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Soil thickness, intended as depth to bedrock, is a key input parameter for many environmental models.
Nevertheless, it is often difficult to obtain a reliable spatially exhaustive soil thickness map in wide-
area applications, and existing prediction models have been extensively applied only to test sites with
shallow soil depths. This study addresses this limitation by showing the results of an application to a sec-
tion of Wanzhou County (Three Gorges Reservoir Area, China), where soil thickness varies from 0 to
�40 m. Two different approaches were used to derive soil thickness maps: a modified version of the geo-
morphologically indexed soil thickness (GIST) model, purposely customized to better account for the
peculiar setting of the test site, and a regression performed with a machine learning algorithm, i.e.,
the random forest, combined with the geomorphological parameters of GIST (GIST-RF). Additionally,
the errors of the two models were quantified, and validation with geophysical data was carried out.
The results showed that the GIST model could not fully contend with the high spatial variability of soil
thickness in the study area: the mean absolute error was 10.68 m with the root-mean-square error
(RMSE) of 12.61 m, and the frequency distribution residuals showed a tendency toward underestimation.
In contrast, GIST-RF returned a better performance with the mean absolute error of 3.52 m and RMSE of
4.56 m. The derived soil thickness map could be considered a critical fundamental input parameter for
further analyses.

� 2022 China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Soil thickness, often referred to by geotechnical engineers and
geomorphologists as depth from the ground surface to the bedrock
or depth to a marked change in geotechnical and hydrological
properties (Catani et al., 2010). It has significant importance in
numerous researches about the geology and environment, such
as hillslope hydrology (Freer et al., 2002), slope stability (Ho
et al., 2012; Basharat et al., 2018; Zhang et al., 2022a), seismic site
effects (Rayhani and Naggar, 2008), landscape evolution (Heimsath
et al., 2001), soil moisture distribution (Wang et al., 2001; Pellenq
et al., 2003), dispersion of heat fluxes (Gochis et al., 2010), soil pro-
tection (Gabet and Dunne, 2003), and landslide hazard (Segoni
et al., 2012; Cascini et al., 2017; Wang et al., 2019; Liang et al.,
2022). In terms of data acquisition, direct or indirect measure-
ments (e.g., borehole drilling or geophysical investigation) can be
conducted to measure soil thickness on a local scale. However,
when working on large areas, like basin-scale or region-scale stud-
ies, these methods are usually not affordable for reasons of time
and cost. Therefore, some efficient approaches are needed to
extrapolate the discrete soil thickness measurements to predict
spatially exhaustive soil thickness maps, which could be used as
input data for more complex environmental models.

The most straightforward and widely used approach to obtain
soil thickness maps is through the empirical correlation with a dig-
ital terrain model (DTM)-derived morphometric attribute, such as
slope, curvature, or elevation (Derose, 1996; Saulnier et al., 1997;
Salciarini et al., 2006; Blesius and Weirich, 2009). Some authors
have proposed more complex correlation schemes, which link
soil thickness to a series of environmental and morphometric
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parameters utilizing multivariate statistical models (Odeh et al.,
1994; Tsai et al., 2001; Pelletier and Rasmussen, 2009; Tesfa et al.,
2009; Basharat et al., 2018). Catani et al. (2010) passed from simple
morphometric attributes to more complex geomorphological fac-
tors and used the latter to establish an empirical correlation with
soil thickness. Later, Soldato et al. (2016, 2018) improved this
model and applied it to an area with pyroclastic soil cover. In other
cases, regression kriging (Kuriakose et al., 2009) or machine learn-
ing algorithms were employed to define the soil thickness maps at
the basin scale (Lagomarsino et al., 2017) and even at the national
scale (Lacoste et al., 2016). In addition, some researchers analyzed
the spatial variability of soil thickness through process-based mod-
els, which directly consider the formation mechanisms of the soil
(e.g., Heimsath et al., 1999, 2001; Saco et al., 2006). These methods
aremainly used to reconstruct or predict soil thickness variations in
the landscape evolution framework on a geological time scale,
which are more challenging to apply for mapping purposes.

In recent literature, two major issues remain when considering
these aforementioned models. First, most soil thickness prediction
methods have been tested in areas with relatively homogeneous
geological conditions, mainly to model shallow soils with a thick-
ness contained within a few meters. As a consequence, the possi-
bility of applying these techniques is limited to case studies with
well-constrained physical characteristics. Second, many wide-
area practices perform a partition of the area into soil thickness
classes rather than providing spatially exhaustive maps of contin-
uous soil thickness values, which may hamper its application to
other hydrologic and ecological models. Moreover, applying
machine learning algorithms in soil thickness modelling is still a
new attempt that needs further exploration of its use strategies
and predictive capability in complex geological environments.

