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Abstract
Metastatic prostate cancer is a major health burden worldwide, necessitating the continuous development of effective treat-
ment strategies. Androgen deprivation therapy remains the cornerstone of prostate cancer treatment, but novel approaches 
are needed for metastatic castration-resistant prostate cancer (mCRPC). Recent studies have highlighted the prevalence 
of mutations in DNA repair genes, including BRCA1 and BRCA2, in mCRPC patients, rendering them more susceptible 
to platinum-based chemotherapy and Poly (ADP-ribose) polymerase (PARP) inhibitors. Platinum-based chemotherapy, 
particularly in combination with taxanes, has demonstrated encouraging activity in mCRPC, as well as homologous recom-
bination gene alterations have shown increased sensitivity to platinum compounds in these patients. The combination of 
platinum-based chemotherapy with PARP inhibitors represents a novel and potentially effective therapeutic strategy for this 
subgroup of patients. However, the optimal sequence of administering these agents and the potential for cross-resistance 
and cross-toxicities remain areas requiring further investigation. Prospective randomized studies are essential to elucidate 
the most effective treatment approach for this challenging patient population. This review aims to explore the potential of 
platinum-based chemotherapy in the context of prostate cancer, and more in detail in homologous recombination repair 
(HRR) mutated patients. We discuss the synergistic effects of combining platinum compounds with PARP inhibitors and 
the potential benefits of adopting specific therapeutic sequences.
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Introduction

Despite notable progress in the development of treatment strat-
egies during the past decade, prostate cancer (PC) remains the 
most prevalent malignancy and the second leading cause of 
cancer-related mortality in men worldwide [1]. PC exhibits a 
spectrum of clinical behaviors, spanning from indolent, slowly 
developing tumors to aggressive, rapidly advancing forms. 
Approximately 5–10% of PC patients receive a diagnosis of 
metastatic disease, and their prognosis is unfavorable, with 
a 5-year survival rate hovering around 30% [2]. The biology 
of PC encompasses a range of intricate processes, including 
hormonal regulation, genetic and molecular alterations, and 
interaction with various components of tumor microenviron-
ment. A comprehensive understanding of the biology of PC 
is essential to untangle the complexities involved in its onset, 
progression, and response to treatment. This dynamic field 
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continues to evolve, offering hope for more effective and tai-
lored therapies for PC patients.

However, androgen-deprivation therapy (ADT) continues 
to represent the cornerstone of PC treatment. Docetaxel and 
anti-androgens such as enzalutamide, apalutamide, daroluta-
mide, and abiraterone, as monotherapy or in combination, are 
approved for the treatment of metastatic hormone sensitive 
PC; while, the therapeutic scenario of metastatic castration-
resistant PC (mCRPC) has been considerably enriched by the 
introduction of abiraterone and enzalutamide, cabazitaxel, 
immuno-modulatory agent sipuleucel-T, radiopharmaceuti-
cal agents such as radium-223 (only in case of bone metas-
tasis), and 177Lutetium-prostate-specific membrane antigen 
(PSMA)-617 [3]. Recent investigations have revealed that 
approximately 25% of patients with mCRPC harbor tumor 
somatic or germline mutations in DNA damage repair (DDR) 
genes including breast cancer susceptibility genes BRCA1 
and BRCA2, as well as other genes implicated in homolo-
gous recombination repair (HRR) [4]. These genetic altera-
tions have been associated with an unfavorable prognosis in 
terms of both survival and disease progression [5]. Genomic 
aberrations affecting these genes, which lead to deficiencies 
in DNA damage sensing or repair, may increase the sensitiv-
ity of tumors to platinum-based chemotherapy as well as to 
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) 
[5–7]. Currently, the Food and Drug Administration (FDA) 
and the European Medical Agency (EMA) have approved two 
PARPis, olaparib and rucaparib, for the treatment of mCRPC 
patients [8–11]. Although platinum-based chemotherapy has 
demonstrated advantages in terms of palliative benefits, objec-
tive response, and progression-free survival (PFS) in phase II 
studies involving mCRPC, these improvements did not trans-
late improved overall survival (OS) [12–15].

