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Abstract. We investigate the dynamics of bodies with vector-type microstructure. We consider linear constitutive relations
and a nonlinear coupling between macroscopic and microscopic motions, determined by gyroscopic-type inertia. Based on an
existence result obtained in the presence of viscous-type stress components, we determine the existence of a global attractor;
its weak nature derives from the lack of uniqueness determined by the nonlinear coupling.
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1. Introduction

Let B be a three-dimensional, bounded, regular domain. With u : B×[0, T ] → R
3 and ν : B×[0, T ] → R

3

sufficiently smooth maps, consider the following system of partial differential equations, written with
respect to an orthonormal frame of reference (the subscript t indicates derivative with respect to time):

ρutt − εΔut = b + μΔu + ξ∇div u + κΔν + ξ̄∇div ν,

in B × [0, T ],

ςνt − δΔνt + 	(curlut) × νt = ζΔν + γ∇div ν
+ κΔu + ξ∇div u − κ0ν,

in B × [0, T ],

u(t, x) = 0, ν(t, x) = 0,

on ∂B × [0, T ],

u|t=0 = u0, ut|t=0 = u̇0, ν|t=0 = ν0, on B,

(1.1)

where u0, u̇0, and ν0 are assigned. The factors in front of the derivatives of u and ν are constants together
with κ0; b is a forcing term (a bulk force, indeed).

Previous equations describe aspects of the continuum dynamics of complex bodies with descriptors of
microstructural shapes selected in R

3.
In reference [3] we have proven global-in-time existence of weak solutions for system (1.1). However, we

do not have uniqueness, due to the nonlinear coupling (curlut) × νt. Consequently, as regards qualitative
properties of the weak solutions, we can think of an attractor just in weak sense (see, e.g., [1,17,18]).

Specifically, for W the space of weak solutions (defined below) to the system (1.1), namely

W =
{

w = (u, ν; v)∈L2
loc[0,+∞;W 1,2(B))2 × L2

loc[0,+∞;L2(B)) |

v = ut, and(u, ν)is a weak solution to (1.1)
}

,

with u|∂B = 0, and ν|∂B = 0, where L2
loc[0,+∞;X)2 (X every time a different space) is a short-hand

notation for L2
loc([0,+∞);X)2 our, main result reads as follows:
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Theorem 1.1. With b ∈ L2(0,∞;L2(B)) assigned, there exists a global weak attractor A ⊆ W for the
system (1.1).

2. The ground from which the balance equations considered emerge

2.1. Macroscopic and microscopic shapes

Take R̂
3 and R

3 as two copies of the 3D real space connected just by the identification map ι : R̂3 −→ R
3.

The latter is the physical space, while the former is a useful reference ambient. Consider in R̂
3 and R

3

non-singular metrics ĝ and g, respectively. We select in R̂
3 a simply connected region B with piecewise

Lipschitz boundary and take it as a macroscopic reference shape for a continuum body. We consider
(gross scale) deformations as orientation-preserving differentiable one-to-one maps x �−→ y := ỹ(x) ∈ R

3.
F indicates the derivative Dỹ(x). We have ∇ỹ(x) = Dỹ(x)ĝ−1, so that they coincide when ĝ−1 is

flat, i.e., it refers to an orthonormal frame. We adopt for F the common denomination and call it the
deformation gradient. Two linear operators can be defined: the formal adjoint F ∗ and the transpose FT

of F . They are related as FT = ĝ−1F ∗g, so that they coincide when both metrics are flat.
The orientation-preserving condition implies detF > 0.1

We define the displacement field by u := ũ(x) := ỹ(x) − ι(x), distinguishing the map ũ from its value
u := ũ, so that F = I +Du := I +Dũ(x), with I a second-rank identity tensor, precisely the shifter from
R̂

3 to R
3, with components δi

A, where capital indices refer to the coordinates in R̂
3, the lowercase ones

to the coordinates in R
3.

A differentiable vector field ν̃ : B −→ R̄
3, with R̄

3 a copy of the 3D real space in principle independent
of the other two (a reason for this choice is to distinguish the representation of phenomena at different
scales), brings at macroscopic spatial scale information on the microstructural morphology. We indicate
by ν the value of the map ν̃. N is a short-hand notation for the spatial derivative Dν := Dν̃(x).

2.2. Motions (in generalized sense)

Previous description of the body morphology imply that a motion, intended in generalized sense, is
now a pair of fields, namely

(x, t) �−→ y := ỹ(x, t) ∈ R
3

and

(x, t) �−→ ν := ν̃(x, t) ∈ R
3,

with the time t ranging into, say, [0, T ]. We assume differentiability with respect to time. A superposed
dot indicates as usual total time derivative; in the Lagrangian representation adopted in this section,
since x is fixed with respect to time, the total derivative coincides with the partial one. Pertinent rates
of change of the body morphology are

ẏ =
dỹ(x, t)

dt
= u̇

and

ν̇ =
dν̃(x, t)

dt
.

1The specific analyses presented here refer to small strain regime where the orientation-preserving condition does not
play an evident role. However, since we show how to derive the balance equations considered fro first principles in a fully
nonlinear setting, along such a path the condition det F > 0 plays a role.
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2.3. Isometry-based changes in observers

An observer is a representation (i.e., a prescription of reference frames) over all the spaces adopted
for representing the morphology of a body and its motion [11,12]. Here such spaces are the reference
one (namely R̂

3), the physical space (i.e., R3), the one in which ν̃ takes values (namely R̄
3), and the

time interval. We consider changes in observers that leave invariant R
3 and the time scale while they

are of rigid-body type in R
3. If y is a place evaluated by a first observer, a second one records y′ =

a(t)+Q(t)(y −y0)+y0, where t �−→ a(t) ∈ R
3 is a vector-valued smooth map depending only on time, y0

is an arbitrary fixed point, and t �−→ Q(t) ∈ SO(3) is a orthogonal tensor-valued smooth map depending
only on time. The first observer records a velocity ẏ while for the second one it is ẏ′ = ȧ+ Q̇(y−y0)+Qẏ.
When we pull-back ẏ′ in the frame of the first observer, we get a velocity ẏ� := QTẏ′ (the superscript T
means standard transposition) given by

ẏ� = c + q × (y − y0) + ẏ.

