
25 November 2024

A shooting-Newton procedure for solving fractional terminal value problems / Luigi Brugnano, Gianmarco
Gurioli, Felice Iavernaro. - In: APPLIED MATHEMATICS AND COMPUTATION. - ISSN 0096-3003. - STAMPA. -
489:(2025), pp. 129164.1-129164.16. [10.1016/j.amc.2024.129164]

Original Citation:

A shooting-Newton procedure for solving fractional terminal value
problems

Published version:
10.1016/j.amc.2024.129164

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1399956 since: 2024-11-04T13:37:26Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

ar
X

iv
:s

ub
m

it/
59

58
57

4
 [

m
at

h.
N

A
]

 2
8

O
ct

 2
02

4

A shooting-Newton procedure for solving fractional terminal

value problems

Luigi Brugnano ∗ Gianmarco Gurioli † Felice Iavernaro ‡

Abstract

In this paper we consider the numerical solution of fractional terminal value problems:

namely, terminal value problems for fractional differential equations. In particular, the pro-

posed method uses a Newton-type iteration which is particularly efficient when coupled with

a recently-introduced step-by-step procedure for solving fractional initial value problems, i.e.,

initial value problems for fractional differential equations. As a result, the method is able to

produce spectrally accurate solutions of fractional terminal value problems. Some numerical

tests are reported to make evidence of its effectiveness.

Keywords: fractional differential equations, fractional integrals, terminal value problems,

Jacobi polynomials, Fractional Hamiltonian Boundary Value Methods, FHBVMs

MSC: 34A08, 65R20

1 Introduction

Fractional differential equations have gained more and more importance in many applications: we
refer, e.g., to the classical references [14, 28] for an introduction.

The present contribution is addressed for solving fractional terminal value problems namely,
terminal value problems for fractional differential equations (in short, FDE-TVPs) in the form

y(α)(t) = f(y(t)), t ∈ [0, T], y(T) = η ∈ R
m, (1)

where, for the sake of brevity, we have omitted the argument t for f . Here, for α ∈ (0, 1),
y(α)(t) ≡ Dαy(t) is the Caputo fractional derivative:

Dαg(t) =
1

Γ(1− α)

∫ t

0

(t− x)−α

[

d

dx
g(x)

]

dx. (2)

The Riemann-Liouville integral associated to (2) is given by:

Iαg(t) =
1

Γ(α)

∫ t

0

(t− x)α−1g(x)dx. (3)

∗Dipartimento di Matematica e Informatica “U.Dini”, Università di Firenze, Italy, luigi.brugnano@unifi.it,
https://orcid.org/0000-0002-6290-4107

†Dipartimento di Matematica e Informatica “U.Dini”, Università di Firenze, Italy, gianmarco.gurioli@unifi.it,
https://orcid.org/0000-0003-0922-8119

‡Dipartimento di Matematica, Università di Bari Aldo Moro, Italy, felice.iavernaro@uniba.it,
https://orcid.org/0000-0002-9716-7370

1

http://arxiv.org/submit/5958574/pdf
luigi.brugnano@unifi.it
https://orcid.org/0000-0002-6290-4107
gianmarco.gurioli@unifi.it
https://orcid.org/0000-0003-0922-8119
felice.iavernaro@uniba.it
https://orcid.org/0000-0002-9716-7370

Usually, one solves fractional initial value problems, that is, initial value problems for fractional
differential equations (in short, FDE-IVPs) (see, e.g. [16, 21, 22, 26, 27, 30]):

y(α)(t) = f(y(t)), t ∈ [0, T], y(0) = ρ0 ∈ R
m, (4)

whose solution is, under suitable assumptions on f ,

y(t) = ρ0 + Iαf(y(t)) ≡ ρ0 +
1

Γ(α)

∫ t

0

(t− x)α−1f(y(x))dx, t ∈ [0, T]. (5)

However, under suitable hypothesis on f and T , also the FDE-TVP is well-posed (see, e.g., [18]
for the scalar case, and [29]). Consequently, its numerical solution has been considered by many
authors (see, e.g., [17, 18, 23, 24, 25, 29]). In particular, the scalar case of (1) (m = 1) allows using
a shooting procedure coupled with the bisection method [15, 19] or, more recently, with the secant
method [17].

However, as is clear by their very definition, both the above procedures cannot be applied for
solving vector problems. Motivated by this drawback, in this paper, we propose an alternative
approach, based on a straight Newton procedure, able to handle vector problems as well.

The procedure takes advantage of a recently introduced method for solving FDE-IVPs, able to
obtain spectrally accurate approximations [6, 8]. This latter approach has been derived as an exten-
sion of Hamiltonian Boundary Value Methods (HBVMs), special low-rank Runge-Kutta methods
originally devised for Hamiltonian problems (see, e.g., [9, 10]), and later extended along several
directions (see, e.g., [1, 3, 5, 6, 7, 11]), including the numerical solution of FDEs. A main fea-
ture of HBVMs is the fact that they can gain spectrally accuracy, when approximating ODE-IVPs
[2, 12, 13], and such a feature has been recently extended to the FDE case [6, 8].

With this premise, the structure of the paper is as follows: in Section 2 we sketch the shooting-
Newton procedure for solving (1), along with a corresponding simplified variant; in Section 3 we
recall the main facts about the (possibly spectrally accurate) numerical solution of FDE-IVPs
recently proposed in [6], with the extension for the shooting-Newton procedure; in Section 4 we
report a few numerical tests, including the case of vector problems; at last, a few conclusions are
given in Section 5.

2 The shooting-Newton procedure

To begin with, let us introduce a perturbation result concerning the solution of the FDE-IVP
(4). In particular, let us denote by y(t, ρ0) the solution of this problem, in order to emphasize its
dependence from the initial condition. The following result holds true.

Theorem 1 For t ∈ [0, T], one has:

∂

∂ρ0
y(t, ρ0) = Φ(t, ρ0), (6)

which is the solution of the fractional variational problem 1

Φ(α)(t, ρ0) = f ′(y(t, ρ0))Φ(t, ρ0), t ∈ [0, T], Φ(0, ρ0) = I, (7)

1As is usual, f ′(y) denotes the Jacobian matrix of f(y).

2

explicitly given by:

Φ(t, ρ0) = I +
1

Γ(α)

∫ t

0

(t− x)α−1f ′(y(x, ρ0))Φ(x, ρ0)dx. (8)

Proof In fact, from (2) and (4), one has:

Dα ∂

∂ρ0
y(t, ρ0) =

∂

∂ρ0
Dαy(t) =

∂

∂ρ0
f(y(t, ρ0)) = f ′(y(t, ρ0))

∂

∂ρ0
y(t, ρ0),

and
∂

∂ρ0
y(t, ρ0)

∣

∣

∣

∣

t=0

=
∂

∂ρ0
ρ0 = I.

