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Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a primary immune regulatory disorder characterized by benign or 
malignant lymphoproliferation and autoimmunity. Classically, ALPS is due to mutations in FAS and other related genes; 
however, recent research revealed that other genes could be responsible for similar clinical features. Therefore, ALPS clas-
sification and diagnostic criteria have changed over time, and several ALPS-like disorders have been recently identified. 
Moreover, mutations in FAS often show an incomplete penetrance, and certain genotypes have been associated to a domi-
nant or recessive inheritance pattern. FAS mutations may also be acquired or could become pathogenic when associated to 
variants in other genes, delineating a possible digenic type of inheritance. Intriguingly, variants in FAS and increased TCR 
αβ double-negative T cells (DNTs, a hallmark of ALPS) have been identified in multifactorial autoimmune diseases, while 
FAS itself could play a potential role in carcinogenesis. These findings suggest that alterations of FAS-mediated apoptosis 
could trespass the universe of inborn errors of immunity and that somatic mutations leading to ALPS could only be the tip 
of the iceberg of acquired immunodeficiencies.

Keywords ALPS · FAS · Lymphoproliferation · Immune dysregulation · Primary immunodeficiencies · Double-negative T 
cells

Introduction

Autoimmune lymphoproliferative syndrome (ALPS) is a 
rare genetic disorder of immune regulation characterized 
by an impairment of lymphocyte homeostasis [1]. Clini-
cally, ALPS has been known since the 60s [2], while its first 
genetic characterization dates back to 1995, when the first 
disease-causing mutations were identified in FAS gene [3–5].

ALPS clinical presentation is characterized by lym-
phoproliferation (lymphadenopathy and/or organomeg-
aly), autoimmune phenomena (mainly cytopenias), and an 

increased incidence of lymphoma [6]. Therefore, clinical 
management aims at monitoring patients for the develop-
ment of malignancies, while non-malignant lymphopro-
liferation and cytopenias benefit from several types of 
immunosuppressants (e.g., steroids and Sirolimus) [1, 7, 
8]. Immunological tests typically show increased TCR α/β 
 CD4-CD8- “double negative” T cells (DNTs, a hallmark of 
the disease) and other ALPS biomarkers, such as high lev-
els of vitamin B12, IL-10, and sFASL and impaired FAS-
mediated apoptosis [9, 10].

Clinical and laboratory features have been combined 
together creating diagnostic criteria for ALPS, first out-
lined in 1999 [11] and later revised in 2009 [9] and 2019 
[12] (Tables 1, and 2). In parallel, research revealed that 
ALPS could also originate from germline mutations in 
FAS-Ligand (FASL) and caspase-10 (CASP10) genes — 
both involved in the extrinsic apoptosis pathway [13, 14] 
— and from somatic mutations in FAS [15]. On the other 
hand, a significant number of patients met the diagnostic 
criteria without evidence of mutations in the known causa-
tive genes. This complex genetic background brought to 
a classification of ALPS — first created in 1999 [11] and 
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then revised in 2009 [9] (Table 3) — which denominated 
as ALPS-undetermined (ALPS-U) those cases where no 
known genetic defect was identified. Finally, in the last 
decade, alternative pathways of disease pathogenesis have 
been hypothesized, consistently with the identification of 

several genes whose mutations give rise to ALPS-like 
clinical phenotypes [16].

In addition to its genetic characterization, modalities of 
inheritance of ALPS are controversial. Both autosomal-
dominant and autosomal-recessive types of inheritance have 

Table 1  Revised diagnostic criteria for ALPS (2009) [9]. DNT double-negative T cells.

Required
  1. Chronic (> 6 months), nonmalignant, noninfectious lymphadenopathy or splenomegaly or both
  2. Elevated  CD3+TCRαβ+CD4-CD8- DNT cells (≥ 1.5% of total lymphocytes or 2.5% of  CD3+ lymphocytes) in the setting of normal or 

elevated lymphocyte counts
Accessory
Primary
  1. Defective lymphocyte apoptosis (in 2 separate assays)
  2. Somatic or germline pathogenic mutation in FAS, FASLG, or CASP10

Secondary
  1. Elevated plasma sFASL levels (> 200 pg/mL) OR elevated plasma interleukin-10 levels (> 20 pg/mL) OR elevated serum or plasma 

vitamin B12 levels (> 1500 ng/L) OR elevated plasma interleukin-18 levels (> 500 pg/mL)
  2. Typical immunohistological findings as reviewed by an experienced hematopathologist
  3. Autoimmune cytopenias (hemolytic anemia, thrombocytopenia, or neutropenia) AND elevated immunoglobulin G levels (polyclonal 

hypergammaglobulinemia)
  4. Family history of a nonmalignant/noninfectious lymphoproliferation with or without autoimmunity

Definitive diagnosis: presence of both required criteria plus one primary accessory criterion
Probable diagnosis: presence of both required criteria plus one secondary accessory criterion

Table 2  Clinical criteria for a probable diagnosis of ALPS (2019) as defined in 2019 by the European Society for Immunodeficiencies (ESID) 
registry’s working definitions for clinical diagnosis of Primary immunodeficiencies (PID) [12].