The vector c := QTȧ is a relative translation velocity between the two observers, while q is the axial
vector of the skew-symmetric second-rank tensor QTQ̇.

Rotating observers in the physical space perceive differently ν as it is a 3D vector, which is otherwise
insensitive to relative translations of observers because it describes only events occurring inside the
material element presumed at x in the reference configuration, i.e., properties relative to the element
itself. So, the value ν recorded by a first observer changes into ν′ = Q(t)ν, when the two observers are
distinguished by rigid-body motions, and the time rate ν̇ becomes ν̇′ = ν̇ + Q̇ν. By pulling back this last
vector in the frame of the first observer, we obtain a new vector ν̇� := QTν̇′ given by

ν̇� = ν̇ + q × ν,

which we write as

ν̇� = ν̇ + A (ν)q,

with the linear operator A (ν) given by A (ν) = −ν×, using a symbology adopted in the general model-
building framework for the mechanics of complex materials.2

2.4. A fundamental first principle: invariance of the external power

With b an arbitrary (internal) part of B, i.e., a subset of the reference place with non-null volume
and a piecewise Lipschitz boundary, we subdivide external actions on it into bulk and contact families.
They are defined by the power Pext

b that they perform in the body shape rate of change, i.e., on any
pair (ẏ, ν̇). Precisely, we write such a power as

Pext
b (ẏ, ν̇) :=

∫

b

(
b‡ · ẏ + β‡ · ν̇

)
dμ(x) +

∫

∂b

(t∂ · ẏ + τ∂ · ν̇) dH 2(x),

where dμ(x) is the standard volume measure, dH 2(x) the surface one, and the dot indicated duality
pairing, identified with the scalar product when we consider flat metrics. The subscript ∂ indicates that
the contact actions t and τ depend on the boundary ∂b besides x and t.

We define as balanced those actions for which Pext
b is invariant under changes in observers above,

namely

Pext
b (ẏ, ν̇) = Pext

b (ẏ�, ν̇�)

2A more detailed analysis concerning changes of observers in the mechanics of complex bodies, i.e., those with active
microstructure, is in reference [12]; it deals with the general case in which ν belongs to a finite-dimensional differentiable
manifold generically not embedded into a linear space.
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for any choice of c, q, and b. Such a request of invariance implies the standard balances of forces∫

b

b‡ dμ(x) +
∫

∂b

t∂ dH 2(x) = 0,

and a non-standard balance of couples∫

b

(
(y − y0) × b‡ + A ∗β‡)dμ(x) +

∫

∂b

((y − y0) × t∂ + A ∗τ∂) dH 2(x) = 0,

where A ∗ is the formal adjoint of A .
• If

∣∣b‡∣∣ is bounded over B and t∂ depends continuously on x, the action–reaction principle holds
first on flat boundaries, and, on its basis, one may further show that t∂ depends on ∂b only through
the normal n to it in all points where n is well-defined, i.e., t∂ = t := t̃ (x, n) = −t̃ (x,−n). Also, as a
function of n, t̃ is homogeneous and additive, i.e., there exists a second-rank tensor field x �−→ P (x)
such that t̃ (x, n) = P (x) n (x). This is the standard Cauchy theorem preceded by the Hamel–Noll
result; P is the first Piola–Kirchhoff stress.

• If in addition
∣∣A ∗β‡∣∣ is bounded over B and τ∂ depends continuously on x, the boundedness of the

region considered in space implies that we can choose y0 such that the density of the bulk integral
in the non-standard balance of couples is bounded too and the microstructural contact action τ∂

satisfies a non-standard action–reaction principle and depends on ∂b only through the normal n to
it in all points where n is well-defined; we have, in fact, A ∗ (τ̃ (x, n) + τ̃ (x,−n)) = 0. Also, as a
function of n, τ̃ is homogeneous and additive, i.e., there exists a second-rank tensor field x �−→ S (x),
so called microstress, such that τ̃ (x, n) = S (x) n (x).

• If both stress fields are in C1 (B) ∩ C
(
B̄

)
and the bulk actions x �−→ b, x �−→ β‡ are continuous

over B, the point-wise balance of forces

DivP + b‡ = 0 (2.1)

holds and there exists a covector field x �−→ z (x) ∈ R
3∗ such that

DivS + β‡ − z = 0, skwPF ∗ =
1
2
e (A ∗z + (DA ∗)S ) ; (2.2)

moreover,

Pext
b (ẏ, ν̇) =

∫

b

(
P · Ḟ + z · ν̇ + S · Ṅ

)
dμ(x), (2.3)

with the right-hand side integral called a internal (or inner) power. We interpret z as a self-action
occurring within the material element at x. It emerges as a consequence of the insensitivity of ν to
rigid translations of reference frames in the whole physical space.

2.5. Identification of the inertial terms

The bulk actions b‡ and β‡ include inertial and non-inertial components, the former indicated below
by a superscript “in”. Precisely, we presume validity of the additive decomposition

b‡ = bin + b, β‡ = βin + β.

