
This article has been downloaded from IOPscience. Please scroll down to see the full text article.

(http://iopscience.iop.org/1478-3975/4/3/004)

 is available

Download details:

IP Address: 128.178.66.195

The article was downloaded on 11/12/2007 at 12:59

Please note that terms and conditions apply.

More related content

HOME | SEARCH | PACS & MSC | JOURNALS | ABOUT | CONTACT US

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1478-3975/4/3/004/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/pacs
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact


IOP PUBLISHING PHYSICAL BIOLOGY

Phys. Biol. 4 (2007) 172–180 doi:10.1088/1478-3975/4/3/004

A dynamical study of antibody–antigen
encounter reactions
Lorenzo Bongini1,6, Duccio Fanelli2,6, Francesco Piazza3,6,
Paolo De Los Rios3, Michel Sanner4 and Ulf Skoglund5
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Abstract
The effects of internal dynamics in diffusion-driven encounters between macro-molecules
represent a problem of broad relevance in molecular biology. In this view, we investigate a
typical antigen–antibody reaction chain, based on a coarse-grained mechanical model
parameterized directly upon results from single-molecule experiments. We demonstrate that
the internal dynamics is a crucial factor in the encounter process. To describe our numerical
results, we formulate a simple, intuitive theoretical framework, and we develop it analytically.
This enables us to show that the inner dynamics of antibody molecules results in a cooperative
behavior of their individual sub-units. Along the same lines, we also investigate the case of
double binding to multi-valent antigens. Our results quantify the enhancement of avidity
afforded by the double binding in excellent agreement with the available experimental data.

M This article features online multimedia enhancements

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Antibodies are large multi-domain molecules present both in
the blood and in many tissues with the purpose of targeting
foreign molecules with high specificity, thereby flagging them
to different immunological effectors for destruction. Besides
being relevant per se to the immunological response system,
such binding agents constitute a crucial resource in many
contexts, ranging from novel imaging techniques in nano-
science [1] to industrial drug design for cancer therapy [2].

More specifically, antibodies are composed of three sub-
units—two fragment antigen binding arms (Fabs) connected
to a stem (Fc) through a relatively rigid hinge region. Overall,
such a structure is extremely flexible so as to enhance its
intrinsic capability to bind antigens of various shapes and
sizes, from small hormones to large viruses [3, 4]. Molecular

6 These authors contributed equally to the work.

flexibility implies that the internal dynamics should play a
crucial role in regulating the exploration of the many different
conformations accessible to the structure [5].

Roughly speaking, the interesting physical processes
underlying a typical antibody–antigen reaction are (i) the
encounter process (the two partners need to find themselves
correctly oriented with the two binding sites exposed to each
other) and (ii) the chemical fixation (the necessary chemical
bonds need to form at the interaction surface, involving
direct and water-mediated hydrogen bonds as well as van
der Waals links). Due to the high specificity of antigen–
antibody reactions, the latter process is much faster than the
encounter process, with respect, e.g., to what happens in a
typical enzyme–substrate reaction, which makes the overall
reaction limited by diffusion [6]. It is therefore interesting to
investigate how the internal dynamics of the peculiar three-
lobe structure of antibodies intervenes in the diffusion-limited
encounter process.
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Dynamics in antibody–antigen encounter reactions

Figure 1. Left panel: three-sphere coarse-grained model of an immunoglobulin. The two smaller spheres represent Fab 1 and 2, while the
larger sphere represents the Fc stem. Indicated are the radius Re of the epitope sphere and the Fab–Fc angles φ1,2. Also shown as dark
spherical patches are the active regions on the Fabs’ tip. The right panel shows a pictorial view of a typical encounter/fixation reaction
between an antibody and a relatively large antigen.

In principle, a quantitative theoretical understanding of
the dynamical effects in antigen–antibody reactions could
be gained through classical all-atom molecular dynamics
(MD) simulations [7]. However, the applicability of
such a theoretical framework to large systems such as
antibody–antigen complexes is severely limited in practice
by computational time constraints. Hence, one must resort
to coarse-grained models as working tools. In this paper
we employ a simple coarse-grained model that represents
the antibody structure as a collection of three rigid bodies
hinged at a common point and moving under the action of
a potential energy that is parametrized directly from single-
molecule experiments [8]. Based on this formulation, we here
simulate the Brownian dynamics of an antibody to inspect
the entire pathway of a typical antibody–antigen encounter
reaction (pictorially illustrated in figure 1).

