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PARABOLIC HARNACK ESTIMATES FOR ANISOTROPIC SLOW

DIFFUSION

SIMONE CIANI, SUNRA MOSCONI, AND VINCENZO VESPRI

Abstract. We prove a Harnack inequality for positive solutions of a parabolic equation with
slow anisotropic spatial diffusion. After identifying its natural scalings, we reduce the problem
to a Fokker-Planck equation and construct a self-similar Barenblatt solution. We exploit
translation invariance to obtain positivity near the origin via a self-iteration method and deduce
a sharp anisotropic expansion of positivity. This eventually yields a scale invariant Harnack
inequality in an anisotropic geometry dictated by the speed of the diffusion coefficients. As a
corollary, we infer Hölder continuity, an elliptic Harnack inequality and a Liouville theorem.
MSC 2020: 35K59, 35K65, 60J60, 74N25
Key Words: Anisotropic diffusion, Fundamental solution, Harnack inequality, Intrinsic ge-
ometry, Fokker-Planck equation
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1. Introduction

We are concerned with solutions of the model parabolic anisotropic equation

(1.1) ∂tu =

N
∑

i=1

∂i
(

|∂iu|
pi−2∂iu

)

satisfied in a suitably weak sense in Ω × (0, T ), Ω ⊆ R
N for powers pi > 1 for i = 1, . . . , N .

These kind of equations raised increasing interest in the last decades as they present an inter-
esting feature, namely an anisotropic diffusion with orthotropic structure. Besides its inherent
mathematical interest, the latter is useful when modelling diffusion in materials such as earth’s
crust or wood, where the velocity of propagation of diffusion varies according to the different
orthogonal directions. From the mathematical point of view, the principal part in (1.1) arises
as the Euler-Lagrange equation of a functional with non-standard growth, i.e. of the type

∫

F (∇u) dx, where
1

C
(|z|p − 1) 6 F (z) 6 C (|z|q + 1)

1
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for some p < q, as opposed to the standard growth condition p = q. Starting from the
pioneering examples in [17,25], it soon became apparent that the regularity theory for solutions
of the corresponding Euler-Lagrange elliptic equation is much more delicate and rich than the
standard one. Since then, the elliptic regularity theory grew in considerable size. Even if
this has not always been the case, the general principle underlying to the theory is that most
regularity results can be recovered when the power gap q − p in the non-standard growth
condition is small. Since it would be impossible to collect here all the contributions, we refer
to the surveys [28, Section 6] and [26] for a general overview of the subject and comprehensive
bibliographic references.

As the non-standard elliptic theory matured, its parabolic counterpart became a research
thême as well. The delay in development was considerable, mainly because already the isotropic
problem with pi ≡ p 6= 2 presented great difficulties, solved (with respect to zero-th order
regularity issues) in full generality only a decade ago through the work of Di Benedetto and
collaborators, see [14] and the literature therein. Nevertheless, parabolic equations with non-
standard growth were considered well before that (see e.g. [22]), giving rise to a large amount
of results on existence, well-posedness, L∞-estimates and diffusion analysis. For an extensive
bibliography on this research, we refer to [4] and for the theory of variational solutions to [26,
Section 12] and the references therein.

Despite some partial results, however, most of the regularity theory for the parabolic anisotropic
equations is largely unknown. Up to our knowledge, local Hölder continuity of solution of (1.1)
was not known, as well as the validity of a suitable (necessarily intrinsic) parabolic Harnack
inequality. The latter is precisely the aim of this paper, where we are going to prove the
following result.

Theorem 1.1. Let u > 0 be a local weak solution to (1.1) in Ω× [−T, T ] and suppose that

(1.2) ∀i = 1, . . . , N 2 < pi < p̄

(

1 +
1

N

)

p̄ :=

(

1

N

N
∑

i=1

1

pi

)−1

< N

and u(0, 0) > 0. Then, there exist constants C1 > 1, C3 > C2 > 1 depending only on N and
the pi’s such that, letting M = u(0, 0)/C1 it holds

(1.3)
1

C3
sup

Kρ(M)
u( · ,−M2−p̄ (C2 ρ)

p̄) 6 u(0, 0) 6 C3 inf
Kρ(M)

u( · ,M2−p̄ (C2 ρ)
p̄)

whenever M2−p̄ (C3 ρ)
p̄ < T and KC3 ρ(M) ⊆ Ω, being

(1.4) Kr(M) :=

N
∏

i=1

{

|xi| < M (pi−p̄)/pirp̄/pi/2
}

.

Let us make some comments on the statement, significance and proof of the previous theorem.

- The intrinsic geometry. A parabolic Harnack inequality for a non-homogeneous equa-
tion such as (1.1) cannot hold in classical form. This was first realised for the parabolic
p-Laplacian equation

(1.5) ∂tu = ∆pu

through an analysis of the so-called Barenblatt fundamental solutions, a family of explicit
solution encompassing most of the features which distinguish the classical heat equation (and
its quasilinear non-degenerate counterpart) from (1.5). The correct formulation of the Harnack
inequality for (1.5) was first found in [10] when p > 2, and it has an intrinsic form. To explain
briefly this term let us focus on the p > 2 case of (1.5). A Harnack inequality for non-negative
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solutions of a parabolic equation expresses a point-wise control on the solution (e.g., a pointwise
lower bound) in a full spatial neighbourhood of a point in terms of its value at that point. The
parabolic nature of the equation allows for such a control to hold only after a positive time delay
(in the case of lower bounds) has passed. For the heat equation this waiting time only depends
on the size of the region where we seek for the lower bound and not on the solution, while for
the parabolic p-Laplacian equation (1.5), its length depends on the value of the solution at the
chosen point: the word intrinsic refers (not only, but mainly) to this phenomenon.

In the case of (1.5), the value of the solution at the chosen point only affects the waiting
time, while for the anisotropic equation (1.1), it determines the full shape, or geometry, of the
region where the control is available. This is seen in the definition (1.4) of the intrinsic cubes:
indeed, in Kr(M), r plays the rôle of an anisotropic radius, while M prescribes the anisotropic
geometry. To justify the first statement, notice that the Lebesgue measure of Kr(M) is always
rN , regardless of M . Regarding the second, one can follow the well-known principle that higher
exponents give slower diffusion, so that lower values of M ≃ u(0, 0) squeezeKr(M) in directions
of slower-than-average diffusion (pi − p̄ > 0) and stretch it in directions of faster-than-average
diffusion (pi − p̄ < 0).

- Barenblatt solutions. One of the main byproducts of our proof is the construction of a
family of self-similar Barenblatt solutions for (1.1) and the analysis on their basic properties.
Self-similar solutions are by now a classical thême and have been extensively studied in various
parabolic nonlinear frameworks, see e.g. [35, Ch. 16] and the therein cited literature. Their
rôle turned out to be pivotal in understanding the general behaviour of solutions and has
often been an important stepping-stone for treating more general equations and formulating
sensible statements on the general expected results: compare the classical works of Pini [32]
and Hadamard [18], later generalised in the linear measurable setting by Moser [30] or, in
the singular/degenerate case, the first works [10], [15] employing the Barenblatt solutions,
generalised in [12,13].

For equation (1.1), the explicit form of the Barenblatt solutions is however unknown at
present, and their existence is obtained through an abstract approach. Naturally, we cannot
assume any a-priori regularity and the method heavily relies on the identification of the natural
scalings of (1.1) mentioned above, allowing to formulate the right notion of self-similarity. More
details on the difficulties that this approach involves will be made in the comments to the proof
below.

- Assumptions. The main condition required in the Harnack inequality is (1.2). On one
hand, pi > 2 for all i means that we are settling ourselves in the slow diffusion regime. The main
feature of this framework is that, for example, solutions of (1.5) for p > 2 preserve compactness
of the support forward in time (as opposed to what happens for the heat equation). In the
setting of the anisotropic equation (1.1), the support moves in different directions with different
speed, in a way which has been precisely quantified in [16] and plays a rôle in our proof. The
other condition pi < p̄ (1 + 1/N) requires that the powers pi are not too sparse, following the
above mentioned principle in problems with non-standard growth. Local boundedness holds
in the larger range pi < p̄ (1+ 2/N), but we are not aware of counterexamples if this condition
is violated. It would be interesting to know wether the Harnack inequality holds true also for
pmax ∈ [p̄ (1 + 1/N), p̄ (1 + 2/N)) but, if so, its proof likely requires different techniques than
the ones employed here.

A few comments on the constants Ci in the statement. As mentioned above, the Barenblatt
solution we use is constructed in an abstract way and we do not know if a uniqueness theorem
(up to translation and scaling) holds. The constant depends on a lower bound on the Barenblatt
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solution, hence, ultimately on the choice of the latter. Thus, it is rather undetermined from
the quantitative point of view.