We identify the inertial components bin and βin by imposing that the negative of their power equals the
time rate of the kinetic energy for any choice of the rate fields. Here, we do not consider microstructural
relative inertia (which is otherwise possible in general; see [4,5,11,14]) so that we write

d
dt

∫

b

1
2
ρ|ẏ|2 dμ(x) = −

∫

b

(bin · ẏ + βin · ν̇) dμ(x),
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presuming its validity for any choice of body part and rates considered. Such an imposed arbitrariness
implies on one side the standard identification

bin = −ρÿ = −ρü,

but it also prescribes

βin · ν̇ = 0.

This last identity is obviously satisfied when βin = 0, but also, and this is here the point under question,
when βin is orthogonal to ν̇, i.e., when βin = h × ν̇, with h a generic vector. Specifically, we choose
h = curl ẏ = curl u̇ because the local macroscopic spin may in principle change orientation of the
microstructural vector [13]. For this reason, we adopt the expression

βin = (curl u̇) × ν̇ = (curl ut) × νt,

which is the coupling nonlinear term in system (1.1). In addition we set

β = 0 ,

excluding in this way direct bulk non-inertial actions on the microstructure. This choice is not general.
For ferroelectric or magneto-elastic materials, cases in which ν represents the local polarization or the
magnetization, respectively, β is determined by the external electric field. Consequently the previous
choice for β is just specific of the system that we analyze here.
2.6. Constitutive restrictions

The last step in deriving system (1.1) deals with the constitutive choices. They are restricted by the
Clausius-Duhem inequality, which reads in the present isothermal setting as

(rate of the free energy on every b) − (power performed in b) ≤ 0,

presumed to hold for any time rate of the state variables considered, each rate assumed to be chosen
independently of the others. Here, it is explicitly expressed by

d
dt

∫

b

ψ dμ(x) −
∫

b

(
P · Ḟ + z · ν̇ + S · Ṅ

)
dμ(x) ≤ 0,

where ψ is the free energy density. We presume it holds true for any choice of the time rates involved.
We also select the following constitutive functional dependence on the state variables:

ψ = ψ̃(F, ν,N), P = P̃ e(F, ν,N) + P̃ d(F, ν,N ; Ḟ , ν̇, Ṅ),

z = z̃e(F, ν,N) + z̃d(F, ν,N ; Ḟ , ν̇, Ṅ),

S = S̃ e(F, ν,N) + S̃ d(F, ν,N ; Ḟ , ν̇, Ṅ),

where e and d in superscript position indicate, respectively, energetic and dissipative components of the
stresses P , S , and the self-action z. By inserting into the inequality and exploiting the arbitrariness of
Ḟ , ν̇, and Ṅ , we get

P e =
∂ψ

∂F
, ze =

∂ψ

∂ν
, S e =

∂ψ

∂N
, P d · Ḟ + zd · ν̇ + S d · Ṅ ≥ 0.

The last inequality is compatible with

P =
∂ψ

∂F
+ a∇u(. . . )∇u̇, z =

∂ψ

∂ν
+ aν(. . . )ν̇, S =

∂ψ

∂N
+ a∇ν(. . . )∇ν̇,

once again due to the arbitrariness of time rates considered. Furthermore, a∇u(. . . ), aν(. . . ), and a∇ν(. . . )
are positive-valued state function, here chosen to be scalars, namely ε, ς, and δ, respectively, only for the
sake of simplicity. We write the gradient ∇ instead of the derivative D by referring only to an orthonormal
frame here and in the rest of this paper for the sake of simplicity.
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These actions have their counterparts that are values of fields defined in the current configuration
Bc := ỹ(B, t) given by

σ =
1

detF
PF ∗, zc =

1
detF

z, Sc =
1

detF
SF ∗,

where σ is the standard Cauchy stress.
In a small strain regime, defined by the condition |∇u| � 1, which we accept here, constraining the

analysis to small strain range, we may avoid to distinguish between referential (B) and current (Bc)
configurations, so that

σ ≈ P, zc ≈ z, Sc ≈ S .

In a large strain regime, convexity of the free energy with respect to the deformation gradient is incompat-
ible with its objectivity, i.e., its invariance under rigid-body type changes in observers. Such a limitation
does not affects the small strain regime accepted here, in which we may also admit for ψ a quadratic
dependence on its entries as

ψ =
1
2
λ (sym∇u · I)2 + μsym∇u · sym∇u

+
1
2
k1 (∇ν · I)2 + k2sym∇ν · sym∇ν + k′

2skw∇ν · skw∇ν

+ k3 (sym∇u · I) (∇ν · I) + k′
3sym∇ν · sym∇u +

1
2
κ0 |ν|2 ,

where I is here the unit tensor, and the operators sym(.) and skw(.) extract, respectively, symmetric and
skew-symmetric components of their arguments (for the derivation of such an expression as a consequence
symmetry conditions see reference [13]). λ and μ are the standard Lamé constants, the k’s are other
constants such that the energy is positive definite, namely, we have

μ > 0, k2 > 0, 2k2 + 3k1 > 0, k′
2 > 0, k′

3 < 2
√

μk2,

3k3 + k′
3 <

√
(2μ + 3λ)(2k2 + 3k1), κ0 ≥ 0.

The derivatives of ψ imply

σ = λ (tr (sym∇u)) I + 2μsym∇u + k3 (tr∇ν) I + k′
3sym∇ν + ε∇u̇,

zc = k0ν + ςν̇,

Sc = k1 (tr∇ν) I + 2k2sym∇ν + 2k′
2skw∇ν + k3 (tr(sym∇u)) I

+ 2k′
2skw∇ν + k3 (tr(sym∇u)) I + k′

3sym∇u + δ∇ν̇ .

When we insert these constitutive structures in the balance equations, we get the system (1.1), after
setting ξ = λ + μ, ξ̄ = k3 + 1

2k′
3, ζ = k2 + k′

2, γ = k1 + k2 − k′
2, κ = 1

2k′
3 .