Consequently, (6)-(7) follows and, therefore, also (8) follows from (3) and (5). �

Remark 1 Hereafter, in order to guarantee the well-posedness of problem (1), if y(0) = ρ∗ is the
initial value of (4) fulfilling the FDE-TVP, i.e.,

y(T, ρ∗) = η, (9)

we shall assume that (see (6))
det (Φ(T, ρ∗)) 6= 0. (10)

Assuming that f is continuously differentiable in a neighborhood of the solution, in turn (10) implies
that

∃ δ > 0 s.t. ‖ρ∗ − ρ‖ ≤ δ ⇒ det (Φ(T, ρ)) 6= 0. (11)

The previous results allow us stating the shooting-Newton procedure for solving (1) sketched in
Table 1, where a suitable stopping criterion has to be adopted. Moreover, the starting approximation
ρ0 for the shooting-Newton iteration has to be chosen in some way, possibly exploiting any additional
information; conversely, the choice ρ0 = η (i.e., the final value in (1)) can be considered, as proposed
in [17].

Remark 2 Though the procedure described in Algorithm 1 appears to be easily derived, at the best
of our knowledge, it has not yet been considered for solving FDE-TVPs, so far. Moreover, the use
of the variational problem, involved in its implementation and described in the next section, is novel
as well.

The following straightforward convergence result holds true.

Theorem 2 Assume that, in a neighborhood of the solution ξ = ρ∗:

(i) f is continuously differentiable,

(ii) Φ(T, ξ)−1 is differentiable.

Then, the shooting-Newton procedure given in Table 1 converges in a suitable neighborhood of ρ∗.

3

Table 1: Algorithm 1 – the shooting-Newton procedure.

fix ρ0

for ℓ = 0, 1, . . .

solve : y(α)(t, ρℓ) = f(y(t, ρℓ)), t ∈ [0, T], y(0, ρℓ) = ρℓ

and Φ(α)(t, ρℓ) = f ′(y(t, ρℓ))Φ(t, ρℓ), t ∈ [0, T], Φ(0, ρℓ) = I

set : ρℓ+1 = ρℓ − Φ(T, ρℓ)
−1 [y(T, ρℓ)− η]

end

Proof In fact, from (9) it follows that ρ∗ is a fixed-point of the corresponding iteration function,

Ψ(ξ) := ξ − Φ(T, ξ)−1 [y(T, ξ)− η] ,

whose Jacobian (recall (6)) vanishes at ξ = ρ∗. Consequently, from the Perron Theorem [31,
Corollary4.7.2], exponential convergence is granted, in a suitable neighborhood of ρ∗. �

Further, if convergent, the procedure converges quadratically. However, to prove this statement,
we need to recall some well-known results about the Taylor theorem. In more detail, with reference
to (6), assume that Φ(T, ξ) is continuously differentiable in a suitable neighborhood of the solution.
Then, by setting yi the i-th entry of y, for a given ρ suitably close to ρℓ there exists θi ∈ [0, 1] such
taht:

yi(T, ρ) = yi(T, ρℓ) +
∂

∂ξ
yi(T, ξ)

∣

∣

∣

∣

ξ=ρℓ

(ρ− ρℓ)

+
1

2
(ρ− ρℓ)

⊤ ∂2

∂ξ2
yi(T, ξ)

∣

∣

∣

∣

ξ=ρℓ+θi(ρ−ρℓ)

(ρ− ρℓ), i = 1, . . . ,m,

with ∂2

∂ξ2
yi(T, ξ) the Hessian matrix of yi(T, ξ). The previous relations can be written in vector

form as follows:

y(T, ρ) = y(T, ρℓ) + Φ(T, ρℓ)(ρ− ρℓ) +
1

2
Φ′(T,Σℓ(ρ)) ((ρ− ρℓ), (ρ− ρℓ)) ,

with
Σℓ(ρ) =

(

ρℓ + θ1(ρ− ρℓ), . . . , ρℓ + θm(ρ− ρℓ)
)

∈ R
m×m,

and Φ′(T,Σℓ(ρ)) denoting the derivative of Φ, whose i-th “slice” is evaluated in the i-th column of
Σℓ(ρ). With this premise, we can now state the following result.

Theorem 3 Assume that, in a neighborhood of the solution ξ = ρ∗, Φ(T, ξ) is continuously differen-
tiable. Then, if convergent, the shooting-Newton procedure given in Table 1 converges quadratically.

4

Proof By using the notation about the Taylor theorem exposed before, one has:

0 = y(T, ρ∗)− η

= y(T, ρℓ)− η +Φ(T, ρℓ) (ρ
∗ − ρℓ) +

1

2
Φ′(T,Σℓ(ρ

∗)) ((ρ∗ − ρℓ), (ρ
∗ − ρℓ)) .

Consequently, considering that 2

ρℓ+1 = ρℓ − Φ(T, ρℓ)
−1[y(T, ρℓ)− η],

and setting eℓ = ρ∗ − ρℓ the error at step ℓ, one derives:

eℓ+1 = −
1

2
Φ(T, ρℓ)

−1Φ′(T,Σℓ(ρ
∗)) (eℓ, eℓ) .

Passing to norms, one eventually obtains

‖eℓ+1‖

‖eℓ‖2
≤

1

2
‖Φ(T, ρℓ)

−1‖ ‖Φ′(T,Σℓ(ρ
∗))‖.

Consequently,

lim
ℓ→∞

‖eℓ+1‖

‖eℓ‖2
≤

1

2
‖Φ(T, ρ∗)−1‖ ‖Φ′(T,Σ∗)‖,

where Σ∗ now denotes the matrix with all the columns equal to ρ∗. �

An interesting additional feature is given by the following result.

Theorem 4 For problems in the form

y(α) = A(t)y + b(t), t ∈ [0, T], y(T) = η ∈ R
m, (12)

with A(t) and b(t) continuous functions, the algorithm described in Table 1 converges in exactly one
iteration.

Proof In fact, in such a case, the variational problem (7) simplifies to

Φ(α)(t) = A(t)Φ(t), t ∈ [0, T], Φ(0) = I,

i.e., Φ(t) does not depend on the initial condition. Further, by using the same notation as above,

[y(t, ρ0)− y(t, ρ∗)]
(α)

= A(t) [y(t, ρ0)− y(t, ρ∗)] , t ∈ [0, T],

whose solution is given by

[y(t, ρ0)− y(t, ρ∗)] = Φ(t) [ρ0 − ρ∗] , t ∈ [0, T].

Consequently, at t = T one has:

[y(T, ρ0)− η] = Φ(T) [ρ0 − ρ∗] .

That is,3

ρ∗ = ρ0 − Φ(T)−1 [y(T, ρ0)− η] ,

so that convergence is gained in exactly one iteration, since the r.h.s. amounts to the very first
iteration of Algorithm 1 used for solving (12). �

2We recall that (11) holds true.
3We recall that the assumption det(Φ(T)) 6= 0 must clearly hold.