At least one of the following:
  1. Splenomegaly
  2. Lymphadenopathy (> 3 nodes, > 3 months, non-infectious, non-malignant)
  3. Autoimmune cytopenia (≥ 2 lineages)
  4. History of lymphoma
  5. Affected family member

AND at least one of the following:
  1.  CD3+TCRαβ+CD4-CD8- of  CD3+TCRαβ+ T cells > 6%
  2. Elevated biomarkers (at least 2 of the following):
    • sFASL > 200 pg/ml
    • Vitamin B12 > 1500 ng/L
    • IL-10 > 20 pg/ml
    • Impaired FAS-mediated apoptosis

Table 3  Revised classification of ALPS (2009) [9]

Revised nomenclature Gene Definition

ALPS-FAS FAS Patients fulfill ALPS diagnostic criteria and have germline homozygous or heterozygous mutations in FAS
ALPS-sFAS FAS Patients fulfill ALPS diagnostic criteria and have somatic mutations in FAS
ALPS-FASL FASL Patients fulfill ALPS diagnostic criteria and have germline mutations in FASL (FAS ligand)
ALPS-CASP10 CASP10 Patients fulfill ALPS diagnostic criteria and have germline mutations in CASP10 (Caspase 10)
ALPS-U Unknown Patients meet ALPS diagnostic criteria; however, genetic defect is undetermined (no FAS, FASL, or CASP10 

defect)
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been described [17], while increasing reports of somatic 
mutations in FAS gene — detected in TCR αβ DNT cells — 
jeopardized the idea of ALPS as an exclusively inborn error 
of immunity [18]. Hence, a double-hit mechanism (i.e., pre-
disposing germline mutations followed by disease-triggering 
somatic mutations) has been hypothesized [19]. Moreover, 
the variable penetrance seen in ALPS patients’ pedigrees 
[20] suggested that a digenic model of inheritance could 
be applicable, due to a possible role of disease-modifying 
genes [21].

Finally, variants in FAS and FASL have been reported 
in patients displaying multifactorial autoimmune diseases 
and cancer (e.g., systemic lupus erythematosus, SLE) [13, 
22–24]. Such findings could indicate that genetic defects 
of lymphocyte apoptosis may be a possible underlying 
mechanism of autoimmunity and carcinogenesis [17, 22]. 
The crossroad between immune dysregulation and multi-
factorial autoimmunity is furtherly highlighted by reports 
of increased TCR αβ DNTs in patients with SLE and other 
autoimmune disorders [25], as well as in rare genetic disor-
ders of immune regulation, such as STAT3 gain of function 
(STAT3-GoF), CTLA-4 haploinsufficiency (CHAI), and oth-
ers [16, 26–29].

Herein, we review ALPS genetic background and possible 
relationships between disease-associated mutations and its 
type of inheritance. We will also describe current knowledge 
about somatic mutations in FAS, together with their possible 
underestimation and a potential disease-contributing role in 
multifactorial autoimmune disorders. Finally, we will out-
line current treatment options for ALPS and ALPS-related 
diseases.

ALPS: one disease, many genes

ALPS classification

Genes included in ALPS classification (Table 3) retrace 
those implicated in the extrinsic, FAS-mediated, pathway 
of apoptosis [9]. Briefly, FAS (also known as CD95 or 
tumor necrosis factor receptor superfamily member 6 — 
TNFRSF6) is a homotrimeric receptor whose binding to 
FASL homotrimers activates the intracellular death domains 
of FAS molecules. These domains recruit the adaptor pro-
tein FADD (FAS-associated death domain) and ultimately 
bind caspase-8 and caspase-10 (CASP8-10), leading to the 
generation of a death-inducing signaling complex (DISC). 
Finally, DISC activates downstream effector caspases, pav-
ing the way for the occurrence of programmed cell death 
[30] (Fig. 1B).

Germline mutations in FASL and CASP10, together with 
germline or somatic mutations in FAS, give rise to typical 
ALPS clinical and laboratory features [18, 20, 31, 32] and 

have therefore been included in ALPS classification [9]. On 
the other hand, mutations in FADD and CASP8 lead both 
to an impairment in FAS-mediated apoptosis and a pro-
found susceptibility to infections [33, 34]. Indeed, these 
genes underlie other immunological pathways leading to 
pleiotropic effects that trespass ALPS phenotype. Therefore, 
mutations in CASP8 — formerly labeled as ALPS IIb [34] 
— have been removed from current ALPS classification and 
termed caspase eight deficiency state (CEDS), while FADD 
deficiency has never been actually defined as ALPS.

Regardless of the genes involved, specific criteria need to 
be satisfied in order to achieve a diagnosis of ALPS. These 
have been recently updated by the European Society for 
Immunodeficiencies (ESID) (Table 2) [12]. If compared to 
the previous ones [9], increased TCR αβ DNTs are not any-
more mandatory, while the TCR αβ DNT ratio threshold has 
been raised from 2.5 to 6% of total TCR αβ CD3+ T cells. 
Moreover, immunohistological findings have been excluded, 
and the identification of pathogenic mutations is not needed 
to define ALPS, though of course necessary in order to attain 
a molecular diagnosis [12]. Growing relevance has been 
given to biomarkers, that — once combined — demonstrated 
to bear elevated positive and negative predictive values for 
ALPS [35, 36]. In particular, the combination of normal 
TCR αβ DNTs and in vitro apoptosis assay can essentially 
rule out ALPS [36, 37].

ALPS‑U: determining the undetermined

Since its first definition, 20–30% of ALPS cases lack a 
molecular diagnosis (ALPS-U) [9, 37]. Recent studies 
showed that patients with ALPS-U display a different bio-
marker profile, compared to those affected by ALPS-FAS 
[35, 36]. In detail, Molnar et al. demonstrated that ALPS-
FAS is characterized by significantly higher proportions of 
TCR αβ DNTs, in vitro apoptosis alterations, and soluble 
FAS-Ligand (sFASL) levels [36]. The biological background 
of ALPS-U might therefore be different from classical 
ALPS. In accordance with this, next-generation sequenc-
ing analyses in these patients identified pathogenic or likely 
pathogenic mutations in signal transducer and activator of 
transcription 3 (STAT3), inhibitor of nuclear factor kappa 
B kinase regulatory subunit gamma/NF-kappa-B essential 
modulator (IKBKG/NEMO), perforin 1 (PRF1), and recom-
bination activating 1 (RAG1). Such findings are consistent 
with ALPS-like features previously described in patients 
carrying defects in the same genes, even though the overall 
clinical phenotypes of these disorders are extremely hetero-
geneous and different from ALPS [38–44].

