩ − |1⟩ ⟨1|0⟩

)
=

=
√

2
2 |0⟩ +

√
2

2 |1⟩

H |1⟩ = 1√
2
(
|0⟩ ⟨0| + |1⟩ ⟨0| + |0⟩ ⟨1| − |1⟩ ⟨1|

)
|1⟩ =

= 1√
2
(
|0⟩ ⟨0|1⟩ + |1⟩ ⟨0|1⟩ + |0⟩ ⟨1|1⟩ − |1⟩ ⟨1|1⟩

)
=

=
√

2
2 |0⟩ −

√
2

2 |1⟩

H |ψ⟩ = H
(
α |0⟩ + β |1⟩

)
= αH |0⟩ + βH |1⟩ =

=
√

2
2 α |0⟩ +

√
2

2 α |1⟩ +
√

2
2 β |0⟩ −

√
2

2 β |1⟩ =

= α + β√
2

|0⟩ + α− β√
2

|1⟩

(2.29)

Its graphical representation is given in Fig.2.9, while its mathematical
descriptions are in Eq.2.30.

Figure 2.9: H Gate.

H = 1√
2
(
|0⟩ ⟨0| + |1⟩ ⟨0| + |0⟩ ⟨1| − |1⟩ ⟨1|

)

H =
√

2
2

√
2

2√
2

2 −
√

2
2

 =
√

2
2
(
X + Z

) (2.30)

Some other remarkable properties can thus be derived:

• H ·H = I

• H · Z ·H = X

• H ·X ·H = Z

• H |0⟩ = |+⟩ ∧ H |1⟩ = |−⟩

• H |+⟩ = |0⟩ ∧ H |−⟩ = |1⟩
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Phase Shift Gates

Phase Shift Gates are a family of quantum gates that performs a phase
shift on the quantum state’s component |1⟩ while leaving the component |0⟩
unchanged, or |ψ⟩ = α |0⟩+β |1⟩ in α |0⟩+eiφβ |1⟩ (Eq.2.31). The phase-shift
angle is φ ∈ [0, 2π) ⊂ R.

P (φ) |0⟩ =
(
|0⟩ ⟨0| + eiφ |1⟩ ⟨1|

)
|0⟩ = |0⟩ ⟨0|0⟩ + eiφ|1⟩ ⟨1|0⟩ = |0⟩

P (φ) |1⟩ =
(
|0⟩ ⟨0| + eiφ |1⟩ ⟨1|

)
|1⟩ = |0⟩ ⟨0|1⟩ + eiφ|1⟩ ⟨1|1⟩ = eiφ |1⟩

P (φ) |ψ⟩ = P (φ)
(
α |0⟩ + β |1⟩

)
= αP (φ) |0⟩ + βP (φ) |1⟩ =

= α |0⟩ + eiφβ |1⟩
(2.31)

Its graphical representation is given in Fig.2.10, while its mathematical
descriptions are in Eq.2.32.

Figure 2.10: Phase Shift Gate.

P (φ) = |0⟩ ⟨0| + eiφ |1⟩ ⟨1|

P (φ) =
1 0

0 eiφ

 (2.32)

Gate P (φ) is a significant gate because it may be used to produce some
particularly noteworthy gates for establishing a universal base of elementary
gates for the design of compound quantum circuits:

S
def= P

(
π

2

)
=
 1 0

0 ei
π
2

 =
 1 0

0 i

 =
√
Z

T
def= P

(
π

4

)
=
 1 0

0 ei
π
4

 =
√
S = 4

√
Z

(2.33)

In addition, it is essential to notice that

P (π) =
 1 0

0 eiπ

 =
 1 0

0 −1

 = Z

That justifies S =
√
Z and T = 4

√
Z.
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CNOT Gate

The CNOT gate (Controlled NOT) acts on two qubits, where one qubit
acts as a control input while the other is a conditioned input, meaning the
output response depends on both input qubits. Tab.2.2 shows the input-
output relationship for the CNOT gate. It is an irreplaceable component
for obtaining a minimal basis of gates, acting on one or two qubits, that
guarantee the universality of computation.

Input Qubits Output Qubits
Control Target Control Target

|0⟩ |0⟩ |0⟩ |0⟩
|0⟩ |1⟩ |0⟩ |1⟩
|1⟩ |0⟩ |1⟩ |1⟩
|1⟩ |1⟩ |1⟩ |0⟩

Table 2.2: Input-output relationship for the CNOT gate

More generally, following the convention that the most significant qubit
is the control qubit and the other the target, CNOT gate applies this map:
|00⟩ 7→ |00⟩, |01⟩ 7→ |01⟩, |10⟩ 7→ |11⟩, |11⟩ 7→ |10⟩; or, equally, it transforms
the generic state |ψin⟩ into |ψout⟩, where

|ψin⟩ = c0 |00⟩ + c1 |01⟩ + c2 |10⟩ + c3 |11⟩
|ψout⟩ = c0 |00⟩ + c1 |01⟩ + c3 |10⟩ + c2 |11⟩

with (c0 , c1 , c2 , c3) ∈ C4 ∧
3∑
j=0

|cj|2 = 1
(2.34)

Its graphical representation is given in Fig.2.11, while its mathematical
descriptions are in Eq.2.35.

Figure 2.11: CNOT Gate.

CX = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


(2.35)
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The CNOT gate is, in addition, particularly essential in quantum com-
putation for three other reasons:

1. It is a fundamental item of several universal quantum gate sets, such
as the group {CX,H, S, T} or

{
RX(θ), RY (θ), RZ(φ), CX

}
.

2. Combined with the Hadamard gate, it has the capability to generate
the so-called Bell’s states, in which the two input qubits are closely
interrelated and set in entanglement (see quantum teleportation in
Section 2.4.1).

3. From a purely binary point of view, the CNOT on basis states behaves
as a reversible XOR logic gate, with two inputs and two outputs,
whose descriptive equation is CX

(
|a, b⟩

)
= |a, a⊗ b⟩. It is an essential

component for implementing reversible boolean logic and arithmetic
circuits.

Rotation Gates

The rotation operator gates perform the transformation on a single qubit
given by Equations 2.18, 2.19, 2.20. They rotate the qubit’s state around
axes of the Bloch’s sphere. They can be described by special unitary matrices,
whose rotational angle is a continuous parameter with a period equal to
4π; however, it can be restricted when represented on Bloch’s sphere, as in
Eq.2.11. Their graphical representations are shown in Fig.2.12. Referring to
Figure 2.12, the most important properties of these gates can be summarised
as follows:

(a) Rotation about X-axis: RX (θ)

1) exponential form: exp
(
−iX θ

2

)
2) matrix form:

 cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos

(
θ
2

) 
(b) Rotation about Y-axis: RY (θ)

1) exponential form: exp
(
−iY θ

2

)
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2) matrix form:
cos

(
θ
2

)
− sin

(
θ
2

)
sin

(
θ
2

)
cos

(
θ
2

) 
(c) Rotation about Z-axis: RZ (θ)

1) exponential form: exp
(
−iZ θ

2

)
2) matrix form:

e−i θ
2 0

0 ei
θ
2

 = e−i θ
2

1 0
0 eiθ

 ≡

1 0
0 eiθ

 = P (θ)

(a) (b) (c)

Figure 2.12: Rotation of an angle θ around axis: (a) X (b) Y (c) Z

Moreover, it is always possible to derivate most of the main one-qubit gates
from the composition of rotation gates; some simple examples are reported

RX (π) = −iX, RY (π) = −iY, RZ (π) = −iZ

RY

(3
2π
)

·X ·RY

(
π

2

)
= Z

Z ·RY

(3
2π
)

= H

(2.36)

2.4.4 Quantum Register and Circuits

It is possible to generate four possible states with two classic bits: 00, 01,
10, 11. In general, 2n distinct states can be constructed with n bits. Each
normalized vector in the state space created by a system of n qubits has
dimension 2n and represents a potential computational state, which we will
refer to as the n qubit quantum register.

This exponential increase in the size of state space means that a quantum
computer could process data at a rate that is exponentially faster than a
classical computer.

A quantum register with n qubits is formally a 2n dimensional Hilbert
space element, C2n , with a computational basis generated by 2n registers
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with n qubits.

|in−1⟩ ⊗ |in−2⟩ ⊗ ....⊗ |i1⟩ ⊗ |i0⟩ ij ∈ {0, 1} ∧ 0 ≤ j ≤ n− 1.

|in−1⟩|in−2⟩....|i0⟩, or more simply |in−1in−2....i0⟩, is the name for a base
vector (their set is known as computational basis). As a result, using two
qubits and the vectors |00⟩, |01⟩, |10⟩, |11⟩, we can create the computational
foundation of the state space. The vector |01⟩ can be written as |0⟩ ⊗ |1⟩,
that is the tensor product of |0⟩ e |1⟩, as shown before.

|0⟩ =
1

0

 |1⟩ =
0

1

 |01⟩ = |0⟩ ⊗ |1⟩ =


0
1
0
0

 (2.37)

For instance, a two-qubit quantum register is characterised by a complex
superposition of states, as seen in the equation below:

|ψ⟩ = α0|00⟩ + α1|01⟩ + α2|10⟩ + α3|11⟩ with
3∑
j=0

|αj|2 = 1

It is precisely with the superposition of states that quantum parallelism
occurs in all its power.

Designing a quantum algorithm means constructing a quantum circuit
formed by the series-parallel combination of elementary quantum gates:
an example circuit is shown in Fig.2.13. A quantum circuit uses different

Figure 2.13: An example of quantum circuit

models to be solved: gates are quantum operators that can be described
mathematically. The two most straightforward ways to handle operators
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and the transformations they perform on qubits are the algebra of Dirac’s
operators and the algebra of matrices. In both descriptions, the operators
are linear.

Series Circuits

A simple series circuit presents an ordered sequence of gates acting on a
single qubit, as in Fig.2.14.

Figure 2.14: An example of series circuit

The global evolution of the system, from the initial qubit’s state to the final
transformation, according to the two mathematical perspectives, is given
below.

• Dirac’s notation: Let |ψin⟩ = α |0⟩ + β |1⟩, with α and β as in
Equation 2.6,

|ψout⟩ = Y ·H ·X ·H |ψin⟩ = Y ·H ·X ·H
(
α |0⟩ + β |1⟩

)
=

= Y ·H ·X
(
α+ β√

2
|0⟩ + α− β√

2
|1⟩
)

= (from Eq.2.29)

= Y ·H
(
α+ β√

2
X |0⟩ + α− β√

2
X |1⟩

)
=

= Y ·H
(
α− β√

2
|0⟩ + α+ β√

2
|1⟩
)

= (from Eq.2.23)

= Y

(
α− β√

2
H |0⟩ + α+ β√

2
H |1⟩

)
=

= Y

(
α− β√

2
· 1√

2
(|0⟩ + |1⟩) + α+ β√

2
· 1√

2
(|0⟩ − |1⟩)

)
=

= Y

(
α− β

2 |0⟩ + α− β

2 |1⟩ + α+ β

2 |0⟩ − α+ β

2 |1⟩
)

=

= Y (α |0⟩ − β |1⟩) = αY |0⟩ − βY |1⟩ =

= iα |1⟩ + iβ |0⟩ = iβ |0⟩ + iα |1⟩ = (from Eq.2.25)

= i (β |0⟩ + α |1⟩) = ei
π
2 ·X |ψin⟩
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So, |ψout⟩ = iβ |0⟩ + iα |1⟩, while the block Y ·H ·X ·H behaves as a single
gate X except for an inconsequential global phase, ei

π
2 .

• Matricial notation: Let |ψin⟩ =
(
α

β

)
, with α and β as in Eq.2.6,

|ψout⟩ = Y ·H ·X ·H · |ψin⟩ = Y ·H ·X ·H ·
(
α

β

)
=

=
(

0 −i
i 0

)
·
(√

2
2

√
2

2√
2

2 −
√

2
2

)
·
(

0 1
1 0

)
·
(√

2
2

√
2

2√
2

2 −
√

2
2

)
·
(
α

β

)
=

=
(

0 −i
i 0

)
·
(√

2
2

√
2

2√
2

2 −
√

2
2

)
·
(

0 1
1 0

)
·

α+β√
2

α−β√
2

 =

=
(

0 −i
i 0

)
·
(√

2
2

√
2

2√
2

2 −
√

2
2

)
·

α−β√
2

α+β√
2

 =
(

0 −i
i 0

)
·
(
α

−β

)
=

=
(
iβ

iα

)
= i ·

(
β

α

)

As in the previous notation, it can be shown that the block Y ·H ·X ·H
behaves as a single gate X except for an inconsequential global phase, ei

π
2 .

Y ·H ·X ·H =
(

0 −i
i 0

)
·
(√

2
2

√
2

2√
2

2 −
√

2
2

)
·
(

0 1
1 0

)
·
(√

2
2

√
2

2√
2

2 −
√

2
2

)
=

=
(

0 i

i 0

)
= i ·

(
0 1
1 0

)
= i ·X = ei

π
2 ·X

Parallel Circuits

A simple parallel circuit presents an ordered vertical sequence of gates acting
at the same instant of time on two or more qubits, as in Fig.2.15. It is
essential to determine which should be the most significant qubit in the
binary string that is to be represented by the circuit, thus deciding whether
to start from the top or the bottom, as in Fig.2.15. The global evolution
of the system, from the initial qubits’ state to the final transformation, is
given below. The convention followed in this example is to have the most
significant qubit at the bottom of Fig.2.15, that is the most significant qubit
is |ψ1⟩.
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Figure 2.15: An example of parallel circuit

• Dirac’s notation: Let |ψ0⟩ = α |0⟩ + β |1⟩ , |ψ1⟩ = γ |0⟩ + δ |1⟩, with
(α, β, γ, δ) ∈ C4 and |α|2 + |β|2 = 1 ∧ |γ|2 + |δ|2 = 1.

|ψout⟩ = (X |ψ1⟩) ⊗ (H |ψ0⟩) = (X ⊗H) · (|ψ1⟩ ⊗ |ψ0⟩)

where

X ⊗H = 1√
2
(
|0⟩ ⟨0| + |1⟩ ⟨0| + |0⟩ ⟨1| − |1⟩ ⟨1|

)
⊗
(
|0⟩ ⟨1| + |1⟩ ⟨0|

)
=

= 1√
2
(
|00⟩ ⟨10| + |00⟩ ⟨11| + |01⟩ ⟨10| − |01⟩ ⟨11| +

+ |00⟩ ⟨10| + |00⟩ ⟨11| + |01⟩ ⟨10| − |01⟩ ⟨11|
)

and

|ψ1⟩ ⊗ |ψ0⟩ =
(
γ |0⟩ + δ |1⟩

)
⊗
(
α |0⟩ + β |1⟩

)
=

= αγ |00⟩ + βγ |01⟩ + αδ |10⟩ + βδ |11⟩

Considering that {|00⟩ , |01⟩ , |10⟩ , |11⟩} is an orthonormal basis in
Hilbert space H⊗2, the result of the computation is

|ψout⟩ = (X ⊗H) · (|ψ1⟩ ⊗ |ψ0⟩) =

= 1√
2
(
αγ |10⟩ + αγ |11⟩ + βγ |10⟩ − βγ |11⟩ +

+ αδ |00⟩ + αδ |01⟩ + βδ |00⟩ − βδ |01⟩
)

=

= αδ + βδ√
2

|00⟩ + αδ − βδ√
2

|01⟩ + αγ + βγ√
2

|10⟩ + αγ − βγ√
2

|11⟩

• Matricial notation: Let |ψ1⟩ =
γ
δ

 and |ψ0⟩ =
α
β

, with α and

β, with (α, β, γ, δ) ∈ C4 and |α|2 + |β|2 = 1 ∧ |γ|2 + |δ|2 = 1.
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So,

|ψout⟩ = (X ⊗H) · (|ψ1⟩ ⊗ |ψ0⟩) =

=


0 1

1 0

⊗


√

2
2

√
2

2
√

2
2 −

√
2

2


 ·

γ
δ

⊗

α
β

 =

=



0 0
√

2
2

√
2

2

0 0
√

2
2 −

√
2

2

√
2

2

√
2

2 0 0

√
2

2 −
√

2
2 0 0


·



αγ

βγ

αδ

βδ


=



√
2αδ
2 +

√
2βδ
2

√
2αδ
2 −

√
2βδ
2

√
2αγ
2 +

√
2βγ
2

√
2αγ
2 −

√
2βγ
2


=

=



αδ+βδ√
2

αδ−βδ√
2

αγ+βγ√
2

αγ−βγ√
2


This result perfectly fits with what was previously obtained with the
Dirac’s notation, confirming the equivalence of the two notations.

2.4.5 An example of quantum circuit: the entangler
circuit

The entangler (Fig.2.16) is an example of a circuit/algorithm used to
generate a specific element of Bell’s base (Eq.2.10) from state |00⟩. Equation
2.38 explains how qubits behave based on the chosen ordering convention
for this circuit. In this case, the convention utilised is the Most Significant
Qubit at the top.
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Figure 2.16: Entangler Circuit

|ψout⟩ = CX ·
(
H ⊗X

)
· |00⟩ =

=
(
|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X

)
·
(
H ⊗X

)
· |00⟩ =

=
(
|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X

)
·
(
H ⊗X

)
· (|0⟩ ⊗ |0⟩) =

=
(
|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X

)
·
(
H |0⟩ ⊗X |0⟩

)
=

=
(
|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X

)
· 1√

2
(
(|0⟩ + |1⟩) ⊗ |1⟩

)
=

= 1√
2
(
|0⟩ ⟨0|0⟩ + |0⟩ ⟨0|1⟩

)
⊗
(
I |1⟩

)
+

+ 1√
2
(
|1⟩ ⟨1|0⟩ + |1⟩ ⟨1|1⟩

)
⊗
(
X |1⟩

)
=

= 1√
2
(
|0⟩ ⊗ |1⟩

)
+ 1√

2
(
|1⟩ ⊗ |0⟩

)
= 1√

2
|01⟩ + 1√

2
|10⟩

(2.38)

An utterly equivalent result can be obtained using matrix algebra
(Eq.3.18). Table 2.3 shows the probability distribution obtained after a
measurement process on the two qubits for the quantum state in Eq.2.38.

|ψ⟩ Probability

component amplitude distribution

|00⟩ 0 0
|01⟩ 1√

2
1
2

|10⟩ 1√
2

1
2

|11⟩ 0 0

Table 2.3: Component States of |ψout⟩ and their probability distribution

In order to verify the correctness of the theoretical results, the quantum
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entangler circuit is implemented, first using a Python programming language
library dedicated to quantum circuit simulation (Qiskit3) and then IBM’s
cloud environment, IBM Quantum Experience4, which among other things,
allows theoretical results to be verified by giving access to real quantum
computers. Section 4.2 describes some cloud platforms for quantum circuit
simulation, including IBM Quantum Experience. Using the Qiskit’s con-
ventions, the Entangler circuit is depicted in Fig.2.17. In Fig.2.18a, the

Figure 2.17: Circuit for Entangler using Qiskit

components of the output state can be seen (their phases are indicated by
the colours given by the bar in Fig.2.18c). Fig.2.18b shows the probability
distributions on the states of the computational basis obtained from the
measurement process on observable Z; the number of samples used is 8,192.