With emerging data indicating a high prevalence of 
somatic and germline alterations in DDR genes among 
patients with advanced PC, coupled with the efficacy of 
PARPis in this patient population, interest in platinum-based 
drug treatments has also been renewed. The hypothesis is 
that platinum-based therapy may exhibit higher efficacy in 
this specific subgroup of PC patients, as observed in individ-
uals with other types of cancer such as triple-negative breast 
cancer (TNBC) [16]. In this comprehensive review, our 
objective is to summarize the current findings and explore 
potential future directions of platinum-based chemotherapy 
in the metastatic setting of PC.

Platinum‑based chemotherapy in prostate 
cancer

Platinum compounds exert their antitumor effects by forming 
covalent adducts with cellular DNA, inducing DNA damage 
during the G2 phase, and cell death [17]. Nonetheless, the 

literature suggests that only a fraction, possibly ranging from 
1 to 10%, of intracellular cisplatin can ultimately penetrate 
the nucleus and initiate a reaction with DNA, leading to cell 
cycle arrest and apoptosis in rapidly proliferating tumor cells 
[18]. Cisplatin, the pioneer of platinum-based anti-cancer 
drugs, was initially discovered in the late 1960s and received 
approval for cancer treatment in 1978 [19]. Its therapeu-
tic efficacy has been demonstrated in various malignan-
cies, including ovarian, breast, and gastrointestinal cancers. 
However, despite its anti-tumor properties, the prolonged 
use of cisplatin is associated with non-specific therapeutic 
effects and systemic toxicity mainly represented by myelo-
suppression, neurotoxicity, nephrotoxicity, and ototoxicity, 
leading to significant damage to normal tissues [17, 20]. The 
other two clinically approved platinum drugs, carboplatin 
and oxaliplatin, show different activity and toxicity profiles 
compared with cisplatin.

Platinum compounds are administered intravenously. 
However, the efficacy of these compounds as single agents in 
unselected patients has generally been moderate, and some 
combination therapies have led to significant toxicity. In the 
context of PC, platinum compounds have been extensively 
studied both as monotherapy and in combination therapy 
[21]. However, most of these studies have involved small 
case series and have recruited patients without considering 
tumor molecular characteristics.

In a pooled analysis conducted by Leal et al., various 
studies investigating platinum-containing chemotherapy 
regimens for patients with CRPC were collected [22]. Over-
all, the data indicated a statistically significant benefit of 
platinum-based chemotherapy in terms of clinical overall 
response rate, but there was insufficient evidence to dem-
onstrate or exclude improvements in PFS or OS. Notably, 
response rates were higher when platinum compounds 
combined with other cytotoxic agents were compared with 
platinums alone. It is worth mentioning that some of these 
studies were conducted prior to the approval of taxanes 
for the treatment of CRPC [22]. Also, data from a limited 
number of randomized trials included in this meta-analyses 
confirmed increased response rates for chemotherapy regi-
mens containing platinum compounds compared to other 
regimens. However, specific patient populations, such as 
those with aggressive variants of PC or genomic defects in 
DDR pathways, seem to derive more substantial benefits 
from platinum-based treatments [22].

In the past, a phase III clinical trial (SPARC study) 
investigated the potential efficacy of satraplatin, an oral 
platinum-based compound in patients with mCRPC expe-
riencing progression after one prior chemotherapy regimen 
[12]. Satraplatin combined with prednisone demonstrated 
improvements in PFS (p < 0.001) and pain control compared 
with prednisone plus placebo, but there was no OS benefit 
observed between the two arms (p = 0.80). Satraplatin was 
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well tolerated, although myelosuppression and gastrointesti-
nal disorders occurred more frequently compared to placebo 
[12]. To date, research on satraplatin in Western countries 
has been substantially stopped.

Taxane–platinum combinations have shown promising 
activity in mCRPC in single-group clinical studies, but not 
in randomized trials. For instance, the RECARDO trial, a 
randomized phase II trial comparing docetaxel alone versus 
docetaxel plus carboplatin in patients with CRPC who pro-
gressed after responding to prior docetaxel chemotherapy, 
did not reveal any differences in PFS or OS [23]. This incon-
sistency may be attributed to the previous docetaxel treat-
ment as well as the lower dose of docetaxel used in combi-
nation with carboplatin and the use of docetaxel instead of 
cabazitaxel, the agent of choice in CRPC patients previously 
treated with a docetaxel-containing treatment regimen [24].