Nevertheless, in the vast majority of ALPS-U cases, an 
underlying genetic defect is unknown. Many genes have 
been recalled as hypothetic players in ALPS-U pathogenesis 
[16]. In order to be called ALPS-U, however, the patient’s 
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Fig. 1  FAS structure, biology, and molecular mechanism of FAS 
mutations. A Intron-exon structure of FAS gene delineating the 
exons coding for the extracellular, transmembrane, and intracellular 
portions of FAS. Cysteine-rich domain 1 (CRD1) is also known as 
pre-ligand assembly domain (PLAD) and allows homotrimerization 
of FAS monomers. UTR, untranslated region. B Biological mecha-
nism of extrinsic, FAS-mediated, pathway of apoptosis. FAS is a 
homotrimeric receptor expressed at the surface of many cell types, 
whose correct trimerization is mediated by PLAD. Binding of cog-
nate ligand FASL allows the recruitment of FAS-associated death 
domain (FADD), an adaptor protein that bridges the death domain of 
FAS to pro-caspases-8 and caspase-10, leading to the generation of 
death-inducing stimulating complex (DISC). DISC formation allows 

the downstream activation of the caspases, resulting in a biochemical 
cascade that ultimately leads to apoptosis. C FAS mutations exerting 
a dominant-negative effect do not impair the expression of mutated, 
PLAD-sparing, monomers (in gray) at the cell surface. Such mono-
mers may interact with wild-type ones in a 1:2 or 2:1 ratio, resulting 
in non-functional trimers that impair downstream activation of apop-
tosis. These mutations are clinically penetrant and usually all affected 
individuals develop ALPS. D FAS haploinsufficient mutations usually 
involve PLAD. These mutations completely impair FAS expression 
at the cell surface only when both alleles are affected (either because 
of germline homozygosity or somatic events on the second allele). In 
heterozygous individuals, the wild-type allele preserves FAS expres-
sion and its correct functionality, leading to apoptosis
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phenotype must respond to the above-mentioned diagnos-
tic criteria. Therefore, together with clinical features, either 
increased TCR αβ DNTs or two biomarkers (including 
impaired FAS-mediated apoptosis) must be displayed. In 
line with this, several candidates standing behind an ALPS-
U phenotype have been described in the past decades. First 
of all, multiple cases of lymphoproliferation, autoimmun-
ity, and apoptosis defect but normal TCR αβ DNTs with-
out a genetic explanation have formerly been described as 
Dianzani autoimmune lymphoproliferative disease (DALD) 
[45, 46]. Later, germline gain-of-function (GoF) mutations 
in NRAS or somatic GoF variants in KRAS were found, 
depicting a phenotype called RAS-associated autoimmune 
lymphoproliferative disease (RALD), characterized by 
intrinsic apoptosis defect and normal or slightly elevated 
TCR αβ DNTs [47, 48]. Increased TCR αβ DNTs and auto-
immune features were also found in STAT3-GoF, CHAI 
and X-linked immunodeficiency with magnesium defect, 
Epstein-Barr virus (EBV) infection, and neoplasia (XMEN), 
demonstrating that ALPS-U may comprise a wide variety of 
responsible genes [26, 28, 29].

Finally, we can speculate that somatic mutations in FAS 
[18] or in other related genes could be responsible for a sig-
nificant portion of ALPS-U cases. These could potentially be 
underestimated, given that somatic mutation analysis is not 
easily feasible, since patients’ samples are often not enough 
to perform TCR αβ DNTs sorting [35]. Future developments 
in this field will hopefully clarify the impact of somatic 
mutations on ALPS-U pathogenesis.

ALPS‑FAS: one gene, many inheritance 
patterns

FAS was the first gene associated with ALPS [3, 4]. Since 
its identification, hundreds of mutations in it have been 
described, accounting for roughly 70% of ALPS cases [49]. 
FAS gene consists of an extracellular portion (exons 1–5), 
a transmembrane domain (exon 6), and an intracellular 
part (exons 7–9) [50]. The extracellular portion contains 3 
cysteine-rich domains (CRDs): while CRDs 2–3 are para-
mount to bind FASL, CRD1 allows homotrimerization of 
FAS molecules and is therefore named pre-ligand assembly 
domain (PLAD). On the intracellular side, exon 9 encodes 
for the death domain (DD), which is critical for FADD bind-
ing and downstream activation of apoptosis [8] (Fig. 1A).

In the last two decades, mutations have been described 
throughout any site of FAS: the majority (70%) of ALPS-
FAS cases are due intracellular FAS mutations, while 50% 
involve the DD [8]. Increasing reports speculated the exist-
ence of a relationship between genotype and inheritance 
pattern. This implies that different mutations exert distinct 
molecular effects, leading to either dominant or recessive 

types of inheritance [17]. Moreover, the discovery of 
somatic FAS mutations in TCR αβ DNTs furtherly compli-
cated this model [15]. Below, we attempt to clarify these 
important aspects.

Dominant inheritance in ALPS‑FAS

Studies on mice strains Ipr [51] and Iprcg [52] initially 
allowed to understand the role of Fas gene, the murine 
analog of FAS [21]. Iprcg strains beared mutations in the 
DD of Fas: importantly, their inheritance pattern proved 
to be not fully recessive as in Ipr mice [52]. Similarly, a 
dominant-interfering effect has been described since the first 
human reports of ALPS-FAS [4]. Later, mutations in the 
intracellular portion of FAS that did not abolish its surface 
expression were considered to be responsible for a domi-
nant type of inheritance [53]. Finally, Siegel et al. shed more 
light on this aspect, establishing that PLAD preservation was 
always correlated with the presence of a dominant-negative 
mechanism [54].

According to this model, transmembrane wild-type FAS 
combines with the mutated form (via PLAD-PLAD inter-
actions) in a 2:1 or 1:2 ratio. This results in a trimer which 
is unable to recruit FADD after binding of cognate ligand 
FASL. Hence, the majority of FAS trimers display defective 
intracellular signaling, even though 50% of total FAS in the 
cell is in a wild-type form [55] (Fig. 1C).