3. A special case where system (1.1) directly applies

The system of balance equations (1.1) arises from the general model-building framework for the mechanics
of complex bodies (or materials) [4,11,12], those suffering events at small spatial scales, which are driven
by interactions hardly expressible only in terms of standard stresses.

Besides such general structure, and among other possible examples, system (1.1) applies directly to
the linear mechanics of quasicrystals with nonlinear gyroscopic effects. Quasicrystals are alloys charac-
terized by quasi-periodic atomic distributions not due to twin structures. Their initial recognition has
been progressively accepted up to inducing a change in 2011 of the same definition of crystals by the
International Union of Crystallography, it dates back 1982 [19].

A quasi-periodic lattice in 3D space can be viewed as the projection of a periodic lattice that fills a
six-dimensional space (call it hyper-lattice) onto an incommensurate 3D subspace (see, e.g., [6–10,15]).
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A displacement in the hyper-lattice admits a component in the space over which we project atoms and
another component in its orthogonal complement in the 6D space. The latter component is represented
by ν, the former by u.

Another evidence of the emergence of ν appears when we expand the mass of a three-dimensional
quasi-periodic lattice in Fourier series. Six-dimensional wave vectors arise [9]. Components exceeding the
ambient space dimension can be interpreted as inner degrees of freedom, those represented by ν in system
(1.1) and exploited by atoms to shift relatively as to assure quasi-periodicity when boundary conditions
vary.

Scattering experiments record only three sound-like branches in quasicrystals [16], so that we avoid
assigning peculiar kinetic energy to ν̇ in this special case, while the derivation of balance equations does
not exclude the presence of rotational inertia. We have no specific estimation of it. Our analysis here aims
at helping the pertinent investigation. Incidentally, if we neglect rotational inertia (a nonlinear effects,
due to its coupling with the gross motion, as proposed in reference [13]), and neglect also viscous-type
effects in the standard stress (i.e., at gross scale) and the microstress, leaving them only to the self-action
associated with ν, system (1.1) would simplify to

ρutt = b + μΔu + ξ∇div u + κΔν + ξ̄∇div ν,

ςνt = ζΔν + γ∇div ν + κΔu + ξ∇div u − κ0ν.
(3.1)

However, we come back to system (1.1) and analyze below the properties of its solutions.

4. Notations adopted in the subsequent analyses

For p ≥ 1, we indicate by Lp(B) the usual Lebesgue space of p-power summable functions, endowed with
norm ‖ · ‖p. When p = 2, we use the notation ‖ · ‖ = ‖ · ‖2. Moreover, for k a non-negative integer and
p as above, we denote, as usual, by W k,p(B) and ‖ · ‖k,p a Sobolev space and its norm, respectively.
We write W 1,p

0 (B) for the closure of C∞
0 (B) in W 1,p(B) and W−1,p′

(B), p′ = p/(p − 1), for its dual
endowed with norm ‖ · ‖−1,p′ . Let X be a real Banach space with norm ‖ · ‖X . We will use the common
notation W k,p(0, T ;X) to indicate those spaces of maps that are W k,p with respect to time and belong
to the space X as functions of space variables. We will indicate by ‖ · ‖W k,p(0,T ;X) the pertinent norms.
In particular, W 0,p(0, T ;X) = Lp(0, T ;X) corresponds to a standard Bochner space. With f and g two
square-integrable fields defined on B, the symbol (f , g) will indicate the standard L2-product, i.e., the
integral

∫
B

f · g, where the dot indicates duality pairing, which coincides with the scalar product when

referred to orthonormal frames. In the sequel c or c̄ will denote positive constants that may assume
different values, even in the same equation. We also define the space H 1 by

H 1 :=
{
v ∈ W 1,2(B) : v|∂B

= 0
}

and its dual by H −1. We have analogous definitions for the higher order spaces H n, n ∈ N.
In order to keep the notation concise, we will use the same symbols H n, n ∈ N, for the spaces related

to the variables u and ν.

5. An essential tool

Let (W,d) be a metric space, d the metric.
A semigroup on (W,d) is a family of operators

(
S(t)

)
t≥0

, each one acting as S(t) : W → W , with
S(0)w = w and S(s)S(t)w = S(t + s)w for each w ∈ W and for every s, t ≥ 0.

A semiflow on (W,d) is a mapping s : [0,+∞) × W → W defined by s(t, w) = S(t)w, where
(
S(t)

)
t≥0

is a semigroup such that the restriction s : (0,+∞) × W → W is continuous.
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A bounded subset B ⊂ W is called an absorbing set (or a forward invariant set) if, for any bounded
set B of W , there exists t1 = t1(B) such that S(t)B ⊆ B for all t ≥ t1.

A semiflow is said to be a compact one if, for every bounded set B ⊂ W and every t > 0, the set
S(t)B lies in compact subset of W .

A global attractor for S is a non-empty compact set A of W , which is forward invariant with respect
to S and is such that, for all bounded sets U in W ,

lim
t→∞ d(S(t)U ,A ) = 0.

Theorem 5.1. ([1,2,17,18,20]) Let S(t) be a compact semiflow admitting an absorbing set B on a com-
plete metric space W . Then, S(t) has a global attractor A in W , given by

A =
⋂
τ≥0

⋃
t≥τ

S(t)B ,

where the closure is taken in W .

A is a ω-limit set (see, e.g., [1] and also [2]).
For the sake of conciseness, in what follows we will omit measures in the integrals, not paying in terms

of clarity.