In the first part of the paper, we measure the antibody–
antigen encounter rate for small isotropic antigens of different
sizes, roughly up to the breadth of an antibody. In the standard
theory of diffusion-limited encounter reactions between agents
with no internal dynamics, the rate is uniquely specified by
the encounter geometry, such as the size and orientation of
binding sites. Overall, a given binder is characterized by
a unique, constant steric factor. We find that this simple
picture no longer holds for an antibody, as a result of its
internal dynamics, resulting in a steric factor which depends
on the antigen size. We rationalize this finding within an
intuitive model that combines the internal dynamics with
the basics of the theory of encounters between anisotropic
static objects. Our theory allows us to derive a formula that
measures the degree of interference between the two Fabs in
the encounter process with antigens. We find that for small
antigens the antibody is a less effective agent with respect to
two isolated identical Fabs in solution (negative cooperativity).
Interestingly for larger antigens, but still such that each Fab
binds individually to separate objects, we find a transition to
a state of constructive interference (positive cooperativity),
where the antibody takes advantage from its internal structure
and dynamics with respect to two isolated Fab agents.

We turn next to examine the encounter with antigens much
larger than the antibody, such as big viruses. In this case we
focus on the role of the internal dynamics in the avidity, i.e.

the modulation of the encounter of the second Fab once the
first Fab–virus contact has been established. Our simplified
theoretical framework enables us to show that the binding
of the second Fab arm to the same antigen is indeed more
favorable than the binding of the first arm. Moreover, we are
also able to quantify this effect, thus improving on previous
models [9] and approaching more closely the experimental
results [10].

2. Methods

We simulate the Langevin dynamics of one antibody and Na

antigens at room temperature. The antibody is modeled as
consisting of three units (two Fabs and one Fc) joined at a
common point and interacting according to the force-field
computed directly from single-molecule cryo-ET experiments
in [8] (see figure 1). The Fabs and the Fc are approximated
by impenetrable effective spheres of radii R1 = 16 Å and
R2 = 34 Å, respectively. The values of R1 and R2 have
been chosen so that Fab–Fab and Fab–Fc angles at the contact
position would reproduce the experimental values reported in
[8]. The friction coefficients have been set so as to reproduce
the experimental values of the Fab and Fc diffusion coefficients
in water [11, 18]. The antigens, described as non-interacting,
are also represented as spherical particles of variable radius.

All particles are confined in a spherical box of radius
L with reflecting boundary conditions. The capture occurs
when an antigen reaches one of the Fabs in its reactive region,
modeled as a circular patch on its outer surface. Each time an
antigen is absorbed, it is replaced by another particle randomly
positioned at a distance L from the center. This amounts to
imposing that the flux of incoming particles be equal to the
flux of particles leaving the box, as required by the condition
of stationarity.

Numerical simulations are performed in a reference
system diffusing with the antibody. This amounts to replacing
the antigen diffusion coefficient Da with De + Da , where
De = kBT/γe is the diffusion coefficient of the epitope sphere.
The stochastic components of the forces are set accordingly.
The simulations presented in this paper refer to L = 600 Å
and Na = 50.

The binding of the second Fab is also subject to numerical
investigation. For this purpose, the outer edge of the bound Fab

173



L Bongini et al

is made to coincide with the active patch localized on an ideally
planar antigen. This amounts to considering large antigens,
e.g. viruses or cells. Equivalently, it refers to the case where
antigens are immobilized on a planar interface, a configuration
of paramount importance in many experimental applications
with functionalized surfaces. The antibody evolves under the
effect of this additional constraint. We model the adjacent
antigenic site as a circular disc of radius a, randomly positioned
on the plane, within a distance of 2Re from the first binding
site. This corresponds to a surface concentration of active
patches [A]s = 1

/(
4πR2

e

)
. The second Fab explores the

surrounding space and will eventually fall onto the plane with
its tip within the available active site. Our simulations show
that the probability of staying outside the designed area of
interaction decays exponentially, with an average entry time τ .
The latter provides a measure of the average time needed for the
second Fab to reach the binding area. We find τ−1 � 10−8 ns−1

for a = 5 Å.