5

Table 2: Algorithm 2 – the simplified shooting-Newton procedure.

fix ρ0

for ℓ = 0, 1, . . .

solve : y(α)(t, ρℓ) = f(y(t, ρℓ)), t ∈ [0, T], y(0, ρℓ) = ρℓ

and compute Φ̂(T, ρℓ) ≈ Φ(T, ρℓ)

set : ρℓ+1 = ρℓ − Φ̂(T, ρℓ)
−1 [y(T, ρℓ)− η]

end

2.1 A simplified Newton-iteration

As is well-known, sometimes it can be computationally convenient to implement a simplified Newton
iteration, instead of the basic one. This involve using a simplified version of the algorithm shown
in Table 1: it is sketched in Table 2.

For this simplified shooting-Newton procedure, the following result holds true, the proof being
similar to that of Theorem 2.

Theorem 5 Assume the hypotheses of Theorem 2 hold true and that Φ̂(T, ξ) is continuously in-
vertible in a neighborhood of ξ = ρ∗. Further, assume that the spectral radius of the matrix

I − Φ̂(T, ρ∗)−1Φ(T, ρ∗)

is less than 1. Then, the algorithm described in Table 2 converges in a suitable neighborhood of the
solution ρ∗.

Remark 3 However, as one may expect, in this case the results of Theorems 3 and 4 does not hold,
in general. As matter of fact, only a linear convergence can be granted and, for linear problems,
convergence in one iteration cannot be expected, in general.

3 Implementing the algorithm

Following the approach in [6], let us now explain the way we compute y(T, ρℓ) in Algorithms 1 and
2, and Φ(T, ρℓ) in Algorithm 1.4 From (5) and (8), we have to compute:

y(T, ρℓ) = ρℓ +
1

Γ(α)

∫ T

0

(T − x)α−1f(y(x, ρℓ))dx, (13)

4On the contrary, Φ̂(T, ρℓ) in Algorithm 2 is strictly problem dependent and its computation cannot be stated in
general: however, a relevant specific case will be considered in Section 3.3.

6

and

Φ(T, ρℓ) = I +
1

Γ(α)

∫ T

0

(T − x)α−1f ′(y(x, ρℓ))Φ(x, ρℓ)dx. (14)

To begin with, in order to obtain a piecewise approximation to the solution of the two problems,
we consider a partition of the integration interval in the form:

tn = tn−1 + hn, n = 1, . . . , N, (15)

where

t0 = 0, tN = T ≡

N
∑

n=1

hn. (16)

In general [6], for coping with possible singularities in the derivative of the vector field at the origin,
we shall consider the following graded mesh,

hn = rn−1h1, n = 1 . . . , N, (17)

where r > 1 and h1 > 0 satisfy, by virtue of (16)-(17),

h1
rN − 1

r − 1
= T. (18)

Clearly, when a uniform mesh is considered then, in (17), r = 1 and h1 = h := T/N , so that hn = h,
n = 1, . . . , N .

By setting

yn(chn, ρℓ) := y(tn−1 + chn, ρℓ), c ∈ [0, 1], n = 1, . . . , N, (19)

the restriction of the solution of (13) on the interval [tn−1, tn], and taking into account (15)–(17),
one then obtains:

y(T, ρℓ) ≡ yN(hN , ρℓ) = ρℓ +
1

Γ(α)

∫ T

0

(T − x)α−1f(y(x, ρℓ))dx

= ρℓ +
1

Γ(α)

N
∑

n=1

∫ tn

tn−1

(tN − x)α−1f(y(x, ρℓ))dx

= ρℓ +
1

Γ(α)

N
∑

n=1

∫ hn

0

(tN − tn−1 − x)α−1f(yn(x, ρℓ))dx

= ρℓ +
1

Γ(α)

N
∑

n=1

hα
n

∫ 1

0

(

rN−n+1 − 1

r − 1
− τ

)α−1

f(yn(τhn, ρℓ))dτ. (20)

In case of a constant stepsize h = T/N is used, the previous equation becomes:

y(T, ρℓ) ≡ yN (h, ρℓ)

= ρℓ +
hα

Γ(α)

N
∑

n=1

∫ 1

0

(N − n+ 1− τ)α−1 f(yn(τh, ρℓ))dτ. (21)

7

Similarly, for (14), by setting

Φn(chn, ρℓ) := Φ(tn−1 + chn, ρℓ), c ∈ [0, 1], n = 1, . . . , N, (22)

the restriction of the solution on the interval [tn−1, tn], again by virtue of (15)–(17), one obtains:

Φ(T, ρℓ) ≡ ΦN (hN , ρℓ)

= I +
1

Γ(α)

∫ T

0

(T − x)α−1f ′(y(x, ρℓ))Φ(x, ρℓ)dx

= I +
1

Γ(α)

N
∑

n=1

∫ tn

tn−1

(tN − x)α−1f ′(y(x, ρℓ))Φ(x, ρℓ)dx

= I +
1

Γ(α)

N
∑

n=1

∫ hn

0

(tN − tn−1 − x)α−1f ′(yn(x, ρℓ))Φn(x, ρℓ)dx

= I +
1

Γ(α)

N
∑

n=1

hα
n

∫ 1

0

(

rN−n+1 − 1

r − 1
− τ

)α−1

f ′(yn(τhn, ρℓ))Φn(τhn, ρℓ)dτ,

(23)

and, in case of a constant stepsize h = T/N ,

Φ(T, ρℓ) ≡ ΦN (h, ρℓ)

= I +
hα

Γ(α)

N
∑

n=1

∫ 1

0

(N − n+ 1− τ)
α−1

f ′(yn(τh, ρℓ))Φn(τh, ρℓ)dτ. (24)

3.1 Piecewise quasi-polynomial approximation

The previous functions are then approximated via a piecewise quasi-polynomial approximation, as
described in [6], which we here briefly recall, and generalize to the approximation of the funda-
mental matrix solution, too. In more detail, with reference to (19) and (22), we shall look for
approximations:

σn(chn, ρℓ) ≃ yn(chn, ρℓ), (25)

Ψn(chn, ρℓ) ≃ Φn(chn, ρℓ), c ∈ [0, 1], n = 1, . . . , N,

and, consequently,
y(T, ρℓ) ≃ σN (hN , ρℓ), Φ(T, ρℓ) ≃ ΨN(hN , ρℓ). (26)

Following steps similar to those in [6, Section 2], we consider the expansion of the vector field along
the orthonormal polynomial basis, w.r.t. the weight function

ω(x) = α(1− x)α−1, s.t.