A more recent phase I/II randomized study evaluated the 
efficacy of cabazitaxel plus carboplatin in men with progres-
sive mCRPC [15]. The addition of carboplatin to cabazitaxel 
showed improved clinical efficacy compared to cabazitaxel 
alone. At a median follow-up of 31.0 months, the combi-
nation therapy resulted in a median PFS of 7.3 months, 
compared to 4.5 months with cabazitaxel alone. Although 
adverse events were more common with combination 
therapy, it was generally safe and well-tolerated. The most 
common grades 3–5 adverse events were fatigue, anemia, 
neutropenia, and thrombocytopenia and no treatment-related 
deaths were reported [15]. These findings suggest that tax-
ane-platinum combinations have a clinically beneficial role 
in advanced PC, although randomized phase III study should 
be planned to further investigate their efficacy.

Platinum‑based chemotherapy in HHR 
mutated prostate cancer

Genomic instability is a commonly observed characteristic 
of tumorigenesis, and impaired DNA repair is recognized as 
a fundamental feature of cancer development [25]. HRR is a 
DNA repair mechanism that specifically acts on DNA dou-
ble-strand breaks (DSBs) and interstrand cross-links (ICL) 
[26]. Deficiencies in the HRR pathway have been linked to 
various tumor types, such as breast, ovarian, prostate, and 
pancreatic cancers. This deficiency is referred to as homolo-
gous recombination deficiency (HRD), while tumors exhibit-
ing intact HRR are described as homologous recombination 
proficient (HRP) [27]. The presence of HRD in tumors can 
render them more susceptible to combined treatments with 
platinum drugs, that induce ICLs, and PARPis, resulting in 
synthetic lethality [25] (Fig. 1).

Genomic abnormalities impairing DNA repair genes 
are present in 20%–30% of advanced PC [6, 28, 29]. These 
actionable molecular alterations and aberrations in HR occur 

in a considerable fraction of localized PCs and, even more 
frequently in metastatic disease [30]. Some of these altera-
tions, which can be germline or somatic, have been associ-
ated with sensitivity to platinum compounds and/or PARPis 
in both preclinical studies and clinical trials [31].

In TNBC, carboplatin has demonstrated high efficacy in 
patients with known tumors carrying variations in BRCA1 
and BRCA2 [32]. Moreover, there is evidence that patients 
with variations in other HR genes, aside from BRCA1 and 
BRCA2, can benefit from platinum-based treatment. Con-
versely, alterations in other non-homologous recombination 
DNA damage response genes, such as PTEN, do not result in 
a similar level of response [32]. Accumulated data in ovar-
ian cancer have shown that the approach of assessing HR 
deficiency is a positive predictor of response to platinum-
based drugs [33].

Encouraging anti-tumor activity of platinum-based 
chemotherapy in a patient with mCRPC and DNA repair 
gene defects (i.e., BRCA1/2 mutations) has been found 
[34]. In a study by Mota et al., response to platinum-based 
chemotherapy was retrospectively assessed in patients with 
mCRPC who underwent somatic and germline genomic 
sequencing [35]. They found that prostate-specific antigen 
(PSA) responses occurred more frequently in patients with 
genomic alterations in DDR genes. Although, there was a 
trend toward longer time on treatment in the DDR-mutant 
group, no difference in OS was observed. Importantly, the 
analysis was limited to patients who received platinum-
based chemotherapy after progressing on taxane therapy, 
where the response was more likely attributed to the plati-
num agent compared to platinum and taxane combination 
therapy [35]. These findings are not only consistent with 
previous reports of improved response of BRCA -altered 
tumors to platinum-based chemotherapy but also highlight 
responses in tumors with non-BRCA  DDR gene alterations, 
including PALB2, FANCA, and CDK12 [36–38]. This sug-
gests that a broader DDR gene panel, including non- BRCA  
mutations, could be used to identify a higher number of 
mCRPC patients more likely to benefit from platinum chem-
otherapy, whether administered alone or combined with a 
taxane. Moreover, other clinical subsets of PC, described as 
aggressive variants, including those with low PSA expres-
sion, visceral metastasis, or histologic neuroendocrine differ-
entiation, may also derive particular benefit from platinum 
chemotherapy, and the presence of a genomic alteration in 
a DDR gene is just one variable that could aid in patient 
selection for this therapy [39]. Like small cell lung cancer, 
neuroendocrine prostate cancer (NEPC) tends to exhibit 
an initial responsiveness to platinum-based chemotherapy, 
demonstrating objective response rates ranging from 50 to 
60% [40, 41]. The mechanisms underlying the response of 
NEPC and aggressive variant prostate cancer (AVPC) to this 
treatment regimen may also be influenced by inherent tumor 
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suppressor gene losses and/or aberrations in DNA repair 
pathways. The rational use of a combination chemotherapy 
involving cabazitaxel and carboplatin is particularly note-
worthy in the context of NEPC, given the efficacy of cabazi-
taxel in CRPC and the frequent observation of mixed tumor 
histologies (comprising both adenocarcinoma and NEPC 
elements) are within the spectrum of NEPC [42]. The uti-
lization of carboplatin in combination with cabazitaxel has 
garnered support from the National Comprehensive Cancer 
Network guidelines, as a viable option for patients exhibit-
ing aggressive variant clinical characteristics or unfavorable 
genomic profiles, which may involve loss-of-function altera-
tions in at least two of PTEN, TP53, and RB1 [43].