Recently, a large retrospective study demonstrated that 
a dominant-negative effect stands behind the majority of 
ALPS-FAS cases [8], justifying a dominant type of inher-
itance (i.e., one mutation leads to ALPS) [17]. Moreover, 
reports of single-allele somatic dominant mutations in FAS 
confirmed that this important molecular mechanism is also 
conserved in ALPS-sFAS [18, 56].

Recessive inheritance in ALPS‑FAS

In contrast to Iprcg mice, murine Ipr strains bore mutations 
in intron 3, leading to reduced Fas expression and behaving 
as a recessive defect [21, 51]. Later on, several examples of 
autosomal recessive ALPS-FAS have been reported, though 
less frequently than cases with a dominant type of inherit-
ance [53, 57, 58].

These patients displayed either mutations in the extracel-
lular portion of FAS (which particularly involved PLAD) 
[8, 54] or in the transmembrane domain (i.e., exon 6) [55]. 
In any case, surface expression of FAS was abolished, due 
to impaired trimerization. This implies that mutated mono-
mers cannot anymore bind their wild-type (wt) homologue, 
which may be undisturbedly displayed on the cell surface. 
This situation jeopardizes a dominant-interfering effect, 
while the presence of two mutated alleles gives rise to hap-
loinsufficiency [59, 60] (Fig. 1D). In line with this, FAS-wt 
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transfection in FAS-mutated cell cultures both corrected the 
apoptosis defect and increased surface FAS expression, dem-
onstrating the hypothesis of a haploinsufficiency mechanism 
[59].

Nevertheless, germline haploinsufficient mutations were 
found both in patients and asymptomatic relatives, and 
this fact did not find an immediate explanation. Initially, a 
reduced penetrance due to this genotype was hypothesized 
[61]. The conundrum was partially solved by the identifica-
tion of somatic events in patients, while not in asymptomatic 
carriers, with familial haploinsufficient mutations [19]. 
Therefore, these defects are non-penetrant, and an additional 
event on the second allele is needed in order to determine 
clinical manifestations [17]. Such “second hit” may either 
be inherited [53, 57] or — more frequently — acquired [19, 
62, 63], as furtherly described.

Somatic mutations in FAS (ALPS‑sFAS)

Somatic heterozygous dominant mutations in FAS were 
initially reported in 2004 [15], depicting for the first time 
the role of somatic mutations in a non-malignant disease 
[17]. Such variants were recognized in patients’ TCR αβ 
DNTs, which were found to be increased, just as in germline 
ALPS-FAS. Clinical features were also not distinguishable 
but — compared to germline ALPS-FAS — patients with 
somatic mutations did not display a severe impairment in 
FAS-mediated apoptosis [18]. Such finding has been repeat-
edly confirmed [1] and bears a possible explanation in the 
fact that TCR αβ DNTs do not survive in cell culture, with 
only a fraction of mononuclear cells being actually mutated. 
This fraction is apparently sufficient to give rise to clinical 
features, but not enough to significantly impair apoptosis 
[18].

Further studies revealed that somatic FAS mutations are 
not rare and represent up to 15% of total ALPS cases [63]. 
Indeed, these variants respond to the same molecular mech-
anisms described above. Therefore, dominant-interfering 
somatic mutations alone are sufficient to induce the disease 
[15, 56], while patients displaying germline haploinsuffi-
cient mutations require a somatic event in order to develop 
ALPS clinical features [19, 56]. The latter, moreover, exhibit 
symptoms at a later stage [56], coherently with the fact that 
somatic mutations initially occur in hematopoietic stem 
cells (HSCs) and furtherly provide a selective advantage to 
mutated cells. These lymphocytes, however, require several 
years of proliferation in order to reach sufficient numbers to 
have a clinical impact [17].

We may speculate that somatic mutations in FAS are 
probably underdiagnosed, for a couple of reasons. First, 
TCR αβ DNTs sorting is often challenging to perform and 
such difficulty discourages single-cell DNA sequencing [21, 
35]. Moreover, somatic mutations are potentially responsible 

for disease penetrance in many patients displaying heterozy-
gous haploinsufficient germline FAS mutations. However, 
TCR αβ DNTs sorting and sequencing is seldom performed 
in these cases, since clinicians have already achieved a 
genetic diagnosis. Finally, somatic variants may potentially 
lie at the base of more common, multifactorial, autoimmune 
disorders [17].

Double‑hit hypothesis in ALPS: one disease, 
two mutations needed

ALPS patients’ pedigrees often show an incomplete disease 
penetrance [20, 63]. However, additional genetic mecha-
nisms may come into play and ultimately determine the 
expression of an ALPS disease phenotype [1, 17]. These 
predisposing mutations act as a “second hit” and include 
somatic FAS mutations (leading to loss of heterozygosity, 
LoH), a second germline mutation (leading to homozygous/
compound heterozygous genotypes), or variants in other 
disease-modifying genes (Fig. 2).

Somatic loss of heterozygosity in FAS

ALPS has been recently summoned as a paradigm of inborn 
errors of immunity due to a somatic mosaicism [64, 65]. 
Indeed, evidence suggests that ALPS may respect a “two-
hit” mechanism similar to the one postulated in the 70s for 
retinoblastoma’s pathogenesis [66]. In line with this, ALPS 
was described in 7 patients bearing germline mutations 
in the extracellular domain (ECD) of FAS, together with 
a somatic event detected in the second FAS allele in TCR 
αβ DNTs [19]. Such somatic event is not necessarily a new 
mutation, but often corresponds to uniparental disomy that 
makes the cell homozygous for the original germline vari-
ant [17, 56].

Not surprisingly, ALPS-causing somatic events are 
almost exclusively identified in individuals bearing haplo-
insufficient mutations, which ideally behave in a recessive 
fashion [63]. Among these subjects, only those displaying 
a “second hit” actually develop an ALPS phenotype [62], 
which typically manifests at an older age [56]. However, not 
every patient with ALPS and a haploinsufficient mutation 
was found to bear a somatic event. This could be potentially 
due to intronic FAS mutations or variants in other disease-
modifying genes [56].