The same circuit was subsequently loaded onto IBM’s quantum computer,
named ibmq_manila, with 5 qubits, Quantum Volume (QV) equal to 32,
Circuit Layer Operation per Second (CLOPS) equal to 2.8K, quantum
processor model Falcon r5.11L; in order to better understand the impressive
performance of the ibm_manila platform, Figure 2.19 displays some technical
data about this small quantum computer, which consists of only five qubits.

The Probability Distribution is shown in Fig.2.20.
Executing a job on a real quantum computer is not an ideal process, so

measured samples inevitably appear on components of the computational
3https://qiskit.org/
4https://quantum-computing.ibm.com
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a ) Probability Amplitudes

b ) Probability Distribution of Samples (8,192 shots)

c ) Phase Bar

Figure 2.18: Probability Amplitudes of the output state in the Entangler

basis that theoretically should not be present (in the specific case of Fig.2.20,
there are minor spurious measurements on |00⟩ and |11⟩).

In Chapter 4, some of the most common quantum algorithms are pre-
sented, and three quantum algorithms able to take an exponential advantage
from the superposition of states will be analysed in detail:

• the Deutsch–Jozsa’s algorithm
• the Grover’s algorithm
• the Shor’s algorithm
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Figure 2.19: Technical characteristics for ibm_manila system

Figure 2.20: Probability Distribution of Samples (8,192 shots) on ibm_manila
system

57



Quantum Computing

2.5 Conclusions

Quantum computing is a rapidly evolving field that aims to harness quantum
mechanics’ strange and counter-intuitive properties to process information in
fundamentally different ways from classical computers. Qubits are quantum
two-level systems that can be represented using a vector in a two-dimensional
Hilbert space. Unlike classical bits, which can only exist in one of two possible
states (0 or 1), qubits can be in a superposition of both states. That means
a qubit can be in a form that is a linear combination of the 0 and 1 states.
When a qubit is measured, it collapses into one of its two possible states
with a probability determined by the superposition coefficients. Another
essential property of qubits is entanglement, which occurs when two or
more qubits are correlated in such a way that the state of one qubit is
dependent on the state of the other qubit. Entanglement is a non-local
property of quantum systems that allows for the possibility of quantum
teleportation and other exotic phenomena. Qubits can be implemented using
various physical systems, such as trapped ions, superconducting circuits,
and nitrogen vacancy centres in diamonds. Each of these systems has its
advantages and challenges, and researchers are actively exploring different
qubit implementations to determine which will be the most practical for large-
scale quantum computing. One of the most promising applications of qubits
is in quantum computing. Quantum computers are based on quantum circuits
built from gates that manipulate the state of one or more qubits. Quantum
circuits can be used to perform a variety of operations, such as factorization
and searching, that are exponentially faster than the best-known classical
algorithms. Another notable application of qubits is in quantum simulation.
Quantum simulation involves using a quantum computer to emulate the
behaviour of quantum systems that are too complex to be simulated on
classical computers. It has applications in fields such as chemistry, where
quantum simulations can study the behaviour of complex molecules and
materials. In addition to quantum computing and simulation, qubits have
other potential applications in fields such as cryptography and metrology.
For example, qubits can be used to implement quantum key distribution,
a method for secure communication that is impossible to eavesdrop on
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without disturbing the quantum state. Qubits can also be used to implement
quantum metrology, which involves using quantum systems to make precise
measurements of physical quantities such as time and magnetic fields. Despite
the tremendous promise of qubits, significant challenges must be overcome
before large-scale quantum computing can become a reality. One of the
biggest challenges is decoherence, which occurs when the quantum state of
a qubit is disturbed by its environment. Decoherence can cause errors in
quantum circuits and limit the number of qubits that can be reliably operated.
Researchers are exploring diverse techniques to mitigate decoherence, such
as error correction and fault-tolerant quantum computing.

To sum up, qubits are the basic units of quantum computing and work
differently than classical computers. They can be in multiple states simulta-
neously and connected to each other. This unique function allows qubits to
perform specific calculations exponentially faster than classical computers.
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Optical Quantum Computing

3.1 Introduction

Photon chips are one of the most promising platforms for quantum computing.
They have several advantages over other physical systems, such as ions or
superconducting qubits, that make them particularly suitable for specific
quantum computing tasks.

The first advantage is there is no need for ultra-cold environments: indeed,
superconducting or ion-trap qubits require extremely low temperatures,
almost close to absolute zero, or very extreme low pressure to operate. This
requires complex and costly cooling systems. On the other hand, photonic
quantum systems can function at room temperature, which makes them
more practical for some applications.

Photons’ inherent ability to travel long distances without significant loss
of coherence is an important advantage. That makes them ideal for use in
quantum communication, where quantum information is transmitted over
large distances through optical fibres or free-space channels. Photons are
already a well-established technology for quantum communication, with
several commercial applications such as quantum key distribution and secure
transmission. Another benefit of photons is their ability to be manipulated
using linear optical devices such as beam splitters, phase shifters, and
polarizers. The main difficulty in using photons for quantum computing is
their lack of strong interactions with each other. So, to perform entangling
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operations between two photons, it is necessary to use a non-linear optical
element, which is typically weak and hard to control. However, recent
advances in materials science have led to the development of new types
of non-linear optical materials, such as diamond nitrogen-vacancy centres,
that can be used to implement high-fidelity two-qubit gates between photons.

Moreover, photonic systems offer a pathway to scalability through quan-
tum frequency combs or integrated photonic circuits. While scaling up
remains a challenge for all quantum systems, photons provide a range of
possibilities.

Performing quantum computation with photons faces the challenge of
efficiently detecting single photons. Reliable detection of individual photons
with high efficiency is necessary to perform accurate quantum computation.
Several technologies for photon detection exist, including single-photon
avalanche photodiodes (SPADs) and transition-edge sensors (TESs), but
each has its strengths and weaknesses. However, the use of photons in
quantum computing has already led to several impressive demonstrations
of quantum algorithms, including reduced and simplified versions of Shor’s
algorithm for factoring large numbers and Grover’s algorithm for database
search. In addition to quantum computing and communication, photons are
also being explored in other quantum technologies, such as quantum sensing
and metrology.

It is essential to comprehend that each type of quantum technology
- whether it is photonic, ion-trap or superconducting - has its own set
of advantages and limitations. Depending on the application or task, one
of these technologies may be better suited than the others. For example,
superconducting qubits have made remarkable progress in terms of coherence
times and error rates, while ion traps provide a high degree of control over
individual qubits. Therefore, although photonic quantum technology offers
numerous benefits, it does not render the other technologies useless. The
future of quantum technology and computing may involve a hybrid approach
that combines the strengths of each platform.

This chapter will mainly focus on photonics technology for the reasons
mentioned above and due to the author’s curiosity and interest in them.
It should be noted that the advent of hybrid quantum systems can indeed
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offer one potential solution to the problems that the different technologies
provide.

3.2 Qubits and Qumodes

While a qubit is a quantum mechanical system that can exist in two states,
commonly referred to as |0⟩ and |1⟩, or in a superposition of them, a qumode
is a quantum mechanical system that can exist in a continuum of states. In
other words, instead of having discrete states like qubits, qumodes can have
an infinite number of possible states (Eq.3.1).

qubit |ϕ⟩ = α |0⟩ + β |1⟩

qumode |ψ⟩ =
∫
dx ψ(x) |x⟩

(3.1)

The most common example of a qumode is the electromagnetic field, which
can be used to implement continuous-variable quantum computing. In
continuous-variable quantum computing (CV model), qumodes are manip-
ulated using operations that change the amplitude and phase of the elec-
tromagnetic field. These operations are typically implemented using optical
devices such as beam splitters, phase shifters, and squeezers. By manipu-
lating the electromagnetic field, continuous-variable quantum computers
can simultaneously perform operations on multiple qumodes, making them
potentially more powerful than discrete-variable quantum computers, such as
those based on the qubit. In optics, the discrete-variable quantum computing
(DV model) employs two optical modes, such as optical fibres or orthogonal
free propagation, to transmit pairs of photons. The presence or absence of a
photon in each fibre or its polarization indicates the two potential states of
a qubit. Modifying the phase of one photon in each pair makes it feasible to
carry out quantum operations on the equivalent qubit’s description.

A possible application of these two models is Quantum Machine Learning
(QML). Chapter 5 will present two parallel examples of QML applied to the
same dataset, one using the fermionic discrete variable model and the other
using the bosonic continuous variable model. In the following paragraphs,
some basic concepts for helping to understand the two models will be
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illustrated: for the CV model, the main gates used for the computation
will be listed, but above all, the ones useful for understanding the second
part of Chapter 5, where an example of this model applied to Quantum
Machine Learning will be shown; the DV model will be illustrated a little
more in-depth because of the similarities it has with the model of classical
quantum computation, i.e. the one with fermions and qubits.

3.2.1 CV Quantum Gates

A way to encode information in a continuous variable model with photons
is by using a technique called Gaussian encoding, as it uses the Gaussian
states of bosons.

The vacuum state |0⟩ is the primary and essential state from which all
other states can be produced. By evolving the vacuum state with a bosonic
Hamiltonian H and evolution time t, it is possible to generate all other
states expressed as |ψ⟩ = exp(−itH) |0⟩. The resulting states are called
Gaussian if the Hamiltonian H is at most quadratic in the operators x̂ and p̂.
Equation 3.2 reports some Gaussian states useful in quantum computation.
The coherent state and the squeezed state can be respectively obtained by
applying the displacement operator (Eq.3.5) and the squeezing operator
(Eq.3.4) to the vacuum state.

vacuum state |0⟩ = 1
4
√
πℏ

∫
dx e−x2/(2ℏ) |x⟩

coherent state |α⟩ = D(α) |0⟩ with α ∈ C

squeezed state |z⟩ = S(z) |0⟩ with z ∈ C

(3.2)

In Gaussian encoding, the information is encoded in the amplitude and
phase of a coherent state of light, a quantum state that behaves similarly to
classical light. The amplitude and phase can represent binary information,
with the amplitude corresponding to a ’0’ or ’1’ value and the phase related
to the sign of the value. Various quantum operations can be applied to the
state to manipulate the encoded information, such as squeezing, displace-
ment, and phase shifts. These operations can be performed using linear
optical components such as beam splitters and phase shifters or non-linear
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components such as Kerr Gate or Cubic Phase Gate. The mathematical
transformations performed by the main gates used in CV are listed below:

Rotational Gate

Phase space rotational gate (single-mode gate), useful to rotate mean value
and variation of the bosonic distribution in the phase space diagram.

R(ϕ) = exp
(
iϕâ†â

)
= exp

(
i
ϕ

2

(
x̂2 + p̂2

ℏ
− 1̂

))
(3.3)

where ϕ ∈ [0; 2π) ⊂ R

Squeezing Gate

Phase space squeezing gate (single-mode gate), useful to squeeze and rotate
mean value and variation of the bosonic distribution in the phase space
diagram.

S(z) = exp
(1

2
(
z∗â2 − zâ† 2

))
= exp

(
r

2
(
e−iϕâ2 − eiϕâ† 2

))
(3.4)

where z = reiϕ with r ∈ R | r ⩾ 0 ∧ ϕ ∈ [0; 2π) ⊂ R

Displacement Gate

Phase space displacement gate (single-mode gate), useful to shift the mean
value and variation of the bosonic distribution in the phase space diagram.

D(z) = exp(za† − z∗a) = exp
−i

√
2
ℏ

(Re(z)p̂− Im(z)x̂)
 (3.5)

where z = reiϕ with r ∈ R | r ⩾ 0 ∧ ϕ ∈ [0; 2π) ⊂ R
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Kerr Gate

The Kerr interaction gate (single-mode gate) is useful for applying a specific
non-linear effect on the bosonic distribution.

K(κ) = exp
(
iκn̂2

)
(3.6)

with κ real constant for Kerr effect and n̂ is the Number Operator.

Beam Splitter Gate

Beamsplitter interaction gate (two-modes gate), helpful for creating a quan-
tum superposition effect.

BS(θ, ϕ) = exp
(
θ
(
eiϕâb̂† − e−iϕâ†b̂

))
(3.7)

where θ ∈ [0; 2π) ⊂ R ∧ ϕ ∈ [0; 2π) ⊂ R.
Let |α, β⟩ a coherent state, the beamsplitter transforms it to a new coherent
state |α′, β′⟩ in such a way that

α′ = α cos θ − βe−iϕ sin θ = tα− r∗β

β′ = β cos θ + αeiϕ sin θ = tβ + rα

where t = cos θ, called transmittivity amplitude of the beamsplitter and
r = eiϕ sin θ, named reflectivity amplitude of the beamsplitter.

Two-mode Squeezing Gate

Two-mode squeezing interaction (two-modes gate), used to perform some
non-linear effects, such as entanglement.

S2(z) = exp
(
zâ†

1â
†
2 − z∗â1â2

)
= exp

(
r(eiϕâ†

1â
†
2 − e−iϕâ1â2

)
(3.8)

where z = reiϕ with r ∈ R | r ⩾ 0 ∧ ϕ ∈ [0; 2π) ⊂ R.
It is also equivalent to two opposite local squeezers sandwiched between
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two 50% phase-less beamsplitters:

S2(z) = BS†
(
π

4 , 0
)

· [S(z) ⊗ S(−z)] ·BS
(
π

4 , 0
)

CrossKerr Gate

Two-mode Kerr interaction gate (two-modes gate)

CK(κ) = exp
(
iκn̂2

1n̂
2
2

)
(3.9)

with κ real constant for Kerr effect and n̂i is the Number Operator on each
mode.

3.2.2 DV Quantum Circuits

A Discrete Variable quantum circuit may be implemented using an optical
circuit. There are several alternative encodings, such as spatial modes encod-
ing and polarisation modes encoding. Each qubit in a quantum circuit has a
pair of spatial qumodes when using spatial modes encoding; in this chapter,
the terms modes and qumodes will always be synonymous for quantum
optical modes. One photon in one of the spatial modes corresponds to each
qubit state in a Fock state1: so, the quantum state |0⟩ can be encoded as
|1, 0⟩ in spatial mode, where one photon is in the first qumode, and no
photons are in the second one; consequently, the quantum state |1⟩ can be
encoded as |0, 1⟩. This model is called Dual Rail Mode.

In other words, two spatial modes are used to represent each qubit,
with one mode corresponding to the logical 0-state (0L) and the other
mode corresponding to the logical 1-state (1L). The qubit state is then
encoded as a superposition of the two spatial modes, with the relative
amplitudes of the modes determining the probability of measuring the
qubit in the 0 or 1 state [58]. One advantage of using spatial modes for

1The Fock space is a mathematical construction used to describe the quantum states
of a system of identical particles, such as electrons, photons, or atoms. It is a Hilbert
space that is built up from a vacuum state, which represents the absence of any particles,
and a set of creation and annihilation operators, which create and destroy particles. The
Fock space is a powerful tool for calculating the probabilities of different quantum states
of a system of identical particles.
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dual rail encoding in optical quantum computing is that the modes can
be easily manipulated using optical components such as beam splitters
and phase shifters. That allows for implementing quantum gates that can
operate on multiple qubits simultaneously, which is essential for scaling up
quantum computing systems. Moreover, spatial mode encoding can encode
multiple qubits in a single photon, simplifying the hardware requirements
for building a quantum computing system. For example, a single photon
can be encoded with four spatial modes to represent two qubits, allowing
for the implementation of multi-qubit gates with a single photon source
[59]. However, implementing spatial mode encoding in optical quantum
computing also has some challenges, such as the need for high-quality photon
sources, precise control of optical components, the mitigation of errors due
to imperfections in the encoding and decoding processes and the extreme
difficulty of implementing a deterministic CNOT gate, or a CZ (Controlled
Z gate), using only linear optics. Nevertheless, this approach holds promise
for developing scalable and fault-tolerant quantum computing systems based
on optical technologies.

Another possible coding is related to the prospect of using a single photon
to represent a quantum state in a truncated Fock’s space (finite Fock’s space).
Such a form of arithmetic representation would be equivalent to writing the
natural numbers in base 1 and it is called Single-Photon Mode. Thus in a
Fock’s space with four qumodes, the various states could be described as in
Tab.3.1. In the second column of the table, we find the classical representation
of the qubit in a Hilbert’s space, as already presented in section 2.4.4. In the
third and fourth columns, the information is encoded in a Fock’s space with
four qumodes and one photon, whose position determines the number natural
to represent; they represent two equivalent conventions: least significant digit
to the left or the right. The most commonly used convention is that relating
to the third column, as it is strongly affine to the definition of quantum
register in Eq.2.37.

Quantum Optical Linear Circuit (QOLC) is a linear optical circuit that
is used to manipulate quantum states of light. It is composed of passive
linear optical elements, such as beam splitters and phase shifters, and
single-photon detectors. The beam splitter and the phase shifter can be
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Qubit qumode qumodeNumber Hilbert Fock Fock
0 |00⟩ |1, 0, 0, 0⟩ |0, 0, 0, 1⟩
1 |01⟩ |0, 1, 0, 0⟩ |0, 0, 1, 0⟩
2 |10⟩ |0, 0, 1, 0⟩ |0, 1, 0, 0⟩
3 |11⟩ |0, 0, 0, 1⟩ |1, 0, 0, 0⟩

Table 3.1: Example of possible encodings for qubits in Single-Photon Mode

described mathematically through a unitary Gaussian matrix and consti-
tute the reprogrammable part for the optical quantum chip [60]; quadratic
Hamiltonians generate them in the creation and annihilation operators â†

and â, respectively. The composition of a QOLC is critical to its operation
and performance. The main components of a QOLC are:

• Input port: it is a physical port where the quantum state of light is
introduced into the circuit. The input port can be a single-mode or
multi-mode fibre, depending on the application; it must be designed
to minimise losses and maintain the coherence of the quantum state.