The main objective of this paper is to report on a first attempt to
overcome these limits and validate the applicability of the thick-
ness models in a complex geological setting (e.g., an area with dif-
ferent geological units with contrasting physical characteristics)
with soil thickness extending from zero to several decametres.
From a methodological point of view, we also aim to examine
the feasibility of using machine learning algorithms to enhance
the prediction accuracy of soil thickness. For this purpose, a
27 km2 section of the Three Gorge Reservoir area (China) was
selected as a test site. Two state-of-the-art methods, namely the
geomorphologically indexed soil thickness (GIST) model (Catani
et al., 2010) and the random forest machine learning algorithm,
were significatively modified to effectively face the challenging
objective. The GIST model was customized to better take into
account the peculiar characteristics of the study area, while the
random forest was run including in the list of the input parameters
the geomorphological indexes of GIST, thus obtaining a hybridized
version of the two methods. The results were then validated, com-
pared, and discussed from the perspective of using the obtained
soil thickness maps as support for forthcoming applications of
other environmental models.
2. Test site description

The study area is located between 108�2704900E–108�3005700E
and 30�4903200N–30�5302500N in the Three Gorges Area (Chongqing
Municipality, southwestern China). It is a 27 km2 section of Wanz-
hou County, comprising about 10 km from Tangjiao Village to Daz-
hou Town. The Yangtze River flows across the study area from SW
to NE, which is close to urban infrastructure and human activities
(Fig. 1). This region belongs to the subtropical humid monsoon
zone and features a mild climate with abundant sunshine (Xiao
et al., 2019a; Liang et al., 2021). The area is a hilly landscape with
an overall step-like morphology formed by multi-level fluvial ter-
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races, resulting from repeated tectonic uplift stages and the
Yangtze River erosion (Xiao et al., 2019b). The geology of the area
is characterized by layers of purple-red mudstone and sandstone
(Shaximiao Formation of the Middle Jurassic) and red–purple
quartz sandstone with interbedded mudstone (Suining Formation
of Upper Jurassic). The bedrock is typically covered by Quaternary
loose material with a thickness of 0–40 m.
3. Materials and methods

The overall workflow related to soil thickness modelling is pre-
sented in Fig. 2. The process consists of four main steps. First is the
preparation and pre-processing of the input data. Second is the
customization of the GIST model for the study area with step-like
topography. Three morphometric factors (C, P and S, which related
to profile curvature, position along the hillslope profile, and slope
gradient, respectively) and an empirical parameter (K, representing
the maximum soil thickness) were determined in this process. The
GIST soil thickness map was obtained by means of calibration func-
tions. Afterwards, parameters C, P and S of the GIST model and the
other three attributes (altitude, plan curvature, and terrain rough-
ness index) were utilized as covariates of the GIST-RF model, and
the random forest algorithm was adopted for soil thickness predic-
tion. Finally, the proposed two soil thickness maps were analyzed
and compared with filed data. The detail of the input data and
modelling process is described as follow.

3.1. Input data

The data used in this study mainly include a DTM, a geological
map, and soil thickness samples. The DTM was derived from a
topographic map, with contour lines spacing of 2 m, provided by
the Land and Resources Bureau of the Wanzhou District. The cell
size of the raster DTM is 10 m � 10 m, which is a suitable resolu-
tion for the scale of this study.

Concerning soil thickness, it should be emphasized that the
specific definition of soil can vary within each branch of environ-
mental sciences. For instance, some studies may be interested only
in the shallowest layers of material occupied and influenced by
root apparatus (Masi et al., 2021); or in the volume of material
interested by pedogenetic processes (Jones et al., 2012; Ma et al.,
2019). In contrast, since the main objective of this research is to
provide some data that could be used in future activities concern-
ing landslide hazard modelling and geotechnical engineering
works on the slopes, soil thickness is intended here as the depth
to bedrock, identified as the first marked change in hydrologic
and mechanical properties (Catani et al., 2010). This definition of
‘‘soil” includes all the ‘‘soft” material (including, e.g., eluvium, col-
luvium, organic matter or debris) that covers the underlying hard
rocks. According to this interpretation, a total of 75 soil thickness
direct measurements were carried out, all of which were from field
drilling works (Moye, 1967). As shown in Fig. 3, the diamond bit of
the drilling machine could penetrate the ground right to the bed-
rock while the cores could be lifted and placed in the barrels. Then,
by observing the physical characteristics of the core, it was possi-
ble to recognize the interface between soil and bedrock and deter-
mine the soil thickness with great accuracy. Moreover, the sample
points appear in Fig. 1 with the distribution of several lines because
they were drilled on transects to better investigate the soil thick-
ness distribution along with the hillslope profile.