Germline double‑hit

In rare instances, both hits on the FAS gene may be inherited. 
This often leads to severe phenotypes and may be due either 
to compound heterozygous or homozygous FAS mutations 
(formerly described as ALPS type 0) [1, 57, 58, 67]. The 

474 Annals of Hematology (2022) 101:469–484



1 3

effect of the mutation (i.e., haploinsufficiency or dominant-
negative) is trivial in these cases, since both alleles are 
involved.

Similarly, ALPS-FASL supposedly observes an autoso-
mal recessive inheritance, giving rise to severe clinical phe-
notypes [31, 32, 68, 69]. However, ALPS-FASL inheritance 
may also behave outside the box, since a dominant-negative 
effect has been reported [70] and heterozygous mutations 
have been associated to SLE [13]. The precise mechanism 
hiding behind FASL mutations is still not clear, given that 
these reports are extremely rare [17].

Second hit in disease‑modifying genes

Studies in mice originally noted that double heterozygous 
subjects (i.e., lpr/+, gld/+) for murine analogs of FAS and 
FASL could develop lymphoproliferation and autoimmunity 
[52]. In the last two decades, reports of ALPS and ALPS-
like patients revealed that CASP10 and other genes may 

influence disease pathogenesis. These observations impli-
cated that ALPS could be inherited in a digenic or oligo-
genic fashion, thus trespassing a classical Mendelian trans-
mission model [17, 71].

CASP10

Only two pathogenic mutations in CASP10 have been identi-
fied thus far (i.e., p.I406L and p.L258F), both leading to a 
dominant-negative effect [14, 72, 73]. Conversely, several 
other variants or polymorphisms in CASP10, whose patho-
genicity is still controversial, have been described [14, 73, 
74]. Nevertheless, multiple reports of FAS-mutated indi-
viduals bearing a concomitant CASP10 variant and devel-
oping ALPS clinical features suggested the existence of 
an underlying digenic mechanism [71, 74, 75]. Both FAS 
and CASP10 belong to the same — extrinsic — apopto-
sis pathway; therefore, mutations in these genes would 
produce complementary effects, leading to impairment of 

Fig. 2  Double-hit hypothesis in ALPS. Germline heterozygous hap-
loinsufficient mutations in FAS are not sufficient to determine the 
disease: a second hit is needed in order to develop ALPS. Different 
mechanisms may account for the second hit. First, a somatic event in 
the second FAS allele could be possible (e.g., a new acquired muta-
tion or uniparental disomy). Second, germline homozygous or com-

pound heterozygous mutations in FAS or FASL can determine ALPS. 
Finally, a second mutation in other disease-modifying genes could 
induce the disease, depicting a digenic inheritance pattern. These 
genes may involve both the extrinsic and intrinsic pathway of apop-
tosis [47, 48, 71, 73, 74, 77], perforin secretion [38, 76], or other pos-
sible mechanisms [78, 79]
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programmed cell death. Similarly, some CASP10 variants 
may also display a protective effect towards the develop-
ment of ALPS [72]. Hence, interactions between variants 
in genes belonging to the same pathway may be both syner-
gic and antagonistic. Finally, ALPS or ALPS-like features 
may also arise from the complementary effect of variants in 
CASP10 and in another non-FAS gene, such as CASP8 or 
TNFRSF13C (i.e., BAFF receptor, whose mutations are typi-
cally associated with common variable immunodeficiency, 
CVID) [73].

Other disease‑modifying genes

In the last two decades, interesting reports revealed that 
the “second hit” in ALPS pathogenesis may concern other 
genes, beyond those involved in the extrinsic apoptosis 
pathway. For instance, variants in UNC13D and PRF1 
highlighted that genes involved in perforin secretion by 
natural killer (NK) and cytotoxic T lymphocytes (CTLs) 
may bestow clinical significance to certain heterozygous 
FAS mutations [38, 76]. A similar role could be played by 
genes belonging to the intrinsic apoptosis pathway, such as 
XIAP [77] or NRAS and KRAS. Mutations in these last two 
genes may alone give rise to RALD [47, 48], but we may 
speculate that variants in them could also determine ALPS 
in genetically predisposed individuals. Moreover, since spe-
cific osteopontin haplotypes have been formerly related to 

DALD [78], a possible role of OPN gene in ALPS could be 
contemplated. Finally, other biological mechanisms, such as 
microRNA overexpression (e.g., miR-146a), are involved in 
Fas downregulation in mice and could ideally be involved in 
ALPS pathogenesis [79].

ALPS, cancer, and autoimmunity: one 
mechanism, many diseases

Alterations in the extrinsic pathway of apoptosis are not 
prerogative of ALPS but may also hide behind more com-
mon conditions such as cancer and autoimmune diseases 
[21, 22]. Indeed, research in the last 10 years revealed that 
single-nucleotide polymorphisms (SNPs) in FAS or FASL 
may correlate with some types of cancer and multifactorial 
autoimmune diseases [23, 80, 81]. Similarly, an expansion 
of TCR αβ DNTs is not exclusive of ALPS but may also be 
found in other conditions [25], where these cells may play 
pathogenic roles [82]. Therefore, the genetic and immuno-
logical features of ALPS push beyond the limits of this dis-
ease and involve more common clinical situations (Fig. 3). 
In this section, we try to summarize this cutting-edge topic.

FAS and cancer

While initially only non-malignant lymphoproliferation 
was taken into account in ALPS definitions [9, 11], the 

Fig. 3  ALPS, cancer and autoimmune diseases. Venn diagram show-
ing mutual relationships and shared clinical and pathophysiologic fea-
tures connecting ALPS to more common conditions such as cancer 

and autoimmune diseases. TCR αβ DNTs, T-cell receptor αβ double-
negative T cells
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latest diagnostic criteria comprise a history of lymphoma 
as a major clinical feature (Table 2) [12]. In parallel, recent 
research highlighted potential carcinogenic implications of 
FAS, whose role is still controversial [22].