∫ 1

0

ω(x) dx = 1,

8

resulting into a scaled and shifted family of Jacobi polynomials:5

Pj(x) :=

√

2j + α

α
P̄

(α−1,0)
j (2x− 1), x ∈ [0, 1], j = 0, 1,

In so doing, for n = 1, . . . , N , one obtains:

f(yn(chn, ρℓ)) =
∑

j≥0

Pj(c)γj(yn, ρℓ), c ∈ [0, 1],

with

γj(yn, ρℓ) = α

∫ 1

0

(1 − τ)α−1Pj(τ)f(yn(τhn, ρℓ))dτ, j = 0, 1,

The approximations are derived by truncating the infinite series to a finite sum with s terms.
Consequently, for n = 1, . . . , N , one obtains:6

σn(chn, ρℓ) = φα
n−1(c, ρℓ) + hα

n

s−1
∑

j=0

γj(σn, ρℓ)I
αPj(c), c ∈ [0, 1], (27)

with

γj(σn, ρℓ) = α

∫ 1

0

(1− τ)α−1Pj(τ)f(σn(τhn, ρℓ))dτ, j = 0, . . . , s− 1. (28)

and

φα
n−1(c, ρℓ) = ρℓ +

n−1
∑

ν=1

hα
ν

s−1
∑

j=0

Jα
j

(

rn−ν − 1

r − 1
+ crn−ν

)

γj(σν , ρℓ), (29)

having set, for x > 1, 7

Jα
j (x) :=

1

Γ(α)

∫ 1

0

(x− τ)α−1Pj(τ)dτ, j = 0, . . . , s− 1. (30)

If a constant stepsize h = T/N is used, then (29) reads:

φα
n−1(c, ρℓ) = ρℓ + hα

n−1
∑

ν=1

s−1
∑

j=0

Jα
j (n− ν + c)γj(σν , ρℓ), (31)

and similarly one modifies (27) and (28).
It can be shown (see [6]) that φα

n−1(c, ρℓ) is nothing but the approximation of the memory term

Gα
n−1(c, ρℓ) = ρℓ +

1

Γ(α)

n−1
∑

ν=1

hα
ν

∫ 1

0

(

rn−ν − 1

r − 1
+ crn−ν − τ

)α−1

f(yn(τhn, ρℓ))dτ,

5Here, P̄
(a,b)
j (x) denotes the jth Jacobi polynomial with parameters a and b, in [−1, 1].

6We refer to [4, 8] for efficient procedures for computing the fractional integrals Iαj Pj(c), j = 0, . . . , s− 1.
7We refer to [6, 8] for the efficient computation of such integrals.

9

such that, for all c ∈ [0, 1], and n = 1, . . . , N :

yn(chn, ρℓ) = Gα
n−1(c, ρℓ) +

hα
n

Γ(α)

∫ c

0

(c− τ)
α−1

f(yn(τhn, ρℓ))dτ. (32)

As matter of fact, (20) corresponds to set n = N and c = 1 in (32).
Similarly, when a constant stepsize h = T/N is used, then

Gα
n−1(c, ρℓ) = ρℓ +

hα

Γ(α)

n−1
∑

ν=1

∫ 1

0

(n− ν + c− τ)
α−1

f(yn(τh, ρℓ))dτ,

and (32) still formally holds, upon replacing hn with h. Consequently, (21) corresponds again to
set n = N and c = 1 in (32).

The Fourier coefficients (28) can be approximated up to machine precision by using the Gauss-
Jacobi formula of order 2k based at the zeros of Pk(x), c1, . . . , ck, with corresponding weights
b1, . . . , bk, by choosing k large enough. As is explained in [6, Section 3], this allows formulating the
discrete problem for computing them as:8

γn = P⊤
s Ω⊗ Imf

(

φα
n−1 + hα

nI
α
s ⊗ Imγn

)

, (33)

with, by setting γn
j (ρℓ), j = 0, . . . , s − 1, the approximation to γj(σn, ρℓ) obtained by using the

Gauss-Jacobi quadrature formula,

γn =

γn
0 (ρℓ)
...

γn
s−1(ρℓ)

∈ R

sm, φα
n−1 =

φn−1(c1, ρℓ)
...

φn−1(ck, ρℓ)

∈ R

km,

and

Ps =

P0(c1) . . . Ps−1(c1)
...

...
P0(ck) . . . Ps−1(ck)

, Iα

s =

IαP0(c1) . . . IαPs−1(c1)
...

...
IαP0(ck) . . . IαPs−1(ck)

∈ R

k×s,

Ω =

b1
. . .

bk

∈ R

k×k.

Remark 4 It is worth noticing that the discrete problem (33) has (block) dimension s, indepen-
dently of k. This, in turn, allows using relatively large values of k, in order to have an accurate
approximation of the Fourier coefficients, without increasing too much the computational cost.

Moreover, the vector φα
n−1 in (33) only depends on known quantities, computed at the previous

timesteps.
Further, we observe that also the matrices Ps, I

α
s , as well as all the required integrals (30), can

be computed in advance, once for all, and they can be used for each new approximation ρℓ in both
Algorithms 1 and 2. Additionally, it is worth mentioning that, since they only depend on s, k, α, r,
in principle they could be tabulated, without needing to be evaluated.

8As is usual, the function f , here evaluated in a (block) vector of dimension k, denotes the (block) vector made
up by f evaluated in each (block) entry of the input argument.

10

Considering that

IαPj(1) =
1

Γ(α)

∫ 1

0

(1− x)α−1Pj(x)dx =
δj0

Γ(α+ 1)
, j = 0, . . . , s− 1,

the approximations of the solution at tn is given by:

y(tn, ρℓ) ≃ σn(hn, ρℓ) ≡ φα
n−1(1, ρℓ) +

hα
n

Γ(α+ 1)
γn
0 (ρℓ), n = 1, . . . , N. (34)

According to [6] (see also [8]), we give the following definition.

Definition 1 We shall refer to the method defined by (33)-(34), as a Fractional HBVM with
parameters k and s, in short FHBVM(k, s).

In particular, from (26) and (34) one obtains, considering that tN = T :

y(T, ρℓ) ≃ σN (hN , ρℓ) ≡ φα
N−1(1, ρℓ) +

hα
N

Γ(α+ 1)
γN
0 (ρℓ). (35)

Remark 5 When α = 1, the polynomials {Pj}≥0, become the usual Legendre polynomials ortho-
mormal in [0, 1]. Consequently, a FHBVM(k, s) method reduces to a standard HBVM(k, s) method,
when α = 1.

