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Abstract: DNA methylation is one of the most observed epigenetic modifications. It is present in 

eukaryotes and prokaryotes and is related to several biological phenomena, including gene flow 

and adaptation to environmental conditions. The widespread use of third-generation sequencing 

technologies allows direct and easy detection of genome-wide methylation profiles, offering in-

creasing opportunities to understand and exploit the epigenomic landscape of individuals and pop-

ulations. Here, we present a pipeline named MeStudio, with the aim of analyzing and combining 

genome-wide methylation profiles with genomic features. Outputs report the presence of DNA 

methylation in coding sequences (CDSs) and noncoding sequences, including both intergenic se-

quences and sequences upstream of the CDS. We apply this novel tool, showing the usage and per-

formance of MeStudio, on a set of single-molecule real-time sequencing outputs from strains of the 

bacterial species Sinorhizobium meliloti. 
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1. Introduction 

Understanding organism adaptation to variable environmental conditions is pivotal 

for weighting the relevance of natural selection over species and population evolution. 

Phenotypic plasticity, stress responses, and acclimation contribute significantly to epige-

netic mechanisms [1]. Among epigenetic modifications, DNA methylation has been 

shown to be essential in the control of several biological phenomena in eukaryotes and 

prokaryotes [2], and, in recent years, the study of variation in epigenetic response aroused 

the attention of several investigators [3]. Third-generation sequencing technologies, 

namely, single molecule real-time (SMRT) [4,5] and nanopore ONT [6,7] sequencing, al-

low rapidly identifying the most commonly methylated bases [8–10]. These methods are 

improving genome-wide DNA methylation studies, especially in prokaryotes, where the 

compact size of genomes allows the generation of whole-genome methylomes with rela-

tive ease. In prokaryotic microorganisms, DNA methylation plays various roles, which 

span from control of the cell cycle to protection against phages (e.g., restriction-modifica-

tion systems) and regulation of gene expression (see, e.g., [11]). Relative to cell cycle con-

trol, genome-wide DNA methylation profiles have been shown to vary in ecologically 

relevant contexts (e.g., bacterial differentiation [12]), as well as for restriction-modification 

systems with respect to strain or population variation [12]. 

Consequently, the interest in computational pipelines which can easily profile DNA 

methylation features in a genome-wide manner (thus allowing a comparison of strains 

and individuals across multiple conditions) is growing. Several tools have been devel-

oped for the analysis of DNA methylation profiles deriving from bisulfite sequencing and 

microarrays (e.g., [13–17]; for a recent benchmarking, see [18]). Recently, three packages 

have been released [19–21], which are used to visualize methylation profiles from ONT 

sequencing data. A recent tool on GitHub was also developed to specifically analyze DNA 
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methylation profiles on metagenomic data (https://github.com/hoonjeseong/Meta-epige-

nomics (accessed on 7 September 2022)). However, to the best of our knowledge, no spe-

cific pipeline has been developed for extracting DNA methylation information from se-

quencing data to allow a direct quantification/comparison of the position of methylated 

sites with respect to genome-derived features, such as coding and noncoding sequences 

and report outputs, which can be used in population epigenomic analyses. The position 

of methylated sites with respect to genomic features is of key importance in studies focus-

ing on the role that epigenetic modifications have in gene expression control and pheno-

typic plasticity. 

Here, we report the implementation of a bioinformatic tool, named MeStudio, to ex-

plore the methylation profiles and map the methylation patterns to genomic features on a 

set of genome sequences obtained by SMRT technology of the model symbiotic nitrogen-

fixing bacterium Sinorhizobium meliloti [22] for which DNA methylation plays a relevant 

role in cell cycle regulation and differentiation during symbiotic conditions [23]. MeStudio 

is a pipeline for SMRT sequencing methylation data integration and visualization, com-

bining methylation data with genome sequence and annotation to facilitate the extraction 

of biological information from DNA methylation profiles. Visual and tabular outputs are 

produced, which can be further processed to provide biological interpretation and formu-

late hypotheses on epigenomic profiles. 

2. Results and Discussion 

2.1. Tool-Wide Comparison 

MeStudio provides a novel amount of feature-level information that is not present in 

other widely used genomic software packages. For instance, Bedtools 

(https://bedtools.readthedocs.io/en/latest/ (accessed on 17 August 2022)) is a well-known 

toolset for genomic applications through which it is possible to detect methylation fea-

tures regarding CpG island, but it is not possible to extract information about CDS, nCDS, 

tIG, and US regions as it does not provide any figure about methylated motif occurrences. 