Most cancer cells are resistant to FAS-mediated apoptosis 
[22]. Such an escape mechanism is required since the CD95/
CD95L interaction may destroy cells by inducing DISC for-
mation [83]. However, baseline FAS signaling seems crucial 
for cancer cell survival [84], since a complete elimination 
of CD95/CD95L interplay leads to an irreversible cell death 
called DICE (death induced by CD95R/L elimination) [22]. 
Such peculiar behavior might be explained by non-apoptotic 
functions of FAS, whose engagement also promotes inflam-
mation and carcinogenesis [83]. In light of this, preclinical 
studies on therapies targeting the FAS/FASL pathway have 
been implemented [85], even though severe hepatotoxicity 
hampers their clinical applicability [22].

In a clinical setting, lymphoma may be a threatening part 
of the natural history of ALPS. Interestingly, this malig-
nancy may also develop in healthy FAS-mutated relatives 
of ALPS patients [8]. In a wider perspective, a relationship 
between cancer risk and FAS polymorphisms is contro-
versial [23, 86–88]. A meta-analysis argues for a reduc-
tion of cancer risk in individuals bearing FAS-1377 G/A 
SNP [86]. Similarly, a previous hypothetical association 
between FAS-670 A/G SNP and acute myeloid leukemia 
(AML) has been rejected [88]. On the other hand, SNPs 
in codons FAS-1377 and FASL-844 correlated with blad-
der cancer [81] and neuroblastoma [23]. Further research 
may shed more light on these aspects and allow to identify 
possible factors determining FAS-mediated carcinogenesis.

FAS, FASL, and autoimmunity

B cell differentiation is typically altered in ALPS-FAS [1]. 
Murine models showed that an impaired germinal center 
reaction inappropriately allows survival of autoreactive B 
cells [89]. Therefore, along with defective T cell apoptosis, a 
dysregulated B cell compartment is characteristic of ALPS.

Such immunological background is coherent with a clini-
cal overlap among ALPS, CVID [90] and — most impor-
tantly — SLE [91, 92]. In particular, lupus and lupus-like 
features may characterize the clinical course of ALPS-FAS 
and ALPS-FASL [13, 92]. Moreover, a role for apoptosis in 
SLE susceptibility is plausible, since SNPs FAS-670 A/A 
and FASL-844 C/C (alone or combined in a digenic type of 
inheritance) are associated with an increased risk of lupus 
[24, 93]. On the other hand, variants in other genes involved 
in apoptosis (i.e., BAX) seem to be protective towards the 
development of SLE [93]. Other autoimmune diseases have 
been associated with SNPs in FAS and these include Hashi-
moto’s thyroiditis, systemic sclerosis, and multiple sclerosis 
[80, 94].

Apart from polymorphisms, the increasing discovery 
of somatic mutations in FAS opens an intriguing debate. 
Somatic variants in this and other genes could potentially 
account for the clinical discordance of monozygotic twins, 
a frequent phenomenon in autoimmunity whose explanation 
has been classically attributed to epigenetic modifications 
[95]. Future research could reveal if FAS somatic mosaicism 
hides behind those autoimmune conditions that interestingly 
display an ALPS-like expansion of TCR αβ DNTs [25].

DNTs in ALPS and autoimmune diseases

TCR αβ DNTs are a peculiar T cell subset whose origin 
and pathogenetic role has not been clearly elucidated 
[82, 96]. Initially, TCR αβ DNTs were thought to have 
a thymic origin [97]. However, the expression of both 
the senescent marker CD57 and CD45RA makes them 
more similar to terminally differentiated effector T cells 
re-expressing CD45RA (TEMRA) [98]. Such phenotype 
inclines towards the hypothesis that TCR αβ DNTs may 
peripherally derive from downregulation of CD8 in auto-
reactive CD8+ T cells [96, 99]. Their pathogenic role is 
controversial since TCR αβ DNTs are not only a hallmark 
of ALPS [100, 101], but have also been described in 
pro-inflammatory contexts (e.g., in SLE and other auto-
immune diseases) or as mediators of immune regulation 
(e.g., in graft-versus-host disease — GVHD) [82, 102].

In ALPS, TCR αβ DNTs are not only a key feature for 
diagnostic purposes, but they also seem to play a relevant 
role in disease pathogenesis [100, 101]. An expansion of 
TCR αβ DNTs is tightly associated with disease develop-
ment [82, 103], and their number often correlates with the 
presence of autoantibodies [87, 104]. Recently, an ele-
gant study by Maccari et al. shed more light on this topic, 
revealing two main populations among TCR αβ DNTs: 
FAS-controlled DNTs (FC-DNTs, CD38+ CD45RA+) 
and conventional DNTs (cDNTs, CD45RA+/− CD38-) 
[101]. The former are IL-10 producers and are the real 
hallmark of ALPS-FAS, where they represent a significant 
proportion of total TCR αβ DNTs (usually > 25%). Moreo-
ver, these FC-DNTs share a transcriptional profile with 
certain CD28 + CD57+ single-positive T cells (SPTs, 
both CD4+ or CD8+), corroborating the hypothesis that 
TCR αβ DNTs derive from downregulation of CD4/CD8 
coreceptor at a late differentiation step in T cell devel-
opment. On the other hand, cDNTs are closely related 
to “canonical” CD8+ T cells, since they express both 
interferon-γ (IFNγ) and cytolytic molecules (granzyme B 
and perforin), oppositely to FC-DNTs. Unexpectedly, both 
TCR αβ DNT populations have been found also in healthy 
subjects, indicating that these cell types may also play a 
physiologic role. Moreover, treatment with Rapamycin led 
to a decrease in both ALPS and healthy subjects-derived 
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FC-DNTs, highlighting that the maintenance of this lym-
phocyte subset tightly depends on mammalian target of 
rapamycin (mTOR) signaling [101].