Finally, the number u(0, 0) is not a-priori well-defined for a weak solution. However, thanks
to [16, Corollary 4.3], any solution of (1.1) under assumptions (1.2) possesses an essentially
u.s.c. representative, allowing to give a meaning to u(0, 0). This ambiguity in the choice
will then be eliminated by the a-posteriori continuity of the solution. Clearly, the theorem is
meaningful only when u(0, 0) > 0, for otherwise the claimed bounds trivially holds (assuming
inf ∅ = +∞, sup ∅ = −∞).

- Outline of the proof. As already mentioned, our first task is to build a family of
Barenblatt solutions. We find all the natural scalings of (1.1) and construct a bijection between
solutions of (1.1) and solutions of an anisotropic Fokker-Plank equation (see e.g. [7] for a similar
approach). We then seek for a stationary solution of the latter, which is found through a fixed
point argument and comparison principles. Here, the slow diffusion regime plays a pivotal rôle
in recovering sufficient compactness to apply Shauder fixed point theorem. Let us note that
we rely on a weak continuity result (Lemma 3.1, point 3) of independent interest, which we
were not able to find in the literature.

At this stage, the stationary solution of the Fokker-Plank equation is a rather irregular object
of little use. However, exploiting its correspondence to a Barenblatt self-similar solution of (1.1)
and using a self-iteration method based on comparison principles and translation invariance, we
are able to prove a positive lower bound in a small neighbourhood of the origin. Transferring
the bound to the Barenblatt solution, we find a quantitative expansion of positivity rate for it.

We then proceed in a manner reminiscent of the proof in [10] of the Harnack inequality for
(1.5), namely finding a positivity set and then expand it forward in time through comparison
with Barenblatt solutions. For the first step, we actually employ a simplification described
in [12], which makes use of the so-called Clustering lemma of [11]. We have to face two main
difficulties: the intrinsic geometry of the problem, contrary to what happens in most instances
of the theory, involves not only the time variables but also, and mainly, the spatial ones (in an
anisotropic way). Secondly, even disregarding the geometry, the natural intrinsic cubes as per
(1.4) come from a quasi-metric rather than from a metric. To face the first difficulty we heavily
rely on the natural transformations leaving (1.1) invariant; for the second one, we prove a
general abstract version of the so-called Krylov-Safonov trick, of independent interest (Lemma
4.1).

- Consequences of Theorem 1.1. A first corollary of the Harnack inequality is the Hölder
continuity of solutions of (1.1), whose detailed proof is described in [9]. However, much more
regularity is to be expected, as suggested by the ellitpic case briefly discussed below.

An intrinsic Harnack inequality immediately follows from Theorem 1.1 for solutions of

(1.6)

N
∑

i=1

∂i(|∂iu|
pi−2∂iu) = 0.

Even in the elliptic case, homogeneity is still missing, suggesting that any scale invariant
Harnack inequality must be of intrinsic form, as in the parabolic case. We state our Harnack
inequality for (1.1) in the following corollary.

Corollary 1.2. Let Kr(M) be as in (1.4) and pi as in (1.2). There exist constants C1, C2 > 1,
depending on N and the pi’s such that if u > 0 weakly solves (1.6) in KC2ρ(M), where M =
u(0)/C1 > 0, then

(1.7) C−1
2 sup

Kρ(M)
u 6 u(0) 6 C2 inf

Kρ(M)
u.
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Notice that condition (1.2) on the powers pi is in fact of parabolic nature, tied to the
proof of [16]. The proof of the elliptic Harnack inequality under the more natural condition
pmax < N p̄/(N− p̄) is the object of future work. The scale invariance of the Harnack inequality,
i.e., the fact that the constants in (1.7) do not depend on the radius or the solution, is crucial
when dealing with Liouville-type theorems like the one below, proved in a standard way in the
last section.

Corollary 1.3. Under assumption (1.2), any weak solution of (1.6) in the whole R
N bounded

from below is constant.

- Comparison with previous results. Local boundedness of the solutions of (1.1) has
been first proved in [29] under the condition pmax < p̄ (1 + 2/N). Some early regularity results
in the plane are considered in [24], and regularity for parabolic problems with non-standard
growth of p(x) type are contained in [1, 3, 36]. The p(x) growth condition does not cover the
simple equation (1.1) and we are not aware of proofs of the Hölder continuity of solutions of
the latter in general dimensions (see [6, Remark 1.4] for a discussion of previous attempts), let
alone of the Harnack inequality.

In the elliptic setting much more is known regarding the regularity of solutions of (1.6), or for
more general non-standard equations, see [26, Sections 5 and 6] for the relevant literature. The
most up-to-date result for (1.6) is in [6], where the Lipschitz regularity of its bounded solutions
is proved for any choice of pi > 2. The Harnack inequality for non-standard elliptic problems
has been the object of various works: [2, 5, 19, 20, 23, 31, 34] focus on isotropic equations with
non-standard growth of p(x)-type, while [21, 27] deal with energies with Uhlenbeck structure
and non-standard growth. However, none of the frameworks considered therein cover the
anisotropic equation (1.6): indeed, its Euler-Lagrange equation is degenerate/singular on the
union of the coordinate axes, while non-standard functionals of p(x)- or Uhlenbeck-type exhibit
this problem only at the origin. Moreover, as already remarked, the relevant feature of (1.7)
lies in its scale invariance, while (quite naturally) this is not to be expected for the problems
considered in the cited works, where either the constant depends on u and r or there is an
additional term of non-homogeneous type.

- Structure of the paper. Section 2 collects preliminary results, most of which are modifi-
cations of well-known theorems. The most relevant part is subsection 2.2, where we set up the
geometry related to the natural scaling of the equation. In Section 3 we build the Barenblatt
solution and study its positivity set. Section 4 contains the proof of the main theorem, splitted
in several lemmas.

- Notations:

- For ξ ∈ R and p > 2 we let (ξ)p−1 = |ξ|p−2ξ.
- If E is a measurable subset of RN , we denote by |E| its Lebesgue measure.
- For r > 0, Kr(x̄) stands for the cube {|xi − x̄i| 6 r/2 : i = 1, . . . , N} and we write
Kr = Kr(0); the standard cylinder is denoted by Q−

r = Kr × (−r2, 0]. Notice that
|K1| = |Q−

1 | = 1
- Given T ∈ (0,+∞] and Ω ⊂ R

N a rectangular domain, we let ΩT = Ω× (0, T ) while ST

denotes the stripe ST = R
N×(0, T ); more generally, for s < t we will set Ωs,t = Ω×(s, t)

and Ss,t = R
N × (s, t).

- For a measurable u, by inf u and supu we understand the essential infimum and supre-
mum, respectively; when u is defined on all of R

N , we let ‖u‖p = ‖u‖Lp(RN ) for
1 6 p 6 ∞; when u : E → R and a ∈ R, we omit the domain when considering
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sub/super level sets, letting
[

u R a
]

=
{

x ∈ E : u(x) R a
}

; if u is defined on some ΩT ,

we let ut(x) = u(x, t) while ∂iu = ∂
∂xi

u, ∂tu = ∂
∂tu denote the distributional derivatives.

2. Preliminaries

In this section we will discuss the functional analytic setting we pose ourselves in, the scaling
properties of the solutions of (1.1), some basic energy estimates and the resulting anisotropic De
Giorgi type lemma, comparison principles for (1.1) and the associated Fokker-Planck equation
and solvability of the Cauchy problem for (1.1) for suitable initial data. Most of the material
is standard, except maybe the discussion in section 2.2.

2.1. Functional setting. Given p = (p1, . . . , pN ), with pi > 1, i = 1, . . . , N and Ω a rectan-
gular domain, we define

W 1,p
o (Ω) := {v ∈ W 1,1

o (Ω)| ∂iv ∈ Lpi(Ω)},

W 1,p
loc (Ω) := {v ∈ L1

loc(Ω)| ∂iv ∈ Lpi
loc(Ω)},

and for s < t

Lp(s, t;W 1,p(Ω)) := {v ∈ L1(s, t;W 1,1(Ω))| ∂iv, v ∈ Lpi(Ωs,t)},

Lp

loc(s, t;W
1,p
loc (Ω)) := {v ∈ L1

loc(s, t;W
1,1
loc (Ω))| ∂iv ∈ Lpi

loc(Ωs,t)},

Lp

loc(s, t;W
1,p
o (Ω)) := {v ∈ L1

loc(s, t;W
1,1
o (Ω))| ∂iv ∈ Lpi

loc(Ωs,t)}.