A single photon source is always present upstream of the input port.
During its propagation within the quantum circuit, its distribution wave
is processed to enable computation. Single photon sources are defined by
specifying parameters such as brightness, purity or indistinguishability
[61, 62, 63]. The model that describes a single photon source is the
perfect/imperfect quantum-dot-based single-photon source obtained
by a statistical combination of Fock states.

• Phase shifters: they are passive linear optical elements that change
the phase of a beam of light. Phase shifters are used to adjust the
photon’s phase to create interference patterns and manipulate the
quantum state of light.

It has one parameter, the phase shift θ, with θ ∈ [0; 2π] ⊂ R and ℏ is
the reduced Planck’s constant.

The Hamiltonian and the Unitary (Eq.3.3) for this optical element are

H = ℏθâ†â 7→ U(θ) = exp(iθâ†â) (3.10)
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So, the transformed mode, that is the output qumode, is given by the
following equation:

b̂ = U(θ)âU †(θ) = âeiθ (3.11)

Therefore, the phase shifter is an optical element acting on a single
qumode. Figure 3.1 depicts the graphic symbol used in quantum optical
circuits for phase shifters.

Figure 3.1: Phase Shifter gate

• Beam splitters: they are passive linear optical elements that split
a beam of light into two or more beams (cf. Section 3.2.1). Beam
splitters are the primary building blocks of a QOLC. They are used
to separate and recombine photons. By adjusting the reflectivity and
transmissivity of the beam splitter, interference patterns can be created
to manipulate the quantum state of light. In certain encoding forms,
such as Single Photon Mode, they are also used to produce entangled
states, a critical resource for quantum communication and quantum
computing.

The Hamiltonian and the Unitary (Eq.3.7, with a natural phase reflec-
tion equal to λ

4 , that is ϕ = π
2 ) for this optical element are

H = ℏ
θ

2 â
†
1â2 + ℏ

θ

2 â
†
2â1 7→ U(θ) = exp

(
i
θ

2(â†
1â2 + â†

2â1)
)

(3.12)

So, the transformed mode, that is the output qumode, is given by the
following equation:b̂1

b̂2

 =
 cos θ

2 i sin θ
2

i sin θ
2 cos θ

2

 ·

â1

â2

 with θ ∈ [0, 4π] ⊂ R (3.13)
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where â†
1 and â†

2 are the creation operators for the input photons
in ports 1 and 2, respectively. The annihilation operators â1 and â2

are related to the creation operators by the commutation relation
[âi, â†

j] = δij. The creation operators b̂†
1 and b̂†

2 represent the creation
of a photon in the output ports 1 and 2, respectively. The parameter
θ is the angle of the beam splitter and determines the splitting ratio
between the input modes.

The action of the beam splitter operator can be understood as follows:
a photon entering the beam splitter from input mode 1 has a probabil-
ity amplitude of cos(θ/2) to exit from output mode 1 and a probability
amplitude of i sin(θ/2) to exit from output mode 2. Similarly, a pho-
ton entering the beam splitter from input mode 2 has a probability
amplitude of cos(θ/2) to exit from output mode 2 and a probability
amplitude of i sin(θ/2) to exit from output mode 1.

Therefore, the beam splitter is an optical element acting on two
qumodes. Figure 3.2 depicts the graphic symbol used in quantum
optical circuits for beam splitters. A mainly employed passive optical

Figure 3.2: Beam Splitter gate

element is the symmetrical beam splitter, got when θ = π
2 . That implies

the Eq.3.14 from Eq.3.13.
b̂1

b̂2

 =


√

2
2

√
2

2 i

√
2

2 i
√

2
2

·

â1

â2

 (3.14)

• Detectors: they detect the photons that exit the circuit. Single-photon
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detectors are typically used in QOLC, as they can detect individual
photons. They must also be designed to maximise detection efficiency
and minimise noise.

By appropriately combining beam splitters and phase shifters, it is possible
to construct a quantum optical circuit that can simulate any unitary trans-
formation in the Single Photon Mode case. This model is straightforward
to be used for building quantum optical circuits but has the major disad-
vantage of very low scalability: in fact, each quantum state must necessarily
correspond to a qumode, effectively eliminating the advantage of exponential
computability (for example, a system with 5 qubits, with a unitary matrix
of size 32x32, the equivalent optical circuit would need 32 qumodes).

Other more scalable solutions, such as the Dual Rail Mode, have other
disadvantages: one of the main ones is the possibility of realising the entan-
glement between two photons using only linear optics due to the tendency of
several photons to aggregate on the same quantum state (Pauli’s exclusion
principle is not valid for bosons). Entanglement is crucial to define a universal
basis of gates useful in quantum computing. To this purpose, it is possible to
use ancillary qumodes (called heralds), whose information helps filter out all
the unnecessary states generated by the circuit. Also in this case, however,
the number of qumodes required to implement the various CNOT gates will
be high.

Over time, various solutions have been proposed to mitigate these draw-
backs; taking into account that the measurement process in quantum me-
chanics introduces a strong non-linearity, the introduction of quantum tele-
portation and one-way cluster computation mechanisms into the circuit
seems to be promising solutions. Also, using active nonlinear gates, which
employ weak nonlinear iterations between photons (such as the Cross-Kerr
gate - see paragraph 3.2.1), could open a way to manage universal quantum
information. Once the photons are fed into the circuit through the source,
using only intermediate linear quantum gates, because of the conservation
of total energy, the number of input photons will necessarily be equal to the
number of output photons. Their redistribution between individual modes
and relative counting of them will determine the output state. In the case of
n photons on an input port with m qumodes, a possible base output state,
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using finite Fock’s state description, is

|ψ⟩ = |k0, k1, ... , km−1⟩

with kj ∈ N ∧ 0 ≤ j ≤ m− 1 ∧ m ∈ N ∧
m−1∑
j=0

kj = n
(3.15)

The linear combination of several base states will thus give any output state.
Therefore, the number of elements making up the canonical basis is granted
by the formula Cm+n−1

n =
(
m+n−1

n

)
, number of n-element combinations of m

objects, with repetition.
For example, in a system with 3 qumodes and 2 photons, the base states

are
(

3+2−1
2

)
= 6 and they are

|2, 0, 0⟩ , |1, 1, 0⟩ , |1, 0, 1⟩ , |0, 2, 0⟩ , |0, 1, 1⟩ , |0, 0, 2⟩

The states |2, 0, 0⟩ , |0, 2, 0⟩ , |0, 0, 2⟩ should not cause consternation since
bosons, unlike fermions, do not respond to the Pauli’s Exclusion Principle
and can therefore accumulate in large numbers on the same quantum state
(or in the same mode, in the present case).

So, any quantum state in such a system is a linear combination of these
six base states. Finally, by sampling the output photons using SPD (Single-
Photon Detectors), it is possible to determine the probability of each base
state composing the output state.

This approach is based on the Boson Sampling concept.

Boson Sampling

Boson Sampling is a quantum computing problem that aims to demonstrate
the computational supremacy of quantum computers over classical comput-
ers. It is a particular case of the more general problem of computing the
permanent of a matrix, known as #P-hard, meaning that it is challenging to
solve even with the most powerful classical computers. In Boson Sampling,
photons are sent through a complex network of optical devices, such as beam
splitters and phase shifters, and then detected at the output [64, 65, 66,
67]. The probability distribution of the photons’ final positions is calculated,
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which can be represented by the probability matrix. The crucial point is
that this probability matrix is difficult to calculate efficiently on a classical
computer, even for relatively small numbers of photons and optical devices.
In contrast, a quantum computer can efficiently simulate this process using
a few dozen photons and optical devices, demonstrating the potential for
quantum computing to outperform classical computing in specific tasks.
Boson Sampling is an essential step towards building large-scale quantum
computers that can solve problems beyond the capabilities of classical com-
puters. However, it is worth noting that it is not yet clear whether Boson
Sampling can be used to solve practical problems, as the problem it solves
is highly specialized and does not seem to have practical applications.

Next sections present examples of implementing quantum gates using
spatial modes encoding and linear optical components:

• the entangler circuit in Single Photon Mode

• the entangler circuit in Dual Rail Mode

3.3 The entangler circuit in Single Photon
Mode

This section will present the circuit implementation of an Entangler (Fig.2.16,
Eq.2.38) using linear quantum optics. The circuit was built and tested with
the Perceval software2 [68], and the results obtained were later compared
with the outcome got from a true quantum optical computer in the cloud,
Quandela Cloud3. Consequently, for displaying the various gates in the
circuit, the graphical and mathematical conventions given by the software
are followed4.

The label on the graphic symbol indicates the type of transformation
operated by the beam-splitter; in the case of Rx, it refers to the typical
type of beam splitter (Eq.3.13), with a transformation that rotates the input
state by a rotation of theta angle about the X-axis in the Poincaré’s sphere

2https://perceval.quandela.net/docs/index.html
3https://cloud.quandela.com/webide/login
4https://perceval.quandela.net/docs/components.html
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(in optics, the equivalent representation of the Bloch’s sphere for the qubits).
Ry performs a rotation around the analogous Y axis: its transformation
matrix is given by Eq.3.16. H performs a Hadamard’s transformation with
a representation matrix described by Eq. 3.17.

b̂1

b̂2

 =
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

 ·

â1

â2

 (3.16)

b̂1

b̂2

 =


√

2
2

√
2

2
√

2
2 −

√
2

2

·

â1

â2

 (3.17)

The unitary matrix that characterises the transformation is

U = CX · (H ⊗X) =



0
√

2
2 0

√
2

2
√

2
2 0

√
2

2 0
√

2
2 0 −

√
2

2 0

0
√

2
2 0 −

√
2

2


(3.18)

There are several methods for implementing an optical circuit, starting
from a unitary matrix defining the transformation of the quantum states
under examination [69, 70]. The original matrix U must first be decomposed
into products of unitary block matrices (Tj) and a diagonal matrix (D),
that is U =

(∏m
j=1 Tj

†
)

·D; the single blocks, normally matrices belonging
to the SU(2) group, can be reproduced through universal transformations,
such as those of the Equations 2.21, and then implemented with a series
of beam splitters and phase shifters. Different optimisations are obviously
attainable to improve this procedure to design an actual physical circuit
[71, 72]. Suppose one uses the optical components shown in Figure 3.3 (one
conventional beam splitter with variable transmissibility angle - θ - and two
phase shifters with varying angles - α and β) as the basic block. In that case,
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Figure 3.3: A possible base for block submatrices.

the submatrix obtained for the generic block T will be given by Eq.3.19.

T =
eiα 0

0 eiβ

 ·

 cos θ
2 i sin θ

2
i sin θ

2 cos θ
2

 (3.19)

The final circuit is obtained from the composition of the basic blocks
and an initial array of phase shifters, as in Fig.3.4. Furthermore, the values
of the individual parameters necessary to obtain the required quantum
transformation, described by Eq.3.18, are reported too.

Figure 3.4: A possible optical implementation for the Entangler

Simulations in Perceval (Fig.3.5 and Fig.3.6) confirm theorical outcomes in
Eq.3.20. Measurements on output states show that the probability distribu-
tion is 50% for both states |0, 1, 0, 0⟩ and |0, 0, 1, 0⟩.
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Figure 3.5: Results obtained by simulating the optical entangler in Perceval

Figure 3.6: Probability obtained by simulating the optical entangler in
Perceval with input state |1, 0, 0, 0⟩
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U |1, 0, 0, 0⟩ 7→ 1√
2

|0, 1, 0, 0⟩ + 1√
2

|0, 0, 1, 0⟩

U |0, 1, 0, 0⟩ 7→ 1√
2

|1, 0, 0, 0⟩ + 1√
2

|0, 0, 0, 1⟩

U |0, 0, 1, 0⟩ 7→ 1√
2

|0, 1, 0, 0⟩ − 1√
2

|0, 0, 1, 0⟩

U |0, 0, 0, 1⟩ 7→ 1√
2

|1, 0, 0, 0⟩ − 1√
2

|0, 0, 0, 1⟩

(3.20)

The same circuit was subjected to a real optical quantum computer:
the Ascella QPU, on Quandela’s Cloud platform. One can see the presence
of spurious states (Eq.3.21) due to three types of technical imperfections:
the imperfection of the photon source (which can emit spurious photons
on some other modes); the imperfection of the output photon detectors
(which can fail the correct counting of some photons); the imperfection of
the circuit’s constituent elements that produce noise. The numbers on the
right indicate the frequency of occurrence of the individual states (left-hand
labels) following photon counting on the output detectors out of 100,000
initial samples. However, the consistency of the result with those obtained
theoretically and with the simulator is perceptible: indeed, state |0, 1, 0, 0⟩
has about 45% probability on the whole sample set, while state |0, 0, 1, 0⟩
has about 55%, consistent with theoretical results.
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|1, 0, 0, 0⟩ : 14
|0, 1, 0, 0⟩ : 107, 571
|0, 0, 1, 0⟩ : 136, 267
|0, 0, 0, 1⟩ : 3, 086
|1, 1, 0, 0⟩ : 0
|1, 0, 1, 0⟩ : 0
|1, 0, 0, 1⟩ : 0
|0, 1, 1, 0⟩ : 26
|0, 1, 0, 1⟩ : 1
|0, 0, 1, 1⟩ : 0
|1, 1, 1, 0⟩ : 0
|1, 1, 0, 1⟩ : 0
|1, 0, 1, 1⟩ : 0
|0, 1, 1, 1⟩ : 0
|1, 1, 1, 1⟩ : 0

(3.21)

3.4 The entangler circuit in Dual Rail Mode

As said before, a quantum optical spatial dual rail circuit is a type of quantum
circuit that operates on photons using a spatial encoding scheme called dual-
rail encoding. This scheme divides a single photon into two separate spatial
modes: the signal and idler modes. These two modes can be considered two
separate paths. The dual rail encoding scheme helps to perform quantum
computations because it allows for the encoding of quantum information
in a robust way against certain types of errors. For example, the dual rail
encoding can be used to encode a qubit, where the presence or absence of a
photon in the signal mode represents the logical state |0⟩L, and the presence
or absence of a photon in the idler mode means the logical state |1⟩L.

So, in this specific case, the state |1, 0⟩ has been chosen for logic state
|0⟩L and the state |0, 1⟩ for logic state |1⟩L. The first stage of the entangler,
i.e. H ⊗X, can be implemented as in Fig.3.7, having got their equivalent
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representation utilising a beam splitter and four phase shifters to constitute
gates H and X; that is possible employing the unit matrix decomposition
schemes already seen in the previous section (cf. Section 3.3) and, as the
basic block, the subcircuit in Fig.3.3.

Figure 3.7: Optical equivalent gates: H (in pink) and X (in green)

Relating to the implementation of CNOT, it is essential to empathise
that, in dual-rail encoding, deterministic two-qubit gates are impossible, and
a chance of failure always exists. This nonsuccess can be detected in two
ways: by using additional photons, known as ancillas, that are measured
independently from the information photons to determine if the gate was
successful on the information qubits (these gates are known as heralded); or
by directly measuring the information qubits and assessing whether the gate
was successful based on the result (these gates are known as postselected).
The CNOT gate operates on two qubits (two couples of modes), a control
and a target, and inverts the value of the target if the control qubit is in the
logical state |1⟩L. Two types of CNOT gates occur most in the literature:
the postselected CNOT of Ralph [73] and the heralded CNOT of the
KLM (Knill-Laflamme-Milburn) protocol [74].

A CNOT gate of the first type, which is less sophisticated but much
more straightforward to build than the other one, is sufficient to implement
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Figure 3.8: Proposed Optical CNOT schema

the proposed entangler circuit (Fig.3.8 and Fig.3.9).

Figure 3.9: Entangler built from the two previous blocks

On the Entangler in Fig.3.9, however, it is possible to operate some
significant simplifications, which help to make the physical realisation of the
circuit easier and reduce noise due to unnecessary additional components.
An optical Entangler like the one in Fig.3.10 is therefore proposed.

Some useful tools provided by the simulation software allow one to verify
the equivalence between the circuits in Fig.3.9 and Fig.3.10: both have the
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Figure 3.10: Simplified proposed Entangler

same unitary matrix (Eq.3.22).
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(3.22)

In Fig.3.9 and Fig.3.10, modes labelled 0 and 5 are the ancillary modes.
No photons are provided into them; the output state is guaranteed to be
correct only if no photons are detected on the output stage of ancillary
modes after a measurement process. The modes labelled 1,2 and 3,4 encode
the two classical input qubits |0⟩ ⊗ |0⟩ = |00⟩, respectively; further, |0⟩ is
|1, 0⟩ and |1⟩ is |0, 1⟩. That means the input state |ψin⟩ is |0, 1, 0, 1, 0, 0⟩,
with

|ψin⟩ = |
ancilla︷︸︸︷
0 ,

qubit1︷ ︸︸ ︷
1, 0,

qubit0︷ ︸︸ ︷
1, 0,

ancilla︷︸︸︷
0 ⟩

From Eq.3.22, it results that the annihilation operators describing the
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relationships between the input and the output of the circuit are related by
the following expressions
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(3.23)

Eqs.3.23 and 3.24 show the procedure for calculating the output state,
starting from the initial state. That will allow comparing the correctness of
the results obtained with the simulator and with the real optical quantum
computer. 
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â†
4 = −

√
3i
3 b̂†

2 +
√

3
3 b̂†

3 +
√

3
3 b̂†

5

â†
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Now applying the creation operators b̂†
i to the appropriate mode i-th of

the vector |0, 0, 0, 0, 0, 0⟩, we obtain the output state of the optical quantum
system under consideration:
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(3.25)

As said in Section 3.2.2, the space dimension describing this transformation
is given by the formula Cm+n−1

n =
(
m+n−1

n

)
, where m is the number of modes

in system and n is the number of photons in input; here, the dimension is(
6+3−1

3

)
= 21: the components of the state vector given by Eq.3.25 have only

13 non-zero probability amplitudes, while the remaining eight are zero.
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Since modes 0 and 5 are heralded (it means 0 photons in them, 0 photons
expected out of them), the output state |ψout⟩ collapses after a measurement
process and the relative filtering step to eliminate all the states with mode 0 or
mode 5 different from zero; the new output state consequently becomes |ψ′

out⟩
(in order to improve readability, the ancillary states have been omitted).
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√
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2 |0, 0, 0, 2⟩
(3.26)

Subsequently, because the modes encoding the individual qubits can only
contain a single photon alternatively, all those states that do not respect this
constraint are discarded. The final state remaining after this post-selection
operation, hence, results |ψ′′

out⟩.

|ψ′′
out⟩ = +

√
2

2 |1, 0, 0, 1⟩ −
√

2
2 |0, 1, 1, 0⟩ (3.27)