6. Weak solutions

Definition 6.1. We say that a pair (u, ν) is a weak solution of the system (1.1) if, for a given T > 0, the
conditions defined below hold true:

(1) Regularity:

u ∈ L∞(0, T ;H 1) ∩ W 1,2(0, T ;H 1), ν ∈ L∞(0, T ;H 1) ∩ W 1,2(0, T ;H 1), (6.1)

ut ∈ L2(0, T ;H 1) ∩ W 1,2(0, T ;H −1), utt ∈ L2(0, T ;H −1),

νt ∈ L2(0, T ;H 1).
(6.2)

(2) Weak formulation: For all (w, h) ∈ C∞
0 ([0, T ] × B) × C∞

0 ([0, T [×B),

−ρ

T∫

0

∫

B

ut · wt +

T∫

0

∫

B

(
ε∇ut + μ∇u

) · ∇w + κ

T∫

0

∫

B

∇ν · ∇w

= −ξ

T∫

0

∫

B

div u · div w − ξ̄

T∫

0

∫

B

div ν · div w +

T∫

0

∫

B

b · w,

(6.3)

T∫

0

∫

B

(ςνt + κ0ν) · h + δ

T∫

0

∫

B

∇νt · ∇h + 	

T∫

0

∫

B

(curlut) × νt · h

+

T∫

0

∫

B

(ζ∇ν + κ∇u) · ∇h

= −γ

T∫

0

∫

B

div ν · div h − ξ̄

T∫

0

∫

B

div u · div h.

(6.4)
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We proved existence of weak solutions to system (1.1) in reference [3] when b = 0 and initial data
u0, ν0 ∈ H 1, and u̇0 ∈ H 1. In the present case, we may directly adapt that proof with minor changes
and an additional assumption about the regularity of b, namely b ∈ L2(0,∞;L2(B)).

We also find it expedient to write the system (1.1) as

ut = v in B × [0, T ],

ρvt − εΔv = μΔu + ξ∇div u + κΔν + ξ̄∇div ν + b in B × [0, T ],

ςνt − δΔνt + 	(curlv) × νt = ζΔν + γ∇div ν + κΔu
+ξ̄∇div u − κ0ν

in B × [0, T ],

u(t, x) = 0, ν(t, x) = 0, on ∂B × [0, T ],

u|t=0 = u0, v|t=0 = u̇0, ν|t=0 = ν0, on B,

(6.5)

As in reference [3, Theorem 4.1], we assume u0, ν0 bounded in H 1. Moreover, we require u̇0 ∈ H 1.
As already indicated in the Introduction, we denote by w(t) the triple w(t) := (u(t), ν(t); v(t)) =

(u(t), ν(t);ut(t)). It belongs to the space W of weak solutions to the system (1.1) [(i.e. (6.5)]:

�W =
{

�w = (u, ν; v)∈L2
loc[0,+∞; (H 1)2) × L2

loc[0,+∞;L2(B)) |

v = ut, and(u, ν) a weak solution to (1.1) in the sense of Definition 6.1
}

,

which are indeed those of system (6.5).
We consider W as a subset of L2

loc[0,+∞; (H 1)2)×L2
loc[0,+∞;L2(B)) with metric d induced by this

latter space, i.e.,

d(w1,w2) =
∞∑

n=0

2−n min
{
1, |||w1 − w2|||L2(0,n)

}
, (6.6)

where, given w = (u, v; ν), we define

|||w|||2L2(a,b) :=

b∫

a

|||w(s)|||2

and

|||�w(t)|||2 := (‖u‖2 + ‖∇u‖2 + ‖ν‖2 + ‖∇ν‖2 + ‖v‖2),
with ‖ · ‖, we repeat, the L2-norm.

Let us recall that a set B in a linear topological space Z is bounded when for every neighborhood
U of the origin in Z we find r > 0 such that B ⊂ {ru : u ∈ U}. For Z = L2

loc[0,+∞; (H 1)2) ×
L2
loc[0,+∞;L2(B)), the notion of boundedness for a generic its subset B writes formally

sup
{|||w|||L2(0,n) |w ∈ B

}
< +∞, ∀n = 0, 1, 2, . . .

Theorem 6.1. The time-shift operator S(t)w = w+t := w(· + t), w ∈ W , associated with (6.5) admits a
weak global attractor A in W .

To prove the statement we adapt Theorem 5.1 to the present situation. Then, Theorem 1.1 is a direct
consequence. A difficulty is the lack of uniqueness of weak solutions to system (6.5). For this reason we
adopt the approach developed by Sell in reference [17] (specifically, Lemma 7 in [17]; see also [18]).

Proposition 6.1. The mapping (0,+∞) × W → W given by S(t)w = w+t = w(· + t) is a semiflow.



  248 Page 10 of 17 L. Bisconti and P. M. Mariano ZAMP

Proof. S(t) is a semigroup. We need to prove that (τ,w) → S(τ)w = w+τ is continuous for (τ,w) ∈
(0,+∞) × L2

loc[0,+∞; (H 1)2) × L2
loc[0,+∞;L2(B)). It is sufficient to prove that, if τn and wn are

sequences such that τn → τ in (0,+∞) and wn → w in L2
loc[0,+∞; (H 1)2) × L2

loc[0,+∞;L2(B)), we
get d(wn

+τn
,w+τ ) → 0 as n → +∞, which holds true provided that

b∫

a

∣∣∣∣∣∣wn
+τn

− w+τ

∣∣∣∣∣∣2 → 0 as n → +∞

for any given pair (a, b) with 0 ≤ a < b < ∞ (even if, here, we can always set a = 0). Since τ > 0, we can
assume 1

2τ ≤ τn ≤ 2τ , so that it suffices to show that

d(wn
+τn

,w+τn
) → 0 and d(w+τn

, w+τ ) → 0 , asn → +∞. (6.7)

By assumption, wn → w in L2
loc[0,+∞; (H 1)2)×L2

loc[0,+∞;L2(B)) as n → +∞, so that we compute

b∫

a

∣∣∣∣∣∣wn
+τn

− w+τn

∣∣∣∣∣∣2 =

b+τn∫

a+τn

|||wn − w|||2 ≤
b+2τ∫

a+ 1
2 τ

|||wn − w|||2 → 0,

a result implying the first convergence in the pair of limits (6.7).