A function

u ∈ L∞
loc(s, t;L

2
loc(Ω)) ∩ Lp

loc(s, t;W
1,p
loc (Ω))

is a local weak solution of (1.1) in (s, t) × Ω, if for almost every s < t1 < t2 < t and any
ϕ ∈ C∞

loc(s, t;C
∞
o (Ω)) it holds

∫

Ω
ut1 ϕt1 dx−

∫

Ω
ut2 ϕt2 dx+

∫ t2

t1

∫

Ω
(−u∂tϕ+

N
∑

i=1

(∂iu)
pi−1 ∂iϕ) dx dt = 0.

By an approximation argument the latter actually holds for any test function ϕ ∈ W 1,2
loc (s, t;L

2
loc(R))∩

Lp

loc(0, T ;W
1,p
o (R)) for any rectangular domain R ⊂⊂ Ω. By a local weak solution of (1.1) in

S∞, we mean a function u ∈ L∞(R+;L
2
loc(R

N ))∩Lp

loc(R+;W
1,p
loc (R

N )) such that for each T > 0

and Ω ⊂⊂ R
N , u is a weak local solution in ΩT . Finally, by an Lp solution of (1.1) in ST , we

mean a local weak solution u in ST such that u ∈ ∩N
i=1L

pi(ST ).

Next we recall the following anisotropic embedding, obtained, e.g., from [16, Theorem 2.4] with
σ = 2, αi ≡ 1, θ = p̄/p̄∗ and the generalised Young inequality.

Lemma 2.1 (Parabolic anisotropic Sobolev embedding). Let Ω ⊆ R
N be a bounded rectangular

domain. There exists a constant C = C(N,p) < +∞ such that for any u ∈ L1(0, T ;W 1,1
o (Ω))

it holds

(2.1)

∫

ΩT

|u|l dx dt 6 C

(

sup
t∈[0,T ]

∫

Ω
|u|2(x, t) dx +

∫

ΩT

N
∑

i=1

|∂iu|
pi dx dt

)(N+p̄)/N

whenever

(2.2)
2N

N + 2
6 p̄ :=

( 1

N

N
∑

i=1

1

pi

)−1
< N, l := p̄

(

1 +
2

N

)

.
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By applying the so-called Local Clustering lemma in [11] to min{u, 1}+ δ and letting δ ↓ 0, we
get the following alternative form, which will be used in the following.

Lemma 2.2 (Local clustering). Let u ∈ W 1,1(Kρ) satisfy for some constants C̄ > 0, ᾱ ∈ (0, 1)
∫

Kρ

|D (u− 1)−| dx 6 C̄ ρN−1 & |[u > 1] ∩Kρ| > ᾱ |Kρ|.

Then for every λ, ν ∈ (0, 1) there exists y ∈ Kρ and a number ε = ε(λ, ν, C̄, ᾱ,N) ∈ (0, 1) such
that y +Kερ ⊆ Kρ and

|[u > λ] ∩ (y +Kερ)| > (1− ν)|Kερ|.

Moreover, ε can be chosen arbitrarily small.

2.2. Scaling properties. We omit the proof of the following proposition, which is just a direct
computation.

Proposition 2.3. Let u weakly solve (1.1) in ΩT . For θ, ρ > 0 define

Tρ,θ(y, s) =
(

θ(pi−p̄)/pi ρp̄/pi yi, θ
2−p̄ ρp̄ s

)

.

Then the transformed function

(2.3) Tρ,θu (y, s) =
1

θ
u
(

Tρ,θ(y, s)
)

weakly solves (1.1) in T−1
ρ,θ (ΩT ).

Due to the latter proposition, it is convenient to set

(2.4) σ := N (p̄− 2) + p̄ α :=
N

σ
, and αi :=

N (p̄− pi) + p̄

σ pi
,

(notice that, under assumption (1.2), αi > 0 for all i = 1, . . . , N), so that

Tρ,θρ−Nu (y, s) =
ρσ α

θ
u
(

θ(pi−p̄)/pi ρσ αi yi, θ
2−p̄ ρσ s

)

.

The following properties of T will be useful throughout calculations:

Tρ1,θ1 ◦ Tρ2,θ2 = Tρ1ρ2,θ1θ2 T −1
ρ,θ = Tρ−1,θ−1

and similarly for the trasformation Tρ,θ. The previous scaling suggests the natural geometry
where to settle problem (1.1). More precisely, we define the intrinsic anisotropic cube as

Kρ(θ) := Tρ,θ(K1), Kρ := Kρ(1),

(here and in what follows we will use the same symbol Tρ,θ to denote the action of Tρ,θ on the
space variables only) and the intrinsic anisotropic cylinders as

Q−
ρ (θ) := Tρ,θ(Q

−
1 ), Q−

ρ := Q−
ρ (1).

Notice that in the anisotropic cubes the parameter ρ prescribes the size, while θ determines
its anisotropic geometry: indeed, the volume of Kρ(θ) does not depend on θ, since for each
θ, ρ > 0

|Kρ(θ)| = ρN .

The following property can be readily checked:

(2.5) Tρ,θ(KR) = KRρ(Rθ), Tρ,θ(Q
−
R) = Q−

Rρ(Rθ),
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and in particular it holds KR(R) = KR and Q−
R(R) = Q−

R. An important special case of the

transformation (2.3) is obtained when v does not depend on the time variable and θ = ρ−N :
using the notations in (2.4) we define

(2.6) Tρv (y) := Tρ,ρ−Nv (y) = ρσα v
(

ρσαi yi
)

.

By a change of variables one can check that Tρ : L1(RN ) → L1(RN ) is an isometry, and
moreover

(2.7) (Tρ,ρ−Nu)s = Tρuρσs .

As we will see, reasonable solutions of (1.1) preserve the L1-norm in time, and therefore we
will say that u is a self-similar solution of (1.1) in S∞ if Tρ,ρ−Nu = u for all ρ > 0.
Closely related transformations are

(2.8) Φu (y, s) := eαs u(eαis yi, e
s), and the inverse Ψw (x, t) = t−α w(t−αi xi, log t).

Clearly if u is defined on R
N × [t0,+∞), t0 > 0 then Φu is defined on R

N × [log t0,+∞) and
vice-versa if w is defined on R

N × [s0,+∞), Ψw is defined on R
N × [es0 ,+∞). Due to (2.7), it

holds

(2.9) (Φu)s = Tes/σues , (Ψw)t = Tt1/σwlog t.

By [8], Φ brings solutions of (1.1) in St0,∞, to solutions of the anisotropic Fokker-Planck
equation

(2.10) ∂sw =

N
∑

i=1

∂i
[

(∂iw)
pi−1 + αiyiw

]

in Slog t0,∞ and Ψ does the opposite. Using (2.7), (2.9) together with Tρ1Tρ2 = Tρ1ρ2 , we see
that for a solution u of (1.1) in S∞

(ΦTρ,ρ−Nu)s = Tes/σ
(

Tρ,ρ−Nu
)

es
= Tes/σTρuρσes = Tρes/σuρσes = (Φu)σ log ρ+s

for every ρ > 0, from which we readily infer the following proposition.

Proposition 2.4. A function u is a self-similar solution of (1.1) in S∞ if and only if Φu is
a stationary solution of (2.10) in R

N+1.

In the following we will call a self-similar solution to (1.1) in S∞ a Barenblatt fundamental
solution, and we will denote it with B, in analogy with the literature about the p-Laplacian.
Moreover, we will henceforth use coordinates (x, t) for the prototype equation (1.1) and (y, s)
for the Fokker-Planck equation (2.10).

2.3. Energy inequality and consequences. The following energy estimate for solutions of
(1.1), is well known, see e.g. [16, Lemma 3.1] for a proof.

Lemma 2.5 (Energy inequality). Let u be a local weak solution of (1.1) in KR× [s1, s2]. Then,
for each test function of the form

η(x, t) =
N
∏

i=1

ηpii (xi, t), ηi ∈ C∞(s1, s2;C
∞
c (−R/2, R/2))
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we have, for some C = C(N,p) > 0,

(2.11)

∫

KR

(ut − k)2± ηtdx

∣

∣

∣

∣

t=s2

t=s1

+
1

C

N
∑

i=1

∫ s2

s1

∫

KR

|∂i(η (u− k)±)|
pi dx dτ

6 C

{
∫ s2

s1

∫

KR

(u− k)2± |∂tη| dx dτ + C
N
∑

i=1

∫ s2

s1

∫

KR

(u− k)pi± |∂iη
1
pi |pi dx dτ

}

.

In a standard way we can prove a de Giorgi-type Lemma.

Lemma 2.6 (De Giorgi Lemma). Let u > 0 be a local weak solution to (1.1) in Q−
1 and p obey

(2.2). Then for every a ∈ (0, 1] there exist µa > 0 depending on a,p and N such that

|[u 6 a] ∩Q−
1 | 6 µa |Q

−
1 | ⇒ inf

Q−

1/2

u >
1

2
a.