In a similar way, for n = 1, . . . , N :

Ψn(chn, ρℓ) = Θα
n−1(c, ρℓ) + hα

n

s−1
∑

j=0

Γj(σn, ρℓ)I
αPj(c), c ∈ [0, 1], (36)

with

Γj(σn, ρℓ) = α

∫ 1

0

(1− τ)α−1Pj(τ)f
′(σn(τhn, ρℓ))Ψn(τhn, ρℓ)dτ, j = 0, . . . , s− 1, (37)

and (see (30))

Θα
n−1(c, ρℓ) = I +

n−1
∑

ν=1

hα
ν

s−1
∑

j=0

Jα
j

(

rn−ν − 1

r − 1
+ crn−ν

)

Γj(σν , ρℓ). (38)

Similarly as in (31), when a constant stepsize h = T/N is used, then (38) becomes:

Θα
n−1(c, ρℓ) = I + hα

n−1
∑

ν=1

s−1
∑

j=0

Jα
j (n− ν + c)Γj(σν , ρℓ). (39)

As done for (28), by approximating the integrals in (37) by using the same Gauss-Jacobi formula
as before, from (36) and (37) one derives a discrete problem in the form

Γn = P⊤
s Ω⊗ Imf ′

(

φα
n−1 + hα

nI
α
s ⊗ Imγn

) [

Θα
n−1 + hα

nI
α
s ⊗ ImΓn

]

, (40)

11

where φα
n−1 and γn have been already computed in (33),

f ′
(

φα
n−1 + hα

nI
α
s ⊗ Imγn

)

∈ R
km×km

is the block diagonal matrix whose diagonal blocks are given by the corresponding evaluations of
the Jacobian of f ,

Θα
n−1 =

Θα
n−1(c1, ρℓ)

...
Θα

n−1(ck, ρℓ)

∈ R

km×m,

and, by setting Γn
j (ρℓ), j = 0, . . . , s − 1, the approximation to Γj(σn, ρℓ) obtained through the

Gauss-Jacobi formula,

Γn =

Γn
0 (ρℓ)
...

Γn
s−1(ρℓ)

∈ R

sm×m,

with the approximation of the solution at tn given by:

Φ(tn, ρℓ) ≃ Ψn(hn, ρℓ) ≡ Θα
n−1(1, ρℓ) +

hα
n

Γ(α + 1)
Γn
0 (ρℓ), n = 1, . . . , N. (41)

As is clear, (40)-(41) define the application of the FHBVM(k, s) method to the variational problem.
We observe that considerations similar to those made in Remark 4 for (33) can be now repeated

for (40), with the additional fact that (40) amounts to just solving a linear system of equations.
At last, from (26) and (41) one eventually obtains:

Φ(T, ρℓ) ≃ ΨN(hN , ρℓ) ≡ Θα
N−1(1, ρℓ) +

hα
N

Γ(α+ 1)
ΓN
0 (ρℓ). (42)

Remark 6 By choosing values of s, and k ≥ s, large enough, it can be seen that the approximations
(35) and (42) provided by a FHBVM(k, s) method can be accurate up to machine precision. In fact,
from the analysis carried out in [6], the error in approximating (13) and (14) is proved to be bounded
by

O(h2α
1 + hs+α

N),

if a graded mesh (15)–(17) is used, or by

O(hs+α−1), h = T/N,

if a uniform mesh can be considered. This latter case is appropriate when the vector field is every-
where smooth, in a neighborhood of the solution.

Actually, this amounts to using the method as a spectrally accurate method in time, as is the
case for HBVMs [2, 5, 12, 13]. This kind of approximations will be considered in the implementation
of the algorithm listed in Table 1 (and for the simplified version of it, listed in Table 2), which we
shall use for the numerical tests reported in Section 4.

12

3.2 Error estimation

It is worth mentioning that the procedure explained in the previous section allows to derive, as a
by-product, an estimate for the error in the computed solution, due to the fact that, in Algorithm 1,
the iteration is stopped when, for a suitably small tolerance tol,

|ρℓ+1 − ρℓ| ≤ tol. (43)

In fact, in such a case, one expects that |ρℓ+1−ρ∗| ≈ tol as well. Consequently, by considering that
at the mesh points, for n = 1, . . . , N :

y(tn, ρℓ) ≃ σn(hn, ρℓ) ≡ φα
n−1(1, ρℓ) +

hα
n

Γ(α+ 1)
γn
0 (ρℓ), (44)

and, similarly,

Φ(tn, ρℓ) ≃ Ψn(hn, ρℓ) ≡ Θα
n−1(1, ρℓ) +

hα
n

Γ(α+ 1)
Γn
0 (ρℓ),

by virtue of the perturbation result of Theorem1, one derives the estimates

‖y(tn, ρ
∗)− y(tn, ρℓ)‖ ≈ 2 · tol · ‖Ψn(hn, ρℓ)‖, n = 1, . . . , N. (45)

3.3 The simplified shooting-Newton algorithm for semi-linear problems

For the simplified algorithm in Table 2, the approximation to Φ̂(T, ρℓ) is in general problem depen-
dent. However, there is a specific case where an efficient approximation can be readily obtained,
i.e., when problem (1) is semi-linear:

y(α)(t) = Ly(t) + g(y(t)), t ∈ [0, T], y(T) = η ∈ R
m, (46)

with L ∈ R
m×m and ‖L‖ ≫ ‖g‖ in a suitable neighborhood of the solution. In fact, in such a case,

one can approximate the variational problem (7) with the linear part only (thus, independent of ρ),

Φ̂(α)(t) = LΦ(t), t ∈ [0, T], Φ(0) = I.

In so doing, one obtains the approximation

Φ̂(T) = Eα(LT
α) :=

∑

j≥0

(LTα)j

Γ(αj + 1)
,

with Eα the one-parameter Mittag-Leffler function. Furthermore, since we are interested in deriving
only a convenient approximation to the fundamental matrix function, we can truncate the above
series to a suitable finite sum. As an example, for a given tolerance ε, one may consider the
approximation:

Φ̂(T) =

J
∑

j=0

(LTα)j

Γ(αj + 1)
, s.t.

‖(LTα)J‖

Γ(αJ + 1)
≤ ε. (47)

13

4 Numerical Tests

We here report a few numerical tests aimed at illustrating the theoretical findings. For all tests,
we use k = 22 and s = 20, so that we are going to use a FHBVM(22,20) method. In other words,
we use a local polynomial approximation of degree s − 1 = 19 for the vector field, coupled with
a Gauss-Jacobi quadrature formula of order 2k = 44 for approximating the Fourier coefficients
(28) and (37). We have used straightforward fixed-point iterations, derived from (33) and (40),
respectively, to solve the corresponding discrete problems.9 Namely,

γn,j+1 = P⊤
s Ω⊗ Imf

(

φα
n−1 + hnI

α
s ⊗ Imγn,j

)

, j = 0, 1, . . . ,

starting from γn,0 = 0, for (33), and similarly for (40).10 The iterations are carried out until full ma-
chine accuracy is gained, so that we expect full machine accuracy for the computed approximation
(42) to Φ(T, ρℓ), as well as a corresponding fully accurate discrete solution (44).

We consider 6 test problems:

• the first 3 problems are the same scalar test problems in [17, Section 5];

• the last 3 problems are vector problems.