The outcome is correct because the final state is a Bell’s state, as expected.
So, output outcomes for probability distribution for the state in |ψ′′

out⟩ are 1
2

for the state |1, 0, 0, 1⟩ and 1
2 for the state |0, 1, 1, 0⟩. Circuit simulations with

Perceval (Table 3.2, Fig.3.11, Fig.3.12 and Fig.3.13) show perfect agreement
with the theoretically obtained results.
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state probability
|1, 0, 1, 0, 0, 0⟩ 0.111111
|2, 0, 0, 0, 0, 0⟩ 0.000000
|1, 0, 0, 0, 1, 0⟩ 0.111111
|0, 2, 0, 0, 0, 0⟩ 0.000000
|0, 1, 0, 1, 0, 0⟩ 0.000000
|0, 0, 0, 1, 0, 1⟩ 0.055556
|0, 0, 0, 0, 2, 0⟩ 0.111111
|0, 1, 0, 0, 0, 1⟩ 0.055556
|0, 0, 1, 0, 1, 0⟩ 0.000000
|0, 0, 0, 2, 0, 0⟩ 0.000000
|0, 0, 0, 0, 0, 2⟩ 0.000000
|1, 1, 0, 0, 0, 0⟩ 0.000000
|1, 0, 0, 1, 0, 0⟩ 0.000000
|1, 0, 0, 0, 0, 1⟩ 0.111111
|0, 1, 1, 0, 0, 0⟩ 0.055556
|0, 1, 0, 0, 1, 0⟩ 0.055556
|0, 0, 1, 0, 0, 1⟩ 0.055556
|0, 0, 0, 1, 1, 0⟩ 0.055556
|0, 0, 1, 1, 0, 0⟩ 0.055556
|0, 0, 0, 0, 1, 1⟩ 0.055556
|0, 0, 2, 0, 0, 0⟩ 0.111111

Table 3.2: Probability of each state composing final output state for the Dual
Rail Entangler with input |0, 1, 0, 1, 0, 0⟩; results obtained with Perceval.
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Figure 3.11: Output state from simulation on Perceval of Dual-Rail Entangler
Circuit
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Figure 3.12: Probability distribution for state |ψout⟩ on Perceval of Dual-Rail
Entangler Circuit

Figure 3.13: Probability distribution for state |ψ′′
out⟩ on Perceval of Dual-Rail

Entangler Circuit

3.5 Conclusions

The field of quantum computing has made tremendous progress over the past
few decades, with several promising platforms emerging for implementing
quantum computers. Among these platforms, photons have emerged as one
of the most promising candidates due to their inherent advantages in terms
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of coherence, manipulation, and communication. The use of photons in
quantum computing is still relatively young, but it has already led to sev-
eral impressive demonstrations of quantum algorithms. For example, Shor’s
algorithm for factoring large numbers, considered one of the most important
quantum algorithms, has been demonstrated using photonic qubits. Grover’s
algorithm for database search, which can provide a quadratic speedup over
classical algorithms, has also been presented as feasible using photonic qubits.
These demonstrations have shown the potential of photonic qubits for solving
problems intractable on classical computers. However, they both are still far
from practical application. Yet, several challenges still exist to overcome in
using photonic qubits for quantum computing. One of the main challenges is
the difficulty in performing strong non-linear interactions between photons,
which are necessary for implementing high-fidelity two-qubit gates. Several
approaches have been proposed to address this challenge, including cavity
quantum electrodynamics, quantum dots, and diamond nitrogen-vacancy
centres, as enunciated in the previous chapter. Recent advances in materials
science have led to the development of new types of non-linear optical ma-
terials, which are promising candidates for implementing strong non-linear
interactions between photons. Another challenge in using photonic qubits for
quantum computing is detecting single photons with high efficiency. Several
technologies for photon detection exist, including single-photon avalanche
photodiodes (SPADs) and transition-edge sensors (TESs), but each has its
own strengths and weaknesses. It is essential to have reliable and efficient
photon detectors to build scalable and fault-tolerant quantum computers
based on photonics. Despite these challenges, there has been significant
progress in photonic quantum computing in recent years. Several photonic
quantum processors have been built, including the first photonic quantum
computer with five qubits. These processors have been used to demonstrate a
variety of quantum algorithms and have shown promising results for quantum
simulation and optimization problems. One of the most exciting applications
of photonic qubits is in quantum communication. Photons are already a well-
established technology for quantum communication, with several commercial
applications such as quantum key distribution and secure transmission. Pho-
tonic qubits have the advantage of being able to be transmitted over long
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distances with minimal loss of coherence, which makes them ideal for use in
quantum communication networks. The development of photonic quantum
repeaters, which can extend the range of quantum communication, is an
active area of research. In addition to quantum computing and communica-
tion, photonic qubits are also being explored in other quantum technologies,
such as quantum sensing and metrology. For example, photonic qubits can
be used to perform precision measurements of electromagnetic fields, which
have applications in materials science, biology, and medicine. Overall, the
field of photonic quantum computing is still in its early stages, but it has
already shown great promise for solving significant problems intractable on
classical computers. With continued progress in materials science, photon
detection technologies, and non-linear optics, photonic qubits will likely
play an increasingly important role in developing scalable and fault-tolerant
quantum computers.
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Chapter 4

Quantum Computing -
Platforms and Algorithms

4.1 Introduction

Quantum computing is a branch of computing based on the principles of
quantum mechanics. While classical computers store information in binary
bits that can only take on one of two values (0 or 1), quantum computers store
information in quantum bits or qubits, which can take on an infinite number
of values. That allows quantum computers to perform certain computations
much faster than classical computers. Quantum computing has the potential
to revolutionise the way to solve complex problems in various fields, such as
cryptography, chemistry, physics, and machine learning. Quantum computers
are designed to harness the laws of quantum mechanics, which allow them
to perform certain types of computations exponentially faster than classical
computers. Quantum computing platforms and quantum algorithms are the
two main pillars of quantum computing.

The first part of this chapter provides an introduction to the leading
quantum computing platforms and quantum algorithms. Quantum comput-
ing platforms are the hardware and software systems used to implement
quantum computers. There are several different types of quantum computing
platforms, each with advantages and disadvantages. The three main types
of quantum computing technologies are:
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• Superconducting Quantum Computing: Superconducting quan-
tum computing is one of the most famous quantum computing plat-
forms. It uses superconducting qubits made from tiny loops of su-
perconducting wire. These qubits are extremely sensitive to external
noise, so they need to be kept at very low temperatures (near absolute
zero) to maintain their quantum coherence. Superconducting quantum
computers typically use a dilution refrigerator to keep the qubits cold.
One of the advantages of superconducting quantum computing is that
it is highly scalable. Superconducting qubits can be fabricated using
existing semiconductor fabrication techniques, which makes it rela-
tively easy to manufacture large numbers of qubits. Another advantage
of superconducting quantum computing is that it is relatively mature,
with several companies (such as IBM and Google) already offering
commercial quantum computing services based on this technology.

• Ion Trap Quantum Computing: Ion trap quantum computing
uses trapped ions as qubits. In this approach, a laser is used to ionise
atoms, which are then trapped in an electric field. The qubits are
stored in the ion’s electronic spin states. The advantage of ion trap
quantum computing is that it is highly controllable, with individual ions
manipulated using laser beams. This level of control makes performing
quantum error correction possible, which is necessary to correct errors
that arise due to external noise. One of the disadvantages of ion trap
quantum computing is that it is difficult to scale up to large numbers of
qubits. It is also challenging to fabricate ion trap qubits using existing
semiconductor fabrication techniques, which makes it more expensive
than superconducting qubits.

• Photonic Quantum Computing: Photonic quantum computing
uses photons (particles of light) as qubits. In this approach, qubits are
encoded in the polarisation of photons. Photonic quantum computing
is attractive because photons can travel long distances without being
affected by external noise, which makes it possible to perform quantum
communication over long distances. However, photonic quantum com-
puting is still in the experimental stage and is not yet mature enough
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for commercial applications.

Quantum algorithms are specific algorithms designed to run on quantum
computers. These algorithms take advantage of the unique properties of quan-
tum mechanics, such as superposition and entanglement, to solve problems
faster than classical algorithms. One of the most famous quantum algorithms
is Shor’s algorithm, which can factor large numbers exponentially faster than
any known classical algorithm. That has significant implications for cryptog-
raphy because many encryption schemes rely on the difficulty of factoring
large numbers. Shor’s algorithm can break these encryption schemes, making
quantum computers potentially threatening current encryption methods. An-
other important quantum algorithm is Grover’s algorithm, which can perform
an unstructured search of a database of N items in O(

√
N) time, compared

to O(N) time for classical search algorithms. This algorithm has implications
for data mining, optimisation, and machine learning. Quantum algorithms
can be classified into three categories: quantum simulation, optimisation,
and error-correcting algorithms. Quantum simulation algorithms are used
to simulate quantum systems, which are difficult to simulate using classical
computers. These algorithms are used in fields such as quantum chemistry
and materials science. For example, the Variational Quantum Eigensolver
(VQE) algorithm can approximate the ground state energy of molecules,
which is helpful in designing new drugs and materials. Quantum optimisation
algorithms are used to solve optimisation problems, ubiquitous in various
fields such as logistics, scheduling, and finance. One of the most famous
quantum optimisation algorithms is the Quantum Approximate Optimization
Algorithm (QAOA), which can be used to find the optimal solution to a com-
binatorial optimisation problem. Quantum error-correcting algorithms are
used to correct errors in quantum computers due to noise and decoherence.
These algorithms are crucial for building large-scale, fault-tolerant quantum
computers. One of the most famous quantum error-correcting codes is the
surface code, which encodes qubits in a two-dimensional grid of physical
qubits and can correct errors using measurements on neighbouring qubits.
Quantum algorithms are implemented using quantum circuits, which are
sequences of quantum gates that perform operations on qubits. Qubits are
the quantum equivalent of classical bits, and they can be in a superposition
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of states, which means they can be in multiple states simultaneously. This
property allows quantum computers to perform certain computations faster
than classical computers. Quantum algorithms also require a certain num-
ber of qubits to perform the computation. The number of qubits needed
depends on the problem size and the algorithm’s complexity. Currently,
quantum computers with a few hundred qubits are available, and they can
perform some simple quantum algorithms. However, building large-scale,
fault-tolerant quantum computers remains a significant challenge.

4.2 Quantum Computing insights

After years of solid theoretical work to appropriately approach the domain
of quantum computation, despite several breakthroughs in the fields of
nanoelectronics and photonics, quantum computer that is reliable, scalable,
stable, resilient to environmental noise, and general-purpose has not yet
attained maturity. Indeed, as previously said, quantum computing is a very
new field; we are thus in a historical period quite comparable to that of the
first explorers of the New World. We are in a historical phase of transition,
although studded with intense research, named by Preskill NISQ (Noisy
Intermediate-Scale Quantum) era [75].

Von Neumann’s architectural concept serves as the foundation for con-
temporary computing, which is not entirely adaptable to the new paradigm
of quantum computation; translating the entire range of classical digital
circuits is a possible (and desirable to overcome Moore’s law) operation, but
not without pain, due to the various quantum effects to be managed and
the enormous number of qubits required even for simple combinational logic
circuits.

There is the tendency to think of computers as machines capable of
manipulating enormous amounts of data in a reasonable time, beyond the
semantics of the data itself; but they remain fundamentally and intimately
fast logic-arithmetic computing machines. Furthermore, their peculiar ar-
chitecture gives them a great lot of flexibility in dealing with a wide range
of challenges. This chapter will be centred on general-purpose quantum
computers rather than adiabatic quantum computers such as D-Wave [76],
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which are tailored to address specific optimisation problems featuring a
high volume of qubits. The current metric that allows to classify a quantum
computer as general-purpose is based on Di Vincenzo’s five criteria [77]; they
state that a quantum computer should:

1. be feasible and physically realised through a scalable technology and
in which the qubits are easy to be identified and not too difficult to be
managed;

2. be able to return to a predetermined fiducial state; typically, the⊗n
j=1 |0⟩ state is chosen;

3. have long enough decoherence periods to allow the single quantum gates
that make up the circuit to carry out the transformation operations;
in other words, qubit decoherence periods have to be longer than gate
action times;

4. possess an universal base set of gates, so that any sequence of unitary
transformations may be performed;

5. be able to undertake a precise and defined qubit measurement process
that permits it to be collapsed onto one of the computational base’s
components.

After understanding the current scientific advancements in this field, it can be
beneficial to apply our theoretical knowledge by utilising the available means
from IT giants, public and private institutions, and individual enthusiasts.

Many of them provide a variety of analysis and synthesis tools for
developing a quantum algorithm; some are sophisticated simulators, while
others are cloud services that allow immediate access to a real quantum
computer after registration. Numerous options are available for developing
quantum algorithms, ranging from analysis and synthesis tools to advanced
simulators and cloud services that provide real quantum computers upon
registration. Simulators can adapt to any scheme and optimise suggested
code, but it is best to have an expert oversee the use of a real quantum
computer for complex algorithms.

The main frameworks and/or programming environments for exploring
quantum architectures are now presented.
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IBM’s QExperience and Qiskit

It is an online platform that enables quantum computation on quantum
architectures connected to the Cloud. However, before implementing the
generated circuit, it is necessary to select which backend to use among those
offered. The project’s execution will be queued with the other tasks requested
by other users. It is also possible to instantiatly run multiple simulations

Figure 4.1: IBM quantum composer example

by downloading a dedicated Python library, initially released by IBM but
now Open-Source, called Qiskit1. Programming is very intuitive and takes
place thanks to a tool called Composer, a fully graphical tool, consisting
of an area of five lines, each reserved for a qubit, as shown in Figure 4.1.
Obviously, quantum logical operators can be inserted within the composer,
which can be selected from a palette and placed in our circuits through
the action of Drag and Drop; at the end of each line there must be the
operator that allows the measurement of the quantum state of the qubit
corresponding to the line, storing the result on a classical bit representation.
The results, once obtained, will be represented by means of a histogram.

1https://quantum-computing.ibm.com/, https://qiskit.org/
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IBM Quantum Experience also provides a text-level programming mode
that takes advantage of the QASM language, very similar to C.

IBM provides users with five quantum simulators with different char-
acteristics. The first is the Clifford simulator (stabiliser), which makes it
possible to simulate Clifford circuits with and without noise. The second
is the Matrix Product State (MPS), which simulates tensor networks. The
third is the Extended Clifford (extended_stabilizer), which extends the
functionality of the stabiliser simulator. The Extended Stabilizer technique
is divided into two main sections: the former is a method for breaking down
quantum circuits into stabilizer circuits, a type of circuit that can be ef-
ficiently replicated classically, the latter is a method of integrating these
circuits in order to conduct measurements. The fourth is the general purpose
(Qasm_simulator), which allows general purpose simulations to be carried
out and is the backend that is provided by default for theoretical simulation.
The fifth is the Schrödinger wavefunction (statevector), which simulates a
quantum circuit by calculating the wavefunction of the state vector

IBM also provides 22 real quantum computers, of which 8 are free, and
14 are chargeable. These computers can be grouped into various categories
according to the technology used by the quantum processors: Falcon, Egret,
Hummingbird, Eagle, Osprey. The Falcon family consists of tiny designs
having 5 to 27 qubits. All qubits and readout resonators are on the same
layer of the optimised 2D lattice. The Falcon family of devices provides
a key platform for medium-scale circuits, as well as a good platform for
proving performance and scalability enhancements prior to pushing them
onto bigger devices. The Hummingbird is a new series of quantum processor
that supports up to 65 qubits using a heavy-hexagonal qubit architecture.
More powerful machines are the quantum chips Eagle (up to 127 qubits)
and the Osprey (433 qubits).

Google’s Cirq and Tensorflow Quantum

Cirq is a Python software library that allows us to write, manipulate, and
optimise quantum circuits and to run them on quantum computers and
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simulators. Cirq2 tries to highlight the specific characteristics of the hardware,
since in the Noisy Intermediate-Scale Quantum regime (also known as NISQ)
these peculiarities determine the possibility or not of running a simulation
on a given circuit.

Research in quantum machine learning examines the interaction between
quantum computing and machine learning. According to current thinking,
quantum computers can be utilised and trained in the same way that neural
networks are used. Physical control factors such as electromagnetic field
strength or laser pulse frequency can be adjusted in an organised manner
in order to address a problem. TensorFlow Quantum (TFQ)3 is a quantum
machine learning library enabling quick prototyping of hybrid quantum-
classical ML models. Cirq and TensorFlow Quantum are both extremely
versatile and feature-rich, and are in great demand. They are also intuitive
and simple to use.

Xanadu’s Strawberry Fields and Pennylane

The open-source software PennyLane4 is based on the notion of quantum dif-
ferentiable programming and is free to download and use. Classical machine-
learning libraries are easily integrated with quantum simulators and hardware,
allowing the user to train quantum circuits. PennyLane’s primary task is
to manage the assessment of parametrized quantum circuits (also known
as variational circuits) on quantum devices and to make them accessible to
machine learning libraries. PennyLane also gives access to quantum circuit
gradients, which the machine learning library can utilise to execute back-
propagation, including through quantum circuits an important process in
optimisation and machine learning. One promising technology for physically
realising a quantum computer is photonic processors. This technology uses
the modes of photons (qumodes) to store information. Many companies
are working on this new type of machine. Xanadu makes a programming
environment called Strawberry fields available to users after registering on
the website (Fig.4.2).

2Cirq official website: https://quantumai.google/cirq
3TensorFlow Quantum official website: https://www.tensorflow.org/quantum
4PennyLane official website: https://pennylane.ai/
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Figure 4.2: StrawberryFields Python’s library example

Microsoft’s Q# and Azure Quantum

Microsoft Azure5 is a cloud-based service that developers, academics, and
businesses may utilise to execute quantum computing applications or solve
optimisation issues. Q#, Microsoft’s open source programming language
for building quantum algorithms, is included in the Microsoft Quantum
Development Kit (QDK). It also includes Q# libraries, Python and .NET
APIs, and a Python SDK for optimisation solvers and quantum simulators.
The QDK is a full-featured development kit for Q# that can be used
in conjunction with conventional tools and languages to create quantum
applications that can be executed in a variety of settings. Q# applications
can be executed as a console application, in Jupyter Notebooks, or through a
Python or .NET host program. The Q# libraries allow you to do sophisticated
quantum operations without the need to create low-level operation sequences.