If, in addition, it holds u 6 1 in Q−
1 ,

|[u > a] ∩Q−
1 | 6 µa |Q

−
1 | ⇒ sup

Q−

1/2

u 6
3

2
a.

Proof. We give a brief proof of the second statement, the first one being analogous. Let, for
n ∈ N,

ρn =

(

1

2
+

1

2n+1

)

, kn = a

(

3

2
−

1

2n+1

)

, Kn = Kρn Q−
n = Q−

ρn .

We apply (2.11) to (u − kn)+ with ηn of the stipulated form with ηn = 1 in Qn+1, ηn = 0 on
the parabolic boundary of Q−

n and

0 6 ηn 6 1, |∂tηn|+ |∇ηn| 6 C 2n.

Since ηn(·,−1) ≡ 0, the energy inequality (2.11) together with the bound |u| 6 1 yields

∫

Kn

(ut − kn)
2
+ (ηn)t dx+

1

C

N
∑

i=1

∫

Q−

n

|∂i(ηn (u− kn)+)|
pi dx dτ

6 C 2c n
{
∫

Q−

n

(u− kn)
2
+ dxdt+

N
∑

i=1

∫

Q−

n

|(u− kn)+|
pi dx dτ

}

6 C 2c n|[u > kn] ∩Q−
n |

(2.12)

for all t ∈ [−ρ2n, 0], where C = C(N,p, a) and c = c(p). Let An = [u > kn] ∩ Q−
n . By

Chebyshev’s inequality and the assumptions on ηn it holds, for l given in (2.2)

( a

2n+1

)l
|An+1| = (kn − kn+1)

l |An+1| 6
∫

Q−

n+1

|(u− kn)+|
l dx dτ 6

∫

Q−

n

|(u− kn)+ ηn|
l dx dτ

and chaining Sobolev’s embedding (2.1) on the right and (2.12) (notice that η2n 6 ηn), we get

( a

2n+1

)l
|An+1| 6 C

(

sup
t∈(−ρ2n,0]

∫

Kn

(ut − kn)
2
+ (ηn)tdx+

N
∑

i=1

∫

Q−

n

|∂i(ηn (u− kn)+)|
pi dx dτ

)
N+p̄
N

6 C2c n |An|
1+p̄/N ,

for some bigger C, c. By the fast convergence Lemma [14, Lemma 5.1 chap. 2], if |A0| is
sufficiently small (depending on N,p and a), |An| → 0 for n → ∞, implying the claim. �
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Remark 2.7. Applying the transformation Tρ,θ and recalling (2.5), we get a similar statement
for any solution in Qρ(θ)

−. For example, if u > 0 solves (1.1) in Q−
ρ (θ), there exists µ1 =

µ1(N,p) > 0 such that

|[u 6 θ] ∩ Q−
ρ (θ)| 6 µ1 |Q

−
ρ (θ)| ⇒ inf

Q
−

ρ/2
(θ/2)

u > θ/2.

2.4. Comparison Principles. We consider in this section the Cauchy problem for (1.1),
namely

(2.13)

{

∂tu =
∑N

i=1 ∂i((∂iu)
pi−1) weakly in ΩT

ut → u0 strongly in L2(Ω)

and a similar one for the Fokker-Planck equation (2.10). Given two solutions u, v of this

problem, we say that u > v on the parabolic boundary of ΩT if (u − v)− ∈ Lp(0, T ;W 1,p
0 (Ω))

and u0 > v0. From the monotonicity of the principal part in (1.1) we have the following
classical comparison principle.

Proposition 2.8. (Local comparison principle) Let Ω be a bounded rectangular domain, u, v
be weak solutions of (2.13) in ΩT . If u > v on the parabolic boundary of ΩT , then u > v in
ΩT .

Next we provide a comparison principle for the class of Lp-solutions, that will prove to be
useful for next purposes. We sketch the proof inasmuch the rôle of greater integrability can be
fully exploited.

Proposition 2.9. Let u, v be two Lp solutions of (2.13) in ST , satisfying u0 > v0 for u0, v0 ∈
L2(RN ). Then u > v in ST .

Proof. First notice that if u is an Lp solution of (2.13) in ST with u0 ∈ L2(RN ), then u ∈
Lp(0, T ;W 1,p(Ω)). Indeed, by the energy estimate (2.11) with a standard cut-off, we deduce
that

N
∑

i=1

‖∂iu‖Lpi (ST ) 6 C
(

‖u0‖
2
2 +

N
∑

i=1

‖u‖Lpi (ST )

)

,

and similarly for v. Secondly, we test the equations for u and v with (v − u)+ζ, where ζ a
cut-off function between the balls BR and B2R, independent of time and such that |∂iζ| 6 C/R,
0 6 ζ 6 1. Subtracting the resulting integral equalities and using u0 > v0 we have, for every
t > 0,

∫

BR∩[v>u]
ζ (v − u)2(x, t) dx +

N
∑

i=1

∫ t

0

∫

B2R∩[v>u]
ζ
(

(∂iv)
pi−1 − (∂iu)

pi−1
)

∂i(v − u) dx dτ

= −
N
∑

i=1

∫ t

0

∫

B2R∩[v>u]
(v − u)

(

(∂iv)
pi−1 − (∂iu)

pi−1
)

∂iζ dx dτ

6
N
∑

i=1

C

R

∫ t

0

∫

B2R∩[v>u]
(|∂iv|

pi−1 |u|+ |∂iv|
pi−1 |v|+ |∂iu|

pi−1 |v|+ |∂iu|
pi−1 |u|) dx dτ

6
C

R

N
∑

i=1

‖∂iv‖
pi
Lpi (ST ) + ‖v‖piLpi (ST ) + ‖∂iu‖

pi
Lpi (ST ) + ‖u‖piLpi (ST )
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by Young’s inequality. By the initial argument and the assumptions, the sum on the right
is finite, while by the monotonicity of the operator both terms on the left are non-negative.
Hence for any t < T the left hand side vanishes for R → +∞, giving the claim. �

As a corollary, we have the following comparison principle for solutions to the Fokker-Planck
equation.

Corollary 2.10. Let v,w be Lp-solutions of the Cauchy problem for the Fokker-Planck equation
(2.10) satisfying w0 > v0 and w0, v0 ∈ L2(RN ). Then w > v in ST .

Proof. It suffices to recall that the law (2.8) establishes an isomorphism between Lp(S1,eT )-
solutions of the prototype equation (1.1) and Lp(ST ) solutions to the Fokker-Planck equation
(2.10) and the initial data coincide. �

Remark 2.11. It is worth noting that, while an elliptic comparison principle holds true as well
for the stationary counterpart of (1.1), this is no longer the case for the stationary counterpart
of the Fokker-Planck equation (2.10). This can be seen considering (already in the isotropic
case), the Barenblatt solutions of the p-Laplacian equation, which solve the stationary Fokker-
Planck equation and contradict the elliptic comparison principle for (2.10).

2.5. Lp solutions. We next consider the Cauchy problem for (1.1), with bounded and a com-
pactly supported initial datum, attained in L2. This problem can be read as

(2.14)

{

∂tu =
∑N

i=1 ∂i
(

(∂iu)
pi−1

)

in ST ,

u0 = g ∈ L2(RN ) supp g ⊂ B̄R0 , g ∈ L∞(BR0).

We show in this section that this problem has a unique Lp-solution, by a standard approxima-
tion technique relying on the monotonicity of the operator.

Proposition 2.12. Problem (2.14) has a unique Lp-solution which takes g as initial datum in
L2.

Proof. We let, for n > diam(suppw0), Bn = {|x| < n} and consider the boundary value
problems

(2.15)











vn ∈ C(0, T ;L2(Bn)) ∩ Lp(0, T ;W 1,p
0 (Bn))

∂tvn −
∑N

i=1 ∂i((∂ivn)
pi−1) = 0, in Bn × (0, T ),

vn(·, 0) = g.

We regard them as defined in the whole ST by extending them to be zero on |x| > n. The
problems (2.15) can be uniquely solved by a monotonicity method (see for instance [22, Example
1.7.1]), and give solutions vn satisfying

(2.16) sup
t∈[0,T ]

∫

RN

|vn(x, t)|
2 dx+ 2

N
∑

i=1

∫

ST

|∂ivn|
pi dx dt = ‖g‖22, ∀n ∈ N,

and thus vn ∈ L∞(0, T ;L2(RN )) uniformly. Notice that by the local comparison principle in
ΩT , ‖vn‖∞ 6 ‖g‖∞ hence by dominated convergence vn(·, t) → g in L2(RN ) implies vn(·, t) → g
in Lpi(RN ) as t → 0, for i = 1, . . . , N . In the weak formulation of (2.15) we take (modulo a
Steklov averaging process) the test function (vn)

pj−1, j = 1, . . . , N , obtaining ∀t ∈ (0, T )

∫

RN

|vn|
pj

pj
(x, t) dx+ (pj − 1)

N
∑

i=1

∫

St

|∂ivn|
pi |vn|

pj−2 dxdτ =

∫

RN

|g|pj

pj
dx.
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implying

(2.17) vn ∈ ∩N
i=1L

∞(0, T ;Lpi(RN )), with a uniform bound.