For all problems, (see (1)) the initial guess ρ0 = η has been considered. All numerical tests have
been performed in Matlab© (Rel. 2023b) on a Silicon M2 laptop with 16GB of shared memory. The
iteration of Algorithm 1 is stopped by using a tolerance tol = 10−14 in (43). The same tolerance and
stopping criterion will be used for Algorithm 2. To be more precise, we shall consider Algorithm 1
for solving all the problems, and Algorithm 2 for solving the last problem, which is semi-linear.

4.1 Example 1

The first problem is given by:

y(0.3) = −|y|1.5 +
8!

Γ(8.7)
t7.7 − 3

Γ(5.15)

Γ(4.85)
t3.85 +

(

3

2
t0.15 − t4

)3

+
9

4
Γ(1.3),

t ∈ [0, 1], y(1) =
1

4
, (48)

whose solution is

y(t) = t8 − 3 t4.15 +
9

4
t0.3.

In this case, we use a uniform mesh with stepsize h = 1/10. The method converges in 4 iterations
producing the approximations in Table 3. It is possible to appreciate the quadratic convergence of
the iteration in the first iterations (in the last one, roundoff errors clearly dominate). The maximum
error on the final solution is ≈ 6 · 10−15, whereas the estimated one, by using (45), is 2 · 10−14.

9We have used a fixed point iteration also for solving (40), despite the fact that it is just a linear system of
equations.

10More refined nonlinear iterations are described in [8].

14

Table 3: Results for Problem (48).
ℓ ρℓ
0 2.500000000000000e-01
1 -6.974105632991501e-03
2 -6.267686473630449e-06
3 -5.040632537594832e-12
4 -2.508583045846617e-15

Table 4: Results for Problem (49).
ℓ ρℓ
0 .6476128469955936
1 2.799999999999968

4.2 Example 2

The second problem is given by:

y(0.3) = −
3

2
y, t ∈ [0, 7],

y(7) =
14

5
E0.3

(

−
3

2
7 0.3

)

≃ .6476128469955936, (49)

with E0.3 the Mittag-Leffler function of order 0.3, with solution

y(t) =
14

5
E0.3

(

−
3

2
t 0.3

)

.

We refer to [20] and the accompanying software ml.m, for an efficient Matlab© implementation of
the Mittag-Leffler function.

In this case a uniform mesh is not appropriate, since the vector field is proportional to the
solution, which has a singularity in the first derivative at the origin. Consequently, we use a graded
mesh, according to (17), with h1 = 10−14 and N = 500. Taking into account (18), this implies
r ≃ 1.064914852480467. According to the result of Theorem 4, the method converges in one
iteration, as is shown in Table 4. The maximum error on the final solution is ≈ 2 · 10−13, whereas
the estimated one, by using is (45), is 2 · 10−14 (in this case, the maximum error is essentially close
to the origin, where there is the singularity of the derivative).

4.3 Example 3

The third problem is given by:

y(0.7) =
1

t+ 1
sin(t · y), t ∈ [0, 20],

y(20) = 0.8360565285776644, (50)

15

0 2 4 6 8 10 12 14 16 18 20

t

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

y

Figure 1: Reference solution for problem (50).

which corresponds to the initial value y(0) = 1. In such a case, the solution is not known in
closed form, and the final value has been taken from a reference solution computed by using the
FHBVM(22,20) method with a constant stepsize h = 0.02 (i.e., by using 1000 timesteps). This
solution is depicted in Figure 1, and the estimated error (by using a doubled mesh) is ≈ 1.8 · 10−14.

For solving problem (50), we use a uniform mesh with stepsize h = 20/400 = 1/20. The method
converges in 6 iterations, producing the approximations listed in Table 5. Also in the case, it is
possible to appreciate a quadratic-like convergence of the iteration. The maximum error in the final
solution is ≈ 2 · 10−14, whereas the estimated one, by using is (45), is 6 · 10−14.

Table 5: Results for Problem (50).
ℓ ρℓ
0 .8360565285776644
1 1.115178544783084
2 1.057854760373079
3 1.006528883050734
4 .9999714859685488
5 .9999999991678453
6 .9999999999999855

16

Table 6: Results for Problem (51).
ℓ ρℓ
0 .2591172572977875 .5953212597441289
1 2.000000000000012 3.000000000000012

4.4 Example 4

We now consider the following linear (vector) FDE-TVP:

y(0.5) =

(

−3 0
−2 − 1

)

y, t ∈ [0, 2], (51)

y(2) =

(

2E0.5

(

−3 · 20.5
)

2E0.5

(

−3 · 20.5
)

+ E0.5

(

−20.5
)

)

≃

(

.2591172572977875

.5953212597441289

)

,

having solution

y(t) =

(

2E0.5

(

−3 · t0.5
)

2E0.5

(

−3 · t0.5
)

+ E0.5

(

−t0.5
)

)

,

corresponding to the initial value y(0) = (2, 3)⊤. Since the vector field is linearly related to the
solution, which has a singularity in the first derivative at the origin, we use a graded mesh with
h1 = 10−14 and N = 100. According to the result of Theorem 4, convergence is gained in just
one iteration, as is confirmed by Table 6. The maximum error in the final solution is ≈ 7 · 10−15,
whereas the estimated one, by using (45), is 2 · 10−14.

4.5 Example 5

We now consider the following fractional Brusselator model:

y
(0.7)
1 = 1− 4y1 + y21y2, (52)

y
(0.7)
2 = 3y1 − y21y2, t ∈ [0, 5],

y(5) =

(

.8904632063462272

3.326603532694057

)

.

In such a case, the solution is not explicitly known, and we have computed the final value starting
from y(0) = (1.2, 2.8)⊤ by using the FHBVM(22,20) method with a graded mesh with h1 = 10−14

and N = 1000: the reference solution is plotted in Figure 2 in solid line, with the initial condition
marked by the circle. We solve the problem by using the FHBVM(22,20) method on a graded
mesh with h1 = 10−14 and N = 200. In so doing, the algorithm described in Table 1 converges
in 5 iterations, with a quadratic-like order, obtaining the results listed in Table 7. The maximum
estimated error in the final solution is ≈ 10−13, whereas that in the final point is ≈ 4 · 10−16.

17

0.7 0.8 0.9 1 1.1 1.2 1.3

y
1

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

y
2

Figure 2: Reference solution for problem (52) (solid line). The circle denotes the actual initial
condition, whereas the pluses denote the final approximate solution.

4.6 Example 6

As a last example, we consider a family of semi-linear problems with y ∈ R
2ν and

y(0.7) =

(

Iν
−Iν

)

y +
1

20
cos(Dνy), t ∈ [0, 5], (53)

where Iν ∈ R
ν×ν is the identity matrix, the function cos is meant to be applied in vector mode,

and
Dν = diag (1, 2, . . . , 2ν)

−1
.