The QDK provides numerous quantum machine classes, which are all
specified under the namespace Microsoft.Quantum.Simulation.Simulators.
The first is the Full State Simulator,which replicates a quantum machine on
your local computer. The full state simulator may be used to execute and
debug quantum algorithms developed in Q# and allow you to use up to 30
qubits. The second one is the Simple Resources Estimator, it can estimate

5Microsoft’s Q# official website: https://azure.microsoft.com/en-us/services/
quantum/
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resources for Q# operations that utilise thousands of qubits, as long as
the classical component of the code executes in an acceptable amount of
time. The third one is the Trace-based resource estimator which executes a
quantum program without really mimicking a quantum computer’s state.
As a result, the quantum trace simulator can run quantum algorithms with
thousands of qubits. It help the developer to debug classical code that is
a component of a quantum program, moreover calculating the resources
needed to run a specific instance of a quantum program on a quantum
computer, the trace simulator serves as the foundation for the Resources
estimator, which gives a more limited set of indicators. The fourth one is
the Toffoli simulator, which is a limited-scope special-purpose simulator
that only supports X, CNOT, and multi-controlled X quantum operations.
There is access to all classical logic and calculations; it is not so powerful
and effective as the Full State Simulator.

Amazon’s AWS Braket

According to the AWS6 concept, Amazon Braket is a fully managed quantum
computing service. Amazon Braket provides a development environment for
experimenting and developing quantum algorithms, as well as testing them on
quantum circuit simulators and running them on different quantum hardware
technologies. To design quantum algorithms and manage experiments, it may
be used his/her own development environment or fully managed Jupyter
notebooks in Amazon Braket. There are four circuit simulators available with
Amazon Braket to perform and evaluate quantum algorithms. The first one
is a free local simulator that may be used on your laptop or on an Amazon
Braket managed notebook. Depending on your hardware, the local simulator
is well suited for conducting small and medium-scale simulations up to 25
qubits without noise or up to 12 qubits with noise. The second one is SV1, a
full managed State Vector simulator, which calculates the outcome by taking
the complete wave function of the quantum state and applying the circuit’s
operations. You can use SV1 to test your quantum method at scale after
designing it in the Amazon Braket SDK using the local simulator, and then

6AWS bracker official website: https://aws.amazon.com/braket/
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utilising SV1’s parallel processing to perform several batches of simulations.
SV1 can handle simulations of up to 34 qubits. The third one is DM1, is
a fully managed and high-performance simulator that simulates the effects
of noise on quantum circuits using Density Matrix computations. You may
define realistic error models for your circuits and investigate the influence of
noise on your algorithms using DM1. DM1 allows you to simulate circuits
with up to 17 qubits. The last one is TN1 a Tensor Network simulator for
structured quantum circuits is a fully managed, high-performance tensor
network simulator. A tensor network simulator converts quantum circuits
into a structured graph in order to determine the most efficient approach to
calculate the circuit’s result. You can use TN1 to simulate certain types of
quantum circuits up to 50 qubits in size.

Rigetti’s Forest

Forest7 is a cloud computing platform that provides developers with access
to quantum processors so they may test quantum algorithms and simulate
them by using a quantum device with more than 32 qubits. It is built on
a specialised instruction language known as Quil (Quantum Instruction
Language), which can enable a form of hybrid computing (simultaneous use
of quantum components and classical logic). Moreover, applications may be
developed and run using free and open source Python tools.

Quantum Inspire

QuTech’s Quantum Inspire (QI)8 is a quantum computing platform. The
objective of Quantum Inspire is to give users access to various tools for
doing quantum calculations, as well as insights into quantum computing
concepts and access to the community. QuTech, the advanced research center
for quantum computing and quantum internet created by TU Delft and
TNO, started Quantum Inspire (QI). Quantum Inspire gives users a range of
options for programming quantum algorithms, running them, and analyzing
the results (Fig.4.3). It gives you a graphical interface for programming

7Righetti forest official website: https://www.rigetti.com/
8QuTech. (2020). Quantum Inspire Home. Retrieved from Quantum Inspire: https:

//www.quantum-inspire.com/
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Figure 4.3: Quantum Inspire composer example

in QASM (Quantum Assembly Language) and visualizing operations in
circuit diagrams. Non-quantum specialists may learn to write quantum
algorithms with the QI Editor, which includes automated bug detection and
autocomplete. Quantum Inspire has three account types: Anonymous, Basic,
and Advanced. You can create some simple algorithms and utilize up to 5
qubits in the QX simulator as an anonymous user. A basic account allows
you to simulate quantum algorithms with up to 26 qubits and run them on
our hardware back-ends. With an advanced account, you may simulate up
to 31 qubits on Cartesius, one of the Dutch supercomputers at SURFsara,
utilizing more powerful computing resources.

Quirk

Quirk9 is a quantum circuit simulator that allows you to manipulate and
explore tiny quantum circuits by dragging and dropping components (Fig.4.4).
The visual design of Quirk offers a very intuitive sense of what is going on,
state displays update in real time as you modify the circuit, and the whole
experience is quick and engaging. Using Quirk consists primarily of dragging
gates from the toolboxes, putting them into the circuit, and inspecting the

9A live version of Quirk may be found at https://algassert.com/quirk, but you
can also obtain the source code from https://www.github.com/Strilanc/Quirk and
create your own.
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state displays within and to the right of the circuit. As you change the
circuit, Quirk actively rewrites the URL in the address bar to refer to the
current circuit. You may also save the circuit by clicking the Export button
above the circuit editing box. You can export an escaping link, an offline
copy of Quirk defaulting to the current circuit, a JSON representation of
the current circuit, or a JSON representation of the full simulator output.
Quirk is a free and open source software application. The source code is
accessible under a permissive Apache license, allowing anybody to create
and distribute updated versions.

Figure 4.4: Quirk quantum composer example

Quandela’s Perceval and Cloud

An exciting product for modelling photonic circuits, according to the discrete
variable paradigm (DV model), is Perceval10. Perceval offers tools for creating
photonic circuits using linear optical components like beamsplitters and
phase shifters, defining single-photon sources, working with Fock states, and
performing simulations using a straightforward object-oriented Python API.
Perceval can be used to replicate previously published experimental results
or conduct direct experiments using a fresh wave of quantum algorithms. It

10Perceval by Quandela: https://perceval.quandela.net/
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Figure 4.5: Perceval Python’s Framework example

seeks to serve as a support tool for creating photonic circuits by modelling and
improving their design, simulating both the ideal and practical behaviours,
and offering a standardised interface to operate them using the backends.
Fock states, state vectors, and state vector distributions, as well as unitary
matrices and parameters, are just a few of the technical tools that may be used
to manage Perceval. It can be regarded as a good tool for students, researchers
and scholars in the field of photon quantum computing. Additionally, it has
cross-platform tools for adaptable viewing of the circuits and outcomes that
are compatible with notebooks and local scripting usage (Fig.4.5).

Alongside Perceval, the French company Quandela11 also provides the
user and researcher with an online platform with a real photonic quan-
tum computer (a 12-mode photonic quantum computer12, called “Ascella”),
which allows for assessing the consistency of theoretical results with those
obtained experimentally. Among the platform’s most significant merits are
the continuous-time availability of the QPU (Quantum Processing Unit)
throughout the day, the well-maintained and intuitive user interface, and
the user-friendliness of the various functions offered (Fig.4.6 and Fig.4.7).

11https://www.quandela.com/
12https://cloud.quandela.com/webide/login
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Figure 4.6: Quandela Cloud: various available platforms to run optical
quantum algorithms

Figure 4.7: Quandela Cloud: usage of single platforms

4.3 Relevant Quantum Algorithms

This section contains some important algorithms for quantum computing
that will have a revolutionary impact on the world of computer applications
in the next few years.
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4.3.1 The Deutsch–Jozsa algorithm

In the Deutsch–Jozsa problem [78], the goal is to establish if an input
unknown function has certain characteristics; this function, f : {0, 1}n →
{0, 1}, with n ∈ N, which works as a black block is called oracle. This
function can be either constant, when all inputs are 0 or 1, or balanced, if it
has the value 1 for half of the input domain and 0 for the other half. The
goal is to use the oracle in order to see whether f is constant or balanced.

Figure 4.8: Deutsch-Jozsa quantum circuit to implement the algorithm

In the worst case, 2n−1 + 1 evaluations of f would be needed for a stan-
dard deterministic algorithm, where n is the number of bits, whereas the
Deutsch-Jozsa quantum algorithm can always generate a right outcome,
taking a single assessment step.
In Figure 4.8 it is shown the circuit to implement the Deutsch–Josza algo-
rithm.

In Algorithm 2, the procedure is shown in more details.
Therefore, if f(x) is constant (constructive interference), the probability

is 1; if f(x) is balanced, it evaluates to 0 (destructive interference). In other
words, if measurement result is the state |00...00⟩ then f(x) is constant; any
other state means f(x) is balanced and all this in only one shot.

4.3.2 The Grover’s algorithm

Grover’s algorithm [79], also known as the quantum search algorithm, is a
quantum algorithm for unsorted search on a dataset that uses only O(

√
N)
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Algorithm 2 Deutsch-Jozsa algorithm. Part 1
1: In the first stage, the input state is prepared

|ψ0⟩ =
n−1⊗
i=0

|0⟩ ⊗ |1⟩ = |0⟩⊗n|1⟩ = |00...01⟩

2: The Hadamard transform is applied to each qubit of |ψ0⟩

|ψ1⟩ =
n−1⊗
i=0

H|0⟩ ⊗H|1⟩ =

=
(

1√
2

|0⟩ + 1√
2

|1⟩
)⊗n

⊗
(

1√
2

|0⟩ − 1√
2

|1⟩
)

=

= 1√
2n+1

2n−1∑
x=0

|x⟩ (|0⟩ − |1⟩)

3: The f function has been introduced as a quantum oracle. The oracle
converts the state |x⟩|y⟩ to |x⟩|y ⊕ f(x)⟩ (⊕ is the addition operation in
modulo 2 arithmetic). When the quantum oracle is used, the result is:

|ψ2⟩ = 1√
2n+1

2n−1∑
x=0

|x⟩ (|f(x)⟩ − |1 ⊕ f(x)⟩) =

= 1√
2n+1

2n−1∑
x=0

(−1)f(x)|x⟩ (|0⟩ − |1⟩)

as f : {0, 1}n → {0, 1} can only get values either 0 or 1.
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Algorithm 2 Deutsch-Jozsa algorithm. Part 2
4: Let |ψ̃2⟩ be such that |ψ2⟩ = |ψ̃2⟩ ⊗ |y ⊕ f(x)⟩ and |ψ̃3⟩ such that

|ψ3⟩ = |ψ̃3⟩ ⊗ |y ⊕ f(x)⟩:

|ψ̃2⟩ = 1√
2n

2n−1∑
x=0

(−1)f(x)|x⟩ ∧ |ψ̃3⟩ = H⊗n|ψ̃2⟩ ⇒

⇒ |ψ̃3⟩ = 1
2n

2n−1∑
x,y=0

(−1)(f(x)−x·y)|y⟩ =

= 1
2n

2n−1∑
y=0

(2n−1∑
x=0

(−1)f(x) · (−1)x·y
)

|y⟩

with x · y = ⊕n−1
i=0 xi · yi

This means that

⟨ψ̃3 |Ψ⟩⟨Ψ| ψ̃3⟩ =
∣∣∣∣∣ 1√

2n
2n−1∑
x=0

(−1)f(x)
∣∣∣∣∣
2

, with |Ψ⟩ =
n−1⊗
i=0

|0⟩

which is the probability for the state | ψ̃3⟩ on the eigenstate |Ψ⟩.

function evaluations to find the unique input to a black box function that
generates the correct output value with a high probability; N = 2n is the
number of item in our dataset, and n is the amount of needed information
to represent the whole set. The criterion for the search is implemented in a
previously defined function, called oracle; this function returns whether or
not the input number meets the search criteria.
A common form for this function is

f(x) =
1 if x = ω

0 if x ̸= ω

where ω is the solution for our problem.
In Algorithm 3, the procedure is shown in more details (Figure 4.9).
The logic loop can be implemented circuitly by constructing a sequence

of Grover operators (oracle and diffusion operators) and repeating them
∼

√
N times. The obtained speedup with this algorithm is quadratic.
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Algorithm 3 The Grover algorithm.
1. In the first stage, the input state is prepared

|ψ0⟩ =
n−1⊗
i=0

|0⟩ ⊗ |1⟩ = |0⟩⊗n|1⟩ = |00...01⟩

and then the Hadamard transformation is applied to each qubit of |ψ0⟩

|ψ1⟩ =
n−1⊗
i=0

H|0⟩ ⊗H|1⟩ =
( 1√

2
|0⟩ + 1√

2
|1⟩
)⊗n

⊗
( 1√

2
|0⟩ − 1√

2
|1⟩
)

=

= 1√
2n+1

2n−1∑
x=0

|x⟩ (|0⟩ − |1⟩)

2. The next block, consisting of the oracle and the diffusion operator, must
be repeated a number of times equal to

⌊
π
4
√
N
⌋
; that means algorithm

complexity is O(
√
N).

The oracle will have the task of marking the desired item with a negative
phase, leaving the phases of the other elements unchanged.

Uω|x⟩ =
{

|x⟩ if x = ω
−|x⟩ if x ̸= ω

⇔ Uω|x⟩ = (−1)f(x)|x⟩

Using a general oracle, it will be possible to trace it back to our particular
problem by adding an ancillary qubit with state H|1⟩

Uf |x⟩|y⟩ = |x⟩|y ⊕ f(x)⟩ ∧ |y⟩ = H|1⟩ = |−⟩ =

= 1√
2

|0⟩ − 1√
2

|1⟩ ⇒

⇒ Uω|x⟩|−⟩ = (−1)f(x)|x⟩|−⟩ = Uf |x⟩|−⟩

In the next stage, the diffusion operator will have the task of overturning
the counter-phase component back, amplifying its probability amplitude;
for the condition of normalization of the state, all the other components
will suffer a consequent attenuation. The operator presents the following
form:

Us = H⊗n ·
(
2|0⟩⊗n⟨0|⊗n − In

)
·H⊗n

Repeating the operation a number of times proportional to
√
N , the proba-

bility amplitude for the w component will tend to 1 in absolute value, while
all the other components will tend to zero.
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Figure 4.9: Quantum circuit to implement the Grover’s algorithm

4.3.3 The Shor’s algorithm

The general number field sieve is the most effective classical factorization
algorithm known at this time, and it takes exponential times of the order

O
(
ec(logN)

1
3 (loglogN)

2
3
)

to factor a big enough number N[80, 81].
Shor’s quantum algorithm[82], on the other hand, could factor an integer

in polynomial time; in particular, the complexity of this algorithm is:

O
(
(logN)2(loglogN)(logloglogN)

)
This algorithm did not take long to pique many people’s interest due

to its potential to break classical cryptography; in fact, the reliability of
many cryptographic systems is strongly dependent on the complexity of
factoring large numbers; therefore, if a fast and safe method for factoring
large numbers was developed, many current cryptographic systems might
become vulnerable.

Shor’s algorithm solves the following problem: determine the values of p
and q given a composite number N = pq and prime numbers p and q. The
solution to the problem is to return to evaluating the order, or period, of a
given function.

In Algorithm 4, the procedure is explored in more details.
Steps 1 and 3 can also be performed efficiently by a classical computer,

while a quantum computer can more easily find the period of the function
f in step 2, thus obtaining the required speed-up compared to the classic
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Algorithm 4 The Shor algorithm.
1. Choose a random integer number in 1 < a < N and use Euclid’s algorithm

to find the greatest common divisor gcd(N, a).
If gcd(N, a) ̸= 1, a factor of N has been discovered. If, on the other hand,
gcd(N, a) = 1, continue to step 2.

2. Determine the order of a mod N , that is, the smallest integer value of r
such that ar mod N = 1.

3. Evaluate r

3.1. If r is odd, go back to step 1
3.2. Else calculate ar/2 mod N

4. Evaluate ar/2 mod N

4.1. If ar/2 mod N = −1 go back to step 1
4.2. Else continue to step 5

5. Calculate, using Euclid’s algorithm, the greatest common divisor

gcd(ar/2 + 1, N) , gcd(ar/2 − 1, N)

Both of them are non-trivial factors of N .
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computer. Shor’s algorithm could be used to crack public-key cryptographic
schemes like the commonly used RSA scheme if a quantum computer with
enough qubits could operate without succumbing to quantum noise and other
quantum decoherence phenomena. The commonly used RSA asymmetric
encryption algorithm, developed in 1977 by Ronald Rivest, Adi Shamir, and
Leonard Adleman, is based on the principle that factoring large integers is
computationally intractable. This theorem holds true for classical computers:
no classical algorithm that can factor integers in polynomial time is known.
However, Shor’s algorithm demonstrates that the factorization of integers
is effective on an ideal quantum computer; hence, it could potentially be
able to breach RSA if one had quantum computers with a large number of
qubits, which do not yet exist in the current state of technology.

This does not rule out the possibility of implementing this algorithm
on a real quantum computer in the future: the only way to protect against
quantum computer threats is to develop modern cryptographic schemes.

4.4 Grover’s Algorithm

In this section, two practical implementations of Grover’s algorithm are
proposed using the following tools:

• computation with fermionic particles: utilised the open-source
Python3 library, Qiskit, for simulating the circuit under ideal condi-
tions, and the EBM Quantum Experience cloud platform for validating
the results with a real fermionic quantum computer,

• computation with photons: utilised the open-source Python3 li-
brary, Perceval, for simulation under ideal circuit conditions, and the
Quandela cloud platform for validation of results with a real photonic
quantum computer.

Both realisations employ 3 qubits and thus a search space of dimension
23 = 8. The value to be searched will be the binary string 101 only.

Grover’s algorithm is a quantum algorithm developed by Lov K. Grover
in 1996 that can be used to search an unsorted database with N elements in
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O
(√

N
)

time, which is exponentially faster than classical algorithms that
require O(N) time. The algorithm works by using a quantum oracle to mark
the solution(s) to a search problem and then applying a series of Grover
iterations to amplify the amplitude of the marked state(s), making them
more likely to be measured. The algorithm terminates when a marked state
is measured. The quantum oracle performs a simple task: given an input, it
returns 1 if the input solves the search problem and 0 otherwise. The oracle is
implemented by a black box that applies a phase flip to the marked state(s),
i.e., it changes the sign of the amplitude of the marked state(s). The oracle
can be constructed efficiently for various problems, including unstructured
search, element distinctness, and graph connectivity. The Grover iterations
apply a sequence of two quantum gates: the Hadamard gate and the Grover
diffusion operator. The Hadamard gate creates a superposition of all possible
states, while the Grover diffusion operator reflects the amplitudes about the
average amplitude. Applying these gates repeatedly amplifies the amplitude
of the marked state(s) while suppressing the amplitude of the unmarked
states. The number of Grover iterations required to find a marked state with
high probability depends on the number of solutions to the search problem
and the database size. Grover’s algorithm has important implications for
quantum computing, demonstrating a significant speedup over classical
algorithms for a wide range of problems. However, the algorithm is limited
by the requirement for a quantum oracle, which can be difficult to construct
for some situations, and by the need for precise control of the quantum state
during the iterations.