This estimate, together with (2.16), provides an uniform bound for vn in

Lp(0, T ;W 1,p(RN )) ∩ L∞(0, T ;L2(RN )).

This bound implies that a (not relabelled) subsequence vn converges weakly* to a function v
in these spaces. Moreover, the weak formulation of the equation implies that

∂tvn =
N
∑

i=1

∂i((∂ivn)
pi−1),

and for any m ∈ N the right hand side is uniformly bounded in
(

Lp
(

0, T ;W 1,p
0 (Bm)

))′
=: Lp

′

(0, T ;W−1,p′

(Bm))

by Hölder inequality. By Aubin-Lions theorem [33, Chap. III Proposition 1.3], applied to the
triple

W 1,p
0 (Bm) →֒ L2(Bm) → W−1,p′

(Bm),

we can select for each m a subsequence vn that converges to a function v in L2(0, T ;L2(Bm)). A
diagonal argument provides a subsequence (still not relabeled) converging in L2(0, T ;L2

loc(R
N ))

to the weak* limit v and such that

(1)

∫

RN

(vn)t ϕt dx →

∫

RN

vt ϕt dx for a.e. t and all ϕ ∈ C∞
loc(0, T ;C

∞
c (RN )),

(2) ∂i(∂ivn)
pi−1 ⇀ ηi , weakly in Lpi(ST ) for some ηi, ∀i = 1, . . . , N .

We can thus pass to the limit in the weak formulation of the equation, identifying ηi = (∂iv)
pi−1

through Minty’s trick. Semicontinuity and (2.17) imply that v is an Lp solution.
In order to prove uniqueness, let u1, u2 be two Lp-solutions of (2.14). By the first step of the
proof of Proposition 2.9, both belong to Lp(0, T ;W 1,p(RN )), thus v := u1 − u2 satisfies











v ∈ C(0, T ;L2(RN )) ∩ Lp(0, T ;W 1,p(RN )),

∂tv =
∑N

i=1 ∂i
(

(∂iu1)
pi−1 − (∂iu2)

pi−1
)

, in ST ,

v0 = 0.

Test the latter with v ζ, where ζ ∈ C∞
c (B2R), ζ > 0, ζ = 1 in BR and |Dζ| 6 C/R. For all

0 < t 6 T we have

1

2

∫

BR

|vt|
2 dx+

∫ t

0

∫

B2R

N
∑

i=1

(

(∂iu1)
pi−1 − (∂iu2)

pi−1
)

(∂iu1 − ∂iu2
)

ζ dxdτ

= −

∫ t

0

∫

B2R

N
∑

i=1

v
(

(∂iu1)
pi−1 − (∂iu2)

pi−1
)

∂iζ dxdτ.

Using the monotonicity of the principal part on the left-hand side and Hölder’s inequality on
the right, for every t ∈ (0, T )

∫

BR

|vt|
2 dx 6

C

R

N
∑

i=1

‖v‖Lpi (ST ) (‖∂iu1‖Lpi (ST ) + ‖∂iu2‖Lpi (ST )) → 0, as R → ∞.

�
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3. Barenblatt fundamental solutions

In this section we will build a self similar solution to (1.1), i.e., by the discussion in section
2.2, a stationary solution to the Fokker-Planck equation (2.10). We will then study the posi-
tivity properties of such fundamental solution, which, together with the comparison principle,
will be the main tool to expand the positivity set of non-negative solutions of (1.1).

By the results of section 2.5 we can define, at least for bounded compactly supported initial
data g, the operator

Stg := ut, t > 1,

where u is the unique Lp solution of

(3.1)

{

∂tu =
∑N

i=1 ∂i
(

(∂iu)
pi−1

)

in S1,∞,

u1 = g.

In terms of the Fokker-Planck equation, this also defines through (2.8) the operator

(3.2) S̃sg := (Φu)s s > 0,

giving the solution at the time s ∈ R+, of the problem

(3.3)

{

∂sw =
∑N

i=1 ∂i[(∂iw)
pi−1 − αiyiw] in S∞,

w0 = g.

The relation (3.2) implies that

(3.4) S̃sg = Tes/σSesg,

where T is given in (2.6), allowing to prove properties for S̃s by proving them for St.

3.1. Construction of a Barenblatt solution. In order to state some basic properties of the
operator S̃s we will need the following space:

(3.5) XR,M = {g ∈ L∞(RN ) : 0 6 g 6 M, supp g ⊆ KR}, X =
⋃

R,M>0

XR,M .

Lemma 3.1. If (1.2) holds true, the operator S̃s, s > 0 defined in (3.2) has the following
properties.

(1) If g ∈ L2(RN ) and supp g ⊆ KR0 then for some c = c(N,p) it holds

(3.6) supp S̃sg ⊆
N
∏

i=1

[−Ri(s), Ri(s)], Ri(s) = 2 e−sαiR0 + c ‖g‖
p̄(pi−2)/(piσ)
1 .

(2) If g ∈ X, then ‖S̃sg‖1 = ‖g‖1 and 0 6 S̃sg 6 ‖g‖∞. In particular S̃s : X → X for all
s > 0.

(3) For any R,M > 0 and s > 0, S̃s : XR,M → X is continuous when XR,M and X are
equipped with the weak-L2 topology.

Proof. Consider the corresponding problem (3.1) and the therein defined operator St. By [16,
Theorem 1.1] (notice that the branch obtained there is an Lp solution and therefore coincides
with Stg by uniqueness) we know that if supp g ⊆ KR0 , then

(3.7) suppStg ⊆
N
∏

i=1

[−Ri(t), Ri(t)], Ri(t) = 2R0 + c (t− 1)αi ‖g‖
p̄(pi−2)/(piσ)
1 .
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Letting t = es and using (3.4) we get the first assertion, since

supp S̃sg ⊆
N
∏

i=1

[−R̃i(s), R̃i(s)], R̃i(s) = e−sαiRi(e
s) 6 2 e−sαiR0 + c ‖g‖

p̄(pi−2)/(piσ)
1 .

The second statement follows from its counterpart on the corresponding solution u of (3.1):
to prove conservation of mass we take advantage of the compactness of the supports of u
dictated by (3.7) and test (3.1) with ϕ ∈ C∞

c (RN ) such that ϕ ≡ 1 on ∪t<T supput, T > 0
arbitrary. The point-wise bounds follow from the local comparison principle for (3.1), again
taking advantage of the compactness of the support and comparing u with the solutions v ≡ 0
and v ≡ ‖g‖∞, respectively.

It remains to prove the continuity of S̃s : XR,M → X within the weak L2 topologies from
departure to arrival, which by (3.4) is equivalent to prove the same statement for St. Fix
T > t > 1 and let

R̄ = max
{

2R+ C (T − 1)αi (|KR|M)p̄(pi−2)/(piσ) : i = 1, . . . , N
}

.

Assume gn → g weakly in L2 with gn ∈ XR,M and let un be the Lp solution of (3.1) with
initial data gn. Notice that thanks to (3.7), it holds supp (un)τ ⊆ KR̄ for every τ ∈ [0, T ],
n > 1. The boundedness of ‖gn‖2 and standard energy estimates then give a uniform bound

for un in Lp(1, T ;W 1,p
0 (KR̄)) ∩ L∞(1, T ;L2(RN )) and for ∂τun in Lp

′

(0, T ;W−1,p′

(KR̄)). Ap-
plying Aubin-Lions theorem as in the proof of Proposition 2.12, we can extract a subsequence
converging weakly∗ to some u in those spaces and such that

un(·, τ) → u(·, τ) in L2(KR̄), for a. e. τ ∈ [1, T ].