Such recent findings have not yet been applicated to more 
common, multifactorial autoimmune diseases (e.g., SLE). 
Anyhow, in these disorders, TCR αβ DNTs have been iden-
tified as main actors of an increased production of the pro-
inflammatory interleukin-17A (IL-17A). Such process seems 
to be mediated by the transcription factor cAMP-responsive 
element modulator (CREM) α [96]. CREMα also plays a 
significant role in the downregulation of CD8 from autore-
active CD8+ T cells [82, 96], which may take place in an 
inflammatory milieu, such as the one seen in spleens of SLE 
patients due to the lack of the tolerogenic splenic marginal 
zone macrophages (MZMs) [105]. In addition, MZMs express 
scavenger receptors that efficiently clear apoptotic and necrotic 
cellular fragments, avoiding the generation of autoimmunity 
against these debris [106]. Consistently, a lack of MZMs and 
an increase in TCR αβ DNTs are particularly displayed in SLE, 
where TCR αβ DNTs showed to promote the production of 
anti-dsDNA antibodies [96]. In a clinical context, association 
studies and pathologic specimens also revealed a possible 
role of TCR αβ DNTs in Sjögren’s syndrome [107], psoriasis 
[108], axial spondylarthritis [109], mixed connective tissue 
disease, juvenile idiopathic arthritis, juvenile dermatomyositis 
[110], and Behçet’s disease [111].

In contrast to the findings above, evidence suggests that 
at least a subset of TCR αβ DNTs may exhibit a regulatory 
activity [82, 112]. Even though specific markers allowing 
their identification are lacking, these TCR αβ DNTs have 
been called double-negative regulatory T cells (TCR αβ 
DN Tregs). Despite what the name suggests, DN Tregs 
are FOXP3- and must not be confused with CD4+ CD25+ 
FOXP3+ regulatory T cells [113]. A first interesting role of 
TCR αβ DN T regs was demonstrated in non-obese diabetic 
(NOD) mouse models, where this cell type lowered the risk 
of developing islet autoimmunity through the production of 
IL-10 [114]. In addition, TCR αβ DN T regs seem to play 
a significant role in the development of immune tolerance 
after hematopoietic stem cell transplantation (HSCT). Ini-
tially, murine models revealed that TCR αβ DN T regs were 
able to inhibit natural killer (NK) cell-mediated rejection 
of allogenic bone marrow in a perforin-dependent manner 
[115]. Moreover, clinical studies showed an inverse correla-
tion between TCR αβ DNTs frequency and the risk of devel-
oping GVHD [116, 117]. Proposed mechanisms of TCR αβ 
DN T regs functioning are IL-10 production, the peculiar 
use of IFNγ to regulate immune responses, and the acquisi-
tion of alloantigens from dendritic cells (i.e., trogocytosis) in 
order to present them to antigen-specific CD8+ T cells and 
killing them through Fas-dependent apoptosis [113]. How-
ever, such immunological processes still need to be fully 
clarified by further studies [82].

ALPS and ALPS‑like disorders: one 
phenotype, many treatments

Treatment options and management of ALPS

The most frequent presentation of ALPS is benign lym-
phoproliferation; however, despite potentially massive 
manifestations during childhood, lymphadenopathies 
and splenomegaly generally shrink spontaneously with 
age [21]. On the other hand, malignant lymphoprolif-
eration may develop at any time during follow-up [118, 
119]. Nonetheless, autoimmune cytopenias occur in more 
than 80% of ALPS-FAS patients and often represent a 
therapeutic challenge [8, 21]. Therefore, management of 
ALPS should cover all these aspects, and clinicians should 
choose treatment options taking into account that they 
might be administered for a lifelong span [7].

Treatment of isolated benign lymphoproliferation for 
cosmetic reasons is not usually indicated [7]. In case of 
symptoms or concomitant cytopenias, the only drug that 
demonstrated to significantly diminish lymphoproliferation 
is Sirolimus [120–122], consistently with the description 
of a hyperactive mTOR pathway in ALPS [123]. Spleno-
megaly should be carefully managed using thermoplastic 
spleen guards, in order to avoid splenic rupture, allow-
ing children to participate to sport programs [7]. ALPS 
is characterized by poor anti-polysaccharide response 
and disorganized splenic marginal zone [124], correlated 
with a high risk of streptococcal sepsis [8]. Therefore, in 
order to preserve a minimal anti-polysaccharide response, 
splenectomy is contraindicated and should be taken into 
consideration if it is the only remaining therapeutic option. 
However, it is possible to deal with already splenecto-
mized ALPS cases. Asplenic ALPS patients should receive 
long-term antibiotic prophylaxis (e.g., penicillin V) and 
periodic anti-pneumococcal reimmunization every 4–5 
years [7].

Autoimmune cytopenias in ALPS have been classi-
cally treated as sporadic immune cytopenias, using cor-
ticosteroids and intravenous immunoglobulins (IVIG) as 
first-line options [7, 125–127]. Due to refractoriness to 
these treatments, cytopenias in ALPS often require the use 
of second-line agents. Rituximab and/or Mycophenolate 
mofetil (MMF) were the first studied, the former being 
particularly effective for thrombocytopenia, though not 
usually recommended due to a consistent increase in the 
risk of severe infections [128]. On the other hand, MMF 
proved to be an effective steroid-sparing agent, without 
evidence of significant toxicities or infections [7, 129]. 
However, further evidence revealed a dramatic effective-
ness of Sirolimus [120, 121], which may be considered 
a targeted treatment for ALPS [123], consistently with 
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the high degree of remission achieved and the significant 
reduction of ALPS biomarkers after 6 months of therapy 
[122]. For these reasons, Sirolimus may be considered as 
a first-line treatment option, and, once complete remission 
is achieved, its serum levels may be maintained at a lower 
therapeutic range (i.e., 2–5 ng/mL) [122].

ALPS patients exhibit an increased risk of lymphoma; 
therefore, periodic surveillance with CT and positron emis-
sion tomography (PET) scans should be carried out, and 
lymph node biopsies must be performed in case of clini-
cal or radiological suspect of malignancy [7]. Conventional 
multiagent chemotherapy and radiation are usually effective, 
and no specific treatment protocols are available for ALPS-
related lymphoma [7, 118, 119, 130]. Finally, life-threaten-
ing, early-onset lymphoproliferation may seldom represent 
ALPS clinical onset, requiring HSCT as the only therapeutic 
option. Sporadic cases have been described, often exhibiting 
severe GVHD even in favorable conditions [131, 132].