4.4.1 Ideal Grover’s Circuit implementation

A possible simple translation of Algorithm 3, with three qubits, with the
only value to be searched equal to the binary string 101, is shown in Fig.4.10.
The Oracle is a black box function that takes a quantum state as input
and returns a phase flip on the state if it contains the marked item and no
operation otherwise. The phase flip changes the sign of the amplitude of
the marked item, making them more likely to be measured by the quantum
computer. The quantum implementation of the oracle can be achieved using
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Figure 4.10: Quantum circuit scheme to implement the Grover’s algorithm

a unitary operator that maps the input quantum state to an output quantum
state with a phase flip on the marked item. This unitary operator can be
constructed using reversible classical logic gates and additional qubits. For
example, if the search problem is to find a marked item in a database of N
items, the quantum input state can be a uniform superposition of all possible
basis states |ψ⟩ = 1√

N

∑N−1
i=0 |xi⟩, where |xi⟩ represents a basis state of the

system. The oracle operator, O, can then be defined as: O |ψ⟩ = (−1)f(x) |ψ⟩
where f(x) is the function that determines whether x is the marked item,
and (−1)f(x) is the phase flip that is applied to the state if x is marked.

Figure 4.11: Oracle

O =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



(4.1)

The elements characterising the Oracle block are illustrated: Equation
4.1 displays the matrix that enables a sign flip transformation on state |101⟩;
it can be implemented through a Controlled-Controlled Z gate in a physical
setting (Fig.4.11).

113



Quantum Computing - Platforms and Algorithms

The Controlled-Controlled Z gate (CCZ gate - Fig.4.12) is a three-qubit
gate that performs a controlled phase flip on the target qubit when both
control qubits are in the |1⟩ state. Otherwise, the target qubit remains
unchanged. In this particular case, its defining matrix is in Eq.4.2.

Figure 4.12: CCZ gate

CCZ =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1



(4.2)

The Diffusion Operator, also known as the Grover Operator, is a unitary
operator; it can repeatedly be applied to the quantum state to amplify the
marked state’s amplitude and suppress the unmarked states’ amplitude.
The number of iterations required depends on the number of marked states
and the dataset size. In this specific case, it takes about π

4

√
N iterations to

achieve a high probability of measuring a marked state in a dataset of size
N.

Figure 4.13: Diffusion
Operator
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(4.3)

The elements characterising the Diffusion Operator block are illustrated:
Equation 4.3 displays the matrix that enables the inversion of states around
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their average value and their subsequent reflection; it can be implemented
through the circuit in Fig.4.13.

Thus, the unitary operator U performing the overall transformation is
given by Eq.4.4.

U = S ·O · S ·O · (H ⊗H ⊗H) =

=
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(4.4)

In Eq.4.5, it is shown the final state |ψout⟩ resulting from Grover’s circuit.
In Table 4.1 is displayed the probability of getting every single state after
a measurement process (in the second row, there is the exact probability
value expressed as a fraction, while in the third row as a decimal number);
it indicates that if multiple investigations were conducted and measured the
outcome, the state |101⟩ would be gotten around 94% of the time.

|ψout⟩ = U · |000⟩ =

= −
√

2
16 |000⟩ −

√
2

16 |001⟩ −
√

2
16 |010⟩ −

√
2

16 |011⟩ +

−
√

2
16 |100⟩ + 11

√
2

16 |101⟩ −
√

2
16 |110⟩ −

√
2

16 |111⟩

(4.5)
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|000⟩ |001⟩ |010⟩ |011⟩ |100⟩ |101⟩ |110⟩ |111⟩
1

128
1

128
1

128
1

128
1

128
121
128

1
128

1
128

0.0078125 0.0078125 0.0078125 0.0078125 0.0078125 0.9453125 0.0078125 0.0078125

Table 4.1: Probability Distribution for state |ψout⟩

4.4.2 Grover’s Circuit with IBM Quantum Experience

Of particular interest is studying the algorithm, first simulating it with Qiskit
and subsequently testing it on a real IBM quantum computer (ibm_manila
platform - cf. Section 2.4.5).

Qiskit

The Qiskit circuit can be seen in Figure 4.14, and the corresponding Python
code to create it is presented in Listing 4.1.

1 import qiskit
2

3 n_qubits = 3
4 qr = qiskit . QuantumRegister (n_qubits , name="q")
5 circuit = qiskit . QuantumCircuit (qr)
6 # Preparation
7 circuit .reset(qr [0])
8 circuit .reset(qr [1])
9 circuit .reset(qr [2])

10 circuit .h(qr [0])
11 circuit .h(qr [1])
12 circuit .h(qr [2])
13 circuit . barrier (qr[0], qr[1], qr [2])
14 # Oracle
15 circuit .x(qr [1])
16 circuit .ccz(qr[0], qr[1], qr [2])
17 circuit .x(qr [1])
18 circuit . barrier (qr[2], qr[1], qr [0])
19 # Diffusion Operator
20 circuit .h(qr [0])
21 circuit .h(qr [1])
22 circuit .h(qr [2])
23 circuit .x(qr [0])
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24 circuit .x(qr [1])
25 circuit .x(qr [2])
26 circuit .ccz(qr[0], qr[1], qr [2])
27 circuit .x(qr [0])
28 circuit .x(qr [1])
29 circuit .x(qr [2])
30 circuit .h(qr [0])
31 circuit .h(qr [1])
32 circuit .h(qr [2])
33 circuit . barrier (qr[0], qr[1], qr [2])
34 # Oracle
35 circuit .x(qr [1])
36 circuit .ccz(qr[0], qr[1], qr [2])
37 circuit .x(qr [1])
38 circuit . barrier (qr[2], qr[1], qr [0])
39 # Diffusion Operator
40 circuit .h(qr [0])
41 circuit .h(qr [1])
42 circuit .h(qr [2])
43 circuit .x(qr [0])
44 circuit .x(qr [1])
45 circuit .x(qr [2])
46 circuit .ccz(qr[0], qr[1], qr [2])
47 circuit .x(qr [0])
48 circuit .x(qr [1])
49 circuit .x(qr [2])
50 circuit .h(qr [0])
51 circuit .h(qr [1])
52 circuit .h(qr [2])

Listing 4.1: Qiskit code to build the circuit

Figure 4.14: Quantum circuit scheme to implement the Grover’s algorithm

Figures 4.15 and 4.16 illustrate the probability amplitudes (the height of the
bars in the histogram represents the value of the modulus of the probability
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amplitude, while the colour of the bar represents the phase, according to the
colour conventions in Fig.2.18c - blue for a phase of 0 radians and orange for
a phase equal to π radians) and the probability distribution of the output
state components, respectively.

Figure 4.15: Probability Amplitudes for the output state

Figure 4.16: Probability Distribution for the output state

The obtained results perfectly align with the expected ones.

IBM QExperience

Qiskit contains dedicated APIs that permit perfect compatibility with the
QASM language of IBM’s real quantum platforms, such as ibm_manila.
That allows algorithms designed and implemented on Qiskit to be executed
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directly on the real quantum computer. The circuit is decomposed and
transpilled according to a basic set of gates used by the platform itself;
ibm_manila uses the set formed by gates CX (CNOT), ID (Identity), RZ
(rotation around the Z axis of the Bloch’s sphere for a predefined angle), SX
(
√
X), X.
Fig.4.17 shows the equivalent circuit in Fig.4.14, except for a global phase

of π
4 radians, decomposed according to ibm_manila’s basic gates.

Figure 4.17: Decomposition of the circuit using the base gates for
IBM_manila platform.

The job was completed in just over a minute, but the wait time in the
queue was nearly an hour, as shown in Fig.4.18. Unfortunately, as depicted in
Fig.4.19, the results indicate the presence of noise, which negatively impacts
performance. It is primarily due to individual gate decoherence and circuit
depth. The probability for state |101⟩ drops significantly, from a predicted
94% to an observed 44%.

However, like the optical Entangler circuit, it is possible to implement
error mitigation and outcome filtering techniques to enhance system perfor-
mance. When using real quantum computers to reduce errors, it is important
to consider the individual performance of the logic qubits (decoherence times
of individual qubits and entanglement-coupled qubits), the depth of the
circuit to be implemented and the Quantum Volume and the QPU (Quantum
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Figure 4.18: Job info

Figure 4.19: Probability Distribution for the output state from IBM_manila
platform.

Processing Unit) of the specific quantum computer. By taking these aspects
into account globally, it is possible to significantly increase the probability
of the correct quantum output state and reduce execution times [83].

4.4.3 Grover’s Circuit with Quandela Cloud

The circuit that performs Grover’s algorithm can also be implemented using
beam splitters and phase shifters, as described in the previous chapter.
Considering the limited number of states for the specific case, equal to 8,
the most straightforward implementation is the one according to the Single
Photon Mode. This mode generally presents serious scalability problems as
the relationship between the system states and its modes is bijective.

Figure 4.20 displays the circuit diagram generated by Perceval. This
primary circuit is built using the same base circuit as demonstrated in the
previous chapter, which can be found in Figure 3.3. The circuit diagram,
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too long to be displayed in its original horizontal extension, has been cut
and reported in three vertical sub-images solely for readability reasons.

Upon analysing the scattering matrix of the transformation, it has become
clear that it perfectly corresponds to matrix in Eq.4.4. The optical circuit
system follows the same evolution as the theoretical circuit. As expected, this
results in identical graphs for the probability amplitudes of the final state
and the probability distributions of the measured states. To illustrate this,
Fig.4.21 and Fig.4.22 show the graphs obtained by simulating the circuit
using Perceval; the graphic conventions utilised in this figure are identical
to those used in Figures 4.15 and 4.16.
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Figure 4.20: Grover’s algorithm implemented using an Optical Quantum
Processor
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Figure 4.21: Probability Amplitudes for the output state in Grover’s algo-
rithm, implemented with Perceval

Figure 4.22: Probability Distribution for the output state in Grover’s algo-
rithm, implemented with Perceval

Like Qiskit for IBM’s quantum platforms, Perceval has specific APIs that
guarantee full compatibility with Quandela’s actual quantum processors, such
as QPU:Ascella (Fig.4.23). This function allows algorithms developed and
implemented on Perceval to run directly on the optical quantum computer
in real-time.
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Figure 4.23: QPU:Ascella characteristics

The task was completed in just two minutes, with a queue wait time
of only 6 seconds (Fig.4.24). However, the results indicate the presence
of noise, which negatively impacts performance due to various physical
effects on individual gates, such as the HOM effect13 [84, 85] and non-ideal
transmittance of beam splitters. Additionally, circuit depth also plays a role.
The probability of state |0, 0, 0, 0, 0, 1, 0, 0⟩ (that is |101⟩) is similar to the
predicted theoretical results, with an observed value of 92% compared to
the predicted 94% (Fig.4.25).

Figure 4.24: Job executed on QPU:Ascella
13The HOM effect, also known as the Hong-Ou-Mandel effect, is a phenomenon in

quantum optics where two identical photons, when injected into opposite inputs of a beam
splitter, always emerge together in one output port or the other. This effect is due to the
wave nature of photons and the quantum mechanical principle of indistinguishability.
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Figure 4.25: Probability Distribution on QPU:Ascella

The impressive outcomes of this technology make it a compelling and
promising option, despite the current uncertainties and challenges. Numerous
researchers are dedicated to advancing quantum technology [86, 87, 88],
particularly in the field of photonics [89, 90, 91, 92]. This work has made a
significant contribution by surpassing the limitations of the results achieved
using superconducting computers on Grover’s algorithm. With the use of
a photonic quantum computer, it was possible to partially overcome the
problem of particle interaction, resulting in a substantial increase in the
probability of obtaining the corrected state. This aspect is a critical point for
fermionic computers, which seem to achieve only up to 80% probability [83].
However, the biggest issue with this solution is scalability. Each qumode
corresponds to only one quantum state, requiring eight qumodes for a three-
qubit Grover algorithm. This fact becomes a real concern that is not easy to
solve when attempting to implement the algorithm on a large data set.

4.5 Conclusions

Quantum computing is a rapidly growing area that has the potential to
revolutionise the way some complex problems can be solved. The develop-
ment and usage of quantum computing technology have made significant
progress in recent years. Researchers are continuously exploring new ways to
leverage this technology to solve complex or impossible problems for classical
computers. Quantum computing’s unique properties, such as superposition
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and entanglement, enable it to perform specific calculations exponentially
faster than classical computers. This technology can potentially transform
fields such as cryptography, materials science, and drug discovery. Significant
investments from both private companies and governments have driven the
development of quantum computers. That has allowed the maturation of
quantum computing hardware, software, and algorithms that have demon-
strated several quantum advantage applications. However, there are still
significant challenges to be addressed in the field of quantum computing.
One of the primary challenges is the development of reliable and scalable
quantum hardware. Though substantial progress has been made in develop-
ing quantum computing systems, they are still prone to errors. Considerable
improvements are needed to make them practical for widespread usage.
Another challenge is the evolution of quantum software and algorithms that
can exploit quantum computing’s unique properties. The field of quantum
software is still in its early stages, and researchers are continuously exploring
new algorithms that can be used to solve complex problems. Despite these
challenges, quantum computing has already demonstrated significant poten-
tial for solving complex problems. In cryptography, quantum computers can
break many classical encryption algorithms, making it necessary to develop
new quantum-resistant encryption methods. In materials science, quantum
computing can be used to simulate complex chemical reactions, enabling the
design of new materials with specific properties. In drug discovery, quantum
computing can be used to simulate the behaviour of molecules, enabling the
discovery of new drugs. In addition to these applications, quantum computing
has the potential to impact several other fields, including finance, logistics,
and optimisation. The development of quantum computing technology will
likely lead to entirely new industries and business models with significant
economic and social implications. In conclusion, the development and usage
of quantum computing technology have the potential to transform the way
we solve complex problems. While considerable challenges remain to be
addressed, the progress made in recent years is encouraging. Researchers are
continuously exploring new ways to leverage this technology to solve real-
world problems. As quantum computing technology continues to develop, it
can be expected to significantly impact several fields, leading to the creation
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of new industries, business models, and economic opportunities.
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Chapter 5

Quantum Machine Learning

5.1 Introduction

The stages of knowledge in the history of humankind have always alternated
between amazement at the immensity of the phenomenon before us and the
joyful conquest for the objectives set. The development and introduction into
the science of a powerful mathematical arsenal have slowly enabled many
obstacles to be overcome, confirming Galileo’s intuition that mathematics is
the straightforward language that enables us to dialogue with nature. At the
beginning of the 20th century, our optimism in positivist determinism was
strongly shaken by new phenomena that led to the birth of quantum mechan-
ics. Nevertheless, the observation of the generation of deterministic chaos
from models with a seemingly simple apparatus of differential equations and
the evident need to describe basic molecular structures by simulating them
with automatic calculation tools that require ever-increasing computational
capabilities are suggesting that the time has come for a profound reflection
on our tools of scientific investigation. Feynman stated that describing the
reality that surrounds us, which has an intrinsically quantum nature, through
a type of computation based on quantum mechanics would be the key to
exponentially lowering the computational complexity of the system in ques-
tion and correctly managing the predictive capacity for the model. It might
be also added that the introduction of quantum computing machines would
also solve the problems related to the imminent reaching of the construction
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limit of current computers (Amdahl’s law), to the possibility of a drastic
reduction in the energy required by today’s computing machines thanks to
computational reversibility, and to the development of nanotechnology.

The possibility of such opportunities has resulted in a growing interna-
tional interest in such devices, with considerable funding in the relevant
research areas. Quantum Computing machines can therefore respond to
questions that would be unimaginable for actual old-style apparatuses [78],
as they would need the whole Universe’s existence time to complete the
same task. That is allowed by some quantum peculiarities that show up
at the littlest of scales, like Superposition, Entanglement and Interference
[79]. Although the theoretical study of quantum algorithms suggests the
real possibility of solving computational problems that are currently in-
tractable [82], the current technology has not reached maturity, such as
to obtain truly appreciable advantages. We are still in the so-called era of
Noisy Intermediate-Scale Quantum (NISQ) [75]. NISQ-devices are noisy
and have limited quantum resources; this presents various obstacles when
implementing a gate-based quantum algorithm. In order to determine if
an implementation of a gate-based algorithm would run effectively on a
particular NISQ-device, numerous aspects of circuit implementation, such
as depth, width, and noise, should be considered [93, 94].

Variational Methods [95, 96] are widely used in physics, and most of all
in quantum mechanics [97]. Their direct successors, Variational Quantum
Algorithms (VQAs), have appeared to be the most effective technique for
gaining a quantum advantage on NISQ devices. VQAs are undoubtedly
the quantum equivalent of very effective machine-learning techniques like
neural networks. Furthermore, VQAs use the classical optimisation toolbox
since they employ parametrised quantum circuits to run on the quantum
computer and then outsource parameter optimisation to a classical optimiser.
In contrast to quantum algorithms built for the fault-tolerant time period,
this technique provides the extra benefits of keeping the quantum circuit
depth small and minimising noise [98].

The aim is to find the exact, or a well-approximated, parameter values’ set
that minimises a given cost (loss) function, which depends on the parameters
themselves and, naturally, on the input values, x ; these are the non-trainable
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part of the schema. An output measurement apparatus and a parameter
modulation circuit serve as regulators (Fig.5.1). In this specific case, one is

Figure 5.1: Scheme

dealing with a n-qubits quantum ansatz, whose transformation is represented
by the n × n unitary matrix U that depends on the vector of parameters
θ, with dimensions m ϵ N (Eq.5.1); the loss function is the expectation
value measured on every single qubit channel (Eq.5.3); the observable is the
operator Oi, where Zi is the Z-Pauli Operator, acting on i-th qubit (Eq.5.2);
the quantum state on which to operate the measurements will be the state
resulting from the ansatz (ψ in Eq.5.1).