We can pass to the limit in the weak form of the equation to get

∫

RN

uτ ϕτ dx−

∫

RN

g ϕ1 dx−

∫

S1,τ

u∂τϕdx dt +

∫

S1,τ

N
∑

i=1

ηi ∂iϕdx dt = 0

for almost every 1 < τ < T , so that it only remains to show that ηi = (∂iu)
pi−1. We cannot

directly employ Minty’s trick, since we are missing the strong convergence of the initial data.
However, for any τ such that (un)τ → uτ in L2(KR̄), we look at {un} as a sequence of solution
to (1.1) on [τ, T ] with strongly convergent initial data and now Minty’s trick allows to deduce
ηi = (∂iu)

p−1 on Sτ,T . Since τ can be chosen arbitrarily close to 1 we obtain that u is a Lp

solution to (3.1) with initial datum g and from uniqueness we infer that ut = Stg for any t > 1.
A standard sub-subsequence argument concludes the proof of the third statement. �

Theorem 3.2. Under assumption (1.2), there exists a nontrivial stationary solution w ∈ X1,1

to (3.3), and therefore a Barenblatt Fundamental solution.

Proof. For R0,M0 > 0 consider the convex set

Cε :=
{

g ∈ L2(RN ) : supp g ⊂ B1, 0 6 g 6 1, ‖g‖L1(RN ) = ε
}

⊆ X1,1.

If c is given in (3.6), for s̄ sufficiently large and ε̄ sufficiently small it holds

2 e−s̄αi + c ε̄p̄(pi−2)/(piσ) 6 1 ∀i = 1, . . . , N,

so that (3.6) implies that supp S̃s̄g ⊆ B1 for all g ∈ Cε̄. Using also point (2) of the previous

lemma we have that S̃s̄Cε̄ ⊆ Cε̄. Moreover, Cε̄ with the weak L2 topology is compact, and
by point (3) of the previous lemma, S̃s̄ : Cε̄ → Cε̄ is continuous, so that Schauder’s theorem
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ensures the existence of a fixed point ḡ ∈ Cε̄ for S̃s̄. Therefore the function w̄s = S̃sḡ is a times-
periodic, bounded and compactly supported solution of (3.3), which can therefore be extended
to R

N+1 as an aeternal solution. Consider the bounded, compactly supported function

g(y) = sup
s∈R

w̄(s, y), g ∈ X1,1 ,

for which ‖g‖1 > ε̄. Then S̃0g = g > w̄τ for every τ ∈ R, so that by the comparison principle

2.10 it holds S̃sg > w̄τ+s for any s > 0. Taking the supremum in τ ∈ R gives S̃sg > g, but
since ‖S̃sg‖1 = ‖g‖1, this implies S̃sg = g for every s > 0, i.e., g is a stationary solution of
(3.3). �

3.2. Properties of the Barenblatt solutions. Our next aim is to prove that Barenblatt
solution are positive in a quantitative way, i.e., their positivity set spreads in time in a way
controlled by scaling. This amounts in proving that stationary non-negative solutions of the
Fokker Planck equation are bounded from below near the origin, which is the content of the
next theorem.

Theorem 3.3. Suppose (1.2) holds, let w ∈ X1,1 (see (3.5)) be a nontrivial stationary solution
of the Fokker-Planck equation (2.10) and B the corresponding Barenblatt solution of (1.1).
Then there exists η̄ > 0, depending on w and the data, such that

B(x, t) > η̄ t−α if |xi| < η̄ tαi for i = 1, . . . , N.

Proof. Suppose that B is given by

(3.8) B(x, t) = t−αw(xi t
−αi), t > 1.

By [16, Corollary 4.3] we can fix a lower-semicontinuous representative of B and thus of w.

Since w > 0 somewhere, we can pick a point x(0) and numbers δ0, η0 > 0 such that

(3.9) inf
Kδ0

(x(0))
w(y) > η0.

By (3.8), the latter implies for any t > 1

B(x, t) > η0 t
−α, when

{

|xi − x
(0)
i tαi | <

δ0
2
tαi

}

.

Consider now

Bλ(x, t) = λ t−αw
(

λ(2−pi)/pi t−αi (x
(0)
i − xi)

)

,

which solves (1.1) by translation invariance and Proposition 2.3. Notice that, since w ∈ X1,1

‖Bλ(·, t)‖∞ = λ t−α suppBλ(·, t) ⊆
{

2 |x
(0)
i − xi| 6 tαi λ(pi−2)/pi

}

.

We seek for λ > 0 such that the comparison principle can be applied between Bλ and B with
starting time t = 1. We need

{

‖Bλ(·, 1)‖∞ 6 η0,

suppBλ(·, 1) ⊆ Kδ0(x
(0)),

⇐⇒

{

λ 6 η0,

λ(pi−2)/pi 6 δ0/2,

which, being pi > 2 for all i, can be solved for some λ = λ1 ∈ (0, 1). Consequently, by
comparison and (3.9), there holds

B(x, t) > Bλ1(x, t) > λ1 t
−α η0, for

∣

∣x
(0)
i − λ

(2−pi)/pi
1 t−αi (x

(0)
i − xi)

∣

∣ <
δ0
2
.
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We let tα1
1 = λ

(2−p1)/p1
1 > 1 and, consequently,

η1 = λ1 t
−α
1 η0, x

(1)
i := x

(0)
i

(

1− tαi
1 λ

(pi−2)/pi
1

)

, δ1 :=
δ0
2
min

{

tαi
1 λ

(pi−2)/pi
1 : i = 1, . . . , N

}

(notice that, by the choice of t1, it holds x
(1)
1 = 0), to get

inf
Kδ1

(x(1))
B(·, t1) > η1

Proceeding by induction, we will find sequences tn, ηn, δn, x
(n) with the properties

inf
Kδn(x

(n))
B(·, tn) > ηn, x

(n)
i = 0 for i = 1, . . . , n

so that after N steps x(N) = 0 and we find

inf
KδN

B(·, tN ) > ηN .

By (3.8), this implies w(x) > ηN tαN when |xi| < tαi
N δN/2 for i = 1, . . . , N . We set η̄ =

min{ηN , δN/2} and scale back to B through (3.8) again, to get the claim. �

We will from now suppose that w is a fixed stationary solution in X1,1 of (3.3). For future
purposes we summarise some properties derived from a scaling argument for a large family of
corresponding Barenblatt solutions.

Corollary 3.4. Let B(x, t) = t−αw(xit
−αi) be a fixed Barenblatt Fundamental solution to (1.1)

with w ∈ X1,1. There exists η̄ > 0 such that the family of Barenblatt solutions

Bλ(x, t) = T1,λ−σ/p̄B (x, t) = λ t−α w(λ(2−pi)/pi xi t
−αi), λ > 0,

has the following properties

(1) ‖Bλ(·, t)‖∞ = λ t−α;

(2) suppBλ(·, t) ⊆
N
∏

i=1

{

|xi| 6 λ(pi−2)/pi tαi
}

;

(3) {Bλ(·, t) > λ t−α} ⊇
N
∏

i=1

{

|xi| 6 η̄ λ(pi−2)/pi tαi
}

.

4. Proof of Theorem 1.1

We first consider a generalisation of what is called in literature the Krylov-Safonov argument.
To this end, we make the following observations: for ρ ∈ [0, 1] the translates of the cylinders
Q−

ρ (ρ
−N ) arise naturally from the quasi-metric1

(4.1) d((x, t), (y, s)) = max
{

|2−1(xi − yi)|
pi/(p̄+N(p̄−pi)), |t− s|1/(p̄+N(p̄−2))

}

.

Indeed, all the exponents appearing in the previous definition are positive thanks to condition
(1.2) on the spareness of pi’s, therefore the quasi-triangle inequality

d(z1, z3) 6 γ (d(z1, z2) + d(z2, z3)), ∀z1, z2, z3 ∈ R
N+1,

holds true for a constant γ = γ(N,p) > 1 which is the quasi-metric constant. Finally, notice
that the cylinder z̄ + Q−

ρ (ρ
−N ) is the bottom half part of the ball Bρ(z̄) with respect to this

distance.

1This terminology is borrowed from Grafakos, but it appears there’s no general consensus on the term “quasi”:
sometimes pseudo-metric is used instead.
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Lemma 4.1. Let (X,d) be a quasi-metric space with quasi-metric constant γ and x0 ∈ X. For
any β > 0 there exists a constant ω = ω(γ, β) > 1 such that for any bounded u : B1(x0) → R

with u(x0) > 1 there exist x ∈ B1(x0) and r > 0 such that

(4.2) Br(x) ⊆ B1(x0), rβ sup
Br(x)

u 6 ω, rβu(x) > 1/ω.

Proof. Extend u as 0 outside B1(x0) and suppose that the claim is false. For ω a parameter to
be determined depending only on β and γ, we will construct a sequence of points contradicting

the boundedness of u. Set r0 = 1/(2γ) and choose ω > (2γ)β . Since rβ0u(x0) > 1/ω, it must
hold

rβ0 sup
Br0 (x0)

u > ω.

Choose x1 ∈ Br0(x0) such that rβ0 u(x1) > ω and set r1 = r0 ω
−2/β, so that

rβ1 u(x1) > 1/ω.