To prove the second limit, let us fix ε > 0. Take �ψ ∈ C 1([a+ τ
2 , b+2τ ]; (H 1)3) such that

b∫
a

∣∣∣∣∣∣w+� − ψ+�

∣∣∣∣∣∣2

≤ ε for all 	 ∈ [τ/2, 2τ ]. Let K be an upper bound constant to |||∂tψ(s)||| for a + τ
2 ≤ s ≤ b + 2τ . Then,

we have

|||ψ(τn + t) − ψ(τ + t)||| ≤
∣∣∣∣

τ∫

τn

|||∂tψ(s + t)|||ds

∣∣∣∣ ≤ K|τn − τ |.

Also, we find

b∫

a

∣∣∣∣∣∣ψ+τn
− ψ+τ

∣∣∣∣∣∣2 ≤ K2(b − a)|τn − τ |2 ≤ ε

for n ≥ N sufficiently large. By using the triangular inequality twice and previous bounds, we infer

b∫

a

|||w+τn
− w+τ |||2 ≤

b∫

a

(
∣∣∣∣∣∣w+τn

− ψ+τn

∣∣∣∣∣∣

+
∣∣∣∣∣∣ψ+τn

− ψ+τ

∣∣∣∣∣∣ +
∣∣∣∣∣∣ψ+τ − w+τ

∣∣∣∣∣∣)2

≤ 3

b∫

a

(∣∣∣∣∣∣w+τn
− ψ+τn

∣∣∣∣∣∣2 +
∣∣∣∣∣∣ψ+τn

− ψ+τ

∣∣∣∣∣∣2

+
∣∣∣∣∣∣ψ+τ − w+τ

∣∣∣∣∣∣2) ≤ 9ε

for all n ≥ N , which proves that d(w+τn
,w+τ ) → 0, as n → +∞, and this ends the proof. �
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For any given w ∈ W , with w = (u, ν; v), define z(t) as

z(t) :=
∫

B

(
ρ|v + αu|2 + α2|u|2 + (μ − εα)|∇u|2

+ (κ0 + ας)|ν|2 + (ζ + αδ)|∇ν|2
)
,

(6.8)

which is equivalent to |||w(t)|||2, i.e., z(t) ≈ |||w(t)|||2. In the definition above, α is a positive parameter;
we take μ − εα > 0 and assume

μ ≥ εα + k, ς > k. (6.9)

Lemma 6.1. By taking α > 0 sufficiently small, we get

z(t) ≤ z(τ) exp{−β̃(t − τ)} + c̃,with t ≥ τ ≥ 0, (6.10)

where β̃ and c̃ are positive constants, with c̃ = c̃(‖b‖2L2(0,+∞;L2(B))),

z(t) ≤ κ1 exp{−β̃t} + c̃, (6.11)

with t ≥ 0, and

κ1 =
∫

B

(
ρ|u̇0 + αu0|2 + α2|u0|2 + (μ − εα)|∇u0|2

+ (κ0 + ας)|ν0|2 + (ζ + αδ)|∇ν0|2
)

.

Proof. First, we multiply (1.1)1 and (1.1)2 respectively by v = ut and νt in L2(B). Then, after integrating
in time on the interval (0, t), we infer

ρ‖ut‖2 + κ0‖ν‖2 + μ‖∇u‖2 + ζ‖∇ν‖2 + 2ς

t∫

0

‖νt‖2

+ ε

t∫

0

‖∇ut‖2 + 2δ

t∫

0

‖∇νt‖2 ≤ c̄ + c2‖b‖2L2(L2(B)) =: ¯̄c,

(6.12)

where c̄ = c̄(‖u0‖1,2, ‖u̇0‖, ‖ν0‖1,2, ρ, κ0, μ, ζ, ξ, ξ̄, γ).
By inserting ϑ := ut + αu into (1.1)1, we write

ρϑt − αϑ + α2u − εΔϑ − (μ − εα)Δu = F (u, ν), (6.13)

with μ − εα > 0 and F (u, ν) := ξ∇div u + κΔν + ξ̄∇div ν + b. Computation of the L2-product of
Eq. (6.13), after multiplication by ϑ, leads to the inequality

1
2

d
dt

(
ρ‖ϑ‖2 + α2‖u‖2 + (μ − εα)‖∇u‖2)

+ α3‖u‖2 + α(μ − εα)‖∇u‖2 + ε‖∇ϑ‖2 ≤ (
F (u, ν), ϑ) + α‖ϑ‖2.

(6.14)

Again, taking the L2-product of (1.1)2, after multiplication by νt + αν, adding the resulting equation
with (6.14), and proceeding as in the case of inequality (6.12), we get
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1
2

d
dt

(
ρ‖ϑ‖2 + α2‖u‖2 + (μ − εα)‖∇u‖2 + (κ0 + ας)‖ν‖2 + (ζ + αδ)‖∇ν‖2)

+ α3‖u‖2 + α(μ − εα)‖∇u‖2 + ακ0‖ν‖2 + αζ‖∇ν‖2

+ ς‖νt‖2 + ε‖∇ϑ‖2 + δ‖∇νt‖2 + αξ

∫

B

|div u|2 + αγ

∫

B

|div ν|2

≤α2κ

∫

B

∇u · ∇ν + 2αξ̄

∫

B

div u ( div ν) + α‖ϑ‖2

+ ‖b‖‖ϑ‖ + 	

∫

B

|curlϑ||νt||ν|.