∣∣∣∣ψ (θ )〉 = U
(
θ
)

· |0⟩⊗n (5.1)

Oi = Zi , i ϵ {1..n} ⊂ N (5.2)〈
Ei
(
θ
)〉

=
〈
ψ†
(
θ
) ∣∣∣∣ Oi

∣∣∣∣ ψ (θ )〉 (5.3)

It is well-known that Quantum Computers can take care of specific issues
quicker than traditional ones. As it may, stacking information into a quantum
computer is not paltry. It should be encoded in quantum bits (qubits) to stack
the information. There are multiple ways qubits can address the data, and,
in this manner, various information encodings are conceivable [99]. Several
methods can embed data: Basis Encoding [100, 101], Amplitude Encoding
[102, 103, 104], and Angle Encoding [105, 106] are the most common to
implant information into a firstly prepared quantum state.
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In Section 5.2, aspects of the usability of quantum computation in
machine learning have been explored. Specifically, the aim was to compare
the performance of a basic FFNN with dense layers and an analogous network
composed of quantum components in learning a simple classification problem.

In Section 5.3, this investigation focused on developing new variational
methods based on quantum optics and applied to Machine Learning models.
Three different optical quantum models are compared to try to understand
the relationship between response accuracy and system hyperparameters.

Section 5.2 is based on a paper published by the author in 2022 [107],
while section 5.3 is part of a paper submitted by the author to IEEE Access
in August 2023.

5.2 Quantum models for Machine Learning

The possibility of using machine learning techniques in quantum computing
has been gaining ground since 2010 [108, 109, 110]. The incorporation of
quantum algorithms into machine learning programmes is known as quantum
machine learning [13, 14, 41, 111]. The expression is most commonly used
to refer to machine learning methods for evaluating classical data run on a
quantum computer. While machine learning techniques are used to calculate
vast quantities of data, quantum machine learning employs qubits and
quantum operations or specialised quantum systems to speed up computing
[112] and data storage [113]. Quantum machine learning also refers to an
area of study investigating the theoretical and functional analogies between
specific physical systems and learning systems, namely neural networks [114,
115].

Unfortunately, the current technological development does not yet allow
the full potential of quantum computers to be expressed, which will only
reach maturity in the next few decades. At present, however, it is possible
to use quantum computers in feedback circuits that mitigate the effect of
various noise components [116, 117]. VQAs, which utilise a conventional
optimiser to train a parameterised quantum circuit, have been considered
an effective technique for addressing these restrictions.

The core part of the computational stage consists of a sequence of gates
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applied to specified wires in variational circuits. Like the design of a neural
network that merely describes the basic structure, the variational approach
can optimise the types of gates and their free parameters. In time, the
quantum computing community has suggested several variational circuit
types that can distinguish three main base structures, depending on the
shape of the ansatz: layered gate ansatz [118], alternating operator ansatz
[119, 120], and tensor network ansatz [121].

It has been implemented in a network inspired by a simple type of
architecture, using a minimum number of quantum gates and trainable
parameters.

Compared to the solutions mentioned above, the proposed network has a
significant strength: its structural size is related to the number of parameters
to be used (and thus the number of serial circuit stages) and not to the
size of the individual element of the input dataset (Fig.5.2). Since, for the
current fermionic circuits, the major problem is the decoherence noise of the
quantum states, a solution with a high circuit depth would have considerably
deteriorated the obtainable results; the second strength of the proposed
solution is, therefore, the attempt to minimise the number of series circuit
stages. That made it possible to adequately modulate the hyper-parameters
of the implemented network, resulting in a classifier with an exceptionally
high degree of accuracy and a low number of quantum gates.

5.2.1 The architecture of the system

The network has a general structure of this type:

• A first classical dense layer, to accept features as input

• A quantum circuit formed by a succession of rotational and entangle-
ment gates

• A final classical dense layer for classification

The quantum structure proposed differs from some other proposals, which
encodes input features to transform them into quantum states [122, 123];
the initial state, the "prepared state", is simply |0⟩⊗n. The proposed archi-
tecture is based on the typical "Prepared State fixed; Ansatz parameterised"
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model. Several variants exist in the literature, especially the most known
Instantaneous Quantum Polynomial (IQP) circuits [124]. The initial dense
network, which named input-layer, acts as an interface between the input
data and the quantum layer; its output directly drives the internal rotations
of the quantum state, attributing new values to the rotation angles at each
epoch (Fig. 5.2). Almost all the simulations were conducted using quantum

Figure 5.2: Architecture of the quantum neural network

sub-layers consisting of a first stack of rotation gates around the Y-axis of
the Bloch’s sphere, a second stack of rotation gate around the Z-axis and a
chain of cX gates (CNOT) to maximise the entanglement effect. Rotation
operators help primarily to ensure the expressibility of a parameterized quan-
tum circuit. That is essentially the total coverage of Hilbert space by the
hypothesis space of the ansatz itself [125]. In addition, the chain of CNOT
operators is tasked with maximising the entanglement effect of individual
qubits, as the entanglement phenomenon plays a crucial role in quantum
computation. This feature is called Entangling Capability [126].

An authentic advantage is that the network’s response remains indepen-
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dent of the number of qubits. The only real quantum noise remains due to
the construction and constitution of the ansatz and the device, or simulator,
used for experimentation.

5.2.2 Data extraction and processing

The database chosen for the classification problem is called two-moons, which
generates two interleaving semicircles of 2D-points, and is characteristic for
the study of clustering and classification algorithms.

The dataset was generated thanks to the dedicated function from the
Python Scikit-Learn library1.

The input domain is [−2.0, 3.0]× [−2.0, 2.5] ⊂ R2. One thousand samples
were randomly generated, equally distributed over the two classes. The classes
were initially chosen with a Gaussian Error Coefficient of 0.05: this coefficient
quantifies the capacity of separation of the two categories: the higher its
value, the greater the degree of overlap of the two classes (Fig. 5.3). The
number of samples in the dataset was divided in such a way as to ensure the
following quotas: 70% for the training set, 20% for the validation set and
the remaining 10% for the test set.

5.2.3 Model construction and validation

Two twin models have been realised in parallel, using for one of them the
Python library for quantum simulation Cirq2 with TensorFlowQuantum3,
by Google, and for the other an open-source Python library, PennyLane4,
by Xanadu, which can be perfectly interfaced with the most famous Deep
Learning frameworks, such as Keras, and of course TensorFlow, and PyTorch.

All tests and simulations were performed using the specialised open-source
library for Deep Learning, Keras5.

The TFQ (TensorFlowQuantum) model is composed as follows (Fig.
5.4a):

1https://scikit-learn.org/stable/index.html
2https://quantumai.google/cirq
3https://www.tensorflow.org/quantum
4https://pennylane.ai/
5https://keras.io/
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Figure 5.3: Distribution of pattern points on the plane in relation to Gaussian
Noise

• A layer for data input, called input_layer.

• A Dense layer, which adapts the input to the number of parameters,
in this specific case 16, called FFNN.

• A layer for the ansatz input in the form of a tensor, called qc_layer.

• A control layer (called TOTAL), which receives the two inputs, mod-
ulates the values of the parameters and returns, for each wire in the
circuit, the expected value.

• A final Dense layer (called output_layer), with a number of outputs
equal to the number of classes in the dataset, which returns the
probability of belonging to them (softmax activation).

The PQML (PennyLane Quantum Machine Learning) model is composed as
follows (Fig. 5.4b):
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• A layer for data input, called DATA.

• A Dense layer, which adapts the input to the number of parameters,
in this specific case 16, called layer1.

• A custom layer, called quantum_layer, designed as a subclass of the
Layer class from the Keras library, which receives in input the values of
the parameters of the ansatz and returns, for each wire of the circuit,
the expected value.

• A final Dense layer (called output_layer), with a number of outputs
equal to the number of classes in the dataset, which returns the
probability of belonging to them (softmax activation).

a TQF Model b PQML Model

Figure 5.4: Quantum Neural Network Models utilised

The number of ansatz parameters is given by the product of the number
of qubits, the number of rotation operators acting on each line of the
circuit within each sublayer, and the number of sublayers. For the tests and
simulations, it has been opted to use an ansatz consisting of 4 sublayers to
avoid creating an excessive computational load on the quantum layer. By
initially constraining the number of qubits to 2 and not introducing any
form of noise, it can be said that both models proved to be extremely light in
terms of the number of trainable parameters: 54 against the 354 of a similar
FFNN Fully-Connected (Feed-Forward Neural Network), with three layers.
The disadvantage is that the simulation run times are about one order of
magnitude longer than the latter: about 1.5 minutes per epoch, on a HP
ProBook 450 G6, with 8 × Intel® Core™ i7-8565U CPU @ 1.80GHz, 32
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GiB of RAM, GeForce MX130. In fact, to simulate an ansatz is necessary
to operate many matrix products against only one matrix product for a
standard dense layer.

The entire model was compiled using a classical optimiser, SGD (Stochas-
tic Gradient Descent), with Mean Absolute Error as the Loss Function and
Accuracy as the metric.

5.2.4 Analysis of results

The results obtained are excellent. Figure 5.5 shows the metrics (LOSS: loss
function on training set, ACCURACY: accuracy on training set, VAL_LOSS:
loss function on validation set, VAL_ACCURACY: accuracy on validation
set,) for the TFQ model, trained for 20 epochs, with different values of
Gaussian Noise on the dataset generation (legend).

Figure 5.5: Metrics for TFQ model

The model achieves 100% accuracy for low-noise datasets and more than
80% accuracy for high-noise datasets.

137



Quantum Machine Learning

Samples: 20 / 200 Samples: 100 / 1,000 Samples: 500 / 5,000
n qubits n qubits n qubitsNOISE 2 3 4 2 3 4 2 3 4

0.05 100.0 % 95.0 % 95.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
0.10 100.0 % 95.0 % 95.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
0.25 95.0 % 80.0 % 90.0 % 93.0% 94.0 % 94.0 % 93.8 % 93.8 % 90.0 %
0.35 80.0 % 75.0 % 85.0 % 88.0% 86.0 % 89.0 % 88.4 % 88.6 % 88.4 %

Table 5.1: Percentage of correct evaluations on the test set for TFQ model.

Table 5.1 shows the percentages of correct evaluations on the test set
as a function of the Gaussian Noise on the dataset, the number of qubits
used, datasets with different cardinalities (the header of the table shows
the number of samples of the test set on the number of total samples). It is
referred to TFQ model.

Figure 5.6 shows the usual metrics for the PQML model, trained for 20
epochs, with different values of Gaussian Noise on the dataset generation
(legend).

Figure 5.6: Metrics for PQML model

The model achieves 100% accuracy for low-noise datasets and beyond
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80% accuracy for high-noise datasets.

Samples: 20 / 200 Samples: 100 / 1,000 Samples: 500 / 5,000
n qubits n qubits n qubitsNOISE 2 3 4 2 3 4 2 3 4

0.05 100.0 % 100.0 % 95.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
0.10 95.0 % 100.0 % 95.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
0.25 95.0 % 100.0 % 80.0 % 94.0% 93.0 % 94.0 % 94.8 % 94.0 % 93.8 %
0.35 75.0 % 90.0 % 75.0 % 87.0% 88.0 % 86.0 % 88.2 % 88.4 % 87.2 %

Table 5.2: Percentage of correct evaluations on the test set for PQML model.

Table 5.2 shows the percentages of correct evaluations on the test set
as a function of the Gaussian Noise on the dataset, the number of qubits
used, datasets with different cardinalities (the header of the table shows
the number of samples of the test set on the number of total samples). It is
referred to PQML model.

Figure 5.7 shows the usual metrics for a simple FFNN Fully-Connected,
three dense layers, with the same inputs and output as quantum networks,
trained for 20 epochs and with 354 trainable weights. Without the use of reg-
ularisers or drop-out layers, an early overfitting of the model can be observed.
The two models exhibit remarkably similar tendencies, demonstrating their
quality and validity.

Interestingly, unlike an analogous FFNN, a quantum network, since it
contains only unitary transformations, can reduce the overfitting phenomenon
without the necessity of introducing any particular regularizers or drop-out
layers (at least for certain values of ansatz depth). The scale of the signal
feed-forward (in time) and the mistakes conveyed backwards are maintained
by a unitary matrix since it preserves the length of the vector to which it is
applied [127].

5.3 Photonic Quantum models for Machine
Learning

Our approach is based on using a feedforward neural network (FFNN),
usually referred to as a multilayer perceptron, whose layers have been built
utilising quantum photonic circuits in this particular instance. Eq.5.4 is the
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Figure 5.7: Metrics for an analogue FFNN

mathematical function that accurately depicts the transformation provided
by an FFNN. The fundamental structure, however, is essentially the same: a
horizontal stacked multi-layer arrangement with each layer being composed
of an initial linear transformation (an affine transformation) and a nonlinear
function called "activation" (Eq.5.5)

ȳ = f
(
x̄, θW , θb

)
= Lk ◦ Lk−1 ◦ ... L2 ◦ L1(x̄) (5.4)
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with x ∈ Rn1 is the input vector, θW ∈ Rp1 , θb ∈ Rp2 are the parameter
values’ vectors and (k, n1, p1, p2) ∈ N4.

Li : Rni → Rni+1

Li(xi) = φi
(
Wixi + bi+1

) (5.5)

with i = 1..k and (n1, n2, ..., nk−1, nk, nk+1) ∈ Nk+1. Moreover

• Wi ∈ Rni+1×ni is the i-th matrix for the i-th layer, called the weight
matrix

(
containing θW

)
,

• xi is the i-th input vector,

• bi ∈ Rni+1 is the i-th vector, called the bias vector
(
containing θb

)
,

• φi is the non-linear activation function for the i-th layer

Usually, one is dealing with a n-qubits quantum ansatz, as said in previous
subsection (Eq.5.1, 5.2, 5.3).

However, an alternative approach concerning one in Section 5.2 may be
used to achieve the same results: an optical-quantum layer-based FFNN
[128]. Thus, the followings (Eq.5.7) would be the transformation’s attempt
to ensure:

f : | x ⟩ →
∣∣∣ φ (W x + b

) 〉
(5.6)

with | x ⟩ = ⊗n
i=1 |xi⟩, n is the dimension of the feature space and x

the generic feature entering the system. Data can be encoded in position
eigenstates.

The Singular Value Decomposition (SVD) theorem, which guarantees
the factorisation of W into three matrices, two orthogonal and one as a
positive diagonal matrix, may be used to decompose the matrix itself. That
ensures the utilising of specific quantum gates that can mimic the behaviour
determined by the corresponding matrices.

W = U · Σ · V T (5.7)

with
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• Un×n(R) | U−1 = UT

• Σn×m(R) | Σ = diag(σ1, σ2, ..., σp)

• V m×m(R) | V −1 = V T

• (m,n) ∈ N2

Regarding the physical implementation, squeezer gates may be utilised to
obtain the diagonal transformation, while interferometers (a combination of
beam splitters and rotation gates) can be employed to achieve the orthogonal
ones. The addition operation using the bias vector, b, is then obtained
by appending position displacement gates. Hanging a Kerr gate as the
final circuital block might be a potential option to produce a non-linear
transformation; this is the most common choice. Figure 5.8 shows the circuit
diagram of a single layer relating to the input use of a single q-mode,
while Figures 5.9 and 5.10 represent the situations with two q-modes and
four q-modes, respectively. It can be said that this is another example

Figure 5.8: Circuital block diagram for a single layer, single q-mode, related
to an optical-quantum layer-based FFNN

Figure 5.9: Circuital block diagram for a single layer, two q-modes, related
to an optical-quantum layer-based FFNN

of quantum computation’s applicability to machine learning. Concerning
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Figure 5.10: Circuital block diagram for a single layer, four q-modes, related
to an optical-quantum layer-based FFNN

learning a straightforward classification task, here have specifically compared
the abilities of a fundamental OQ-FFNN (Optical Quantum FFNN) with
dense layers with an identical network only made up of photonic quantum
components.

Since 2010, there has been a growing interest in applying machine learn-
ing techniques to quantum computing [108, 109, 110]. Early attempts to
efficiently simulate the quantum world were prosperous to the extent that
small physical systems (with few particles) were considered; the use of high-
performance computers was necessary due to the large dimensions involved.
The introduction of virtual and augmented reality to better explain the
concepts of quantum mechanics is interesting from a didactic point of view
[25]. Quantum machine learning [13, 14, 129] integrates quantum algorithms
into machine learning programmes. The phrase is most frequently used to
describe machine learning algorithms that analyse classical data and are
executed on a quantum computer. Quantum machine learning uses qubits,
quantum processes, or specialised quantum systems to speed up computation
[112]. Machine learning techniques are used to calculate enormous amounts
of data. The study of theoretical and practical parallels between particular
physical processes and learning systems, such as neural networks, is known
as quantum machine learning [114, 127].

A wide range of concepts with varying degrees of similarity to conventional
neural networks are included in current QNN proposals [130, 131, 132]. The
challenge of integrating the linear and non-linear parts and the unitary
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framework of quantum mechanics is at the heart of quantum neural network
theory. Quantum neural networks are only one form of the most recent type of
machine learning models implemented on quantum computers. They broadly
use quantum phenomena like superposition, entanglement, and interference
to exploit possible benefits such as quicker training and processing [133, 134,
135].

It has recently been proposed that the representation of quantum in-
formation need not be binary or discrete. Instead, it is also possible to
leverage the innately "continuous" quantum features of matter, which would
inevitably result in encoding the information in continuous variables (CV).
The position and momentum of a particle are typical examples [136, 137,
138, 139]. It needs a quantum circuit with a universal layer structure so
that one can manufacture any CV state with no more than polynomial
complexity in order to do arbitrary proper transformations for the learning
process by the machine. Therefore, the architecture to be selected must be
composed of layers, with parameterised Gaussian and non-Gaussian gates
present in each layer. The non-Gaussian gates provide the model with both
non-linearity and universality [74, 140, 141]. The application of photonic
quantum machine learning is proving effective in both traditional classi-
fication and regression issues, which is undoubtedly a fascinating finding
[142, 143, 144, 145]. However, more importantly, it is fast improving our
knowledge of quantum processes themselves [146, 147].

5.3.1 The system architecture

Three different types of OQFFNN, whose general structure is identical, have
been tested; their differentiation comes from the distinct implementations
of the quantum networks. All models consist of a series of quantum layers
(Li) followed by a measurement apparatus whose outputs go into a classic
dense layer that enables the binary categorisation of the input items (Figure
5.11). The Number Operator (n̂i = â†

i âi, that is the sequential action of the
annihilation and creation operators) has been selected as the observable in
these experiments, and the measure will be its average value, ⟨n̂i⟩, for each
i-th q-mode.
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Figure 5.11: Common structure for the proposed OQFFNN (m is the input
dimension)

The chosen dataset is a set of 2D points, so it can be represented as a matrix
whose shape is (number_of_features, 2).
One can now examine the three varieties of quantum layers:

1. The dataset features are entered into the network as values for the
two parameters (ρ, φ) of a classical coherent state |α⟩, with α ∈
C | α = ρ · ei·φ. In order to allow a direct correspondence between the
coordinates of the point and the geometric meaning of the parameters
of the coherent state given in input, the pair of coordinates (x1, x2) that
identify a point of the plane in an orthogonal Cartesian reference are
transformed into polar coordinates (ρ1, θ1) before being transferred as
input into the network. The quantum layer (Figure 5.12) is composed
of a Rotational Gate (R), a Squeezing Gate (S), another Rotational
Gate (R), a Displacement Gate (D) and a Kerr Gate (K).