3. Results

Our objective is to measure the encounter rate for antigens
of different sizes. As a first task, we shall focus on the
case of small to intermediate antigens in order to pinpoint
the relevant dynamical phenomena involved in the encounter
process. Furthermore, we shall concentrate on the encounter
rate of a whole antibody as compared to that characterizing a
single Fab unit for the same antigen, in the effort to rationalize
and quantify the combined action of the two Fab arms within
the same structure. Subsequently, we shall turn to investigate
the case of double binding to large, multi-valent antigens
with the aim of elucidating the role of dynamics in the
intriguing property of antibodies termed avidity (see the
glossary).

3.1. Antibodies looking for small antigens: binding
the first Fab

We model an antibody as an ensemble of three spheres
constrained to move à la Langevin at a fixed distance from
a common hinge point under the action of the internal angular
forces derived from cryo-electron experiments in [8] (see
figure 1). Antigens are represented by spherical particles
diffusing freely in a spherical bounding box with reflecting
and constant-flux boundary conditions (see section 2).

In order to investigate the role of the antibody internal
dynamics we need to identify a reference static case. For
this purpose, antigens may be treated as spherical particles
of radius r, while the immunoglobulin molecule can also
be identified with a sphere. The most natural choice is the
sphere that corresponds to the Stokes radius of an antibody as
determined from its diffusion coefficient [11], that is 64 Å. We
shall call this the epitope sphere since it well approximates the
surface spanned by the motion of the Fab tips (see figure 1).
Within this simplified scenario, the encounter rate is given by
the well-known Smoluchowski formula [12]

κS = 4πc∞(Da + De)(r + Re), (1)

where Da and De denote the diffusion coefficients of the
antigen and of the epitope sphere, respectively, whereas c∞
is the bulk antigen concentration.

Figure 2. Steric factor as calculated according to formula (2) from
the numerics for different sizes of the active surface fraction σ on
the two Fabs. Circles: σ = 0.02. Triangles: σ = 0.34. The solid
lines refer to the theoretical profile (3) with α = 6.4, as determined
numerically. Here the bulk antigen concentration is fixed by
normalizing to one the distribution of the antigen–antibody distance
within the spherical simulation box. The drawing represents a
sketch of the encounter cone analogy.

An encounter event occurs when an antigen reaches one
of the two Fabs in its reactive region, namely a circular patch
on the Fab sphere of given surface fraction σ (see figure 1).
Correspondingly, the encounter rate κ for a given value of r
can be estimated numerically by following many trajectories
of the combined antigen–antibody system and calculating the
inverse of the average encounter time (see section 2). An
effective steric factor f can then be measured, quantifying the
antibody’s loss of encounter effectiveness with respect to the
Smoluchowski approximation

f = κ

κS

. (2)

Results of our numerical study are reported in figure 2, where
f is plotted as a function of the antigen size. Simulations were
performed for σ ranging from 0.02 to 0.34, which correspond
to spanning a range of active surfaces from 60 Å2 to 1100 Å2.

It should be emphasized that the buried surface area on
both partners in a typical antigen–antibody complex seems to
vary with the antigen size. In particular, from crystallographic
data σ is seen to increase roughly linearly with the antigen
radius for small antigens (smaller than about 10 Å), whereas
it is almost constant and never larger than about 1200 Å2

for larger antigens [13]. For the sake of simplicity, in our
simulations we kept σ fixed, selecting values in the whole
observed interval. We did not get qualitatively different results
at different values of σ . Had we included the effect of varying
σ , we would have recovered the same trend as in figure 2, but
for a steeper increase in the small antigen region.

In the crudest approximation the antibody may be pictured
as a rigid sphere of radius Re, with an active surface equal to
twice the extension of a Fab’s tip. In diffusion-driven reactions
between two spherical species, one chemically isotropic and
the other characterized by a localized reactive site, the steric
factor f does not depend on the radius of the target isotropic
particle and is well approximated by the square root of the
active surface fraction on the anisotropic sphere [14, 15] (see
also the appendix). According to this simplified description,
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the steric factor should be f = √
2σ(R1/Re), where R1 is the

radius of the Fab sphere. Accordingly, f should be in the range
f = 0.05 − 0.2 for the considered interval of σ . The results
reported in figure 2 show that the measured encounter rate is
not a constant and increases with the antigen size well beyond
the above estimate, showing to saturate for larger and larger
antigens. Such a scenario is reminiscent of reactions between
pairs of species where the binding site of one moiety is hidden
in a pocket whose accessibility strongly depends on the steric
hindrance of the other one. However, this is certainly not our
case. Our results are a direct consequence of the antibody
internal dynamics.