3.2. Customization and application of the GIST model

The geomorphologically indexed soil thickness (GIST) model is
an empirical approach combining morphometric attributes with



Fig. 1. Test site and location of the soil thickness measurements.
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geomorphological and geological factors (Catani et al., 2010). This
model includes three factors (C, P, and S) associated with morpho-
metric attributes (curvature, position in the hillslope profile, and
slope gradient, respectively) that influence soil thickness distribu-
tion. The factors, which will be described in detail below, can be
easily derived from a DTM, have values ranging from 0 to 1 and
are combined in the calibration function Eq. (1), where K is an
empirical parameter representing the maximum possible soil
thickness expected.

Thickness ¼ K � C � P � S ð1Þ
In this research, the value of K is set as the maximum thick-

ness measured on the soil samples, while the three empirical
factors C, P and S were assessed based on the procedure
described in Catani et al. (2010), which was modified with
site-specific customizations for the study area, as described in
the following.

Factor C accounts for the effect of surface curvature. As reported
by previous experiments and field observations, soil thickness in
mature hillslopes is inversely correlated with the profile curvature
of the slope since erosive creep-like processes prevail in convex
morphologies, while concave morphologies are usually associated
with accumulations of loose deposits at the footslope (Heimsath
et al., 1999; Park et al., 2001). Following this theory, in the original
version of the GIST model, factor C was calculated by rescaling the
curvature values into values ranging from 0 to 1, according to a lin-
ear inverse correlation scheme. Similarly, in this study, the pixel-
by-pixel profile curvature was derived from the DTM to get factor
C. However, instead of adopting the straight inverse linear correla-
tion scheme proposed by Catani et al. (2010), the curvature values
were analyzed to consider a more refined correlation.
3

As shown in Fig. 4 although curvature values ranged from �120
to 91 in the study site, about 90.0% of curvature values were con-
centrated in the range from �4 to 4, with a mean value close to 0
and a standard deviation of 3.35. We interpreted the few values
outside the �4 – 4 range as outliers, probably due to DTM imper-
fections, and we applied a linear inverse correlation with factor C
only to profile curvature values inside this range. This procedure
allowed a more thorough characterization of the representative
values encountered at the test site. Anomalous convex and concave
pixels were set to 0 and 1, respectively, highlighting the maximum
possible propensity to erode or accumulate soil. The relationship
linking profile curvature and factor C is translated into mathemat-
ical terms in Eq. (2), where c is the profile curvature.

C ¼
0;

ð4� cÞ=8;
1;

c > 4
�4 6 c 6 4
c < �4

ð2Þ

Factor P accounts for the relative position within the hillslope
profile. It is widely acknowledged that two points may exist with
the same slope gradient and curvature but different soil thick-
nesses due to their own different position (Burt, 1986; Allison
et al., 1993; Moore et al., 1993; Gessler et al., 1995). In order to
illustrate the linkage between the relative position p of the point
and its soil distribution within a hillslope profile, factor P was
introduced into the GIST model (Catani et al., 2010; Tofani et al.,
2017). As shown in Fig. 5 and Eq. (3), the index of position p can
be determined by combining the shortest upslope distances a
and downslope distances b based on the DTM in a geographic
information system (GIS) (Tucker et al., 2001; Roering, 2008;
Grieve et al., 2016):



Fig. 2. Overall method used to generate soil thickness maps from GIST and GIST-RF model.
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p ¼ a=ðaþ bÞ ð3Þ
The relationship between p and soil thickness is highly site-

specific and depends on the characteristics of the hillslope system
(including bedrock features and geomorphic processes acting
therein). Hence, to transform p into factor P, we did not rely on pre-
viously defined relationships (e.g., those used in Catani et al., 2010
or Tofani et al., 2017); rather, a new relationship was defined. In
Fig. 6, for 75 control points, p was plotted versus the normalized
thickness value, and it was verified that all points could be upper-
bounded by a polyline; the equation of this polyline (Eq. (4)) was
used to convert p into the factor P, which represents the normalized
soil thickness expected in each position of the hillslope profile.
4