In a multicenter retrospective analysis by Schmidt et al. 
involving 508 patients with mCRPC, encouraging antitu-
mor efficacy was observed with platinum-based therapies 
in patients with tumors harboring DNA repair gene abnor-
malities [21]. Although, numerically higher rates of PSA 
level decreases and soft tissue responses were observed in 
patients with DNA repair gene abnormalities compared to 
those without, there was no statistically significant differ-
ence and no OS benefit. In the subgroup of 44 patients with 
BRCA2 gene mutations, a PSA level decrease of at least 
50% was documented in 23 patients (63.9%), and soft tissue 

responses were observed in 17 patients (38.6%) with evalu-
able disease [21]. In this study, the response to platinum-
based monotherapy was comparable to the recently reported 
trials of PARP monotherapy in patients with DNA repair 
gene abnormalities [44–46]. However, the response to plat-
inum-based combination therapy was more favorable than 
monotherapy, and in most cases, a taxane was chosen as the 
combination partner.

Fan et  al. reported distinct responses to platinum-
based chemotherapy in patients with and without DDR 
gene alterations and among mCRPC patients harboring 
alterations in different HR genes [47]. Of the 55 evaluated 
patients, 23 had genomic defects in HR pathway genes. The 
median PSA–PFS for the 23 patients with HR defects was 
6.7 months, compared to 2.6 months for the 22 patients with-
out HR defects (p = 0.001). Patients with somatic HR defects 
displayed a shorter PSA–PFS compared to those with ger-
mline HR defects (4.5 months vs. not reached). The PSA50 
response rate (patients who survived for 12 weeks and had 
a PSA decline of over 50% from baseline) was higher in 
patients with BRCA2 or ATM defects (75.0%) compared 
to those with CDK12 defects (22.2%; p = 0.06). Overall, 
patients with BRCA2 or ATM defects exhibited prolonged 

Fig. 1  Synthetic lethality of platinum-based chemotherapy and PARP inhibitors in HR deficiency tumors. HR, homologous recombination; 
DSBs, double strands breaks; SSBs, single strands breaks. Created with BioRender.com
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PSA–PFS compared to those with CDK12 defects or other 
HR defects (p = 0.038) [47].

Recently, a systematic review and meta-analysis were 
conducted by Fazekas et al. to evaluate the effectiveness of 
various treatment modalities in patients with BRCA -posi-
tive mCRPC. Their findings indicated that both PARPis and 
platinum-based therapies exhibited similar rates of PSA50 
response and OS outcomes. This underscores the suitability 
of platinum-based therapies as a viable treatment option for 
individuals with BRCA -positive mCRPC. Nonetheless, the 
need for prospective interventional studies comparing these 
therapeutic agents remains imperative to establish a more 
robust level of evidence [48].

Platinum‑based chemotherapy and PARP 
inhibitors

The efficacy of PARP inhibition relies on the presence 
of mutations or alterations in DNA damaged genes, par-
ticularly those involved in HR. The presence of HR gene 
mutations can enhance the amplification of DNA damage 
effects caused by platinum drugs, suggesting that PARPis 
could be effective like adjunctive therapy with cisplatin or 
carboplatin.

Since 2020, PARPis have emerged as a therapeutic option 
in metastatic PC. First, olaparib was approved for adult 
patients with suspected or confirmed germline or somatic 
HRR gene-mutated mCRPC, who had progressed follow-
ing prior treatment with enzalutamide or abiraterone [49]. 
Then, rucaparib was approved for the treatment of adults, 
with mCRPC harboring deleterious BRCA  germline and/
or somatic mutations, who had received androgen receptor-
directed therapy and one taxane [50].