Table 7: Results for Problem (52).
ℓ ρℓ
0 .8904632063462272 3.326603532694057
1 1.195221947994766 2.798766749634182
2 1.199608077826518 2.800213499824565
3 1.199998157974212 2.800001859877902
4 1.199999999973615 2.800000000034993
5 1.199999999999924 2.800000000000298

18

The reference solution at t = 5 has been computed by using the FHBVM(22,20) method on a graded
mesh with N = 300 and h1 = 10−14, solving (53) starting from the initial value with entries:

yi(0) =
1

i
cos
(

(i − 1)
π

ν

)

, i = 1, . . . , 2ν. (54)

We solve, at first, the FDE-TVP (53) with y(5) given, by using Algorithm 1 with the FHBVM(22,20)
method on a graded mesh with N = 35 and h1 = 10−8, for ν = 1, . . . , 35, thus solving FDE-TVPs
having dimension 2, 4, . . . , 70.

The algorithm in Table 1 turns out to always converge in 4–5 iterations. The error in the
computed initial value is always less than 1.5 · 10−13. In Figure 3 is the plot of the execution mean
times (over 5 runs) of the algorithm versus the dimension of the problem. In more detail, the figure
plots:

• the total execution time (all times are in sec);

• the time for computing the required memory terms φα
n−1(c, ρℓ) (29) in the local problems

(LPs);

• the time for solving the local problems (33) ;

• the time for computing the memory terms (38) in the local variational problems (LVPs);

• the time for solving the local variational problems (40).

According to Remark 4, we have not considered the pre-processing time for evaluating the integrals
IαPj in (27) and Jα

j (x) (30), also because they require an extended precision arithmetic (quadruple
precision would be enough) but, at the moment, they are computed symbolically in Matlab, and
not numerically, so that this part of the code is not yet optimized.

From the obtained results, one may conclude that most of the computational time of Algorithm 1
is spent in the solution of the variational problem: in particular, the evaluation of the memory terms
for the local variational problems. For this reason, we now consider Algorithm 2 for solving problem
(53). In fact, since the problem is in the form (46), we can use the (quite cheap) approximation
(47) in place of the fundamental matrix function. Having fixed a tolerance ε = 10−10, this results in
using J = 40 in (47), which is quite inexpensive. In such a case, the algorithm in Table 2 converges
in 9–10 iterations, instead of 4–5. Nevertheless, the overall execution time results to be relatively
small, due to the fact that the solution of the variational problem is no more required. Figure 4
contains the comparison between the total execution times of Algorithm 1, as seen in Figure 3,
and of Algorithm 2: this latter is used for solving problem (53) with ν = 5, 10, 15, 20, . . . , 405. The
highest dimension (2ν = 810) is chosen because the corresponding execution time is practically
the same as that of Algorithm 1 when solving the problem of dimension 70 (about 7.5 sec). This
clearly shows the superiority of the simplified shooting-Newton iteration over the original one, for
this semi-linear problem.

5 Conclusions

In this paper we have described a novel shooting procedure which, coupled with the Newton method,
proves very appealing for numerically solving terminal value problems for fractional differential
equations. The implementation details of the given procedure have been thoroughly given, when

19

10
0

10
1

10
2

dimension

10
-2

10
-1

10
0

10
1

s
e

c

total execution time

memory term LPs

LPs

memory term LVPs

LVPs

Figure 3: Execution times of Algorithm 1 for solving problem (53) with y(5) given, for dimensions
ranging from 2 to 70. See the text for details.

10
0

10
1

10
2

10
3

dimension

10
-1

10
0

10
1

s
e

c

Algorithm 2

Algorithm 1

Figure 4: Comparison of the total execution times of Algorithm 1 and Algorithm 2 for solving
problem (53) with y(5) given. See the text for details.

20

the underlying numerical methods are FHBVMs. These latter methods, when used as spectrally
accurate methods in time, allow deriving very accurate solutions, along with a suitable estimate of
the error in the computed solution.

A corresponding cheaper procedure, relying on a simplified Newton method, has been also
described. This latter procedure appears to be very promising for semi-linear problems since, in
such a case, the associated variational equation is no more required. Numerical tests on both scalar
and vector problems confirm the effectiveness of the presented approach.

Further directions of investigations include the extension for solving two-point boundary value
problems, as well as the efficient numerical solution of the local variational problems, due to the
fact that they amount to solving just linear systems of algebraic equations.

Declarations. The authors declare no conflict of interests, nor competing interests. No funding
was received for conducting this study.

Data availability. All data reported in the manuscript have been obtained by a Matlab© im-
plementation of the methods presented. They can be made available on request.

Acknowledgements. The authors want to thank the referees for carefully reading the manuscript.

References

[1] P.Amodio, L. Brugnano, F. Iavernaro. Spectrally accurate solutions of nonlin-
ear fractional initial value problems. AIP Conf. Proc. 2116 (2019) 140005.
https://doi.org/10.1063/1.5114132

[2] P.Amodio, L. Brugnano, F. Iavernaro. Analysis of Spectral Hamiltonian Boundary Value Meth-
ods (SHBVMs) for the numerical solution of ODE problems. Numer. Algorithms 83 (2020)
1489–1508. https://doi.org/10.1007/s11075-019-00733-7

[3] P.Amodio, L. Brugnano, F. Iavernaro. Arbitrarily high-order energy-conserving
methods for Poisson problems. Numer. Algoritms 91 (2022) 861–894.
https://doi.org/10.1007/s11075-022-01285-z

[4] P.Amodio, L.Brugnano, F. Iavernaro. A note on a stable algorithm for computing the frac-
tional integrals of orthogonal polynomials. Applied Mathematics Letters 134 (2022) 108338.
https://doi.org/10.1016/j.aml.2022.108338

[5] P.Amodio, L. Brugnano, F. Iavernaro. (Spectral) Chebyshev collocation meth-
ods for solving differential equations. Numer. Algoritms 93 (2023) 1613–1638.
https://doi.org/10.1007/s11075-022-01482-w

[6] L.Brugnano, K.Burrage, P. Burrage, F. Iavernaro. A spectrally accurate step-by-step method
for the numerical solution of fractional differential equations. J. Sci. Comput. 99 (2024) 48.
https://doi.org/10.1007/s10915-024-02517-1

[7] L.Brugnano, G. Frasca-Caccia, F. Iavernaro, V.Vespri. A new framework for poly-
nomial approximation to differential equations. Adv. Comput. Math. 48 (2022) 76.
https://doi.org/10.1007/s10444-022-09992-w

21

https://doi.org/10.1063/1.5114132
https://doi.org/10.1007/s11075-019-00733-7
https://doi.org/10.1007/s11075-022-01285-z
https://doi.org/10.1016/j.aml.2022.108338
https://doi.org/10.1007/s11075-022-01482-w
https://doi.org/10.1007/s10915-024-02517-1
https://doi.org/10.1007/s10444-022-09992-w

[8] L.Brugnano, G,Gurioli, F. Iavernaro. Numerical solution of FDE-IVPs by
using Fractional HBVMs: the fhbvm code. Numer. Algorithms (2024).
https://doi.org/10.1007/s11075-024-01884-y

[9] L.Brugnano, F. Iavernaro. Line Integral Methods for Conservative Problems. Chapman et
Hall/CRC, Boca Raton, FL, USA, 2016.