P ¼ pþ 0:4; 0 < p 6 0:6
1; 0:6 < p

�
ð4Þ

The third factor of the GIST model, S, accounts for the effect of
slope gradient, which plays a key role in mass wasting processes
leading to soil loss (Roering et al., 2001; Montgomery and
Brandon, 2002). Originally, Catani et al. (2010) coincived the factor
S as a reduction factor acting only where local slope gradients over-
come a specific slope threshold. Given the smooth landscape of
their test site (a hilly basin in Chiantishire, Italy), factor S was
not conceived to reflect the possibility that high slope gradients
could be associated with the absence of soil (thickness equal to
0). As a consequence, in this study, the formulation of factor S is



Fig. 3. Schematic diagram of the drilling investigation.

Fig. 4. Distribution of profile curvature in the study area.

Fig. 5. A schematic representation of the index p, expressing the relative position of
a point along the hillslope and calculated according to Eq. (3).

Fig. 6. Definition of the empirical relationship between the parameter P and the
spatial position p in the study area.
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modified considering the step-like topography of the area. The
value of factor S is assessed by a comparison between the slope
5

gradient s (derived from the DTM) and two threshold angles: the
internal friction angle of the soil u and slope angle threshold h.
While the first is a mechanical property of soil that means the abil-
ity of soil to withstand shear stress and was measured by standard-
ized laboratory tests (e.g., direct shear tests) on soil samples (Baker
and Frydman, 2009), the latter was easily established by field
investigations as it represents the slope gradient above which soil
does not accumulate and the bare bedrock outcrops.

As shown in Eq. (5) when the value of the slope gradient is less
than the internal friction angle, its effect on reducing soil thickness
can be negligible. Under this circumstance, the value of the factor S
is assigned as 1, leaving unaltered the maximum potential soil
thickness expressed by the parameter K in Eq. (1). If the slope angle
exceeds the threshold h, the residual soil overlying the bedrock is
assumed to be completely eroded or displaced by mass wasting
processes, and the soil thickness is set as 0. When the slope gradi-
ent is between the threshold h and u, soil loss is considered propor-
tional to the slope angle, as in Catani et al. (2010), to account for
the effect of mass-wasting processes. According to the description
above, local soil gradient s was derived pixel-by-pixel from the
DTM, and factor S was computed using Eq. (5).



Table 1
Model parameters in different parts of the study area. In each part, the value of u was
obtained by taking the mean value of the direct shear tests. The threshold h was
identified during the field investigation, corresponding to the minimum slope
gradient associated with exposed bedrock where soil cannot accumulate. K is the
calibration parameter of Eq. (1), and it is set as the maximum thickness measured on
the soil samples in each part.

Parts u h K (m)

A 14� 30� 40
B 17.15� 30� 31
C 19.83� 30� 34
D 9.43� 40� 23
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S ¼
1;

1=ð1þ tan hÞ;
0;

0 < s < u
u 6 s 6 h

h < s

ð5Þ

To further customize the application of the GIST model to the
test site, the values of u and h are not considered constant over
the entire test area, as they depend on the soil and bedrock phys-
ical properties. Therefore, in order to get a better prediction result,
the study area was divided into five partitions, supported by the
differences observed in the typical u values measured in the soil
samples (Fig. 7 and Table 1).
E 17.38� 50� 36
3.3. GIST-RF model

The second soil thickness map of the study area was derived
from a new prediction model named GIST-RF, which was created
by hybridizing a random forest algorithm with the GIST model.
The random forest algorithm is a nonparametric multivariate tech-
nique proposed by Breiman in 1995 and is considered a relatively
robust approach in classification, regression, and unsupervised
learning (Breiman 1996). It has since rapidly gained widespread
consolidation through numerous research investigations and case
studies (Pradhan et al., 2017; Zhang et al., 2019, 2021, 2022b;
Segoni et al., 2020; Zhou et al., 2021). The random forest contains
tree predictors that are generated using ‘‘bagging” to create multi-
ple independent training sets. The random forest has excellent pre-
dictive performance and runs rapidly by summarizing a large
number of classification trees; moreover, it is suitable for analyzing
nonlinear variables without considering the matter of multi-
collinearity and is also robust for outliers in the predicted values.
Fig. 7. Partition l

6

Compared to methods with single classifier combinations, the ran-
dom forest has several advantages, including the simultaneous use
of both categorical and numerical variables, prediction with ‘‘out-
of-bag error” to avoid overfitting, and no requirement for a partic-
ular statistical distribution of the data (Breiman, 2001; Catani et al.,
2013).