Intuitively, we can rationalize the results reported in
figure 2 in the following fashion. For small antigens of
linear size up to about 10 Å (say a hormone molecule), the
great degree of flexibility of the two Fabs is of little help in
capturing small diffusing objects, so the steric factor is small
and dominated by the geometric effects (namely the limited
extension of the active regions on the Fab tips). However,
as the antigens get larger and larger, the internal dynamics
of the Fab pair starts making a difference. Overall, the
antibody is now encountering much more than its geometric
static analog, namely the epitope sphere with two fixed active
patches. This regime concerns antigens of intermediate size,
i.e. macromolecules of diameter comparable to that of a single
Fab, that is of the order of 100 Å. Eventually, for extremely
large antigens, of the size of a whole antibody and larger, such
as viruses, the steric factor has no choice but to converge to a
fixed estimate.

In order to decipher quantitatively the mechanism
underlying our numerical observations, we can reason as
follows. It is clear that the necessary condition for the
encounter to occur is that the antigen and the antibody find
themselves correctly oriented when close enough to each other.
This amounts to saying that one of the two Fab tips should find
itself in correspondence to the incoming antigen, i.e. inside
an encounter cone of angular aperture θ0. The latter may be
thought of as the angle under which an antigen is seen from the
center of the antibody at the contact distance, which defines
a variable surface portion of the epitope sphere 	Se/Se (see
the sketch in figure 2). However, it can be argued that such an
effective aperture depends on the finite extension of the active
patch on the Fab’s tip, narrower apertures corresponding to
smaller patches. This effect can be modeled by assigning
to the incoming antigen an effective size ρ ∝ r , which also
depends on σ . From our simulations we find that f ∝ r for
small antigen radii. Since, for increasingly small values of σ ,
f vanishes as

√
σ for arbitrary values of r [14, 15], we assume

ρ = αr
√

σ , where α is a constant factor.
Hence, considering the contribution of the two Fabs to

the encounter rate to be additive, i.e. assuming for simplicity
that the two active tips move in an uncorrelated fashion while
exploring the epitope sphere, for small encounter cones one
can write [14, 15]

f = 2

√
	Se

Se

= 2 sin

(
θ0

4

)
≈ sin

(
θ0

2

)
= αr

√
σ

αr
√

σ + Re

, (3)

where we have also assumed that the encounter cone is not
large. To be more precise, for θ0 < π/4, the error made in
deriving the approximate formula (3) is less than 8%.

The excellent predictive adequacy of our simple analytical
estimate is clearly demonstrated in figure 2 through
comparison with the numerics. The agreement is remarkably
good for both values of σ and, despite the approximations
introduced, also for relatively large values of r. Equation (3)
predicts that the steric factor asymptotically reaches the value
f = 1 for large antigen radii, meaning that the internal
dynamics has become infinitely fast with respect to the
diffusion of the target. Such a (formal) limit can be imagined to
describe the recurrent experimental setting where the antigens
are attached onto a planar interface. However, it is fair to
assume that the precise limiting value should be somewhat
lower than f = 1 and that our asymptotic result is the
consequence of slightly overestimating the effects of Fab’s
dynamics.

It is interesting to exploit the theoretical framework
outlined above in the case of a chemically anisotropic antigen,
by translating the information contained in equation (3) in
terms of an entropic barrier. This can be done by recalling
that the entropy change associated with the loss of rotational
freedom reads [16]

	Srot = −kBT log(
√

σaf ), (4)

where we have introduced the fraction of reacting surface on
antigens σa . Assuming that the active patch is of the same
size in both species, e.g. of the order of 1000 Å2, the above
expression gives 	Srot > 1–1.5 kcal mol−1 for antigens of
linear size greater than about 40 Å. For antigens of intermediate
size, that estimate reproduces at most an entropic cost of about
15–20% of the experimental data, which is around 7 kcal mol−1

[16]. To account for the whole entropic cost would of course
require including the contribution of other effects, such as
translational entropy or vibrational entropy costs associated
with establishing a stiffer complex and reduction of solvent-
accessible volume.