Thus, by reabsorbing terms in the left-hand side, as done for the inequality (6.12), and using the
Hölder inequality, we obtain

1
2

d
dt

(
ρ‖ϑ‖2 + α2‖u‖2 + (μ − εα)‖∇u‖2 + (κ0 + ας)‖ν‖2 + (ζ + αδ)‖∇ν‖2

)

+ α3‖u‖2 + α(μ − εα − κ)‖∇u‖2 + ακ0‖ν‖2 + α(ζ − κ)‖∇ν‖2
+ ς‖νt‖2 + ε‖∇ϑ‖2 + δ‖∇νt‖2

≤ 	‖curlv‖‖νt‖L4‖ν‖L4 + (α + ε)‖ϑ‖2 + cε‖b‖2.

(6.15)

Ladyzhenskaya’s and Young’s inequalities imply also

	‖curlϑ‖‖νt‖L4‖ν‖L4 ≤ ε‖∇ϑ‖2 + cε

(‖νt‖ 1
2 ‖∇νt‖ 3

2
)(‖ν‖ 1

2 ‖∇ν‖ 3
2
)

≤ ε‖∇ϑ‖2 + cε,ε̄‖ν‖2‖νt‖2 + ε̄‖∇ν‖2‖∇νt‖2
≤ ε‖∇ϑ‖2 + cε,ε̄‖ν‖2L∞(L2)‖νt‖2 + ε̄‖∇ν‖2L∞(L2)‖∇νt‖2
≤ ε‖∇ϑ‖2 + cε,ε̄¯̄c‖νt‖2 + ε̄¯̄c‖∇νt‖2 ,

where the Young inequality, with p = 4 and q = 4/3, plays once again a role in the second step, while
inequality (6.12) implies the last bound. The parameters ε, ε̄ > 0 are small as needed. Relation (6.15)
and the previous inequality imply

1
2

d
dt

(
ρ‖ϑ‖2 + α2‖u‖2 + (μ − εα)‖∇u‖2 + (κ0 + ας)‖ν‖2

+ (ζ + αδ)‖∇ν‖2
)

+ α3‖u‖2

+ α(μ − εα − κ)‖∇u‖2 + ακ0‖ν‖2
+ α(ζ − κ)‖∇ν‖2 + (ε − ε)‖∇ϑ‖2
+ (ς − cε,ε̄¯̄c)‖νt‖2 + (δ − ε̄¯̄c)‖∇νt‖2
≤ (α + ε)‖ϑ‖2 + cε‖b‖2.

(6.16)

We find also
1
2

d
dt

(
ρ‖ϑ‖2 + α2‖u‖2 + (μ − εα)‖∇u‖2 + (κ0 + ας)‖ν‖2 + (ζ + αδ)‖∇ν‖2

)

+ α3‖u‖2 + α(μ − εα − κ)‖∇u‖2 + ακ0‖ν‖2 + α(ζ − κ)‖∇ν‖2
+ [(ε − ε)λ1 − (α + ε)]‖ϑ‖2 ≤ cε‖b‖2,
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where λ1 is the best (smallest) constant for which the Poincaré inequality exploited here [3, §4] holds
true. We also assume that ε > α + ε(1 + λ1), so that we compute

d
dt

(
ρ‖ϑ‖2 + α2‖u‖2 + (μ − εα)‖∇u‖2 + (κ0 + ας)‖ν‖2)

+ β̃
(
ρ‖ϑ‖2 + α2‖u‖2 + (μ − εα)‖∇u‖2

+ (κ0 + ας)‖ν‖2) ≤ 2cε‖b‖2,
(6.17)

where β̃ = β̃(α, ε, λ1, μ) is a suitable positive constant, provided that

ρ > [(ε − ε)λ1 − (α + ε)],

with δ and ς large enough. In this last inequality we have omitted some terms in the left-hand side, which
are however not directly useful to reach the bound (6.10). By integrating the inequality (6.17) in the
interval (t0, t), t0 ≥ 0, and setting c̃ := 2cε‖b‖2L2(L2(B)), we get the result. �

Proposition 6.2. S(t) admits a bounded absorbing set B ⊂ W .

Proof. Define B as the subset of W containing all w such that

|||w(t)|||2 ≤ 2c̃ (6.18)

for every t ≥ t0(B), with t0(B) to be determined. Due to the definition (6), as a consequence of relation
(6.10), B is bounded in W . Actually, the dissipative nature evidenced by relation (6.10) (for any fixed
τ > 0) implies the existence of t1 > 0 such that the inequality (6.18) holds for all t ≥ t1, as soon as
|||w(τ)|||2 exp{−β̃(t1 − τ)} ≤ c̃. Thus, S(t)w belongs to B for each t ≥ t1, and B is an absorbing set. To
conclude, it is enough to take t0(B) as the smallest t1 of the type above. �

In light of the previous preliminary results, Theorem 6.1 is a consequence of the following proposition:

Proposition 6.3. The semiflow defined by S(t) on W is compact, i.e, for every bounded set B in W and
for each t > 0, the trajectory S(t)B lies in a compact subset of W .

Proof. Let B be a bounded subset of W . If S(t)B is contained in a compact set of W for some t > 0,
S(t + s)B lies in a compact set of W too, as a consequence of the semigroup property of S(t). Thus, to
prove the claim, it suffices to show that S(t)B lies in a compact set of W for 0 < t ≤ 1.