In geomorphological studies, random forest is usually applied
using thematic or morphometric attributes (Zhang et al., 2022c).
The main novelty of our approach is the combined use of morpho-
metric attributes with the geomorphologically-based parameters
of GIST. Along with the three parameters of GIST (C, S, and P), we
included some attributes that are considered to be correlated with
soil thickness (Saulnier et al., 1997; Salciarini et al., 2006; Blesius
and Weirich, 2009), namely, altitude, plan curvature, and terrain
roughness index (TRI). They were defined pixel-by-pixel through
the GIS system and input into the GIST-RF model.
ocation map.
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Random forest is a machine learning method that requires input
data to train and iteratively optimize a prediction model. Most
researchers prefer to select 70% of the sample data for training ran-
domly, and the remaining 30% of the sample data is used to verify
the reliability of the model (Segoni et al., 2020). However, there are
only 75 observed points in our study area, which was not enough
to be divided into two parts. Thus, the leave-one-out cross-
validation was chosen to avoid the problem of insufficient training
and verification data (Efron, 1982). In this method, 74 points were
selected as training data for the random forest, and the remaining
point was used for verification. This operation was repeated 75
times in the study until each point had a predicted value.
4. Results

The predictions of soil thickness exhibit highly different outputs
through two models. As shown in Fig. 8a, the map produced by
GIST model has the same thickness range from 0 to 40 m as the
sample points. However, the soil depth generated by the GIST-RF
model is more concentrated, ranging from 3.2 to 35.5 m and not
covering the entire range of sampled values (Fig. 8b). Meanwhile,
it can be easily seen that the spatial distribution of soil thickness
values differs greatly. The left map (GIST model) portrays thinner
soils with uneven values distribution, while on the right map, the
depicted values have a marked spatial variability.

The prediction results using two models are compared to the
measurements of 75 sample points for error quantification. A sum-
mary of accuracy is presented in Table 2, and a comparison
between in-situ field data and the predictions is shown in Fig. 9.
The 1:1 line, which could ideally represent perfect predictions, is
employed to visualize the performance of the models. The values
predicted using the GIST model have a poor correlation with the
field data. On the contrary, the GIST-RF model exhibits good per-
formance, with the square of the correlation coefficient accounting
for 0.82 and root-mean-square error (RMSE) of 4.56 m. In terms of
both mean error and mean absolute error, the estimation of soil
thickness by the GIST model is substantial. The prediction values
produced by the GIST model are systematically lower than field
values, with an average error of about �9.81 m. This prediction
trend is a consequence of the very shallow soils predicted in almost
the entire study area (Fig. 8a). GIST-RF validation statistics are bet-
Fig. 8. Soil thickness map: (a) geomorphologically indexed soil thickness (GIST) mode
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ter than GIST: the mean error and average absolute errors made by
GIST-RF are 0.04 m and 3.52 m, respectively. The absolute error of
about 3.52 m may not be small in numerical terms, but if contex-
tualized in this challenging case study, it represents an error lower
than 9% of the range of the modelled values. This observation sug-
gests that the GIST-RF model improves the performance of predic-
tion data remarkably.

The performance of the models can be compared also on the
basis of error frequency distribution. In the GIST model, the error
is evenly distributed between �26.16 and 6.46 m (Fig. 10a), stress-
ing the systematic underestimation of soil thickness in the study
area again. The GIST-RF model returns a better result with smaller
errors and exhibits a Gaussian distribution with a peak frequency
of errors close to nearly zero (Fig. 10b).
5. Discussion

5.1. Validation of the GIST-RF model

To further test the reliability of the maps derived from the GIST-
RF model, the modelled soil thickness was compared with a com-
pletely independent dataset obtained from the geophysical investi-
gation. The multi-electrode resistivity method was employed in
the Tangjiao Village to detect the geological structure below the
ground surface. During the fieldwork, six transects were arranged
in the test site with an electrode spacing of 5 m to detect the mate-
rial resistivity (Fig. 11). As shown in Fig. 12, materials with differ-
ent resistivity are marked in various colours. The red curve is the
inferred boundary between the soil layer and bedrock. It is obvious
that the soil distribution map predicted by the GIST-RF model is
consistent with the trends of soil thickness measured using the
geophysical method.