3.1.1. Cooperativity effects. The above sketched framework
can be employed to address an important issue of
immunoglobulin-binding kinetics, namely the degree of
interference displayed by the two identical active units (the
Fabs) as far as their individual encounter rates are concerned.
In other words, antibodies are provided with two identical
binding units that could in principle contribute in a simple
additive way to the overall encounter rate, or show some degree
of positive (cooperativity) or negative (anti-cooperativity)
interference.

In [17] we investigated a simplified analytical model of
the antigen–antibody encounter that predicts anti-cooperative
behavior, the system being closer and closer to the additive
case the farther apart the two Fabs. However, the model of
[17] has two major limitations. First, it is strictly valid only for
small antigens—say of the size of small hormone molecules.
Second, it neglects the presence of the Fc fragment as an
additional, totally reflecting unit. Indeed, the present realistic
numerical inspection of the encounter process allows us to
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Figure 3. Cooperativity index (5) as a function of the antigen radius
for different sizes of the surface fraction σ on the two Fabs. Circles:
σ = 0.02. Triangles: σ = 0.34. The solid and dashed lines are plots
of the analytical estimate (7) with α = 6.4. All data have been
rescaled in order to compensate for the presence of a finite bounding
box in the simulations.

quantify to a greater detail the two-body correlations within
the antibody.

As a quantitative measure of the cooperative effect, we
introduce the following indicator:

I = κ

2κ1
− 1, (5)

where κ1 is the rate associated with a single Fab diffusing in
solution, modeled as an anisotropic sphere of radius R1 with
the same active surface fraction σ as within the antibody. By
definition, f = κ/κS . Consequently, expression (5) can be
rewritten as

I = f

2
√

σ(κS1/κS)
− 1, (6)

where we have introduced the Smoluchowski rate κS1 that
characterizes encounters with a single, fully-reactive Fab
through the approximate relation κ1 = √

σκS1. Combining
definition (1) and expression (6), and recalling equation (3),
we obtain

I(r) = De

2D1

(
αr

αr
√

σ + Re

)
(r + Re)

2(
r + Rd

1

)
(r + R1)

− 1, (7)

where D1 = kBT /6πηRd
1 is the translational diffusion

coefficient of a single spherical Fab, Rd
1 ≈ 31 Å being its

diffusive radius [11, 18].
The results are displayed in figure 3 where I(r) is plotted

as a function of the antigen radius r for the aforementioned
values of σ . We see that the extension of the active
region on the Fabs’ tip controls the degree of positive
interference characterizing the combined action of the two
units. Nevertheless, anti-cooperativity is always found for
small antigen radii, an observation that nicely fits into the
scenario proposed in [17]. Surprisingly, when increasing
the antigen size, the antibody enters a region where the two
Fab units behave cooperatively, thus suggesting an interesting
interpretative framework for rationalizing the double-armed
structure common to all antibodies.

For larger antigens, a second transition is observed
and anti-cooperative behavior eventually recovered. It is

Figure 4. Representative frame of the movie annexed to the paper
as supplementary online material available from
stacks.iop.org/PhysBio/4/172. The animation shows a trajectory of
an antibody molecule as calculated from our coarse-grained model.
The surface spanned by the Fab tips on the epitope sphere is shown
for some time after disappearing.

interesting to note that it is precisely to large antigens that
an antibody binds with both arms on the same target, thus
remarkably increasing the overall binding strength. Hence, in
the large antigen region antibodies would find the justification
of their double-armed structure in the substantial gain in
binding solidity that largely compensates the unavoidable
moderate anti-cooperativity. More precisely, when σ = 0.34
(large patches on the Fabs’tips), the transition occurs at r �
40 Å, a value that falls in the explored region of parameters (see
dashed line in figure 3). Conversely, for σ = 0.02 (smaller
patches) formula (7) predicts r � 400 Å. This estimate
ultimately relies on equation (3), and the comments on the
validity of its extrapolation to large values of r still apply. A
slightly lower value of the transition radius might hence be
expected when performing direct numerical simulations.