Bioconductor also supplies packages that can be used for methylation analysis such as 

“GenomicRanges” (https://bioconductor.org/packages/release/bioc/html/Ge-

nomicRanges.html (accessed on 4 May 2022)) and “motifmatchr” (https://bioconduc-

tor.org/packages/release/bioc/html/motifmatchr.html (accessed on 6 May 2022)). Ge-

nomicRanges allows analyzing the genome by dividing it into predefined intervals, but no 

information about the genomic feature is produced. The package motifmatchr finds motifs 

along the genome, but no gene or protein annotations are included in the output. Moreo-

ver, MeStudio simply takes as input for the motifs a text file, which is a more user-friendly 

format compared to the one required by motifmatchr. Table 1 provides a comparison of the 

features of MeStudio to tools for similar purposes. 

Table 1. MeStudio features compared to existing tools. 

Tool 
Programming  

Language 

Motif  

Recognition 

Motif Matching with  

Respect to Genomic Features 

Graphical 

Outputs 
Reference 

MeStudio Python, C Yes Yes Yes This study 

GenomicRanges R, C No No Yes Bioconductor package 

motifmatchr R, C++ Yes 
Yes (only providing genomic 

ranges) 
Yes Bioconductor package 

Meta-epigenomics Python Yes No No 

https://github.com/hoonjeseo

ho/Meta-epigenomics (ac-

cessed on 19 June 2022) 

Methplotlib Python, Bash No No Yes De Coster et al. (2020) [21] 

a-slide/pycoMeth Python, Bash No No Yes Leger (2020) [20] 

NanoMethViz Python, Bash No No Yes Su et al. (2021) [19] 
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2.2. The Sinorhizobium Case Study 

In order to show the performance of MeStudio, the genomic sequences of two strains 

of the model symbiotic nitrogen-fixing bacterium S. meliloti were produced and analyzed 

together with two additional recently published SMRT data [12] for a total of four genomic 

sequences of S. meliloti strains, 2011, FSM-MA, BE31LL, and BO21CC (Table S1). On the 

SMRT assembled reads of the genomes of the strains, MeStudio was able to identify a total 

of 26 motifs (Figure 1). All but six motifs (namely, CTYCCAG, DCTGCAGGS, 

GCCGGCYD, RAGCWGCTY, RCCAGCC, and RCTGCAGGS) were common to the four 

strains. The number of retrieved methylated sites ranged from a few units (especially for 

private motifs, those present in one strain only) to several thousands (such as GANTC, 

which is a classical motif methylated by the CcrM DNA methylase and involved in cell-

cycle regulation [23]. CDS and nCDS showed similar frequencies (Figure 1) (Supplemen-

tary Material, Table S1), as expected for methylation being present on both DNA strands. 

Intergenic sequences (tIG) showed the lowest number of methylated sites, while upstream 

sequences to a gene (US), bona fide corresponding to putative promoter regions, reported 

values generally one order of magnitude higher than tIG, and, in some cases, differences 

in values between strains ranged around twofold (e.g., CTYCCAG and GCCAGG). Fur-

thermore, differences in the abundance of methylated profiles are evident if we consider 

the two strains grown until the late exponential phase in minimal medium (i.e., FSM-MA 

and 2011) and those grown in TY medium (i.e., BE31LL and BO21CC). Lastly, the presence 

of motifs in one strain only may suggest the occurrence of strain-specific restriction-mod-

ification systems, although the small number of methylated sites may also suggest alter-

native hypotheses (i.e., methylation on some genomic regions only related to regulation 

of expression at specific loci). 

 

Figure 1. Heatmap representing methylated motif’s occurrences scaled as ratio to the max. 
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In conclusion, we encourage the use of MeStudio to unearth epigenomic data which 

are interpretable in a comparative genomic framework: the correlation among a methyla-

tion position, motifs of interest, and the protein annotation related to a CDS region 

strengthens the inference between the epigenetic modification and its functional role. 

3. Materials and Methods 

3.1. Bacterial Strains and Culture Conditions 

Strains of S. meliloti BE31LL and BO21CC were resuscitated from glycerol stock tubes 

(codes BM932, BM936) stored at −80 °C in the collection of the Laboratory of Microbial 

Genetics, Dep. Of Biology, University of Florence, Italy. After re-isolation on TY medium 

agar plates [24] (tryptone 5 g/L, yeast extract 0.4 g/L, CaCl2 0.4 g/L, and agar 7.5 g/L), single 

colonies were inoculated in 5 mL liquid TY medium and grown under constant agitation 

(125 rpm) at 30 °C. 

3.2. DNA Extraction and SMRT Sequencing 

DNA was extracted from overnight cultures (OD600nm = 1.5) using PowerSoil DNA 

Isolation Kit (Qiagen, Hilden, Germany). After quantification by gel electrophoresis and 

fluorimetric assay (Qubit, Thermo Fisher Scientific, Waltham, MA, USA), we followed the 

procedure already reported in [25] for fragmenting DNA with g-TUBE (Covaris Inc., Wo-

burn, MA, USA) to an average 15 kbp size and preparing the sequence library using the 

Pacific Biosciences SMRTbell Express Template Prep Kit 2.0 (Pacific Biosciences, Menlo 

Park, CA, USA). Sequencing was performed on a Sequel apparatus (Pacific Biosciences, 

Menlo Park, CA, USA) by SMRT technology [21], using Sequel Sequencing Kit 3.0. 