In addition, the longitudinal geological section of the Tangjiao-1
slope (A–A’ in Fig. 1) is also selected to compare the predicted and
observed results. The purple dotted line in Fig. 13 is the predicted
interface from the soil map generated by the GIST-RF model
(Fig. 8b), of which the ground elevation was taken from the DTM
map, and subtraction of the predicted line thickness yields the bed-
rock. The solid red line in Fig. 13 shows the observed boundary of
soil and bedrock drawn according to borehole drilling, exploratory
trench, and field surveys. The horizontal length of the A–A’ section
l; (b) geomorphologically indexed soil thickness- random forest (GIST-RF) model.



Table 2
Comparison of validation results from geomorphologically indexed soil thickness (GIST) model and geomorphologically indexed soil thickness-random forest (GIST-RF) model.

Accuracy Mean error (m) Mean absolute error (m) R-square Root-mean-square error (RMSE) (m)

GIST model �9.81 10.68 0.17 12.61
GIST-RF model 0.04 3.52 0.82 4.56

Fig. 9. Comparison between predicted and observed data.

Fig. 10. Frequency distribution of residuals.
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is about 1000 m, and the elevation ranges from 150 m to 370 m
(Fig. 1). The elevation between 150 m and 175 m is in the hydro-
fluctuation belt of the Three Gorges Reservoir. Specifically, the ele-
vations of �220 m, 260–280 m, and 300–320 m are the first, sec-
ond, and third terrace platforms of the Yangtze River. According
to the field investigation, the soil is mainly distributed at the plat-
forms and the front edge of the slope, and the third terrace is
slightly thicker than the other parts. In contrast, the soil is exposed
to intense erosional processes in the steep ridges, so its depth is
relatively small.

The general trend in the observed boundary is also produced in
the interface predicted by the GIST-RF model. The soil thickness of
some essential parts in Fig. 13, such as steep ridges and platforms,
is similar to the observed profile, which means that the predicted
results are reasonable. It should be mentioned that the slope gradi-
ent at the elevation of 320–370 m does not reach the threshold h
set in the model parameter, so the bedrock exposed here is mod-
elled as a slope covered by a thin soil mantle. This phenomenon
8

suggests that the slope angle threshold h is critical to the model
and must be selected after an extensive site-specific calibration.

5.2. Comparison of GIST model and GIST-RF model

As drawn by the result given in the last section, the GIST model
returned an unsatisfactory result with errors evenly distributed
between �26.1 m and 9.0 m, and the frequency distribution of
residuals shows a marked tendency toward underestimation.
Although the predicted soil thickness for the whole study area
ranges from 0 m to 40 m, almost all values are smaller than
30 m. At the same time, a large area of the test site has a soil thick-
ness of less than 10 m, which does not correspond to the real spa-
tial distribution in the region. The GIST model is an empirical
model, which was initially conceived to predict soil thickness to
support distributed models for triggering shallow landslides, and
the soil thickness modelled in such cases is within a few meters
(Segoni et al., 2012; Mercogliano et al., 2013; Rossi et al., 2013).



Fig. 11. The position of six transects in Tangjiao Village, where the underground resistivity was measured to infer soil thickness.

Fig. 12. Materials resistivity and inferred soil boundary from the geophysical investigation.

Fig. 13. Geological section of Tangjiao-1 slope.
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In our case, however, the proposed application represents an
attempt to stretch the limits of the GIST model through site-
specific tuning and account for a larger interval of values in a dif-
ferent area. According to the field investigations, the soil thickness
in the study area mainly varies between 10 m and 30 m, whereas
near the scarps is almost less than 10 m. The Quaternary deposits
at the leading edge and some local parts of the slope are character-
9

ized by a large thickness. From this point of view, the GIST model is
not suitable for the thicker study area with a thick soil layer. The
reason may be attributed to the complex genesis of the Three
Gorges area, and the soil thickness cannot be obtained accurately
using such a simple formula (Eq. (1)). A method based on empirical
geomorphology must be highly site-specific; thus, it is understand-
able that the GIST model performed well in Italy (Catani et al.,
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2010; Segoni et al., 2012) but exhibits less effectiveness in this sec-
tion of Wanzhou County.