As a final remark let us note that we are in a position
to quantitatively compare our prediction to the cooperativity
index as deduced from the ratio of experimental binding rates
measured for the antibody–antigen and Fab–antigen systems,
respectively. In fact, due to the limited spatial range of
the forces determining the chemical fixation of a given pair,
binding rates are well approximated by the product of the
encounter rates and a constant that depends on the free energy
contribution of the site–epitope interaction. Consequently,
the ratio between the two rates is uniquely determined by
the diffusion-limited part of the process and can be therefore
correctly interpreted within our model, which at present does
not incorporate the short-range interactions that stabilize the
encounter complex.

Usually, the kinetics of binding of antibodies and
Fab fragments to their antigens is investigated through
measurements at the interface, e.g. Biacore [19] and Resonant
Mirror Biosensors [20]. The experiments reported in
[21, 22] both point to an anti-cooperative behavior, although
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the binding rates reported therein lead to different cooperative
indexes falling in the [−0.54,−0.4] and [−0.2,−0.07] ranges,
respectively. These findings are compatible with the anti-
cooperativity effect that we detect for large antigens, since,
formally, the experiments at the interface correspond to the
limit of the infinite antigen size.

Finally, we would also like to stress that in principle a
reliable experimental measure of anti-cooperativity in solution
would allow one to estimate the size of the active surface on the
Fab tip. This is a very elusive quantity that up to now has been
estimated only by measuring the contact surface of already
stabilized complexes by means of x-ray crystallography [13].
Nevertheless, the same quantity may vary in the transition state
between the bound and unbound configurations. By inverting
formula (7) with respect to σ one could estimate its value,
based on kinetic data.

3.2. Double binding to multi-valent antigens

Let us turn now to investigate the case of double binding to
large, multi-valent antigens. Immunoglobulins are bivalent
structures, and are therefore capable of binding two sites on
the same antigen under favorable conditions. Importantly,
multi-valent interactions may achieve higher binding affinity,
usually termed avidity, to underline the augmented strength of
the interaction with respect to the sum of the individual binding
strengths of each Fab. Remarkably, the case of multiple
binding events to multi-valent antigens will allow us to draw
a quantitative comparison with experimental measurements.

The process of monovalent adsorption is characterized by
the equilibrium constant KS = kS/k−S , while the conversion
from mono-valent to bi-valent is controlled by KD = kD/k−D .
The labels S and D are introduced to indicate single and double
binding, respectively. As a first approximation, the binding
rates kS and kD can be estimated as the product of the encounter
rates, κS and κD , respectively, and the associated reaction
probabilities for the encounter complex to be stabilized. We
assume the latter to be identical, thus neglecting higher order
thermodynamics corrections. Furthermore, we assume that
k−S ≈ k−D . Under these assumptions KD/KS = κD/κS .

We can limit our analysis to the case where the antigens
are immobilized on a planar surface (or equivalently to the case
of a large virus antigen), and hence fix f = 1 in equation (2).
This amounts to assuming a fast internal Fab dynamics, thus
representing the antibody as a fully absorbing sphere. In this
limit, existing estimates [24, 25] can be applied in order to
evaluate κs , which corresponds to the rate of encounter with
one of the many equivalent binding epitopes on the antigen
surface. Approximating such patches with circles of radius a
and calling [A]s their surface density one can show that

κS = Dea[A]s , (8)

where a is the radius of a perfectly absorbing circular disc and
[A]s represents the surface concentration of the active patches.

Once the first Fab has reached the antigen active site, the
system experiences a reduction in mobility, the outer edge of
the bound arm being constrained in correspondence with the
target. The second Fab explores the surrounding space looking
for an additional connection to be established. Numerically,

one can calculate the average time τ needed for the second
Fab to enter a circular discs of radius a localized at the planar
interface, for a given value of [A]s . Then κD ≈ 1/τ and
therefore,

KD

KS

≈ 4πR2
e

Dea

1

τ
, (9)

where we have used the expression [A]s = 1
/(

4πR2
e

)
(see section 2). Numerical simulations performed for the
case a = 5 Å gives KD/KS of the order 10−4 Å−1,
corresponding to a positively cooperative binding effect.
This result is in excellent agreement with the measurements
reported in [10], where an innovative microfluidic strategy
complemented with total internal reflection microscopy is
employed. Success in reproducing the correct order of
magnitude provides an a posteriori validation of our theoretical
picture. In this respect, it is worth recalling that the widely
accepted model by Crothers and Metzger [9] predicts, in the
case of antigens absorbed on a planar surface, a ratio KD/KS ≈
R−1

e ≈ 0.015 Å−1 [23], well above the experimentally
measured value.