3.3. Sequence Analysis and Annotation 

The obtained SMRT reads were assembled using the SMRT Link software ver. 

8.0.0.80529 (Pacific Biosciences, Menlo Park, CA, USA), producing oriC-oriented assem-

blies. Annotation was performed using Prokka v1.14.5 [26]. Sequences were deposited in 

the NCBI database and are available under accession numbers SAMN16976749 and 

SAMN16976751 (BioProject PRJNA681719). Two additional genomic sequences were an-

alyzed corresponding to S. meliloti strains 1021 and FSM-MA, deposited under BioProject 

PRJNA705832 [12]. 

3.4. Software Design and Implementation 

MeStudio consists of several tools that can be run individually or as part of a pipeline, 

and it uses a naïve string-matching algorithm to map motif sequences to the reference 

genome. The required input data consist of only three files: (i) a FASTA file containing the 

genome sequence, (ii) a genomic annotation file in GFF3 format, and (iii) another GFF3 

containing the methylated nucleotide positions. The latter is automatically generated from 

the output of the SMRTlink software of Pacific Biosciences DNA sequencers. As a result, 

MeStudio produces several files including: (i) a text file with summarized statistics of the 

methylation occurrences along the genomic features, (ii) distribution and circular plots, 

and (iii) BED files containing protein annotation of the genes in which methylated motifs 

have been found. A complete workflow is provided in Figure 2. Demo files for input and 

outputs are available at https://github.com/combogenomics/MeStudio (accessed on 4 Oc-

tober 2022). 
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Figure 2. MeStudio overview. (A) Workflow. Each blue block represents input files. The orange 

blocks indicate the scripts. The green boxes indicate output files. (B) Graphical representation of the 

used terminology: CDS, coding sequence; nCDS, coding sequence opposite strand; tIG, intergenic 

sequence between two genes in opposite directions; US, upstream sequence to a coding sequence 

(intergenic sequence between two genes having the same orientation). See text for details. 
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3.5. Preprocessing 

In the first instance, MeStudio performs a quality check via a preprocessing Python 

script named ms_replacR. For a proper analysis, MeStudio needs consistent formatting on 

the sequence identifiers of the three main input files: the genomic annotation (GFF3 for-

mat), sequencer-produced modified base calls (GFF3 format), and the genomic sequence 

(FASTA file). Since these files may derive from different sources, it is possible for the user 

to experience differences in the syntax and/or annotation of the sequence identifiers (the 

“seqid” field); to avoid these possible inconsistencies, ms_replacR copies the original files 

into the output directory, performs a quality check, and corrects the errors, if needed. The 

most frequent formatting issue we have encountered is the presence of a pipe character 

and an underscore used interchangeably and inconsistently across files deriving from sev-

eral sources. To correct for this possible incompatibility issue, by default, the pipe symbol 

is replaced by the underscore as a separator. More details are provided in the MeStudio 

manual on GitHub. 

3.6. Core Processing 

The processing of the input files is handled by five executables which we refer to as 

the “MeStudio Core”. These components match the nucleotide motifs to the genomic se-

quence and map them to the corresponding category, which are extracted from the anno-

tation file. Categories are defined as follows: (i) protein-coding genes with an accordant 

(sense) strand (CDS), (ii) a discordant (antisense) strand (nCDS), (iii) regions that fall be-

tween annotated genes (true intergenic, tIG), and (iv) regions upstream of the reading 

frame of a gene, with an accordant strand (US) (Figure 2B). The CDS feature is defined by 

the ORF, and the nCDS is its corresponding on the antisense strand. The tIG is defined as 

the region between two different ORFs on both strands, as reported in Figure 2B. The US 

region is defined, by default, as the portion of the genome between the end of an ORF and 

the beginning of the next one; on the other hand, it is possible to set a personalized up-

stream range via an appropriate flag. The current implementation uses an optimized na-

ive string-matching algorithm to map motif sequences to the reference genome. During 

the matching stage, each replicon or chromosome is loaded in memory, and both strands 

are scanned for the presence of the motif sequences, which can obviously hold ambiguous 

characters. Time complexity in the worst-case scenario is O(m × (n − m + 1)) + alpha, with 

alpha being an integer proportional to the number and realization of ambiguity characters 

present in each motif. All the motifs to be searched must be collected by the user and saved 

in an appropriate newline-delimited text file. The resulting binary files are then processed 

by another executable that is called for the task at hand. MeStudio Core crosses methyl-

ated base positions relative to the reference sequence starting with the previously de-

scribed features, producing GFF3 files that serve as input for the final analysis stage. This 

is a computationally expensive part of the pipeline in which multiple nested for loops and 

calculations are performed. Integrating one motif on a four-contig genome (6,973,268 bp, 

23,433 GANTC motif matches) took 0 min 27.116 s on a single AMD Opteron 6380 proces-

sor (2.5 GHz). 