For the GIST-RF model, the importance of each variable is eval-
uated by means of the out-of-bag error (OOBE). For each variable,
the importance was assessed based on the results of the leave-
one-out cross-validation method. As a consequence, Fig. 14 shows
the box plot of the variable importance distribution resulting from
the 75 iterations of the random forest algorithm. The distribution
of importance indicates that the parameters from the GIST model
have a relatively high importance value, which provides a side
view of the importance of the GIST model for soil thickness
prediction.

According to the analysis of the mean error values between the
two models, it is obvious that the performance of the GIST-RF
model is more balanced, which is also confirmed by the statistical
distribution of the scatter plot (Fig. 9) and the residual values
(Fig. 10). This is important to avoid systematic overestimations
or underestimations of soil thickness, which can propagate into
other models that use soil thickness as an input parameter. Consid-
ering the large range of thickness values in our study area, the out-
comes of the GIST-RF model (3.52 m average absolute error) are
acceptable. In addition, the residual frequency exhibits a gaussian
distribution with a peak frequency of errors nearly to zero, which
indicates the outcomes of the GIST-RF model are reliable. As shown
in Fig. 8, the range of predicted soil thickness values (from 3.2 to
35.5 m) in the whole region is smaller than the real range. It should
be noticed that only two 0 m value points and only one 40 m value
point were present among the 75 sample points. Due to the under-
sampling of the extreme values in the soil thickness range, the
results of the GIST-RF model were more centred on the mean val-
ues. A statistical approach naturally tends to reflect the training
dataset distribution. However, we think that the dataset used in
the model calibration was representative of the study area, with
carefully selected transects; therefore, the derived map should
not be considered to be affected by significant systematic underes-
timations or overestimations induced by the dataset distribution.
Compared to the GIST method, the GIST-RF model is more capable
of accounting for interactions and nonlinearities between factors.
In addition, the reliability of the GIST-RF model can be confirmed
by the geophysical transects and the A–A’ profile in Tangjiao
Village.

GIST is a simple multiplication of geomorphological factors that
the output thickness value is oversensitive to each factor. As long
Fig. 14. Estimation of the relative importance of the predictors, including C, P, S
from the GIST model and altitude, terrain roughness index (TRI), and plan curvature.
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as one of the factors has a low value, the final output will be very
small, which is the reason for the overall smaller predicted values
of the GIST map (Fig. 8a). Therefore, for further developments on
the GIST model: the empirical attributes it is based upon are valid,
but the way they are combined together (the simple combination
of Eq. (1)) seems to be the weak point of the procedure. GIST-RF
combines the same (and similar) factors with the random forest
algorithm, which is exactly a more sophisticated way to avoid
heavy underestimations and get good results. Meanwhile, the ran-
dom forest method is not the only choice to modify the GIST
model; its application is an exploration of machine learning in soil
thickness modelling. The further use of other types of machine
learning methods would be a positive attempt to improve the pre-
diction accuracy of soil thickness (Pradhan, 2013; Sameen et al.,
2020).
6. Conclusion

Two modified techniques are carried out to model spatially
exhaustive soil thickness maps in a key section of Wanzhou
County, China. This area features a wide range of soil thicknesses
from 0 to � 40 m, which provides an opportunity to validate the
applicability of state-of-the-art soil thickness prediction models
in very challenging conditions. The geomorphologically indexed
soil thickness (GIST) model is improved purposely to better fit
the specific geology setting of the study area. In addition, a random
forest based GIST-RF model, which used the geomorphological
indexes of GIST, is also performed for comparison with the conven-
tional GIST model.

The GIST-RF model yields better results than the GIST model.
The mean absolute error of the predicted result utilized by the
GIST-RF model is less than 9% of the whole range of the sampled
value, and the peak frequency of errors is approximately close to
0 in a gaussian statistical distribution. Moreover, a well-aligned
performance is also drawn from the qualitative comparison with
geophysical resistivity transects and a specific profile. All the
inspection of implementation results indicates that the GIST-RF
model is considered superior and reliable.

This study demonstrates that a regression based on machine
learning algorithms, with input parameters with geomorphological
significance, can improve the predictions even in complex environ-
mental settings characterized by complex geology and thick soil
cover. In our case study, the application of random forest addresses
the limitations of the GIST model and improves its performance,
opening new perspectives to using other machine learning or deep
learning algorithms to determine the spatial distribution of soil
thickness.
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