If Br1(x1) ⊆ B1(x0), we can similarly construct x2 ∈ Br1(x1) such that

rβ2 u(x2) > 1/ω, r2 = r1 ω
−2/β.

Proceed by induction to get a sequence of points and radii such that, if Brn(xn) ⊆ B1(x0),

rβn u(xn) > 1/ω, rn = rn−1 ω
−2/β .

As ω > 1, the first condition contradicts the boundedness of u if all the balls Brn(xn) are
contained in B1(x0). This can be achieved if for any n > 0

d(x0, xn) 6 γ

n−1
∑

i=0

γi d(xi, xi+1) 6 γr0

+∞
∑

i=0

γi ω−2i/β < 1,

which holds for γ ω−2/β < 1/2. �

Lemma 4.2. Let u > 0 solve (1.1) in Q−
1 , and suppose that for some ν̄ ∈ (0, 1) a > 0 it holds

(4.3) |[u > a] ∩Q−
1 | > (1− ν̄) |Q−

1 |.

Then for every choice of λ, ν ∈ (0, 1) there exist ȳ ∈ K1, t̄ ∈ (−1,−ν̄/4] and ǫ ∈ (0, 1)
determined only by means of N,p, ν, ν̄, a and λ, such that ȳ +Kǫ ⊂ K1 and

(4.4) |[ut̄ > λa] ∩ (ȳ +Kǫ)| > (1− ν) |Kǫ|.

Proof. Choose r = r(ν̄) > 1/2 sufficiently near 1 so that |[u > a] ∩ Qr| > |Qr| (1 − ν̄)/2. We
write down the energy estimates (2.11) for (u−a)− with η of the form prescribed therein, η > 0,
η = 1 on Q−

r , η = 0 outside Q−
1 and |∂tη|+ |∂iηi| 6 C(ν̄), to get, thanks to supQ−

1
(u− a)− 6 a,

N
∑

i=1

∫

Q−

r

|∂i(u− a)−|
pidx dt 6 C(ν̄, a).

By the same argument of [12, Lemma 9.1], there exists a time level t̄ ∈ (−1,−ν̄/4] such that

N
∑

i=1

∫

Kr

∣

∣

∣

∣

∂i

(

ut̄
a

− 1

)

−

∣

∣

∣

∣

pi

dx 6 C(ν̄, a) rN−1,

∣

∣

∣

∣

[

ut̄
a

> 1

]

∩Kr

∣

∣

∣

∣

> (1− ν̄) |Kr|/4.

By Hölder’s inequality, ut̄/a fullfills the assumptions of Lemma 2.2 in Kr, giving the claim. �
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It is worth underlining that the parameter ǫ in the previous statement can be made arbitrarily
small by eventually changing the point. We further observe that it is possible to carry the
information of Lemma 4.2 into an equivalent formulation in the anisotropic cubes Qρ(ρ

−N ) by
using (2.6).
In the next Lemma, we suppose that an essentially upper semicontinuous representative for
the solution has been chosen, through [16, Corollary 4.3].

Lemma 4.3. Let u > 0 be a bounded solution of (1.1) in Q−
1 . There exist C, ε > 0 depending

on N and p such that if u(0, 0) > C,

(4.5) inf
x̄+Kρ(ερ−N )

ut̄ > ε ρ−N for some (x̄, t̄) ∈ Q−
1 and ρ > 0 with x̄+Kρ(ε ρ

−N ) ⊆ K1.

Proof. Let C = 1/ω, where ω = ω(N,p) is given in Lemma 4.1 with β = N , (using the quasi-
metric in (4.1)). We apply the lemma to u/C and extend u as 0 in the upper half-space. Then,
(4.2) implies the existence of a point z1 ∈ Q−

1 and r ∈ (0, 1) such that

z1 +Q−
r (r

−N ) ⊆ Q−
1 , rN sup

z1+Q
−

r (r−N )

u 6 1, rN u(z1) > C2.

The solution v = Tr,r−Nu(·+ z1) in Q−
1 , (with T given in (2.3)) obeys

(4.6) sup
Q−

1

v 6 1, v(0) > C2.

We prove that (4.3) holds for ν̄ = 1− µa given in Lemma 2.6 when a = C2/3 (thus ν̄ depends
only on N and p). Indeed, if, by contradiction, we have

|[v > a] ∩Q−
1 | 6 µa |Q

−
1 |,

then since 0 6 v 6 1 in Q−
1 , Lemma 2.6 gives

v(0) 6 sup
Q−

1/2

v 6
3

2
a =

C2

2
,

contradicting the last condition in (4.6). Therefore the thesis of Lemma 4.2 holds true for any
ν, λ to be chosen and for the corresponding point z2 = (x̄, t̄) ∈ Q−

1 , the following measure
estimate holds at the time t̄

|[vt̄ 6 λa] ∩ (x̄+Kǫ)| 6 ν |Kǫ|, t̄ ∈ (−1,−ν̄/4].

Recall that this measure estimate is valid for any ν, λ > 0 to be chosen, which in turn determine
an arbitrarily small ǫ, so we can also suppose

ν < ν̄, ǫ−2ν̄ > 1, ǫ−1a > 2,

where a = C2/3. We choose λ = 1/2 and scale again considering w = Tǫ/2,ǫ/2v(· + z2).

Since v solves (1.1) in Q−
1 and by (2.5) it holds Kǫ = Kǫ(ǫ) = Tǫ/2,ǫ/2(K2), w solves (1.1) in

K2 × (0, ǫ−2 ν̄] and it satisfies

(4.7) |[w(·, 0) 6 2] ∩K2| 6 |[w(·, 0) 6 ǫ−1a] ∩K2| 6 ν.

We propagate forward in time the information in (4.7) as follows. Fix a time 0 < τ < ν < 1, so
that we can write down the energy inequality for (w− 2)− in the subcylinder K2 × (0, τ2] with
0 ≤ η ≤ 1 independent of time and such that η = 1 in K1, η = 0 outside of K2 and |∂iη| 6 C,
to get

∫

K1

(wt − 2)2− dx 6
∫

K2

(w0 − 2)2− dx+ C
N
∑

i=1

∫ t

0

∫

K2

(ws − 2)pi− dx ds,
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for all t ∈ (0, τ2]. The second term on the right is bounded by C 2N+pmax ν, while the first one
is smaller than 4 ν due (4.7). The term on the left bounds |[wt 6 1] ∩K1|, hence we get

|[wt 6 1] ∩K1| 6 C ν ∀t ∈ (0, τ2],

which implies by integration

|[w 6 1] ∩Q| 6 C ν |Q|, Q := K1 × (0, τ2].

Let τ = 2−n for some n ∈ N to be determined. We partitionK1 in 2Nn dyadic cubes xi+K2−n =
xi +Kτ and consider the corresponding cylinders Qi = (xi +Kτ )× (0, τ2]. Notice that for any
such τ , the latters are intrinsically scaled, since Qi = (xi, ν) +Q−

τ (τ). On at least one of these
cylinders it must hold

|[w 6 1] ∩ Qi| 6 C ν |Qi|,

implying
|[w 6 τ ] ∩ Qi| 6 C ν |Q−

τ (τ)|.

We thus apply Lemma 2.6 (see Remark 2.7), choosing ν such that C ν 6 µ1, (determining ǫ, τ
and n in the process, depending only on N and p). This implies

w > τ/2 in (xi, τ
2) + Tτ,τQ

−

1/2 = (xi, τ
2) +Q−

τ/2(τ/2)

and in particular
w > τ/2 in z3 +Kτ/2(τ/2)

for some z3. Scaling back to u = T −1
ǫr/2,ǫr−N/2

w we get for some z0 ∈ Q−
1 the estimate

u > τ ǫ r−N/4 in z0 +Kτǫr/4(τ ǫ r
−N/4),

To conclude the proof of (4.5), it suffices to set

ρ =
τ ǫ r

4
, ε ρ−N =

τ ǫ r−N

4
,

so that ε = (τ ǫ/4)N+1 depends only on N and p.
�

We can now prove the Harnack inequality (1.3).

Proof of Theorem 1.1. We begin setting C1 = C, where the latter is given in Lemma 4.3. To
define C2 and C3, we begin by considering the inequality

(4.8) u(0, 0) 6 C3 inf
Kρ(M)

u(·, M2−p̄ (C2 ρ)
p̄), M = u(0, 0)/C1.

We claim that there exist D̄ > 0 and functions Ā(·) > 0, B̄(·) > 0 all depending only on N
and p such that, whenever

(4.9) D > D̄, A > Ā(D), B > B̄(D),

then it holds

(4.10) inf
Kr(M)

u(·,DM2−p̄ rp̄) > u(0, 0)/B if KAr(M)× [−M2−p̄ (Ar)p̄,M2−p̄ (Ar)p̄] ⊆ ΩT .