Targeted treatment in ALPS‑related disorders

Clinical presentation of ALPS-related disorders is often 
challenging and characterized by ALPS clinical signs with 
or without other organ-specific involvement [133]. However, 
autoimmune cytopenias are a hallmark of these disorders 
[134, 135] and are often refractory to first-line treatments 
(i.e., corticosteroids and IVIG) [136]. Recent evidence sug-
gests that a rapid switchover to disease-specific therapies tar-
geting underlying pathomechanisms is recommended [134]. 
Therefore, promptly achieving a genetic diagnosis is para-
mount in order to select a specific targeted treatment [137].

Target therapies include Janus kinase (JAK) inhibitors 
(e.g., ruxolitinib) and anti-IL-6 (tocilizumab) for STAT3-
GoF [138], CTLA4-Ig (abatacept) for CHAI and lipopoly-
saccharide (LPS)-responsive and beige-like anchor protein 
(LRBA) deficiency [139, 140], PI3Kδ inhibitor (leniolisib) 
for activated PI3Kδ syndrome (APDS) [141], and others 
under study [134]. These treatments showed to be very effec-
tive also for other organ involvements, apart from cytopenias 
[138–140]. However, no targeted molecules may be avail-
able for certain disorders, and a specific molecular pathway 
is unknown in patients that still lack a genetic diagnosis. 
In these circumstances, clinical signs, immunophenotype, 
and laboratory parameters should guide treatment decisions 
[134, 135]. For instance, increased TCR αβ DNTs could be 
an indication to start treatment with Sirolimus, postulating 
a pathogenic mechanism similar to ALPS [134].

Just as in ALPS, periodic surveillance for malignancies 
should be carried out also in ALPS-related disorders and 
must be life-long, since cancer may develop at decades 
from disease onset (e.g., Juvenile myelomonocytic leuke-
mia in RALD) [142]. Due to the short follow-up, it is not 
known whether targeted treatments may actually determine a 

reduction of malignant degeneration in these diseases [122]. 
Finally, gene editing trials are currently not available for 
ALPS and related syndromes, though future research might 
introduce this definitive treatment option, similarly to other 
primary immune regulatory disorders (PIRDs) [143, 144].

Conclusions

Since its discovery 25 years ago, ALPS has become a model 
of monogenic autoimmunity with hundreds of disease-caus-
ing mutations in different genes being identified [8, 145]. 
ALPS diagnostic criteria evolved over time: the latest high-
light the fact that malignant lymphoproliferation could be 
a warning sign of this disorder, while TCR αβ DNTs are 
only one of several possible disease biomarkers (Table 2) 
[12, 37]. Widespread use of genetic testing is revealing an 
increasing amount of genes hiding behind ALPS-U [36]. 
Moreover, an expanding number of ALPS-like syndromes 
are being identified, sharing clinical and immunological 
features with ALPS, though not completely satisfying its 
diagnostic criteria [16]. Concurrently, Sirolimus is becoming 
a first choice for treatment of ALPS [121], while targeted 
therapies for ALPS-related disorders are getting a foothold 
[134].

ALPS inheritance pattern is whatsoever complicated. 
According to the molecular effect of the mutation, both dom-
inant-interference or haploinsufficiency mechanisms may 
develop, determining a dominant or recessive transmission, 
respectively [17]. The discovery of somatic FAS mutations 
as causative of ALPS furtherly complicated the plot [15]. 
Somatic mutations follow the same molecular mechanisms 
as germline ones and could present alone or in association 
with inherited mutations.

While heterozygous, dominant mutations in FAS may be 
sufficient to determine the disease [8], severe ALPS phe-
notypes often require “two hits,” which may arise in dif-
ferent fashions. Rarely, both of them are inherited in FAS 
or FAS-related genes [32, 57]. Scattered reports reveal that 
a “second hit” could develop in disease modifying genes 
that bestow pathogenic significance to heterozygous variants 
in FAS, demonstrating that a digenic inheritance model is 
applicable to ALPS [17, 71, 75]. Most importantly, a second 
somatic mutation in FAS — detected in TCR αβ DNTs — 
may often account as a “second hit,” potentially explaining 
the reduced penetrance of this disorder [17, 19, 56].

Due to the difficulties of performing TCR αβ DNT sorting 
and single-cell DNA sequencing on scant specimens [35], 
somatic mutations in FAS are probably underdiagnosed. 
Suspicion of somatic mutations should especially arise 
when facing heterozygous, non-penetrant, haploinsufficient 
mutations in FAS that inexplicably become pathogenic in 
an individual with healthy FAS-mutated family members. 
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Moreover, somatic FAS mutations could potentially underlie 
several cases of multifactorial autoimmune diseases such as 
SLE, which may display clinical and immunological fea-
tures that are superimposable to ALPS. Among these, an 
expansion of TCR αβ DNTs may occur in SLE and other 
autoimmune conditions: these cells could therefore represent 
a helpful screening tool for autoimmunity. Hence, ALPS and 
more common disorders may be significantly interconnected 
(Fig. 3), and future research may shed more light on the role 
of FAS signaling in both autoimmunity and cancer.

The number of discovered inborn errors of immunity 
(IEIs) is growing exponentially, and atypical presentations 
of formerly known immunodeficiencies are being progres-
sively unmasked [145, 146]. In this context, ALPS is the 
prototypical example of how more genes can determine one 
univocal phenotype [145]. ALPS was the first example of IEI 
that could be also caused by somatic mosaicism. Therefore, 
both germline and acquired mutations can be responsible for 
IEIs, and research has already identified and may furtherly 
reveal other disorders behaving in a similar fashion [65]. 
ALPS could only be the tip of the iceberg.
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