Previous studies have demonstrated that combining PARP 
inhibition with cisplatin significantly increased lifespan and 
restored nerve conduction velocity in animal models [35]. 
PARPis can also provide protection against dose-limiting 
toxicity associated with certain anticancer therapies [37].

In ovarian cancer patients, the combination of PARP 
inhibition with carboplatin and paclitaxel has significantly 
improved PFS in a phase II trial [51]. Olaparib and pacli-
taxel combined with carboplatin can improve the serologi-
cal indicators of patients with ovarian cancer, enhance dis-
ease control, and reduce the recurrence rate, with no extra 
toxic side effects [52]. Although the synergistic potential 
of administering PARPi and chemotherapy concurrently 
is appealing, its implementation in clinical practice has 
encountered significant challenges due to overlapping tox-
icities, particularly myelosuppression. Consequently, the 
combined approach of PARPi and chemotherapy in ovarian 
cancer has been discontinued.

In a phase II trial in advanced breast cancer, veli-
parib–carboplatin added to standard therapy resulted in 
higher rates of pathological complete response (51%) than 
standard therapy alone (26%) specifically in TNBC, with 
a greater toxicity than that of the control [53]. Likely, the 
addition of veliparib to cisplatin significantly improved 
PFS in patients with BRCA -like metastatic TNBC (5.9 vs. 
4.2 months, p = 0.01), but not in patients with non-BRCA 
-like metastatic breast cancer (4.0 vs. 3.0 months, p = 0.57) 
compared to cisplatin plus placebo [54]. The addition of 
veliparib to a highly active platinum combination (carbopl-
atin–paclitaxel) resulted in significant and durable improve-
ment in PFS compared to chemotherapy alone (14.5 vs. 
12.6 months, p < 0.001) in patients with germline BRCA  
mutation-associated advanced breast cancer [55].

A phase I study was conducted to evaluate the combina-
tion of veliparib with cisplatin and gemcitabine in patients 
diagnosed with advanced pancreatic cancer harboring ger-
mline BRCA  mutations or with a family history of BRCA 
-related cancers [56]. The study enrolled nine and seven 
patients with or without BRCA  mutations, respectively. 
Notably, seven patients with BRCA  mutations displayed pos-
itive responses, with six achieving partial responses and one 
experiencing a complete response. However, it is essential to 
mention that the patient who achieved a complete response 
later developed acute myeloid leukemia (i.e., approximately 
2.5 years into the treatment), likely associated with the ther-
apy. No responses were observed in patients without BRCA  
mutations. Several phase II trials have been conducted to 
assess the effectiveness of PARPi in treating pancreatic can-
cer. Among these trials, a multicenter phase II study enrolled 
patients with pathogenic germline BRCA1 or BRCA2 muta-
tions and recurrent solid tumors to evaluate olaparib mono-
therapy after first-line chemotherapy [55]. The encouraging 
results reported in pancreatic cancer patients offered a solid 
rationale to continue the development of PARPis for BRCA 
-related pancreatic cancer [57]. The subsequent phase III 
POLO trial demonstrated a longer median PFS in patients 
treated with olaparib compared to those who received pla-
cebo (7.4 months vs. 3.8 months), while maintaining qual-
ity of life. It is important to note that no significant differ-
ence in median OS was observed between the two groups 
(19.0 months vs. 19.2 months, respectively) [58].

To date, no data on the combination use of platinum-
based chemotherapy and PARPi are available in mCRPC, 
and few sequence data are reported in the literature. Mota 
et al. in their translational study examined responses to plati-
num chemotherapy after progression on a PARPi in patients 
with BRCA  and ATM mutations. It is unclear whether 
tumors that acquire resistance to PARPi can still respond 
to other DNA damage-targeting agents, including platinum 
chemotherapy. These authors found that three out of eight 
patients with DDR mutations (37%) obtained some clinical 
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benefit from platinum-based chemotherapy after progres-
sion on a PARPi, with a patient achieving a radiographic 
partial response. However, outcomes in this advanced 
patient population were generally poor. Notably, their study 
included four patients with deleterious alterations in ATM 
who received platinum-based chemotherapy either before or 
after receiving a PARPi. None of these patients achieved a 
PSA50 response and all experienced rapid disease progres-
sion. Although this finding is based on a limited sample 
size and needs confirmation in larger studies, it highlights 
the need for novel therapeutic approaches for approximately 
4% of mCRPC patients who have deleterious alterations in 
ATM [28].