Taking C2 > D̄ and, accordingly, C3 > max{Ā(C2), B̄(C2)} will then give (4.8) as long as

KC3r(M)× [−M2−p̄ (C3 r)
p̄,M2−p̄ (C3 r)

p̄] ⊆ ΩT .
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t

x̄

⋃

t>0

Pt

v > C

t̄

s̄

K

K1

D

Figure 1. Scheme of proof of (4.10). The light-gray part is the support of the
Barenblatt starting at (x̄, s̄), while K is Kρ(ε ρ

−N ).

In order for (4.10) to make sense we start by prescribing Ā(D)p̄ > max{D, 1}. By assumption,
the function v = Tr,Mu solves the equation in QA := KA × [−Ap̄, Ap̄] and v(0, 0) = C. Then

(4.5) holds, namely there exists (x̄, t̄) ∈ Q−
1 , ρ ∈ (0, 1) and ε = ε(N,p) such that

inf
x̄+Kρ(ε ρ−N )

vt̄ > ε ρ−N for (x̄, t̄) +Kρ(ε ρ
−N ) ⊆ K1.

We choose λ > 0, −2 < s < 0 so that the Barenblatt solution centered at (x̄, s) defined as

bλ,s(x, t) = Bλ(x− x̄, t− s)

is below v in KA, which is implied by
{

supp bλ,s(·, t̄) ⊆ x̄+Kρ(ε ρ
−N ),

‖bλ,s(·, t̄)‖∞ 6 ε ρ−N .

By Corollary 3.4, this amounts to
{

λ(pi−2)/pi (t̄− s)αi 6 (ε ρ−N )(pi−p̄)/pi ρp̄/pi = ε(pi−p̄)/pi ρσαi ,

λ (t̄− s)−α 6 ε ρ−N ,

which holds true for s = s̄ obeying s̄ = t̄ − ρσ with ρ < 1 and λ̄ = λ(N,p) sufficiently small.
Since s̄ > −2, by Corollary 3.4 it holds

bλ̄,s̄(x, t) > λ̄ η̄ (t− s̄)−α > λ̄ η̄ (t+ 2)−α

for all

t > 0, x ∈
N
∏

i=1

{|x̄i − xi| < η̄ λ̄(pi−2)/pi (t− s̄)αi} ⊇ Pt(x̄) :=

N
∏

i=1

{|x̄i − xi| < η̄ λ̄(pi−2)/pi tαi}.

We then choose τ̄ > 0 sufficiently large so that Pτ̄ (x̄) ⊇ K1 and set D̄ = τ̄ (this is possible
by (1.2), which ensures αi > 0 for each i = 1, . . . , N). Then, for any D > D̄ we additionally
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prescribe

(4.11) Ā(D)p̄ > D + 2 and
⋃

x̄∈K1

suppBλ̄(· − x̄,D + 2) ⊆ KĀ(D).

Notice that this choice can be made depending only on the parameters N,p and D and that if
the latter conditions holds for Ā then they hold for any A > Ā. The prescribed conditions on
A permits the use of the comparison principle between v and bλ̄,s̄ in KA × [t̄, D] (since on the

lateral part of its boundary bλ̄,s̄ vanishes), which then yields

v(·,D) > bλ̄,s̄(·,D) > λ̄ η̄ (D + 2)−α in K1

for any D > D̄. Defining B̄(D) = C(D + 2)α/(η̄λ̄) and scaling back gives (4.10).

We next deal with the other inequality in (1.3), sketching its proof as some arguments are
identical to the previous one (see also [9] for a different approach). The constant C1 is the
same C as before and we claim that the inequality

(4.12) sup
Kr(M)

u(·,−DM2−p̄ rp̄) 6 B u(0, 0) if KAr(M)× [−M2−p̄(Ar)p̄,M2−p̄(Ar)p̄] ⊆ ΩT

(with M = u(0, 0)/C) holds true for any A,B,D as in (4.9), for a possibly different choice of
D̄ and of the functions Ā, B̄.

t

x̄

v > C

x0

t̄

⋃

t>0

Pt

K

v = C D−γ

s̄

D1+γ(p̄−2)

Figure 2. Scheme of proof of (4.12). The light-gray part is the support of the
Barenblatt starting at (x̄, s̄) while K is Kρ(ε ρ

−N ).

To prove (4.12), we fix γ > N/p̄ and start by prescribing

Ā(D)p̄ > D, B̄(D) > Dγ .

Next, consider A,B,D fulfilling (4.9) together with KAr(M) × [−M2−p̄(Ar)p̄,M2−p̄(Ar)p̄] ⊆
ΩT , but such that

(4.13) sup
Kr(M)

u(·,−DM2−p̄rp̄) > B u(0, 0).
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We rewrite the latter in terms of v = Tr,MDγu, which is a solution in QA,D−γ : the resulting
information is

(4.14) v(0, 0) = C D−γ , sup
K1(D−γ)

v(·,−D1+γ(p̄−2)) > B v(0, 0) > C,

where we used B > B̄(D) > Dγ in the last inequality. We fix a point x0 ∈ K1(D
−γ) such

that v(x0,−D1+γ(p̄−2)) > C and suppose that Ā(D) is additionally large enough so that v is a

solution in (x0,−D1+γ(p̄−2)) +Q1. We can then apply Lemma 4.3 and, proceeding exactly as
in the first part of the proof, we find

x̄ ∈ x0 +K1, −D1+γ(p̄−2) − 2 ≤ s̄ < t̄ ≤ −D1+γ(p̄−2)

and λ̄(N,p) > 0 such that the Barenblatt solution bλ̄,s̄ centered at (x̄, s̄) is below v at the time
t̄. As before, for some η̄(N,p) it holds

bλ̄,s̄(·, t) > λ̄ η̄ (t+D1+γ(p̄−2) + 2)−α in Pt+D1+γ(p̄−2)(x̄), ∀t > −D1+γ(p̄−2).

If needed, we further increase Ā(D) so that v solves the equation in a rectangle containing the
support of any possible bλ̄,s̄ so constructed, up to the time t = 0 (through a condition of the

type (4.11)).

So far, the definition of the functions Ā(D) and B̄(D) is concluded, and we now look for all
the values of D such that 0 ∈ PD̄1+γ(p̄−2)(x̄). Since x0 ∈ K1(D

−γ) and x̄ ∈ x0 +K1, this is true
if

(4.15) 1 +D−γ(pi−p̄)/pi 6 η̄ λ̄(pi−2)/pi D(1+γ(p̄−2))αi , ∀i = 1, . . . , N.

We claim that the exponent of D on the left is less than the one on the right. Indeed, from the
definition of αi, the claim reduces through elementary algebraic manipulations to

γ p̄ (2− pi) < N (p̄− pi) + p̄,

which is always true since the left hand side is negative by pi > 2 and the right hand side is
positive by (1.2). It follows that (4.15) holds true for any D > D̄1, and in this case we get by
comparison

(4.16) v(0, 0) > bλ̄,s̄(0, 0) > λ̄ η̄ (D1+γ(p̄−2) + 2)−α.

Next, we claim that there exists D̄2 such that if D > D̄2, then

(4.17) λ̄ η̄ (D1+γ(p̄−2) + 2)−α > C D−γ .

Indeed, it suffices to show that the exponent on the left is greater than the one on the right,
which, recalling that α = N/(N(p̄ − 2) + p̄), amounts to

γ − α (1 + γ (p̄ − 2)) =
γ p̄−N

N (p̄− 2) + p̄
> 0 ⇔ γ >

N

p̄

as we assumed. Thus (4.17) is proved, which in turn contradicts the first condition in (4.14)
via the lower bound in (4.16). All in all, letting D̄ = max{D̄1, D̄2} shows that if A,B,D
obey (4.9), then (4.13) cannot hold, completing the proof of (4.12). We conclude choosing the
constants C2 and C3 as in the previous step, and finally pick the largest between the so defined
constants and previous ones.

�
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Finally, we prove the Liouville theorem stated in the Introduction.

Proof of Corollary 1.3. We suppose that supRN u > infRN u and let ε ∈ (0, supRN u− infRN u).
Consider the non-negative solution vε = u− infRN u+ ε/2 to (1.6). By continuity, we can pick
a point xε such that vε(xε) = ε. Up to translations, the Harnack inequality (1.7) implies that
vε 6 C2 ε in xε +Kρ(ε/C1), for all ρ > 0. Letting ρ → +∞, we get vε 6 C2 ε in the whole R

N ,
i.e.

u 6 inf
RN

u+ (C2 − 1/2) ε

in R
N and letting ε → 0 we get the claim.

�
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