3.7. Postprocessing 

MeStudio implements a postprocessing Python script named ms_analyzR which uses 

MeStudio Core results to produce analytical statistic outputs and return to the user graph-

ical outputs and tables (in the form of BED files), which can be directly parsed using R. In 

addition, to strengthen the pipeline with comparative genomic analyses, the “gene_pres-

ence_abscence.csv” file produced by Roary [27] is needed to define the methylation level 

and patterns of core and dispensable genome fractions, as well as to annotate the genes-

coded proteins. ms_analyzR logs the total number of genes found for each category (CDS, 

nCDS, tIG, and US). Additionally, methylation data are shown, such as (i) the total num-

ber of methylated sites, (ii) the total number of methylated genes, (iii) the ID of the most 
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methylated gene (geneID), and (iv) the product of that gene. Integrating data from Roary 

is functional to characterize the geneID associated with the name of the protein (as anno-

tated by Prokka [26]) as part of the core or dispensable genome. All the information is 

saved into a log file, together with plots accounting for the distribution of the methylations 

(Figure 3). To ensure customizability, ms_analyzR also includes two optional flags: “—

make_chrom” and “—make_bed”. The “—make_chrom” flag saves into the previously 

specified output directory the GFFs at the “chromosome level” rather than the “feature 

level”. Each GFF produced is characterized not by feature (CDS, nCDS, tIG, and US) but 

by chromosomes (or contigs), maintaining the MeStudio Core-derived contents and lay-

out. The “—make_bed” flag produces a BED file for each feature reporting (i) the chrom 

column, with the name of each chromosome or contig, (ii) the start and (iii) end of the 

feature, (iv) the name of the geneID found in that interval, (v) the number of methylations 

found for geneID, and (vi) the protein product of the ID. Information contained in BED 

files can be readily used to plot the distribution of the methylation density for each feature, 

making use of the circlize R package (https://github.com/jokergoo/circlize (accessed on 18 

July 2022)) (Figure 4); an R script for this purpose is already available on our GitHub. 

 

Figure 3. Scatter plots of GANTC motif in S. meliloti FSM-MA. The Y-axis reports geneIDs, whereas 

the X-axis reports the number of methylations found for each geneID. GeneIDs are taken from the 

annotation (see GitHub repository for the annotation files: https://github.com/comboge-

nomics/MeStudio (accessed on 4 October 2022)). Plots for the different categories of methylated sites 

(CDS, nCDS, tIG, and US) are reported. 
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Figure 4. Circular density plots of GANTC and GCCCGGCH motifs in FSM-MA and 1021 strains of 

S. meliloti. The outer circle represents the genome annotation of the contigs of the strain (black lines 

indicate the position of CDS). Each inner circle represents a different category of methylated sites, 

CDS (red), nCDS (blue), tIG (purple), and US (yellow). The bars of each plot indicate the values for 

each category. 
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4. Conclusions 

We reported here the description of a novel software called MeStudio, for the analy-

sis of DNA methylation profiles obtained by single-molecule real-time sequencing. MeS-

tudio has several novel and useful features compared to the few existing tools, as it pro-

vides outputs in the form of GFF and BED files which contain information on the position 

of methylated sites and methylated motifs, the number of methylated sites and profiles 

for each genomic feature, and graphical outputs, as well as protein annotation. The ge-

nomic features analyzed include genic and intergenic regions (comprising putative pro-

moters), allowing the formulation of hypotheses related to the importance of DNA meth-

ylation on the regulation of gene expression and on other relevant biological phenomena 

[28]. In addition to being developed for prokaryotic genomes, MeStudio can handle any 

kind of sequence, by simply providing a suitable set of input files (Figure 2A). By provid-

ing information on motif occurrence and genomic localization, MeStudio contributes to 

the basis for comparative analyses of DNA methylation profiles among strains, in terms 

of evolutionary studies on populations and species, as well as epigenomic modifications 

during adaptation and development. 

Lastly, MeStudio is very user-friendly given its easy installation and its possibility to 

be run as a pipeline in a single command line call. We developed the scripts in Mac OS 

and Linux kernel environments, with the possibility of expansion to Windows platforms. 

Moreover, we plan to make MeStudio affordable to ONT data. 

Supplementary Materials: The supporting information can be downloaded at: 

www.mdpi.com/xxx/s1. 
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