4. Conclusion and outlook

In this work we employ the mechanical model of antibodies
worked out in [8] from Cryo-ET experiments in order to
investigate the antigen–antibody encounter process. Our
results indicate that antibodies can be operatively regarded
as anisotropic spheres, characterized by an effective reactive
region that depends on the size of the antigens and on the
extension of the active regions on the Fabs’ tips. Based
on this analogy, we find that the encounter reaction largely
proceeds in a cooperative manner with respect to the case of
two isolated Fabs. Furthermore, we quantify these effects
analytically along the reaction pathway.

Our analysis shows that simple, intuitive arguments
may be successfully employed to construct theoretical
interpretative frameworks of complex dynamical phenomena.
This entails the possibility of introducing elementary
analytical expressions able to capture the core of biomolecular
functional machineries. This is clearly demonstrated by our
analysis of single and double binding of immunoglobulins
to multi-valent antigens. We are able to quantify the
effects of cooperativity within a simple theoretical framework
whose predictions correlate quantitatively with the available
experimental measurements.

Overall, our analysis clearly shows that the experimentally
observed behavior of a large and complex structure such
as an antibody strongly depends on its flexibility and on
its dynamics. Moreover, we show that the latter can be
analyzed by using an extremely coarse-grained scheme, whose
predictions compare favorably with experiments and provide
a clear and intuitive new perspective to look at the biological
functions of biological macro-molecules.

As a final remark, we stress that the physical input
to our mechanical model comes directly from single-
molecule experiments. Besides Cryo-ET [26], there is an
ample spectrum of techniques that may likewise supply the
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required knowledge. Promising examples include single-
pair fluorescence resonance energy transfer (spFRET) and
single-molecule fluorescence polarization anisotropy (smFPA)
[27]. In actual fact, our scheme may be thought of as an
utterly general strategy to study protein dynamics through
experimentally aided computer simulations.

As a visual example of our results, we annex to
this paper a movie of the antibody dynamics from
our simulations as supplemental material available from
stacks.iop.org/PhysBio/4/172. The surface spanned by the
Fab tips on the epitope sphere is explicitly drawn and made
to persist for some time in order to provide a pictorial
representation of the Fabs’ ability to cover the epitope surface.
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Appendix. Diffusion-controlled reaction between
anisotropic species

Consider the general problem of an encounter between two
species A and B with concentration ρA and ρB , respectively.
The rate of change of the concentration of the encounter
complex AB is given by

dρAB

dt
= kρAρB − k′ρAB, (A.1)

where k is the encounter rate constant and k′ is the decay
(or fixation) rate of the encounter complex. The simplest
approximate calculation of k was performed by Smoluchowski
in 1916 under the hypothesis of chemically isotropic reactants
[12]. By treating the two reacting species A and B as spheres of
radius R1 and R2 with reactivity homogeneously distributed
over their surface, one obtains the so-called Smoluchowski
encounter rate constant

kS = 4πDR, (A.2)

where D = D1 + D2 is the coefficient of relative diffusion and
R = R1 + R2 is the encounter distance.

In general, however, the diffusion-controlled
reaction (A.1) often displays chemically anisotropic behavior:
there is only a restricted active region on the surface of the
reactants where the reaction can occur. The reduction of
encounter effectiveness caused by localization of the reactive

sites with respect to the ideal Smoluchowski setting can be
described by introducing a steric factor f through the relation:

k = f ks. (A.3)

Numerous theoretical works report the computation of the
steric factor f for different classes of diffusion-controlled
reactions between anisotropic agents. Mathematically, such
reactions are described by mixed-boundary value problems,
that can be solved only in some specific cases. Traytak
considered the case of a diffusion-controlled reaction between
a chemically isotropic sphere and a chemically anisotropic
one, carrying an axially symmetric circular absorbing patch
[14]. He was able to obtain an exact solution of this model by
using the formalism of dual series relations (DSR). An infinite
set of linear equations is constructed and solved iteratively
after appropriate truncation. The zeroth-order approximation
leads to

f (0) = 1

2π
(θ0 + sin θ0) , (A.4)

where θ0 labels the angular aperture of the localized active site.
Note that this expression was also derived in [28]. The first-
and second-order approximation read, respectively,

f (1) = f (0)