Since W is a metric space, it is enough to show that S(t)B is sequentially compact. Let {wn} =
{(un, νn; vn)}, vn = un

t , be a bounded sequence in W . Consider

zn(t) =
∫

B

(
ρ|un

t + αun|2 + α2|un|2 + (μ − εα)|∇un|2

+ (κ0 + ας)|νn|2 + (ζ + αδ)|∇νn|2
)

≈ |||wn(t)|||2.
(6.19)

There is a positive constant M0 such that
1∫
0

|||wn(s)|||2 = c
1∫
0

zn(s) ≤ M2
0 , where we have used inequality

(6.11). By recalling that S(t)wn(τ) = wn
+t(τ) = wn(τ + t), due to the estimate (6.10), for s0 ∈ (0, t) and

s ≥ 0 we compute
∣∣∣∣∣∣wn

+t(s)
∣∣∣∣∣∣2 = |||wn(s + t)|||2 = czn(t + s)

≤ czn(s0) exp{−β̃(t + s − s0)} + c̃

≤ czn(s0) + c̃,
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and, by integrating on (0, 1), we get

∣∣∣∣∣∣wn
+t(s)

∣∣∣∣∣∣2 ≤
1∫

0

(
czn(s0) + c̃

) ≤ M2
0 + c̃

i.e., supt≥0

∣∣∣∣∣∣wn
+t(s)

∣∣∣∣∣∣2 ≤ M2
0 + c̃, for all n. Also, by Lemma 4.1, we obtain

m+1∫

m

∣∣∣∣∣∣wn
+t(s)

∣∣∣∣∣∣2 =

m+1∫

m

|||wn(s + t)|||2

≤ |||wn(t)|||2 +
(
1 + c̃)

≤ |||wn(s0)|||2e−β̃(t−s0) +
(
1 + 2c̃

)

for s0 ∈ (0, t). By integrating this inequality on the interval (0, 1), we get

m+1∫

m

∣∣∣∣∣∣wn
+t(s)

∣∣∣∣∣∣2 ≤ M2
0 e−β̃(t−s0) +

(
1 + 3c̃

)
, (6.20)

for any n = 0, 1, 2 . . . and for any m = 0, 1, 2 . . .

The above estimates imply that S(t)wn = S(t)(un, νn, vn) is bounded in L2
loc[0,+∞; (H 1)2) ×

L2
loc[0,+∞;L2(B)).

In a similar way, by using the estimate (6.16), we obtain

m+1∫

m

(
(ς−cε,ε̄¯̄c)‖∂tν

n
+t‖2 + (δ − ε̄¯̄c)‖∇∂tν

n
+t‖2 + η̂‖∇vn

+t‖2
)

=

m+1∫

m

(
ς̂‖∂tν

n(s + t)‖2 + δ̂‖∇∂tν
n(s + t)‖2 + η̂‖∇vn

+t‖2
)

≤ |||wn(t)|||2 + (1 + c̃)

≤ |||wn(s0)|||2e−β̃(t−s0) + (1 + 2c̃),

for s0 ∈ (0, t), and η̂ = min{α(μ − εα − κ), ε − ε}. Therefore, by integrating the above inequality on the
interval (0, 1), we get

m+1∫

m

(
ς − cε,ε̄¯̄c

)‖∂tν
n
+t‖2 + (δ − ε̄¯̄c)‖∇∂tν

n
+t‖2

+ η̂‖∇vn
+t‖2

) ≤ M2
0 + (1 + 2c̃).

(6.21)

These estimates imply the boundedness of S(t)(∂tν
n, vn) = S(t)(∂tν

n, ∂tu
n) in the space L2

loc[0,+∞;
(H 1)2). Along the same path followed to prove existence in reference [3], we can also prove that S(t)∂tv

n ∈
W 1,2

loc (0,+∞;H −1).

Thus, to estimate
m+1∫
m

‖∂tv
n
+t(s)‖2H −1 =

m+1∫
m

‖∂2
ttu

n
+t(s)‖2H −1 the only term to be controlled is 	(curlvm)×

νm
t . In fact, for all ϕ ∈ H 1, we compute
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m+1∫

m

(
(curlvm) × νm

t

)
(s), ϕ

)

≤ C
[ m+1∫

m

‖(curlvm) × νm
t

)
(s)‖H−1ds

]
‖∇ϕ‖

≤ C
[ m+1∫

m

‖curlvm‖‖∇νm
t ‖

]
‖∇ϕ‖

≤
[C

2

m+1∫

m

‖∇vm‖2 +
C

2

m+1∫

m

‖∇νm
t ‖2

]
‖∇ϕ‖

and the conclusion follows by exploiting inequality (6.21).
The Aubin–Lions compactness theorem implies that S(t)wn converges strongly to ŵ(t) in L2

loc[0,+∞;
L2(B)3) and weakly in L2

loc[0,+∞; (H 1)3), as n → +∞, up to a subsequence. Moreover, since S(t)wn(τ) =
wn(τ+t), the same compactness argument implies that wn converges strongly to w in L2

loc[0,+∞;L2(B)3)
and weakly in L2

loc[0,+∞; (H 1)3), up to a subsequence.
By the continuity of (τ, w) �→ S(t)w in (0,+∞)×L2

loc[0,+∞; (H 1)3), we also realize that S(t)wn →
S(t)w and the limit uniqueness implies an inclusion ŵ(t) = S(t)w ∈ W . Thus, the limiting function ŵ
is a weak solution to system (6.5). This concludes the proof. �

Eventually, we prove Theorem 1.1 by applying directly Theorem 6.1, Lemma 6.1, Propositions 6.1,
6.2, and 6.3.

7. Closing remark

Besides its pertinence to the dynamics of quasicrystals, our result can be referred to other classes of
bodies with vector-type microstructure, provided that they undergo mechanical processes appropriately
described by system (1.1), within the limits of its validity.

Sure, the presence of viscous-type interactions, which have a regularizing role from an analytical
viewpoint, suggests a priori the possible existence of an attractor; however, the lack of uniqueness induced
by the nonlinear coupling complicate the scenario and calls into play weak attractors rather than the
strong ones.
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