[10] L.Brugnano, F. Iavernaro. Line Integral Solution of Differential Problems. Axioms 7(2) (2018)
36. https://doi.org/10.3390/axioms7020036

[11] L.Brugnano, F. Iavernaro. A general framework for solving differential
equations. Ann. Univ. Ferrara Sez. VII Sci. Mat. 68 (2022) 243–258.
https://doi.org/10.1007/s11565-022-00409-6

[12] L.Brugnano, J.I.Montijano, F. Iavernaro, L.Randéz. Spectrally accurate space-
time solution of Hamiltonian PDEs. Numer. Algorithms 81 (2019) 1183–1202.
https://doi.org/10.1007/s11075-018-0586-z

[13] L.Brugnano, J.I.Montijano, L.Randéz. On the effectiveness of spectral methods for the numer-
ical solution of multi-frequency highly-oscillatory Hamiltonian problems. Numer. Algorithms
81 (2019) 345–376. https://doi.org/10.1007/s11075-018-0552-9

[14] K.Diethelm. The analysis of fractional differential equations. An application-oriented exposi-
tion using differential operators of Caputo type. Lecture Notes in Math., 2004. Springer-Verlag,
Berlin, 2010.

[15] K.Diethelm. Increasing the efficiency of shooting methods for terminal
value problems of fractional order. J. Comput. Phys. 293 (2015) 135–141.
https://doi.org/10.1016/j.jcp.2014.10.054

[16] K.Diethelm, N.J. Ford, A.D. Freed. Detailed error analysis for a fractional Adams method. Nu-
mer. Algorithms 36 (2004) 31–52. https://doi.org/10.1023/B:NUMA.0000027736.85078.be

[17] K.Diethelm, F.Uhlig. A new approach to shooting methods for terminal value
problems of fractional differential equations. J. Sci. Comput. 97 (2023) 38.
https://doi.org/10.1007/s10915-023-02361-9

[18] N.J. Ford, M.L.Morgado. Fractional boundary value problems: analy-
sis and numerical algorithms. Fract. Calc. Appl. Anal. 14 (2011) 554–567.
https://doi.org/10.2478/s13540-011-0034-4

[19] N.J. Ford, M.L.Morgado, M.Rebelo. High order numerical methods for frac-
tional terminal value problems. Comput. Methods Appl. Math. 14 (2014) 55–70.
https://doi.org/10.1515/cmam-2013-0022

[20] R.Garrappa, Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM
J. Numer. Anal. 53, No. 3 (2015) 1350–1369. https://doi.org/10.1137/140971191

[21] R.Garrappa. Trapezoidal methods for fractional differential equations: The-
oretical and computational aspects. Math. Comp. Simul. 110 (2015) 96–112.
http://doi.org/10.1016/j.matcom.2013.09.012.

22

https://doi.org/10.1007/s11075-024-01884-y
https://doi.org/10.3390/axioms7020036
https://doi.org/10.1007/s11565-022-00409-6
https://doi.org/10.1007/s11075-018-0586-z
https://doi.org/10.1007/s11075-018-0552-9
https://doi.org/10.1016/j.jcp.2014.10.054
https://doi.org/10.1023/B:NUMA.0000027736.85078.be
https://doi.org/10.1007/s10915-023-02361-9
https://doi.org/10.2478/s13540-011-0034-4
https://doi.org/10.1515/cmam-2013-0022
https://doi.org/10.1137/140971191
http://doi.org/10.1016/j.matcom.2013.09.012

[22] R.Garrappa. Numerical solution of fractional differential equations: a survey and a software
tutorial. Mathematics 6(2) (2018) 16. http://doi.org/10.3390/math6020016

[23] Z.Gu. Spectral collocation method for nonlinear Riemann-Liouville frac-
tional terminal value problems. J. Compt. Appl. math. 398 (2021) 113640.
https://doi.org/10.1016/j.cam.2021.113640

[24] Z.Gu, Y.Kong. Spectral collocation method for Caputo fractional terminal value problems.
Numer. Algorithms 88 (2021) 93–111. https://doi.org/10.1007/s11075-020-01031-3

[25] C. Li, M.-M. Li, H. Zhou. Terminal value problem for a generalized fractional or-
dinary differential equation. Math. Meth. Appl. Sci. 44 (2021) 12963–12979.
https://doi.org/10.1002/mma.7600

[26] C. Li, Q.Yi, A.Chen. Finite difference methods with non-uniform meshes for non-
linear fractional differential equations. J. Comput. Phys. 316 (2016) 614–631.
https://doi.org/10.1016/j.jcp.2016.04.039

[27] Ch. Lubich. Fractional Linear Multistep Methods for Abel-Volterra Integral
Equations of the Second Kind. Math. Comp. 45, No. 172 (1985) 463–469.
https://doi.org/10.1090/S0025-5718-1985-0804935-7

[28] I. Podlubny. Fractional differential equations. An introduction to fractional derivatives, frac-
tional differential equations, to methods of their solution and some of their applications. Aca-
demic Press, Inc., San Diego, CA, 1999.

[29] B. Shiri, G.-C.Wu, D. Baleanu. Terminal value problems for the nonlinear sys-
tems of fractional differential equations. Appl. Numer. Math. 170 (2021) 162–178.
https://doi.org/10.1016/j.apnum.2021.06.015

[30] M. Stynes, E.O’Riordan, J.L.Gracia. Error analysis of a finite difference method on graded
meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55 (2017) 1057–1079.
https://doi.org/10.1137/16M1082329

[31] V. Lakshmikantham, D.Trigiante. Theory of Difference Equations: Numerical Methods and
Applications. Academic Press Inc., Boston, 1988.

23

http://doi.org/10.3390/math6020016
https://doi.org/10.1016/j.cam.2021.113640
https://doi.org/10.1007/s11075-020-01031-3
https://doi.org/10.1002/mma.7600
https://doi.org/10.1016/j.jcp.2016.04.039
https://doi.org/10.1090/S0025-5718-1985-0804935-7
https://doi.org/10.1016/j.apnum.2021.06.015
https://doi.org/10.1137/16M1082329

	Introduction
	The shooting-Newton procedure
	A simplified Newton-iteration

	Implementing the algorithm
	Piecewise quasi-polynomial approximation
	Error estimation
	The simplified shooting-Newton algorithm for semi-linear problems

	Numerical Tests
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Conclusions