1 − f (0)
(A.5)

f (2) = αf (1), (A.6)

where

α = 1 + ω

1 − f (1)ω
, (A.7)

and

ω = sin2 θ0(1 + cos θ0)
2

(θ0 + sin θ0)
[
4π − (

θ0 + 1
3 sin 3θ0

)] . (A.8)

The above second-order approximation (A.8) turns out to yield
an extremely accurate estimate of the exact encounter steric
factor. Surprisingly enough, remarkably good agreement is
also found with the simple formula

f =
√

	S

S
, (A.9)

where 	S/S represents the absorbing surface fraction of the
anisotropic sphere. Hence, it is established that the encounter
rate scales as the linear dimension of the absorbing patch. The
above discussion applies for non-rotating agents: the theory
can however be extended so as to incorporate the effect of
rotation. In the case of small active patches, one can show that
the steric factor is still proportional to the square root of the
active surface fraction. This issue is extensively discussed by
Shushin and Barzykin [15].

Other pieces of work characterize the bimolecular
diffusion-controlled reaction in the case where both reacting
molecules are anisotropic. Quite accurate formulae are derived
in the closure (constant flux) approximation [29, 30]. Simpler
expressions are obtained by assuming the quasi-chemical
hypothesis [31, 32]. Also in this case, however, numerical
calculations (not reported here) clearly indicate that the closed
analytical relations for the steric factor are well interpolated
by the following generalization of equation (A.9):

f =
√

	SA

SA

	SB

SB

. (A.10)
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Antibodies. Antibodies, also known as immunoglobulins
(Ig), are large three-domain proteins present in the blood in
vertebrates with the function of binding to foreign agents
(antigens) causing potential harm to the organism.
Antibodies can bind to anything from small molecules of a
few atoms (haptens) to large viruses and cells. There are
several different kinds of antibodies, which are grouped into
different families such as IgG, IgM and IgA. For example,
five different antibody isotypes are known in mammals.
Although the general structure of all antibodies is very
similar, two identical small regions at the tips of the two
smaller domains are extremely variable in sequence
(epitopes). Thus, millions of antibodies exist that differ only
in those small regions, each variant binding specifically to a
unique target. In this way, the immune system is able to
recognize an equally wide diversity of antigens.

Diffusion-limited reactions. Consider a chemical reaction
of the kind A + B → AB → P , that describes the formation
of a product (P) upon stabilization of an encounter complex
(AB), formed when two chemical species A and B get in
contact. In the gas phase the rate of approach is fast, and
hence the encounter complex forms at a rate that is
comparable if not faster than the rate of chemical fixation
regulating the reaction AB → P . Conversely, for reactions
taking place in the liquid phase, the formation of the
encounter complex is a diffusive process and hence it is
normally slower than the rate of stabilization of the
intermediate complex, which in solution usually involves
both the formation of covalent and hydrogen bonds at the
interface between the two ligands. In this case, the reaction is
said to be limited by diffusion.

Cooperativity. Let us consider a process where a given
observable measures the combined activity of many identical
agents individually performing the same action. The overall
process is said to be positively cooperative (negatively
cooperative or also anti-cooperative) if the combined
measure is greater (lower) than the sum of the individual
measures. For example, in the case of a reaction between a
multi-domain molecule and a given agent, the reaction will
proceed cooperatively if the rate exceeds the sum of the rates
measured for the individual reactions between the same agent
and each domain.

Avidity. Avidity is the affinity of antibodies binding to
multivalent antigen molecules. Avidity strengthens binding
to antigens with multiple identical epitopes by double
binding of a single Ig molecule at the antigen surface. This is
the reason why antibodies polymerize in order to bind more
effectively very large antigens—the more antigen–binding
sites bound to Igs, the higher the overall avidity for antigen.
This feature of antibodies is also termed cross-linking and is
crucial for the functioning of the immune system.
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