Some authors have reported the incorporation of PARPi 
and platinum-based chemotherapy in the treatment history 
of mCRPC, showing encouraging efficacy results [34].

Recently, Slootbeek et al. investigated the cross-resist-
ance between platinum-based chemotherapy and PARPi 
in mCRPC patients with HRR mutations [59]. The analy-
sis unveiled that the sequence in which these therapeutic 
agents were administered mainly impacted on the median 
PFS associated with platinum-based chemotherapy. Spe-
cifically, when PARPi was administered as the initial treat-
ment (i.e., prior platinum-based chemotherapy), a reduction 
by 3.6 months was observed in the PFS of platinum-based 
chemotherapy… Conversely, the median PFS of PARPi 
administered after platinum-based chemotherapy was only 
0.9 months shorter than the median PFS when PARPi was 
administered as initial treatment. Regarding response rates 
among patients who received PARPi as the initial treatment, 
37.5% exhibited a > 50% decline in PSA levels in response 
to subsequent platinum-based chemotherapy, and 25.0% 
showed a radiographic response. In contrast, for those who 
received platinum-based chemotherapy initially, 60.0% 
experienced a > 50% decline in PSA levels, and 55.6% 
showed a radiographic response to subsequent PARPi ther-
apy [60]. These observations imply that starting treatment 
with platinum-based chemotherapy might result in a lower 
development of cross-resistance to PARPi when compared 
to the opposite treatment sequence (PARPi followed by plat-
inum-based chemotherapy). Nonetheless, the precise mecha-
nisms of resistance underlying these findings remain to be 
fully elucidated. Consequently, the acquisition of additional 
data on resistance mechanisms will be of utmost importance 
in defining the most optimal treatment sequence for mCRPC 
patients with HRR mutations in the future. More informa-
tion on cross-resistance will be derived from the ongoing 
phase II COBRA trial, which compares carboplatin and 
olaparib head-to-head with a cross-over design in mCRPC 

patients (NCT04038502), although in women’ cancers, a 
phase I/Ib trial by Lee et al. examined the impact of differ-
ent drug administration sequences (i.e., olaparib followed 
by carboplatin and carboplatin followed by olaparib) on 
olaparib pharmacokinetics and platinum–DNA adducts in 
peripheral blood mononuclear cells as pharmacodynamic 
measures [61]. Their findings revealed that administering 
olaparib before carboplatin led to a reduction in carboplatin 
cytotoxicity. Conversely, when carboplatin was given first, 
it caused an accumulation of intracellular olaparib, thereby 
reducing the availability of bioactive olaparib. These results 
suggest that administering carboplatin prior to olaparib may 
be more beneficial, indicating that the order of drug adminis-
tration could potentially optimize the clinical benefits.

Some clinical trials are currently investigating the effec-
tiveness of platinum-based chemotherapy alone or in combi-
nation with other agents in mCRPC patients (Table 1).

Overall, the combination of platinum-based chemother-
apy with PARP inhibitors represents a novel and potentially 
beneficial therapeutic approach, aiming at synergistically 
enhancing the anti-cancer effects of both treatments and 
broaden the treatment opportunities for mCRPC patients. 
However, the identification of the optimal drug combina-
tion, as well as treatment sequence, is pivotal to minimize 
complications that may occur, due to drug–drug interactions 
and the toxicity profiles of the combined drugs, with the 
primary side effect being myelosuppression. Further studies 
to determine the dosing of individual combination agents, 
scheduling of treatment regimens, as well as the specific 
patient population, and clinical setting are required.

Conclusion

Platinum-based chemotherapy in combination with taxanes 
has shown promising results in metastatic PC in a phase 
II study. However, the most promising activity of plati-
num therapy in CRPC patients is related to the presence of 
mutations in DNA repair genes. In this subpopulation, the 
use of platinum represents a viable therapeutic alternative; 
although, prospective and randomized studies are needed. 
Moreover, like other malignancies with HR mutations, the 
use of platinum-based chemotherapy in combination with 
PARP inhibitors may further enhance clinical responses 
in these patients with a poorer prognosis. Many aspects 
still need to be explored, including the optimal therapeutic 
sequence such as PARP-platinum-based chemotherapy or 
platinum-based chemotherapy-PARP, cumulative toxicity, 
and the most appropriate treatment setting.
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