Figure 5.12: First type of layer

2. The features of the input dataset are represented in the network as the
phases φ of an equal number of coherent states, whose amplitude ρ is
arbitrarily set to 1, to improve the numerical simulation’s efficiency
without straying too far from the typical values of a physical imple-
mentation. The quantum layer (Figure 5.13) is composed of two Beam
Splitters (BS), four Rotational Gates (R), two Squeezing Gates (S),
two Displacement Gates (D) and two Kerr Gates (K).
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Figure 5.13: Second type of layer

3. The dataset features are entered into the network as values for the
two parameters (ρ, φ) of a two-mode squeezing gate, whose inputs
are Vacuum States. The quantum layer (Figure 5.14) is composed
of four Rotational Gates (R), two single Squeezing Gates (S), two
Displacement Gates (D) and a Cross-Kerr Gate (K).

Figure 5.14: Third type of layer

5.3.2 Data extraction and processing

The two-moons database, which creates two interleaving semicircles of 2D
points and is typical for the study of clustering and classification techniques,
was chosen to solve the classification challenge.

The Python Scikit-Learn library’s6 dedicated function was used to create
the dataset. The input domain is [−2.0, 3.0]×[−2.0, 2.5] ⊂ R2. One thousand
five hundred samples were randomly generated and uniformly distributed
over the two classes.

6https://scikit-learn.org/stable/index.html
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The number of samples in the dataset was divided in such a way as to
ensure the following quotas: 75% for the training set, 15% for the validation
set and the remaining 10% for the test set (Figure 5.15).

Figure 5.15: Dataset: Distribution of pattern points on the plane

Moreover, the features have been given as points of a plane in polar
coordinates (Figure 5.16) to improve the operation of particular gates whose
parameters operate on complex values (in set C). The kind of input in the
Cartesian or Polar form shall be defined for each model in section 5.3.3.

Figure 5.16: Dataset: Distribution of pattern points on the plane in polar
form
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5.3.3 Models’ validation

All the models to be discussed have been implemented using the known
open-source Python library, PennyLane7, with StrawberryFields8 backend
for simulation, both by Xanadu [148, 149]. Both can be perfectly interfaced
with the most famous Deep Learning frameworks, such as Keras, TensorFlow
and PyTorch.

All tests and simulations were performed using the specialised open-source
library for Deep Learning, Keras9.

Every model has a traditional dense layer as the last layer (Figure 5.11),
which serves as a classifier. Its input is the average number of photons
processed by the quantum network, and its output is a float value between
0 and 1. The sigmoid function is utilised as its activation function. All the
models were compiled using:

• optimizer : SGD (Stochastic Gradient Descent), with a learning rate
equal to 0.01

• loss function: binary cross-entropy

• metric: accuracy

Model 1

The simulations were conducted initially using a simple structure, consisting
of a single quantum layer, for a total of 9 parameters (Figure 5.17). Indeed,
the number of parameters to be trained for the first model is given by 2
(parameters for the final Dense layer) and the product between the number
of quantum layers to be used and 7 (the sum of the parameters of the single
quantum gates making up the layer - see Appendix A for details).

Figures 5.18 and 5.19 show the metrics (LOSS: loss function on training
set, ACCURACY: accuracy on training set, VAL_LOSS: loss function
on validation set, VAL_ACCURACY: accuracy on validation set) for the
Model n.1, trained for 50 epochs. The outcomes are superb. The optimal

7https://pennylane.ai/
8https://strawberryfields.ai/
9https://keras.io/
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a () b

Figure 5.17: (a) Number of training parameters; (b) Model 1 - layers’ scheme

Figure 5.18: Loss and Validation Loss for Model 1

parameters’ values10 are displayed in Tab.5.3, while for the dense layer are
(w, b) = (−11.58, 6.2). The results provided in Figure 5.20 indicate what
happens when the model is applied to the test set (150 samples), confirming
the model’s excellent performance (Test Accuracy: 100%).

Other simulations were run using more quantum gates in series, but none
of them showed a discernible improvement over the single-gate experiment.

10Coefficient k is in mV −2
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Figure 5.19: Accuracy and Validation Accuracy for Model 1

R S R D K
φ ρ φ φ ρ φ k

1.28 0.46 0.64 2.56 0.28 0.06 3.2 · 10−7

Table 5.3: Optimised parameters’ set for the quantum network

Model 2

The number of parameters to be trained for the model n.2 is given by 3
(parameters for the final Dense layer) and the product between the number
of quantum layers to be used and 16 (the sum of the parameters of the
single quantum gates making up the layer). Following the reasoning shown
in the introductory part of this section, it was decided to utilise phaseless
beamsplitters in this simulation so that each item in its representation matrix
might have a real value.

The simulations were conducted initially using a simple structure, con-
sisting of a single quantum layer, for a total of 19 parameters (Figure 5.21).

Figures 5.22 and 5.23 show the metrics (LOSS: loss function on training
set, ACCURACY: accuracy on training set, VAL_LOSS: loss function on
validation set, VAL_ACCURACY: accuracy on validation set) for the Model
n.2, trained for 50 epochs. The outcomes are satisfactory. The optimal
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a b

c

Figure 5.20: (a) Confusion Matrix for test set; (b) Normalised Confusion
Matrix; (c) ROC Curve

a b

Figure 5.21: (a) Number of training parameters; (b) Model 2 - layers’ scheme

parameters’ values11 are displayed in Tab.5.4, while for the dense layer, they
are w = (−7.64, 6.90)T and b = −0.33. The results provided in Figure
5.24 indicate what happens when the model is applied to the test set (150
samples), confirming the model’s good performance (Test Accuracy: 96.67%).

By starting with this model, it is feasible to increase the degree of cate-
11Coefficient k is in mV −2
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Figure 5.22: Loss and Validation Loss for Model 2

Figure 5.23: Accuracy and Validation Accuracy for Model 2

gorisation and moderate the oscillations during the solution research phase.
The phase angle parameters will be added to the individual BeamSplitters,
taking the reflectivity values from real to complex. The number of training
parameters for the quantum layer is 18; the final number is 21.

Figures 5.25 and 5.26 show the usual metrics for the Model n.2, with
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BS R S BS R D K
Mode θ φ φ ρ φ θ φ φ ρ φ k

0 0.39 0.50 0.04 0.90 0.08 0.02 −1.02 · 10−15

1 0.05 0.0 2.60 0.02 0.01 0.16 0.0 0.20 0.88 1.10 −1.49 · 10−15

Table 5.4: Optimised parameters’ set for the quantum network (Model
without phase angles for beam splitters)

(a) (b)

(c)

Figure 5.24: (a) Confusion Matrix for test set; (b) Normalised Confusion
Matrix; (c) ROC Curve

phase angles, trained for 50 epochs. The values of the best parameters12

determined after network training are displayed in Table 5.5.

BS R S BS R D K
Mode θ φ φ ρ φ θ φ φ ρ φ k

0 0.44 0.49 0.03 1.05 0.09 0.02 9.30 · 10−16

1 0.03 0.33 2.62 0.04 0.07 0.15 0.01 0.15 0.91 1.15 6.66 · 10−15

Table 5.5: Optimised parameters’ set for the quantum network (Model with
phase angles for beamsplitters)

The following values for the dense layer’s parameters are gotten: w =
(−8.04, 7.08)T and b = −0.18. The Test Set’s scores (Figure 5.27) are
likewise quite good, with an accuracy performance of 97.33%.

12Coefficient k is in mV −2
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Figure 5.25: Loss and Validation Loss for Model 2 with phases

Figure 5.26: Accuracy and Validation Accuracy for Model 2 with phases

It was noticed that the model’s performance did not meaningfully improve
with the addition of more quantum layers to the network.
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(a) (b)

(c)

Figure 5.27: (a) Confusion Matrix for test set; (b) Normalised Confusion
Matrix; (c) ROC Curve

Model 3

A hybrid of the first two, the third kind of layer (Figure 5.14) contains two
q-modes but does not employ beam splitters. The interaction between states
is achieved by using a Two-Squeezing Gate, which serves the function of
suitably encoding and modulating the input information, while the Cross-
Kerr Gate is found in the final step of the Quantum Layer. They both carry
out nonlinear transformations commonly utilised to generate entanglement
in quantum models with continuous variables.

The simulations were conducted initially using a simple structure, con-
sisting of a single quantum layer, for a total of 16 parameters (Figure 5.28):
13 belong to quantum layer.

Figure 5.28: Number of training parameters
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Figures 5.29 and 5.30 show the metrics (LOSS: loss function on training
set, ACCURACY: accuracy on training set, VAL_LOSS: loss function on
validation set, VAL_ACCURACY: accuracy on validation set) for the Model
n.3, trained for 50 epochs. The outcomes are satisfactory. The optimal

Figure 5.29: Loss and Validation Loss for Model 3

Figure 5.30: Accuracy and Validation Accuracy for Model 3
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parameters’ values13 are displayed in Tab.5.6, while for the dense layer, they
are w = (−6.13, −7.14)T and b = 7.43. The results provided in Figure
5.31 indicate what happens when the model is applied to the test set (150
samples), confirming the model’s good performance (Test Accuracy: 89.33%).

R S R D CK
Mode ϕ ρ ϕ ϕ ρ ϕ κ

0 0.24 0.0 0.05 0.31 0.72 0.01
1 0.24 0.001 0.0 0.19 0.22 0.03 1.58 · 10−12

Table 5.6: Optimised parameters’ set for the quantum network

(a) (b)

(c)

Figure 5.31: (a) Confusion Matrix for test set; (b) Normalised Confusion
Matrix; (c) ROC Curve

Further investigations showed that increasing the number of layers leads
to a partial but meaningful improvement in performance:

• Model 3, with 2 quantum layers

– Total trainable parameters: 29

– Test Accuracy: 91.33%
13Coefficient k is in mV −2
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– ROC Curve Area: 0.90

• Model 3, with 4 quantum layers

– Total trainable parameters: 55

– Test Accuracy: 99.33%

– ROC Curve Area: 0.99

• Model 3, with 8 quantum layers

– Total trainable parameters: 107

– Test Accuracy: 100.00%

– ROC Curve Area: 1.0

Furthermore, replacing the Cross-Kerr layer with a Two-Squeezing Gate
yields an excellent result after 50 epochs of training (Figure 5.32), hitting
100% in the Accuracy Test, with only 17 trainable parameters.
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(a)

(b)

(c)

Figure 5.32: (a) An interesting variant for Model 3; (b) Loss and Validation
Loss; (c) Accuracy and Validation Accuracy

5.4 Conclusion

Variational circuits play a crucial role in the field of hybrid algorithms,
serving as a link between classical and quantum computing. These circuits
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leverage a parameterised design that can be adjusted to achieve a specific
outcome, like tuning a quantum circuit to simulate particular input-output
relationships based on training data.

However, despite the apparent simplicity of this concept, the actual
execution of variational circuits is incredibly complex. One of the most
significant challenges is selecting the proper structure or "ansatz" for the
efficient circuit regarding depth, width, and parameters while remaining
robust and versatile. This challenge is similar to a fundamental problem in
classical machine learning, which involves creating simple yet effective mod-
els. Nevertheless, the challenge continues beyond model selection. Training
these quantum models differs from traditional approaches, as they are based
on physical quantum algorithms rather than mathematical formulas. That
raises questions about whether we can improve upon traditional numerical
optimisation techniques. As a result, there are still some unanswered ques-
tions and uncertainties. In the context of quantum systems, choosing optimal
parameterisation techniques is crucial to achieving high-quality results. It
is imperative to consider whether classical iterative training strategies are
adequate or if new techniques should be devised to suit the unique charac-
teristics of quantum systems. As such, it needs to address whether existing
parameterisation methods are fit for purpose or whether novel approaches
need to be developed to meet the specific requirements of quantum systems.
In essence, variational algorithms are not just another tool: they may hold
the key to a whole new dimension in machine learning. They could pave the
way for a broader paradigm in which we use physical devices as machine
learning models, guided by our classical computers during training.

So, the aim of the research presented in this chapter was to delve deeper
into the feasibility of using quantum computers for machine learning purposes
in the NISQ era by attempting to train a simple network consisting of classical
quantum gates (solution 1) and photonic quantum gates (solution 2). The
study examined various essential aspects of a statistical classifier, such as
the convergence of the proposed model, the accuracy of the result concerning
a standard metric, the minimisation of the number of trainable parameters
(i.e., the number of quantum gates required in the implemented circuit), and
the scalability of the solution.
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In order to perform the analysis, two different computation paradigms
were considered: quantum computation using fermions and a bosonic model
with continuous variables. The fermionic model is based on the behaviour
of Fermi particles, such as electrons, while the bosonic model is based on
the behaviour of bosons, such as photons. Although these two models differ
significantly in nature and theoretical and practical modelling, the results
obtained from this research and other similar recent studies [150] suggest
that quantum computation can be used to advantage in the field of Machine
Learning.

Both models operate on the same dataset, but the data semantics are
different.

The first solution (Fermionic Quantum Machine Learning) leverages
two different libraries to simulate the proposed network, which comprises
rotation gates and Cnot. It produces consistent results as the noise level
on the dataset changes. Only twenty epochs are needed to effectively train
the network, which achieves a remarkable 100% recognition rate for samples
belonging to the Validation Set when the noise level is low. Moreover, it
achieves an impressive 85% recognition rate for very high noise levels. The
progress of the Loss and Accuracy curves of the model suggests that it is
robust to noise and immune to the drop-out phenomenon. Surprisingly, a
similar network for classical Machine Learning (e.g., a simple FFNN) needs
354 trained weights (although relatively few for networks of this type) versus
the 54 of the proposed solution. The degree of scalability is excellent, as the
network structure is not tied by the size of the individual dataset. The most
notable disadvantage during simulations is the high run-time, but typical of
machine learning hybrid solutions (Classic + Quantum).

The second solution (Photonic Quantum Machine Learning) illustrates
the investigation on the behaviour of a basic OQFFNN. The primary con-
stituents of the quantum circuit are linear and non-linear optical components.
The elements of the dataset modulate the incoming photons, transforming
them into specific prepared quantum states. Here, the goal, in addition to
the model’s convergence and classification ability, was to limit the number
of trainable parameters while retaining an accuracy of more than 80%. The
three models had surprisingly comparable patterns, confirming their quality
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and validity and proving their efficacy. This investigation, which employed
quantum mechanics, attempted to compare the behaviours emerging from
several circuit implementations of the kernel method on a not overly com-
plicated dataset. The results are excellent for all the models investigated,
demonstrating the effectiveness of the circuit structures adopted. Some mod-
els have achieved accuracy levels of 100%, while others have never dropped
below 90%, exhibiting classification robustness far beyond expectations.

The first model is straightforward: it has seven trained parameters. It
receives in input a coherent state, the complex components modulated by the
two input values of the data vector. It has an excellent answer: Once trained,
it can recognize all new samples proposed with a 100% Test Accuracy.

The second model receives in input two consistent states, the phase of
which is modulated by the input data. The confusion matrix and the ROC
curve highlight a good model response, with a recognition accuracy of the
test data of 91%.

The third model has a very similar structure to the second. Still, the
interaction between the two photons in the final stage reduces the perfor-
mance to 88%, a very high value, considering the low number of trained
parameters (equal to 13). An excellent improvement is achieved by replacing
the Cross-Kerr stadium with a Two-Squeezing Gate: the results obtained
are comparable to those of Model 1.

The limit of the first model is its inability to be scalable if taken in
its original version, as its input is a coherent state that depends solely on
two parameters. Therefore, datasets with many features cannot be directly
encoded in the network. The second and third models are more scalable
than the first one. In these models, each input photon contains information
about every feature in the dataset. However, minimising the number of gates
in the structure is essential to ensure high performance. That is because
other stages that stack horizontally can significantly degrade the model’s
performance.

The research aim to be done in the near future will concern the capacity
to categorise increasingly complicated and structured data sets while leaving
a suitably low number of gates needed to accomplish the task.

It is also desirable to transfer these investigations from quantum com-
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puter simulators to real quantum computers once the simple tests necessary
to validate the model have been completed. Despite the excellent perfor-
mance and optimisations gained so far of both hardware and software on
the enormous amount of calculations to be performed, the simulators still
need to be able to exploit the quantum peculiarities of matter which allow
parallelism in the calculation, which is not classically attainable. Future
investigations will focus on this front. This will provide insight into the
problems arising from the physical implementation and the feasibility of the
proposed solutions.
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Conclusions

This dissertation has covered three important topics: Computing Mega Struc-
tures, Quantum Computing, and Quantum Machine Learning. Exploring
these subjects in depth makes discovering many key insights and implications
possible.

Computing Mega Structures are large-scale infrastructures like data
centres and supercomputers. They play a critical role in processing and
storing massive amounts of data. These scalable structures can perform
resource-intensive tasks like simulations, data analysis, and artificial intel-
ligence algorithms. As technology advances, Computing Mega Structures
will become increasingly crucial for scientific discoveries, business operations,
and computational efficiency.

Quantum Computing is a new paradigm in the field of computation.
Using quantum mechanics, quantum computers can perform computations
exponentially faster than classical computers. Quantum bits, or qubits, allow
for the representation and manipulation of complex states, which enables the
execution of quantum algorithms with superior efficiency for certain classes
of problems. Quantum computing has immense potential for addressing
computationally intractable problems, such as cryptography, optimisation,
and material design.

Quantum Machine Learning integrates quantum computing principles
into the field of machine learning. By exploiting the unique properties of
quantum systems, quantum machine learning can potentially surpass classical
machine learning models in terms of computational power and predictive
capabilities. Quantum machine learning has the potential to unlock new
frontiers in pattern recognition, data analysis, and optimisation, which can
have profound implications across diverse domains.
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Conclusions

Together, these three fields represent the forefront of computational
research and offer immense opportunities for future exploration. However,
there are still many challenges and technical hurdles to overcome. Further
research and development efforts are needed to address error correction,
scalability, and algorithm design issues. By embracing and advancing these
technologies, it is possible to pave the way for a new era of computation,
transforming industries, revolutionising problem-solving approaches, and
shaping a more technologically advanced society.
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